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ABSTRACT
The work starts with a general idea of how to realize a dy-
namic programming algorithm as a reversible circuit. This
realization is not tied to a specific reversible design model
and technology or a class of dynamic algorithms, it shows
an approach for such synthesis. As an illustration of this
approach, a class of all symmetric functions is realized in
a dynamic programming algorithm manner as a reversible
circuit of Toffoli elements. The garbage, quantum and re-
versible costs of the presented implementation are calculated
and compared to the costs of previously described reversible
synthesis methods. The summary of results of this com-
parison is as follows. The quantum cost of the proposed
method is better than the quantum cost of any other known
systematic approach. The garbage is usually lower (except
for comparison with the synthesis methods, primary goal of
which is synthesis with theoretically minimal garbage). For
the large functions reversible cost is better or has the same
asymptotic that of other methods. Although the reversible
cost comparison may not look beneficial for the small func-
tions, the possible technological implementation (quantum)
shows that it is beneficial to use the presented approach even
for the small functions.

1. INTRODUCTION
General recursion and dynamic programming algorithms

[4] form a very important class of algorithms. Many of the
real-world problems can be solved by dynamic programming
algorithms: evaluating symmetric function, algorithms on
strings, most of the approximation methods. The complete
list is very large.
Reversible logic implementations are known to dissipate

zero heat due to the information loss [10, 3], therefore help-
ing to solve at least the following two problems: overheating,
power saving (longer life for batteries). The reversible logic
solution may be especially important in low-voltage designs
of mobile systems, where both power saving and overheating
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are very important due to the light weight and independent
battery. The reversible logic design differs significantly from
the conventional logic design. In addition to the reversibility
of gates, no fan-outs and no feed-backs [15] restrictions are
applied. This leaves us with the cascade as the only possible
structure.

2. GENERAL DYNAMIC PROGRAMMING
SOLUTION

By the definition, a reversible gate (function) is such
a gate that the input-to-output mapping performed by the
gate is bijective. That is, the inverse always exists. Re-
versible synthesis is a synthesis procedure which uses the
reversible gates only (with no fan-outs and no feed-backs
restrictions that are commonly used). A good characteristic
of how good the reversible synthesis method is, is the cost
of the circuit synthesized. Reversible synthesis costs differ
from the costs of the non-reversible implementations. Re-
versible synthesis cost is not simply a number of gates used,
it is essentially different. The cost of a reversible implemen-
tation consists of the two values: the number of gates used,
and the number of non-useful outputs, called garbage. The
need in garbage as a special parameter can be illustrated on
the following example. If one wants to compute a Boolean
product, xy, a gate (circuit) with two inputs and one output
cannot be used — the output only is not sufficient to build
the inverse of the function and uncover information on what
the inputs were. It also happens that 2-input 2-output cir-
cuits cannot compute this function. Only a 3-input 3-output
circuit can [19]. But, such a circuit produces two outputs
that are not needed, thus, having the garbage value of 2.
The garbage itself is an important consideration, since for
some technologies a high price is paid for the large number
of inputs and outputs. For instance, quantum computers of
maximal size of 7 only were reported [1].
The main idea of a dynamic programming algorithm is

decomposing the problem f into a set of other problems,
where the answer for f can be found in terms of a “simple”
operation from the answers of subproblems. When the dy-
namic algorithm is completely specified, a set of operations
needed to make a step of calculation, and a set of subfunc-
tions needed for the computation is defined. Further, to
build a reversible circuit we will realize each of the algo-
rithm operations as a reversible cascade. But first, we need
to find the garbage cost of the implementation.
Given a problem (function) f with Boolean inputs (x1, x2, ..., xn)

and a dynamic algorithm, that terminates after S steps of



calculation first calculate the two numbers:

• M = maxs=1..S(ms), wherems is the number of Boolean
values (intermediate storage) needed in addition to the
input values in order to complete the calculation start-
ing at step s. That is, M represents maximum num-
ber of subfunction values which are needed in order to
complete the algorithm calculation starting from step
s. For simplicity assume that on each step of the al-
gorithm only one subfunction value is updated.

• Given a reversible design model and the set of all op-
erations the dynamic algorithm performs at one step,
find the number G = maxs=1..S(gs), where gs is the
minimal amount of garbage needed for the reversible
implementation of the s-th step of the algorithm in
terms of the considered model.

When the two numbers are determined, the circuit is con-
structed as follows:

• Create the set of input constants sizeM+G and assign
values zero to all of them. FirstM will be used to store
intermediate results of the calculation and the answer
itself, and G are needed for the calculation.

• Use the reversible design model to create a circuit for
each of the S steps of the specified dynamic program-
ming algorithm. The circuit changes one subfunction
value at a time.

