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Abstract

Orthogonal range search finds and reports all objects falling in a specified query
window. An algorithm to solve orthogonal range search problem on %k dimensions
using tries is developed and analyzed. Two hyper-rectangles intersect if and only if
their sides on every dimension in the data space intersect. The algorithm reports
the set HR (HR C input data set D, |HR| = A, |D| = n) of k-dimensional (k-
d) hyper-rectangles intersecting a k-d axis-aligned query hyper-rectangle W, and
supports dynamic operations. We assume that the input data set D and query hyper-
rectangle W drawn from a uniform, random distribution. The storage S(n,k) =
©(kBn) and the expected preprocessing time P(n, k) = ©(kBn) for a trie containing
n k-d hyper-rectangles where B is the number of bits for representing a coordinate
value. The expected orthogonal range search time Q(n,k) = O(n®) for 0.5 < a < 1
and a a complicated function of n and k. Experimental research with randomly
generated data and query hyper-rectangles (and various values of k£ and n up to 10
and 100,000, respectively) is used to empirically validate the expected range search
time. Our algorithm compares favorably to the existing dynamic orthogonal range

search algorithm when £ is large.
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Chapter 1

Introduction

1.1 Overview

Orthogonal range search [Knut73-2] [BeFr79] finds and reports all objects inter-
secting a specified query hyper-rectangle W. This thesis considers the case where the
objects to be searched for are k-dimensional (k-d) hyper-rectangles. We investigate
the use of k-d tries (e.g. Flajolet and Puech [FIPu86], Shang [Shan01]) as a data
structure to support orthogonal range search.

Given a collection F of records, each containing several attributes or keys, an
orthogonal range query asks for all records with key values each inside specified ranges.
Range search is the process of reporting the appropriate records intersecting the query
range. The range search problem can be interpreted geometrically by considering the
record attributes as coordinates and the k values for each record as a point in a k-

dimensional coordinate space [BeFr79]. The definition for orthogonal range search is



as follows:

Definition 1 For a data space R*, for k = number of dimensions, orthogonal range
search is defined as finding and reporting the set HR, (|HR| = A, HR C D, D = set of
azis-aligned orthogonal data objects represented as hyper-rectangles, |D| = n) of data
intersecting the query hyper-rectangle W = {[Ly, Hy], [Ls, Hs), -+ ,[Ly, Hg]}, where

[L;, Hj| represents a range for dimension j of the query hyper-rectangle.

The classical orthogonal range search of Bentley and Friedman [BeFr79] is gener-
alized to allow each of the n records in the collection F to be defined by a coordinate
(or key) range.

In the following discussion, we use the following notation:

Q(n, k) represents the time complexity of orthogonal range search on a data
structure containing n k-dimensional objects.

P(n, k) is the cost of processing n k-dimensional objects into a data structure
supporting orthogonal range search. In this thesis, P(n, k) refers to the building time
for inserting all the n k-dimensional hyper-rectangles into a trie T.

S(n, k) is the amount of storage required by the data structure.

1.2 Previous Work

Data structures supporting orthogonal range search on such records have been
constructed, with one of the most popular being the k-dimensional variant of the
B-tree known as the R-tree introduced by Guttman [Gutt84|. Edelsbrunner [Edel83]

2



introduced the d-fold rectangle tree to support orthogonal range search on k-d hyper-
rectangles with S(n,k) =0(nlog" ' n), P(n,k)=0(nlog" n), and Q(n,k) =0 (log* 'n+
A).

Bentley et al. [BeFr79] [BeMa80] review several data structures for k-dimensional
point range searching including sequential scan, projection, cells, k-d trees, range trees
and k-ranges. The d-fold BB(«) tree [Luek78] [LuWi82] has worst-case total time of
O(nlog® n) for n operations (where an operation can be to insert or delete a point,
or to perform a range search). The k-d tree [Bent75] is a binary tree. The k-d tree
requires O(kn) space and a total path length of O(nlogn) for n k-d points inserted
in random order. The analysis of range search for balanced k-d trees shows that
Q(n, k) = O(sn'~"/k 4+ A) for s of the k coordinates restricted to a subrange [LeWo77],
and (k — s) of the coordinates unspecified. Devroye et al. [DJZ00] analyzed range
search on squarish k-d trees and random k-d trees [CDZ01]. Fredman constructed a
model for complexity analysis of range search [Fred81-a] [Fred81-b]. Lower bounds
for range search were studied by Chazelle [Chaz90-a] [Chaz90-b], who showed that
a sequence of n operations for insertion, deletion, and reporting points in a given
range costs (n(logn)*). Bentley and Maurer [BeMa80] investigated three k-ranges
for range search. They showed that one level k-ranges had Q(n, k) = O(k logn +
A), S(n,k) = P(n,k) = O(n*="), and multi-level k-ranges require linear space,
P(n,k) = O(nlogn) and Q(n,k) = O(n). Merrett et al. [MSZ96] introduced the
zoom trie for spatial data display, whose upper levels are used for lower resolutions,

with the leaf level used for full resolution. Chazelle [Chaz88] gives a comprehensive



overview of data structures for k-dimensional searching, including the description of
a k-dimensional rectangle reporting algorithm (supporting dynamic operations) with
Q(n, k) = O(A(log(%)?) + log® " n), which is close to the lower bound.

There are thirteen possible relationships between two intervals [Alle83]. Shang’s
approach achieves interval containment by superimposing a PR-Trie with a zoom trie
[Shan01]. In Shang’s thesis, one-dimensional interval relationships are represented as
queries in two dimensions. In this paper, we consider only one relationship (intersec-
tion) for orthogonal range search.

As pointed out in Flajolet and Puech [FIPu86], 1-d tries tend to be better bal-
anced than 1-d search trees. For k-dimensional search, this improved balance can
lead to asymptotically smaller search times. Our research investigate k-d tries for or-

thogonal range search which, to our knowledge, has not been investigated previously.

1.3 Thesis Objectives

The principle objective of this research is to explore the use of tries for combined
text and spatial data range search. As part of this primary objective, the subgoals

are followed:

e Review and analyze data structures that permit k-dimensional range search.

e Design an efficient algorithm using tries to support range search on spatial data

which also supports dynamic operations.



Determine the average and worst case storage of tries storing n data objects.

Determine the preprocessing time of this algorithm.

Given assumptions about the random distribution of the spatial data, what is

the expected range search time?

Perform empirical verification of the results with large (e.g. n = 1 x 10°)

randomly generated data sets.

In the following pages, each of these targets is solved. The asymptotic running
time of orthogonal range search for k-d tries is analyzed via calculating the expected

number of nodes visited in tries.



Chapter 2

Search Tries

2.1 Definition of tries

Tries were introduced by Rene de la Briandais [Bria59]. E. Fredkin [Fred60]
and Donald E. Knuth ([Knut73-2], §6.3) developed them further. The word “trie”
originates from the word “retrieval”. If we consider a key as a sequence of characters,
instead of comparing the whole key, each comparison is based on a single character of
information about the key along the tree. The same idea exists in the thumb index
for looking for a word in a dictionary. For example, we build a 26-ary tree each node
leads to next level’s 26 possible letters and so 26 branches. If there are no words
beginning with the letters ’dd’, 'dz’, we remove those branches and nodes from the
tree, and what is left is a trie.

Tries uses characters or digital decomposition of keys to direct the branching

[Gonn91]. A digital tree or trie is a data structure that does not store any information



on internal nodes. Tries store the information along the paths. The direction to take
at a certain level £ in a trie is determined by the ¢** value of the key.

The trie data structure has the following properties:

Internal nodes in a trie are empty. The path from the root to a leaf represents

a key.

The trie’s shape is independent of the keys’ input order; the shape is determined

only by the input keys.

Tries do not require rebalancing for dynamic operations (e.g. deletion, inser-

tion).

A trie is efficient in storing data since the trie stores the keys’ common parts

only once.

Tries can be represented in different ways. The straightforward method is tabular
form ([Fred60] [Morr68] [Knut73-2] [RBK89]). Table 2.1 gives a tabular form example
for keys: bifurcate, binary, ordinary, patricia, peano, pillar, porch, tree, and trie.
These keys will also be used later for other trie representations. A linked list will
overcome the table representation’s shortcoming of too many empty entries in the
table. René de la Briandais [Bria59] first recommended a linked list for each node
vector to save memory space. Every node in the linked list trie is a linked list of
pointers which only go to the right side of the node ([Suss63] [Knut73-2]). Figure 2.1

gives an example of a de la Briandais Trie. Compressed tries (C-tries, [Maly76]) and



bitstrings ([Oren82]) are pointerless trie structures which store bit arrays indicating

the links to replace the right outgoing pointer of a linked list representation.

Table 2.1: Tabular form of tries for keys bifurcate, binary, ordinary, patricia, peano,
pillar, porch, tree, trie.

1 1213 4 516 7 8 9 1011112 |13
a 6 peano
b |2
C
d
e 7 12 | tree | trie
f bifurcate
g
h
1 3 8 13
J
k
| pillar
m
n binary
o |4 9
p|o
q
r ordinary porch | 11
S
t |10 patricia
u
A%
w
X
y
z

A full trie is a tree whose nodes, including leaves, will not store information, and
the height of the full trie is equal to the maximum length of a key. Every path from
the root down to a leaf builds one key. The branch at level d is determined by the d**
character of the key. Figure 2.2 gives an example of a full trie. Figures 2.2, 2.3, and

2.4 use the key set: bifurcate, binary, ordinary, patricia, peano, pillar, porch, tree,
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(17 LA ELY
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Figure 2.1: De la Briandais trie for keys bifurcate, binary, ordinary, patricia, peano,
pillar, porch, tree, trie. A is used to identify the end of a key.

trie.

Binary tries are a special kind of trie which follows the rule of direction determined
by the d bit information of the key: branch left if 0 and branch right if 1. There are
three types of binary tries [ShanO1]: full binary trie [CoSe77], ordinary binary trie
[Fred60], and Patricia binary trie [Morr68].

An ordinary trie is a pruned trie where all the leaf’s parents will be the last
bifurcating node in the corresponding full trie, and all the nodes between the leaves
and the last bifurcating node have been removed. Figure 2.3 gives an example of an
ordinary trie.

A Patricia trie and an ordinary trie store eliminated information in their leaves.

A Patricia trie removes all the single descendant nodes. These skipped symbols are



y a c r
O O O O O
a r i
O® O® O®
t y a
O® O O
e
O

Figure 2.2: A full trie with the same keys as Figure 2.1.

|urcate| | ary | |

Figure 2.3: Example ordinary trie.
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stored in the internal nodes or in the leaves (Figure 2.4).

rdlianry

urcate |trici¢| ano|| Ilar|| rch| | e || e|

Figure 2.4: Example Patricia trie.

Binary tries store bits strings. Each node has at most two outgoing branches. If
a bit is 0, go left; if the bit is 1, go right.

Figure 2.5 illustrates a full binary trie, Figure 2.6 shows an ordinary binary trie,
and Figure 2.7 is a Patricia binary trie for the keys peano, porch, tree, trie, try. In
the ordinary binary trie and the Patricia binary trie, internal nodes and leaves store
the bit sequences representing the skipped nodes and branches. The ASCII codes for
the keys are:
peano: 01110000 01100101 01100001 01101110 01101111
porch: 01110000 01101111 01110010 01100011 01101000
tree: 01110100 01110010 01100101 01100101
trie: 01110100 01110010 01101001 01100101
try: 01110100 01110010 01111001

For example, the leaf node in Figure 2.6 with 5 and 11001 sealed in brackets

means 5 branches having been skipped and the skipped key is 11001.

11
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Figure 2.5: Full binary trie for the set of keys {peano, porch, tree, trie, try}.

12



28
(01010110000101101110011011128

(1111011100100110001101101000)

© 5(11001)

Figure 2.6: Ordinary binary trie for the key set {peano, porch, tree, trie, try }.

5(01110)

7(0000110) 14(10001110010011)
(01010110000101101110011011 78 5(11001)
(1111011100100110001101101000
12(100101100101)
12(010101100101)

Figure 2.7: Patricia binary trie for the key set {peano, porch, tree, trie, try }.
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2.2 'Tries for Text

In 1983, the Oxford University Press and the University of Waterloo (UW)
became partners in Oxford English Dictionary’s electronic form [Tomp94] project.
Differing from traditional text-based systems which lack concurrent data accessing
and updating as well as a user interface to read text data interactively, the OED
project provides the grammar-defined databases with licensed technology, including
GOEDEL and PAT for text searching, and LECTOR for the user interface.

The PAT system is a text search engine developed by UW for the OED project
[Gonn88| [GBSI91] [BaGo96] [SaTo92]. PAT overcomes the shortcomings of tradi-
tional models which associate documents with a list of keywords, for example, by
using inverted files to store a sorted list of keywords with each keyword linked to the
documents containing the keyword. The traditional techniques result in an applica-
tion that is only suitable for certain kinds of text retrieval but not for other kinds of
queries. Keywords must also be extracted from indexed documents which is labori-
ous and error prone, and we can only do queries on those stored keywords [GBS91].
The PAT system uses a different model which does not have any text structure or

keywords.

14



2.2.1 PAT tree
Sistring

The whole text is treated as a single long string or as an array of characters. A
suffix or semi-infinite string (sistring) is the sequence of characters taken from a given
starting position within the text and continuing to the right [Knut73-2]. The name
semi-string originates from the name of semi-infinite lines in geometry which start at
one point but shoot out infinitely in one direction. Sistrings are distinguished by the
position they start within a certain text. Table 2.2 gives an example of sistrings. If
the size of the text is n characters, then the number of sistrings is n.

Table 2.2: An example of sistrings.

Text Sistrings are distinguished in the position they start - - -
sistring 1 | Sistrings are distinguished in the position - - -

sistring 2 | istrings are distinguished in the position - - -

sistring 3 | strings are distinguished in the position - - -

sistring 6 | gs are distinguished in the position they - - -

sistring 12 | re distinguished in the position they start - - -

sistring 20 | nguished in the position they start - - -

PAT Tree

Tries are recursive tree structures using the digital decomposition of strings to
direct the branching. A PAT tree is a Patricia trie constructed from all the possible
sistrings of a text. A trie built on the sistrings is also called a suffix tree and a Patricia
trie is a compact suffix tree [BaGo96] which eliminates internal nodes with one child.

As introduced in the previous section, the individual bits of the sistrings are used
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to determine the direction of the branching; a zero bit causes branching to the left
subtree, a one bit causes branching to the right subtree.

The external nodes of the PAT tree store sistrings or keep a reference to the
sistrings. The internal nodes store the position indicating which bit of the sistring
is to be used for branching or store the number of bits skipped, or in the following
example (Figure 2.8) given by Gonnet in [Gonn88] [GBS91], the internal nodes store
the total displacement of the bit to be inspected. The text string used in the example
is 01100100010111 ---. After the first eight bits are inserted in the PAT tree, we
obtain the shape shown in Figure 2.8. The internal nodes store the number of bits
of displacement. For example, sistrings 1 and 5 have the same first two bits (01),
and differ at the third bit. Their parent node, with 3 inside a circle, indicates this.
Similarly, the internal node with 4 inside the circle indicates sistrings 6 and 3 have
the same first three bits (100) and differ at the fourth bit. External nodes store a
reference pointing to the position of the string.

If a text has n characters, the PAT tree built on the text has n external nodes and
n-1 internal nodes. So the space required for a Patricia trie is O(n). The preprocessing
time for building a Patricia trie is O(nx Height of Trie) or O(nlogn) [Gonn88]. The
average height of Patricia trees is O(logn) [F10d82]. PAT tree’s construction time

was improved to be O(n) by E. Ukkonen [Ukko95].
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01100100010111... Text
123456789 ... ... Position

1000 1001

00100 00101

Figure 2.8: PAT tree example from Gonnet et al. [GBS91]. The bit patterns beneath
the leaves show the bit pattern necessary to uniquely identify the leaf sistring.



2.2.2 PAT Tree for Searching

A PAT tree is efficient for text searching. PAT trees have been applied to some
kinds of text queries in the OED project [GBS91]. These include prefix searching,
proximity searching, longest repetition searching, and frequency searching. Prefix
searching is to find all the sistrings with a given prefix string and can be performed in
time linear to the height of the trie. Proximity searching is to find all the occurences of
a string s; whose position is at most a fixed number of characters away from another
string s,, and the worst case for it is O(nlogn) for n the number of characters in the
text. Longest repetition searching is to find the longest match between two different
positions of a text and can be obtained in O(Height of Trie) = O(logn). “Most
significant” or “most frequent” searching is to find the most frequently occurring
strings. The worst case time to find this string or strings is O(n/m), for m = average

length of the most frequently occurring strings [GBS91].

2.2.3 Implementation of PAT Tree
Patricia Trie

PAT tree implementation by a Patricia trie is the obvious method. The size of
the Patricia trie is too large however, and reading large records (much larger than the
internal node size) stored on external physical storage is inefficient. To solve these
two problems, OED designers used the following two methods. The first solution is to

bucket the external nodes. Assuming a bucket’s size is b, then those subtrees whose
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size is less than b are put into a bucket and hence save b — 1 internal nodes. This
method has an advantage and a disadvantage. The advantage is that the bucket saves
space. Based on a random distribution of keys, and the average bucket size is bln 2,
the number of internal nodes decreases from n — 1 to n/(bIln2). A disadvantage is
that the use of buckets increases the search time. There is only one entrance to a
bucket, and searching the bucket might require visiting all the nodes inside the bucket
one by one giving a worst time of b.

Another solution is mapping the tree onto the disk using super-nodes. This
method is also very common. By allocating as many nodes as possible on one disk
page and only maintaining an entry point to each disk page, every internal node will
address a disk page or another node, and the system can reduce the storage cost of

internal nodes along with the time to retrieve them.

PAT Array

For the bucket method in Patricia tries, if the size of the bucket is too big, the
sequential search will still be intolerable. Manber and Myers [MaMy90] solved this
problem by storing the whole index for the text to be searched into a single array of

external nodes ordered lexicographically by sistrings.

Merrett and Shang’s Improvement

Previous techniques represent internal nodes as two pointers and skipped infor-

mation and external nodes (leaves) by a “start” pointer to individual bytes. A “start”
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is a pointer to the text contained in leaf nodes. Merrett and Shang [MeSh93] improve
the implementation by storing the Patricia trie in preorder, so the left descendants
are the neighbors of their parent and hence no pointer is needed. They also make
“start” point to text pages instead of individual bytes. The pointerless Patricia trie
means no pointer for internal nodes, but external nodes still store “start” pointers for
sistrings. Figure 2.9 is an example given by [MeSh93|. The Patricia trie is an example
for text string “there!”. We mark the six letters in the string as 1, 2, 3, 4, 5, 6 and
the ASCII codes for them are 01110100, 01101000, 01100101, 01110010, 01100101,
00100001. In Figure 2.9, the two axes denote the level of the Patricia trie beginning
from 1, and the nodes on every level. The internal nodes are represented by 1 with
the number of skip bits following inside the braces. The external nodes (leaves) are

represented by 0 followed by the “start” pointer.
1{1}
0{6} 1{1}
1{0} 1{1}
| 1{4} 0{2} 0{4} O{1}

0(5} 0(3) i
o Nede N
E 1 2 3 4
jé] h r t 3

y
e e

Figure 2.9: Example of a pointerless Patricia trie for text string “there!” (from
[MeSh93]). Internal nodes are represented as 1{skip} where skip = number of bits to
skip. External nodes (leaf nodes) are represented as O{start} where start represents
the index of the letter in the string (e.g. 0{4} represents the letter "r”).

Level

a b wNBRE

A certain number of levels of the trie are stored in index pages. Higher levels
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form higher level index pages, and lower levels of the trie form lower level index pages.
Each level is entirely on or entirely off one page. Every page stores the bits of the
trie nodes, and two integers: T'count and Bcount. T'count counts the number of links
going down from the upper level page to this level entering the left siblings of this
page. Bcount counts the total number of links down from this level to the lower level
on the left side of this page. Figure 2.10 gives an example to illustrate the method.
The two numbers marked on every page are T'count and Bcount. For example, the
page P3 with T'count = 2 and Bcount = 4 indicates there are two links from the
upper page P, going to the left page P, of page P3, and there are 4 links going down
to all lower left pages on the left side of page P; (from P, to Ps). Page Py with
Tcount = 6 and Bcount = 18 indicates there are six links from the upper page P;
going to the left pages P, and P3 of page P,, and there are 18 links going down to
all lower left pages on the left side of page P, (from P, and P; to P; and Pg). With

these two counters, the search time can be confined only to the pages visited.

Py 0

e

Figure 2.10: Example of pointerless Patricia trie with index paging (from [MeSh93]).
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2.3 'Tries for Interval Search

Spatial relations can be categorized as the three types [Egen91] listed below:

1. topological relations, which describe how the two objects’ boundaries are re-

lated;

2. metric relations about distances and directions;

3. partial and total order of spatial objects such as in front of, above, and behind.

J.F.Allen [Alle83] described the possible relationships among time points and
time intervals. He represented points and intervals by modelling their endpoints. He
defined an interval to be an ordered pair of points with the left edge point less than
the right edge point. There are seven relations between two intervals (e.g. interval ¢
and interval s): ¢t < s, when the right edge point of ¢ is less than the left edge point of
s; t = s, when ¢ and s’s left edge point and right edge point are equal to each other;
t overlaps s, when the left edge point of ¢ is less than the left edge point of s, and
t’s right edge point is greater than the left edge point of s, and t’s right edge point is
less than s’s right edge point; ¢t meets s, when t’s right edge point is equal to the left
edge point of s; t during s, when t’s left edge point is greater than s’s left edge point
and t’s right edge point is less than s’s right edge point; t starts s, when t’s left edge
point is equal to s’s left edge point and t’s right edge point is less than s’s right edge
point; t finishes s, when t’s left edge point is greater than s’s left edge point and ¢’s

right edge point is equal to s’s right edge point. Reversing the place of ¢t and s, there
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are altogether 13 relations between two intervals, as shown in Figure 2.11 and Table
2.3. The equal relation counts as one. The thirteen relations are exclusive and they

will not generate any ambiguity.

