
SWAMI: A Multiagent, Active Representation of a User’s Browsing

Interests

Mark Kilfoil and Ali Ghorbani

Intelligent and Adaptive Systems Group

Faculty of Computer Science

University of New Brunswick

Fredericton, NB, Canada

[mark.kilfoil,ghorbani]@unb.ca

Abstract

The rapid growth of the World Wide Web has com-
plicated the process of web browsing by providing an
overwhelming wealth of choices for the end user. To
alleviate this burden, intelligent tools can do much
of the drudge-work of looking ahead, searching and
performing a preliminary evaluation of the end pages
on the user’s behalf, providing the user with more in-
formation with which to make fewer, more informed
decisions. In order to accomplish this task, however,
the tools need some form of representation of the in-
terests of the user.

This paper describes the SWAMI system; SWAMI
stands for “Searching the Web with Agents having
Mobility and Intelligence”. SWAMI is a prototype
that uses a multi-agent system to represent the in-
terests of the user dynamically, and take advantange
of the active nature of agents to provide a platform
for look-ahead evaluation, page searching, and link
swapping. The collection of agents is organized hi-
erarchically according to the apparent interests of
the user, which are discovered dynamically through
multi-stage clustering. Results from testing show
that such a system is able to follow the multiple
changing interests of a user accurately, and that it
is capable of acting fruitfully on these interests to
provide a user with useful navigational suggestions.

1 Introduction

The continual growth and complexity of the World
Wide Web has ironically impacted its effectiveness in
a negative way. An individual user must sift through
a vast number of pages that are of little or no interest

to them to discover pages that address their interests.

Tools have been developed to assist in this process,
one of the most successful being the keyword-based
search engine, such as Google [Google, 2004]. How-
ever, keyword-based search engines require a user to
carefully craft their query to be an accurate state-
ment of their information desires, which is often dif-
ficult to perform.

Another approach is to build websites that are per-
sonalized or adaptive. Personalized websites allow
users to describe themselves (specifically including
information desires and form factors) and use this
information to modify their responses to suit each
user (or group of similar users) individually. Adap-
tive websites extend the idea of personalized websites
by using artificial intelligence techniques to automat-
ically discover the apparent interests and information
needs of the user.

All of the above approaches attempt to address the
problems with server-side solutions. Alternatively,
one might approach the problem from the client-side,
using the system closest to the user (and thus in the
best position to assess their interests).

This paper introduces the SWAMI system.
SWAMI stands for “Searching the Web with Agents
having Mobility and Intelligence”. This system is a
client-side, multi-agent-based approach to personaliz-
ing the user experience of web browsing. Section 2 de-
scribes the domain of the problem, as well as describ-
ing other approaches, including other agent-based so-
lutions. Section 3 briefly describes the architecture of
the SWAMI system. The implementation details are
described in Section 4. In Section 5, preliminary re-
sults gathered from experimental data are included.
Finally, Section 6 presents a summary of the ben-

1

efits and drawbacks of the SWAMI approach, and
discusses future directions for research.

2 Background and Related

Work

The web is a relatively new phenomenon, and has
elevated certain problems to a critical level. In this
section, the two most prominent problems of web nav-
igation and web personalization are discussed, and a
short summary of current solutions is presented.

2.1 Web Navigation

Because of the large size, dynamic nature and in-
consistent structure, the web is difficult to navigate.
“Traditional”, direct navigation approaches depend
on an evaluation of the relevance of the currently
viewed page as the best indicator of the value of pages
pointed to by the current page. This approach re-
lies upon the benevolence of the creator of the link
[Kleinberg, 1999], and the hope that by following a
series of related links the user will end up at another
cluster of useful pages. This “hope” is described as
the “small world” phenomenon, which suggests that a
highly complex but interacting system will, over time,
evolve paths of a limited number of hops between any
two related pages.

When the user has discovered a page of lessening
interest to them than a previous page, they return
backward to an appropriately interesting (although
already viewed) page and go forward from a link on
that page (if there is one) until all links from that
page have been exhausted, retreating back up another
level. This navigation strategy is implicitly promoted
by the linear nature of web navigation tools, such as
the “back” button of a web browser (see Figure 1).

The traditional strategy closely resembles a depth-
first graph search, where leaf nodes are represented by
pages of less interest. Effectively, however, the user
must go “one page too far” in such a scheme, and
travel deeper and deeper distances from the original
page they were browsing into possibly uninteresting
area. In fact, to return all the way to the original
page technically requires an examination of all the
subgraph contained from the single link away they
had taken. Given the highly-connective nature of the
Web, this suggests that the user will spend more time
in distant pages than in pages more closely connected
to the original. This, intuitively, is the opposite of
the desired result, as pages directly connected to the

1

2

3
4

5
6

7 8

9
10

11
12

13

14

15

16

A

B

D

GF H J

E

C

Figure 1: Traditional web navigation works like
depth-first search of a graph.

current page are most likely to be the most relevant
pages to it [Lieberman, 1995].

2.1.1 Search Engines

A completely alternative approach is to use a search
engine, which, in effect, reconstructs the graph of the
Web, reconnecting all the distant pages together into
a single layer. In this way, more relevant pages be-
come more likely at an earlier stage of browsing. (See
Figure 2.) In the case of Yahoo [YAHOO!, 2004], this
rearrangment is done explicitly through a hierarchi-
cal, soft categorization of website links. By contrast,
Google [Google, 2004] builds a response page (effec-
tively the top-level of a tree or entrace to a graph) dy-
namically around a set of initial keywords in a query.

Once the user has selected a link from a search
engine, however, they are out of the arena of that
technology, and browsing returns to the traditional
strategy. Thus, this technology produces only a one-
shot or one-level navigational benefit, not an ongoing
navigational support.

An additional criticism of search engine approaches
is that the criteria for the evaluation of results is very
specific: the keywords of the request are the only
measure of relevance to the user that the system can
use, although there are additional measures of the rel-
ative importance of a page (some partially dependant

2

F H

A

J

D E

G

B C

Figure 2: A Search Engine effectively reconfigures the
web into a shallow tree.

of the particular request made) [Kleinberg, 1999]. In
other words, the result evaluation does not take into
account the full nature of the user, such as prior in-
formation or additional interests. (Although Google
has recently introduced a beta service which seems
to allow the user to provide the search engine with a
more complex view of the requester.)

2.1.2 Adaptive Websites

Adaptive websites take a highly personalized ap-
proach. They use knowledge about the specific user
to modify both the presentation [Kobsa et al., 2001]
of individual pages and/or the navigation from one
page to another [Brusilovsky, 1996]. In this way,
they can be seen to either add additional links
between pages of relevance to the user (Figure 3) or
do a similar rearranging of the graph to the search
engine (Figure 4), although beyond just a single level
of rearrangement and navigational support. These
links may come from a mining of a large set of pages
within a scope [Kleinberg, 1999], from an online
search and evaluation scheme [Lieberman, 1995] from
an external knowledge of the structure of the do-
main [Freitag et al., 1995, De Bra and Ruiter, 2001],
from other, similar users through collabora-
tive recommendation [Mobasher et al., 2002,
Lieberman et al., 1999, Cosley et al., 2002] or
through some combination of these techniques
[Balabanovic and Shoham, 1997].

Prominent examples of adaptive web systems in-

A

B

D

GF H J

E

C

Figure 3: Personalized websites can change the nav-
igational structure of a website by adding links be-
tween relevant pages based on user interest.

ED

A

CB

GF H J

Figure 4: An alternative view of of Figure 3; the
website is restructured based on interest.

3

clude WebWatcher [Joachims et al., 1997], AHAM
[Lieberman, 1995], IfWeb [Asnicar and Tasso, 1997]
and AVANTI [Fink et al., 1997]. Each of these sys-
tems provides server-side adaptive navigation or pre-
sentation based on perceived user characteristics.

Server-side solutions for adaptive websites also of-
fer the possibility of collaborative recommendations,
where knowledge about groups of users can be used
to make suggestions to individuals who are members
of a group. Groups might be arbitrarily chosen –
such as the group of a person and his friends – or
created through observations of common patterns of
behaviour or common attributes.

Server-side solutions, however, are generally lim-
ited to a single website or set of close web-
sites, something to which the search engine ap-
proach is not limited. Client-side personalized ap-
proaches, on the other hand, can work across all
websites, but do not have the benefit of an in-
ternal view of the website (to allow adaptations
based on non-disclosed information) or collabora-
tive recommendations (because there is no common
place for all users). Client-side solutions include
Letizia [Lieberman, 1995] and Personal WebWatcher
[Mladenic, 1996], and to a certain degree the proxy-
based system PVA [Chen and Chen, 2002].

The SWAMI system is based as a client-side so-
lution, but it allows interaction with peers and with
internal sections of websites by allowing parts of its
representation to be mobile, and move to a location to
interact with the mobile parts of other users’ SWAMI,
or with representatives of an SWAMI-aware website.

2.2 Personalization & User Represen-

tation

Personalization on the Web means to modify the con-
tents in or navigation on a web page to reflect the
particular user who is viewing it. It is adaptive to
the user’s characteristics or behaviour, responding in
a way to enhance the user’s experience.

In order to perform personalization, it is necessary
to consider the way the user is represented within the
system, and the information which is used to popu-
late that representation. This information may in-
clude a profile of user demographics, a history of their
experience, or explicitly stated information goals, for
example. Generally, it can be said that the primary
factor in a decision of whether a user likes a page is
that it satisfies one of their interests.

Interests can be generally characterized into three

kinds: long-term interests, which are stable and
rarely changing, although at a particular instant may
be unexpressed; short-term interests, which are
sudden and strong, but vanish quickly, never to re-
turn; and periodic interests, which have the qual-
ities of both long- and short-term interests, in that
they are strong for short periods of time and relatively
unimportant for the rest of the time. An example of
a long-term interest would be cooking; a short-term
interest might be real estate (because once the place
is bought, you never need to look at it again); a peri-
odic interest might include the Olympics or national
elections on a long scale, or holidays or anniversaries
on a shorter scale.

Each of these interest types suggests a certain time
scale, which brings up another problem: interests
change over time. Interests may grow or wane in
importance to the user; new interests may be added
and old interests removed.

Because specifying interests is difficult (perhaps
even impossible) for a user to express, the ap-
proach was taken in SWAMI for the interests to
be discovered from the browsing behaviour of the
user. This approach has proven to be effective in
many cases [Pazzani and Billsus, 1997, Chan, 1999,
Schwab et al., 2000]. By having the system continu-
ally learning about interests from the user’s ongoing
browsing behaviour, the problem of changing inter-
ests is addressed.

