
An investigation of multi-level k-ranges

by

Sean M. Falconer and Bradford G. Nickerson

TR04-163, June 30, 2004

Faculty of Computer Science

University of New Brunswick

Fredericton, N.B. E3B 5A3
Canada

Phone: (506) 453-4566

Fax: (506) 453-3566

Email: fcs@unb.ca
www: http://www.cs.unb.ca

Abstract

Multi-level k-ranges are an efficient theoretical data structure for range searching in-
troduced by J. L. Bentley and H. A. Maurer. Bentley and Maurer showed that a 1-level
k-range offers O(k log N + A) query time, where k is the number of dimensions, N is
the number of data points and A is the number of points matching the query at the ex-
pense of O(N2k−1) storage. They also introduced the multi-level k-range, which offers
slightly slower query time but with O(N1+ε) storage for any fixed values of k and ε > 0.

In this paper, we investigate an implementation of the multi-level k-range data struc-
ture. The `-level k-range is compared to naive and R*tree search over N randomly
generated k-d points. We show that the R*tree search is significantly faster and that
even naive search is faster for most test cases. Results indicate that multi-level k-ranges
are not competitive due to their (previously unreported) complexity. Our results indi-
cate that `-level k-ranges require Q(N, k, `) = O((2`)(k−1)(log N + A)) time for range
search. We show that S(N, k, `) = O(N1+2(k−1)/`) and when N 6= a` where a and `
are positive integers, S(N, k) = Θ(N1+2(k−1)/ log2 N).

1

Contents

1 Introduction 4

2 Data Structures 4
2.1 One-level k-range . 4
2.2 Multi-level k-range . 6
2.3 Analysis . 9
2.4 Range Indexing . 10

3 Algorithms 11
3.1 Construction Algorithm . 12
3.2 Search Algorithm . 13
3.3 Indexing Algorithm . 13

4 Experimental Results 14
4.1 Test Algorithms . 14

4.1.1 Random Number Generation . 15
4.1.2 Random point generation . 15
4.1.3 Random orthogonal query generation 16

4.2 Experimental Results . 17
4.2.1 Range Search Test . 17
4.2.2 Search Time Analysis . 19
4.2.3 Level Analysis . 19
4.2.4 Level Experiment . 20
4.2.5 Storage Complexity Test . 22

5 Conclusions 23

List of Figures

1 Visual representation of a 1-range [4]. 5
2 Visual representation of a 2-level 2-range [4]. 7
3 Example of searching a 2-level 2-range [4]. 7
4 Level 1 of example 2-level 2-range. 8
5 Level 2 of example 2-level 2-range. 9
6 Construction algorithm for a multi-level k-range. 12
7 Search algorithm for a multi-level k-range. 13
8 Range indexing algorithm . 14
9 Main test process. 14
10 Pseudocode of random number generator. 15
11 Pseudocode to generate N k-d uniformly distributed random points. . . 16
12 Pseudocode for generating random search query. 17
13 Experimental and theoretical storage allocation. 21
14 Multi-level k-range storage allocation in bytes. 22

2

List of Tables

1 Data structure comparison for range searching in milliseconds 18
2 Storage allocation as ` increases . 21
3 Multi-level k-range storage complexity results 22

3

1 Introduction

The study of data structures that support efficient searching has been one of the funda-
mental research areas of computer science for many years. Donald Knuth [8] dedicated
much of his third edition of The Art of Computer Programming to the subject of single
key searching. However, only 20 pages are dedicated to the section on secondary key
searching, and Knuth points out that very little was known at the time of his writing.
Since then, there has been a large amount of research done in the area of “multikey
searching” and we now have a large variety of efficient multi-dimensional data struc-
tures for addressing this problem.

The specific problem of searching we are concerned with is called “range searching”.
Range searching is the process of retrieving appropriate records given a query. An or-
thogonal range query is a query that asks for all data with key values within a specified
range, that is, data between an upper an lower bound [3]. This can also be phrased in
geometric terms, where we are given set F of N points in k-space to preprocess into
some data structure. After these points are preprocessed into our given data structure,
we answer queries which ask for all points x ∈ F such that the first coordinate, x1,
is in some range [L1,H1], the second coordinate x2 ∈ [L2,H2], . . ., and xk ∈ [Lk,Hk] [4].

Range searching is necessary for a wide range of applications, including databases,
geographic data, and computer graphics. In this paper, we will be investigating imple-
mentations of a theoretical data structure introduced by Bentley and Maurer [4]. In
their paper, they proposed three data structures: k-ranges, multi-level k-ranges, and
non-overlapping k-ranges. The first had optimal retrieval time but at the cost of ex-
ponential storage. The second, which we implemented, has slightly increased retrieval
time but reduced storage. The third has even slower query time, but optimal stor-
age space. They introduced these data structures in order to explore the worst-case
complexity of range searching, therefore, the emphasis of their paper was “theoreti-
cal”, and they ignored the actual performance of the algorithms. We implemented the
multi-level k-range in an effort to explicitly verify the asymptotic query time and also
explore whether this data structure can be used for any “practical” applications.