0 1 2 3 4 5 6 7 8
l ! l ! l ! l ! |

a L b | c |
}—{ [ T 1

e
} d {
f g h
F— A —

Figure 2.11: Intervals for illustrating interval relations.

Table 2.3: The 13 interval relations in 1-d space (from Allen [Alle83]).

Relation Symbol | Inverse Symbol
a before b a<b [b>a
b equals g b=g |g=b
b meets ¢ bmc |cmib
c overlapse | c oe e ol C
f during d fdd ddif
a starts d asd dsia
h finishese | h fe e fih

H.Shang [Shan01] gave an algorithm for interval containment. He represented
the 1-dimensional problem in 2-dimensional space. He used marked regions to show
the 13 relationships to the given query interval. Figure 2.12 (a) shows the interval
relation of intervals in Figure 2.11 and a query interval I = (1, 6). For this query
interval I, the 13 relations are shown in Figure 2.12 (b) (except for the two relations

Of “<77 and “>77).
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end point end point

j """""""""""" A\ jdi ] o w)/

6 475NN\

5 5 |- d ,,,,,,,,,,,,,,,,,,,,

4 4 O&s\ rrrrrrrrrrrrrrrrrrrrr

3 3| RN

2 2 \3 77777777777777777777777777777777

1 : ) 1 """ - .

o Lo  start point S0 oo cstart point
1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8

(a) Intervals and query interval | (b) Interval relations for |

Figure 2.12: Interval example for a query interval I = (1, 6) and the intervals of
Figure 2.11 (adapted from Shang [Shan01]).

The shadow in Figure 2.13 is the containment area of query interval I, and Figure
2.14 shows the PR-Trie for this area. A PR-Trie is a data structure to represent points
and regions [Same90]. It has black leaves which represent the corresponding subspace
inside the query region, and white leaves which represent the corresponding subspace
outside the query region. Containment includes the interval’s four relations: equals,
starts, finishes, and during. The full binary trie for the input intervals in Figure 2.12
is shown in Figure 2.15.

After building the PR-Trie for containment area and the full binary trie for the
input data set, superimposing the PR-Trie onto the full binary trie means traversing
both tries simultaneously. When we meet with black nodes in the PR-Trie, all the
leaves inside the corresponding nodes in the full binary trie satisfy the containment

relation. The subtree of nodes corresponding to white nodes in the PR-Trie can be
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012 3 456 7 8

Figure 2.13: Containment area of I = (1, 6).

O
O o
2 5 I S
2z Q 2 R Q D
2 R 0 W F w R R D[ R
7 R q R 7 wyd R @ W » X W @
i i N ol oo il B i

bit interleaved values

a (0, 2) 000 010 000100
b (3,4)011 100\ 011010
c(4,6)100 110—/ 110100
d (0, 3) 000 011 000101
e (5, 7)101 111 110111
f (1,2) 001 010 000110
g (3,4) 011 100 011010
h (6,7)110 111 111101

Figure 2.15: The full binary trie for the example in Figure 2.12 (adapted from Shang
[Shan01]).
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pruned during the search. The black filled circles in Figure 2.15 are nodes corre-
sponding to the black nodes in the PR-Trie for a containment search using interval
[. This method’s disadvantages are: (1) the need to build two tries, and (2) the time

required to traverse both tries in parallel.

2.4 Zoom Tries

A significant issue in displaying maps is how to change resolution, or level of
abstraction, which is called zooming. Using full binary tries to store large spatial
data which are represented as sequences of coordinate vectors, we can get the desired
level of detail without duplicate storage. The zoom effect is to display all the data as
a point when we set the level to 0 (root), and to display more detail as we go down
the trie. The highest resolution is displayed when we reach the leaf level. To get this

continuous zoom capability, a full trie is required.

2.4.1 Previous methods and disadvantages

To get different levels of abstraction, in general, people stores several versions
of map data in a hierarchy. The top level stores the least detailed map, suitable for
display at small scales. As the map scale increases, more details are shown of the
same objects and so demand more storage space.

The disadvantages of this approach are

1. the data are stored redundantly,
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2. The zoom is discontinuous which permits only those chosen scales of map to be

shown, and

3. At every new scale, the data needs to be read in and displayed which can waste

time.

2.4.2 Tries for zooming

T.H.Merrett and H.Shang [MeSh94] give a method for zoom using tries. For
implementation of zoom tries, see [Bu00]. Using tries, zooming occurs in the following
way. For a polygon represented by a sequence of coordinate vector data, after bit
interleaving, we store the bits strings into the trie. The trie level controls the displayed
resolution. Displaying at a specified resolution is controlled by reading only the
appropriate levels of the trie. The user can select a certain level (which can be from
1 to 32 for vector data whose type is long), and we collect all paths from the tries’
root down to the user selected level and decode these paths (bits strings) back into
vector data and redraw them. Figure 2.16 gives an example of zoom tries.

In the triangle example of Figure 2.16 (a), the data is a two dimensional diagram
shown to two bits resolution for each field. If we want only one bit resolution, we
would truncate the full trie to retain only the top four levels (one bit from each field).
The result in the lower resolution Figure 2.16 (b) is displayed as a point at the origin,
a line from (0, 0) to (1, 0) and back again. Thus the triangle at a coarser resolution

is shown to be a line, with its apex invisible at the lower resolution.
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0000 => (0, 0) (0, 0)

2
0010 => (0, 0) (1, 0)
L 1000 => (1, 0) (0, 0)
0 R R RO SLIELH
(0,0)(1,1) 0000 0101 => 00000011 0§ H

(1,1)(2,0) 0101 1000 => 00101100
(2,0)(0,0) 1000 0000 => 10000000 :

Figure 2.16: Example of a zoom trie with 8 levels displayed at level 4 (at the right)
and level 8 (on the left).

2.5 Tries for Partial Match Query

2.5.1 Partial match query

To solve the query problem on k£ dimensions, we assume the domain is defined as
D=D; xDyx---x D,
Given the input data set F containing n k-d records with each record r = (ry, 79, - -+, 7%),
which is a subset of D, the size of F is denoted as n. For a given query ¢ =
(q1,q2, @),
€ (DU {x}) x (Do U{x}) x -+ x (D U{x}),

a partial match query asks for a subset ¢(F'), and * is the wildcard symbol meaning
“matching anything”. The subset ¢(F’) should match precisely on s dimensions, where
s = |S| = number of specified (not wildcard) attributes where r; must equal to ¢;.

This is called a partial match [F1IPu86]. We can also write it as:
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Vi, 1 <j <k ifq #* ;=g
A specified pattern S of query ¢ means there are s = |S| specified attributes in ¢. For
example, a query q = (first, x, secAttr, x, %,6000), is a query on 6 dimensions, the
first, third, and sixth attributes are specified to match precisely “first”, “secAttr”,

“6000”, and the second, fourth, and fifth attributes are wildcards.

2.5.2 Tries under the Bernoulli model

Assume each attribute in the input data set (of size n) and query ¢ is uniformly
and independently distributed over the domain. This is called the uniform proba-
bilistic model or the Bernoulli model [FIPu86]. Without loss of generality, we assume
that each attribute domain is mapped to the real interval [0, 1]. For those algorithms
based on comparison, such an assumption is general enough. So, the sequence of keys
are assumed to be independently taken from a uniform distribution model. Bits of
arbitrary positions in arbitrary fields of keys are independent uniform {0, 1} random
variables.

Flajolet and Puech [FIPu86] use the term shuffle for the sequence of attributes
of keys. For a record r € F', where F' C D, and r = (ry,r9,--- , 1), every attribute
of record r can be represented as a binary sequence:

rj=rj,r2,---, where r; € {0,1}.
Then the shuffle of record r is:
shuffle(r)=ri,rd, - - v r2 ra e ke s

The record’s shuffle is obtained by taking alternatively the first bit of attribute 1, the
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first bit of attribute 2, ---, the first bit of attribute k£, and then cyclically starting

again from the first attribute to the £ attribute with the second bit, and so on.

2.5.3 Theorem of Flajolet and Puech

Flajolet and Puech [FIPu86] determined the expected partial match query time

cost in [F1Pu86] as follows:

Theorem 1 The average cost, measured by the number of internal nodes traversed,
of a partial match query of specification pattern u with s specified attributes in a k-d-
trie constructed from a file of either size n (under the Bernoulli model) or expected
size n (under the Poisson model) satisfies
Cun = fy(% log, n)n'=*/* + O(1),
where v(u) is a periodic function of w with period 1, small amplitude, and mean value
% = sl (F = 1) Sig (610 -+ §¢)27 0 =/F)

with §p = 1, if the /" attribute of the query is specified, and 5, = 2 if it is unspecified.

This theorem is the basis for my analysis of orthogonal range search time com-
plexity using tries. Theorem 1 is investigated more fully in Chapter 4.
v(u) function is obtained using a Mellin transform ([FIPu86] p394-398). The

exact definition for ~ function is:

7(logy n/k)
= LRI S 16155 - - - 6,20
+X2, exp(fZI:j7r logy ) (1 + )T () S50 6165 - - - 54200 (2.1)
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where 09 = —1 + s/k and o = 0y + ;fg; =—-1+s/k+ 2”” , SO we get:

v(logy 1/k)

_ sFE€2 };;52/19 Ek 1(51(52 5426(—1—1—5/1:)

+X2, exp(—% 247 Jog, n)(s/k + kﬁiggFZ)F(—l +s/k+ ;g;)E’j;&éléz 5,20 s ke
(2.2)

The second item shows that + function is a periodic function and the mean value is

the first item:
Yo = _kzlsog;ZF(% -1 22;()1(51 0g -+ 002715/ (2:3)
with d, = 1, if the ¢ attribute of the query is specified, and &, = 2 if it is unspecified.

Calculating the mean value of v function as given in equation (2.3) (see Appendix

D), we obtain the results shown in Table 2.4.

Table 2.4: Average value of v function.

k S|'1 2 3 4 5) 6 7 8 9 average
2 2.63 2.63
3 2.00 | 4.05 3.03
4 1.8112.69 | 5.51 3.24
5 1721226 | 3.41 [ 6.98 3.34
6 1.67 1 2.06 | 2.74 | 4.16 | 8.46 3.37
7 1.64 1 1.94 124213241491 [9.95 3.36
8 1.62 | 1.87 12231280 [3.75|5.67]11.44 3.33
9 1.60 | I.8T | 2.11 [ 2.54 [ 3.19[4.27 [ 6.44 | 12.94 3.31
10 T59 [ 1.78 1203 1237286358479 |721 |[14.4313.28

As to k = 15, the mean value is 3.26 and when k& = 20, it is 3.34.
Besides Theorem 2 for the average cost of a partial match query pattern u with
s specified attributes, Flajolet and Puech also give their Lemma 8 for the cost of a

specified pattern u.
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Lemma 8. The expected cost of a partial match retrieval has for n > 2 the explicit
form
Cruns = Sh_30102 - 0455027 k=97, 4(n),
where for 7 and £ not both zero
Tio(x) =1 — (1 — 27ki=t)z _ yo—ki=t(] _ g—kj=t)a—1
and T00(x) = 1.
Lemma 8 will be used in calculating the mean value of a partial match query in

chapter 4.
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Chapter 3

Tries for Spatial Range Search

Without loss of generality, we assume our search space is defined on the set of
positive integers in k-dimensional space. We assume the space is finite, limited by
the number of bits B used to represent an integer. B is the number of bits used
for representing a coordinate value in binary, B = log,(MAXIMUM—MINIMUM+1),
where MINIMUM and MAXIMUM are the whole search space’s upper and lower
bounds. From the application point of view, if on every dimension the number of

maximum distinct values that can be represented is 2%, then the maximum number
k

2B
of distinct hyper-rectangles is xy = = (228-1 — 2B-1)% The input data size

n S X = (22371 _ 2Bfl)k‘
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3.1 Tries for spatial data

Binary tries are data structures which use a binary representation of the key to
store keys as a path in the tree. Binary k-d tries use the principle of bit interleaving
(also called a shuffle operation by Flajolet and Puech [F1Pu86]). Child nodes in a k-d
trie cover half of the search space volume of their parent.

For a point p(z,y) in two dimensions, each coordinate value has B bits, and
the bit interleaved value is b% 0§ b2 b7 --- b4 , b% |, where b¥ is the " bit value
for z, and bY is the i bit value for y. For a line segment with a start point s
and end point e, bit interleaving treats the line segment as a 4-dimensional point
p = (Ts,Ys, Te, Ye). For this so-called 4-d trie, the bit interleaving results in a bit
string:bg by* bye bye - - - b, bY%_ b | b% . For a triangle which has three points on
the plane, we treat it as a 6-d point p = (x¢, yo, Z1, Y1, T2, y2) Or as three segments

which construct the triangle. We represent a 2-dimensional rectangle as four coordi-

min

nate values(z™", g™ma® ™ omer) which, after bit interleaving gives the bit string:
.Z'min pmar ymin ymaz :vmi" pmaw ymin yma:c :vmi" pmaw ymin ymaz
bo bo bo bo b1 bl b1 bl T VB-1YB-1 bel bel :

Extending the bit interleaving principle to k& dimensions, on every dimension j, Vj €

min

f , 2™9T)k 50 the resultant bit

{1---k}, we represent the k-d hyper-rectangle as (z f

string will be

:Drlnzn ma’naz :D%nzn mgnaz :Dgnzn mgnaz :D;cnin :D;naz

b by b by b by - by b
w;nin :L,al'na:c w;nin m;na:c :Dénin :L,gna:c x;cnin CEZ““E
by bp_y bg 4 bg 4 by bgy -+~ by bg" -
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Thus, a k-d hyper-rectangle can be represented as a 2k-dimensional point in a binary
trie of height 2kB. Figure 3.1 below is an algorithm for performing bit interleaving

of a k-dimensional hyper-rectangle to give a single key.

struct HyperRectangle
array<integer> min  //the left value on each dimension
array<integer> max  //the right value on each dimension

INTERBIT(R : Hyper Rectangle)
1 number < 2kB — 1

for i< B—1to0

do for j«0Otok—1

2
3
4 do key[number] = i'" bit of z7"
5 key[number — 1] = ' bit of 27'*
6 number <— number — 2
7 return key

Figure 3.1: Pseudo-code for converting a k-dimensional hyper-rectangle R to a single
bit-interleaved key and the data structure for HyperRectangle.

3.2 Building a k-d trie

Given a set D of hyper-rectangles on k-dimensional space, the collection of these
hyper-rectangles is denoted by D = {R;, Ry, -, R,}, where n is the number of
hyper-rectangles in the set. For the i hyper-rectangle R; € D, let (x}™, 72"
denote the j side of hyper-rectangle R;, 1 < j < k and 1 < i < n. We denote by T
the 2k-d trie constructed by inserting all the hyper-rectangles in D into an initially
empty trie. Given a node w in T, we denote by T, the subtree of T rooted at u.
There are altogether n leaves in T'. Every leaf is associated with one hyper-rectangle.

Figure 3.2 is an algorithm to insert one k-d hyper-rectangle into trie 7. The height
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of the trie (i.e. the length of the key) is 2kB. In the insertion loop from 2kB — 1 to
0, when a bit value equals 0, we go to the left branch and when the bit value equals
1, we go to the right branch of the trie. After preprocessing all n hyper-rectangles in

D, we obtain the trie 7', which allows us to carry out an orthogonal range search.

struct TrieNode

TrieNode* Left //left child pointer
TrieNode* Right //right child pointer
TrieNode* Parent //parent pointer

INSERT(R : Hyper Rectangle, T : TrieNode)
1 if T'=NIL

2 then 7 + new TRIENODE(k)

3 Key keyPoint < INTERBIT(R)// get the key from hyper-rectangle R

4 TrieNode P <« T'// begin traversing

5 for level «+ (2kB — 1) to 0

6 do if keyPoint—getKey (level)

7 then // if the keyPoint bit on this level=1, go right

8 it P—right = NIL

9 then p <+ new TRIENODE(P, K)

10 P—Right < p

11 /] create a trie node and insert into right side of Trie T
12 P = P—Right// continuing traversing on the right side

13 else /f/ go left

14 it P—Left = NIL

15 then p <+~ new TRIENODE(P, K)

16 P—Left < p

17 // create a trie node and insert into left side of Trie T
18 P < P—Left// continuing traversing on the left side

Figure 3.2: Pseudo-code for inserting a k-d hyper-rectangle R into a 2k-d trie 7.

Figures 3.3 and 3.4 give one example of building a binary trie from 15 2-d rect-

angles with number of data bits B = 5.
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1]

0

Figure 3.3: Example of 15 rectangles A,C,D,E,F,G,H,I,J,K,L,M,N,U, and V'

Do HT9.407)

LA(12,14,9,11); L
1C(7,10,12,15):

3(6.10,9,11). L

L K(0,2,7,11)
'L(12,15,18,19)

M(22,24,8,10)
:NOALTA03) Lol

wesely

MAX; =31

4 5 6 7 89 10 11 12 13 1

4 15 16 17 18 19 2®1 22 23 24 25 26 27 28

with a query hyper-rectangle W and number of data bits B = 5.
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[0,31][0,31][0,31][0,31]

16,31][0,31][0,31][0,31]

N

. 5 [16,31][16,31][0,31][0,31]
o . 4 [16,31][16,31][0,15][0,31] Band 0
5 o S 4 [16,23][16,31][0,15][0,15]
g . 9 A [16\23][16,23][0,15][0,15]

. g q 7 o 5 4 a [18)23][16,23][8,15](0,15]
L b0 _»[16%3][16,23][8,15][8,15] __ _Band 1

7 N s 5 s . 3 > o o o [16,19]36:23]8,15][8,15]

. N o 2 . N 5 & /' [16,19420,23][8,15][8,15]

: 3 o > 4 \o 7 N O N o & o k[1649][20,23][12,15][8,15]
Ch.N_ g ad-__ A£6,19][20,23][12,15][12,15] _ _ Band 2
4 h Yy b g e e Na o o § @ o[16,17120,23][12,15][12,15]

. . o o )y S Yy o Yy & & o [16,17420,21][12,15][12,15]

. oy Yy @ . d o b o w4 b b [16,17][20,21][12,13][12,15]
D 9oy Mooy oo\ [16,17)20,21)[12,13][14,15] __ _Band 3

o & Iy P o 0 &y Ny 7 o u N O N [17,3/7][20,21][12,13][14,15]

. q N 4 . «d SEEERANAN 3 [17,17][21,21][12,13][14,15]

5 S R & q N o & % Q#7,17)[21,21][12,12][14,15]

W=(8,18,6,13) WC={([0,17][9,31]),([0,12][7,31])} E=(17,21,12,14)
Figure 3.4: Example of a binary 4-d trie for the 2-d data of Figure 3.3. The list of

8-tuples near the right hand side is the cover space NC' of each node on the trie path
representing rectangle E.
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Theorem 2 P(n,k) = O(kBn) for a k-dimensional trie containing n hyper-rectangles.

Proof. The proof is straightforward as each of the n inserted hyper-rectangles visits

2kB nodes, P(n,k) = ©(kBn). |}

3.3 Spatial range search

3.3.1 Range search

The query hyper-rectangle W = [Ly, Hy| X [Lg, Hy| X - -+ X [Lg, Hy], which we
abbreviate as [L;, H;]¥. For a hyper-rectangle R; € D, the set of k hyper-rectangle
sides is defined by {(x?;i”,x;?““"),w € {1,---,k}}. We define [MIN;, MAXj|, Vj €
{1,---,k}, as the minimum and maximum possible data coordinate values for di-

mension j. On every dimension, MIN; < zj» < 1% < MAX;,Vj € {1---k},i €

{1---n}.

Fact 1 Two hyper-rectangles intersect if and only if their sides on every dimension
in the data space intersect, i.e. Ry N Ry is true, iff Vj € {1,---  k}, (x’f}m,x’f}”) N

min  ,.max\ ; . amin . ,maz mazx min .
(z5s™, x50%) ds true; a{y™ € [MIN;, x52*®) and 273" € (25", M AXj].

This defines intersection strictly as an overlap in the sense of Allen [Alle83] and
Egenhofer [Egen94]. Based on Fact 1, the hyper-rectangle R; intersects W iff :UZ”” €
[MIN;, H;) and 3% € (Lj, MAXj], Vj € {1---k}.

The k-dimensional orthogonal range search is performed using our 2k-d trie for

a query W. We use j as the index of the data space, j € {1---k}, and we use p as
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the index for our problem space, p € {1---2k}. They are related as j = [p/2].

Definition 2 FEach node in the trie T is a 2k range state; that is, every node has
a cover space defined as NC* = [L,, H,]**, 1 < p < 2k. For a given query hyper-
rectangle W = [L;, Hj]k, we obtain the query hyper-rectangle’s cover space WC?* and

define it to be WC?* = {([MIN;,H; — 1],[L; + 1, MAX,])}*.

Definition 2 is based on Fact 1. Each left and right edge point on every dimension
has a range of intersection. Thus, each node in the trie 7" represents a 2k dimensional
hyper-rectangle. At the root of 7', the hyper-rectangle occupies the whole search
space. Each node along a path splits the range in half, alternating the split dimension
at each level. Going left, the lower half is used; going right, the higher half is used. At
the leaves, the lower and upper bound of the 2k ranges on every dimension is exactly
the coordinate values of the hyper-rectangle.

There are three types of relations of WC? with NC?*, which we call BLACK,
GREY, and WHITE. Figure 3.5 below illustrates the three cases. Dashed lines are
used for W' and solid lines for NC. After projecting the edge points to the problem
space, we can distinguish the relation of a node’s cover space NC with the query

hyper-rectangle W’s cover space WC on the p' side.