[Godoy and Amandi, 2002] presents a general ar-
chitecture for discovering and maintaining a user pro-
file in agent terms. This architecture suggests that
users have multiple interests of varying levels of de-
tail, and organizes these topics in terms of a hierarchy.
It is also recognized in this architecture that user in-
terests are not static, but tend to both change and
recur over time. In their architecture, they suggest an
explicit “temporal context” might be used to modify
the strength of suggestions about particular topics at
a given time.

2.2.1 SWAMI User Modelling

SWAMI develops a model of the users apparent in-
terests in order to make forward evaluations, user-
centric web searches and navigation suggestions
about pages to visit.

A similar approach to [Godoy and Amandi, 2002]
has been taken in SWAMI, but with a significant
difference: where in [Godoy and Amandi, 2002] an
externally organized hierarchy was created, pages
placed in that hierarchy, and the user’s interests be-

4

ing taken from a subset of that hierarchy, in SWAMI
the hierarchy is developed entirely from scratch, al-
lowing it to be a customized size to reflect the user’s
interests.

3 Design & Architecture

SWAMI aims to provide web users with a personal-
ized representative of their interests who can browse
on their behalf and provide recommendations about
what pages would be most interesting to be viewed.
There are several implications and additional consid-
erations in order to build an architecture with that
goal in mind. This section discusses first these design
considerations, and then the architecture created for
this application. Implementation details can be found
in the next chapter.

3.1 Design Considerations

The design process of the SWAMI system is guided
by several considerations. These include:

1. The system should not require the user
to explicitly state their interests. This im-
plies that the system must be capable of learning
the user’s interests from observation, rather than
from an explicit query.

2. A user may have multiple different inter-
ests. Many systems consider the user interests
to be all related to some degree. In SWAMI, it
was felt that this was an unrealistic assumption,
so a model that allows for multiple competing
interests was considered instead.

3. A user may have several related in-
terests (“sub-interests”) within the
context of a general interest. Topic
hierarchies and ontologies have been pro-
posed and used in adaptive web agent
systems before [Chen and Chen, 2002,
Godoy and Amandi, 2000]. When combined
with the previous design goal this naturally
leads to multiple, independent hierarchies.

4. A user’s interests change over time. In par-
ticular, interests may be short term, long term
or recurring. SWAMI allows for this by intro-
ducing an element that increases with recent use
and decreases with inactivity (the “age” of an
agent) in the representation of a user’s interests.

5. Those interests which receive more recent
attention (i.e. that are more “active”)
should be considered more important than
those that receive less attention or those
which have not received recent attention.
In SWAMI, an agent’s longevity and ability to
take action are tied to the quantity of page visits
that it represents and the recency of those page
visits. The better the agent’s longevity and abil-
ity to take action are, the more likely that they
are to search for new pages for the user.

6. The system should be capable of evaluat-
ing a page based on the user’s interests.
Each agent within the system carries with it a
weighted vector of keywords that it can use to
evaluate a potential page. An agent within a hi-
erarchy representing an interest can also refine
its evaluation based on what it’s parent agent
considers important.

7. The system should be able to search for
pages that might be of interest to the
user. Agents that accumulate a sufficient level
of “wealth” can create search agents that search
and evaluate pages for the user in parallel with
their own browsing.

8. The knowledge of evaluated pages should
be available not only to a particular user,
but to all users within a community. The
introduction of the “Rendezvous Server” allows
page recommendations to be shared with others.

9. Since the controllers of a particular web-
site know their own material best, it
should be possible to consult with them
(or their representatives) for page rec-
ommendations. The SWAMI architecture de-
scribes local expert agents that can act as expert
representatives of a website. These representa-
tives can be consulted for recommendations, tak-
ing advantage of any hidden context they might
have.

3.2 SWAMI Architecture

The SWAMI system consists of a front-end interface,
a user representation, and components which perform
page searching. It is implemented using a (custom)
multi-agent system (see Figure 5). This section de-
scribes each of these three components in more detail.

5

SWAMI
Rendezvous

Server

User
User

Representation
Interface
Agent

Ordinary
Web site

SWAMI−aware Website

Internet

Figure 5: A high level view of the SWAMI system.

3.2.1 The Interface

The user interacts with the system using the SWAMI
interface agent. The interface agent is currently in-
tegrated into a simple browser, allowing the agent to
observe user activity easily and report the search and
evaluation results of the user representation to the
user. The browser also allows the user to display the
agents currently representing them.

3.2.2 The User Representation

The user is represented by a hierarchically-arranged
collection of agents. Each representation agent rep-
resents a cluster of pages the user has viewed, with
the hierarchies representing the relationships between
clusters.

The hierarchies of agents is created using an on-
line, dynamic clustering technique. An agent collects
pages as they are viewed by the user that are similar
to the pages it has already gathered. The agent con-
tinually checks the tightness of its cluster, and if it
is too loose (beyond a threshold), it will attempt to
split the collection of pages up into tighter subgroups.
If it is successful, it creates (or “hires”) new agents to
represent the subgroups. These agents are positioned
below the original agent, so that incoming pages are

first examined by the original agent, and then may
be passed down to the more specialized sub-agents,
and so on, until the best match has been made.

Initially, the interface agent collects all pages un-
til a distinct group is discovered, forming the first
representation agent. If no current agent is represen-
tative of a given page, the interface agent holds on to
it until a new group manifests itself. Each of these
top level groups is referred to as a “corporation”, and
represents a major interest of the user.

Each agent has a measurement of “wealth”, which
reflects the importance and relevance to the user of
the cluster the agent represents. Equation 2 shows
the formula used to calculate wealth. This com-
bines the agent’s size (sizeActivity), the success
the agent has had in finding new pages for the user
(search), the success the agent has had in having
found pages accepted by the user (acceptance) and
a history momentum which allows an agent to rest
on its laurels briefly (wealth(t-1)).

When an agent’s wealth is reduced below a thresh-
old, the agent is removed from the hierarchy and
moved into a holding area. In this way, agents which
are not producing useful assistance are prunes from
the hierarchy. However, to represent periodic in-
terests, these agents are not immediately deleted.

6

wealth(t) = α × sizeActivity (1)

+ β × search

+ φ × acceptance

+ γ × wealth(t − 1)

Rather, they remain in the holding area, continuing
to decay, until one of two conditions is satisfied: ei-
ther they are the best representative for a new page
the user views, or they represent a newly discovered
subcluster better than a blank agent. In the first case,
they become the head of a new corporation; in the
second case they are simply added into the hierarchy
at the appropriate point. This also allows subclusters
to migrate to the most appropriate place; for exam-
ple, a “Mexican cooking” agent might be retired from
beneath the general “cooking” agent, but later be re-
hired under a “Mexican culture” agent. Note that
agents are not labelled in this way; this is merely for
illustration purposes.

3.2.3 The Search Components

When a representation agent reaches a sufficient level
of wealth and experience, it can create search agents
to work for it. Search agents take criteria from the
representation agent (the set of word features the rep-
resentation agent has used to form its cluster, for ex-
ample) and attempts to find and evaluate pages on
its behalf.

Four types of search agents have been considered
for the system: agents that search the links from ex-
isting pages, agents that leverage search engines as
a source of potential recommendations, agents that
consult with local topic experts for recommendations,
and agents that consult with other search agents.

Link-following Search Agent
The link-following search agent follows links from

pages the user has already viewed and evaluates them
based on its criteria. The agent, in a way, acts like
a user in its pattern of browsing, following a similar
pattern as discussed in Section 2.1.

Search-engine based Search Agents
The search-engine based search agent can submit

different combinations of word features to a search
engine and evaluate the results. In this way, it can
take advantage of the massive database of knowledge
available to a search engine, but provide the person-
alization that the search engine lacks.

Topic expert consulting Search Agents
The topic expert consulting search agents are mo-

bile agents which can travel to SWAMI-aware web-
sites and interact with topic expert agents represent-
ing the web page owner. These topic expert agents
may have access to information that cannot be gath-
ered from simply browsing the pages, and may be in
a better position to provide recommendations. For
example, the topic expert agents may know about
arbitrary groupings of pages that do not have labels
on the pages themselves.

Collaborative Search Agents
The collaborative search agent seeks to take advan-

tage of the browsing behaviour of people with similar
interests. It travels to a host (referred to as the “ren-
dezvous server”) where it can interact with agents
representing other people. There, they can swap rec-
ommendations based on how similar the agents are
to each other. Another type of agent, the rendezvous
hosts, remain in the rendezvous server at all times,
interacting with all the visiting search agents and col-
lecting all recommendations that they have. The ren-
dezvous host becomes a “memory” for the rendezvous
server, so that not all interactions between agents
need to be synchronized.

4 Implementation

SWAMI was realized by a custom multi-agent, mo-
bile agent system (MAS) [Wooldridge, 2001] written
in Java. This section discusses some of the implemen-
tation details.

4.1 Web Page Representation

The SWAMI system is an exploration of user mod-
elling, hierarchical and incremental clustering, multi-
agent systems and search methods. The task all this
is focused on is the browsing of web pages, so it is
necessary to discuss the composition of a web page,
how web pages are viewed within the SWAMI system,
and how pages can be compared.

4.1.1 Composition

A web page consists of a document written in the
HTML language, referred to by an address or URL.
This document contains a mixture of text data and
images organized both structurally and visually.

HTML is a markup language, and is only a par-
tially semantically-structured language. That is, the

7

tags used in the language sometimes indicate mean-
ingful semantics (e.g. the HEAD, BODY and TITLE
tags), sometimes indicate visual layout or decoration
(e.g. the TABLE tag), and sometimes are intended
to suggest semantic importance but often are used for
visual reasons instead (e.g. the EM, STRONG and
the various header tags such as H1 and H2). It also
allows the embedding of programming languages (e.g.
Javascript) and visual extensions (such as the cascad-
ing stylesheet (CSS) extension). HTML also allows
inline references to images and other binary compo-
nents (e.g. through the IMG and OBJECT tags), as
well as references (links) to other pages.

HTML is really the client-side language, and
HTML files may be composed or generated on the
server. These dynamic pages only exist for the length
of the viewing, and do not have any independent exis-
tence. Thus, the HTML page generated from a par-
ticular URL may be different between viewings (or
even different every time it is viewed). In this ini-
tial version, only static (unchanging) web pages that
are the same each time the same URL is used are
considered.

4.1.2 Representation

The most important part of a web page, from the per-
spective of the system, is the textual data it contains;
specifically, the words with which the document is
written with.

While tags sometimes indicate increased impor-
tance of a particular word within a document D, ini-
tial investigation indicated that this importance is
unpredictable, given the lack of strict adherence or
interpretation of the use of tags to mark up specific
words. Therefore, the frequency of a word occurring
within a document regardless of markup is used as
the basis for page description.

The interpretation of a word within a sentence is a
complex problem requiring a sophisticated language-
specific model. To increase the throughput of the
system’s analysis of web pages and allow the sys-
tem to be (largely) language-agnostic, sentence struc-
ture and punctuation is ignored for the processing of
pages.