2 Data Structures

As mentioned, Bentley and Maurer introduced three new data structures in their paper.
In our paper, we will only be concerned with two of these, the 1-level k-range, and the
multi-level or `-level k-range. Both of these data structures are static in the sense that
they do not support insertion or deletion. In this section, P (N, k), S(N, k), and Q(N, k)
denote the preprocessing time, storage space, and range search time respectively.

2.1 One-level k-range

The first step in constructing a k-range1 is to convert our N real points of set F into
the integer space. This is done by sorting each point x ∈ F by its corresponding k

1In this section, we will denote all 1-level k-ranges simply as k-ranges.

4

dimensions. Let x = (x1, x2, . . . , xk), then x = (x1, x2, . . . , xk) where xi corresponds to
the rank of xi with respect to all other points sorted on the i-th coordinate. Therefore,
all points are “normalized” by sorting all dimensions in ascending order and removing
duplicates, this can be done in O(kN log N) with O(N) space.

Furthermore, any query of the form [L1,H1] . . . [Lk,Hk] is normalized as [L1, H1] . . . [Lk, Hk]
over the points 1 to N . This can be done with 2k log N comparisons [4]. This nor-
malization time was taken into account by Bentley and Maurer in their analysis of the
preprocessing and query times of each data structure.

Let us first consider a 1-range. A 1-range is a linear array G of N elements where
each element consists of a set of points Gi and a pointer pi (1 ≤ i ≤ N). Gi is the set
of all points in F with first coordinate equal to i, and pi points to the next nonempty
element Gj . For instance, consider the set {(1, 6), (3, 3), (5, 1), (5, 5), (6, 2)}, then Fig-
ure 1 corresponds to the 1-range storing these points. As we can see, pointer p1 for
element M1 points to M3 since M2 is empty.

Figure 1: Visual representation of a 1-range [4].

When k = 1, the search is simple and takes O(A) time where A is the number of points
found. We also have to take into account the normalization time, which gives us the
following complexities:

P (N, 1) = O(N log N),

S(N, 1) = O(N), and

Q(N, 1) = O(log N + A).

Before we can consider k = 2 we must first introduce some new notation. For all i, j, t

with 1 ≤ i ≤ j ≤ N and 1 ≤ t ≤ k let F
(t)
i,j be the subset of F containing all points

whose t-th coordinate is between i and j.

F
(t)
i,j = {x|x ∈ F , i ≤ xt ≤ j}

So for k = 2, we must store a 2-range of F obtained by storing each of the sets F
(2)
i,j

for 1 ≤ i ≤ j ≤ N as a 1-range Ri,j and by a 2-d array P of points, with each element
Pi,j (1 ≤ i ≤ j ≤ N) pointing to Ri,j . To carry out a range search [L1, H1], [L2, H2],
we search in the 1-range F

(2)

L2,H2
for points between L1 and H1. This structure yields

the following complexities:
P (N, 2) = O(N3),

S(N, 2) = O(N3), and

Q(N, 2) = O(log N + A).

5

Now let us consider the general case, k ≥ 2. We store F as follows. First store
F

(k)
i,j as (k-1)-ranges, Ri,j , with a 2-d array P of pointers, Pi,j , pointing to Ri,j . To

carry out a range search [L1, H1], [L2, H2] . . . [Lk, Hk] in F , we carry out a range search
[L1, H1], [L2, H2] . . . [Lk−1, Hk−1] in F

(k)

Lk,Hk
. We continue this process until we search

for [L1, H1] in a 1-range. The generalized k-range has the following complexities:

P (N, k) = O(N2k−1),

S(N, k) = O(N2k−1), and

Q(N, k) = O(k log N + A).

As we can see, the k-range’s preprocessing and storage is exponential in k. Also, the
query time is extremely fast, the O(k log N) factor is from normalizing the query, and
O(A) is the number of points reported. The query time makes this data structure
attractive, however, the preprocessing and storage is too large to realistically consider
this for practical applications.

2.2 Multi-level k-range

In the previous section we discussed k-ranges, which have extremely efficient range
searching times with the expense of exponential storage and preprocessing. The k-
ranges explicitly stored all possible queries, or a complete covering over each coordi-
nate interval, this lead to the exponential storage. In this section we will discuss the
multi-level k-range, which is a modification of the k-ranges designed to reduce storage
and preprocessing time.

Let us first consider the 2-level structure for a 2-level 2-range. On the first level,
we consider one “block” which contains N1/2 “units”, each containing N1/2 points
each. In Bentley and Maurer’s paper, they assumed N is a perfect square, in our
actual implementation we take the ceiling of this value, but for now, assume N is a
perfect square. In the first level we store all C(N1/2 + 1, 2) = O(N) consecutive in-
tervals of units, that is O(N) 1-ranges, where C(n, p) is the number of ways to choose
p element subsets from a set of n elements. Rather than storing 1-ranges as a linked-
list of N points as in the k-ranges, we store the points in an array or vector sorted
on the x-value, this way we have storage proportional to the number of points stored
in the range. In the second level, we have N1/2 blocks, each containing N1/2 units.
Within each block, we store all possible intervals of units as 1-ranges. This structure
can be seen in Figure 2 for N = 9. In the figure, the bold vertical lines represent block
boundaries and the regular vertical lines represent unit boundaries. Each horizontal
line represents 1-ranges; these 1-ranges do not extend across block boundaries.