For example, for the data of Figure 3.3 and Figure 3.4,
wco* = {(]0,17],9,31]), ([0,12],[7, 31])} for query hyper-rectangle W, nodes marked
with a cross sign in Figure 3.4 are white, and nodes marked with a circle sign are
black.
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Figure 3.5: GREY ((a), (b), and (c)), BLACK ((d) and (e)), WHITE ((f) and (g))
relationships of a trie node cover space NC' to a query hyper-rectangle cover space
W' in dimension p of the 2k-d problem space.

Definition 3 If on all 2k dimensions, the NC to WC' relationship satisfies WCP N
NCP = BLACK, Vp € {1,2,---,2k}, the node in the trie is a black node. If the NC
to WC relationship satisfies Ip € {1,2,--- 2k}, such that WCP N NC? = WHITE,
the node in the trie is a white node. All the other nodes are grey nodes, defined as
follows: if S C {1,2,---,2k}, p € S, WCP N NC? = GREY, and Vp ¢ S,p €

{1,2,---,2k}, WCP N NC? = BLACK, the node will be grey.

We use GN to denote the set of grey nodes in the trie, BN to denote the set of
black nodes in the trie, and W N to denote the set of white nodes in the trie. Based
on this definition, we can now define our k-d orthogonal range search algorithm (see
Figure 3.6).

The range search algorithm traverses from the root of trie 7" down to its leaves.

We do a depth first traversal. At the root , level £ = 0. For the root, the cover space
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RANGESEARCH(T : TrieNode, (, L, H, RI,W : Hyper Rectangle, List)
1 if T=nNmwor/l>2kB
2 then return
3 p< (£—1)mod (2k)
4 RI[p| < INRANGE(L[p|, H[p], ¢, W)
5 if RI[p] is grey
6 then

7 (—1+1

8 p < £ mod (2k)

9 if T—Left # NIL

10 then

11 Hp] < (L[p] + H[p])/2
12 RANGESEARCH(T— Left, (,
13 L,H,RI,W, List)

14 if T—Right # NIL

15 then

16 Llp] < (L[p] + H[p])/2 + 1
17 RANGESEARCH(T—Right, ¢,
18 L,H,RI, W, List)

19 else if RI[p] is black

20 then CoLLECT(T, List)

Figure 3.6: Pseudo-code for the k-d orthogonal range search algorithm.
InRange(L[p|,H[p],level, W,S) and NodeColor(RIT) are functions to decide the color
of NC and WC relationships for node 7T

NC?%* has L, = MIN; and H, = MAX;,Vp € {1,2,---,2k}. The cover space is split
on the p™ coordinate as we move down, p = £mod2k, V¢ € {0,1,---,(2kB — 1)}.
If on the p* dimension, a parent node T has cover space [L, H], then T’s left child’s
cover space is [L, (L + H)/2] and T’s right child’s cover space is [(L + H)/2 + 1, H].
Comparing a node’s cover space NC' (stored in L and H) with query hyper-rectangle
W’s cover space [MIN;, H;) and (L;, MAXj], if one of the 2k ranges falls outside
(as determined by the InRange function), we encounter a white node and the search
need not check any subtrees of T'. If all the 2k ranges fall within NC', we encounter
a black node. The nodes in the subtree of a black node are all black nodes. The

nodes in the subtree of a white node are all white nodes. When we meet a white
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node or a black node, we stop traversing down; otherwise we continue splitting and
traversing the subtrees. When we reach a black node u, all the leaves associated with
a hyper-rectangle inside subtree T, intersect the query hyper-rectangle W, and we
get the range search’s results and append them into the reporting List. All the leaves
contained in the subtree of a white node do not intersect W. Integer arrays L and H
store the lower and upper bounds of node 1’s cover space on 2k dimensions.

Figure 3.4 is the trie for the data shown in Figure 3.3. In Figure 3.4, nodes
with a cross mark (x) on them are white nodes. We know no children of the white
node can intersect the query hyper-rectangle W, so the subtree attached to the white
node is pruned from the search space. The node with a circle sign () on it stands
for a black node, which means all hyper-rectangles represented by leaves inside the
subtree attached to the black node intersect W. For query hyper-rectangle W =
[8,18] x [6,13], k = 2, the query hyper-rectangle’s cover space WC* = [0,17] x
[9,31] x [0,12] x [7,31]. The hyper-rectangle denoted as E = [17,21] x [12, 14] has its
cover space NC*, the four ranges, listed along the right side of Figure 3.4. We do half
splitting continuously in 2k space as we move down the trie. The trie is divided into
B bands, each band of height 2k (see Figure 3.4). When the first band 2k half-splits
are finished, we begin the second band, till the (B — 1)th band. For hyper-rectangle
E’s case, traversal of T' during the 2-d range search for rectangles intersecting W
stopped at the last (B — 1)th band, which is a black node. If we continue one extra
step to the leaf level, we will get NC* = [17,17] x [21, 21] x [12,12] x [14, 14], and the

lower bound and upper bound of every 2k range is equal to the coordinate value of
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hyper-rectangle F in the data space.

3.3.2 Collection

After we find a black node, we collect the hyper-rectangles stored in the leaves

inside the subtree of the black node. The following algorithm (see Figure 3.7) first

traces back from the black node to the root and stores the key’s bit string in keyPoint.

From the black node, we call the recursive function PreOrder (see Figure 3.8) which

traverses the subtree of the black node using pre-order traversal. When a leaf node

is reached, we decode the key into a hyper-rectangle’s coordinate values and append

the hyper-rectangle to the resultant hyper-rectangle list List.

CoLLECT(T : TrieNode, List : HyperRectangleList)

OO~ Utk W+~

10
11
12

13

Key keyPoint < new KEY(K)
TrieNodeP + new TRIENODE()
P < T/ trace back from solid node T to the root and store the path in keyPoint
level + GETDEPTH(P)
while P— Parent # NIL
do
num < 2K B — (level — i)
bool isRightChild < P is P’s parent’s right child
keyPoint—putKey (num, isRightChild)
11+ 1
P < P—Parent
/] traverse down from solid node T to leaves in the subtree of T
PREORDER(P, level, keyPoint, List)

Figure 3.7: Pseudo-code for collecting intersected hyper-rectangles from leaf nodes of
the trie.
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PREORDER(T : TrieNode, level, key Point : Key, List)
1 /t/ PreOrder is to collect subtree of black node T
2 level =2KB
3 then // decode keyPoint which stores a path from root via solid node T
4 // to a leaf and add it to a hyper rectangle list
5 List—addHypRec (DeCode(keyPoint))
6 level + level +1
7 num < 2K B — level// traversing begins from T’s level
8
9

if T—sLeft
then // if T’s left child exists
10 keyPoint—putKey (num, false)// store the bit into KeyPoint
11 PREORDER(T— Left, level, key Point, List)
12 /] continue traversing left subtree
13 else if T—Right
14 then // if T’s right child exists
15 keyPoint—putKey (num,true)// store the bit into KeyPoint
16 PREORDER(T—Right , level, key Point, List)
17 /] continue traversing right subtree

Figure 3.8: Pseudo-code for pre-order collection of leaf node hyper-rectangles.

3.4 Containment

Definition 4 For two hyper-rectangles R, and Ry, Ry contains Ry if and only if Ry’s
sides on every dimension in the data space are within R,’s sides, i.e. :cg;m > x’f}m

max max
and xy" < T

This definition strictly defines the containment relationship as defined by Allen
[Alle83] and Egenhofer [Egen94]. Based on this definition, the hyper-rectangle R; =
(xg-”", x4%), Vj € {1,--- ,k} is contained by query hyper-rectangle W = (L;, Hj) if
and only if z72™ € [MINy, L;] and 7*" € [H;, MAX;].

Similarly, if we want to get those hyper-rectangles that wrap W inside, on all
the dimensions, W’s side should be contained by hyper-rectangle R;’s side. Hyper-
rectangle R; contains query hyper-rectangle W if and only if 23" € [L;, H;) and
xe® € (Ly, Hjl.
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The relation also includes W = R;. This definition is stricter than the defini-
tion for intersection. If we want to get hyper-rectangles with more precise relations,
the RangeSearch algorithm shown in Figure 3.6 still can be used for containment
relations. Only the sub-function InRange needs to be changed; instead of satisfy-
ing Fact 1 in section 3.3.1, it will satisfy Definition 4 in section 3.4. The query
hyper-rectangle W’s cover space will change from [MIN;, z5:%], [xg’;-m,MAXj] to
[MINj,xg}i”], [255%, MAXj]. The GREY, BLACK, WHITE color relations of WC
with NC are still the same as Figure 3.5. Applying the splitting along the trie and
comparing the nodes’ cover space with the query hyper-rectangle’s cover space, we can
get the grey and black nodes, and then collect the subtree of black nodes, decoding

them to get the hyper-rectangles satisfying a containment relation.
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Chapter 4

Analysis

4.1 Worst Case Analysis

Theorem 3 The space S(n,k) for a k-d trie containing n k-d hyper-rectangles is

O(kBn).

Proof. The worst case space requirement occurs if every input hyper-rectangle, after
bit interleaving, occupy as many different paths as possible; that is, their maximum
bit distance value would be as large as possible. In this case, the trie occupies the
largest number of nodes. From the root to level r = [log,n| — 1, the binary trie is
complete. At level [log,n], the full binary tree stops and the remaining paths are
branches dangling from the last full binary tree’s level, as shown in Figure 4.1. From
root level to level [log, n| — 1, the worst case trie storage is the same as a full binary
tree. From level [log, n] to the leaf level, the trie is slimmer than the triangle of a
full binary tree (drawn in dashed lines in Figure 4.1). The number of nodes in the
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worst case is thus
S(n,k) =142+224 ... 4 2Menl=L 4 (9kB — [log, n])n
= 2Mlogznl _ 1 4 n(2kB — [log, n])

= (2kB+1)n —nlogyn —1

=O0(kBn). |}
level =0
full binary tree
level =r
| L
/ \
/ \
/ \
/ \
/ \
,/ b ! [ I L I L ! N
,/ L ! i 1 dangling branches 1 | \
[ | [ | [
/’ : : : I | I | I : \\ | |=2kB -1
\ = -
o no____o__bb___h_Mh©hb__&b__bb___.o_____ [, evel = 2Kb -
n

Figure 4.1: Worst case for storage in a 2k-d trie.

4.2 Average Case Analysis

4.2.1 Space Analysis

The full trie T’s depth is a constant value if the number of dimensions & and
coordinate range on every dimension are considered constant. If we assume the coor-
dinate ranges on every dimension are the same, that is [MIN, MAX], B is the number

of bits for representing the coordinate value inside the coordinate range. We have T"s
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height = 2kB = 2klog,(MAX — MIN +1), and level ¢ € {0,--- ,2kB — 1}. At the

root level £ = 0, and at the leaf level / = 2kB — 1. n is the size of input data set D.

We divide the trie’s levels into B bands, each of height 2k.

Given any coordinate value u € [MIN, MAX], the bit distance between u and

another value v € [MIN, MAX] is denoted as bdis(u,v). bdis(u,v) is defined as the

path length from P (the common ancestor of u and v) down to the leaf level of u

or v in the bit distance tree V. For example, bdis(12,12) = 0, bdis(12,13) = 1,

bdis(12,11) = 3, bdis(31,32) = 6, bdis(31,19) = 4, bdis(7,19) = 5 (see Figure 4.2).

0~63
0~31 32~63
/ \

~7 8~15 16~23 24~31

ci°
|_\
[N
=
i
=
()]
=
m
|_\
[{e}
N
?
w
kg

Figure 4.2: Example of bit distance tree V' for B = 6.
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12345678 910 111213 1415 16 17 1819 - /28\29 30

31 32

We use maxjcq,.. x3{} to denote the maximum value of the set inside braces on

k dimensions, and we have the following lemma:

Lemma 1 For any two hyper-rectangles Ry = (a7, x7)* and Ry =
their nearest common ancestor lies in the band
B —maxje{l,...,k}{bdis(xg’;m,x’zﬁm) bdis(xﬁ‘” xg’;‘”)},

bands are numbered from 0.
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Proof.  Bit distance tree V' with maximum bit distance B stores coordinate values
on one dimension in 2k dimensions. The height of the bit distance tree V' is B. Each
node’s cover space is one-half of it’s parents’ cover space in V. From the root whose
domain is [0,25-1] down to u and v’s nearest common ancestor node, u and v share the
same path. The path length from leaf level to the nearest common ancestor node P
is bdis(u,v). The level of P is B —bdis(u,v). From root level 0 to level B —bdis(u,v),
u and v's first B — bdis(u,v) bits are identical. From level B — bdis(u,v) down
to leaf level B, the bit sequence for u and v is different. Our trie is a 2k-d trie,
and each of the 2k ranges will half split alternately. From the root, whose cover is
0,27 — 1]?*, u; will separate with v; on the band of B — bdis(u;,v;), for each of the
2k dimensions. That is, u and v’s nearest common ancestor node lies in the band of
B — mazpeqi ... oy {bdis(up, vp,)}.

For example, as shown in Figure 3.3 and Figure 3.4 where k = 2, rectangle
N(11,14,0,3) and rectangle H(11,14,5,7), we compare 2k pairs of bit distance:
bdis(11,11) = 0, bdis(14,14) = 0, bdis(0,5) = 3, bdis(3,7) = 3. The maximum
bit distance among N and H is 3, so N and H’s nearest common ancestor lies in the
band B — 3 = 2. This common ancestor node is indicated in Figure 3.4 by a black
filled in square in Band 2.

We use lemma 1 to compute the expected storage space for our trie.

Theorem 4 The expected space S(n,k) for a binary trie containing n random k-

dimensional hyper-rectangles is ©(kBn).
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Proof.  After the first two hyper-rectangles R; and R, are inserted, the number of
nodes they share will be 2k(B — E[mazjcqy, ... g {bdis(x7)™, x52™), bdis(x7", 5:%7)}]).
The separate branches for both will occupy
2kE[mazjeqy,... gy {bdis(x7i™, x5"), bdis(x72**, 255%") }] nodes. The expected total num-
ber of nodes occupied by two hyper-rectangles will be:

2k(B — E[mazjcq, .. py{bdis(z7i™, x5¥™), bdis(x7*, 255%7)}])

+2kE[mazjeq,.. gy {bdis(x7™, 255", bdis (a7}, x5 ) }]2

= 2kB 4 2k E[mazjeq,... ky{bdis(x7™, 25™), bdis(x73*", 255%) }].
Adding a third hyper-rectangle R3, the nearest common ancestor of the three of them
would be in the band:
B — E[mazjeq,... ky{bdis(x7™, 255"), bdis (7™, 255", bdis(x5y™, 255™),

bdis (w77, 2557), bdis(x 7", x507), bdis(253**, w557 }]

The expected number of nodes in the trie is now

2kB + 2kE[mazjeq ... gy {bdis (7™, 255", bdis (x73*, 2517 }]

+2kE[maxjeq,... iy {bdis(a7", x5i™), bdis (a7, x50 ), bdis(xgy™, x0"),
bdis(x 7, x50), bdis(x {3, 2557 ), bdis(x5y*, x37) }].
No extra storage is needed for common nodes. We use maxiyje{ly...,k}{} to denote the
maximum bit distance of hyper-rectangles, where ¢ is the number of hyper-rectangles.
i

There are 2k bit distances from which to determine maz; jeq1.... ;3{}. Using

2

induction on ¢, we obtain the total number of nodes in the trie for n input hyper-

rectangles as S(n, k) = 2kB + 2k}, Elmaz; jeq ... ip{}] (4.1)
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For any given value 2y, € {0,1,2,---,28—1}, the value 25, € {0,1,2,---,28-1}
has a bit distance relation with z;, as follows:

if bdis(x1p,x9,) = 0, the number of possible x5, values = 1, except this, the
number of possible w9, values is 2045(#1:22)=1 " the bit distance between any two ;;
values is one of {0,1,---, B}.

The probability that the bit distance is any specific value a would be

P?"[bdiS(l‘lp,l'zp) = CL] = 2;—;1, for a € {]_, e ,B}

with Pr{bdis(z1y, 22,) = 0] = 55 and Prlbdis(z1p, ©9,) = B] = 23 - = 3.
The probability for two hyper-rectangles’ maximum bit distance value to be 0 in

the 2k problem space would be

Primaxs peqi, .. orp {0dis(x 1y, 22p) } = 0] = (55)%*,

because the hyper-rectangles are independently distributed in 2k dimensions. If we

want the maximum bit distance to be 0, then the bit distances on all 2k dimensions

should be zero. On one dimension p, the probability that bdis(x1p, x2,) < a is

23 + 5oy 23 . Forany a € {1,2,---, B}:

2k

. a—1 1
Primazspeq ... oy {0dis(x1p, 29p) } = a] = 2’“ (223 ) (23 + X ! 233 )P,
p
When the maximum bit distance equals to a, we want one bit distance among 2k

values to be a, and all the others should be equal or less than a. This problem can
be calculated as follows: there exist p pairs in 2k pairs with bit distance equals to a,

(2k — p) pairs would have bit distance values < a, or < (a — 1). This leads to

Primazspeq ... 26y {0dis(x1p, 22p) } = al
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2k . ~ .
s | | G+ e
J
2k 2k 201\ ok
= X575 (%)
J
2k
because ¥7* | =22 1,
J

Prlmazs peqi,.. opp {bdis(z1p, 22p) } = a] = (2;—;)%(2% —1).

For three hyper-rectangles” maximum bit distance value in 2k problem space, we

3
compare 2k pairs of coordinate values. The function for the probability of

2

three hyper-rectangles with maximum bit distance value equal to a is:

Primazs peqi,... oky 10d15(T1p, Tap ), bdis(x1y, T3p), bdis(Tey, T3,) } = al

32k
= m3% (5P (G + Dot 2524
J
32k
- 232 ()
J

— (%)3-%(23-% —1)
2
The general function for the probability of 7 random hyper-rectangles in 2k space is

as follows:

Primazipeq,.. 2131} = a
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7 2k—j
2 2k 2
=X 2 (%55 [(5m) + =1 (5]
J
_ E (7, 1) Z(Z - 1)k (2231) (Z l)k
J
_ (2‘21;1)i(i—l)k(Qi(i—l)k_l) (4‘2)

Using equation (4.2) in equation (4.1) gives the expected number of nodes in the

trie as

S(n, k) = 2KBH2KEL (S a5 Ik 2Dk - 1))

9B

Letting u = 20~V we have

S(n, k) = 2kB+2kSn N8 que 2L

w-uB

Letting 1 = X8 au®:

I=1u+2u?+3u>+ - -+ Bu®f

T=1+2u+3u?+---+ BuP™!
é—]:1+u+u2+---+u3’1—BuB
I(——l)_ —Bu®
I= (%—Bu’ﬂﬁ, and

S(n, k) = 2kB + 2k¥p_, =L L (1502 By B)

= 2kB + 2k27, L (Bu® — L7

= 2kB + 2kX7 (B — 1)

= 2kB + 2kT1, B — 2kT, ks + 2kT ort

o4



= 2kB + 2kX, B — o(1) + 2ko(1)

=0(kBn). |}
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4.2.2 Range Search Cost

Without loss of generality, we consider our analysis in real [0, 1]¥ space. Using a

coordinate values

5F T , We can map any integer coordinate values into

mapping function f =

the unit interval on each dimension.

Partial Match Retrieval Using Tries

The analysis of partial match retrieval using k-d tries was eloquently addressed by
Flajolet and Puech [FIPu86]. Adapting this analysis to k-d hyper-rectangles in 2k-d
tries, we ask for all hyper-rectangles in data set D satisfying query hyper-rectangle ¢,
where ¢ = (q1,¢2," "+ ,q21), S C {1,2,---,2k}, s = |S|, s of the 2k query key values
are specified, and 2k — s query values are left unspecified; we denote the unspecified
queries as g, = *, p ¢ S as wild cards. Hyper-rectangle R; satisfies a partial match
query ¢ if and only if g, = R;,Vp € S.

Our analysis is based on the uniform probabilistic model where we assume the
input data D and the query hyper-rectangle W are drawn from a uniform random
distribution, and that the keys of D are independent. Here, we assume that the keys
of D are 2k-dimensional points representing a k-dimensional hyper-rectangle. A k-
d random variable x exists for the left side x;}”” of each hyper-rectangle R;, and a
second k-d random variable y exists for the right side 277" of each R;. The 2k-d keys
of D are thus formed from two independent random variables, and the joint density

function t of each key is the product of the density functions of x and y. The product

of two uniform random density functions gives a uniform random density function t,
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which allows us to use the following theorem:

Theorem 5 Given a binary 2k-d trie T containing a set of k-dimensional input
hyper-rectangles D = {Ry,--- , Ry}, assuming data set D and query hyper-rectangle
q satisfy the uniform probabilistic model, = (q1,q2,- - ,qox), S C {1,2,---,2k},
2k > s = |S| > 0, the average cost of partial match retrieval Qs(n,k) measured by
the number of nodes traversed in trie T is

Qs(n, k) = v(55 logy n)n' 7 + O(1),
where v, s a periodic function of u with period 1, small amplitude, and mean value

% = —gtegsl (5 — 1) Sy (01 0y -+ 6)2 19728

with §p = 1, if the (™ attribute of the query is specified, and 5, = 2 if it is unspecified.
Theorem 5 is a restatement of Flajolet and Puech’s theorem 2 in [F1Pu86] for our

2k-d trie.