Thus, the basic representation is the well-known
bag-of-words model. This representation collects all
the unique words from a document and notes the fre-
quency of each. The procedure for collecting these
words is called text cleaning, because it requires that
the text be transformed. The steps for transforma-
tion are as follows (see also Figure 6 for an example

of this process):

1. Retrieve the raw text: The system retrieves
the raw text of an HTML document for process-
ing.

2. Extract words: The document is scanned with
an HTML parser, and HTML markup is re-
moved; at the same time, punctuation is re-
moved and all letters are transformed to low-
ercase, leaving behind only what appear to be
words, i.e. consecutive sequences of letters sepa-
rated by spaces.

3. Word stemming: It has been widely accepted
that words that share the same root but have
different suffixes are more alike than not; thus,
words with the same root should be considered
the same word. For example, the words “com-
pany” and “companies” both refer to the same
root, “compani”. The process of discovering
these roots is, however, a language-specific is-
sue. An implementation [Java Stemmer, 2005]
of the well-known Porter stemming algorithm
[Porter, 1980] was used to stem words for the
English language.

4. Stoplist elimination: Since word frequency is
the basis for understanding the importance of a
word to a document, there is a problem with a
significant set of words used as lingual structural
glue but which have very little interesting value.
These words include “the”, “and”, “but”, and
“in”, for example. Thus, a manually-created list
of “uninteresting words” called a stoplist was ap-
plied to eliminate those less-than-significant but
frequent words from the text data.

5. Unique word counting: All of the word forms
are combined into a single group (referred to as a
term) and counted, getting the word frequencies.
The (unnormalized) frequencies for the example
can be seen in Table 1. Terms that appeared only
once in this document were omitted for brevity.

4.1.3 Feature extraction

Once the words have been extracted from a docu-
ment, it is necessary to determine which words are
significant descriptors of the page, that is to extract
the features from the words.

Features are terms t to which a weight has been
associated, indicating its importance. This weight
is determined in part by the frequency ft of the

8

(a) The key to the technology is a computer-guided nozzle that deposits a line of wet concrete, like toothpaste
being squeezed onto a table. Two trowels attached to the nozzle then move to shape the deposit. The
robot repeats its journey many times to raise the height and builds hollow walls before returning to fill
them.

(b) the key to the technology is a computer guided nozzle that deposits a line of wet concrete like toothpaste
being squeezed onto a table two trowels attached to the nozzle then move to shape the deposit the robot
repeats its journey many times to raise the height and builds hollow walls before returning to fill them

(c) the kei to the technolog is a comput guid nozzl that deposit a line of wet concret like toothpast be
squeez onto a tabl two trowel attach to the nozzl then move to shape the deposit the robot repeat it
journei mani time to rais the height and build hollow wall befor return to fill them

(d) kei technolog comput guid nozzl deposit line wet concret toothpast squeez onto tabl trowel attach nozzl
move shape deposit robot repeat journei time rais height build hollow wall return fill

Figure 6: Various stages of text cleaning: (a) the raw text; (b) the text turned into simple terms, with
punctuation removed; (c) the text after stemming has been applied; (d) the text after a stoplist has been
applied.

term considered. In the context of just the page
itself, the weight wt is a normalized value of the
frequency. Within the context of a group of docu-
ments, the weight is frequently based on of a mea-
sure called the term-frequency/inverse document fre-
quency or TFIDF value of the term. TFIDF has the
following formula:

wt = TFIDF (t) = ft × log

(
N

DF (t)

)
(2)

DF (t) is the document frequency of term t; that is
the number of documents contained within the set
that contains that term.

TFIDF penalizes terms that occur in many docu-
ments; a term is more valuable to a particular page,
in this context, if it occurs rarely.

In the SWAMI system, the context is more com-
plex. Later, the variation of TFIDF that considers
this more complicated context will be discussed.

4.1.4 Comparison

Now that documents have been represented as a col-
lection of weighted features, it is easier to compare
documents against each other for similarity. A num-
ber of similarity measures were considered for this
role; in particular, variations of the Jaccard similar-
ity measure were closely examined.

In the Jaccard measure, each document is repre-
sented as a set of terms. The larger the overlap

������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������

������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������

������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������

������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������

���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������

���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������

j
D

Term Space

i D

Figure 7: A graphical depiction of the Jaccard simi-
larity measure.

between the two documents, the more similar doc-
ument Di and Dj are to each other. (See Figure 7.)
The standard weighted Jaccard similarity measure
formula is shown in Equation 3.

However, most comparison methods are
computation-intensive, and do not significantly
improve upon the basic cosine similarity algorithm.
The cosine method treats the features of documents
as vectors in a multidimensional space, and calcu-

9

print 8 digit 8 camera 8 robot 7
stori 6 materi 6 build 6 subscrib 5
scientist 5 khoshnevi 5 edit 5 technolog 4
hous 4 degussa 4 wall 3 search 3
scienc 3 review 3 construct 3 california 3
world 2 week 2 web 2 univers 2
time 2 test 2 success 2 straw 2
southern 2 servic 2 round 2 return 2
relat 2 prototyp 2 printer 2 precis 2
power 2 nozzl 2 newscientist 2 mud 2
lynn 2 live 2 job 2 inform 2
industri 2 guid 2 greg 2 financ 2
engin 2 drug 2 deposit 2 creat 2
contour 2 contact 2 concret 2 chang 2
canon 2 camcord 2 built 2 break 2
believ 2 behrokh 2 archiv 2 architect 2
abl 2

Table 1: Terms collected from the article from which the sample was taken.

Jaccardweighted =

∑

∀t∈Di,Dj

wDi,t · wDj ,t

√ ∑

∀t∈Di

w2
Di,t

+

√ ∑

∀t∈Dj

w2
Dj ,t −

√ ∑

∀t∈Di,Dj

wDi,t · wDj ,t

(3)

lates the angle between the vectors. As the angle
decreases, the similarity between the two documents
increases.

As seen in Figure 8, each document is represented
as a vector in the similarity space. The smaller angle
a is, the more similar document Di and Dj are to
each other. The formula for this calculation is

cos(Di,Dj) =
DT

i · Dj

‖Di‖ × ‖Dj‖
(4)

=

∑

∀t∈Di,Dj

wDi,t · wDj ,t

√ ∑

∀t∈Di

w2
Di,t

×

√ ∑

∀t∈Dj

w2
Dj ,t

where |D| is the size of the document (number of
terms on the page).

Note that in order for two documents to be prop-
erly compared, the feature weights need to be recal-
culated within the same context.

4.2 User representation

The representation of a user within the SWAMI sys-
tem is as a collection of interests of varying degree
and depth. These interests are organized into hier-
archies, each hierarchy representing a broad topic of
interest, with the depth of the hierarchy representing
specific levels of detail (see Figure 9).

This is similar to the approach taken in Personal
View Agents (PVA) [Chen and Chen, 2002] and
PersonalSearcher [Godoy and Amandi, 2000], which
both use a hierarchy of topics to describe a user’s in-
terests. Unlike PVA, however, this hierarchy is not
statically created a priori in SWAMI but generated
based on observed evidence, which makes the profile
more specific to the individual user.

Unlike both systems, SWAMI does not force all
topics into the same hierarchy, but creates multiple
hierarchies, allowing more divergence between topics.
An alternative view is that SWAMI may be consid-
ered to omit several levels from an absolute, com-
plete hierarchy, levels that are introduced artificially
to coax widely separated topics within the same even-
tual ancestor topic.

10

Topic Orthongonality

Software

cooking
Asian

cuisine
French

computers

Hardware

Linux C++Java Laptops

cooking

T
op

ic
 S

pe
ci

al
iz

at
io

n

Figure 9: User interests can be characterized as belonging to orthogonally separate groups with differing
levels of specialized interests within each group.

These hierarchies are created through a process
of incremental, online clustering, which uses local
decisions and optimizations. Such an approach is
not ideal, as there may be connections between non-
contiguous events that are difficult (even perhaps im-
possible) to observe linearly. However, by allowing
the importance of a given cluster to diminish over
time or improve with recent activity, as well as al-
lowing a limited set of reconfigurations to occur over
time, it is hoped that long-term exposure of the sys-
tem will show a steady progress in the direction of
the ideal.

4.3 Clustering

There are two kinds of clustering decisions that are
to be made in this system:

• Placement. Given a set of existing clusters and
a new page, the system must decide which (if
any) of those clusters best represents the page.

• Specialization. Given a set of pages within a
cluster, the system must attempt to discover if
there are one or more subclusters of pages. Such
a subcluster better represents a subset of pages
than the whole cluster does. Since this decision
may produce one or more clusters that divide up
the pages of an existing cluster, it is also referred
to as splitting a cluster.

Similarly, since subclusters can change, this also
refers to deciding whether pages should move
from the general parent cluster to a more specific
subcluster. This process is called the redistribu-
tion of pages within a cluster hierarchy.

4.3.1 Definitions

In order to describe the algorithm more formally, a
few definitions are needed.

(a) Document Cluster

A document cluster C is a collection of docu-
ments that all share an acceptable level of simi-
larity:

C = D1,D2, . . . ,Dn (5)

∀Di,Dj ∈ C, sim(Di,Dj) >= σ (6)

or at least the average similarity is above a
threshold :

∑

∀Di,Dj∈C

sim(Di,Dj)

|C|
>= σ (7)

Ideally, that similarity is maximized for each
document in this cluster:

11

Document Space

D

Di

ja

Figure 8: A graphical depiction of the cosine similar-
ity measure.

∀Di ∈ Cx, Cx = argmax
∀Cj∈C

avgsim(Di, Cj) (8)

where C is the set of all clusters.

(b) Cluster Centroid

To save time, a cluster may be represented by a
set of features in much the same way as a doc-
ument. These creates a “virtual” document (re-
ferred to as a centroid), which is the point with
the most similarity (or least distance) from all
other pages within the cluster:

∀D ∈ C,Di = argmax
∀Dj∈C,Dj 6=Di

sim(Di,Dj) (9)

Since each page is represented as a collection of
terms, the ideal centroid may be described as the
average of all pages, D:

D =

{∑
∀Di∈C Di.w1

|C|
, . . . ,

∑
∀Di∈C Di.wn

|C|

}

(10)

The set of all clusters being considered at a par-
ticular time is denoted by C.

4.3.2 Calculating Term Weights

To properly compare the incoming document with
each cluster, it is necessary to recalculate the weights
of the terms in the document within the context of
the potentially owning cluster.

To denote that a document D is being considered
in the context of a cluster C, the notation DC is used.