6

Figure 2: Visual representation of a 2-level 2-range [4].

To perform a range search on a 2-level 2-range we must choose a covering of the y-
range from both the first and second level. This can be done by selecting at most
one covering from level 1 and two from level 2. We can see this in Figure 3, where
the crossed-hatched sections represent the coverings from each level, these coverings
represent the ranges we must search.

Figure 3: Example of searching a 2-level 2-range [4].

Example 2.2.1: 2-level 2-range
Consider the following example of constructing and searching a 2-level 2-range.

Let F = {(8, 6), (18, 28), (2, 1), (21, 86), (32, 34), (3, 18), (7, 13), (22, 146), (51, 62)}.

Sort these points on both the x and y coordinate values:

Rank: 1 2 3 4 5 6 7 8 9
Sorted on x: 2 3 7 8 18 21 22 32 51
Sorted on y: 1 6 13 18 28 34 62 86 146

7

Now F = {(4, 2), (5, 5), (2, 1), (6, 8), (8, 6), (2, 4), (3, 3), (7, 9), (9, 7)}. This allows us to
build the following 2-level 2-range.

Figure 4: Level 1 of example 2-level 2-range.

8

Figure 5: Level 2 of example 2-level 2-range.

Consider the range query [3, 25], [4, 65]. When we normalize this query it becomes
[2, 8], [2, 7]. This is normalized by converting the Li’s to the rank of the first value
greater than or equal to it in F , and the Hi’s to the largest rank that is less than or
equal to it. To answer this query, we must search at most 3 coverings of the y-range.
For this particular query, we find that F

(2)
4,6 corresponds to a complete covering in level

1. This leaves at most two coverings in level 2 to search. In this case, we must search
F

(2)
2,3 and F

(2)
7,7 . The F (2) ranges searched for this example are shaded in Figure 3. �

2.3 Analysis

For a 2-level 2-range, we search at most 3 1-ranges, and each search can be conducted
in logarithmic time, so we have

Q(N, 2) = O(log N + A).

Furthermore, the storage and preprocessing have now been reduced to

S(N, 2) = O(N2), and

P (N, 2) = O(N2).

Now we must consider the case where ` > 2 and k > 2. Firstly, consider an `-level
2-range. In this case, on the first level we have one block containing N1/` units with
a maximum of N points each. The second level has N1/` blocks each containing N1/`

9

units with a maximum of N1−1/` points each. On level i we store N (i−1)/` blocks, each
containing C(N1/`, 2) = O(N2/`) intervals representing at most N1−(i−1)/` points [4].
(Bentley and Maurer’s paper generalizes the maximum number of points per unit as
N1−(i+1)/`, but this is in fact a typo, it should have been N1−(i−1)/` points.) To an-
swer a query, we select an appropriate covering of the query’s y-range for each level and
then search the corresponding 1-ranges (see Figure 7 for pseudocode). Furthermore,
the ` level structure gives us S(N) = P (N) = O(N1+2/`), so as we increase levels, we
decrease storage and preprocessing, but increase search time by having to search at
most an additional 2` ranges.

Finally, lets consider the `-level k-range structure. An `-level k-range is inductively
constructed out of `-level (k-1)-ranges. This is done recursively by building `-level
(k-1)-ranges over the k-th coordinate, then by building `-level (k-2)-ranges over the
(k-1)-th coordinate, and so on (see Figure 6 for pseudocode). Bentley and Maurer
stated that by choosing ` as a function of k and ε, for any fixed k and ε > 0, the
generalized `-level k-range has the following complexities:

P (N) = S(N) = O(N1+ε), and

Q(N) = O(log N + A).

in order to understand the relationship between `, k, and N . Since Bentley and Maurer
did not show the exact calculation for ε, and this factor is important to know in order
to understand the relationship between `, k, and N , we further analyze the storage
complexity. A recursion relation for the storage complexity can be defined as follows:

S(N, k, `) =
∑̀
i=1

N (i−1)/`C(N1/`, 2)S(N1−(i−1)/`, k − 1),

where we sum the total storage from i = 1 to i = `, multiplying the storage of the
blocks by the storage for the units and recursing on the maximum number of points
and k − 1. Solving the recursion reveals the following value for S(N, k):

S(N, 1, `) = O(N)
S(N, 2, `) = O(N1+2/`)
S(N, 3, `) = O(N2/`)O(N1+2/`)
S(N, 4, `) = O(N2/`)O(N2/`)O(N1+2/`)
...
S(N, k, `) = O(N1+2(k−1)/`).

The asymptotic analysis indicates that by choosing ` = 2(k − 1), we should be able to
obtain O(N2) storage. In section 4.2.5 we verify this result empirically.

