
k-d Range Search with Binary Patricia Tries

by

Qingxiu Shi and Bradford G.Nickerson

TR04-168, January 24, 2005

Faculty of Computer Science

University of New Brunswick

Fredericton, N.B. E3B 5A3

Canada

Phone: (506) 453-4566

Fax: (506) 453-3566

Email: fcs@unb.ca

www: http://www.cs.unb.ca

Abstract

We use Patricia tries to represent textual and spatial data, and
present a range search algorithm for reporting all k-d records from
a set of size n intersecting a query rectangle. Data and queries
include both textual and spatial data. Patricia tries are evaluated
experimentally (for n up to 1,000,000) using uniform distributed
random spatial data and textual data selected from the Canadian
toponymy. We compared the performance of the Patricia trie for
k-d points, k-d rectangles and k-d combined textual and spatial
data to the k-d tree, R∗-tree, Ternary Search Trie and the naive
method. Overall, our experiments show that Patricia tries are
the best when F ∈ [0, log2 n] (F is the number of data in range).
The expected range search time for Patricia tries was determined
theoretically, and found to agree with experimental results when
2 ≤ k ≤ 20.

ii

Contents

Abstract ii

1 Introduction 1
1.1 Background and Related Work 1
1.2 Tries . 4
1.3 Our Results . 6

2 k-d Binary Patricia Tries 6
2.1 Spatial data . 8
2.2 Textual data . 9
2.3 Combined Textual and Spatial Data 10

3 Range Search Cost 15
3.1 Partial Match Queries with Patricia Tries 15
3.2 Orthogonal Range Search Using Patricia Tries 16

4 Experiments 19
4.1 Query Squares with Fixed Volume 20
4.2 Random Query Rectangles . 23

5 Conclusions and Future work 27

References 27

List of Tables

1 Performance of data structures for k-dimensional range search. 3
2 The average number of rectangles in range (n=100,000). . . . 23
3 The average height of Patricia tries (n=100,000). 28

List of Figures

1 Tries example. 4
2 A TST for bike, binary, area, tree and trie. 5

iii

3 Pseudo-code for inserting a key P into a Patricia trie T . The
function LONGESTPREFIX(a,b) returns the longest length
of the same prefix of string ”a” and ”b”. 7

4 A 2-d space with three points and their corresponding tries. . 8
5 A 2-d space with three rectangles and their corresponding tries. 10
6 Mapping strings to rational numbers and the corresponding

binary trie; the tuples besides the internal nodes are the node
cover spaces. 11

7 GREY((a),(b), and (c)), BLACK ((d) and (e)), WHITE ((f)
and (g)) relationships of a trie node cover space NC to a query
rectangle cover space QC in dimension p (from [9]). 12

8 Range search algorithm to find combined text and points in a
k-d+t trie T intersecting query rectangle Q. T.SKIPSTR[i]
is the (i + 1)st bit of bit strings stored at compressed nodes of
the Patricia trie T . 13

9 StringInRange algorithm to determine if the text part of query
rectangle Q intersects the trie text 14

10 TSTs for (a) the points in Figure 4 and (b) the rectangles in
Figure 5. 19

11 The experimental and theoretical number of nodes visited for
Patricia trie range search with k-d query squares size of 0.01k

of total space volume for (left) k = 10 and 50, 000 ≤ n ≤
1, 000, 000, (right) 2 ≤ k ≤ 20 and n = 1, 000, 000. 20

12 The fraction of the tree visited (left column) and range search
time in milliseconds (right column) for the k-d tree, Patricia
trie, TST and naive range search with k-d query square sizes
of (a) 0.01%, (b) 0.1 % and (c) 1% of total space volume (n
= 100000 and 2 ≤ k ≤ 20, the average number of points in
range is (a) 10, (b) 100 and (c) 1000). 21

13 The fraction of the tree visited (left column) and range search
time in milliseconds (right column) for k-d tree, Patricia trie,
TST and naive range search with the k-d query square sizes
of (a) 0.01%, (b) 0.1 % and (c) 1% of total space volume (n
= 1,000,000 and 2 ≤ k ≤ 20, the average number of points in
range is (a) 100, (b) 1000 and (c) 10000)). 22

iv

14 The fraction of the tree visited(left column) and range search
time in milliseconds(right column) for the R∗-tree, Patricia
trie, TST and naive range search for k-d query square sizes
of (a) 0.01% (b) 0.1% and (c) 1% of total space volume (n =
100,000, 2 ≤ k ≤ 10 and maxsize=0.001). 24

15 The fraction of the tree visited(left column) and range search
time in milliseconds(right column) for the R∗-tree, Patricia
trie, TST and naive range search for k-d query square sizes of
(a) 0.01%, (b) 0.1% and (c) 1% of total space volume (n =
100,000, 2 ≤ k ≤ 10 and maxsize=0.01). 25

16 The fraction of the tree visited for the k-d tree, Patricia trie,
and TST range search for (left) n=100,000 and (right) n=1,000,000
k-dimensional points (F ∈ [0, log2 n] and 2 ≤ k ≤ 20). 26

17 The fraction of the tree visited for the R∗-tree, Patricia trie,
and TST range search for (left) n=100,000 and (right) n=1,000,000
random k-dimensional rectangles (F ∈ [0, log2 n], 2 ≤ k ≤ 20
and maxsize=0.01). 26

18 The fraction of the tree visited for the k-d tree, Patricia trie,
and TST range search for (left) n=100,000 and (right) n=1,000,000
k-dimensional combined textual and spatial data (F ∈ [0, log2 n],
r = k − 2 and 3 ≤ k ≤ 20. The textual data are chosen from
Canadian toponymy). 27

v

1 Introduction

Data structures to support efficient searching have been a fundamental re-
search area of computer science for many years. The specific problem of
searching we are concerned with is range search. Range search represents
an important class of problems that occur in applications of databases, ge-
ographical information systems, computer graphics and computational ge-
ometry. Given a collection of records, each containing multidimensional at-
tributes or keys, a range search asks for all records in the collection with key
values each inside specified ranges.Over the past 30 years, more than 60 data
structures for the range search problem have been presented [1] [6][21][27][35].
In this paper we present a research for k-d range search using Patricia tries,
which is analyzed theoretically and experimentally.

1.1 Background and Related Work

We analyze a search structure by giving three cost functions of n (the number
of points) and k (the number of dimensions): P (n, k), the cost of preprocess-
ing n points in k-space into a data structure; S(n, k), the storage required
by the data structure; Q(n, k), the search time or query cost.

Bentley et al. [6][7] review several data structures for k-dimensional point
range searching including sequential scan, projection, cells, k-d trees, range
trees and k-ranges. The simplest approach to range searching is to store the
n points in a sequential list. As each query arrives, all elements of the list
are scanned and every record that satisfies the query is reported. Since all k
keys of the n records must be stored and each k-key record is examined as
the structure is built or searched, it is easy to see that the sequential scan
structure has the properties P (n, k) = O(kn), S(n, k) = O(nk), Q(n, k) =
O(nk), and has the advantage of being trivial to implement on any storage
medium. The projection technique is referred to as inverted lists by Knuth
[27]. This technique was applied by Friedman, Baskett and Shustek [19] in
their solution of the ”nearest neighbor” problem and by Lee, Chin, and Chang
[30] to a number of database problems. P (n, k) = O(kn log n), S(n, k) =
O(kn) and Q(n, k) = O(n1−1/k).

One of the most prominent data structures for solving the point range
searching problem is called the k-d tree [4], a binary search tree that stores
points of the k-dimensional space. At each intermediate node, the k-d tree di-
vides the k-dimensional space in two parts by a (k-1)-dimensional hyperplane.