Simple Cluster Context
In the simplest case, the term weights are calcu-

lated using a discrimination function such as TFIDF
which promotes features that uniquely identify that
document. That is:

∀t ∈ terms(D) : (11)

wt = TFIDFC(t) = fD,t × log

(
NC

DFC(t)

)

Hierarchical Cluster Context
In a hierarchical cluster, the terms of the parent

cluster are already significant and have already been
taken into account to form the parent cluster. To dis-
tinguish a child cluster and properly focus and spe-
cialize its terms, it is necessary to change the weight-
ing scheme of the terms to take into account the fact
that words from the parent are going to be present
in all of the child cluster’s pages.

The modified TFIDF-based calculation is as fol-
lows:

wt = ft ×

(
DFCC

(t)

NCC

)
× log

(
NCP

DFCP
(t)

)
(12)

where DFCC
(t) is the document frequency of the term

in the child cluster, CP refers to the parent of cluster
C, DFCP

(t) is the document frequency of the term
in the parent cluster, NCC

is the number of pages in
the child cluster (including the candidate page), and
NCP

is the number of pages in the parent cluster.
If the cluster has no parent, the last term would

result in a zero error, so the following truncated for-
mula is used:

wt = ft ×

(
DFCC

(t)

NCC

)
(13)

Note that this formula is nearly the opposite of the
TFIDF formula. In TFIDF, a term is considered less
important if it occurs in more documents of a group,
because the intent is to find terms that uniquely de-
scribe the page. In this case, terms that are common

12

to more pages better describe the cluster, and are
thus more important to the cluster. Those terms that
are common to the cluster which are shared with the
parent, however, are not as important to distinguish
this cluster, because, by definition of being a subclus-
ter of the parent, all of the parent’s terms are already
found throughout the cluster; in other words, no new
information is learned about a cluster by those words
it inherits from its parent.

4.3.3 Placement

The placement of new pages is directly based on the
ability to compare two pages discussed above.

To determine whether a document D should be
part of a cluster C, we can calculate the similarity
between the document in the context of the cluster
(DC) and the cluster’s centroid, DC :

sim(DC , C) = sim(DC ,DC) (14)

The best cluster Ĉ for a given document D is there-
fore the cluster that maximizes the similarity:

Ĉ = argmax
C∈C

sim(DC , C) (15)

Formally:

1. Given a set of existing clusters C and a new doc-
ument D, for each cluster Ci recalculate the term
weights of document D, producing a candidate
document DCi

.

2. For each candidate document DCi
, calculate the

similarity of the candidate to its cluster Ci:

score(DCi
) = sim(DCi

,DCi
)

3. A clear winning cluster Ĉ is discovered by find-
ing a cluster for which the document score is bet-
ter than every other cluster, and for which the
score is greater than a given minimal similarity
threshold (ǫ=0.6) :

Ci, Ĉ ∈ C, ∀Ci 6= Ĉ, (16)

score(D
C

) > score(DCi
), score(D

C
) > ǫ

4. If there is a single winning cluster Ĉ, the page is
given to that cluster.

5. If there is a tie for the winning cluster or there
is no clear winner, the page is held back in
the “general area” until such time as it can be
awarded to a clear winner.

Hierarchical Placement
When hierarchical clusters are involved, a distant

descendant of a cluster may be the winning cluster.
The simple placement algorithm can be extended by
searching through all of the children for the best pos-
sible match. This can be accomplished by changing
the score function of the cluster to return the best
score between the cluster and its children:

score(DC) = max(sim(DC ,DC), max
∀C′∈CC

score(DC′))

(17)

4.3.4 Redistribution

As subclusters can change periodically, pages should
be moved from a more general cluster to a more spe-
cific one whenever possible. The process of redistri-
bution is the same as placement; the only difference
being that the winning cluster must not only surpass
all other clusters and the minimal similarity thresh-
old, but must also be a better fit than the current
cluster containing the page.

4.3.5 Splitting

Since pages are added incrementally and are held
back if there is no clear winner, it is possible that
a number of pages in a given cluster actually form a
subcluster. The clustering program (in this case, an
agent) must periodically examine the cluster it rep-
resents in order to discover these subclusters.

In order to find these subclusters, the following de-
finition is used: given a set of documents D, a sub-
cluster is defined as a group of documents within that
set for which the following holds:

1. the documents that best match/have the best
similarity to a given document D′ is denoted as
the set B ⊆ D;

2. all best match sets for each document within a
given subcluster C are also contained within the
subcluster;

3. all best match similarity scores are above a min-
imum similarity score.

13

0.8

A

C

B

D

E

F

0.9 0.5

0.5

0.6

0.3

0.9

0.6

0.3

0.4

0.4

0.5

0.4

0.60.6

Figure 10: A graph representation of the largest dis-
joint set algorithm.

If the set of documents D is viewed as a weighted
graph, such that each vertex represents a document
within that set, and each edge is weighted with
the similarity score between the documents on its
vertices, then the clusters are those distinct, non-
overlapping subgraphs.

Given the pages {A,B,C,D,E, F} in the example
in Figure 10, two subsets, {A,B,C} and {D,E, F}
can be found.

Formally:

1. For all documents Di,Dj ∈ D, Di 6= Dj , cal-
culate the similarity score to be placed in the
half-filled matrix M . That is, each entry M [i][j]
contains sim(Di,Dj).

2. Initiate a set of clusters C.

3. For each document Di:

(a) If ∃C ∈ C such that Di ∈ C, skip to the
next document.

(b) Otherwise, find the set of best matching
pages, B; i.e. those pages that have the best
similarity scores with the given document.
Together, this forms a potential cluster C ′.

(c) If any document in B is contained in any
cluster of C, this cluster is invalid.

(d) For each document D′ in B, repeat from
step 3(b) until no new pages are discovered.

4. If the cluster is not of a sufficient size, the cluster
is invalid.

5. If the cluster has not been invalidated, add the
new cluster to the set of clusters.

6. Repeat from step 3.

The code shown in Listing 1 illustrates this process-
ing.

4.4 Agents

Clusters by themselves do not entirely make up the
SWAMI user profile; they are data representations,
a reflection of the user’s interests, but inactive. To
act on behalf of the user requires something more; it
requires an actor, in this case, an agent, to take up
the cause of that interest and perform its duties of
search and evaluation.

For SWAMI, a simple, custom agent solution has
been created. This section describes the stages of
development of these agents and their particular roles
and responsibilities.

4.4.1 Processing Overview

The agents within the multiagent system representing
a user are organized into a hierarchy of responsibili-
ties, with the most general of roles being held by the
agents at the top and the most active of roles being
held by agents near the bottom (see Figure 11).

At the top of the structure is the browser itself,
sometimes referred to as the web browsing user agent.
This is really not an agent in the strict sense, but is
really just the wrapper program. It is normally just
responsible for answering user requests and display-
ing the resulting pages, but in SWAMI it has the
additional responsibilities of forwarding the browsing
information to the system, displaying recommenda-
tions received by the system, and allowing the user
to choose from those recommendations for places to
browse. The prototype implementation of SWAMI
includes a basic Java browser with the SWAMI sys-
tem integrated into it; in a more general implementa-
tion, this would be accomplished by a combination of
a normal third-party web browser and either a plugin,
web proxy or similar device.

Below the browser comes the real beginning of the
SWAMI system, the interface agent. This agent is
responsible for coordinating between the various in-
ternal agents and the browser, including creating new

14

Search Engine

Browser

Interface Agent

Hierarchical Profile Agent
(HPA)

HPA HPA

HPA HPA HPA HPA HPA

HPA HPA

Rendezvous Search Proxy AgentLink Search Agent

Rendezvous Search Agent

Rendezvous Host Agent Local Expert Host Agent

Profile Agents

Search Agents

Search Hosts

Search Engine Agent

Figure 11: The hierarchy of agent interactions.

top-level agents to handle newly discovered topics, re-
questing bids on new pages the user has browsed, and
keeping general track of recommendations.

Next on the hierarchy are the true representatives
of the user’s interests, the hierarchical profile agents.
Each tree of agents is referred to as a corporation
of agents, working together to provide representation
and support to a particular high-level topic.

Below the representative agents in the system are
the search agents. These agents are specialized to
particular search methods, and are created to search
and evaluate a particular topic as directed by a profile
agent.

Finally, the last class of agents are the hosts to
visiting search agents. There are two kinds, varying
only in where they get their information for trade:
local expert host agents and rendezvous host agents.

The following sections describe these agents in
more detail. Rather than the system order in which
they have been presented here, the agents are de-
scribed in order of complexity, in keeping with the
object-oriented design methodology used. In this
way, agent knowledge, responsibilities and actions
are described incrementally, so that the relationship

might be more easily understood.

4.4.2 The Basic Agent

The basic agent is primitive and unmotivated; it has
very little capacity for knowledge, both external and
internal, and has very little activity on its own. The
two basic things it knows about itself are its age and
its wealth.

The age of an agent is a difficult concept to mea-
sure. Since activities in the agent world happen at
a vastly different speed than the real world that we
inhabit, and since the activity modelled here (web
browsing) is not a continuous activity but rather is
marked by intense, effectively random periods of ac-
tivity with unpredictable intervals of time between,
real world time measures are insufficient and alto-
gether non-indicative of an agent’s real age.

Age is important, however, as one of the goals of
SWAMI is to allow behaviour over time to change the
model (e.g. the interests of a user shift or change with
time). Thus, a measure of age relative to the central
focus of the agent’s activity is used: the number of
significant events since the agent’s creation. In this

15

case, the significant events of an agent’s lifetime are
the web pages browsed by the user.

Since an agent may also be called to account for
its current status, given its history of activity and
the knowledge it has, it is created with the capabil-
ity of calculating its own instantaneous wealth. The
wealth calculation must take into account several fac-
tors, including activity over time, success, strength
and depth of knowledge, and recency of success. In
the case of a basic agent, however, the calculation is
relatively simple:

wealthsimple(t) = γ × wealthsimple(t − 1) (18)

Where wealthsimple(0) = ω, some starting wealth,
and γ is an age retention factor, allowing an agent to
rest on its laurels from previous success.

Since an agent should be capable of notifying those
agents it is communicating with of any important
events, it has a mechanism whereby agents who wish
to be informed of significant changes can register
themselves with the agent.

Finally, to give an agent the ability of some inde-
pendence, it is capable of running as its own execu-
tion thread. However, for a basic agent that has no
motivations of its own, this capability is unused; it
becomes significant with more sophisticated agents.

4.4.3 The Basic Agent Environment

An agent operates within an environment. In the
SWAMI system, the AgentEnvironment class pro-
vides this. This environment tracks all of the agents
within the system, and provides a way for an agent
to discover and communicate with another agent in
the system. In the basic environment, this is done
directly by the id of the agent.

The basic SWAMI agent environment also holds
general knowledge that all agents should be aware of,
in particular the stoplist, which is used to eliminate
uninteresting words when evaluating a web page, is
retrieved from this basic environment.