2.4 Range Indexing

In Bentley and Maurer’s complexity analysis, they assume that the implementation of
the multi-level k-range has O(1) lookup time for each range structure, and that each
level has at a fixed size with respect to the number of blocks, units, and points. Al-
though they did not discuss in their paper how to do this, it can be done by indexing

10

the constructed ranges in a canonical form.

Consider the 2-level 2-range with N = 9. For each unit, we assign to ranges start-
ing from the left most unit boundary to be indexed with the lowest possible values. So,
for level 1 of our 2-level 2-range, the ranges F

(2)
1,3 , F

(2)
1,6 , and F

(2)
1,9 would be indexed with

0, 1, and 2 respectively. For the next unit, we perform the same operation, but account
for the previously constructed ranges, therefore, the ranges F

(2)
3,6 and F

(2)
3,9 have indices

of 0 and 1, but since there has been 3 previously constructed ranges, their indices are
offset to be 3 and 4. Finally, F

(2)
6,3 would be indexed as 5. Indexing the ranges for

level 2 is slightly more complicated because we now have to consider multiple blocks.
Since each block has the same number of ranges (ie. C(N1/`, 2)), we simply need to
calculate the current block that we are in. This can be done by taking bi/BW c, where
i corresponds to left range boundary of F

(2)
i,j and BW is the block width. Then, to

calculate the index, we add the number of ranges per block multiplied by the current
block number plus the index calculated based on the unit. All of these calculations can
be done in constant time (see Figure 8 for pseudocode).

3 Algorithms

In this section we introduce the algorithms used to construct, search, and perform the
constant time range lookups for the multi-level k-range data structure. The algorithms
accuracy was validated by comparing the search results to the results obtained through
naive searching.

Assume that the construction and search algorithms are part of a KRange object,
and that this object has local values for k and `. Also, this object has a local array
called level, where level[i] stores the k-ranges for the ith level. Finally, assume that
ranges are indexed starting at zero, and a range F

(t)
i,j holds values with t-th coordinate

ranks from i to j − 1 inclusive.

11

3.1 Construction Algorithm

ConstructRange(I: array of point data, ISize: size of I, L: left value, R: right value)
1 if k = 1
2 then ConstructOneRange(I, ISize, L, R)
3 return
4
5 /* get the length of the largest range */
6 maxrank ← I[ISize].Ranks[k], levelRootOfN ← dmaxrank1/le, M ← levelRootOfN l

7
8 /* initialize range values */
9 numOfBlocks← 1, blockWidth←M

10 expansion← dN1/le, unitWidth← dblockWidth/levelRootOfNe
11 for i← 0 to `− 1 /* construct each level */
12 do
13 startOfBlock ← 0, endOfBlock ← blockWidth
14 for cb← 0 to numOfBlocks− 1 /* construct each block */
15 do
16 for cu← startOfBlock to endOfBlock − 1, cu += unitWidth /* construct each unit */
17 do
18 rside← cu + unitWidth− 1
19 rangeData← data from I that falls between cu and right
20 if rangeData is not empty
21 then level[i].F (k)

cu,rside+1 ← new KRange object with k-1 dimensions and ` levels

22 level[i].F (k)
cu,rside+1.ConstructRange(rangeData, cu, right)

23
24 /* successively build units */
25 for rs← rside + unitWidth to rs < endOfBlock, rs += unitWidth
26 do rangeData← data from I that falls between cu and rs
27 if rangeData is not empty
28 then level[i].F (k)

cu,rs ← new KRange object with k-1 dimensions and ` levels
29 level[i].F (k)

cu,rs.ConstructRange(rangeData, cu, rs)
30
31
32 startOfBlock ← endOfBlock, endOfBlock += blockWidth
33
34 numOfBlocks *= levelRootOfN
35 blockwidth /= levelRootOfN , unitWidth /= levelRootOfN

Figure 6: Construction algorithm for a multi-level k-range.

12

3.2 Search Algorithm

SearchRange(L: left point, R: right point, k)
1 yi← L.Ranks[k], yj ← R.Ranks[k]
2 if k = 1
3 then SearchOneRange(yi, yj), return
4 numOfBlocks← 1, blockWidth←M
5 unitWidth← dblockWidth/levelRootOfNe
6 for i← 0 to `− 1
7 do /* Calculate the complete covering for level i*/
8 l← dyi/unitWidthe ∗ unitWidth
9 r ← b(yj + 1)/unitWidthc ∗ unitWidth

10 if blocks← 1 OR rprev < lprev
11 then if l < r
12 then F

(k)
l,r .SearchRange(L, R, k-1)

13 else if l < lprev

14 then F
(k)
l,lprev.SearchRange(L, R, k-1)

15 if rprev < r

16 then F
(k)
rprev,r.SearchRange(L, R, k-1)

17 lprev ← l, rprev ← r
18 numOfBlocks *= levelRootOfN
19 blockwidth /= levelRootOfN
20 unitWidth /= levelRootOfN

Figure 7: Search algorithm for a multi-level k-range.

3.3 Indexing Algorithm

The following algorithm calculates the array index, in constant time, that corresponds
to the given left and right boundary values based on the block width and unit width.