1

The direction of the hyperplane alternates between the k possibilities from
one tree level to the next. Analysis of k-d trees for range searching has been
considered by several researchers. The work required to construct a k-d tree
and its storage requirements [5] are P (n,k) = O(n log n), S(n, k) = O(nk).
The search cost depends on the nature of the query. Lee and Wong [29]
have shown that in the worst case Q(n, k) = O(n1−1/k + F), where F is the
number of points found in the region. An improved version proposed in [20]
is the adaptive k-d tree. When splitting, the adaptive k-d tree chooses a
hyperplane that divides the space in two sub-spaces with equal number of
points. All points are stored in the leaves. Devroye et al. [16] analyzed
range search on squarish k-d trees and random k-d trees [10]. The k-d-B tree
[33] combines properties of both the adaptive k-d tree and the B-tree [14].
Mehlhorn[31] discusses dd-trees which are very similar to k-d trees. At each
step the data space is divided into three subsets, in contrast with two for the
k-d tree.

The k-range is an efficient worst-case structure for range searching intro-
duced by Bentley and Maurer [7]. They showed that one level k-ranges had
Q(n, k) = O(k log n + F), S(n, k) = P (n, k) = O(n2k−1), and developed two
types of l-level k-ranges, overlapping and nonoverlapping. By appropriate
choice of l for a given k and ε > 0, the overlapping k-ranges can be made to
have performance S(n, k) = P (n, k) = O(n1+ε) and Q(n, k) = O(log n + F),
and nonoverlapping k-ranges require linear space, P (n, k) = O(n log n) and
Q(n, k) = O(nε). Range tree was introduced by Bentley [6], which achieved a
good worst-case search time, but has relatively high preprocessing and stor-
age costs. The k-dimensional range tree yield the performances P (n, k) =
O(n logk−1 n), S(n, k) = O(n logk−1 n) and Q(n, k) = O(logkn + F). Lower
bounds for range search were studied by Chazelle [13][12], who showed that
a sequence of n operations for insertion, deletion, and reporting points in
a given range costs Ω(n(log n)k). Chazelle [11] gives a comprehensive 3
overview of data structures for k-dimensional searching, including the de-
scription of a k-dimensional rectangle reporting algorithm (supporting dy-
namic operations) with Q(n, k) = O(F (log(2n

F
)2) + logk−1 n), which is close

to the lower bound.
The problem of how to represent collections of rectangles arises in many

applications. The most common example occurs when a rectangle is used to
approximate other shapes for which it serves as the minimum enclosing ob-
ject. The MX-CIF quadtree [25] associates each rectangle with the quadtree
node corresponding to the smallest block that contains the rectangle in its

2

Table 1: Performance of data structures for k-dimensional range search.

DataStructure P (n, k) S(n, k) Q(n, k)
Sequential scan O(n) O(n) O(n)
Projection O(n log n) O(n) O(n1−1/k + F)
k-d tree O(n log n) O(n) O(n1−1/k + F)

Range tree O(n logk−1 n) O(n logk−1 n) O(logk n + F)
Overlapping k-ranges O(n1+ε) O(n1+ε) O(log n + F)
Non-overlapping k-ranges O(n log n) O(n) O(nε + F)

d-fold tree O(n logk−1 n) O(n logk−1 n) O(logk−1 n + F)
R-tree O(n log n) O(n) O(n + F)
Priority R-tree O(n log n) O(n) O(n1−1/k + F)

entirety. Building an MX-CIF quadtree of maximum depth h for n rectan-
gles has a worst-case execution time of O(hn), and the worst-case storage
requirements are also O(hn) and the excution time of range query is O(hn2).

The R-tree [23] is a hierarchical data structure that is derived from the
B-tree, efficient indexing of multidimensional objects with spatial extent. A
packed R-tree is proposed by Roussopoulos and Leifker [34], an R-tree that
is built by successively applying a nearest neighbor relation to group objects
in a node after the set of objects has been sorted according to a spatial cri-
terion. Another alternative to the R-tree in dealing with rectangles is the
R+-tree [37], an extension of the k-d-B tree. The motivation for R+-tree is
to avoid overlap among the bounding rectangles. Several weakness of the
original R-tree insertion algorithms stimulated Beckmann et al. [3] to work
on an improved version of the R-tree, the R∗-tree, minimizing the overlap
region between sibling nodes in the tree. For n rectangles, the construc-
tion time and space requirements of R-tree and R+-tree are both O(n) and
O(n2) respectively. The Priority R-tree, or PR-tree was presented by Lars
Arge et al.[2], and is provably asymptotically optimal and significantly better
than other R-tree variants. Edelsbrunner [17] introduced the d-fold rectan-
gle tree to support orthogonal range search on k-d hyper-rectangles with
S(n,k) = Θ(n logk−1 n), P (n,k) = O(n logk n), and Q(n,k) =O(log2k−1n + F).
The comparison of the performance of data structures discussed above is
depicted in Table 1.

3

1.2 Tries

Tries were introduced by Rene de la Briandais [28]. E. Fredkin [18] and
Donald E. Knuth [27] developed them further. The trie is a simple order
preserving data structure supporting fast retrieval of elements and efficient
nearest neighbor and range searches. In general, a trie stores a set of, say n
items, which are represented by keys from Σ∞ ,the set of all infinite sequences
over a finite alphabet Σ. A trie is composed of branching nodes, also called
internal nodes, and external nodes that stores the keys. The branching policy
at any level, say d, is based on the dth symbol of a key. Binary tries are data
structures which use a binary representation of the key to store keys as a
path in the trie, and follow the rule of direction determined by the dth bit
information of the key: branch left if 0 and branch right if 1. Trie(a) in
Figure 1 is referred to as full trie [15]. There are two other tries. Trie(b) is
an ordinary trie and trie(c) is a Patricia trie [32]. All three tries in Figure 1
are constructed from the same words: area, bike, binary, tree and trie.

r

a

e

a

b

i

k

e

n

a

r

y

t

r

e

i

 (a)Full trie

a

rea

b

i

k

e

n

ary

t

r

e

e

i

e

a

rea

b
 i

k n

e ary

t

e

i

e e
e

e

e

 (b) Regular trie (c) Patricia trie

Figure 1: Tries example.

An ordinary trie is a pruned trie where all the leaf’s parents will be the
last bifurcating node in the corresponding full trie, and all the nodes between
the leaves and the last bifurcating node have been removed. A Patricia trie
and an ordinary trie store eliminated information in their leaves. A Patricia
trie removes all the single descendant nodes. These skipped symbols are
stored in the internal nodes or in the leaves.

The Patricia trie was discovered by D.R. Morrison [32]. All nodes in
Patricia tries have degree greater than or equal to two by eliminating all
one-child internal nodes. Patricia tries are well-balanced trees [38] in the

4

sense that a random shape of Patricia tries resembles the shape of complete
balanced trees. The Patricia trie has many applications, including lexico-
graphical sorting, dynamic hashing algorithms, string matching, file systems,
and most recently conflict resolution algorithms for broadcast communica-
tions [27]. The performance of Patricia tries is turned out to be superior to
tries [26][27].

The ternary search trie (TST) is an alternative representation of the tries.
In a TST, each node has a character and three links, corresponding to keys
whose current digits are less than, equal to, or greater than the node’s char-
acter [36]. TSTs provide an efficient implementation of string symbol tables
and can quickly answer advanced queries. Advanced searching algorithms
based on TSTs are likely to be useful in practical applications, and they
present a number of interesting problems in the analysis of algorithms [8].
We construct a TST from the same word collection used in tries above and
insert them in an order of bike, binary, area, tree and trie, shown in Figure
2. TSTs can be more efficient in space usage by putting keys in leaves at the
point where they are distinguished and by eliminating one-way branching
between internal nodes as in the Patricia trie. In our paper, we adapt TST
to represent spatial data and combined textual and spatial data.

a

 r

e

a

i

k

e

y

r

t

r

e

i

a

b

n

e

e

Figure 2: A TST for bike, binary, area, tree and trie.

5

1.3 Our Results

In Section 2 we use the binary Patricia tries to represent multidimensional
points and rectangles, combined textual and spatial data, and present a range
search algorithm for reporting all k-dimensional records from a size of n
intersecting a random query rectangle. In Section 3 we theoretically analyze
the average cost of the range search, which is proportional to the number of
nodes in the trie visited during the range search. In Section 4 we present
an extensive experimental study of the practical performance of the Patricia
trie using uniform randomly generated spatial data and place names selected
from the Canadian toponymy. We compare the performance of the Patricia
trie to the k-d tree, TST and the naive method. Overall, our experiments
show that Patricia tries take less time when k ≤ 10, and the experimental
results agree with the theoretical analysis. However, like the k-d tree, TST
and R∗-tree, Patricia tries are limited by the curse of dimensionality meaning
that the computing cost grows exponentially with the dimension of the data.