The agent environment also operates indepen-
dently within a thread. Housekeeping operations can
be performed in this thread, although the basic envi-
ronment has none.

4.4.4 The Profile Agent

This agent is capable of representing a single cluster
of web pages and arranging for searches to be per-
formed. It is capable of evaluating a given page for

inclusion within its cluster and providing a numeri-
cal score of the page. This score is a similarity mea-
sure based on the similarity between the page and
the pages already contained within the cluster. As it
accepts pages, the ProfileAgent recalculates its cen-
troid and notes the best, worst and average similarity
of the pages it contains.

This agent also keeps track of those links already
searched and any pending recommendations that
searches have returned. To prevent searches from
happening too often, a “grace period” has been intro-
duced. This grace period is actually measured both
in terms of age and real time. In addition, in or-
der to start a search the agent must be of sufficient
size, have minimum average similarity, have no pend-
ing searches, and have no recent recommendations
pending or have had excellent success with their rec-
ommendations. If all these conditions are met, the
profile agent can create a search agent to do a search.

Life-cycle

A profile agent goes through the following steps in
its life-cycle:

1. Birth: When a profile agent is first created, it is
being created to take over the control of one or
more pages. From this initial page dump it cal-
culates its features to be used for page compar-
isons. The wealth of an agent after it has been
initially created is the minimum wealth, 0.0.

2. Page bidding. Each time a user views a page, a
profile agent is called to bid on that page. If the
page is already owned by the agent or the page
matches one of the agent’s recommendations, the
value of the bid is 1.0 (perfect match). Other-
wise, the value of a bid is simply the comparison
between the page in the context of the agent’s
pages and the agent’s features; in this case, the
agent’s age increases by one, and its wealth is
recalculated.

3. Page acceptance. If a profile agent is the win-
ner of a bid for a page, it will be given the page
to own. If the page is one of the agent’s recom-
mendations, that recommendation is marked as
“accepted”. When a page is added, the agent is
marked as increasingly “dirty”. When the dirt-
iness surpasses a threshold δ (currently in the
system, this is 2), the agent’s features are recal-
culated to match the possibly shifting centroid
of its cluster.

16

4. Searching. After a page has been accepted and
the wealth recalculated, the agent may initiate a
search if its wealth exceeds the threshold. The
profile agent creates a new search agent of the
appropriate type and starts that search agent in
a separate thread. When that thread completes,
the search agent will notify the profile agent that
it has finished searching, and the profile agent
will retrieve the list of recommendations from
the search agent (if there are any) and destroy
the search agent.

5. Recommendation gathering. At any time,
the recommendations found for a particular pro-
file agent may be requested. If the agent has not
yet searched or is in the middle of searching, it
may not have any recommendations.

6. Retirement. After an agent’s wealth has been
recalculated, the agent may be deemed no longer
relevant to the profile if its wealth falls below a
particular threshold, η. If this is discovered, the
agent is removed from the profile and placed in
a special location called the holding area (see
Section 4.4.8 for a more detailed description of
the holding area).

Note that there is a “grace period” of 5 age units
during which time an agent is not considered for
retirement. This allows an agent to establish it-
self.

This stage allows interests that are no longer sig-
nificant to fade away.

7. Reinstatement from reserve. If an agent
that has been retired is successful on a new page
bid, it may be returned to active service by the
interface agent. In this way, interests that recur
are represented.

8. Death. If an agent falls below a lower thresh-
old τ of wealth, the agent is removed from the
system.

4.4.5 Wealth calculation

Finally, a profile agent uses the wealth formula de-
scribed in Equation 2 to account for its changed
knowledge and responsibility.

In this formula, α is the relative importance of the
agent’s size, β is the relative importance of the search
success and φ is the relative importance of the success
in having recommendations followed.

Useful values of each of these factors was discovered
experimentally. A value of 0.25 was initially used,
and was modified as the relative rates of change of
each of the components were observed. The goal in
this was to achieve an acceptable balance between
the sustaining of active agents and the decay of inac-
tive agents, while remaining sensitive enough to allow
changes in the system to happen in a reasonable time
frame. That is, the functioning of the system for each
of the main points (agents increasing and decreas-
ing in importance, agents splitting, agents retiring,
agents rehiring and agents being removed) could be
observed within a short number of page views.

After several iterations, the values were assigned as
follows: α = 0.50, β = 0.25, φ = 0.24 and γ = 0.01.
While these values were useful for demonstrating the
system, in the future use of the system it is expected
that they will have to be less sensitive.

Note that all of the factors add up to 1.0, and each
of the component values has a range from between
0.0 and 1.0; this yields a weight between 0.0 and 1.0.

The agent’s sizeActivity is a time-diminishing mea-
sure of the size of the agent balanced with how re-
cently the agent was updated.

First, a few definitions: the size of an agent is cal-
culated as the number of pages the agent holds:

size(A) = |pages(A)| (19)

The age of an agent is the number of pages it has
bid on since its birth. The recency of activity is the
difference between the current age and the age when
a page was last added:

recency(A) = age(A) − max
∀p∈pages(A)

addAge(p) (20)

The general size activity equation is:

sizeActivity(A) =
f1 + f2

2
(21)

where f1 and f2 are defined in Equations 22 and 23:

f1 =

{
1.0 size(A) > age(A)
size(A)
age(A) otherwise

(22)

f2 =






1.0 size(A) = recency(A) = 0
0.0 recency(A) ≥ size(A)

1.0 − recency(A)
size(A) otherwise

(23)
Two other special conditions apply: when the age

of the agent is 0, the sizeActivity is 0, and when the

17

size of the agent is zero but the recency is non-zero,
the sizeActivity is 0.

The search success is a measure of how good recent
searches have been, calculated as the proportion of
good searches to all searches:

search(A) =

∑
∀r∈Rgood

(
score(r)

age(A)−birthAge(r)+2

)

∑
∀r∈R

(
score(r)

age(A)−birthAge(r)+2

)

(24)
where R is the set of all pending recommendations, r

is an individual recommendation, birthAge(r) is the
age of the agent when the recommendation was cre-
ated, and Rgood is the the set of all good searches:

Rgood ⊆ R‖∀r ∈ Rgood, score(r) ≥ ρ

The threshold ρ is arbitrarily set to 0.5 in the proto-
type.

Acceptance is a measure of how many recommen-
dations were followed by the user, calculated as the
proportion of recommendations followed relative to
the number of recommendations made:

acceptance(A) =
|RA|

|R|
(25)

where RA ⊆ R, and all recommendations in RA were
followed by the user at some point .

Each of these formulae was created to arbitrarily
represent elements believed to be of importance to an
agent. They are all designed to diminish with a lack
of activity over time.

4.4.6 The Hierarchical Profile Agent

The hierarchical profile agent extends the profile
agent by adding the knowledge and ability to find
subclusters, modifying the procedure used to evalu-
ate a page for ownership, and the ability to distribute
pages to children that have changed to more accu-
rately represent them. This agent is a node in a tree,
having at most one parent agent and zero or more
children agents.

When a hierarchical profile agent is requested to
evaluate a page, it also requests that each of its chil-
dren agents also evaluate the page. The best eval-
uation between itself and those its children present
is then returned to the request. In this way, a page
will move down the tree to the most specialized agent
that it resembles.

Similarly, when recommendations are requested
from such an agent, all the recommendations from the
agent’s children are gathered and returned as well.

Each time a page is received by a hierarchical pro-
file agent, it is “dirtied”. When it becomes suffi-
ciently dirty, it updates its representative centroid.
This can cause some pages to be better represented
by a child agent, so this agent will attempt to distrib-
ute its pages among its children.

This kind of agent will also look for subclusters
within its pages in order to create child agents. Ob-
viously, such a subcluster cannot contain all the pages
of the parent, because then the child is nothing more
than a copy of the parent. Also, a subcluster check
is not made after each page is added, to avoid the
cascading subcluster problem. This problem is caused
when a single page is added to a subcluster that, while
more similar to the subcluster than the supercluster,
is less similar to the other members than they are to
each other. Thus, the single page is added, and if
a subcluster were to be looked for immediately, the
pages that had previously made up the subcluster
would be found, and a new subcluster, identical to
the original, would be found. This leads to a large
number of agents in a single branch which each have
a single page and a subcluster of the same, with a
tight subcluster moving further away.

(a) Life-cycle

The life-cycle of a hierarchical profile agent dif-
fers from a regular profile agent in a few ways:

1. Birth. Same as a profile agent.

2. Page bidding. Bids from all children
agents CC are collected and returned.

3. Page acceptance. Pages may not be ac-
cepted directly by an agent, but must be
delivered to the appropriate winner of the
bid.

4. Page distribution. If a page has been
accepted by a child agent, that agent may
have recalculated its features and pages
owned by the parent agent might more ap-
propriately fit with the child agent. Thus,
the parent agent asks all of its child agents
for a comparison score. Note that this is
different from a bid, in that it does not in-
crease the age of any agents. If there is a
clear winner for a page, it is redistributed
down the branch that won to the appropri-
ate child agent.

18

This allows a limited reconfiguration of the
hierarchy, so that pages flow downward to
the most specific agent for the page topics.

5. Wealth recalculation.

If pages have been accepted or redistributed
there will possibly be changes in the wealth
of agents along the way.

6. Subcluster search, or “splitting”. At
the core of the hierarchical structure is the
ability of a cluster to contain one or more
subclusters. An agent will search through
its pages to attempt to find one or more
maximal subclusters. For each of these sub-
clusters a new child agent is created.

7. Searching. Same as for the simple profile
agent, the hierarchical agent may schedule
a search to be performed.

8. Recommendation gathering. When the
recommendations are requested of a hierar-
chical profile agent, it in turn requests all
the recommendations from all of its chil-
dren and collects them all in a list. If more
than one agent has a recommendation for a
particular page, the best recommendation
is used.

9. Retirement. When a hierarchical profile
agent is retired, all of the children agents
become children of the agent’s parent agent.
If the agent has no parent, i.e., it is the head
of a corporation, all of the child agents be-
come heads of new corporations under the
interface agent.

While retired, a hierarchical profile agent
may not create any new children.

10. Reinstatement from reserve. With hi-
erarchical profile agents, new agents may
be added beneath existing agents (as op-
posed to the simple profile agents, where
new agents can only be created as new cor-
porations). Whenever a hierarchical pro-
file agent discovers that it has need of a
new agent, it may request from the inter-
face agent that an agent be retrieved from
the holding area and used instead of creat-
ing a new agent from scratch. This allows
the older agent a new lease on life, and the
parent benefits from the existing knowledge
of the older agent.