13

GetRangeIndex(I: left boundary, J: right boundary, BW: block width, UW: unit width)
1 /* set the current block value */
2 CB ← bi/BW c
3
4 /* set t to be the i value based on the current block, that is,
5 if i is the left value of the first unit in any block, t would be 0 */
6 t← levelRootOfN − (i mod BW)/UW
7
8 /* set the index; first offset it based on the current block */
9 index← CB ∗ levelRootOfN ∗ (levelRootOfN + 1)/2

10
11 /* now offset based on the current unit; this calculates the number of units
12 per block and subtracts off the number of units we’ve seen so far (ie. how many indices have
13 been assigned), then it adds the order in which j gets assigned. */
14 index← index + (levelRootOfN ∗ (levelRootOfN + 1)− t ∗ (t + 1))/2 + (j − i)/UW
15
16 return index− 1

Figure 8: Range indexing algorithm

4 Experimental Results

We randomly generate N points which satisfy the uniform distribution and store them
as multi-level k-ranges. Then we randomly generate range queries of varying size and
search the k-ranges with these queries. The following sections contain the algorithms
used for random number generation as well as the main test algorithm.

4.1 Test Algorithms

The main test algorithm is shown below in Figure 9.

MainTest()
1 for k ← 2 to MAX K
2 do
3 for i← 0 to |NPOINTS|
4 do /* create NPOINTS[i] points and store them in an l-level k-range */
5 call generatePoints
6 for q ← 0 to NQUERY
7 do call generateQuery to generate and search a query

Figure 9: Main test process.

14

4.1.1 Random Number Generation

The random number generator is based on Knuth’s algorithm in Section 3.6 of [8]. It
implements the best linear congruential random number generator proposed by D. H.
Lehmer. The algorithm can be seen in Fig. 10. It returns a random number between
min and max. The routine RAN START and RAN ARR NEXT are from Knuth’s
algorithm [7], where RAN START sets the seed for the random number generator
based on the current time and RAN ARR NEXT contains the continuous sequence of
random numbers.

generateRand(min,max)
1 if first time call
2 then SRANDOM(time(NIL)) /* set a random seed based on current time */
3 RAN START(random()) /* call Knuth’s function to start */
4
5 /* get the next random number */
6 randomNumber ← RAN ARR NEXT() mod (max−min + 1)
7 return randomNumber + min

Figure 10: Pseudocode of random number generator.

4.1.2 Random point generation

The algorithm shown below in Fig. 11, generates N uniform randomly distributed
points, then computes the rankings for each dimension, and finally inserts the points
into the multi-level k-range.

15

generatePoints(k,N)
1 for i← 0 to N
2 do
3 /* create a k dimensional point */
4 Point p(k)
5 for ki← 0 to k
6 do /* store random value in kith dimension */
7 p.coordinate[ki] = generateRand(MIN, MAX)
8 /* add coordinate value to an array for ranking input */
9 rankArray[ki][i]← p.coordinate[ki]

10
11 /* add point p to the list of points */
12 pointArray.Add(p)
13
14
15 /* call function to rank the coordinate values */
16 rankInput(pointArray, rankArray)
17
18 /* create KRange object, and construct the range */
19 KRange krange(k, l)
20 krange.constructRange(pointArray)

Figure 11: Pseudocode to generate N k-d uniformly distributed random points.

4.1.3 Random orthogonal query generation

We generate NQUERY = 300 random k-d queries for each set of N points. For each
query, we calculate the time taken to find the points in range, and then store that value
if the percentage falls within the following query window sizes: (0, log N1/2), (log N1/2,
log N), and (log N , log N2). After the queries are run, we know the total time it took
to find points within each boundary and how many times we found that many points;
this allows us to calculate the average time to find points in range for each query win-
dow size. Figure 12 below shows the algorithm used to perform this operation. The
function getRank retrieves the rank of the kth coordinate value in O(log N) time. The
function QWindowSize determines the index in the array queryInfo in which to store
the time based on how many points were found in range.

16

generateQuery(k)
1 /* create points that represent the query */
2 Point pLeft, pRight
3 for ki← 0 to k
4 do
5 pLeft.coordinate[ki]← generateRand(MIN, MAX)
6 pRight.coordinate[ki]← generateRand(MIN, MAX)
7
8 if pRight.coordinate[ki] < pLeft.coordinate[ki]
9 then swap(pRight.coordinate[ki], pLeft.coordinate[ki])

10
11 pLeft.rank[ki]← getRank(pLeft.coordinate[ki])
12 pRight.rank[ki]← getRank(pRight.coordinate[ki])
13
14 /* create a new Timer object */
15 Timer t
16 /* search the range and report the points to the array inRange */
17 krange.search(pLeft, pRight, inRange)
18
19 /* get the query window index and store information about the time to search */
20 queryInfo[QWindowSize(|inRange|)].Add(t.getT ime())

Figure 12: Pseudocode for generating random search query.