2 k-d Binary Patricia Tries

Binary tries are data structures which use a binary representation of the key
to store keys as a path in the tree. Binary k-d tries use the principle of bit
interleaving, e.g., a set of n k-dimensional keys:

P1 = (P11 , P12 , . . . , P1k),
:

Pn = (Pn1 , Pn2 , . . . , Pnk),

where Pij can be spatial data or textual data, 1 ≤ i ≤ n and 1 ≤ j ≤ k.
Let P̃ij be the binary representation of Pij, P̃ij ∈ {0 , 1}∞ , we produce one
sequence P̃i ∈ {0 , 1}∞ for each Pi by regular shuffling of the components
P̃i1, . . . , P̃ik, and use these new composite keys P̃1, . . . , P̃n to construct a trie.
More precisely, if P̃ij = P̃ 0

ijP̃
1
ijP̃

2
ij · · · , then P̃i = P̃ 0

i1 · · · P̃ 0
ikP̃

1
i1 · · · P̃ 1

ikP̃
2
i1 · · · ,

where the superscript indicates the bit position.
We denote by T the Patricia trie constructed by inserting n keys into an

initially empty trie. There are altogether n − 1 internal nodes and n leaves
in T . The skipped bits are stored in an array SKIPSTR, and every leaf is
associated with one key. Figure 3 is an algorithm to insert one key into T .

6

Insert(T, P)
1 if T = nil
2 then T ← new PatrieNode(P̃ , P, k)
3 else s ← P̃
4 l = 0
5 while l < P̃ .length()
6 do h ← LongestPrefix(T.SKIPSTR, s)
7 if h = P̃ .length()
8 then break;
9 l ← l + h

10 if h = T.SKIPSTR.length() and l < P̃ .length()
11 then if P̃ [l] = 1
12 then if right[T] 6= nil
13 then T ← right[T]
14 l ← l + 1; s ← s.substr(h + 1)
15 else if left[T] 6= nil
16 then T ← left[T]
17 l ← l + 1; s ← s.substr(h + 1)
18 else t ← T.SKIPSTR
19 T.SKIPSTR ← t.substr(0, h)
20 P ← new PatrieNode(t.substr(h + 1), T.P, k)
21 left[P] ← left[T]
22 right[P] ← right[T]
23 Q ← new PatrieNode(s.substr(l + 1), P, k)
24 if t[h] = 0
25 then left[T] ← P
26 right[T] ← Q
27 else left[T] ← Q
28 right[T] ← P
29 break

Figure 3: Pseudo-code for inserting a key P into a Patricia trie T . The func-
tion LONGESTPREFIX(a,b) returns the longest length of the same prefix
of string ”a” and ”b”.

7

2.1 Spatial data

The k-d trie is a concise representation of k-dimensional space of bits. For
the spatial data, we assume our search space is defined on the set of positive
integers in k-dimensional space and the space is finite, limited by the number
of bits B used to represent an integer. B is the number of bits used for
representing a coordinate value in binary, B = log2 (MAX −MIN + 1),
where MIN and MAX are the whole search space’s lower and upper bounds.
For example, if we have a set of three points in a 2-dimensional space of bits
(as shown in Figure 4(a)): P1 = (2, 5), P2 = (6, 1) and P3 = (7, 3). We
assume B = 3, so we have:

P1 = (010, 101) −→ P̃1 = 011001
P2 = (110, 001) −→ P̃2 = 101001
P3 = (111, 011) −→ P̃3 = 101111

The thick lines in Figure 4(a) represent partitions. The principle of partition
is that each partition splits a space into two sub-spaces of equal size. k-d
tries select the attributes to be split cyclically, i.e. 1 , · · · , k , 1 , · · · . Figure
4(b) is a regular 2-d trie built up using the sequences P̃1 , P̃2 and P̃3. Re-
moving the one-child internal nodes and storing the skipped information at
the internal nodes, we get a 2-d Patricia trie (4(c)). In [9] a binary 2k-d trie

(b) Regular trie

4

0 1 2 3 4 5 6 7

0

1

2

3

5

6

7

P

(a) A 2−d space

P1
P1

P2

3

P2 P3

[0,7]x[0,7]

[4,7]x[0,7]

[4,7]x[0,3]

[6,7]x[0,3]

2{01}
P1

P2 P3

(c) Patricia trie

[6,7]x[0,3]

[0,7]x[0,7]

Figure 4: A 2-d space with three points and their corresponding tries.

data structure for k-d rectangles range search was investigated. A rectangle
is represented as four coordinate values (xmin, xmax, ymin, ymax), which, after
bit interleaving gives the bit string: P̃ 0

xminP̃ 0
xmaxP̃ 0

ymin

P̃ 0
ymaxP̃ 1

xminP̃ 1
xmax · · · P̃B−1

xmin P̃B−1
xmax P̃B−1

ymin P̃B−1
ymax . Thus, a rectangle can be repre-

sented as a 4-d point in a binary trie. For example, there is a set of three 2-d

8

rectangles E = [1, 3]× [3, 5], F = [5, 6]× [5, 7] and G = [4, 7]× [1, 3], shown
in Figure 5(a). We assume B=3, so we have

E = (001, 011, 011, 101) −→ Ẽ = 000101101111
F = (101, 110, 101, 111) −→ F̃ = 111101011011
G = (100, 111, 001, 011) −→ G̃ = 110001010111

Figure 5(b) is the corresponding Patricia trie.
Each node in k-d tries covers part of the k-d space, that is, every node

has a cover space defined as NC = [L(p),U(p)]kp=1. Arrays L and U store
the lower and upper bounds of a node’s cover space. In Figure 4(b) and
(c), the list of tuples is the cover space NC of each internal node. The
root of k-d tries covers the whole space and child nodes cover half of the
search space volume of their parent. The nodes on level ` split attribute
p = (` mod k) + 1 (at the root, ` = 0). If a node on level ` has cover space
[L1,U1] × · · · × [Lp ,Up] × · · · × [Lk,Uk], then its left child’s cover space is
[L1,U1] × · · · × [Lp , (Lp + Up)/2] × · · · × [Lk,Uk], and its right child’s cover
space is [L1,U1] × · · · × ((Lp + Up)/2,Up] × · · · × [Lk,Uk]. For k-d Patricia
tries, ` is not the level of the trie, but the length of the path from root
to the node plus the length of the skipped bits in the internal nodes along
the path. The node cover space must take the skipped bit string stored in
the nodes into consideration. For example, in Figure 4(c), the node cover
space of the root of 2-d Patricia trie is [0, 7] × [0, 7] (` = 0), the node cover
space of its right child (denoted by NCr) is computed as follows: first, p = `
mod 2 + 1 = 1, NCr = [4, 7] × [0, 7] and ` = 1; then, the first bit of the
skipped bits string is ’0’, which means a left child node has been removed,
p = ` mod 2 + 1 = 2, NCr = [4, 7] × [0, 3] and ` = 2; the second and last
bit of the skipped bit string is ’1’, which means a right child node has been
removed, p = ` mod 2 + 1 = 1, NCr = [6, 7]× [0, 3] and ` = 3. So the node
cover space of root’s right child is [6, 7]× [0, 3], as shown in Figure 4(c).

2.2 Textual data

Definition 1 (Numeric Mapping [24]) Assume strings are comprised of sym-
bols drawn from an alphabet of size α, and each symbol is mapped to an integer
in the range 0 to α-1. Let a string of length c be s1s2 · · · sc, with each symbol
si mapped to an integer ti, the string s is mapped to t1

α
+ t2

α2 + t3
α3 + · · ·+ tc

αc ,
which is a one-to-one mapping.

9

E

1

2

3

4

7

6

5

0
0 2 3 4 5 6 71

F

G

E

G F

1{1}

(b)(a)

Figure 5: A 2-d space with three rectangles and their corresponding tries.