11. Death. Since the only way an agent can
face death is to be placed in the holding

area and an agent in the holding area can-
not have any children, death comes under
the same circumstances and conditions as
for a simple profile agent.

b Term Weight Context

This agent requires modifications to the func-
tion used to calculate the term weights of a page.
Two things need to change, based on the addi-
tion of child agents: the determination of the
document frequency of a term, and the calcula-
tion of the size of the agent. For the purposes
of document frequency, a child agent contains
the term if one of its features contains the term.
A hierarchical profile agent’s size is calculated
based on the sum of all of its own pages and the
number of children agents it has. In effect, the
presence of a child agent is treated much like the
presence of another page within the agent.

c Wealth Calculation

The only change to the wealth calculation is a
change in the way that an agent’s size is deter-
mined. An agent’s size is the total number of
pages and the total number of child agents com-
bined:

size(A) = |pages(A)| +
∑

∀c∈children(A)

size(c)

(26)

4.4.7 Search Agents

Search agents are responsible for finding pages that
might be of interest to the user and evaluating them.
They are created as needed for a specific search by a
profile agent, and do not carry any history. The spe-
cific information used to search may be specialized by
the type of search agent, but generally, they act upon
a vector of features and collect recommendations.

Multiple types of search agents are used in the sys-
tem:

1. Google search agents are a type of search-
engine leveraging search agent, and contain the
Google API to submit queries and evaluate their
results on behalf of the user.

2. Link search agents use the proximity-priority
search algorithm described in the previous chap-
ter.

19

3. Expert consultation agents travel to the en-
vironment of a set of local expert agents repre-
senting a website.

4. Rendezvous search agents travel to commu-
nity environments (rendezvous servers) to inter-
act with other search agents and host agents for
recommendations.

In this initial implementation, the type of search
agent used is fixed for the particular compilation.
That is, a user using a particularly compiled version
of the system will be using one and only one type
of search agent. (It is planned in the future that
the choice of search agent to use can be influenced
both by the user’s preferences and by the observa-
tions of the situation and performance of the search
agent types by members of the agent corporations;
in this way, the system will be able to adapt the use
of search agents to the material searched as well as
observed successful searching.)

(a) Search Hosts

The search-engine-leveraging search agent uses
an external search engine host to accomplish
its search, but otherwise has no special require-
ments of the server.

The link search agent only relies upon the web
servers that contain the pages for its search
process. It does not require any special search
host features.

The expert consultation agent and the ren-
dezvous search agent travel to the remote search
host in order to interact with agents there locally.
This requires a specialized host that implements
a SWAMI agent environment. This environment
is capable of receiving agents from remote en-
vironments and providing them with a way to
navigate once they have arrived. In both cases,
the actual search mechanisms and environments
are effectively identical, with the real difference
coming in the kinds of host agents presented.

The expert consultation agent travels to remote
SWAMI environment to consult with experts.
This environment contains a number of local
SWAMI expert agents that each contain some
hidden knowledge and set of pages over which
they are considered experts. Upon arriving in
the environment, the expert consultation agent
requests a list of expert agents that are similar
to itself, and seeks out each agent mentioned on

the list until it has reached its search limitations.
The local expert agents give recommendations to
the visiting agents, but only change their knowl-
edge based on internal discoveries; that is, they
do not change based from their interactions with
visiting agents. The search limitations include
the number of pages considered, the number of
agents spoken with and the number of (good)
recommendations discovered.

The rendezvous search requires a Rendezvous
Environment. Similar to the expert environ-
ment, this environment is capable of delivering
a visiting search agent a list of locally hosted
agents that are similar to it that the search agent
can consult. There are two important differences
that make this environment different, however:
first, the list of agents returned contains not only
agents that are locally created, but also con-
tains any other search agents that happen to be
visiting at the time; second, if the environment
detects that no internal rendezvous host agents
were among the list of agents recommended to be
consulted with, it will create such an agent, al-
lowing the environment to grow and reflect those
things searched within it. The locally-created
rendezvous host agents trade recommendations
with visiting agents, and thus are changed by
those agents that visit.

In both cases, the score of a recommendation is
modified by how similar the two agents are.

(b) Search Proxy Agents

In the case of both of the expert consultation
and rendezvous agents, a local controlling agent
is needed to handle the creation of the connec-
tion to the remote environment and the agent
sending and retrieving. This agent serves as a
controlling proxy for the communication. This
agent is created by a profile agent to create a
search, and controls the search agent in turn; see
Figure 12 for a illustration of the proxy’s role.

4.4.8 The Interface Agent

The top-most agent involved in the system
is the InterfaceAgent. It is a specialized
HierarchicalProfileAgent which observes the
pages viewed by the user, distributes them to the ap-
propriate agent corporation, and collects recommen-
dations from all corporations for the user. It cannot

20

communication
channel

Search
Agent

creates

requests

reports

goes/returns

Search Host Agents

Search Agent

Remote Environment

Proxy Agent

Hierarchical
Profile Agent

Figure 12: The role of the search proxy is to coordi-
nate search agents’ travel to remote search environ-
ments.

perform searches, cannot be retired or deleted, and
cannot be placed in the holding area.

The interface agent accepts all pages, unlike other
hierarchical profile agents; like other hierarchical pro-
file agents, it will attempt to discover subclusters to
create new corporations to handle them.

The Holding Area

The interface agent is responsible for the special
area in which agents that have been retired are
placed. An agent is not directly deleted from the
system when it ceases to be immediately relevant.
Instead, the agent will be removed from its current
place and put into the holding area when its wealth
falls below a retirement threshold, η. This allows
agents that performed well to exist longer, in case
the topics they represent are repeated in the future.

While in the holding area, an agent may not cre-
ate any child agents nor create any search agents. It
continues to make bids on incoming pages and there-

fore, to age. If it should win a bid from an incoming
page, it will be reinstated from retirement and added
the head of a new corporation. This reflects the situa-
tion of a recurring interest, where the user had drifted
away from an interest for a period of time, but has
now returned to it.

If the agent fails to win any bids, its wealth will
gradually decrease over time. Once its wealth has
fallen below a second threshold, τ , it is removed per-
manently from the system.

4.4.9 The Browser

The whole system is put together in the browser (see
Figure 13). This browser has basic features of a typ-
ical browser:

• it has a URL input field, so that a user may enter
a URL and jump immediately to any page;

• it has history, and the user can navigate back-
ward/forward through history;

• a link on any displayed page can be followed by
clicking on it.

In addition, several specialized features have been
added:

• there is a table of current page recommendations
for the user to select from, if desired

• the current analysis of any page can be displayed

• each of the agents working for the user can be
inspected using the agent browser

• the state of all agents can be saved and loaded,
allowing the user to take a snapshot of the sys-
tem

• a message window at the bottom tells the user
the current activity, including which agent won
the bid for the current page, if a new agent has
been created, retired or removed, and when a
search has been conducted. (This was primarily
used for monitoring activity during testing.)

4.5 Summary

The SWAMI system contains a custom agent imple-
mentation written in Java. Many of the agents map
to clusters in an incremental clustering scheme, and
each agent is capable of independent action.

21

Recommendations

Page

Window
Message

Controls
Navigation

Field
URL Input

Display

Figure 13: A screenshot of the browser with integrated SWAMI.

A number of parameters control the agent’s life
cycle, including the balance of importance between
agent size, agent searching, agent recommendation
success and momentum. Other parameters include
the retirement threshold and the death threshold of
wealth. Parameters governing the clustering include
the minimum number of pages an agent must see in
order to search for clusters (the minimum dirtiness
threshold).

5 Evaluation

The evaluation of the SWAMI system consists of ver-
ifying that it can detect the growth and shift of user
interests, provide a usable model of the user, and act
upon that model on behalf of the user.

To perform this evaluation, test data was generated
that represents a web of pages that are interconnected
and that have localized coherence. From this test
data, numerous trial runs were conducted in order to
demonstrate that all of the key events expected of
the system were observed, and that the system was
behaving as expected. Four typical example runs are
highlighted here.

Because the test data was generated offline and
never made available to a search engine, no examina-
tion of the search-engine-based search method could
be attempted, without implementing a specialized
search engine, which was beyond the scope of this
initial research.

5.1 Test Methodology

The SWAMI system was tested by the author man-
ually by selecting a random start page and following
links according to one of five typical user motivations,
derived from the earlier observations about browsing
behaviour:

1. Continued interest. Links might be chosen
to represent a continued interest in an existing
topic. The links followed for this motivation were
links to pages within groups from which other
pages had been visited in this session.

2. Changing interest. Links might be chosen to
represent a break in the interests of the user.
These links were chosen at random from the page
being viewed or their URLs were entered directly
into the input area.

22

3. Returning interest. Links might be chosen
that represent a return to a past interest. Often,
these links were chosen to be relevant to an agent
that had been retired but not yet deleted from
the system, to demonstrate that such an agent
would be returned to active service.

4. Intense and specialized interest. Links
might be chosen to represent a deepening and
possibly specialized interest within an existing
topic. These links were chosen from the best
recommendations provided by the system.

5. Shallow interest. Links might be chosen
to represent the seeking behaviour of a user,
wherein links are essentially chosen at random.

Test runs were continued until it had demonstrated
a particular feature. In total, 25 test runs were com-
plete.

For each test run, the following events were ob-
served:

• when an agent is created;

• when an agent splits; this is distinct from the
previous event in that it concentrates on the ef-
fect of the change on the parent, rather than the
details of the new child agent;

• the bids for each page from each agent in the
system;

• the wealth of each agent after each bid

• when a search was conducted, and the results it
found;

• when an agent is retired;

• when an agent is reinstated;

• when an agent is deleted permanently;

To summarize the results, two charts were devised:
the page group activity chart and the agent activity
chart. The time scale on both of these charts is in
terms of page views by the user.

The page group activity chart shows the activity
of the user in terms of the pre-generated page group
to which each page the user chose belonged. Note
that pages within the same pre-generated page group
share a high similarity, while pages between groups
tend to have a much lower similarity, so a steady line
indicates a consistent interest that the system should
recognize.

The agent activity chart shows the wealth of all
of the agents in the system over the same period of
time. As agents accumulate pages and become more
sure about the topics they represent, their wealth
should increase; as the topics they represent fall out
of favour, the wealth should decrease. The identifi-
cation of subtopics can also be seen in the creation
of child agents, which is shown as a sudden start of a
weight track on the chart. When agents are removed,
their weight track disappears.

These two charts, when taken together, show the
inputs and outputs of the system, and the better they
correspond, the better the system is tracking the user
and acting on their behalf.

5.2 Results

The following sections describe the results from two
particular trial runs in detail. These trial runs were
chosen to clearly illustrate the performance of the
system, but are otherwise typical.

It should be noted that the system uses a particu-
lar naming scheme for all agents within the system.
All agents begin with the prefix “Charlie” and have
a suffix indicating their parentage. In the case of the
topmost agent, the Interface Agent, no suffix is used.
The first child of the Interface Agent is called “Char-
lie 0”; the second child of this agent would be called
“Charlie 0 1”, and so on.