Proposition 1 Given a binary trie T containing a set of k-dimensional input hyper-
rectangles D = {Ry,--- , R, }, assuming input data set D and query hyper-rectangle
q satisfy the uniform probabilistic model, ¢= (g1, 92, ,q2x), S C {1,2,---,2k}, the
expected cost of partial match retrieval Qg(n, k) measured by the number of nodes
traversed in trie T is

Qs(n, k) = B[S = I o INCY|).

pEeES

Proof. If a node is visited, g, € NC? = [L,, H,|,Vp € S. The probability that a
node in trie T will be visited is determined by the volume of every node’s cover space
in the space [0,1]. |
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Analysis of Orthogonal Range Search Using Tries

To get the color types for a node in the trie, we compare all the 2k ranges of W (C?¥
with NC?*. In our algorithm, on each level, we do one comparison of the 2k ranges
and store the color as the node’s state. If all 2k ranges are black, the node is black; if
one range is white, the node is white, and all the other conditions indicate the node
is a grey node. Traversing from the root down through the first 2k levels, we finish
the comparison of 2k ranges of WC? and NC? on 2k dimensions and get the first
batch of white and black nodes. On a certain level 7 in the trie T, after half splitting
the cover space from the root (which is the full search space), there are altogether
2251 possibilities of the ranges for NC?. They are [MIN, MIN + 2B~ 2 1), [MIN +
28~k ~1 MIN +2-28-%1] ... [MIN + (22T —1)28~3~! M AX]. Each range’s
length equals to QB’ﬁ’l, INC?| = 23’2%’1, and the exact NC? we want to compare
with WCP on this node is determined by previous paths. On level ¢, the query
cover space WCP we want to compare with is on the j dimension in data space,
Jj = ({mod (2k)). If jmod2 = 0, we select WCP = [MIN, H,); if jmod2 = 1,
WC? = (L;, MAX].

Traversing stops on paths when we meet with black or white nodes and continues
when grey nodes are encountered and continues collecting black nodes in the subtree
of the black nodes we first met. The time complexity can be determined by computing
the number of grey and black nodes in the trie built from input data D. We have the
following equation:

Qn, k) = Efg of ek i e LinodescaNUBN]
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where we use 1j4) as the characteristic function of the event A. The formula counts
the number of grey nodes, which, apart from the black nodes traversed to report
the in-range hyper-rectangles, represents the time complexity of the orthogonal range

search algorithm (see Figure 4.3).

Band O

Band 1

Band (B-1)

Figure 4.3: GREY nodes for computing the time complexity.

Lemma 2 B[yt of naks infre Hiil INC?|] = O(logy n).

Proof. Every band has height 2k. In the b band of height 2k (h = 1..2k), we have
INCJ,| = 55,1 < j < h; INC}| = &, h+1<j <2k

where we have used the notation |[NC? | to represent the range for one dimension p

at a node of height h within band b. This leads to the volume of one node’s data

cover |[NCy| on 2k dimensions as

NG = TI2%, INCE] = (ke ()74 = 2720 (13
for node ¢ lying at height h in band b.
The volume |NCy| is the same for all nodes on the same level in the trie; as the

level ¢ increases, the value of |NC}| decreases.
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We calculate the number of nodes on a certain height h in one band using the
worst case for storage (shown in Figure 4.1). The level r = |log, n] (the last level in
the trie that coincides with a complete binary tree, see Figure 4.1) lies in the band
d= L%J, which is at height h = |log, n] + 1 — 2kd in the d"* band. As shown in
Figure 4.4, we divide B bands into three parts: (a) from band 0 to band d — 1, (b)
band d, and (c¢) from band d + 1 to band B-1. Within part(a), the number of nodes
on height h of band b is 2¢, ¢ = 2kb + h — 1. We divide band d into two: one is from
height 1 to height [log, n| + 1 — 2kd, the other is from height [log, n| + 2 — 2kd to 2k.
Within part(b)’s first part, the number of nodes on height h of band d is 22kd+h-1,
Within band d’s second part, the number of nodes on height h of band d is n. The

number of nodes on each level within part(c) is n. These three sections are illustrated

in Figure 4.4. Thus, we have
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level =0

h=0
2k band =0
art (a
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, h=ok ¢ Pat@
' ' band=d - 1
""""""""""""""""""""""""""""""""""""""""""""""""""" h=o0
‘ ___level=r_ |
, \ h=r+1-2kd
y 3 ok part (b)
/ \ band =d
,,,,,,,,, /,/,,,,: j l::l::“‘ N yh=2
Lo o i i LN band = d + 1
S R i N | part (©)
/ N Lo L L level=2kB-1  band=B-1
L0 ;,_,_,_,_,;,;,;,D_,D_,Q,_,_,,,,,_,D&D_D_,_,_H_HDELD___,7@,4,,_,,_,,_,,_,,7, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

Figure 4.4: Three sections of the 2k-d trie for average case space analysis.

E[s e Hf,'il INCY]

llogon] |_
- E,E J 12% P TLE, INGE, part(a)
[logo n]
—i—EL LtlongnJ | EUng n|4+1— 2kb222kb+h H |NC | part(b)l
L LlOgQ n) J
+Z Ltlogz nJJZh [log, 1| +2—2kb—t=1 H |NC | part(b)2
+877 ] Sk n T, INCE,| part(c)

\_UngnJJ-I—l h=1

2k'b+h 2k'b+h _ _
Because X2 H LINCE | =22 22k h = L wwe have

[\

B[S e [P INC|

L Lloga n |

=X 0" - 12 l
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1 n
| Logzn) | sllogy n+1-2kb 1

+X A —
b= gz nl | Th=1 2

L [logo n ] J
2k 2k
b:L UO%% n] J h= Ung TLJ +2—2k

—2kb—h

+X p1V2

B—1 2k —2kb—h
X Logyny |y Zhza N2
2k

1 n —
= [

log, n logs, n
+(Lg2 J_%Lng JJ)

2 2 2k

2n
+ o n - n
(2Llog2 ] 22k22k'L Llogi ] ] )

n . n )
[logy n ] 22kB+4k
[

92k 22k

Asn < (22B71 =281k g < 1, and we obtain the following result:

Eluprpr st T8 INCP|] = O(logyn). I

Theorem 6 Given a binary trie T containing a set of k-dimensional input rect-
angles D = {Ry, Ry,-++ , Ry}, R; with i.i.d. random variable center c¢; on [0, 1],
and with i.i.d. random variable side length d; distributed on [0,1]%, consider a ran-
dom orthogonal range search with query hyper-rectangle W with center at Z which s
uniformly distributed on [0,1)%, and independent of the centers of D, and with size
Ay X Ay X -+- x Ay, which are also i.i.d. random variables on [0,1]*. The expected
orthogonal range search time

ElQ(n, k)] < Zscpi, 20y ([ Tgs [WC?))(7(5 logy n)n' =2 + O(1)) + O(log, n),
where 7, s a periodic function of u with period 1, small amplitude, and mean value

% = gl (5 — 1) S50 (6185 -+ §¢)27 00 75/2H)

with §p = 1, if the /" attribute of the query is specified, and 5, = 2 if it is unspecified.

Proof. E[Q(n, k)] = E| Xt of naks in i LinodercanuBN]
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This calculation includes the reporting time for collection of the subtree of black
nodes which arises during the traversal. The probability that a node is black or grey
is given as: Pr[node; € GN U BN| < Hiil(|NC’p| + |WC?|). The probability for
query hyper-rectangle W’s cover space W' to intersect a node’s cover space NC'is the
probability that Z;, the center of W, is within distance % of NCY. This probability is
bounded by the volume of NC expanded by A; in the j* dimension, Vj € {1,--- , k}.
There are two cases. On the left side of the j dimension, |[WC"| = [WC?| =
|[0,H;) | =H; =Z; + %, and p mod 2 = 1. On the right side of the j"* dimension,
(W) = [WCP| = |(Lj,1]|=1—Lj=1—(Z;— %) =1~ Z;+ 5, and p mod 2
= 0. We have

E[Q(n, k)] < BIEf I B TR (W CP| + [NCP|)]

— Sac 10y ([T W CP ) EISE o e n e [N
= S 1wy (TTygs WP EISpgir b [N C?)]
+ 85— (1, 2 ([ [WCP) B[S T B T2 |NCP ]
= Ssc i amt ([Lgs (WO BIEE ™0 = ] g INCY]
+B[E T INCY ]
From Theorem 5 and Proposition 1, we obtain
E[Q(n, k)] < Sscqte oy (Tgs [WCP) (72 logy m)nt~ 5 +0(1))
+E[Epf T INCY),
and by Lemma 2, we obtain

ElQ(n, k)] < s, amy(TTgs IWCP]) (v(g5 logy n)n' 2 +0(1) )+0(logy ). I
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Lower Bounds

Using the approach demonstrated by [CDZ01], we arrive at the following propo-

sition:

oy t=number of nodes n trie
Proposition 2 E[x-1 [Tes 1[3pe{1,---,2k}:\ch|z%]] <C,

where C s a constant value, C' > 0, depending on k only.

Proof. Within the first two bands of the trie T, the node’s cover space’s size on one

dimension will be greater or equal to a half.

Table 4.1: The node’s cover space on 2k dimensions in the trie T.

BAND | LEVEL || NCT[NCZ [ NC® |[NC' |- | NC*
0 T |1 T T T
0 T 72 |1 T T T
2 12 |12 |1 1 1
2%k 12 |12 |12 |12 1/2
T T 1 (12 (12 12 12
2k+2 1/4 |1/4 |12 |12 1/2
2h+2k 1/4 |14 |14 |14 1/4
> gy /s [1/4 [ 1/4 |1/ 1/1
4k+2 /s |1/8 | 1/4 | 1/4 1/4
6k 1/s |18 |1/8 |18 1/8
BT | 2R(B2)41 | 1/28 [1/28 T [ 125 T [1/2P T /25T
ok(B-2)+2 || 1/28 [ 1/2B | 1/2B°1 | 1/28 ! 1/28°1
ok(B-1) | 1/2% | 1728 | 1728 | 1/25 /25

From Table 4.1, we find that from level 0 to level 4k-1, 3p € {1,--- , 2k}, |NC?| >
%. Even if our trie coincides with a full binary tree which has the maximum number
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of nodes in these levels, the number of nodes with a cover space’s size > % is still
below a limited number, i.e.
20 4 9l 4 92 4 ... 4 otk—1 _ otk _ |
E[Ez?umbem fnodesinthetrie I

pes Liape(ty arpivepp>1y) < 2% —1, which is a constant

value only related to k. [

Theorem 7 Given a binary trie T containing a set of k-dimensional input rect-
angles D = {Ry, Ry, -+, Ry}, R; with i.i.d. random wvariable center c; on [0,1]%,
and with i.i.d. random variable side length d; distributed on [0,1]%, consider a ran-
dom orthogonal range search with query hyper-rectangle W with center at Z which is
uniformly distributed on [0,1)%, and independent of the centers of D, and with size
Ay X Ay X -+- x Ay, which are also i.i.d. random variables on [0,1]%. The expected

orthogonal range search time

BlQ(m )] > Sscpr,oo o (Tgs M5 (v(5 loge mint 3 +0(1) = C,
where C is a constant value determined by k, and v, is a periodic function of u with

period 1, small amplitude, and mean value

% = — gl (55 — 1) Si5g (6185 -+ 6¢)27 00 75/28)

with §p = 1, if the /" attribute of the query is specified, and 5, = 2 if it is unspecified.

i
Proof. E[Q(n, k)] > E[Si ¥ mmel[nodeteGNuBN}1[Vpe{1,---,Zk}:\NCfl<é}]
rumber of nades i tri 2k wcp
> B[y "ILE (INCE| + |—2‘)1[Vp€{1,---,2k}:\NCf|<%]]
rater of nadks in trie 1y 2k W
= B[z ””H,,zl(lNCfH'—g')]

rumber of modes in trie 772k W CP
_E[Et:1 d e Hp:1(|NOf| + |—2‘)1[3p6{1,---,2k}:\NCf|2%]]
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ks in
= Ssc i om [gs 5 BIEET T ] es INCT]
rumber of nodes m trie
—SC{1, 2k} Hpgzs WQCPE[Et:1 of rats Hpes |ch|1[3p€{1,---,2k}:|NC’f\Z%]]
From Proposition 2, we can bound the second item as:

P ramber of nades in tri
W2 gyt o b e T

Sscity 2kt [pgs 72 pes VOV Lmpeqt o oryvez)> 1]

rumber of nodes i tri
< B3 / ml{ape{l,---,Zk}:\NCfIZ%]]
<C

Based on Theorem 5,

E[Q(”? k)] Z ESQ{L"',?I@} Hp¢5 @E[EtZI of mats n e HpGS |ch|] - O

= Ysc{1,- 2k} H,,gs WTCP(’Y(ﬁ log, ”)”1_% +0(1))) - C. |

Further Analysis

Based on Theorem 6 and Theorem 7, we see that
Ssc i 20 (Tyes ) (v(3 logy m)n =% +0(1)) — €
< E[Q(n, k)] <

Ssc 1,026 (T IWCP) (72 Logy min =5 + O(1)) + O(log, n)

and we can write the expected range search time as
ElQ(n, k)] = e T[2E, [WCP|n + ¥ sc (1, 2ky.0<5 <2k (T Tpgs IWCP|) (55 logy n)n' 2

+0O(log, n) (4.4)

where ¢; and ¢y are constant values related to the specified S. The first term
accounts for the number of hyper-rectangles returned by the orthogonal range search.
If S = O, all queries are wildcards, and everything is in range (just report), so

the first term dominates. When 0 < s < 2k, the second term dominates. When
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S ={1,---,2k}, (i.e. s = 2k), O(logyn) dominates. The third item arises from the

height of the trie which is unavoidable.

One-dimensional special case

When £ =1,

ElQ(n,1)] = H?):l |ch|n+0225c{1,2},1<\5|<2(Hpggs |ch|)7(logT2n)n17%+O(10g2 n)

= &1 [WCH|WC?|n + ey (12822 )ns (JWC| 4 [WC?|) + O(log, n)

p=1
Ay
|
Z L2 ZrAy2
o1,
lwcl | 1

| we? |

Figure 4.5: Query hyper-rectangle’s cover space |WC!| and |[WC?| on the first di-
mension (p = 1).
As shown in Figure 4.5, [WC'| = Z, + &L, [WC? =1— Z; + &L, and

ElQ(n,1)] = c1(Z + 35 (1 — Z1 + &) n+ coy (B )ns (2, + 4 +1— 2+ 51) +
O(log, n)

=i (Zi+ 351 = Z0 + B5)n + ey (B3 (1 + Ay) + O(log, n)
Either the first term or the second term dominates, depending on Z; and A;. If

the second term dominates, then maz{Z;, A;} < O(n~2), otherwise the first term

dominates. If we write Z; = nil’ A = n%l, ai,b; > 0, then:

O(nz), min{ai, b1} > 3
E[Q(n,1)] = (4.5)

O(nl_min{al,bl})7 min{ala bl} < %
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Two-dimensional special case

When k =2, E[Q(n,2)]
=0 H;:l (WCPIn + c2Xsc(1,2,341,0<18)<a([ Tpgs |WC’p|)fy(1°gTQ")nl_i + O(log, n)
= cin([WC|[WC?||WC*|W )

ey (B 5 (W C?| WO |[WCH| + [WC||[W 3| W e
+ [WCY|WC2||[WCH| + [WCH|WC2|[WC3))

ooy (BB 3 ([W 3| |W O + W [W | + [WC2||WE?
+ [WCH|WCH + [WCY||[WC3| + |[WC|[W )

+epy (B =T (W CH + [WC?| + [WCP| + [WCH)) + O(log, n)

p=2
A,

Zy 002 L zZpA2

1

lwed|

lwc? |

Figure 4.6: Query hyper-rectangle’s cover space |W(C?| and |[WC*| on the second
dimension (p = 2).

As shown in Figure 4.5 and 4.6, |[WCY| = Z, + &L, |[WC?| =1 - Z, + &, [WC3| =
Zy+ 82, WO =1-Z,+ &2
based on the assumptions of Theorems 6 and 7. Substituting these query window

cover values gives:

2 2
ey (Bt (Z) + Zo + AL 4+ 82 — 22 - Z2 4 AL 4 22 L A, + DA —
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ZENy — Z3A| + A1 A (A + A))

Fea (VBN nd (14 7y + Zo + S0 + 30y — 72 — Z2 + 102 4 1A2 4 ALA,)

ey (B0 (2 + Ay + Ay) + O(logy n)

If 7, = al,ZQZL,Al:n%,AQZn%,al,aQ,bl,bQEO, then:
O(n%), min{ay, ag, by, by} > i
O(n4 —man{eabibo}y min{ay ) ag, by, by} <3 L' AND
min{ay + ag, ay + by, as + by, by + bo} > i + min{ay, as, by, by}

O(n'~mir{artaz,atbaaztbibitbe}y = ot herwise.

For example, e;ssuming 7 =Jy =05, A1 = Ay =0.9,

min{a, as, by, by} = 0.0115, min{a; + ag, ay + by, as + by, by + bo} = 0.023,
E[Q(n,2)] = O(n'09%) = O(n%77).

If we assume A; = Ay = 0.1,

min{ay, az, by, by} = 0.075, min{a; + as,a; + by, as + by, by + bo} = 0.15,
E[Q(n,2)] = O(n'~01%) = O(n"%5).

The expected search time increases with the size of the query hyper-rectangle.

Three-dimensional special case

When k = 3, E[Q(n, k)]

=0 H2:1 (WCP|n + c2X5c(1,2,3,4,5,6) Hp¢5 |WCp|7(logT2n)n1_% + O(logy n)

(4.6)

—a Hg:l (WCPln + CW(logTQn)(”l_%h T NI § TSt R nl_%fg)) +

O(log, n)

I has C} = 6 items, and each item consists of five WC? terms; I, has C7 = 15
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items, and each item consists of four WC? terms; I3 has Ci = 20 items, and each item
consists of three WCP terms; I, has C§ = 15 items, and each item consists of two
WCP terms; and Iy = (|[WCH + [WC?| + |WC?| + [WC*| + |[WC?| + [WCP|). In the
case of [WC| = Zi+54, [WC?| = 1-Z1+ 51, [WCs| = Zo+ 52, WCH| = 1-Z,+ 42,
\WCS| = Zy+ 82, [WCS| =1 — Z3 + 42, we put [WCP| into the formula and we can
get the expected time complexity.
n%h =
n%7mz'n{a1+b1,a1+cl,a1+a2,a1+b2,a1+02,b1+cl,b1+a2,b1+b2,b1+02,cl+a2,cl+b2,cl+02,a2+b2,a2+02,b2+62}

n% [2 — n% _min{al 7a27a37b1 7b2 7b3}

Let ©1 = {a1 + b1, a1 + ¢1, a1 + a, a1 + by, a1 + ¢, b1 + ¢1, b1 + ag, by + by, by + ¢, 01 +
g, 1 + by, c1 + oy a9 + ba, as + co, by + 2},

Oy = {a1, az, as, b, bz, b3},

O3 = {a1 + az + a3, by + ax + az, ay + by + a3, by + by + az, a; + az + b3, by + as +
bz, ai + by + b3, by + by + b3}
and we use Lmin{O} to represent the value in the set © closest to the minimum

value in the set.
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O(n%_mm{@ﬂ), min{Oy} < %AND Lmin{©y} > %

E[Q(n,3)]

\\

O(ns=mm01}) 'min{0,} < £ AND Lmin{©,} < & (4.7)
AND min{O3} —min{O,} >

1
6

O(n'=mmOsh) * otherwise.

\

k dimensions

Due to the long polynomial function of Ygefi,... 2k} ([ I g5 [WC?), we omit the
details of the expansion, but we do tabulate the exact values for specific values of k,
n, and Hﬁil |[WCP|. First let us have a look about the cost of partial match query.
Table 4.2 is calculated from Lemma 8 [FIPu86] (also see section 2.5.3). When n is
set to 500, 1000, 10000, - - -, we get the exact value of every specified pattern, and

the “Asymptote” column is obtained from those values. Then we calculate the mean

Table 4.2: Exact mean value of the cost of partial-match query in a 2k-d trie for all
specified patterns with & = 5.

s/2k | Asymptote n
500 | 1000 | 10000 | 50000 | 100000 | 500000 | 1000000 | 100000000

1/10 | 1.58n09 425 [ 788 | 6299 | 27131 | 50663 | 213439 | 395633 | 25393099
2/10 | 1.76n%8 255 | 440 | 2797 | 10360 | 18076 | 64441 | 110865 | 4541039
3/10 | 2.01n%7 156 | 251 | 1266 | 4021 | 6557 | 19864 | 31782 | 825774
4/10 | 2.33n96 97 | 146 | 586 | 1591 | 2426 | 6266 9345 153181
5/10 | 2.77n%5 62 | 87 | 279 646 920 2033 2833 29174

6/10 | 3.33n%4 | 40 |53 | 137 | 271 361 684 893 5774
7/10 | 4.03n%3 |26 |33 |70 119 149 243 297 1213
8/10 | 5.19n%2 18 |21 |38 56 65 93 107 281
9/10 | 6.45n%! 12 |14 |22 28 31 39 43 77
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Tables 4.3 and 4.4 illustrate the time complexity of range search. In Tables 4.3
and 4.4, we give the values of range search time cost for different k£, n, and query
hyper-rectangle’s cover space HZ’LI |[WC?P|. To make the formulation simpler, we
select |'WCP| on every dimension equal to the 2k root of Hiil |WC?|. From equation
(4.4), Tables 4.3 and 4.4 give the expected cost for orthogonal range search in our
trie. Terml = H;Iil |WCP|n without constant factor ¢y,

Term2 = Zgc g1, o0 ([ Lgs |WC”|)7(1°§—]2€”)n1*zik without constant factor c,, and
Term3 = log, n. Omitting the constant coefficients, we obtain the results shown in

Table 4.3 (for £ = 2) and Table 4.4 (for £ = 5). Appendices A and B give the C++

code for generating the three terms.
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Table 4.3: Expected cost of orthogonal range search (equation (4.4)) for k = 2.