Though we can use numeric mapping technique to map strings to rational
numbers and treat them as numeric data, a string may require a very large
precision representation for the corresponding rational number, and the ra-
tional numbers require substantially more bits per symbol since α is likely
to be much larger than 10. And we may need to keep the mapped numbers
with high precision in order to support range searches. For an alphabet of
size α, we assign a new decimal value in the range 0 to α-1 for each symbol,
different from its decimal value in the ASCII table, and use dlog2 αe bits
to represent each symbol’s decimal value. If a node’s splitting attribute is p
and it has cover space [L1,U1] × · · · × [Lp ,Up] × · · · × [Lk,Uk], then its left
child’s cover space is [L1,U1]× · · · × [Lp, (Lp +Up)/2)× · · · × [Lk,Uk] and its
right child’s cover space is [L1,U1]× · · · × [(Lp + Up)/2,Up]× · · · × [Lk,Uk],
a little different from the numeric data.

For example, assume an alphabet with 4 characters {A,E, I, O}. We have
α = 4 and assign an integer from 0 to 3 to them respectively in sequence,
and each symbol can be well represented by 2 bits. Consider the five strings
AE, AO, E, I and O. We use the binary representation of each string to build
up the trie. The mapping and the corresponding binary trie are shown in
Figure 6.

2.3 Combined Textual and Spatial Data

We assume each of the coordinate values can be represented in B bits, and
the symbols in strings are drawn from an alphabet of size α and each text
symbol can be represented in dlog2 αe bits. For simplicity, we assume the

10

O

I

binary value

0/4+1/16=1/16

0/4+3/16=3/16

1/4

2/4

3/4

mapping

AE AO

I OE

[0,1/2)

[0,1]

[1/2,1]

[0,1/4)

AE

AO

E

0001

0011

01

10

11

Figure 6: Mapping strings to rational numbers and the corresponding binary
trie; the tuples besides the internal nodes are the node cover spaces.

first r dimensions in a k-dimensional key P = (P1 , P2 , · · · , Pk) are spatial
data and the remainder are textual data, that is, P1 , P2 , · · · , Pr are numeric
data and Pr+1 , · · · , Pk are textual data, 0 ≤ r ≤ k. First, we get the bit
string of each dimension. If the length of the bit string of the textual data
Pi is smaller than B, ‘0’ is added at the end of the bit string to extend its
length to B, r + 1 ≤ i ≤ k. Then we can use the shuffle means mentioned
above to get a sequence P̃ of P , and insert P using P̃ into the trie T using
the algorithm in Figure 3.

Given a query rectangle Q = [L1, H1] × [L2, H2] × · · · × [Lk, Hk], Li ≤
Hi, a k-dimensional key P = (P1 , P2 , · · · , Pk) is in range iff Pi ∈ [Li, Hi],
∀ i ∈ {1 , 2 , · · · , k}. We obtain the query rectangles’s cover space QC =
[Li, Hi]

k. On the pth dimension, there are three types of relations of QC(p)
and NC(p) (QC(p) is the p-th component of the k-dimensional vector QC,
and NC(p) is the p-th component of the k-dimensional vector NC), which
we call BLACK, GREY, and WHITE. Figure 7 illustrates the three colors
for a node’s cover on dimension p. Dashed lines are used for QC(p) and solid
lines for NC(p). WHITE indicates when the trie can be pruned. BLACK
relationships occurring k times contiguously indicates that all records in the
subtree intersect Q. GREY indicates the trie must be searched further.

Definition 2 If, on all k dimensions, the cover space relationship satisfies
QC(p) ∩NC(p) = BLACK, ∀p ∈ {1, 2, · · · , k}, then the node in the trie is
black. If the cover space relationship satisfies ∃p ∈ {1, 2, · · · , k}, such that
QC(p) ∩ NC(p) = WHITE, then the node in the trie is white. All other
nodes are grey nodes.

The Rangesearch algorithm (see Figure 8) is used to perform a range

11

axis p

(c)

(b)

(a) (d) (f)

(e) (g)

NC(p)

NC(p)

NC(p)

NC(p)

NC(p)

QC(p)

QC(p)

QC(p)

QC(p)

QC(p)

QC(p)

QC(p)

NC(p)

NC(p)

GREY BLACK WHITE

Figure 7: GREY((a),(b), and (c)), BLACK ((d) and (e)), WHITE ((f) and
(g)) relationships of a trie node cover space NC to a query rectangle cover
space QC in dimension p (from [9]).

search on T . The search proceeds from the root (` = 0) to the leaves, ac-
counting for possible skipped bits stored at internal nodes. L and U are the
lower and upper limits of the node’s cover space. If p = ` mod k is a numeric
data dimension, the InRange function determines the value of RI[p]; if p is
a textual data dimension, function StringInRange (Figure 9) determines
RI[p]. Array RI of size k (initialized to store all GREY values) keeps track
of the color of the NC(p) to QC(p) relationship for T and ancestors of T .
Array Flag (initialized to contain all 2s) of size k − r is used to track the
state of textual data string bits being in range. Define t as the bit string
traversed from the root to the current node T . Function StringInRange
determines if the text part of a query rectangle Q intersects the trie node
T . on the pth dimension, Flag[p] = 0 indicates t ≤ SH.substr(0, t.length());
Flag[p] = 1 indicates t ≥ SL.substr(0, t.length()); Flag[p] = 2 indicates
t = SL.substr(0, t.length()) and t = SH.substr(0, t.length()). If all ranges
fall within Q at some node T , then all points in the subtree attached to T
are in Q and are collected by the Collect function into a List for reporting.
Function Color(RI) determines the color (black, grey or white) of node t.
When we reach a leaf node, we determine whether it is in range using the
CheckNode function; if so, it is added to List.

12

Rangesearch(T, `,L,U ,RI, Q, List, F lag)
1 if T is a leaf node
2 then CheckNode(T, Q, List)
3 else i ← 0
4 while i < T.SKIPSTR.length()
5 do p ← ` mod k
6 if p is a numeric data dimension
7 then if T.SKIPSTR[i] = 0
8 then U [p] ← (L[p] + U [p])/2
9 else L[p] ← (L[p] + U [p])/2 + ε

10 RI[p] ← InRange(L[p],U [p], p , Q)
11 else q ← `/k + p− k
12 StringInRange(T.SKIPSTR[i], p, q ,RI[p], Q, F lag[p])
13 i ← i + 1
14 ` ← ` + 1
15 C ← Color(RI)
16 if C is grey
17 then p ← ` mod k
18 if left[T] 6= nil
19 then if p is a numeric data dimension
20 then U [p] ← (L[p] + U [p])/2
21 RI[p] ← InRange(L[p],U [p], p , Q)
22 else q ← `/k + p− k
23 StringInRange(0, p, q ,RI[p], Q, F lag[p])
24 Rangesearch(left[T], ` + 1,L,U ,RI, Q, List, F lag)
25 if right[T] 6= nil
26 then if p is a numeric data dimension
27 then L[p] ← (L[p] + U [p])/2 + ε
28 RI[p] ← InRange(L[p],U [p], p , Q)
29 else q ← `/k + p− k
30 StringInRange(1, p, q ,RI[p], Q, F lag[p])
31 Rangesearch(right[T], ` + 1,L,U ,RI, Q, List, F lag)
32 else if C is black
33 then Collect(T, List)

Figure 8: Range search algorithm to find combined text and points in a k-
d+t trie T intersecting query rectangle Q. T.SKIPSTR[i] is the (i + 1)st

bit of bit strings stored at compressed nodes of the Patricia trie T .