To describe the life-cycle of an agent, a chart show-
ing the agents’ wealth over time is used. This chart is
calibrated in absolute terms, meaning that while an
individual’s age is calculated relative to when they
were born, it has been adjusted to the appropriate
real outside age relative to the age of the Interface
Agent. The age also describes the number of unique
pages viewed. Where a line begins on the graph in-
dicates when an agent was born; if the line ends pre-
maturely, that agent was removed from the system.

The lower threshold for an active agent’s wealth
before being retired is 0.2; only the Interface Agent
cannot be retired. If their wealth continues to drop,
an agent will be removed when it falls below 0.15.

Pages within a particular group are known to be
similar to each other, and thus represent a topic. This
is used both to train the system and to interpret its
results.

Also, as the agents search, they discover pages in
other page groups that are relevant to the topic, thus
forming a virtual topic group based on the user’s
demonstrated interests.

23

5.3 Example 1: Interest Shifts

This example demonstrates SWAMI’s ability to fol-
low a user’s changing interests and react accordingly.
The page groups that the user visited can be seen
in Figure 14. On the weight track in Figure 15, five
agents (in addition to the Interface Agent) are shown.

Each agent was created when the system detected a
cluster of similar pages. The set of pages initially cho-
sen all came from pre-generated group 40, followed by
a number of pages selected from group 38. Charlie 0
was created when the subset of pages from group 40
were detected as distinct, at age 4. At age 11, a
second agent (Charlie 1) was created to take control
of the second subcluster discovered (for group 38).
Note that while the pages were chosen from the pre-
generated group, the system itself has no knowledge
of these groups.

Between ages 14-36, links were followed semi-
randomly from existing pages, but not correspond-
ing to any previous page. These pages were simi-
lar enough to existing agents that Charlie 0 rose in
wealth during this time period, and Charlie 1 main-
tained a high wealth. Concentration by the user on
a single pre-generated page group again from age 36-
43 resulted in the creation of a new agent, Charlie 2,
to handle a newly-discovered cluster formed out of
those pages. Another agent, Charlie 3 was created
at the same time, as the new pages highlighted some
previous cluster in the previous pages.

Between ages 53 and 77, recommendations made
by Charlie 0 were followed, resulting in that agent’s
consistent wealth, while other agents diminished. At
age 77, a new topic was focused on, and a new agent,
Charlie 4 was created in response.

Note that when the user concentrated on a partic-
ular topic, the system responded by creating a new
agent to handle this new topic when it detected it.
As the user drifted away from that topic (by not vis-
iting again), the agents that had been responsible for
it waned in wealth.

The longevity of both Charlie 0 and Charlie 1 indi-
cate long-term interests. Charlie 0, in particular, has
received a lot of attention from having suggestions
followed.

Charlie 2 and Charlie 3 accurately map to short-
term interests. In the case of Charlie 3, no recom-
mended pages from that agent were viewed, leading
it to degrade in wealth very quickly and disappear
within about 5 page views. Charlie 2 was a short-
term interest which the user paid a little attention
to.

Finally, Charlie 4 is a new interest to which the
user is paying attention and good recommendations
have been found. The system responds quickly to the
newly discovered cluster, and it becomes the most
influential among them.

This example has shown that the system creates
new agents to handle new user interests, and the
wealth of those agents reflects the ongoing interest
in the topic they represent.

5.4 Example 2: Interest Specializa-

tion

In stark contrast to the previous example, this exam-
ple demonstrates the creation of specialized agents for
sub-topics discovered within the context of a larger
topic. While the page group activity shown in Fig-
ure 16 seems to be chaotic (particularly after age 57),
the corresponding location on Figure 17 shows rela-
tively stable behaviour.

Charlie 0 represents a long-term interest (page
group 42) which was concentrated on for a consid-
erable period of time. Two sub-topics were detected
from within this one, represented by Charlie 0 0 and
Charlie 0 1. The second of these was pursued mo-
mentary, but was forgotten for a period of time. Note
that Charlie 0 1 was retired but brought back instan-
taneously when the user returned to that topic. At
that point, it actually triggered a split, creating the
very short term topic represented by Charlie 0 1 0.

At approximately age 45, the system has detected
that the user has decided to view another topic in-
tensely for which good suggestions could be found.
This is represented by Charlie 1, whose continued
strength is due to its suggestions being followed. The
return of a peak in Charlie 0 at approximately age 72
was due to following a link on a page suggested by
Charlie 1 which led off to an older topic.

The relative stability of the wealth track of Char-
lie 1 after age 45 despite the apparent randomness of
the page group activity for the same time period is
due to the agent having found pages within multiple
groups which are similar to the topic at hand. In this
way, it has created a virtual group of pages centred
around the user’s interests.

6 Conclusions

This paper describes a framework for a multi-agent
system for providing personalized web page recom-
mendations to users. The SWAMI framework fea-

24

Figure 14: The page groups visited by the user on the first example test run.

Figure 15: Agent activity from the first example test run.

25

Figure 16: The page groups visited by the user on the second example test run.

Figure 17: Results from the second example test run.

26

tures a sophisticated user model using a social multi-
agent system with a cost-driven and time-variable in-
teraction model organized into hierarchies of related
topics. Agents representing particular topical inter-
ests in this system can search for recommendations
for the user with one of multiple strategies. Among
those search strategies is the ability of the search
agents to become mobile. Mobile search agents can
travel to particular, SWAMI-aware websites and in-
teract with local topic experts, or they can travel to
SWAMI “rendezvous servers”, where they can inter-
act with user-independent collaborative recommen-
dation agents and with other search agents represent-
ing users.

Key features of this framework include local repre-
sentation of a user’s interests (allowing the system to
“learn once, apply everywhere”), the integration of
local, site-based and collaborative recommendations,
and an active user profile representation which takes
into account short-term, long-term and recurring in-
terests, as well as the specialization of interests.

This holistic approach to web search represents a
more realistic solution to the problem of web search
than site-specific or user-agnostic approaches.

Several trial runs were performed, from which typi-
cal examples were chosen to examine in detail. These
trial runs demonstrate that the agents do grow to
mirror the user activities and change over time to re-
flect changes in the user intentions. Short-term, long-
term and recurring interests have been detected by
the system, as well as specialization to accommodate
a particularly important interest. Recommendations
could be gathered successfully by using a link-search
algorithm, by consulting with site experts or through
interacting with a community. Recommendations in
the community were successfully distributed between
members of that community.

6.1 Future Work

This research has proved promising, but there are
several additional questions raised throughout the
work that would make interesting follow-up research.
These questions include:

• Parameter setting. There are a large num-
ber of parameters within this system, includ-
ing: minimum similarity thresholds; minimum
agent wealth before retirement; minimum agent
wealth before deletion; the relative weights of
each component in the agent wealth calculation;
the minimum number of pages required before

an agent considers splitting; the minimum num-
ber of pages that must remain in a cluster after
all others have been allocated to sub-clusters;
and so on. These parameters are currently es-
tablished through observation and arbitrary de-
cision. However, in some cases, these parameters
do not always work correctly. It seems natural
that these parameters might either be adjusted
by evidence or even determined entirely by evi-
dence within the system. In addition, it may also
be beneficial to allow parameters to be tuned ac-
cording to user tastes.

• Agent hierarchy/structure reorganization.
As agents are retired and rehired, the hierar-
chical structure of the agents is reorganized,
allowing multiple independent but similar spe-
cializations the possibility of converging in one
branch. This specialization will only occur, how-
ever, when interest in a particular sub-agent has
waned significantly. There seems to be a natural
role for a “headhunter” agent or something sim-
ilar which can help facilitate reorganizations of
the agent structure without the need of a dimin-
ished interest.

• Open agent structure. The agents are cur-
rently arranged in a strictly hierarchical manner,
with each agent having at most one parent and
any number of children. This structure, while
convenient, is artificial; information often does
not follow a strictly hierarchical structure, in-
stead having more of an open graph structure.
One possible modification of the SWAMI archi-
tecture is to modify the concept of “parent” and
“child” agents into the more general “ancestor”
and “descendant” roles, or even into the most
general “sibling” role. Such a structural change
would be capable of modelling much more sub-
tle interactions within the data, but each agent
would have a larger web of information from
which to discover patterns.

• Page comparison. Several page comparison
mechanisms were examined before selecting the
cosine similarity measure. In particular, several
variations on the Jaccard measure were strong
contenders. Only a few of the measures exam-
ined take into account structural or positional
information about the term on a page. Alterna-
tive methods of page comparison might improve
the identification of page clusters and the ability
for pages to reach the appropriate agent. Pages

27

are also currently viewed only as the collection
of terms that physically occur within the body
of the document (in their stemmed forms). The
system might be significantly improved if a facil-
ity such as WordNet could be included to search
for other words based on common relationships
such as antonym or synonym, although at a cost
of complication and processing time.

• Incremental calculation. When a page is
added to a new cluster, it affects the centroid
of that cluster, which may shift the set of fea-
tures enough that some of the pages that had
been part of the cluster may no longer fit prop-
erly within it, or might fit more appropriately
within a sub-cluster. Thus, every time a page
is added to a cluster, a significant amount of re-
calculation is potentially performed, significantly
impacting performance. If it could be possible to
calculate only the effect itself on the cluster in-
stead of calculating everything, or to calculate a
predictor that can indicate whether a full recal-
culation should be done, this would significantly
improve the speed of the system.

• Local experts agents. Only one form of the
local expert agent was examined in the process
of this thesis, but several are possible. In par-
ticular, it might be possible for the local experts
to reorganize themselves to reflect the kind of
requests that are being made, making the local
experts adaptive to usage.

• Rendezvous agents environment. The ren-
dezvous server implemented here is basically
functional, but it does not have any sophisti-
cated mechanisms for creating new rendezvous
host agents. Currently, if no host agents are
discovered to serve a particular incoming search
agent, a new host agent is created. Also, there is
little attempt to guarantee that two host agents
do not end up covering the same material; in
fact, in the evaluation of the rendezvous server,
there were in fact two host agents that had a
difference of only two pages.

• Remote search environment locating. The
current system looks for a remote search environ-
ment (whether rendezvous server or local expert
environment) on the local machine, at a known
port. To make the system more generally useful,
a mechanism for identifying these remote envi-
ronments is necessary.

• Choosing search methods. In the current
system, the method of searching is hard-wired
into the particular incarnation of the executable.
It is desirable that multiple search methods be
available simultaneously to the system. It is also
desirable to allow the agents to choose which
method is appropriate, perhaps under the di-
rection or suggestion of the user. This includes
preferences, perhaps, for different remote search
environments for different topics. It is expected
that the search methods would complement each
other well: local expert agents allow special-
ized exploration in a particular local environ-
ment; link search agents allow easy exploration
between local page environments; rendezvous
servers link individuals together into communi-
ties, allow transfer of recommendations between
users; and the search-engine-leveraging search
agents allow disconnected local environments to
be connected.