When the circuit is built, the outputs which contain the
answer are specified by the dynamic algorithm.
The amount of the resulting reversible design garbage, as

well as the final cost of the network will depend on the design
of the dynamic programming algorithm and strength of the
reversible design model.
Note, that a benefit of using this method comes from the

following consideration. If a multiple output function to be
realized has outputs for which the dynamic programming al-
gorithm is known and those for which the dynamic program-
ming algorithm is not known, the dynamic programming re-
alizable outputs can be built first by the suggested method.
The resulting circuit passes the input values through un-
changed. Therefore, the remaining outputs can be built by
any other procedure without any special preprocessing.

3. APPLICATION: MULTIPLE OUTPUT SYM-
METRIC FUNCTIONS

To run the application we need: reversible logic gates
(design model), synthesis model, and the dynamic program-
ming algorithm. Define the model by taking the most popu-
lar in reversible logic theory gates. TOF (x1) = x̄1 is a NOT
gate. TOF (x1;x2) = (x1, x1⊕x2) has been termed Feynman
[6] or controlled-NOT gate (CNOT). TOF (x1, x2;x3) =
(x1, x2, x3 ⊕ x1x2) is usually referred as a Toffoli gate [19].
These gates are depicted in Figure 1. The set of these gates
was shown to be complete. This is a minimal complete set of
gates in the sense that excluding either one from this set will
result in incompleteness if no garbage addition is allowed.
We do not choose any specific design procedure as it will
be showed that the implementation of a single step of the
dynamic programming algorithm is very simple.
To design a dynamic programming algorithm we need sev-

eral definitions.
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Figure 1: (a) TOF (x1), (b) TOF (x1;x2) and (c)
TOF (x1, x2;x3) Toffoli Gates.

Definition 1. Multiple output symmetric Boolean

function
−→
F (x1, x2, ..., xn) = (y1, y2, ..., ym) is such a func-

tion that
−→
F (x1, x2, ..., xn) =

−→
F (π(x1, x2, ..., xn)), where π is

a permutation of n elements.

Definition 2. The σ-function σk
n(x1, x2, ..., xn) is de-

fined as
⊕

{i1<i2<...<ik}
xi1xi2 ...xik

for k = 0, 1, ..., n.

Lemma 1. Every symmetric function can be written as a
linear combination (with respect to operation EXOR) of not
more than (n+ 1) σ-functions.

Proof. There are (n + 1) different σ-functions, all are
linearly independent. In fact, their kernels (set of inputs for
each the function is not equal zero) do not intersect, thus dif-
ferent linear combinations produce different functions. All
σ-functions are symmetric, so are their linear combinations.
The number of symmetric functions of n variables is 2n+1,
therefore the different linear combinations of σ-functions
form the set of all symmetric functions and each symmetric
function has unique linear form made of σ-functions.

Lemma 2. σk
n(x1, x2, ..., xn) = xnσ

k−1
n−1(x1, x2, ..., xn−1)⊕

σk
n−1(x1, x2, ..., xn−1) for k ≥ 2.

Proof. Observe that the first part of the right hand side
has all the terms of degree k which include variable xn as a
multiple when the second part has all the terms of degree k
which do not include the variable xn. Thus, right hand side
has all the terms of degree k, which, by definition, forms the
left hand side.

Note, that the statement of the Lemma 2 holds for k = 1.
The result for k = 1 will be used to calculate σ1

n(x1, x2, ..., xn).
Use Lemma 2 to form the dynamic programming algorithm
for calculating a symmetric function by saying that in order
to build a multiple output symmetric function, first build the
set of σ-functions recursively and then construct the output
vector as a linear combination of the outputs of dynamic
programming algorithm. Formally the algorithm works as
follows:

1. create Boolean array sigma[1..n]=0;

2. for i=1 to n

3. for k=i down to 1

4. if k>1 sigma[k]

= (sigma[k] + x[i]*sigma[k-1]) mod 2;

5. if k=1 sigma[k] = (sigma[k] + x[i]) mod 2;

6. end for;

7. end for.

Define the two numbers needed for calculation and build
the circuit:



• In order to calculate σa
b (x1, x2, ..., xb) we need

σa−1
b−1 (x1, x2, ..., xb−1) and σa

b−1(x1, x2, ..., xn), and in
order to continue and complete the calculations we will
need σa−1

b−1 (x1, x2, ..., xb−1), σa−2
b−1 (x1, x2, ..., xb−1), ...,

σ1
b−1(x1, x2, ..., xb−1). If a = 1 use the formula

σ1
b (x1, x2, ..., xb) = σ1

b−1(x1, x2, ..., xb−1)⊕ xb. For a =
0 do not create anything, since addition of a unit can
be done in-place when the outputs are created by a sin-
gle NOT gate. Therefore, M = maxb=1,2,...,n(b) = n.