13

StringInRange(bit, p, q,RI[p], Q, flag)
1 SL ← BinaryV alue(Q.L[p]); SH ← BinaryV alue(Q.H[p])
2 if bit = 0
3 then switch
4 case flag = 0 :
5 if SL[q] = 1
6 then RI[p] = WHITE
7 case flag = 1 :
8 if SH[q] = 1
9 then RI[p] = BLACK

10 case flag = 2 :
11 if SL[q] = 1 and SH[q] = 1
12 then RI[p] = WHITE
13 if SL[q] = 0 and SH[q] = 1
14 then flag = 0
15 else switch
16 case flag = 0 :
17 if SL[q] = 0
18 then RI[p] = BLACK
19 case flag = 1 :
20 if SH[q] = 0
21 then RI[p] = WHITE
22 case flag = 2 :
23 if SL[q] = 0 and SH[q] = 0
24 then RI[p] = BLACK
25 if SL[q] = 0 and SH[q] = 1
26 then flag = 1

Figure 9: StringInRange algorithm to determine if the text part of query
rectangle Q intersects the trie text .

14

3 Range Search Cost

We adapt the approach used in [10] to analyze the range search cost of k-
d Patricia tries, using Theorem P of [26]. Without loss of generality, the
following discussions are all based on unit space [0, 1]k, and we assume the
input data and the query rectangle Q are drawn from a uniform random
distribution.

3.1 Partial Match Queries with Patricia Tries

A partial match query asks for all records whose attributes are either specified
or not. Given a query q = (q1, q2, · · · , qk) when each qj can be specified or
unspecified (a so-called wild card, denoted by *), return all records whose
attributes coincide with the specified attributes of q. If, e.g., q = (17, ∗, ∗, 30),
we look for all records whose first attribute is 17, fourth attribute is 30; the
second and third attributes are left unspecified. The specification pattern ω
of q is a word in {S, ∗}k where ωj = S if qj is specified and ωj = ∗ if qj is
unspecified; in our example we have the specification pattern S ∗ ∗S. Partial
match queries make sense if at least one attribute of the query is specified
and at least one attribute is not. The analysis of the average cost of partial
match queries in k-d Patricia Tries was addressed by P. Kirschenhofer and
H. Prodinger [26]. We restate their theorem as follows:

Theorem 1 Given a Patricia trie T built from n k-dimensional data and a
partial match query of specification pattern ω, let S ⊂ {1, 2, · · · , k} be the set
of specified coordinates, the average cost of partial match query measured by
the number of nodes traversed in T is

QS(n) = n1− s
k · { (s

k
+1)(1−2−s/k)

k log 2
· Γ(s

k
)

1− s
k
·Σk−1

j=0(δ1 δ2 · · · δj)2
−j(1−s/k)

+ δ(log2 n1/k)}
where s is the number of specified attributes in ω, δj = 1, if the th attribute
of q is specified, and δj = 2 if it is unspecified, and δ(x) a continuous periodic
function of mean zero with small amplitude.

The following proposition relates the performance of range searches with the
performance of patrial match queries.

Proposition 2 Given a Patricia trie T built from n k-dimensional data and
a partial match query of specification pattern ω, let S ⊂ {1, 2, · · · , k} be the

15

set of specified coordinates, the average cost of partial match query measured
by the number of nodes traversed in T is

QS(n) = E{Σ2n−1
t=1

∏
p∈S |NCt(p)|},

where |NCt(p)|, 1 ≤ p ≤ k are the cover spaces of node t in T.

Proof. If a node is visited, qp ∈ NC(p) = [Lp,Up], ∀p ∈ S. The probability
that a node in trie T will be visited is determined by the volume of every
node’s cover space in the space [0, 1]. ¤

3.2 Orthogonal Range Search Using Patricia Tries

We use the probabilistic model of random range queries introduced in [10]. A
range query is a k-dimensional rectangle Q = [L1, H1]×[L2, H2]×· · ·×[Lk, Hk]
with 0 ≤ Li ≤ Hi ≤ 1, for 1 ≤ i ≤ k. To get the color types for a
node in the trie, we compare all the k ranges of QC with NC. In our
algorithm, the range search proceeds from the root to the leaves. On each
level, we do at least one comparison of the k ranges and store the color
as the node’s state. If all k ranges are BLACK, the node is black; if one
range is WHITE, the node is white; all the other conditions indicate the
node is a grey node. Traversing stops on paths when we meet with black or
white nodes and continues when grey nodes are encountered and continues
collection black nodes in the subtree of the black nodes we first meet. The
time complexity of range search is proportional to the number of grey nodes
(GN) and black nodes (BN) visited in the trie built from the input data. We
have the following equation:

Q(n, k) = Σ2n−1
t=1 1[nodet∈GN∪BN],

where we use 1[A] as the characteristic function of the event A. The formula
counts the number of grey nodes, which, apart from the black nodes nodes
traversed to report the in-range data, represents the time complexity of the
range search algorithm.

Lemma 3 E{Σ2n−1
t=1

∏k
p=1 |NCt(p)|} ≤ 1 + log2 n.

Proof. We denote the volume of the node t in Patricia trie T as |NCt|, and
|NCt| =

∏k
p=1 |NCt(p)|. If there is no skipped bits in the root, |NCt| = 1;

otherwise, assume the size of the skipped bit string in the root is c, then

16

|NCt| = 1
2c . Assume the size of the skipped bits in its left child node is

c, then its left child node cover space’s volume is |NCt|
21+c . As the level ` of

T ’s increases, the value of |NCt| decreases. Assume n = 2h, h ≥ 0, the
value of Σ2n−1

t=1

∏k
p=1 |NCt(p)| is maximal when T coincides with a complete

binary tree, and there is no skipped bit string in any node. In this case,
Σ2n−1

t=1

∏k
p=1 |NCt(p)| = 1 + 2× 1

2
+ 4× 1

4
+ · · ·+ 2h 1

2h = 1 + log2 n. ¤

Proposition 4 E{Σ2n−1
t=1 1[∃p∈{1 ,2 ,··· ,k}:|NCt(p)|≥ 1

2
]} ≤ C, where C = 4k − 1.

Proof. The number of nodes with a cover space’s size ≥ 1
2

is maximum when
the Patricia trie coincides with a complete binary tree from level 0 to level
2k-1, and there is no skipped bit string stored in nodes in these levels, assume
k ¿ n. In this case, the maximum number is 1+2+22+ · · ·+22k−1 = 22k−1.
So we have E{Σ2n−1

t=1 1[∃p∈{1 ,2 ,··· ,k}:|NCt(p)|≥ 1
2
]} ≤ 22k − 1. ¤

Theorem 5 Given a Patricia trie T built from n k-dimensional data, con-
sider a random range search with query rectangle Q, the expected range search
time measured by the number of nodes traversed in T is

β′ ≤ E{Q(n)}
n

∏k
p=1 |QC(p)|+ΣS⊂{1,··· ,k}(

∏
p/∈S |QC(p)|)γ(s)n1− s

k +log2 n
≤ β,

where β and β′ are constants depending on k only, and 0 < s = |S| < k and

γ(s) =
(s

k
+1)(1−2−s/k)

k log 2
· Γ(s

k
)

1− s
k
·Σk−1

j=0(δ1 δ2 · · · δj)2
−j(1−s/k)

with δj = 1 if δj ∈ S and δj = 2 if δj /∈ S.

Proof. E{Q(n, k)} = E{Σ2n−1
t=1 1[nodet∈GN∪BN]}. This calculation includes the

reporting time for collection of the subtree of black nodes which arises during
the traversal. The probability that a node is black or grey is given as:

Pr[nodei ∈ GN ∪BN] ≤ ∏k
p=1(|NC(p)|+ |QC(p)|).

17

We have

E{Q(n)} ≤ E{Σ2n−1
t=1

k∏
p=1

(|QC(p)|+ |NCt(p)|)}

= ΣS⊆{1,··· ,k}(
∏

p/∈S

|QC(p)|)E{Σ2n−1
t=1

∏
p∈S

|NCt(p)|}

= ΣS=∅(
k∏

p=1

|QC(p)|)E{Σ2n−1
t=1

∏
p∈S

|NCt(p)|}

+ΣS⊂{1,··· ,k},0<|S|(
∏

p/∈S

|QC(p)|)E{Σ2n−1
t=1

∏
p∈S

|NCt(p)|}

+ΣS={1,··· ,k}(
∏

p/∈S

|QC(p)|)E{Σ2n−1
t=1

k∏
p=1

|NCt(p)|}.