• User control and manipulation of agents.
It has been speculated that if users were able to
tag or name the agents working for them, they
would be able to further judge the recommenda-
tions provided by those agents. Other controls
might also be useful, such as the ability to freeze
an agent from changing (thus always providing
the same kind of judgement without fear of being
retired), arbitrarily remove an agent (to prune
the system), or arbitrarily reward an agent for a
particularly useful suggestion.

• Page re-occurrence. The system currently
takes a simplified view of pages: they are un-
changing entities, so when a page has been
viewed once, it need never be viewed again.
The interface tracks the list of pages that have
been viewed so far this session, and simply does
not process those pages that have already been
seen. This simplification works for a large num-
ber of pages, but a significant portion of the
web changes constantly. If these changing pages
could be identified, the system could automati-
cally scan the pages to see if they have changed
enough to be revisited by the user.

• User profile persistence. Currently, the sys-
tem is only designed to work for the duration of
a single session. The ability to save the state of
the system was experimented with early in the
development, but it was vulnerable to incompat-
ibilities introduced by code changes. For such a

28

system to be generally useful, however, it must
have a way to store a user’s profile between ses-
sions. In a similar way, the rendezvous server
should have the ability to persistently store the
community it represents.

• Wealth as accumulated value. The system
calculates the wealth of an agent as an instanta-
neous value based on the performance and other
history of the agent. An alternative view is to
treat wealth more like the real economic con-
cept, in that it is something acquired for suc-
cess and paid out to perform actions or to sim-
ply “live”. The instantaneous system was im-
plemented to give some measure of control and
confidence that the system would have a con-
tinuing downward trend if no beneficial activity
took place. A more open economy also requires
additional controls to ensure that it changes ap-
propriately and maintains a good balance.

• Earlier detection of groups. To circumvent
the “cascading group” problem, the system re-
quires that a small number of pages be left be-
hind in a parent agent before a child agent can
be created. In particular, the interface agent,
which is not capable of searching itself, will not
create any corporations if there are not a suf-
ficient number of pages that remain after the
corporation has been created. This leads to the
system apparently not able to find a group until
after the user has left it, because only by visit-
ing pages that are inconsistent with the previous
pages can a new group be formed (leaving those
most recent pages behind).

• Real user testing. This system was tested
with a model of real users over pages which have
known properties. The next stage of testing
will involve real users and a much broader set
of pages with more variable qualities, such as
with the general Web. Preliminary testing in
this manner has yielded promising results. In
more open testing, users would be able to rate
the search results discovered and provide a qual-
itative score to both determine the real success
of the search agents and to provide feedback for
the system to choose which avenues of search are
most fruitful.

References

[Asnicar and Tasso, 1997] Asnicar, F. A. and Tasso,
C. (1997). ifWeb: a prototype of user model-based
intelligent agent for document filtering and navi-
gation in the World Wide Web. In Proceedings of
the Workshop on Adaptive Systems and User Mod-
eling on the World Wide Web, Sixth International
Conference on User Modeling.

[Balabanovic and Shoham, 1997] Balabanovic, M.
and Shoham, Y. (1997). Combining content-based
and collaborative recommendation. Communica-
tions of the ACM, 40(3).

[Brusilovsky, 1996] Brusilovsky, P. (1996). Methods
and techniques of adaptive hypermedia. User Mod-
elling and User-Adapted Interaction, 6(2-3):87–
129.

[Chan, 1999] Chan, P. (1999). Constructing web user
profiles: A non-invasive learning approach. In
KDD-99 Workshop on Web Usage Analysis and
User Profiling, pages 7–12, San Diego, CA, USA.

[Chen and Chen, 2002] Chen, C. C. and Chen, M. C.
(2002). PVA: A self-adaptive personal view
agent. Journal of Intelligent Information Systems,
18(2/3):173–194.

[Cosley et al., 2002] Cosley, D., Lawrence, S., and
Pennock, D. M. (2002). REFEREE: An open
framework for practical testing of recommender
systems using researchindex. In 28th International
Conference on Very Large Databases, VLDB 2002,
Hong Kong.

[De Bra and Ruiter, 2001] De Bra, P. and Ruiter,
J. P. (2001). AHA! adaptive hypermedia for all.
In Proceedings of the WebNet Conference, pages
262–268.

[Fink et al., 1997] Fink, J., Kobsa, A., and Nill, A.
(1997). Adaptable and adaptive information access
for all users, including the disabled and the elderly.
In Jameson, A., Paris, C., and Tasso, C., editors,
User Modeling: Proceedings of the Sixth Interna-
tional conference, UM97, pages 171–173, Vienna,
New York. Springer Wien New York.

[Freitag et al., 1995] Freitag, D., Joachims, T., and
Mitchell, T. (1995). WebWatcher: A learning
apprentice for the World Wide Web. Working

29

Notes of the AAAI Spring Symposium: Informa-
tion Gathering form Heterogeneous, Distributed
Environments, pages 6–12.

[Godoy and Amandi, 2000] Godoy, D. and Amandi,
A. (2000). PersonalSearcher: An intelligent agent
for searching web pages. In Advances in Artificial
Intelligence, IBERAMIA-SBIA 2000, volume 1952
of Lecture Notes in Artificial Intelligence, pages
43–52. Springer.

[Godoy and Amandi, 2002] Godoy, D. and Amandi,
A. (2002). A user profiling architecture for textual-
based agents. In Proceedings of the 4th Argentine
Symposium on Artificial Intelligence (ASAI 2002)
in the 31st International Conference on Computer
Science and Operational Research (JAIIO 2002),
Santa Fe, Argentina.

[Google, 2004] Google (2004). Google search engine.
http://www.google.com.

[Java Stemmer, 2005] Java Stemmer (2005). Porter
stemmer in java. http://www.tartarus.org/
∼martin/PorterStemmer.

[Joachims et al., 1997] Joachims, T., Freitag, D.,
and Mitchell, T. (1997). WebWatcher: A tour
guide for the World Wide Web. In Proceedings
of the Fifteenth International Joint Conference
on Artificial Intelligence, pages 770–775. Morgan
Kaufmann.

[Kleinberg, 1999] Kleinberg, J. M. (1999). Authori-
tative sources in a hyperlinked environment. Jour-
nal of the ACM, 46(5):604–632.

[Kobsa et al., 2001] Kobsa, A., Koenemann, J., and
Pohl, W. (2001). Personalized hypermedia presen-
tation techniques for improving online customer re-
lationships. The Knowledge Engineering Review,
16(2):111–155.

[Lieberman, 1995] Lieberman, H. (1995). Letizia:
An agent that assists web browsing. In Proceed-
ings of the Fourteenth International Joint Confer-
ence on Artificial Intelligence, pages 924–929, San
Mateo, CA, USA. Morgan Kaufmann Publishers
Inc.

[Lieberman et al., 1999] Lieberman, H., Van Dyke,
N. W., and Vivacqua, A. S. (1999). Let’s browse:
a collaborative web browsing agent. In Proceedings
of the 1999 International Conference on Intelligent
User Interfaces (IUI’99), pages 65–68, Los Ange-
les, CA, USA. ACM Press.

[Mladenic, 1996] Mladenic, D. (1996). Personal Web-
Watcher: design and implementation. Technical
report, Department of Intelligent Systems, J. Ste-
fan Institute, Slovenia.

[Mobasher et al., 2002] Mobasher, B., Dai, H., and
Tao, M. (2002). Discovery and evaluation of aggre-
gate usage profiles for web personalization. Data
Mining and Knowledge Discovery, 6:61–82.

[Pazzani and Billsus, 1997] Pazzani, M. J. and Bill-
sus, D. (1997). Learning and revising user profiles:
The identification of interesting web sites. Machine
Learning, 27(3):313–331.

[Porter, 1980] Porter, M. (1980). An algorithm for
suffix stripping. Program, 14(3):130–137.

[Schwab et al., 2000] Schwab, I., Pohl, W., and Koy-
chev, I. (2000). Learning to recommend from pos-
itive evidence. In Proceedings of the 2000 Inter-
national Conference on Intelligent User Interfaces,
pages 241–248, New Orleans, LA, USA.

[Wooldridge, 2001] Wooldridge, M. (2001). An In-
troduction To Multiagent Systems. John Wiley &
Sons, Ltd, England.

[YAHOO!, 2004] YAHOO! (2004). Yahoo! search en-
gine. http://www.yahoo.com.

30

Listing 1: Main cluster discovery method
public Vector c l u s t e r (double [] [] sim) {

i f (sim == null | | sim . length == 0
| | sim . length != sim [0] . l ength) {

return null ;
}

Vector c l u s t e r s = new Vector () ;

boolean al lOk = true ;

boolean [] used = new boolean [sim . l ength] ;
for (int i = 0 ; i < used . l ength ; used [i++] = f a l s e) ;

boolean [] done = new boolean [sim . l ength] ;
for (int i = 0 ; i < done . l ength ; done [i++] = f a l s e) ;

for (int q = 0 ; q < sim . length ; q++) {
i f (! done [q]) {

Queue f i n i s h e d = new Queue () ;
Queue inProgre s s = new Queue () ;

inProgre s s . push (q) ;

al lOk = true ;

while (al lOk && inProgre s s . s i z e () > 0) {
int p = inProgre s s . pop () ;

Vector best = f indBest (p , sim) ;

i f (best . s i z e () > 0) {
f i n i s h e d . push (p) ;
used [p] = true ;

Queue l e f t o v e r s = new Queue () ;
l e f t o v e r s . push (best) ;
l e f t o v e r s . pu l l (f i n i s h e d) ;
l e f t o v e r s . pu l l (inProgre s s) ;

for (I t e r a t o r match = l e f t o v e r s . i t e r a t o r () ;
match . hasNext () ;) {

int other = ((In t ege r)match . next ()) . intValue () ;

i f (used [other]) {
al lOk = f a l s e ;

}
else {

i nProgre s s . push (other) ;
}

}
}
e lse {

al lOk = f a l s e ;
}

}

i f (al lOk && f i n i s h e d . s i z e () >= minClusterS ize) {
Vector c l u s t e r = new Vector () ;
c l u s t e r . addAll (f i n i s h e d) ;
c l u s t e r s . add (c l u s t e r) ;
for (I t e r a t o r page = f i n i s h e d . i t e r a t o r () ;

page . hasNext () ;) {
int p = ((In t ege r) page . next ()) . intValue () ;
done [p] = true ;

}
}
e lse {

done [q] = true ;
}

}
}

return c l u s t e r s ;
}

31