• For the intermediate calculations no garbage is needed,
G=0. To calculate function σ1

b (x1, x2, ..., xb) use the
gate TOF (xb;σ

1
b−1(x1, x2, ..., xb−1)), string 4. of the

pseudo code. Function σ1
b−1(x1, x2, ..., xb−1) will not

be used in further calculations, therefore we can over-
write it. To calculate σa

b (x1, x2, ..., xb) use the gate
TOF (xb, σ

a
b−1(x1, x2, ..., xn); σa−1

b−1 (x1, x2, ..., xb−1)),
string 5. of the pseudo code. Again, function
σa−1

b−1 (x1, x2, ..., xb−1) will not be used in further cal-
culations, so we can overwrite it.

When the dynamic programming part creates the set of out-
puts σk

n(x1, x2, ..., xn) for k = 1, 2, .., n, construct the output
by including the needed σ-functions. Depending on what the
function is, we may or may not need to create the additional
garbage outputs. A greedy method may create m additional
zero constants for the outputs. In practice, a better solu-
tion is usually possible. The described synthesis algorithm
allows to formulate the following result.

Theorem 1. Every symmetric multiple output function
−→
F (x1, x2, ..., xn) = (y1, y2, ..., ym) can be realized with the
cost of:

• at most m NOT gates, at most n+mn CNOT gates,

and n(n−1)
2

Toffoli gates;

• garbage of at most 2n bits.

Less garbage can be achieved if we notice that there is no
need to create a special constant line for σ1

b (x1, x2, ..., xb),
which can be stored on the input line xb. This allows to de-
crease both garbage and reversible implementation costs by
1. Other garbage and cost saving comes from the observa-
tion that if all the outputs can be composed of first k+1 (2 ≤
k ≤ n) σ-functions σ0

n(x1, x2, ..., xn), σ
1
n(x1, x2, ..., xn), ...,

σk
n(x1, x2, ..., xn), we do not need to run the dynamic pro-

gramming algorithm to create the remaining (n − k) σ-
functions. These two observations allow to formulate the
following result:

Theorem 2. Every symmetric multiple output function
−→
F (x1, x2, ..., xn) = (y1, y2, ..., ym), where linear σ-function
decomposition requires a function of maximal degree k (2 ≤
k ≤ n) can be realized with the cost of:

• at most m NOT gates, at most n + mn − 1 CNOT

gates, and (2n−k)(k−1)
2

Toffoli gates;

• garbage of at most n+ k − 1 bits.

Another benefit of using this method comes from the fol-
lowing consideration. If a multiple output function to be
realized has both symmetric and non symmetric outputs,
the symmetric outputs can be realized first by the suggested
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Figure 2: Circuit for rd53

method. Then, the set of gates TOF (xn−1;xn)
TOF (xn−2;xn−1) ... TOF (x2;x1) is applied to the end of
the cascade, which creates the whole set of unchanged in-
puts {x1, x2, ..., xn} on the first n output lines of the cascade.
Therefore, the remaining outputs can be built by any other
procedure. Such an operation adds (n− 1) gates to the cas-
cade. If for the target technology the cost of a single garbage
bit is less than the cost of (n−2) CNOT gates, the very first
approach when a special line is created for σ1(x1, x2, ..., xn)
can be used.

Example 1. Take a multiple output function rd53, which
is the 5-input 3-output symmetric function whose output is
the binary representation of the number of ones in its input.
First, find its σ-representation (σ4, σ2, σ1). Notice, that σ5-
function must not be built. Build the dynamic programming
part. Observe, that the gates which affect a garbage bit whose
changed value is not used by the design afterwards (the gate
colored gray in Fig 2) can be deleted from the circuit without
changing the output of the target function. The resulting
circuit will contain 12 gates only.

In all of our further designs, if a gate affects a garbage
bit whose changed value is not used by the circuit to affect
output bits afterwards, it is deleted from the design. This
trivial procedure brings some simplification in almost every
case.
The reversible Toffoli, CNOT and NOT gates can be im-

plemented in quantum technology with the costs 5, 1 and 1
respectively. Note, that the quantum cost of the grey parts
in the circuit is 4 [18], an implementation which was known
to Peres [16, 7], and it is one smaller than the quantum cost
of a single Toffoli gate (5). This gate was not considered as
a separate in the literature, although it is clearly beneficial
to do so.
This observations allow us to create the formula for quan-

tum complexity of the method. It can be easily shown
that the quantum complexity of a symmetric multiple out-

put function
−→
F (x1, x2, ..., xn) = (y1, y2, ..., ym) requiring σ-

functions of maximal order k is at most

m+ n+mn− 1 +
5(2n− k)(k − 1)

2
− 2(n− 1) =

mn+m− n+ 1 +
5(2n− k)(k − 1)

2
.