For the lower bound notice that,

E{Q(n)} ≥ E{Σ2n−1
t=1 1[nodet∈GN∪BN]1[∀p∈{1,··· ,k}:|NCt(p)|< 1

2
]}

≥ E{Σ2n−1
t=1

k∏
p=1

(|NCt(p)|+ |QC(p)|
2

)1[∀p∈{1,··· ,k}:|NCt(p)|< 1
2
]}

= E{Σ2n−1
t=1

k∏
p=1

(|NCt(p)|+ |QC(p)|
2

)}

−E{Σ2n−1
t=1

k∏
p=1

(|NCt(p)|+ |QC(p)|
2

)1∃p∈{1,··· ,k}:|NCt(p)|≥ 1
2
]}

= ΣS⊆{1,··· ,k}
∏

p/∈S

|QC(p)|
2

E{Σ2n−1
t=1

∏
p∈S

|NCt(p)|}

−ΣS⊆{1,··· ,k}
∏

p/∈S

|QC(p)|
2

E{Σ2n−1
t=1

∏
p∈S

|NCt(p)|1[∃p∈{1,··· ,k}:|NCt(p)|≥ 1
2
]} .

From Proposition 4, we can bound the second item as:

ΣS⊆{1,··· ,k}
∏

p/∈S

|QC(p)|
2

E{Σ2n−1
t=1

∏
p∈S

|NCt(p)|1[∃p∈{1,··· ,k}:|NCt(p)|≥ 1
2
]}

≤ E{Σ2n−1
t=1 1[∃p∈{1,··· ,k}:|NCt(p)|≥ 1

2
]}

≤ C .

18

The results follow by Theorem 1, Proposition 2 and Lemma 3. ¤

Put differently,

E{Q(n)} ≤
β(n

∏k
p=1 |QC(p)|+ ΣS⊂{1,··· ,k}(

∏
p/∈S |QC(p)|)γ(s)n1−s/k + log2 n),

The first term accounts for the data returned by the range search. The third
term arises from the height of the trie which is unavoidable. The second term
dominates, and arises from the number of grey nodes checked to determine
intersection with Q.

4 Experiments

In this section we describe the results of our experimental study of the per-
formance of the Patricia tries. We compare Patricia to several other multi-
dimensional data structures: k-d tree, ternary search tree (TST) and a naive
method. For the naive approach, an array of size n is used to store the data;
when searching, a O(n) time scan of the entire array is made. We adapt
TSTs to represent k-dimensional data as follows: after regular shuffling of
the k components of each point i as discussed in Section 2, each character
is represented by k of Bk bits of the composite key P̃i. For rectangles, each
character is represented by 2k of the 2Bk bits. Figure 10(a) and (b) are
TSTs representing the data in Figure 4 and 5 respectively.

(b)

01

10P1

P2 P3

(a)

0001

1111E

F G

Figure 10: TSTs for (a) the points in Figure 4 and (b) the rectangles in
Figure 5.

19

Experimental validation of our approach was performed using uniform
random distributed textual and numeric data for 2 ≤ k ≤ 20 and n up to
1,000,000. We assume B=30. Experiments were run on a Sun Microsystems
V880 with four 1.2 GHz UltraSPARC III processors, 16 GB of main memory,
running Solaris 8. Each experimental point in the following graphs was done
with an average of 300 test cases.

4.1 Query Squares with Fixed Volume

The k-dimensional points were uniformly and randomly generated. We com-
pared the experimental results of Patricia tries to the theoretical results, and
found that they are consistent when 2 ≤ k ≤ 20 and n = 1, 000, 000 (see
Figure 11). We show the results of experiments with k-dimensional square
window queries with volumes that range from 0.01% to 1% of the total space
for Patricia tries for k-dimensional points in Figures 12 and 13 respectively,
in comparison with the k-d tree, TST and naive method.

 14

 15

 16

 17

 18

 19

 20

 21

 22

 10 20 30 40 50 60 70 80 90 100

T
he

 n
um

be
r

of
 n

od
es

 v
is

ite
d

n (in 10 thousands)

actual nodes visited
theoretical nodes visited

 10

 20

 30

 40

 50

 60

 70

 2 4 6 8 10 12 14 16 18 20

T
he

 n
um

be
r

of
 n

od
es

 v
is

ite
d

k

actual nodes visited
theoretical nodes visited

Figure 11: The experimental and theoretical number of nodes visited for
Patricia trie range search with k-d query squares size of 0.01k of total space
volume for (left) k = 10 and 50, 000 ≤ n ≤ 1, 000, 000, (right) 2 ≤ k ≤ 20
and n = 1, 000, 000.

The rectangle centers were uniformly distributed and the lengths of their
sides uniformly and independently distributed between 0 and maxsize. Range
search reports the rectangles which intersect with the query rectangle. We
show the results of experiments with k-dimensional square window queries
with volumes that range from 0.01% to 1% of the total space for Patricia tries
for k-dimensional rectangles in Figures 14 and 15, in comparison with the

20

 0.0001

 0.001

 0.01

 0.1

 1

 2 4 6 8 10 12 14 16 18 20

F
ra

ct
io

n
of

 th
e

tr
ee

 v
is

ite
d

k

Patricia trie
k-d tree

TST
 0.001

 0.01

 0.1

 1

 10

 100

 2 4 6 8 10 12 14 16 18 20

R
an

ge
 s

ea
rc

h
tim

e(
m

s)

k

Patricia trie
k-d tree

TST
Naive

(a) query size = 0.01% of space volume

 0.001

 0.01

 0.1

 1

 2 4 6 8 10 12 14 16 18 20

F
ra

ct
io

n
of

 th
e

tr
ee

 v
is

ite
d

k

Patricia trie
k-d tree

TST

 0.01

 0.1

 1

 10

 100

 2 4 6 8 10 12 14 16 18 20

R
an

ge
 s

ea
rc

h
tim

e(
m

s)

k

Patricia trie
k-d tree

TST
Naive

(b) query size = 0.1% of space volume

 0.001

 0.01

 0.1

 1

 2 4 6 8 10 12 14 16 18 20

F
ra

ct
io

n
of

 th
e

tr
ee

 v
is

ite
d

k

Patricia trie
k-d tree

TST

 0.1

 1

 10

 100

 2 4 6 8 10 12 14 16 18 20

R
an

ge
 s

ea
rc

h
tim

e(
m

s)

k

Patricia trie
k-d tree

TST
Naive

(c) query size = 1% of space volume

Figure 12: The fraction of the tree visited (left column) and range search
time in milliseconds (right column) for the k-d tree, Patricia trie, TST and
naive range search with k-d query square sizes of (a) 0.01%, (b) 0.1 % and (c)
1% of total space volume (n = 100000 and 2 ≤ k ≤ 20, the average number
of points in range is (a) 10, (b) 100 and (c) 1000).

21

 0.0001

 0.001

 0.01

 0.1

 1

 2 4 6 8 10 12 14 16 18 20

F
ra

ct
io

n
of

 th
e

tr
ee

 v
is

ite
d

k

Patricia trie
k-d tree

TST
 0.01

 0.1

 1

 10

 100

 1000

 2 4 6 8 10 12 14 16 18 20

R
an

ge
 s

ea
rc

h
tim

e(
m

s)

k

Patricia trie
k-d tree

TST
Naive

(a) query size = 0.01% of space volume

 0.0001

 0.001

 0.01

 0.1

 1

 2 4 6 8 10 12 14 16 18 20

F
ra

ct
io

n
of

 th
e

tr
ee

 v
is

ite
d

k

Patricia trie
k-d tree

TST
 0.1

 1

 10

 100

 1000

 2 4 6 8 10 12 14 16 18 20

R
an

ge
 s

ea
rc

h
tim

e(
m

s)

k

Patricia trie
k-d tree

TST
Naive

(b) query size = 0.1% of space volume

 0.0001

 0.001

 0.01

 0.1

 1

 2 4 6 8 10 12 14 16 18 20

F
ra

ct
io

n
of

 th
e

tr
ee

 v
is

ite
d

k

Patricia trie
k-d tree

TST
 1

 10

 100

 1000

 2 4 6 8 10 12 14 16 18 20

R
an

ge
 s

ea
rc

h
tim

e(
m

s)

k

Patricia trie
k-d tree

TST
Naive

(c) query size = 1% of space volume

Figure 13: The fraction of the tree visited (left column) and range search
time in milliseconds (right column) for k-d tree, Patricia trie, TST and naive
range search with the k-d query square sizes of (a) 0.01%, (b) 0.1 % and
(c) 1% of total space volume (n = 1,000,000 and 2 ≤ k ≤ 20, the average
number of points in range is (a) 100, (b) 1000 and (c) 10000)).