2k HZ’LI|WC’7’| Terms n

10 100 1000 10000 100000

4 10.05 TermI | 0.5 b 50 500 5000
Term?2 | 20.15 | 78.85 | 293.59 | 1174.86 | 3414.70

Term3 | 3.32 | 6.64 9.97 13.29 16.61

0.15 Terml | 1.5 15 150 1500 15000
Term?2 | 33.47 | 140.10 | 562.43 | 2396.27 | 7188.71

Term3 [ 3.32 | 6.64 9.97 13.29 16.61

0.25 TermlI | 2.5 25 250 2500 25000
Term?2 | 43.01 | 185.74 | 770.43 | 3367.57 | 10228.87

Term3 | 3.32 | 6.64 9.97 13.29 16.61

0.35 TermI | 3.5 35 350 3500 35000
Term?2 | 50.99 | 224.74 | 951.60 | 4225.01 | 12929.34

Term3 | 3.32 | 6.64 9.97 13.29 16.61

0.45 Terml | 4.5 45 450 4500 45000
Term2 | 58.05 | 259.76 | 1116.34 | 5011.51 | 15416.31

Term3 | 3.32 | 6.64 9.97 13.29 16.61

0.55 TermI | 5.5 09 050 0500 05000
Term?2 | 64.50 | 292.03 | 1269.56 | 5747.70 | 17751.00

Term3 | 3.32 | 6.64 9.97 13.29 16.61

0.65 Terml | 6.5 65 650 6500 65000
Term?2 | 70.48 | 322.25 | 1414.07 | 6445.53 | 19969.05

Term3 | 3.32 | 6.64 9.97 13.29 16.61

0.75 TermI | 7.5 75 750 7500 75000
Term?2 | 76.10 | 350.86 | 1551.68 | 7112.70 | 22093.54

Term3 | 3.32 | 6.64 9.97 13.29 16.61

0.85 Terml | 8.5 85 850 8500 85000
Term?2 | 81.44 | 378.15 | 1683.61 | 7754.53 | 24140.50

Term3 | 3.32 | 6.64 9.97 13.29 16.61

0.95 TermI | 9.5 95 950 9500 95000
Term?2 | 86.53 | 404.33 | 1810.77 | 8374.92 | 26121.65

Term3 | 3.32 | 6.64 9.97 13.29 16.61

4.2.3 Counting Grey Nodes Only

If we change the analysis to count only grey nodes, i.e.
Q(n, k) = Sy Ofmmme]—[nodetEGN}a
our analysis becomes more complex due to the lack of simplification provided by the
fact that Pr[node; € GN UBN]| = H?)’il(|WCp| +|NCP|). The following is the exact

probability calculation for BLACK and GREY color conditions in Figure 3.5.
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Table 4.4: Expected cost of orthogonal range search (equation (4.4)) for k = 5.

2k HZL|WC’7’| Terms n

10 100 1000 10000 100000

10 | 0.05 Terml | 0.5 ] o0 500 5000
Term?2 | 1498.25 | 6146.01 21629.74 | 83719.28 373124.93

Term3 | 3.32 6.64 9.97 13.29 16.61

0.15 Terml | 1.5 15 150 1500 15000
Term?2 | 2522.22 | 10838.65 | 40298.76 | 165560.22 | 779595.17

Term3 | 3.32 6.64 9.97 13.29 16.61

0.25 TermlI | 2.5 25 250 2500 25000
Term?2 | 3246.15 | 14256.20 | 54373.89 | 229513.337 | 1107490.47

Term3 | 3.32 6.64 9.97 13.29 16.61

0.35 TermlI | 3.5 35 350 3500 35000
Term?2 | 3846.66 | 17137.41 | 6465.70 285522.87 | 1399556.70

Term3 | 3.32 6.64 9.97 13.29 16.61

0.45 TermlI | 4.5 45 450 4500 45000
Term?2 | 4374.57 | 19699.15 | 77358.55 | 336653.25 | 1669286.57

Term3 | 3.32 6.64 9.97 13.29 16.61

0.55 TermlI | 5.5 95 050 5500 55000
Term?2 | 4853.10 | 22041.57 | 87419.53 | 384359.60 | 1923175.23

Term3 | 3.32 6.64 9.97 13.29 16.61

0.65 TermlI | 6.5 65 650 6500 65000
Term?2 | 5295.17 | 24220.92 | 96856.79 | 429475.78 | 2164981.74

Term3 | 3.32 6.64 9.97 13.29 16.61

0.75 Terml | 7.5 75 750 7500 75000
Term?2 | 5708.86 | 26272.59 | 105802.34 | 472535.10 | 2397129.10

Term3 | 3.32 6.64 9.97 13.29 16.61

0.85 TermlI | 8.5 85 850 8500 85000
Term?2 | 6099.64 | 28220.61 | 114346.39 | 513904.45 | 2621294.93

Term3 | 3.32 6.64 9.97 13.29 16.61

0.95 TermlI | 9.5 95 950 9500 95000
Term?2 | 6471.38 | 30082.19 | 122553.93 | 553849.71 | 2838701.74

Term3 | 3.32 6.64 9.97 13.29 16.61

Lemma 3 For the point set {0,1,---

(N+1)N

2

, N}, the number of distinct intervals on [0, N]|

Proof. To get interval [x,y] on [0,N], the number of intervals

N +1

In our calculation, N = 2% — 1. The possible intervals on [0,2% — 1] is
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As displayed in Figure 4.5, a BLACK nodes’ cover space NC' should satisfy conditions
(d) and (e) of Figure 3.5. We assume the left coordinate value for W' is a and the
right coordinate value for W' is b as shown in Figure 4.5 and Figure 4.6. Applying
Lemma 3 on conditions (d) and (e), it is easy to see that we want to get intervals in
[a,b], so the number of possible NC for BLACK on one dimension is (b—a)(b—a+1)/2.

Prlnode, € BN| = H;’;l %

BLACK 0 1

a b

0 | £.1
.. \wc
(d) |
NC
(€) SR ;
| NC

Figure 4.7: BLACK color on one dimension.

As displayed in Figure 4.8, a GREY nodes’s cover space NC' should satisfy condi-
tion (a), (b), and (c). For condition (a), NC’s left coordinate value € [0,a —1], NC’s
right coordinate value € [a,b — 1], so the number of nodes for case (a) is a(b — a);
for condition (b), NC’s left coordinate value € [a+1,b], NC’s right coordinate value
€ [b+ 1,28 — 1], so the number of nodes for case (b) is (b — a)(28 — 1 — b); for
condition (c), we obtain the following: NC' D [a, b] excluding NC = [a,b], NC’s left
coordinate value € [0,a], NC’s right coordinate value € [b,2” — 1], and the number
of nodes for case (c) is (a +1)(282 —1 —b+ 1) — 1. So the total number of GREY
nodes on one dimension is (a) + (b) + (¢) = (2® +a—b—1)(b+ 1) — a®. This gives
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Figure 4.8: GREY color on one dimension.

Prnode, € GN] = [[.X, (23+;;(”2;12(1”)721)’“2, As we have mentioned before, as to a

and b for WC, there are two cases. a =0, b = (Z; + %)(23 — 1), when p mod 2 =
;0= (7 — ﬁ)(23 —1), b =28 —1, when p mod 2 = 0. Thus, we can see that

determining Prnode; € GN] is challenging.
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Chapter 5

Experimental Results

After we finished building the trie from a randomly generated data set which sat-
isfied the uniform distribution, we randomly generated several query hyper-rectangles
with different sizes, then searched the trie to get the range search results. The follow-
ing sections contain the algorithm used for random number generation, a description
of how we obtained the query hyper-rectangle and data set, and the main procedure

for testing.

5.1 Algorithms

The main testing process is shown in Figure 5.1.
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MAINTEST()
1 for k< 2 to 10
2 don<+10
3 while n < 100000
4 do call generateRandData function // create k-d trie using Trie_Insert
D // function to insert n randomly generated hyper-rectangles
6 for outeri <~ 0 to NUM_STEPS
7 do for 1 + 0 to NQUERY — 1
8 do // we set NQUERY to get average performance
9 call getQhR function to get a randomly generated query

10 hyper-rectangle

11 call Rangesearch function to get the range search results
12 free the trie space

13 n<n x 10

Figure 5.1: Main test process.

5.1.1 Random number generator

My random number generator uses Knuth’s algorithm in section 3.6 [Knut73-1]
which implements the best linear congruential random number generator proposed
by D. H. Lehmer in 1951 and illustrated in [PaMi88] [Weis00]. As shown in Figure
5.2, function myrand will return a random number between the two parameters min

and max.

MYRAND (min, max)
if first time call myrand
then SRANDOM(time(NIL))// set a random seed for random function
RAN_START(random())
/] call Knuth’s function to start [Knut02]
randomNumber <— RAN_ARR_NEXT() mod (max — min + 1)

// call Knuth’s function to get next random number [Knut02]
return randomNumber 4+ min

SO Ot W N

Figure 5.2: Pseudo-code for random number generator.

Routine ran_start and ran_arr_next are from Knuth’s algorithm [Knut02]. setseed
sets the seed for the random number generators using the ran_start function. The
continuous sequence of random numbers is obtained from ran_arr_next. The seed for
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ran_start is a randomly generated integers which is got from the current machine

time. random() and srandom are BSD random number functions [GNUOL1].

5.1.2 Random data set

To generate the set of n uniform randomly distributed hyper-rectangles, we use

the algorithm shown in Figure 5.3.

GETRANDDATA (space : SearchSpace)

1 fori<0ton—1

2 do // we will generate n random data

3 for j«~0tok—1

4 do // on every dimension

5 center < MYRAND (space.Get MinSpace(j), space.Get MaxSpace(j))
6 width < MYRAND (space.Get MinSpace(j), space.Get MaxSpace(j))
7 if center + width/2 > space.Get M azSpace(7)
8 then max < space.GetMazSpace(j)
9 else max < center + width/2

10 if center — width/2 < space.GetMinSpace(j)

11 then min < space.GetMinSpace(j)

12 else min < center — width/2

13 HyperRectangle hR <~ new HYPERRECTANGLE(k)

14 hR—SetMin(min,j)

15 // set the min value to the hyper-rectangle on k'™ dimension
16 hR—SetMaz(maz,j)

17 // set the max value to the hyper-rectangle on k™ dimension

18 // end of one hR
19 TRIE_INSERT(hR,T)// insert hR into trie T

Figure 5.3: Pseudo-code for generating n k-d uniformly distributed random hyper-
rectangles into a 2k-d trie T.

5.1.3 Random query hyper-rectangle generator

The query hyper-rectangle W is also generated randomly. QhRatio is an ar-

ray which stores the fraction of the search space occupied by W on one dimension.
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QhRatio has 40 elements starting from 0.01, and proceeding to 0.99 with a step size
of 0.025. Each time getQhR (see Figure 5.4) is called, the fraction will increase by
one step. The k-d trie is built for one set of n random hyper-rectangles, and the

range search is performed 30 times for each fractional query window size. In Figure
5.1. NUM_STEPS = 40 and NQUERY = 100. The number of hyper-rectangles in

range increases as the volume of the query hyper-rectangle increases.

GETQHR (stepNum : integer)

HyperRectangle hR <— new HYPERRECTANGLE(k)
fori<0tok—1

do width < space.GetMaxSpace(i) — space.Get MinSpace(i)

quidth < width x QhRatio[stepNum)][i])
hR—SetMin (MY RAN D(0, width — quidth) + space.Get MinSpace(i), i)
hR—SetMaz (hR— GetMin (i) + quidth, i)

return AR

O Ot W+

Figure 5.4: Pseudo-code for generating a random query hyper-rectangle.
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5.2 Experimental Results

Our experiments ran on herzberg.physics.mun.ca, a sgi Onyx 3400 with 28 MIPS
R12000 processors and 14 Gigs of main memory, provided by the Memorial University
of Newfoundland Computation and Visualization Centre, part of the C3.ca Associa-
tion. Times were obtained by using the clock() function which returns the amount
of CPU time, accurate to 107° of a second, used since the first call to clock() in the
calling process. The time reported is the sum of the user and system times of the
calling process and its terminated child process [Sun96]. Tables 5.1 to 5.9 are the
average range search time for our trie (B=32). The item NA inside a table means
there is no experimental results falling in this range. This is due to the fact that
our hyper-rectangles are generated randomly. As shown in the maintest procedure
(see Figure 5.1), for each fractional query hyper-rectangle size, we perform NQUERY
range queries. We can decrease the number of NA entries in these tables by increasing

NQUERY.

Table 5.1: The average range search time (ms) for a 4-d (k = 2) trie on herzberg.

Dimension | % of data Average range search time (milliseconds)
k m range n = 10 ] 100 | 1000 | 10000 | 100000
2 0%, 10%)] 0.04 0.18 1092 |9 96.29

10%, 20% 0.11 0.884.05 | 37.79 | 388.11
20%, 30% 0.16 0.78 1 6.41 | 57.97 | 593.76
30%, 40% 0.25 1.16 | 8.5 89.71 | 858.07
40%, 50% 0.22 1.45 [ 11.86 | 111.84 | 1107.42
50%, 60% 0.35 1.46 | 13.01 | 144.27 | 1394.12
60%, 70% 0.32 1.92 1 14.9 | 167.16 | 1595.97
70%, 80% 0.24 2.27 1 16.98 | 191.27 | 1900.76
80%, 90% 0.42 2.31 1 20.06 | 219.76 | 2150.95
90%, 100%] | NA 2.6 | 21.81 ] 244.89 | 2408.28
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Table 5.2: The average range search time (ms) for a 6-d (k = 3) trie on herzberg.

Dimension | % of data Average range search time (milliseconds)
k m range n = 10 ] 100 | 1000 | 10000 | 100000
3 0%, 10%)] 0.06 0.36 | 1.95 | 15.51 | 187.19

10%,20%] | 0.17 0.83]6.8 57.28 | 503.72

20%,30%| ] 0.28 1.02 | 10.84 | 97.27 | 900.91

30%,40%| ] 0.23 1.81 | 13.82 | 138.55 | 1281.69
40%,50%] | 0.27 2.03 | 16.5 | 168.45 | 1627.14
50%,60%] [ 0.37 2.43 | 21.38 | 204.66 | 1992.71
60%, 70%] | 0.39 2.89 | 23.56 | 242.36 | 2278.64
70%,80%| ] 0.43 3.4 | 272 |276.79 | 2665.85
80%,90%| | NA NA [ 30.38 | 311.81 | 3036.11
90%, 100%] | NA NA [ 33.1 |347.29 | 3413.75

Table 5.3: The average range search time (ms) for a 8-d (k = 4) trie on herzberg.

Dimension | % of data Average range search time (milliseconds)
k m range n = 10 ] 100 | 1000 | 10000 | 100000
4 0%, 10%)] 0.13 0.67 | 3.41 | 25.76 | 222.71

10%, 20%] | 0.25 1.65 | 9.44 | 83.65 | 766.75

20%,30%| ] 0.28 2.51 | 15.44 | 138.14 | 1243.93
30%, 40%] ] 0.39 2.75 | 19.58 | 186.39 | 1723.38
40%,50%] | 0.41 3.39 | 24 240.23 | 2189.05
50%,60%] | NA 4.03 | 28.27 | 290.82 | 2655.54
60%, 70%] | NA 4.43 1 33.73 | 329.67 | 3084.36
70%,80%| | NA NA | 39.59 | 382.62 | 3577.59
80%,90%| | NA NA [ 42.74 | 439.16 | 4093.18
90%, 100%] | NA NA [NA [ NA 4378.26

Table 5.4: The average range search time (ms) for a 10-d (k = 5) trie on herzberg.

Dimension | % of data Average range search time (milliseconds)
k m range n = 10 ] 100 | 1000 | 10000 | 100000
5t 0%, 10%)] 0.19 1.36 | 8.09 | 41.79 | 419.43

10%, 20%] | 0.44 2.59 [ 17.53 | 124.9 | 1056.89
20%,30%| ] 0.43 3.34 | 23.96 | 202.42 | 1672.12
30%, 40%] | 0.5 4.19 | 32.36 | 257.47 | 2266.51
40%,50%] ] 0.63 4.8 140.6 | 324.56 | 2936.88
50%,60%] | 0.56 NA [48.96 | 377.27 | 3427.31
60%, 70%| | NA NA | NA [ 468.28 | 4102.77
70%,80%| | NA NA [ NA 537.53 | 4858.89
80%,90%] | NA NA [NA [ NA 5288.15
90%, 100%] | NA NA [NA [ NA NA
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Table 5.5: The average range search time (ms) for a 12-d (k = 6) trie on herzberg.

Dimension | % of data Average range search time (milliseconds)
k m range n = 10 ] 100 | 1000 | 10000 | 100000
6 0%, 10%)] 0.29 2.22 | 15.37 1 93.01 | 668.42

10%,20%] | 0.34 3.62 | 28.21 | 189.54 | 1396.95
20%,30%| ] 0.49 4.67 | 38.25 | 281.13 | 2265.26
30%,40%| ] 0.66 5.54 | 49.59 | 380.73 | 2934.63
40%,50%] ] 0.59 NA [ 56.42 | 464.43 | 3826.77
50%,60%] [ 0.74 NA | NA 587.44 | 4686.71
60%, 70%] | 0.78 NA | NA [632.77 | 5542.19
70%,80%| | NA NA |NA [ NA 6234.03
80%,90%| | NA NA [NA [ NA NA

90%, 100%] | NA NA [NA [ NA NA

Table 5.6: The average range search time (ms) for a 14-d (k = 7) trie on herzberg.

Dimension | % of data Average range search time (milliseconds)
k m range n = 10 ] 100 | 1000 | 10000 | 100000
7 0%, 10%)] 0.33 2.33 1 23.51 1729 | NA

10%, 20%] | 0.7 4.11 | 38.94 | 324.83 | 2102.5
20%,30%| ] 0.73 5.27 | 52.11 | 458.69 | 2938.08
30%,40%] | 0.71 6.14 | 59.19 | 593.94 | 3647.47
40%,50%] | NA NA [NA [ NA 4945.12
50%,60%] | NA NA | NA [ NA 6466.5
60%, 70%] | NA NA | NA [ NA 6722.86
70%,80%| | NA NA |NA [ NA NA
80%,90%| | NA NA [NA [ NA NA
90%, 100%] | NA NA [NA [ NA NA

Table 5.7: The average range search time (ms) for a 16-d (k = 8) trie on herzberg.

Dimension | % of data Average range search time (milliseconds)
k m range n = 10 ] 100 | 1000 | 10000 | 100000
8 0%, 10%)] 0.48 3.58 | 31.15 | 288.25 | 1896.74

10%, 20%] | 0.64 5.57 | 53.19 | 509.03 | 2834.83
20%,30%| | NA 6.64 | 63.17 | 640.88 | 4722.63
30%,40%] | NA NA [NA [ NA 6535.78
40%,50%] | NA NA [NA [ NA NA
50%,60%] | NA NA | NA [ NA NA
60%, 70%| | NA NA |NA [ NA NA
70%,80%] | NA NA [NA [ NA NA
80%,90%] | NA NA [NA [ NA NA
90%, 100%] | NA NA [NA [ NA NA
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Table 5.8: The average range search time (ms) for a 18-d (k = 9) trie on herzberg.

Dimension | % of data Average range search time (milliseconds)
k m range n = 10 ] 100 | 1000 | 10000 | 100000
9 0%, 10%)] 0.47 4.3 139.4 |373.91 | 3263.33

10%,20%] |0.73 6.7 | 64.59 | 644.84 | 5820.74
20%,30%] | NA 7.07 | 70.88 | 727.13 | 6954.41
30%,40%] | NA NA |NA [ NA NA
40%, 50%] | NA NA |NA [ NA NA
50%,60%] | NA NA [NA [NA NA
60%,70%] | NA NA [NA [ NA NA
70%,80%] | NA NA [NA [ NA NA
80%,90%] | NA NA |NA [ NA NA
90%, 100%] | NA NA |NA [ NA NA

Table 5.9: The average range search time (ms) for a 20-d (k = 10) trie on herzberg.

Dimension | % of data Average range search time (milliseconds)
k m range n = 10 ] 100 | 1000 | 10000 | 100000
10 0%, 10%)] 0.76 6.07 | 50.26 | 486.42 | 4570.18

10%,20%] | NA NA | 72.91 | 737.29 | 7135.06
20%,30%] | NA NA |NA [ NA NA
30%,40%] | NA NA |NA [ NA NA
40%, 50%] | NA NA |NA [ NA NA
50%,60%] | NA NA [NA [ NA NA
60%, 70%| | NA NA [ NA [ NA NA
70%,80%] | NA NA [ NA [ NA NA
80%,90%] | NA NA |NA [ NA NA
90%, 100%] | NA NA |NA [ NA NA
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From Tables 5.1 to 5.9, we can see that the range search time increases as the
dimension and query hyper-rectangle size increase. As the time used for range search
is proportional to the number of nodes traversed, we use the time in the above tables
for our analysis. From equation (4.4) in section 4.2.2,

E[Q(n, k)] = e [, [WCP|n + 2Ssc (1, anyo<is<ak([Lpes [WCP|) (55 log, n)n!~2

+czlogyn+cy (5.1)
There are three terms dependent on n in the equation. We rewrite equation (5.1) as
E[Q(n, k)] = crdi+cada+csds+ey (5.2)
Variables dy, ds, d3 are called Term1, Term2, Term3 in Tables 4.3 and 4.4.

To determine an empirical formula for expected time E[Q(n, k)], we formulate a

least squares estimation to solve for x = (cy, ¢z, ¢3,¢4)". Our formulation is
v=Ax-/( (5.3)

where A = m x 4 is the coefficient matrix, and m = the number of observed experi-

mental values (237 in this case, i.e. all observed range search times in Tables 5.1 to

5.9). The vector £ (m x 1) contains the m observed values in milliseconds.