4.2 Experimental Results

Experiments were run on a Sun Microsystem 880 with four 1.2 GHz UltraSPARC III
processors, 16 GB’s of main memory, running Solaris 8. Times were obtained using
the timeval struct, which reports seconds and microseconds.

4.2.1 Range Search Test

Table 1 lists our results from k = 2 up to and including k = 8 for searching using a
naive approach (linear bruteforce search), multi-level k-ranges, and a R*tree [2, 6]. The
first column for each query window size represents the average search time, TNAIV E ,
for the naive approach. The next two columns are TKr/TNAIV E and TR∗/TNAIV E

for TKr equal to the average search time for the multi-level k-range and TR∗ equal to
the average search time for the R*tree. The average for each query window size, [0,
log N1/2), [log N1/2, log N), and [log N , log N2), is calculated over a minimum of 30
queries and a maximum of NQUERY = 300. That is, we process 300 queries for each
row of Table 1, and for each average search time, atleast 30 of those 300 queries fall
within the window size.

The data points and queries were originally generated using the Test Algorithms listed
in section 4.1. The points for each k and N were saved to a file along with the queries,
and then these files were used by the naive and R*tree search. The query window sizes

17

taken into account in the experiment were kept small, in order to avoid the search time
being dominated by reporting. For the multi-level k-range, we used ` = dlog2 Ne in
order to minimize S(N, k) (see Lemma 4.2).

Table 1: Data structure comparison for range searching in milliseconds
N [0, log N1/2) [log N1/2, log N) [log N , log N2)

k = 2 100 0.005 0.83 0.48 0.009 1.09 0.47 0.023 1.07 0.49
1000 0.072 0.59 0.24 0.130 0.82 0.32 0.420 0.98 0.32
10000 0.776 0.35 0.20 1.606 0.75 0.29 5.302 1.03 0.29
100000 15.400 f 0.24 29.277 f 0.35 75.152 f 0.39

k = 3 100 0.005 2.83 0.54 0.011 2.23 0.52 0.024 1.77 0.45
1000 0.059 1.32 0.42 0.137 1.27 0.48 0.335 1.36 0.41
10000 0.745 f 0.31 1.608 f 0.42 4.047 f 0.39
100000 17.035 f 0.35 31.752 f 0.51 65.657 f 0.54

k = 4 100 0.005 6.84 0.52 0.011 6.69 0.63 0.022 4.61 0.43
1000 0.064 5497.56 0.36 0.158 4039.68 0.43 0.341 1572.38 0.43
10000 0.796 f 0.35 1.875 f 0.48 4.507 f 0.59
100000 17.819 f 0.38 38.166 f 0.70 84.830 f 0.57

k = 5 100 0.005 13.43 0.54 0.014 10.83 0.71 0.019 10.80 0.60
1000 0.056 f 0.46 0.187 f 0.51 0.308 f 0.56
10000 0.715 f 0.42 2.077 f 0.53 5.340 f 0.42
100000 17.475 f 0.51 37.654 f 0.90 131.848 f 0.62

k = 6 100 0.005 f 0.62 0.015 f 0.71 0.018 f 0.45
1000 0.048 f <0.01 * * * * * *
10000 0.604 f <0.01 * * * * * *
100000 21.350 f <0.01 * * * * * *

k = 7 100 0.005 f 0.65 * * * 0.023 f 0.57
1000 0.04 f 0.01 * * * * * *
10000 0.586 f <0.01 * * * * * *
100000 35.039 f <0.01 * * * * * *

k = 8 100 0.005 f 0.79 * * * * * *
1000 0.036 f 0.01 * * * * * *
10000 0.587 f <0.01 * * * * * *
100000 36.721 f 0.03 * * * * * *

* - no queries in this range f - failed during construction

As we can see from the above table, the multi-level k-range could not be constructed
for most of the data points. This is because of the memory requirements of the data
structure (see Theorem 4.3). We can also see that the R*tree outperformed the multi-
level k-range in every test and even the naive search was faster for 17 of the 24 test
cases that the multi-level k-range participated in. Section 4.2.2 and 4.2.3 explains why
this poor performance occurs. We discovered that naive search always outperforms
`-level k-ranges for relatively low values of k.

18

4.2.2 Search Time Analysis

We consider ` and k as factors in the query analysis and arrive at the following theorem.

Theorem 4.1. Q(N, k, `) = O((2`)(k−1)(log N + A)).

Proof:
For each k we recursively search a maximum of 2` `-level (k-1)-ranges until k = 1; when
k = 1, the `-level 1-range is searched in O(log N + A) time. The following recursion
can be defined:

Q(N, k, `) ≤ 2`Q(N, k − 1, `).

We solve the recursion as follows:

Q(N, k, `) ≤ 2`Q(N, k − 1, `)
Q(N, k − 1, `) ≤ 2`Q(N, k − 2, `)
Q(N, k − 2, `) ≤ 2`(Q(N, k − 3, `)
...
Q(N, 2, `) = O(log N + A).