22

R∗-tree (the maximum number of children M=3), TST and naive method.
The average number of rectangles in range is shown in Table 2.

Table 2: The average number of rectangles in range (n=100,000).

maxsize 0.001 0.01 0.1
query volume 0.01% 0.1% 1% 0.01% 0.1% 1% 0.01% 0.1% 1%

k=2 11 106 1021 39 175 1232 1217 1783 4343
3 10 103 1015 17 136 1177 339 923 3766
4 10 102 1014 15 127 1175 193 756 3971
5 9 102 1018 13 126 1188 154 745 4387
6 9 102 1014 13 126 1200 142 786 4979
7 9 102 1021 13 128 1223 145 859 5666
8 10 102 1023 13 129 1238 159 976 6494
9 9 102 1021 13 133 1269 173 1081 7388

10 9 102 1025 13 134 1291 193 1277 8530

4.2 Random Query Rectangles

The experimental results of for Patricia tries for k-dimensional points were
shown in Figures 16, in comparison with the k-d tree and TST with F ∈
[0, log2 n], where F denotes the number of data in range. The results of
experiments for Patricia tries for k-dimensional rectangles in Figures 17,
in comparison with the R∗-tree (the maximum number of children M=3)
and TST with F ∈ [0, log2 n]. We tested the Patricia tries with real-life
textual data (names randomly chosen from the Canadian toponymy [22]).
Experimental results are shown in Figures 18 for the fraction of the nodes
visited in the k-d tree, Patricia tries and TST for r = k− 2 (two text strings
per point) with F ∈ [0, log2 n].

23

 0.0001

 0.001

 0.01

 0.1

 1

 2 3 4 5 6 7 8 9 10

F
ra

ct
io

n
of

 th
e

tr
ee

 v
is

ite
d

k

Patricia trie
R*-tree

TST
 0.01

 0.1

 1

 10

 100

 2 3 4 5 6 7 8 9 10

R
an

ge
 s

ea
rc

h
tim

e(
m

s)

k

Patricia trie
R*-tree

TST
Naive

(a) query size = 0.01% of space volume

 0.001

 0.01

 0.1

 1

 2 3 4 5 6 7 8 9 10

F
ra

ct
io

n
of

 th
e

tr
ee

 v
is

ite
d

k

Patricia trie
R*-tree

TST

 0.01

 0.1

 1

 10

 100

 2 3 4 5 6 7 8 9 10

R
an

ge
 s

ea
rc

h
tim

e(
m

s)

k

Patricia trie
R*-tree

TST
Naive

(b) query size = 0.1% of space volume

 0.0001

 0.001

 0.01

 0.1

 1

 2 3 4 5 6 7 8 9 10

F
ra

ct
io

n
of

 th
e

tr
ee

 v
is

ite
d

k

Patricia trie
R*-tree

TST
 0.01

 0.1

 1

 10

 100

 2 3 4 5 6 7 8 9 10

R
an

ge
 s

ea
rc

h
tim

e(
m

s)

k

Patricia trie
R*-tree

TST
Naive

(c) query size = 1% of space volume

Figure 14: The fraction of the tree visited(left column) and range search time
in milliseconds(right column) for the R∗-tree, Patricia trie, TST and naive
range search for k-d query square sizes of (a) 0.01% (b) 0.1% and (c) 1% of
total space volume (n = 100,000, 2 ≤ k ≤ 10 and maxsize=0.001).

24

 0.001

 0.01

 0.1

 1

 2 3 4 5 6 7 8 9 10

F
ra

ct
io

n
of

 th
e

tr
ee

 v
is

ite
d

k

Patricia trie
R*-tree

TST
 0.01

 0.1

 1

 10

 100

 2 3 4 5 6 7 8 9 10

R
an

ge
 s

ea
rc

h
tim

e(
m

s)

k

Patricia trie
R*-tree

TST
Naive

(a) query size = 0.01% of space volume

 0.001

 0.01

 0.1

 1

 2 3 4 5 6 7 8 9 10

F
ra

ct
io

n
of

 th
e

tr
ee

 v
is

ite
d

k

Patricia trie
R*-tree

TST
 0.01

 0.1

 1

 10

 100

 2 3 4 5 6 7 8 9 10

R
an

ge
 s

ea
rc

h
tim

e(
m

s)

k

Patricia trie
R*-tree

TST
Naive

(b) query size = 0.1% of space volume

 0.001

 0.01

 0.1

 1

 2 3 4 5 6 7 8 9 10

F
ra

ct
io

n
of

 th
e

tr
ee

 v
is

ite
d

k

Patricia trie
R*-tree

TST
 0.01

 0.1

 1

 10

 100

 2 3 4 5 6 7 8 9 10

R
an

ge
 s

ea
rc

h
tim

e(
m

s)

k

Patricia trie
R*-tree

TST
Naive

(c) query size = 1% of space volume

Figure 15: The fraction of the tree visited(left column) and range search time
in milliseconds(right column) for the R∗-tree, Patricia trie, TST and naive
range search for k-d query square sizes of (a) 0.01%, (b) 0.1% and (c) 1% of
total space volume (n = 100,000, 2 ≤ k ≤ 10 and maxsize=0.01).

25

 0.0001

 0.001

 0.01

 0.1

 1

 2 4 6 8 10 12 14 16 18 20

F
ra

ct
io

n
of

 th
e

tr
ee

 v
is

ite
d

k

Patricia trie
k-d tree

TST

 1e-005

 0.0001

 0.001

 0.01

 0.1

 1

 2 4 6 8 10 12 14 16 18 20

F
ra

ct
io

n
of

 th
e

tr
ee

 v
is

ite
d

k

Patricia trie
k-d tree

TST

Figure 16: The fraction of the tree visited for the k-d tree, Patricia trie, and
TST range search for (left) n=100,000 and (right) n=1,000,000 k-dimensional
points (F ∈ [0, log2 n] and 2 ≤ k ≤ 20).

 0.0001

 0.001

 0.01

 0.1

 1

 2 4 6 8 10 12 14 16 18 20

F
ra

ct
io

n
of

 th
e

tr
ee

 v
is

ite
d

k

Patricia trie
R*-tree

TST

 0.0001

 0.001

 0.01

 0.1

 1

 2 4 6 8 10 12 14 16 18 20

F
ra

ct
io

n
of

 th
e

tr
ee

 v
is

ite
d

k

Patricia trie
R*-tree

TST

Figure 17: The fraction of the tree visited for the R∗-tree, Patricia trie,
and TST range search for (left) n=100,000 and (right) n=1,000,000 random
k-dimensional rectangles (F ∈ [0, log2 n], 2 ≤ k ≤ 20 and maxsize=0.01).

26

 0.0001

 0.001

 0.01

 0.1

 1

 4 6 8 10 12 14 16 18 20

F
ra

ct
io

n
of

 th
e

tr
ee

 v
is

ite
d

k

Patricia trie
k-d tree

TST

 1e-005

 0.0001

 0.001

 0.01

 0.1

 1

 4 6 8 10 12 14 16 18 20

F
ra

ct
io

n
of

 th
e

tr
ee

 v
is

ite
d

k

Patricia trie
k-d tree

TST

Figure 18: The fraction of the tree visited for the k-d tree, Patricia trie, and
TST range search for (left) n=100,000 and (right) n=1,000,000 k-dimensional
combined textual and spatial data (F ∈ [0, log2 n], r = k−2 and 3 ≤ k ≤ 20.
The textual data are chosen from Canadian toponymy).