The least squares principle [MiAc76] obtains a solution for x such that:

¢ = vI'v — minimum (5.4)
where v are called the residuals. We used the method of least squares to obtain
x = (c1, ¢, ¢3,¢4)". Maple 6 [Mapl00] was used to find the following solution:
E[Q(n, k)] = .04540639823d; + .00009165109674d

+4.079024506d3 — 35.97801026. (5.5)

The process used to determine equation (5.5) is documented in Appendix C. Counting
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m = 237 values, we observed that the root-mean-square (RMS) error (the square root
of the mean squared deviation [HoNi85]) \/% = 452.67 where v is the vector of
residuals. The average absolute deviation = >~ |v;| = 201.64. The average signed
deviation % ;11 v, = 0.46 x 10~7. The linear correlation between Ax and / is 0.946,
close to 1, which shows that the fitted times have high positive linear correlation with
the observed experimental times.

Figure 5.5 shows the experimental time ratio Q(ni, k)/Q(ns, k) for ny = 100000,
ne = 10000. Figures 5.6 and 5.7 show the experimental time @Q(n, k) and expected
time E[Q(n, k)] (using equation (5.5)) for percent of data in range = [0%, 10%]. Ap-
pendix E shows plots of experimental time (data from tables 5.1 to 5.9) compared
to plots of expected time obtained from equation (5.5). Figure 5.8 shows a logarith-
mic plot for the relationship of all 237 experimental results with all 237 theoretical
expected results (see Appendix C). The straight line represents a perfect match. We
observe that the experimental results fit the theoretical analysis quite well.

The noise comes mainly from three sources. First, we use the same |WCP?| for 2k
dimensions and the determined Hiil |WC?| to compute dy, dy and d3 for simplicity,
but the experimental query hyper-rectangle is generated randomly. For example, to
compute (dy, do, d3) in equation (5.2), a data space occupancy proportion of 0.05 was
used for [0%, 10%)] of data in range, 0.15 was used for [10%, 20%)] of data in range, - - -,
0.95 data space occupancy was used for [90%, 100%] of data in range. Secondly, when

n is small (e.g. 10), the experimental data generated has high variance. Thirdly, the

system function clock() used to calculate the time used for range search is not perfect;
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when more processes are running on the machine, clock() will count more time due

to higher context switching among active processes.
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Figure 5.5: Experimental time ratio for Time(n=100000)/Time(n=10000).
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Figure 5.6: Experimental time for percent of data in range = [0%, 10%)].
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Expected time (% of data in range = [0%,10%)])
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Figure 5.7: Expected time for percent of data in range = [0%, 10%)].
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Figure 5.8: Logarithmic plot for the relationship of experimental time to expected
time (from equation 5.5).
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Chapter 6

Conclusions and Future Research

Using tries, we have shown that preprocessing time for storing n k-d hyper-
rectangles is ©(kBn). The space requirement is S(n, k) = O(kBn). The expected
orthogonal range search time E[Q(n, k)] = ¢; H;]il |WCP|n+
C2Xsc {1, 2k3,0<1s)<2k ([ Lpgs [WCP[)y(5; log, n)n'~ 2k + O(log, n), where ¢; and ¢, are
constants. The first term accounts the report time, the third term arises from the
height of the trie, and the other terms represent contributions from lower-dimensional
searches. For k = 2 and k = 3, we have determined that E{Q(n,k)} behaves as
O(A + n®) for a« = f(n,k,r) with » = proportion of data space occupied by the
query hyper-rectangle W. Section 4.2.2 gives special case analyses. Our algorithm
for k-d range search using 2k-d tries takes expected time proportional to k, n, and the
relative size of the query hyper-rectangle W. Our analysis indicates this approach is
competitive with other k-d hyper-rectangle range search algorithms, particularly for

large k (i.e. for k approaching log, n or greater). The algorithm presented supports
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dynamic operations, and is straightforward to implement.

Improvements in expected storage cost S(n, k) and expected time for orthogonal
range search Q(n, k) can be obtained if we compress our binary trie to avoid storing
nodes with only one child as is done for Patricia tries. The improvement can be

planned in the following ways:

1. Using pointerless representation, we can avoid using a Parent pointer in each

trie node to save space.

2. If we adapt a pointerless Patricia trie to implement our orthogonal range search
algorithm, the search speed can be improved by a constant factor F which equals
to the number of bits of the machine. For example, if we run our program on a
32-bit machine, the maximum improvement can be 32 times. Figure 6.1 gives

a best case for illustration.

0N

Patrcia Trie

Full Trie

Figure 6.1: Example of full binary trie with Patricia trie.

Assuming that the full trie’s height is 32 x 2 x 10 = 640 (for k = 10), our

range search algorithm searches to the leaf node, so we count 640 nodes per
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hyper-rectangle in range (in the worst case). In the Patricia trie, we store the
bit string in the internal node, and we need only do one step for comparison for
each of 2k dimensions, so the expected cost improvement factor F = 2k in the

best case.

3. Instead of storing all the unshared bits, these bits are replaced by pointers only
in Patricia trie’s leaves pointing to hyper-rectangles. This method will improve
our search speed because we do not need to traverse all the black nodes in the

subtree to get the results; we need only count grey nodes as our query cost.

Further investigation of the expected cost for orthogonal range search Q(n, k) is war-
ranted to determine the relationship with partial match query expected cost. Can the
upper bound we determined for Q(n, k) be reduced by determining Pr[node; € GN]|
instead of Pr[node; € GN U BN|? Under different assumptions about the nature of
query window W distribution (e.g. random Gaussian in size), does the expected range
search cost improve? Can the 2k-d trie be adapted for other geometric problems such

as half-space range search?
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Appendix A

C++ code for Terml and Term3 (equa-
tion (4.4)) generation

#include <math.h>
#include <iostream.h>
#include <fstream.h>
#include <stdio.h>
#include <stdlib.h>
/*k in this code means 2k in my thesis’s theorem */
void main()
{
ofstream fout1(“term1Output.txt”);
ofstream fout3(“term3Output.txt”);
ofstream fout11(“term11.txt”);
ofstream fout33(“term33.txt”);
for(int k=2; k<=10; k++){
for(double t=0.05; t<1; t+ =0.1){ //for setting WC
for(int n=10; n<=100000; nx =410){
cout << k=7 <<k<<“t="<<t<< “n="<<n<<endl
foutl << t*n << “, 7;
fout3 << log(n)/log(2) << “,7;
foutll << “k =7 <<k << “t=" <<t << n="<<n<< 4 t*n="
<< t*n << endl;
fout33 <<k = ” <<k << 4t =7 <<t << “n="<<n<<Y
log(n)/log(2)=" << log(n)/log(2) << endl;

}
}

foutl.close
fout3.close();
fout11.close();
fout33.close();

0;
0
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Appendix B

C++ code for Term?2 (equation (4.4)) gen-
eration

#include <math.h>

#include <iostream.h>

#include <fstream.h>

#include <stdio.h>

#include <stdlib.h>

double Tjl(int k, int j, int 1, int n)

// for Lemma8 of Flajolet and Puech’s paper
intp=-k*j-1

double pow2p = pow(2.0, p);

double pow12pn = pow(1.0 - pow2p, n - 1);

double value = 1.0 - pow12pn * ((1.0 - pow2p) + n * pow2p);
if (value < 0) return 0.0;

return value;

}
double Product(char const * g, int start, int end)
{
double p = 1.0;
for (int i = start; i <= end; i ++) p * = g[i];
return p;
}
double Lemma8Alter(int kmax, int nmax, int s, char const * g)
{
// calculate Lemma 8 of Flajelot and Puech’s paper
double * dt = new double[kmax + 1J;
de[o] = 1.0;
for (int i = 1; 1 <= kmax - 1; i +4) dt[i] = Product(g, 1, i);
double sum = 0.0;
for (int 1 = 0; 1 <= kmax - 1;1 ++)
{
double jsum = 0.0;
for (int j = 0; j <= kmax-1; j ++)
jsum + = pow(2.0, j * (kmax - s)) * Tjl(kmax, j, |, nmax);
sum + = dt[l] * jsum;
}
delete[] dt;
return sum,;
}
int CountOnes(char const * g, int kmax)
{
// determine how many specified characters in pattern u
int n = 0;
for (int i = 1; i <= kmax; i ++) if (g[i] == 1) n ++;
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return n;

}

double fact(int x)

{

double f = 1.0;
for (inti=2;i<=x;1i4+4) x=1i
return f;

void CallLemma8(double * average, int kmax, int nmax)
{
// this procedure gets the average patial match retrieval cost for same s
// initialization
char * g = new char[kmax + 1J;
int i;
for 1 =1;1 <= kmax; i ++){
// unspecified character
gli] =2
averageli] = 0.0;

// partial match pattern u all the possibilities except all empty or full
int max = 1 << kmax;
int skip = max / 100;
if (skip < 1) skip = 1;
int scale = 20 - kmax;
if (scale > 1) skip * = scale;
for (int current = 1; ; current ++){
int num = CountOnes(g, kmax);
if (num= 0 && num = kmax) average[num] + = Lemma8Alter(kmax, nmax, num,

if (num == kmax) break;
}
for (i=1;i <= kmax - 1;i ++)
averageli] * = fact(kmax - i) * fact(i) / fact(kmax);
delete[] g;
}

double CompProd(char const * s, double const * WC, int kmax)

double result = 1.0;
for (int i = 1; i <= kmax; i ++) if (s[i] == 1) result * = WC][i];
return result;

}

double theorem(double const * WC, int kmax, int nmax)

{

char * s = new char[kmax + 1J;
double * average = new double[kmax + 1];
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CallLemmag8(average, kmax, nmax);
int i;
for (i = 1;1 <= kmax; i ++) s[i] = 0;
double * finalPart = new double[kmax];
for (i = 1; 1 <= kmax - 1; 1 ++) finalPart[i] = 0.0;
double final = 0.0;
int max = 1 << kmax;
int skip = max / 100;
if (skip < 1) skip = 1;
int scale = 20 - kmax;
if (scale > 1) skip * = scale;
for (int current = 1; ; current ++){
int numb = CountOnes(s, kmax);
if (numb = 0 && numb = kmax){
double part = average[kmax - numb] * CompProd(s, WC, kmax);
finalPart[kmax - numb] + = part;
final + = part;
}

for 1 =1;1 <= kmax; i ++){

if (sfi] == 0){
s[i] = 1;
break;

}

sli] = 0;

}

if (numb == kmax) break;

}

delete[] finalPart;
delete|] average;
delete[] s;

return final;

}

void test(int kmax, int nmax, double const * WC)
{
ofstream fout(“term2Sep16.txt”, ios::app);
if(fout){
cerr << “Couldn’t open file”;
abort();

fout.precision(10);

fout << “test(” << kmax << “” << nmax << “” << WC[1] << ):”;
fout << theorem(WC, kmax, nmax) << endl << endl;

fout.close();

/*k in this code means 2k in my thesis’s theorem */
void main()

{
ofstream fout(“term2Sep16.txt”, ios::app);
if(fout){
cerr << “Couldn’t open file”;
abort();
}
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for(int k=2; k<=10; k++){
for(double t=0.05; t<=1; t+ =0.1){ //for setting WC
double * WC = new double[2*k + 1];
for(int wci = 1; wei <= 2*k; wci++) WC[wci] = pow(t, 1/double(2*k));
for(int n=10; n<=100000; nx =10){
cout << ‘k=" <<k << 4t ="<<t <<% n=" << n << end]
fout << theorem(WC, 2*k, n) << “ 7;

}
delete [| WC;

}
}

fout.close();
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Appendix C Maple Worksheet

VVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVYVYVYVYV

This appendix contains the maple worksheet to generate equation (5.2).

termt := [0.04, 0.18, 0.92, 9, 96.29, 0.11, 0.88, 4.05, 37.79,

388.11, 0.16, 0.78, 6.41, 57.97, 593.76, 0.25, 1.16, 8.5, 89.71,
868.07, 0.22, 1.45, 11.86, 111.84, 1107.42, 0.35, 1.46, 13.01, 144.27,
1394.12, 0.32, 1.92, 14.9, 167.16, 1595.97, 0.24, 2.27, 16.98, 191.27,
1900.76, 0.42, 2.31, 20.06, 219.76, 2150.95, 2.6, 21.81, 244.89,
2408.28, 0.06, 0.36, 1.95, 15.51, 187.19, 0.17, 0.83, 6.8, 57.28,
503.72, 0.28, 1.02, 10.84, 97.27, 900.91, 0.23, 1.81, 13.82, 138.55,
1281.69, 0.27, 2.03, 16.5, 168.45, 1627.14, 0.37, 2.43, 21.38, 204.66,
1992.71, 0.39, 2.89, 23.56, 242.36, 2278.64, 0.43, 3.4, 27.2, 276.79,
2665.85, 30.38, 311.81, 3036.11, 33.1, 347.29, 3413.75, 0.13, 0.67,
3.41, 25.76, 222.71, 0.25, 1.65, 9.44, 83.65, 766.75, 0.28, 2.51,
15.44, 138.14, 1243.93, 0.39, 2.75, 19.58, 186.39, 1723.38, 0.41,
3.39, 24, 240.23, 2189.05, 4.03, 28.27, 290.82, 2655.54, 4.43, 33.73,
329.67, 3084.36, 39.59, 382.62, 3577.59, 42.74, 439.16, 4093.18,
4378.26, 0.19, 1.36, 8.09, 41.79, 419.43, 0.44, 2.59, 17.53, 124.9,
1056.89, 0.43, 3.34, 23.96, 202.42, 1672.12, 0.5, 4.19, 32.36, 257.47,
2266.51, 0.63, 4.8, 40.6, 324.56, 2936.88, 0.56, 48.96, 377.27,
3427.31, 468.28, 4102.77, 537.53, 4858.89, 5288.15, 0.29, 2.22, 15.37,
93.01, 668.42, 0.34, 3.62, 28.21, 189.54, 1396.95, 0.49, 4.67, 38.25,
281.13, 2265.26, 0.66, 5.54, 49.59, 380.73, 2934.63, 0.59, 56.42,
464.43, 3826.77, 0.74, 587.44, 4686.71, 0.78, 632.77, 5542.19,
6234.03, 0.33, 2.33, 23.51, 172.9, 0.7, 4.11, 38.94, 324.83, 2102.5,
0.73, 5.27, 52.11, 458.69, 2938.08, 0.71, 6.14, 59.19, 593.94,
3647.47, 4945.12, 6466.5, 6722.86, 0.48, 3.58, 31.15, 288.25, 1896.74,
0.64, 5.57, 53.19, 509.03, 2834.83, 6.64, 63.17, 640.88, 4722.63,
6535.78] :

termn := [10, 100, 1000, 10000, 100000, 10, 100, 1000, 10000, 100000,
10, 100, 1000, 10000, 100000, 10, 100, 1000, 10000, 100000, 10, 100,
1000, 10000, 100000, 10, 100, 1000, 10000, 100000, 10, 100, 1000,
10000, 100000, 10, 100, 1000, 10000, 100000, 10, 100, 1000, 10000,
100000, 100, 1000, 10000, 100000, 10, 100, 1000, 10000, 100000, 10,
100, 1000, 10000, 100000, 10, 100, 1000, 10000, 100000, 10, 100, 1000,
10000, 100000, 10, 100, 1000, 10000, 100000, 10, 100, 1000, 10000,
100000, 10, 100, 1000, 10000, 100000, 10, 100, 1000, 10000, 100000,
1000, 10000, 100000, 1000, 10000, 100000, 10, 100, 1000, 10000,
100000, 10, 100, 1000, 10000, 100000, 10, 100, 1000, 10000, 100000,
10, 100, 1000, 10000, 100000, 10, 100, 1000, 10000, 100000, 100, 1000,
10000, 100000, 100, 1000, 10000, 100000, 1000, 10000, 100000, 1000,
10000, 100000, 10000OO, 10, 100, 1000, 10000, 100000, 10, 100, 1000,
10000, 100000, 10, 100, 1000, 10000, 100000, 10, 100, 1000, 10000,
100000, 10, 100, 1000, 10000, 100000, 10, 1000, 10000, 100000, 10000,
100000, 10000, 100000, 100000, 10, 100, 1000, 10000, 100000, 10, 100,
1000, 10000, 100000, 10, 100, 1000, 10000, 100000, 10, 100, 1000,
10000, 100000, 10, 1000, 10000, 100000, 10, 10000, 100000, 10, 10000,
100000, 100000, 10, 100, 1000, 10000, 10, 100, 1000, 10000, 100000,
10, 100, 1000, 10000, 100000, 10, 100, 1000, 10000, 100000, 100000,
100000, 100000, 10, 100, 1000, 10000, 100000, 10, 100, 1000, 10000,
100000, 100, 1000, 10000, 100000, 100000] :
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termk := [2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,2,2,2,2,2,2, 2,2,
2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,
2,2,2,2,2,2,3,3,3,3,38,3,3,3,3,3,3,3,38, 3,3, 3, 3,
3,3,8,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3, 3,3, 3,3,
3,3,83,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4, 4, 4, 4, 4,
4, 4, 4, 4,4, 4,4,4,4,4,4,4,4,4,4,4,4,4, 4,4,4, 4,4,
5, 5, 5, 5,5, 5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,H5,
5’ 5’ 5’ 5’ 5’ 5’ 5’ 5’ 5’ 5’ 5’ 6’ 6’ 6’ 6’ 6’ 6’ 6’ 6’ 6’ 6’ 6’ 6’
6, 6, 6, 6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,1T7,
T, T, T, T, 7,7, 7,7, 7,7, 7,7,7,7,7,7,7,7,8,8,38,8,38,
8, 8, 8,8, 8,8,8, 8,8, 8]:

terml := [0.5, 5, 50, 500, 5000, 1.5, 15, 150, 1500, 15000, 2.5, 25,
250, 2500, 25000, 3.5, 35, 350, 3500, 35000, 4.5, 45, 450, 4500,