This gives Q(N, k, `) ≤ (2`)(k−1)O(log N + A), and Q(N, k, `) = O((2`)(k−1)(log N +
A)).J

By considering ` and k as factors we see that the search time is significantly worse
than the previously reported search time of Q(N) = O(log N + A) for fixed k and
ε > 0. With Q(N, k, `) = O((2`)(k−1)(log N + A)), the multi-level k-range search
becomes worse than naive search for most values of k.

4.2.3 Level Analysis

Bentley and Maurer proved that increasing ` decreases the storage and preprocessing
time for the multi-level k-range by a factor of 2/`. This can be seen by considering
S(N, k) = O(N1+ε), where ε = 2(k− 1)/` as was calculated in section 2.3. As ` grows,
ε gets smaller, and decreases storage.

In their analysis they assumed that N is always equal to a` where a and ` are positive
integers. In general, this will rarely be the case. In order to construct the multi-level
k-range when N 6= a`, the value of N that is used is M = dN1/`e`, rather than N .
If N 6= a`, i.e. N < a`, then M could be very different than N . Therefore, we must
answer two important questions: what value of ` will minimize storage based on N?
and does the storage complexity change if N 6= a`?

Lemma 4.2. S(N, k, `) is minimal when ` = dlog2 Ne.

Proof:
When N 6= a`, where a and ` are positive integers, the value of M = dN1/`e` is used
by the `-level k-range in order construct the block and unit boundaries.

19

For ` ≥ log2 N , and ` < ∞, dN1/`e = 2. This can be rewritten as N1/` ≤ 2, which
reduces to

1
`

log N ≤ log 2,

by taking the logarithm of both sides. We see that increasing ` past log2 N will not
decrease storage because dN1/`e` becomes equivalent to 2` and S(N, k, `) becomes
O(2`1+2(k−1)/`

). Therefore, we can only reduce storage by increasing ` up to dlog2 Ne.
J

Theorem 4.3. S(N, k) = Θ(N1+2(k−1)/ log2 N) for fixed ` = dlog2 Ne, where N 6= a`

(i.e. N < a`), and a and ` are positive integers.

Proof:
From Lemma 4.2 we know that S(N, k, `) is minimal when ` = dlog2 Ne. We can
substitute this value of ` into S(N, k, `). This gives

S(N, k, `) = O(N1+2(k−1)/ log2 N)

and since ` is no longer a factor, we can write the storage as

S(N, k) = O(N1+2(k−1)/ log2 N).

We know this is the minimum possible storage from Lemma 4.2, therefore, S(N, k) =
Θ(N1+2(k−1)/ log2 N).J

Bentley and Maurer only considered the ideal case, ie. N = a`, when they proved
that S(N) = O(N1+ε). The ideal case will rarely occur; in general the minimal storage
is exponential in k. This result helps explain why our multi-level k-range implementa-
tion could not be constructed successfully for most tests in section 4.2.1.

4.2.4 Level Experiment

Table 2 lists our results for constructing multi-level k-ranges with gradually increasing
` values over two 3-dimensional data sets of N = 100 and N = 1000. The Predicted
column lists the calculation of S(N, k, `) for the given value of N , k, and ` based
on S(N, k, `) = O(N1+2(k−1)/`). The Implementation column lists the total allocated
pointers by our algorithm when constructing the multi-level k-range for the given pa-
rameter values. The two bold rows correspond to when ` = dlog2 Ne for N = 100
and N = 1000. We could not verify the storage for large N because of the `-level
k-range memory requirements. As we can see, the value of both the predicted storage
and our actual storage is minimal for this value of `. Furthermore, once ` > dlog2 Ne,
the storage continually increases. This is as predicted by our analysis in the previous
section.

20

Table 2: Storage allocation as ` increases
` Predicted Implementation

N = 100, 2 1000000 486536
k = 3 4 65536 221899

6 59049 482341
7 2047 135043
8 4096 258925

10 16384 988321
12 65535 3902805

N = 1000, 2 1073741824 2618500012
k = 3 4 1679616 19992814

6 1048575 29274490
8 531441 54174922

10 16384 9610069
12 65535 37492425
14 262143 148673341

Figure 13 displays a graph representing Table 2. The y-axis is the logarithmic scale
for the storage capacity for each test case. The x-axis is the number of levels used by
the multi-level k-range.

1000

10000

100000

1e+06

1e+07

1e+08

1e+09

1e+10

2 4 6 8 10 12 14

S(N, k, `)

Number of levels, `

Storage allocation as ` increases

Theoretical: k = 3, N = 100 ♦

♦

♦ ♦
♦

♦

♦
♦

♦
♦

♦
♦

♦
♦

Implementation: k = 3, N = 100 +

+
+ + +

+
+

+
+

+
+

+
+

+

Theoretical: k = 3, N = 1000 �
�

�

�

�
�

�
�

�

�
�

�
�

�

Implementation: k = 3, N = 1000 ×

×

× × ×
× ×

×
×

× × × × ×

Figure 13: Experimental and theoretical storage allocation.

Figure 14 displays a graph representing the bytes allocated by the `-level k-range while
constructing data sets N = 100 and N = 1000 with k = 3. ` is varied from 2 to 14
(the x-axis), and the y-axis represents the bytes allocated.