5 Conclusions and Future work

A range search algorithm for Patricia tries for k-d textual and spatial data
was presented, theoretically analyzed and experimentally compared to the
k-d tree, R∗-tree, TST and the naive method. Our expected time analysis of
range search for k-d Patricia trie compares well with the experimental results.
The experimental results show that the Patricia tries outperform k-d tree,
R∗-tree and TST when F ∈ [0, log2 n], and when n increases, the fraction of
nodes visited during range search in Patricia tries decreases. However, when
k is increasing, like the k-d tree, R∗-tree, and TST, Patricia tries are limited
by the curse of dimension. Table 3 shows the average height of Patricia tries,
where height+skips means the height of trie plus the length of skipped strings
stored in the internal nodes along the path from the root to the leaf node.
We can see that the height+skips of the trie doesn’t change with the increase
of k. So when k=2, the space of each dimension can be divided into halves
near 17 times averagely from the root to the leaves, the nodes can be pruned
quickly during range search; but when k=20, the space of each dimension
only is divided into halves less than twice averagely, which results in much
more nodes visited during range search. What’s more, when the query size
of the query rectangle |QC| is fixed for the same n, for example, |QC|=0.01,
when k=2, |QC(1)|=|QC(2)|=0.1; when k=20, |QC(p)| = (0.01)1/20 ≈ 0.794,
1 ≤ p ≤ 20. So the number of nodes visited and the range search time grows
exponentially with the increase of k.

27

Table 3: The average height of Patricia tries (n=100,000).

k=2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
height 22 23 22 22 23 22 22 23 22 23 22 22 22 22 22 23 22 22 22

height+skips 35 34 34 34 34 34 33 34 34 34 34 34 34 35 34 34 34 34 34

References

[1] P. Agarwal. Handbook of Discrete and Computational Geometry, chapter
Range Searching, pages 575–598. CRC Press LLC, Boca Raton, FL, 1997.

[2] L. Arge, M. de Berg, H. J. Haverkort, and K. Yi. The priority r-tree: a
practically efficient and worst-case optimal r-tree. In Proc. of the 2004 ACM
SIGMOD international conference on Management of data, pages 347–358,
2004.

[3] N. Beckmann, H. Kriegel, R. Schneider, and B. Seeger. The R*-tree: an
efficient and robust access method for points and rectangles. In Proc. ACM
SIGMOD Int. Conf. on Management of Data, pages 322–331, Atlantic City,
NJ, May 23-25 1990.

[4] J. Bentley. Multidimensional binary search trees for associative searching.
Communications of the ACM, 18(9):509–517, 1975.

[5] J. Bentley. Multidimensional binary search trees in database applications.
IEEE Trans. Softw. Eng., 5(4):333–340, 1979.

[6] J. Bentley and J. Friedman. Data structures for range searching. ACM
Computing Surveys, 11(4):397–409, December 1979.

[7] J. Bentley and H. Maurer. Efficient worst-case data structures for range
searching. Acta Informatica, 13:155–168, 1980.

[8] J. Bentley and R. Sedgewick. Fast algorithms for sorting and searching strings.
In Proc. of the eighth Annual ACM-SIAM Symposium on Discrete Algorithms,
pages 360–369, January 1997.

[9] L. Bu and B. Nickerson. Multidimensional orthogonal range search using
tries. In Canadian Conference on Computational Geometry, pages 161–165,
Halifax, N.S., August 2003.

[10] P. Chanzy, L. Devroye, and C.Zamora-Cura. Analysis of range search for
random k-d trees. Acta Informatica, 37(4/5):355–383, 2001.

[11] B. Chazelle. A functional approach for data structure and its use in mul-
tidimensional searching. SIAM Journal of Computing, 17(3):427–462, June
1988.

[12] B. Chazelle. Lower bounds for orthogonal range search: II. the arithmatic

28

model. Journal of the ACM, 37(3):39–463, July 1990.
[13] B. Chazelle. Lower bounds for orthogonal range searching: I. the reporting

case. Journal of the ACM, 37(2):200–212, April 1990.
[14] D. Comer. The ubiquitous b-tree. Computing Surveys, 11(2):121–137, 1979.
[15] D. Comer and R. Sethi. The complexity of trie index construction. Journal

of the ACM, 24(3):377–387, 1970.
[16] L. Devroye, J. Jabbour, and C. Zamora-Cura. Squarish k-d trees. SIAM

Journal of Computing, 30(5):678–700, 2000.
[17] H. Edelsbrunner. A new approach to rectangle intersection part i. Int. J.

Computer Mathematics, 13:209–219, 1983.
[18] E. Fredkin. Trie memory. Communiations of the ACM, 3:490–500, 1960.
[19] J. Friedman, F. Baskett, and L. Shustek. An algorithm for finding nearest

neighbors. IEEE Trans. Comput., 24(10):1000–1006, 1975.
[20] J. Friedman, J. Bentley, and R. Finkel. An algorithm for finding best matches

in logarithmic expected time. ACM Trans. Math. Softw., 3(3):209–226, 1977.
[21] V. Gaede and O. Gunther. Multidimensional access methods. ACM Comput-

ing Surveys, 30:170–231, 1998.
[22] GeoBase. Homepage: http://www.geobase.ca, 2004.
[23] A. Guttman. R-trees: a dynamic index structure for spatial searching. In Proc.

ACM SIGMOD Int. Conf. on Management of Data, pages 47–57, Boston, MA,
June 18-21 1984.

[24] H. Jagadish, N. Koudas, and D. Srivastava. On effective multi-dimensional
indexing for strings. In Proceedings of the 2000 ACM SIGMOD international
conference on Management of data, pages 403–414, Dallas, Texas, USA, May
2000.

[25] G. Kedem. The quad-CIF tree: A data structure for hierarchical on-line
algorithms. In Proc. ACM/IEEE 19th Design Automation Conf., pages 352–
357, Las Vegas, NV, June 1982.

[26] P. Kirschenhofer and H. Prodinger. Multidimensional digital searching-
alternative data structures. Random Structures and Algorithms, 5(1):123–134,
1994.

[27] D. Knuth. The art of computer programming: sorting and searching, volume 3,
pages 492–512. Addison-Wesley, Reading, Mass., 2 edition, 1998.

[28] R. la Briandais. File searching using variable length keys. In Proc. Western
Joint Computer Conference, volume 15, pages 295–298, San Francisco, 1959.

[29] D. Lee and C. Wong. Quintary trees: a file structure for multidimensional
database systems. ACM Transaction on Database Systems, 5:339–353, 1980.

[30] R. Lee, Y. Chin, and S. Chang. Application of principal component analysis
to multi-key searching. IEEE Trans. Softw. Eng., 2(3):185–193, 1976.

[31] K. Mehlhorn. Data structures and algorithms 3: Multidimensional tree struc-

29

tures and computational geometry. Springer-Verlag, Berlin, 1984.
[32] D. Morrison. Patricia - practical algorithm to retrieve information coded in

alphanumeric. Journal of the ACM, 14(4):514–534, October 1968.
[33] J. Robinson. The k-d-b-tree: A search structure for large multidimensional

dynamic indexes. In Proc. ACM SIGMOD Int. Conf. on Management of
Data, pages 10–18, Ann Arbor, Michigan, April 29 - May 1 1981.

[34] N. Roussopoulos and D. Leifker. Direct spatial search on pictorial databases
using packed R-trees. In Proc. ACM SIGMOD Int. Conf. on Management of
Data, pages 17–31, Austin, TX, May 28-31 1985.

[35] H. Samet. The design and analysis of spatial data strutures. Addison-Wesley,
Reading, MA, 1990.

[36] R. Sedgewick. Algorithms in C++, chapter Radix Search, pages 623–668.
Addison-Wesley, Reading, Mass., 2001.

[37] T. Sellis. Efficiently supporting procedures in relational database systems.
In Proc. ACM SIGMOD Int. Conf. on Management of Data, pages 278–291,
San Francisco, CA, May 27-29 1987.

[38] W. Szpankowski. Patricia tries again revisited. Journal of the ACM,
37(4):691–711, 1990.

30