45000, 5.5, 55, 550, 5500, 55000, 6.5, 65, 650, 6500, 65000, 7.5, 75,
750, 7500, 75000, 8.5, 85, 850, 8500, 85000, 95, 950, 9500, 95000,
0.5, 5, 50, 500, 5000, 1.5, 15, 150, 1500, 15000, 2.5, 25, 250, 2500,
25000, 3.5, 35, 350, 3500, 35000, 4.5, 45, 450, 4500, 45000, 5.5, b5,
5560, 5500, 55000, 6.5, 65, 650, 6500, 65000, 7.5, 75, 750, 7500,
75000, 850, 8500, 85000, 950, 9500, 95000, 0.5, 5, 50, 500, 5000, 1.5,
15, 150, 1500, 15000, 2.5, 25, 250, 2500, 25000, 3.5, 35, 350, 3500,
35000, 4.5, 45, 450, 4500, 45000, 55, 550, 5500, 55000, 65, 650, 6500,
65000, 750, 7500, 75000, 850, 8500, 85000, 95000, 0.5, 5, 50, 500,
5000, 1.5, 15, 150, 1500, 15000, 2.5, 25, 250, 2500, 25000, 3.5, 35,
350, 3500, 35000, 4.5, 45, 450, 4500, 45000, 5.5, 550, 5500, 55000,
6500, 65000, 7500, 75000, 85000, 0.5, 5, 50, 500, 5000, 1.5, 15, 150,
1500, 15000, 2.5, 25, 250, 2500, 25000, 3.5, 35, 350, 3500, 35000,
4.5, 450, 4500, 45000, 5.5, 5500, 55000, 6.5, 6500, 65000, 75000, 0.5,
5, 50, 500, 1.5, 15, 150, 1500, 15000, 2.5, 25, 250, 2500, 25000, 3.5,
35, 350, 3500, 35000, 45000, 55000, 65000, 0.5, 5, 50, 500, 5000, 1.5,
15, 150, 1500, 15000, 25, 250, 2500, 25000, 35000]:
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term2:=[20.1498, 78.8501, 293.594, 1174.86, 3414.7, 33.4734, 140.104,
562.43, 2396.27, 7188.71, 43.0069, 185.736, 770.426, 3367.57, 10228.9,
50.9869, 224.737, 951.597, 4225.01, 12929.3, 58.05628, 259.759,
1116.34, 5011.51, 15416.3, 64.4962, 292.034, 1269.56, 5747.7, 17751,
70.4794, 322.254, 1414.07, 6445.53, 19969.1, 76.1037, 350.859,
15651.68, 7112.7, 22093.5, 81.4378, 378.147, 1683.61, 7754.53, 24140.5,
404.333, 1810.77, 8374.92, 26121.7, 90.6764, 353.747, 1331.21,
5485.75, 26348.1, 150.773, 628.303, 2555.59, 11331.7, 57708, 193.76,
832.814, 3507.57, 16049.6, 83741.7, 229.726, 1007.67, 4339.99,
20254.5, 107279, 261.562, 1164.78, 5099.33, 24139.8, 129234, 290.585,
1309.64, 5807.57, 27798.3, 150054, 317.529, 1445.36, 6477.22, 31283.9,
170001, 342.855, 1573.9, 7116.28, 34631.1, 189244, 7730.23, 37864,
207903, 8323.05, 41000, 226062, 372.51, 1488, 5351.97, 22045.2,
98359.4, 623.418, 2632.83, 10124.4, 44617.1, 211417, 801.803, 3475.76,
13782.2, 625682.5, 304394, 950.386, 4191.34, 16955.1, 78479.4, 388082,
1081.44, 4830.9, 19833.4, 93096.9, 465931, 5418.18, 22506.4, 106812,
539613, 5966.5, 25025.1, 119842, 610101, 27421.7, 132325, 678026,
29718.5, 144359, 743825, 807818, 1498.25, 6146.01, 21629.7, 83719.3,
373125, 2522.22, 10838.6, 40298.8, 165560, 779595, 3246.15, 14256.2,
54373.9, 229513, 1.10749e+06, 3846.66, 17137.4, 66465.7, 285523,
1.39956e+06, 4374.57, 19699.1, 77358.6, 336653, 1.66929e+06, 4853.1,
87419.5, 384360, 1.92318e+06, 429476, 2.16498e+06, 472535,
2.39713e+06, 2.62129e+06, 5996.3, 25107.2, 89380.6, 319948,
1.36569e+06, 10140.2, 44161.8, 164619, 619818, 2.7819e+06, 13057.3,
57920.7, 220578, 850090, 3.903e+06, 15469.3, 69456.7, 268261,
1.04975e+06, 4.89107e+06, 17584.3, 310960, 1.23071e+06, 5.7968e+06,
19497.4, 1.39861e+06, 6.64442e+06, 21261.4, 1.55666e+06, 7.4479e+06,
8.21622e+06, 23974, 101920, 368656, 1.29052e+06, 40679.4, 178907,
673242, 2.45967e+06, 9.9327e+06, 52401.5, 234137, 897440, 3.34435e+06,
1.37868e+07, 62071, 280249, 1.08728e+06, 4.10485e+06, 1.71514e+07,
2.02147e+07, 2.30665e+07, 2.5758e+07, 95841, 412169, 1.51073e+06,
5.32251e+06, 1.91032e+07, 163044, 722363, 2.74107e+06, 1.00227e+07,
3.74034e+07, 943781, 3.63947e+06, 1.35391e+07, 5.14446e+07,
6.36006e+07] :
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term3 := [3.32193, 6.64386, 9.96578, 13.2877, 16.6096, 3.32193,
6.64386, 9.96578, 13.2877, 16.6096, 3.32193, 6.64386, 9.96578,
13.2877, 16.6096, 3.32193, 6.64386, 9.96578, 13.2877, 16.6096,
3.32193, 6.64386, 9.96578, 13.2877, 16.6096, 3.32193, 6.64386,
9.96578, 13.2877, 16.6096, 3.32193, 6.64386, 9.96578, 13.2877,
16.6096, 3.32193, 6.64386, 9.96578, 13.2877, 16.6096, 3.32193,
6.64386, 9.96578, 13.2877, 16.6096, 6.64386, 9.96578, 13.2877,
16.6096, 3.32193, 6.64386, 9.96578, 13.2877, 16.6096, 3.32193,
6.64386, 9.96578, 13.2877, 16.6096, 3.32193, 6.64386, 9.96578,
13.2877, 16.6096, 3.32193, 6.64386, 9.96578, 13.2877, 16.6096,
3.32193, 6.64386, 9.96578, 13.2877, 16.6096, 3.32193, 6.64386,
9.96578, 13.2877, 16.6096, 3.32193, 6.64386, 9.96578, 13.2877,
16.6096, 3.32193, 6.64386, 9.96578, 13.2877, 16.6096, 9.96578,
13.2877, 16.6096, 9.96578, 13.2877, 16.6096, 3.32193, 6.64386,
9.96578, 13.2877, 16.6096, 3.32193, 6.64386, 9.96578, 13.2877,
16.6096, 3.32193, 6.64386, 9.96578, 13.2877, 16.6096, 3.32193,
6.64386, 9.96578, 13.2877, 16.6096, 3.32193, 6.64386, 9.96578,
13.2877, 16.6096, 6.64386, 9.96578, 13.2877, 16.6096, 6.64386,
9.96578, 13.2877, 16.6096, 9.96578, 13.2877, 16.6096, 9.96578,
13.2877, 16.6096, 16.6096, 3.32193, 6.64386, 9.96578, 13.2877,
16.6096, 3.32193, 6.64386, 9.96578, 13.2877, 16.6096, 3.32193,
6.64386, 9.96578, 13.2877, 16.6096, 3.32193, 6.64386, 9.96578,
13.2877, 16.6096, 3.32193, 6.64386, 9.96578, 13.2877, 16.6096,
3.32193, 9.96578, 13.2877, 16.6096, 13.2877, 16.6096, 13.2877,
16.6096, 16.6096, 3.32193, 6.64386, 9.96578, 13.2877, 16.6096,
3.32193, 6.64386, 9.96578, 13.2877, 16.6096, 3.32193, 6.64386,
9.96578, 13.2877, 16.6096, 3.32193, 6.64386, 9.96578, 13.2877,
16.6096, 3.32193, 9.96578, 13.2877, 16.6096, 3.32193, 13.2877,
16.6096, 3.32193, 13.2877, 16.6096, 16.6096, 3.32193, 6.64386,
9.96578, 13.2877, 3.32193, 6.64386, 9.96578, 13.2877, 16.6096,
3.32193, 6.64386, 9.96578, 13.2877, 16.6096, 3.32193, 6.64386,
9.96578, 13.2877, 16.6096, 16.6096, 16.6096, 16.6096, 3.32193,
6.64386, 9.96578, 13.2877, 16.6096, 3.32193, 6.64386, 9.96578,
13.2877, 16.6096, 6.64386, 9.96578, 13.2877, 16.6096, 16.6096]:

count := 237;

V VVVVVVVVVVVVVVVVVVVVVVVVVVVVYVYVYVYVYVYV

count := 237
> with(plots):

Warning, the name changecoords has been redefined

> with(stats):
> fitteq := fit [leastsquare[[tl, t2, t3, tt], tt = a*xtl + b*t2 + c*t3
> +d, {a, b, ¢, d}11([terml, term2, term3, termtl);

fitteq := tt = .04540639823 t1 + .00009165109674 t2 + 4.079024506 ¢t3 — 35.97801026
> fitt := unapply(rhs(fitteq), (t1l, t2, t3));

fitt .= (tl, t2, t3) —

04540639823 t1 + .00009165109674 t2 + 4.079024506 t3 — 35.97801026
termtfit := [seq(fitt(termi[i], term2[i], term3[il]),i =
1..count)]:
timeplot := pointplot3d({seq([termn[i], termk[il, termt[il],i =
1..count)}, orientation=[-60, 60], symbol=(B0X,10), axes=NORMAL,
scaling=UNCONSTRAINED, labels=["n", "k", "experimental time"],
color=BLACK): display(timeplot);
fitplott := pointplot3d({seq([termn[i], termk[i], termtfit[il],i =
1..count)}, orientation=[-60, 60], symbol=(CR0SS,20), axes=NORMAL,
scaling=UNCONSTRAINED, labels=["n", "k", "expected time"],
color=BLACK): display(fitplott);

display(timeplot, fitplott);

V VVVV VVVYVYVYV

107



V VVVVYVYVYV

expected time

vV V V V

compareplott := pointplot({seq([termt[i], fitt(term1[i], term2[i],
term3[i])],i = 1..count)}, symbol=(DIAMOND, 20), axes=NORMAL,
scaling=CONSTRAINED, labels=["experimental time", "expected time"],
color=BLACK):

lineplot := plot(x, x = 1..max(seq(termt[i], i = 1..count)),

thickness = 2, axes=NORMAL, scaling=CONSTRAINED, labels=["experimental
time", "expected time"], color=BLACK):

display(compareplott, lineplot);

7000
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2000

1000

0™ 100020003000400050006000
experimental time

pointplot({seq([termt[i], fitt(terml[i], term2[i], term3[i])],i =
1..count)}, symbol=(DIAMOND, 20), axes=NORMAL, scaling=CONSTRAINED,
labels=["experimental time", "expected time"], color=BLACK,
view=[-500..5000,-500..5000]);
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> comparelog := loglogplot([seq([termt[i], fitt(term1[i], term2[i],
> term3[i])],i = 1..count)], symbol=(DIAMOND, 20), axes=NORMAL,
> scaling=CONSTRAINED, labels=["experimental time", "expected time"],
> color=BLACK, style=POINT):
> 1linelog := loglogplot(x, x = 1..50000, thickness = 2, axes=NORMAL,
> scaling=CONSTRAINED, labels=["experimental time", "expected time"],
> color=BLACK) :
> display(comparelog, linelog);
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> residuals := termt - termtfit:
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with(linalg):

root_mean_square_error = (evalm(transpose(residuals) &*
residuals)/count)~0.5;

root_mean_square_error = 452.6666380

with(stats):
describe[linearcorrelation] (termt, termtfit);

19461393772
average_absolute_deviation := sum(abs(termt[i] - termtfit[i]),

i=1..count)/count;

average_absolute_deviation := 201.6421538

average_signed_deviation := sum((termt[i] - termtfit[i])/count,
i=1..count);

average_signed _deviation := .46 107
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Appendix D
v function (equation (2.3))

# include <iostream>
# include <vector>
# 2nclude <math.h>
using namespace std;

double gammmaKS( int k, int s)
{
//values are got from maple
if (k == 2) return -3.544907701811032;

if (k == 3)
{
double const g[] =
{
-4.018407802061622, -4.062353818279200
I
return gls - 1];
}
if (k == 4)
{
double const g[] =
{
-4.834146544295875, -3.544907701811032, -4.901666809860712
I
return gls - 11;
}
if (k == 5)
{
double const g[] =
{
-5.738554639998505, -3.696932572929480, -3.722980622032043, -5.821148568626515
s
return gls - 11;
}
if (k == 6)
{
double const g[] =
{
-6.679579202136281, -4.018407802061622, -3.544907701811032, -4.062353818279200,
-6.772722179448756
s
return gls - 1];
}
if (k ==T7)
{
double const g[] =
{
-7.639406763622460, -4.408761164863911, -3.618145521480401, -3.636689076772442,
-4.465974364227054, -7.740369506306969
s
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return gls - 11;

}
if (k == 8)
{
double const g[] =
{
-8.610218970054416, -4.834146544295875, -3.792697895066562, -3.544907701811032,
-3.8256383594908152, -4.901666809860712, -8.717218859383176
s
return gls - 11;
}
if (k == 9)
{
double const g[] =
{
-9.588024156621911, -5.279888014349222, -4.018407802061622, -3.587208340962461,
-3.601611266431462, -4.062353818279200, -5.355680341107928, -9.699829498201463
s
return gls - 1];
}
if (k == 10)
{
double const g[] =
{
-10.57056410963193, -5.738554639998505, -4.273669982410846, -3.696932572929480,
-3.544907701811032, -3.722980622032043, -4.326851108825193, -5.821148568626515,
-10.68628702119319
I
return gls - 1];
}
if (k == 15)
{
double const g[] =
{
-15.51960093424780, -8.123745140089901, -5.738554639998505, -4.618238335543039,
-4.018407802061622, -3.696932572929480, -3.558270690149276, -3.566900802267063,
-3.722980622032043, -4.062353818279200, -4.680905938427318, -5.821148568626515,
-8.227908487366704, -15.64749765297494
s
return gls - 1];
}
if (k == 20)
{
double const g[] =
{
-20.49482664342686, -10.57056410963193, -7.317968087117503, -5.738554639998505,
-4.834146544295875, -4.273669982410846, -3.917149195711212, -3.696932572929480,
-3.578429819277059, -3.544907701811032, -3.591387263852389, -3.722980622032043,
-3.956557434361457, -4.326851108825193, -4.901666809860712, -5.821148568626515,
-7.416558246323102, -10.68628702119319, -20.62906634258064
s
return gls - 1];
}
return 0;

double gamma( int k, vector<int> & sigma, vector<double> & valueS, vector<int> & numberS)
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int s = 0;
for ( int i = 0; i < sigma.size(); i ++) if (sigma[i] == 1) s ++;
numberS[s] ++;

double const terml = -s / (kxk * log(2.0));

gammmakKs (k, s);

double const term2
double term3 = 1.0;
double const ex = 1.0 - (double)s / k;
int prod = 1;

for (int 1 =1; 1 < k; 1 +4)

prod *= sigma[l];
term3 += prod * pow(2.0, -l*ex);
}
double result = terml * term2 * term3;
valueS[s] += result;
return result;

double averageGamma( int k)
{
vector<int> sigma(k, 2);
vector<int> ones(k, 1);
vector<double> valueS(k, 0.0);
vector<int> numberS(k, 0);
int count = 0;
double sum = 0.0;
while (1)
{
int i = 0;
while (-- sigmali] == 0) //loop for move carrier
{
sigmal[i] = 2;
1 ++;
}
if (sigma == ones) break;
double g = gamma(k, sigma, valueS, numberS);
sum += g;
count ++;
}

return sum / count;

void main()

{
for (int k = 10; k <= 10; k ++)
cout << "total average" << k << ": " << averageGamma(k) << endl << endl;
cout << 15 << ": " << averageGamma(15) << endl;
cout << 20 << ": " << averageGamma(20) << endl;
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Appendix E

Scripts and plots of experimental results.

GNUPLOT scripts and generated figures for expected time due to equation (5.5) and experimental
data (Tables 5.1 to 5.9 ).

nstablefig.gnu

autoscale
nologscale y
nologscale x
xlabel ’k’
ylabel ’time’

set
set
set
set
set

set terminal fig

set title ’Experimental time (n = 10)°

set output ’experimentnlO.fig’

plot ’experimentnlOWC1.txt’ using 1:3 title ’) of data in range = [0%, 10%]1’ with \
linespoints, ’experimentniOWC2.txt’ using 1:3 title ’} of data in range = [10%, 20%1°\
with linespoints, ’experimentnlOWC3.txt’ using 1:3 title ’J, of data in range = [20%,30%]’\
with linespoints, ’experimentni1OWC4.txt’ using 1:3 title ’J), of data in range = [30%,40%]’\
with linespoints, ’experimentni1OWC5.txt’ using 1:3 title ’J, of data in range = [40%,50%]’\
with linespoints, ’experimentnlOWC6.txt’ using 1:3 title ’J, of data in range = [50%,60%]’\
with linespoints, ’experimentnl1OWC7.txt’ using 1:3 title ’J), of data in range = [60%,70%]’\
with linespoints, ’experimentni1OWC8.txt’ using 1:3 title ’J), of data in range = [70%,80%]’\
with linespoints, ’experimentnlOWC9.txt’ using 1:3 title ’J, of data in range = [80%,90%]’\
with linespoints, ’experimentni1OWC10.txt’ using 1:3 title ’} of data in range=[90%,100%]1°\
with linespoints

set title ’Experimental time (n =

set output ’experimentnl00.fig’

100)°

plot ’experimentnlOWCl.txt’ using 1:3 title ’}), of data in range = [0%, 10%]’ with \
linespoints, ’experimentniOOWC2.txt’ using 1:3 title ’% of data in range = [10%, 20%]1’ \
with linespoints,’experimentniO0WC3.txt’ using 1:3 title ’J, of data in range = [20%,30%]’\
with linespoints,’experimentn1O0WC4.txt’ using 1:3 title ’J, of data in range = [30%,40%]’\
with linespoints,’experimentniO0WC5.txt’ using 1:3 title ’J, of data in range = [40%,50%]1’\
with linespoints,’experimentniO0WC6.txt’ using 1:3 title ’J), of data in range = [50%,60%]’\
with linespoints,’experimentnlO0WC7.txt’ using 1:3 title ’J, of data in range = [60%,70%]’\
with linespoints,’experimentniO0WC8.txt’ using 1:3 title ’J, of data in range = [70%,80%]’\
with linespoints,’experimentniO0WC9.txt’ using 1:3 title ’J, of data in range = [80%,90%]1’\
with linespoints,’experimentn1O0WC10.txt’ using 1:3 title ’}% of data in range=[90%,100%]1°’\
with linespoints

set title ’Experimental time (n = 1000)’

set output ’experimentnl000.fig’

plot ’experimentnlO00WC1.txt’ using 1:3 title ’} of data in range = [0%, 10%]’ with \
linespoints, ’experimentnl1O00WC2.txt’ using 1:3 title ’J, of data in range = [10%, 20%]1’ \
with linespoints,’experimentnl000WC3.txt’ using 1:3 title ’), of data in range=[20%, 30%]’\
with linespoints,’experimentn1000WC4.txt’ using 1:3 title ’}% of data in range=[30%, 40%]’\

with linespoints,’experimentn1000WC5.txt’ using 1:3 title ’}% of data in range=[40%, 50%]’\

114



with linespoints,’experimentni000WC6.txt’ using 1:3 title ’% of data in range=[50%, 60%]’\
with linespoints,’experimentni000WC7.txt’ using 1:3 title ’% of data in range=[60%, 70%4]’\
with linespoints,\

set title ’Experimental time (n = 10000)°’

set output ’experimentnl0000.fig’

plot ’experimentnl0000WC1.txt’ using 1:3 title ’J of data in range = [0%, 10%1’ with \
linespoints, ’experimentn10000WC2.txt’ using 1:3 title ’}% of data in range = [10%, 20%]’\
with linespoints,’experimentn10000WC3.txt’ using 1:3 title ’J), of data in range=[20%,30%]1°\
with linespoints,’experimentn10000WC4.txt’ using title ’} of data in range=[30%,40%]°\
with linespoints,’experimentn10000WC5.txt’ using title ’} of data in range=[40%,50%]°\
with linespoints,’experimentn10000WC6.txt’ using title ’J of data in range=[50%,60%]°\
with linespoints,’experimentn10000WC7.txt’ using title ’} of data in range=[60%,70%]°\
with linespoints,’experimentn10000WC8.txt’ using title ’} of data in range=[70%,80%]°\
with linespoints,’experimentn10000WC9.txt’ using title ’J of data in range=[80%,90%]°\
with linespoints,’experimentn10000WC10.txt’using title’), of data in range=[90%,100%]°\
with linespoints

=R R R R e e
W W wwwww

set title ’Experimental time (n = 100000)’

set output ’experimentnl100000.fig’

plot ’experimentnl100000WC1.txt’ using 1:3 title ’% of data in range = [0%, 10%]’ with \
linespoints,’experimentn100000WC2.txt’> using 1:3 title ’}% of data in range = [10%, 20%]1’°\
with linespoints,’experimentn100000WC3.txt’ using 1:3 title’) of data in range=[20%,30%41°\

with linespoints,’experimentn100000WC4.txt’ using 1:3 title’} of data in range=[30%,40%]1°\
with linespoints,’experimentn100000WC5.txt’> using 1:3 title’} of data in range=[40%,50%]1°\
with linespoints,’experimentn100000WC6.txt’> using 1:3 title’’) of data in range=[50%,60%]1°\
with linespoints,’experimentn100000WC7.txt’ using 1:3 title’) of data in range=[60%,70%]1°\
with linespoints,’experimentn100000WC8.txt’> using 1:3 title’} of data in range=[70%,80%]1°\
with linespoints,’experimentn100000WC9.txt’> using 1:3 title’’ of data in range=[80%,90%1°\
with linespoints,’experimentn100000WC10.txt’using 1:3 title’), of data in range=[90%,100%]”\

with linespoints

set title ’Expected time (n = 10)’

set output ’expectnlO.fig’

plot ’expectnlOWCl.txt’ using 1:3 title ’J, of data in range = [0%,10%]° with linespoints,\
’expectnlOWC2.txt’ using 1:3 title ’> [10%, 20%]’ with linespoints,\

’expectnlOWC3.txt’ using 1:3 title ’[20%, 30%]’ with linespoints, \
’expectnl1OWC4.txt’> using 1:3 title ’[30%, 40%]’ with linespoints,\
’expectnlOWC5.txt’> using 1:3 title ’[40%, 50%]’ with linespoints,\
’expectnlOWC6.txt’ using 1:3 title ’[50%, 60%]1’ with linespoints, \
’expectnlOWC7.txt’ using 1:3 title ’> [60%, 70%]’ with linespoints,\
’expectnlOWC8.txt’ using 1:3 title ’ [70%, 80%]’ with linespoints,\
’expectnlOWCY.txt’ using 1:3 title ’ [80%, 90%]’ with linespoints, \

’expectnlOWC10.txt’ using 1:3 title > [90%, 100%]’ with linespoints

set title ’Expected time (n = 100)’

set output ’expectnl00.fig’

plot ’expectnlOOWC1.txt’ using 1:3 title ’), of data in range=[0%, 10%]’ with linespoints,\
’expectnl1O0OWC2.txt’ using 1:3 title > [10%, 20%]° with linespoints,\
’expectnl1O0WC3.txt’ using title ’[20%, 30%]’ with linespoints, \
’expectnl1O0WC4.txt’ using title ’[30%, 40%]’ with linespoints,\
’expectnl1O0WC5.txt’ using title ’[40%, 50%]’ with linespoints,\
’expectnl1O0WC6.txt’ using title ’[50%, 60%]’ with linespoints, \
’expectnl1O0WC7.txt’ using title ’ [60%, 70%1° with linespoints,\
’expectnl1O0WC8.txt’ using title ’ [70%, 80%]’ with linespoints,\
’expectnl1O0WCI.txt’ using title ’ [80%, 90%]’ with linespoints, \