4. COMPARISON OF THE RESULTS
There were several design methods proposed in the liter-

ature for the reversible design of multiple output Boolean
functions. We would like to compare our results to the
results of RPGA method by Perkowski et al. [17] (the
method designed to synthesize the symmetric functions with
reversible gates), reversible wave cascades [14], Khan gate
family synthesis [9, 8], generalized Toffoli gates family [12,
5] and design of the Toffoli circuits using the templates [13].
The comparison consists essentially of the three parts: com-
parison of the garbage, number of gates in the reversible
cascade and comparison of the quantum costs.
Unfortunately, [17] do not provide a table of results, which

makes it hard to make the precise comparison. The asymp-
totic reversible cost (number of gates) of the both realiza-
tions are the same, namely O(n2). But, the RPGA method

has excessive garbage, n(n+1)
2

(calculated in [12]), when the
presented method has the garbage of maximum (2n − 1).
A good quantum realization of the Kerntopf gates used in
[17] was never found, therefore we claim that from the point
of view of quantum cost our method will produce quantum
circuits which will be constant (> 1) times cheaper. Com-
parison to the reversible wave cascades [14] (RWC columns),
Khan gate family synthesis [9] (KGF columns) and gener-
alized Toffoli gates family [12, 5] (GT columns) reversible
synthesis results is summarized in Table 1. Actual circuits
for the presented design can be found in [11].
The presented comparison is not quite fair. From one side,

the mentioned methods are the general synthesis methods,
which do not use special properties of functions such as abil-
ity to be calculated as a dynamic programming algorithm.
From the other side, the cardinality of the set of gates of the
mentioned methods is greater on the order than the number
of gates used by the presented method.
From the table it can be seen that our method starts pro-

ducing better results for larger functions both from the point
of view of the reversible cost and garbage. The presented
method can never beat the generalized Toffoli gates fam-
ily synthesis method in terms of garbage, since the last has
theoretically minimal garbage. But, the GT method scales
badly, it can produce the circuits for reversible functions
with no more than 10 inputs. The RWC and KGF are syn-
thesized heuristically and they also scale much worse than
the presented method.
Quantum cost comparison can be done accurately but in

this paper we just mention that the quantum cost of RWC
is at least n times reversible design cost, quantum cost of
KGF implementation is at least 2n times higher than its
reversible cost and quantum cost of GT is at least n times
higher than its reversible cost, where n is the number of
inputs of a function. The quantum cost for our model is
given in previous section, and it cannot exceed 5 times the
reversible cost. Clearly, the quantum cost of the presented
approach is much better.
To illustrate how good the quantum cost is, compare the

results to the ones presented in [13]. [13] gives an exam-
ple of a circuit for rd53 function which has a cost of 12
gates, which seem to be the best among all known in re-
versible logic synthesis. The generalized Toffoli gates used
in [13] are expensive (but no more expensive than the gates
in RWC, KGF and GT) and the quantum complexity cal-
culation based on results of [2] gives the quantum cost of
132 for that realization. Although the realization of rd53

presented in this paper has 18 gates in the reversible model,
its quantum cost is only 36. Relation of the quantum costs
11:3 clearly shows the benefits of using the dynamic algo-
rithm reversible synthesis method even for small functions.
Since our method produces better results for larger func-
tions, the quantum cost comparison for them will be even
more beneficial.
Another interesting comparison can be made using 2of5

function. GT realization claims 7 gates only in comparison
to 12 in the presented paper. However, the quantum cost
of GT realization is 158 in comparison to 32 for our circuit
with 12 gates.

5. CONCLUSION
In this paper we presented a general approach to the syn-

thesis of reversible circuits for the dynamic programming
problems. As an illustration of its efficiency we applied it to
the set of all multiple output symmetric functions and ana-
lyzed the three cost factors: reversible model cost, garbage
cost and quantum cost. We showed that almost in every pos-
sible comparison our method produces better results (except
for garbage comparison with [12] and [13]). The garbage in
the presented method is close to the theoretical minimum.
The quantum cost of the circuits produced by our algorithm
is always significantly better. Finally, due to the small size
of the gates used (maximum 3 inputs and 3 outputs), the
levels of the network can be compressed which will result in
a further simplification. On contrary, it is unlikely that level
compression operation will give good results for the models
that use large gates.
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