21

1e+006

1e+007

1e+008

1e+009

1e+010

1e+011

2 4 6 8 10 12 14

Bytes

Number of levels, `

Storage in bytes as ` increases

k = 3, N = 100

♦
♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦

♦
k = 3, N = 1000

+

+
+

+ + + + + + + + + +

+

Figure 14: Multi-level k-range storage allocation in bytes.

4.2.5 Storage Complexity Test

Table 3 lists for different values of N , the total number of pointers allocated by our
implementation of the multi-level k-range data structure during the process of con-
struction. The Ratio column represents the value of pi/pi−1, where pi−1 and pi are the
number of pointers indicated in row i− 1 and i respectively.

Table 3: Multi-level k-range storage complexity results
N Pointers Ratio

k = 2, 100 5005
` = 2 200 20640 4.1239

400 66010 3.1982
800 266062 4.0306

1600 952020 3.5782
3200 3768482 3.9584

Avg. = 3.7779
k = 3, 100 210453
` = 4 200 572364 2.7120

400 3045166 5.3203
800 14247151 4.6786

1600 63319429 4.4444
3200 279432608 4.4106

Avg. = 4.3132

22

In section 2.3 we calculated the storage complexity as S(N, k, `) = O(N1+2(k−1)/`).
This result can be used to approximate S(N, 2, 2) and S(N, 3, 4) for the data points
listed in the above table. Since, for each value of k, we chose ` = 2(k − 1), we obtain
S(N, k, `) = O(N2) for both k = 2 and k = 3. Therefore, since N grows by a factor
of 2 in the above table, the storage grows by a factor of 4. This factor of 4 correlates
with the empirical results shown in Table 3.

We can also see from Table 3 why the multi-level k-range cannot be constructed for
large values of N and k. The total number of allocated pointers becomes very large
as N and k grow. Increasing ` will decrease storage and preprocessing, but due to the
nature of the overlapping ranges, there will be a lot of duplicate pointer references.
Also, since the multi-level k-range works with dN1/`e` when N 6= a`, a lot of empty
units may be created. This adds additional storage without any gain in information or
speed.

5 Conclusions

We’ve fully implemented and tested the multi-level k-range data structure. To our
knowledge, this data structure has never been implemented. We developed and further
analyzed Bentley and Maurer’s storage complexity result by finding the actual value of
ε. This allowed us to empirically verify the storage complexity and demonstrate why
this data structure is not practical for range searching.

We compared multi-level k-ranges to naive and R*tree searching. The testing demon-
strated that the multi-level k-range cannot be constructed for even mid-range values
of N and k. This is due to the design of the data structure where ` must be very large
in order to reduce the storage complexity to a reasonable size. However, we proved
that there is a limit to how large we can make ` and still have it reduce the storage,
therefore, we cannot reduce storage enough to make practical use of this data struc-
ture. Results also demonstrated that the R*tree and naive search out perform the
multi-level k-range search. We showed that when ` and k are considered as factors,
Q(N, k, `) = O((2`)(k−1)(log N + A)). This explained the poor performance of the
multi-level k-range.

We proved that S(N, k) = Θ(N1+2(k−1)/ log2 N) for N 6= a`, where a and ` are pos-
itive integers. This demonstrated why the data structure had problems with storage
during our empirical tests. Due to these new complexity results, the multi-level k-
range could never be competitive for searching or be a “practical” data structure for
an application.

23

References

[1] P. K. Agarwar, “Range Searching”, Handbook of discrete and computational ge-
ometry, CRC Press Inc., Boca Raton, FL, 1997, pp. 575-581.

[2] N. Beckmann, H. P. Kriegal, R. Schneider, and B. Seeger, The R*Tree: An Effi-
cient and Robust Access Method for Points and Rectangles, Proc. ACM SIGMOD
Intl. Symp. on the Management of Data, 1990, pp. 322-331.

[3] J. L. Bentley, J. H. Friedman, “Data Structures for Range Searching”, Computing
Surveys, Vol. 11, No. 4, 1979.

[4] J. L. Bentley, H. A. Maurer, “Efficient Worst-Case Data Structures for Range
Searching”, Acta Informatica, Vol. 13, No. 2, 1980.

[5] B. Chazelle, “Filtering Search: A New Approach To Query-Answering”, SIAM J.
COMPUT., Vol. 15, No. 3, August 1986.

[6] K. K. Chu, Database Research Group: R*tree sourcecode,
http://www.cse.cuhk.edu.hk/ kdd/program.html, Last Visit: April, 2004.

[7] D. E. Knuth, The Art of Computer Programming, Vol. 2, Seminumerical Algo-
rithms, 2nd edition, Addison Wesley, Mass., USA, 1973.

[8] D. E. Knuth, The Art of Computer Programming, Vol. 3, Sorting and Searching,
2nd edition, Addison Wesley, Mass., USA, 1973.

[9] F. F. Yao, “Computational Geometry”, Handbook of Theoretical Computer Sci-
ence: Volume A: Algorithms and Complexity, Elsevier, Amsterdam, 1990, pp.
368-374.

24