N
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’expectnl1O0WC10.txt’ using 1:3 title ’> [90%, 100%]’ with linespoints

set title ’Expected time (n = 1000)’
set output ’expectnl000.fig’
plot ’expectnl1O00WC1.txt’ using 1:3 title ’}) of data in range=[0%,10%]’ with linespoints,\
’expectnl1000WC2.txt’ using 1:3 title ’> [10%, 2041’ with linespoints,\
’expectnl1000WC3.txt’ using title ’[20%, 30%]1’ with linespoints, \
’expectnl1000WC4.txt’ using title ’[30%, 40%]° with linespoints,\
’expectnl1000WC5.txt’ using title ’[40%, 50%]1’ with linespoints,\
’expectnl1000WC6.txt’ using title ’[50%, 60%]’ with linespoints, \
’expectnl1000WC7.txt’ using title ’ [60%, 70%]’ with linespoints,\
’expectnl1000WC8.txt’ using title ’ [70%, 80%]1’ with linespoints,\
’expectnl1000WCI.txt’ using title ’ [80%, 90%]1’ with linespoints, \
’expectnl1000WC10.txt’ using 1 3 title ’ [90%, 100%]’ with linespoints

ol el el el el
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set title ’Expected time (n = 10000)’
set output ’expectnl0000.fig’
plot ’expectnlO000WC1.txt’ using 1:3 title’) of data in range=[0%,10%]’ with linespoints,\
’expectn10000WC2.txt’ using 1:3 title ’ [10%, 20%]’ with linespoints,\
’expectnl10000WC3.txt’ using title ’[20%, 30%]’ with linespoints, \
’expectnl10000WC4.txt’ using title ’[30%, 40%]’ with linespoints,\
’expectnl10000WC5.txt’ using title ’[40%, 50%]’ with linespoints,\
’expectnl10000WC6.txt’ using title ’[50%, 60%]’ with linespoints, \
’expectnl10000WC7.txt’ using title ’> [60%, 70%]1° with linespoints,\
’expectnl10000WC8.txt’ using title ’> [70%, 80%1° with linespoints,\
’expectnl10000WCI.txt’ using title ’ [80%, 90%]’ with linespoints, \
’expectn10000WC10.txt’ using 1 3 title ’ [90%, 100%]1’ with linespoints

oo ol el el el
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set title ’Expected time (n = 100000)’
set output ’expectnl00000.fig’
plot ’expectnl00000WC1.txt’using 1:3 title’) of data in range=[0%,10%]’ with linespoints,\
’expectnl100000WC2.txt’ using 1:3 title ° [10%, 20%]’ with linespoints,\
’expectn100000WC3.txt’ using title ’[20%, 30%]’ with linespoints, \
’expectn100000WC4.txt’ using title ’[30%, 40%]1’ with linespoints,\
’expectn100000WC5.txt’ using title ’[40%, 50%]° with linespoints,\
’expectn100000WC6.txt’ using title ’[50%, 60%]’ with linespoints, \
’expectn100000WC7.txt’ using title ’ [60%, 70%1° with linespoints,\
’expectn100000WC8.txt’ using title ’ [70%, 80%]’ with linespoints,\
’expectnl100000WCI.txt’ using title ’ [80%, 90%]’ with linespoints, \
’expectn100000WC10.txt’ using 1 3 title ’ [90%, 100%]1’ with linespoints

ol el el el
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set output
set terminal x11

kstablefig.gnu

set autoscale set nologscale y set nologscale x set xlabel
’n’ set ylabel ’time’

set terminal fig

set title ’} of data in range = [0}, 10%]’
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set output ’expsWCl.txt’ plot ’experimentK2WC1.txt’ using 2:3
title ’k=2 experimental time’ with linespoints, \
’expectK2WC1l.txt’ using 2:3 title ’k=2 expected time’ with
linespoints, \ ’experimentK3WCl.txt’ using 2:3 title ’k=3
experimental time’ with linespoints, \ ’expectK3WC1.txt’
using 2:3 title ’k=3 expected time’ with linespoints, \
’experimentK4WC1l.txt’ using 2:3 title ’k=4 experimental time’ with
linespoints, \ ’expectK4WC1l.txt’ using 2:3 title ’k=4
expected time’ with linespoints, \ ’experimentK5WC1.txt’
using 2:3 title ’k=5 experimental time’ with linespoints, \
’expectKbWC1.txt’ using 2:3 title ’k=5 expected time’ with
linespoints, \ ’experimentK6WCl.txt’ using 2:3 title ’k=6
experimental time’ with linespoints, \ ’expectK6WC1.txt’
using 2:3 title ’k=6 expected time’ with linespoints, \
’experimentK7WC1.txt’ using 2:3 title ’k=7 experimental time’ with
linespoints, \ ’expectK7WC1.txt’ using 2:3 title ’k=7
expected time’ with linespoints, \ ’experimentK8WC1.txt’
using 2:3 title ’k=8 experimental time’ with linespoints, \
’expectK8WC1.txt’ using 2:3 title ’k=8 expected time’ with
linespoints, \ ’experimentK9WC1l.txt’ using 2:3 title ’k=9
experimental time’ with linespoints, \ ’expectK9WCl.txt’
using 2:3 title k=9 expected time’ with linespoints

set title ’} of data in range = [10%, 20%]’

set output ’expsWC2.fig’ plot ’experimentK2WC2.txt’ using 2:3
title ’k=2 experimental time’ with linespoints, \
’expectK2WC2.txt’ using 2:3 title ’k=2 expected time’ with
linespoints, \ ’experimentK3WC2.txt’ using 2:3 title ’k=3
experimental time’ with linespoints, \ ’expectK3WC2.txt’
using 2:3 title ’k=3 expected time’ with linespoints, \
’experimentK4WC2.txt’ using 2:3 title ’k=4 experimental time’ with
linespoints, \ ’expectK4WC2.txt’ using 2:3 title ’k=4
expected time’ with linespoints, \ ’experimentK5WC2.txt’
using 2:3 title ’k=5 experimental time’ with linespoints, \
’expectKbWC2.txt’ using 2:3 title ’k=5 expected time’ with
linespoints, \ ’experimentK6WC2.txt’ using 2:3 title ’k=6
experimental time’ with linespoints, \ ’expectK6WC2.txt’
using 2:3 title ’k=6 expected time’ with linespoints,\
’experimentK7WC2.txt’ using 2:3 title ’k=7 experimental time’ with
linespoints, \ ’expectK7WC2.txt’ using 2:3 title ’k=7
expected time’ with linespoints, \ ’experimentK8WC2.txt’
using 2:3 title ’k=8 experimental time’ with linespoints, \
’expectK8WC2.txt’ using 2:3 title ’k=8 expected time’ with
linespoints, \ ’experimentK9WC2.txt’ using 2:3 title ’k=9
experimental time’ with linespoints, \ ’expectK9WC2.txt’
using 2:3 title ’k=9 expected time’ with linespoints

set title ’} of data in range = [20%, 30%]’

set output ’expsWC3.fig’ plot ’experimentK2WC3.txt’ using 2:3
title ’k=2 experimental time’ with linespoints, \
’expectK2WC3.txt’ using 2:3 title ’k=2 expected time’ with
linespoints, \ ’experimentK3WC3.txt’ using 2:3 title ’k=3
experimental time’ with linespoints, \ ’expectK3WC3.txt’

using 2:3 title ’k=3 expected time’ with linespoints, \
’experimentK4WC3.txt’ using 2:3 title ’k=4 experimental time’ with
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linespoints, \ ’expectK4WC3.txt’ using 2:3 title ’k=4
expected time’ with linespoints, \ ’experimentK5WC3.txt’
using 2:3 title ’k=5 experimental time’ with linespoints, \
’expectKbWC3.txt’ using 2:3 title ’k=5 expected time’ with
linespoints, \ ’experimentK6WC3.txt’ using 2:3 title ’k=6
experimental time’ with linespoints, \ ’expectK6WC3.txt’
using 2:3 title ’k=6 expected time’ with linespoints,\
’experimentK7WC3.txt’ using 2:3 title ’k=7 experimental time’ with
linespoints, \ ’expectK7WC3.txt’ using 2:3 title ’k=7
expected time’ with linespoints, \ ’experimentK8WC3.txt’
using 2:3 title ’k=8 experimental time’ with linespoints, \
’expectK8WC3.txt’ using 2:3 title ’k=8 expected time’ with
linespoints, \ ’experimentK9WC3.txt’ using 2:3 title ’k=9
experimental time’ with linespoints, \ ’expectK9WC3.txt’
using 2:3 title k=9 expected time’ with linespoints

set title ’) of data in range = [30%, 40%]1’

set output ’expsWC4.fig’ plot ’experimentK2WC4.txt’ using 2:3
title ’k=2 experimental time’ with linespoints, \
’expectK2WC4.txt’ using 2:3 title ’k=2 expected time’ with
linespoints, \ ’experimentK3WC4.txt’ using 2:3 title ’k=3
experimental time’ with linespoints, \ ’expectK3WC4.txt’
using 2:3 title ’k=3 expected time’ with linespoints, \
’experimentK4WC4.txt’ using 2:3 title ’k=4 experimental time’ with
linespoints, \ ’expectK4WC4.txt’ using 2:3 title ’k=4
expected time’ with linespoints, \ ’experimentK5WC4.txt’
using 2:3 title ’k=5 experimental time’ with linespoints, \
’expectKbWC4.txt’ using 2:3 title ’k=5 expected time’ with
linespoints, \ ’experimentK6WC4.txt’ using 2:3 title ’k=6
experimental time’ with linespoints, \ ’expectK6WC4.txt’
using 2:3 title ’k=6 expected time’ with linespoints,\
’experimentK7WC4.txt’ using 2:3 title ’k=7 experimental time’ with
linespoints, \ ’expectK7WC4.txt’ using 2:3 title ’k=7
expected time’ with linespoints, \ ’experimentK8WC4.txt’
using 2:3 title ’k=8 experimental time’ with linespoints, \
’expectK8WC4.txt’ using 2:3 title ’k=8 expected time’ with
linespoints, \ ’experimentK9WC4.txt’ using 2:3 title ’k=9
experimental time’ with linespoints

set output ’experimentWCl.fig’

set title ’Experimental time () of data in range = [0%,10%]1)’
plot ’experimentK2WC1.txt’ using 2:3 title ’k=2’ with linespoints,
\ ’experimentK3WC1.txt’ using 2:3 title ’k=3’ with
linespoints, \ ’experimentK4WCl.txt’ using 2:3 title ’k=4’
with linespoints, \ ’experimentKS5WC1.txt’ using 2:3 title
’k=5’ with linespoints, \ ’experimentK6WCl.txt’ using 2:3
title ’k=6’ with linespoints, \ ’experimentK7WCl.txt’ using
2:3 title ’k=7’ with linespoints, \ ’experimentK8WC1.txt’
using 2:3 title ’k=8’ with linespoints, \
’experimentK9WC1.txt’ using 2:3 title ’k=9’ with linespoints,
\ ’experimentK10WC1.txt’ using 2:3 title ’k=10’ with
linespoints

set output ’experimentWC2.fig’

set title ’Experimental time (% of data in range = [10%,20%])°
plot ’experimentK2WC2.txt’ using 2:3 title ’k=2’ with linespoints,
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\ ’experimentK3WC2.txt’ using 2:3 title ’k=3’ with
linespoints, \ ’experimentK4WC2.txt’ using 2:3 title ’k=4’
with linespoints, \ ’experimentK5WC2.txt’ using 2:3 title
k=5’ with linespoints, \ ’experimentK6WC2.txt’ using 2:3
title ’k=6’ with linespoints, \ ’experimentK7WC2.txt’ using
2:3 title ’k=7’ with linespoints, \ ’experimentK8WC2.txt’
using 2:3 title ’k=8’ with linespoints, \
’experimentK9WC2.txt’ using 2:3 title ’k=9’ with linespoints,
\ ’experimentK10WC2.txt’ using 2:3 title ’k=10’ with
linespoints

set output ’experimentWC3.fig’

set title ’Experimental time (% of data in range = [20%,30%1)’
plot ’experimentK2WC3.txt’ using 2:3 title ’k=2’ with linespoints,
\ ’experimentK3WC3.txt’ using 2:3 title ’k=3’ with
linespoints, \ ’experimentK4WC3.txt’ using 2:3 title ’k=4’
with linespoints, \ ’experimentK5WC3.txt’ using 2:3 title
k=5’ with linespoints, \ ’experimentK6WC3.txt’ using 2:3
title ’k=6’ with linespoints, \ ’experimentK7WC3.txt’ using
2:3 title ’k=7’ with linespoints, \ ’experimentK8WC3.txt’
using 2:3 title ’k=8’ with linespoints, \
’experimentK9WC3.txt’ using 2:3 title ’k=9’ with linespoints

set output ’experimentWC4.fig’

set title ’Experimental time (% of data in range = [30%,40%1)’
plot ’experimentK2WC4.txt’ using 2:3 title ’k=2’ with linespoints,
\ ’experimentK3WC4.txt’ using 2:3 title ’k=3’ with

linespoints, \ ’experimentK4WC4.txt’ using 2:3 title ’k=4’

with linespoints, \ ’experimentK5WC4.txt’ using 2:3 title

k=5’ with linespoints, \ ’experimentK6WC4.txt’ using 2:3

title ’k=6’ with linespoints, \ ’experimentK7WC4.txt’ using

2:3 title ’k=7’ with linespoints

set output ’experimentWC5.fig’

set title ’Experimental time (% of data in range = [40%,50%])°
plot ’experimentK2WC5.txt’ using 2:3 title ’k=2’ with linespoints,
\ ’experimentK3WC5.txt’ using 2:3 title ’k=3’ with

linespoints, \ ’experimentK4WC5.txt’ using 2:3 title ’k=4’

with linespoints, \ ’experimentK5WC5.txt’ using 2:3 title

’k=5’ with linespoints, \ ’experimentK6WC5.txt’ using 2:3

title ’k=6’ with linespoints, \ ’experimentK7WC5.txt’ using

2:3 title ’k=7’ with linespoints

set output ’experimentWC6.fig’

set title ’Experimental time (% of data in range = [50%,60%1)’
plot ’experimentK2WC6.txt’ using 2:3 title ’k=2’ with linespoints,
\ ’experimentK3WC6.txt’ using 2:3 title ’k=3’ with

linespoints, \ ’experimentK4WC6.txt’ using 2:3 title ’k=4’

with linespoints, \ ’experimentK5WC6.txt’ using 2:3 title

’k=5’ with linespoints, \ ’experimentK6WC6.txt’ using 2:3

title ’k=6’ with linespoints, \ ’experimentK7WC6.txt’ using

2:3 title ’k=7’ with linespoints

set output ’experimentWC7.fig’

set title ’Experimental time (% of data in range = [60%,70%])’
plot ’experimentK2WC7.txt’ using 2:3 title ’k=2’ with linespoints,
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\ ’experimentK3WC7.txt’ using 2:3 title ’k=3’ with
linespoints, \ ’experimentK4WC7.txt’ using 2:3 title ’k=4’
with linespoints, \ ’experimentK5WC7.txt’ using 2:3 title
’k=5’ with linespoints, \ ’experimentK6WC7.txt’ using 2:3
title ’k=6’ with linespoints, \ ’experimentK7WC7.txt’ using
2:3 title ’k=7’ with linespoints

set output ’experimentWC8.fig’

set title ’Experimental time (% of data in range = [70%,80%])°
plot ’experimentK2WC8.txt’ using 2:3 title ’k=2’ with linespoints,
\ ’experimentK3WC8.txt’ using 2:3 title ’k=3’ with

linespoints, \ ’experimentK4WC8.txt’ using 2:3 title ’k=4’

with linespoints, \ ’experimentK5WC8.txt’ using 2:3 title

’k=5’ with linespoints, \ ’experimentK6WC8.txt’ using 2:3

title ’k=6’ with linespoints

set output ’experimentWC9.fig’

set title ’Experimental time (% of data in range = [80%,90%])°
plot ’experimentK2WCO.txt’ using 2:3 title ’k=2’ with linespoints,
\ ’experimentK3WC9.txt’ using 2:3 title ’k=3’ with

linespoints, \ ’experimentK4WC9.txt’ using 2:3 title ’k=4’

with linespoints, \ ’experimentK5WC9.txt’ using 2:3 title

k=5’ with linespoints, \ ’experimentK6WC9.txt’ using 2:3

title ’k=6’ with linespoints

set output ’experimentWC10.fig’

set title ’Experimental time (% of data in range = [90%,10%])°
plot ’experimentK2WC10.txt’ using 2:3 title ’k=2’ with
linespoints, \ ’experimentK3WC10.txt’ using 2:3 title ’k=3’
with linespoints

#claim all the negtive values (noise) to be 0
#for displaying in log scale, change value from O to 0.1

set output ’expectWCl.fig’

set title ’Expected time (% of data in range = [0%,10%]1)’
plot ’expectK2WC1l.txt’ using 2:3 title ’k=2’ with linespoints,
\ ’expectK3WCl.txt’ using 2:3 title ’k=3’ with linespoints,
\ ’expectK4WCl.txt’ using title ’k=4’ with linespoints,
\ ’expectK5WC1.txt’ using title ’k=5’ with linespoints,
\ ’expectK6WCl.txt’ using title ’k=6’ with linespoints,
\ ’expectK7WCl.txt’ using title ’k=7’ with linespoints,
\ ’expectK8WC1.txt’ using title ’k=8’ with linespoints,
\ ’expectK9WC1l.txt’ using title ’k=9’ with linespoints,
\ ’expectK10WC1l.txt’ using 2 3 title ’k=10’ with
linespoints
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set output ’expectWC2.fig’

set title ’Expected time () of data in range = [10%,20%]1)’
plot ’expectK2WC2.txt’ using 2:3 title ’k=2’ with linespoints,
\ ’expectK3WC2.txt’ using 2:3 title ’k=3’ with linespoints,
’expectK4WC2.txt’ using title ’k=4’ with linespoints,
’expectKbWC2.txt’ using title ’k=b5’ with linespoints,
’expectK6WC2.txt’ using title ’k=6’ with linespoints,
’expectK7WC2.txt’ using title ’k=7’ with linespoints,
’expectK8WC2.txt’ using title ’k=8’ with linespoints,
’expectK9WC2.txt’ using title ’k=9’ with linespoints,
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\ ’expectK10WC2.txt’ using 2:3 title ’k=10’ with
linespoints

set output ’expectWC3.fig’

set title ’Expected time () of data in range = [20%,30%]1)’
plot ’expectK2WC3.txt’ using 2:3 title ’k=2’ with linespoints,
\ ’expectK3WC3.txt’ using 2:3 title ’k=3’ with linespoints,
’expectK4WC3.txt’ using title ’k=4’ with linespoints,
’expectKbWC3.txt’ using title ’k=b5’ with linespoints,
’expectK6WC3.txt’ using title ’k=6’ with linespoints,
’expectK7WC3.txt’ using title ’k=7’ with linespoints,
’expectK8WC3.txt’ using title ’k=8’ with linespoints,
’expectK9WC3.txt’ using title ’k=9’ with linespoints
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set output ’expectWC4.fig’

set title ’Expected time () of data in range = [30%,40%]1)’
plot ’expectK2WC4.txt’ using 2:3 title ’k=2’ with linespoints,
\ ’expectK3WC4.txt’ using 2:3 title ’k=3’ with linespoints,
’expectK4WC4.txt’ using title ’k=4’ with linespoints,
’expectKbWC4.txt’ using title ’k=5’ with linespoints,
’expectK6WC4.txt’ using title ’k=6’ with linespoints,
’expectK7WC4.txt’ using title ’k=7’ with linespoints,
’expectK8WC4.txt’ using title ’k=8’ with linespoints
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set output ’expectWC5.fig’
set title ’Expected time () of data in range = [40%,50%1)°
plot ’expectK2WC5.txt’ using 2:3 title ’k=2’ with linespoints,

\ ’expectK3WC5.txt’ using 2:3 title ’k=3’ with linespoints,
\ ’expectK4WC5.txt’ using 2:3 title ’k=4’ with linespoints,
\ ’expectK5WC5.txt’ using 2:3 title ’k=5’ with linespoints,
\ ’expectK6WC5.txt’ using 2:3 title ’k=6’ with linespoints,
\ ’expectK7WC5.txt’ using 2:3 title ’k=7’ with linespoints,
\ ’expectK8WC5.txt’ using 2:3 title ’k=8’ with linespoints

set output ’expectWC6.fig’

set title ’Expected time () of data in range = [50%,60%]1)°
plot ’expectK2WC6.txt’ using 2:3 title ’k=2’ with linespoints,
\ ’expectK3WC6.txt’ using 2:3 title ’k=3’ with linespoints,

\ ’expectK4WC6.txt’ using 2:3 title ’k=4’ with linespoints,
’expectKbWC6.txt’ using 2:3 title ’k=5’ with linespoints,
’expectK6WC6.txt’ using 2:3 title ’k=6’ with linespoints,
’expectK7WC6.txt’ using 2:3 title ’k=7’ with linespoints

~

set output ’expectWC7.fig’

set title ’Expected time () of data in range = [60%,70%4]1)’
plot ’expectK2WC7.txt’ using 2:3 title ’k=2’ with linespoints,
\ ’expectK3WC7.txt’ using 2:3 title ’k=3’ with linespoints,

\ ’expectK4WC7.txt’ using 2:3 title ’k=4’ with linespoints,
’expectKbWC7.txt’ using 2:3 title ’k=5’ with linespoints,
’expectK6WC7.txt’ using 2:3 title ’k=6’ with linespoints,
’expectK7WC7.txt’ using 2:3 title ’k=7’ with linespoints

~

set output ’expectWC8.fig’

set title ’Expected time () of data in range = [70%,80%]1)’
plot ’expectK2WC8.txt’ using 2:3 title ’k=2’ with linespoints,
\ ’expectK3WC8.txt’ using 2:3 title ’k=3’ with linespoints,
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\ ’expectK4WC8.txt’ using 2:3 title ’k=4’ with linespoints,
\ ’expectK5WC8.txt’ using 2:3 title ’k=5’ with linespoints,
\ ’expectK6WC8.txt’ using 2:3 title ’k=6’ with linespoints

set output ’expectWC9.fig’

set title ’Expected time (% of data in range = [80%,90%])°
plot ’expectK2WC9.txt’ using 2:3 title ’k=2’ with linespoints,
\ ’expectK3WC9.txt’ using 2:3 title ’k=3’ with linespoints,

\ ’expectK4WC9.txt’ using 2:3 title ’k=4’ with linespoints,

\ ’expectK5WC9.txt’ using 2:3 title ’k=5’ with linespoints

set output ’expectWC10.fig’

set title ’Expected time () of data in range = [90%,100%]1)’
plot ’expectK2WC10.txt’ using 2:3 title ’k=2’ with linespoints,
\ ’expectK3WC10.txt’ using 2:3 title ’k=3’ with

linespoints, \ ’expectK4WC10.txt’ using 2:3 title ’k=4’

with linespoints

set output set terminal x11
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