
On k-d Range Search With Large k

by

Qingxiu Shi and Bradford G. Nickerson

TR06-176, May 31, 2006

Faculty of Computer Science

University of New Brunswick

Fredericton, N.B. E3B 5A3

Canada

Phone: (506) 453-4566

Fax: (506) 453-3566

Email: fcs@unb.ca

www: http://www.cs.unb.ca

Abstract

We present two new k-dimensional data structures, called the
PKD-tree and the PKD+-tree, respectively. They are explored
for indexing combined text and point data, and evaluated exper-
imentally for orthogonal range search (for 2 ≤ k ≤ 100 and n
up to 1,000,000) using synthetic data and real data. We com-
pared the range search performance of the PKD-tree with the
PKD+-tree, the k-d tree, the Pyramid technique, the R∗-tree
and naive search. The experimental results show that the PKD-
tree and the PKD+-tree have very good performance for large
k, and they always outperform the Pyramid technique, and are
better than k-d tree and the R∗-tree when k ≥ log2 n. For a
PKD+-tree built from n uniform and random data points, an
orthogonal range search with a query square W of side length ∆
visits O(k log n + n(1− (1− 2∆)k)) nodes for ∆ ≤ 0.5.

ii

Contents

Abstract ii

1 Introduction 1
1.1 Related Work . 1
1.2 Our Results . 3

2 The Pyramid Technique and Related Work 3
2.1 Pyramid technique . 3
2.2 The P+-tree . 6

3 The PKD-tree 6
3.1 The Structure of PKD-tree 6
3.2 Orthogonal Range Search . 8

4 The PKD+-tree 13

5 Experiments 17
5.1 Pyramid Technique . 17
5.2 Synthetic Uniform Point Data 17

5.2.1 Effects of k . 18
5.2.2 Effects of n . 20
5.2.3 Effects of F . 20

5.3 Real Data . 21
5.4 Combined Text and Point Data 22

6 Conclusions and Future Work 23

References 24

List of Tables

1 The average height of random Patricia tries (n=1,000,000). . . 2

iii

List of Figures

1 The fraction of the tree visited for the Patricia trie range
search with k-d hypercubes, where n = 1, 000, 000, 2 ≤ k ≤ 30
and F = log2 n. 2

2 A 2-d Pyramid technique example. 4
3 (above) A set of points in 2-dimensional data space (the num-

bers in the triangles are the pyramid numbers i), and (below)
the corresponding B+-tree (the maximum number of keys is
4, and the point insertion order is (0.2,0.7), (0.1,0.3), (0.3,0.4),
(0.2,0.1), (0.4,0.2), (0.5,0.3), (0.6,0.3), (0.8,0.4), (0.7,0.5), (0.9,0.7),
(0.7,0.8), (0.5,0.9)). 5

4 The data space and the query rectangle W (the black area
is the region of W , and the cross-hatched area is the region
needed to be visited during the range search in addition to W) . 5

5 A P+-tree example. The leaf node points to the corresponding
pyramid. 6

6 Data space and query rectangle W . The black area is the
region of W , and the cross-hatched area is the region visited
during the range search in addition to W 7

7 Algorithm for calculating the pyramid value pvv of a point v. 8
8 The data structure of the PKD-tree. 9
9 Algorithm determining which of 2k pyramids are intersected

by W . 10
10 Algorithm for determining hi

low and hi
high in each pyramid i. . 11

11 The data space and the query square W (the black area is the
region of W , and the cross-hatched area is the region needed
to be visited during the range search in addition to W). 12

12 The data space and the query square W for the best case
orthogonal range search (the black area is the region of W ,
which is the region needed to be visited during the range search). 13

13 A 2-d PKD+-tree example. 14
14 Orthogonal range search algorithm for the PKD+-tree. . . . 15
15 The sum of the number of nodes visited and the number of

data points visited from the leaf nodes in the B+-tree during
range search for different values of M , where E(F) = log2 n,
2 ≤ k ≤ 20 and n = 1, 000, 000. Note that the number of data
points visited is independent of M 18

iv

16 The experimental number of nodes visited and the theoretical
results, where E(F) = log2 n, 10 ≤ k ≤ 100 and n = 100, 000.
The large difference is due to the theoretical results corre-
sponding to upper bounds and lower bounds. 19

17 The experimental number of nodes visited and the range search
time comparison between the PKD-tree, the PKD+-tree, the
k-d tree, the R∗-tree, the Pyramid technique and the naive
search (n = 100, 000, (above) 2 ≤ k ≤ 20, (below) 20 ≤ k ≤
100 and E(F) = log2 n). 19

18 The experimental number of nodes visited and the range search
time comparison between the PKD-tree, the k-d tree, the
Pyramid technique and the naive search, where E(F) = (log2 n)2,
100, 000 ≤ n ≤ 1, 000, 000 and k = 16. 20

19 The experimental number of nodes visited and the range search
time comparison between the PKD-tree, the k-d tree, the
Pyramid technique and the naive search, where volumn =
E(F)/n, n = 1, 000, 000 and k = 20. 21

20 volume=E(F)/n, n=68,040 and d=32. 21
21 Comparisons between the PKD-tree, the k-d tree, the Pyra-

mid technique and the naive search for combined text and
point data, where volume = E(F)/n, n = 1, 000, 000, k = 20
and kr = 2. 22

22 The experimental number of nodes visited and the range search
time comparison between the PKD-tree, the k-d tree, the
Pyramid technique and the naive search for combined text
and point data. (above) E(F) = log2 n, and (below) E(F) =
(log2 n)2 (n = 1, 000, 000, 2 ≤ k ≤ 20 and kr = 2). 23

v

1 Introduction

Multidimensional data are used in many applications: database applica-
tions, geographical information systems, computer graphics and computa-
tional geometry. Many applications require processing of large amounts of
k-dimensional (k-d) data. The specific search problem we are concerned with
is range search. Given a collection of n records, each containing k attributes,
a range search asks for all records in the collection with key values inside a
specified range for each of the k dimensions. Over the past 30 years, more
than 100 data structures for the range search problem have been presented
[1][4][6][7][8][12][15]. The motivation for this research is to find dynamic data
structures that support efficient orthogonal range search for combined text
and point data in low and high dimensions.

1.1 Related Work

The Patricia trie was discovered by D.R. Morrison [13]. Each partition
of the Patricia trie splits a region of the search space into two equal sub-
regions. Each coordinate axis gets cut in turn, in a cyclical fashion of
1, 2, · · · , k, 1, 2, · · · . In [16] we compared the range search performance of
Patricia tries with k-d trees and R∗-trees. When k is getting larger (e.g.
k ≈ log2 n), Patricia tries range search performance deteriorates. Table
1 shows the average height of Patricia tries built from n uniformly dis-
tributed k-d points (n = 1, 000, 000, and the bucket capacity is one). The
height+skips means the height of trie plus the length of skipped strings stored
in the internal nodes along the path from the root to the leaf node. We can
see that the height+skips of the trie doesn’t change with increasing k. When
k=2, the space of each dimension can be divided in half 20 times on aver-
age from the root to the leaves, and nodes are pruned quickly during range
search. When k=20, the space of each dimension is divided in half twice on
average, which results in many more nodes visited during range search.

What’s more, if we assume that the query rectangle W is a hypercube and
the number of points F in range is fixed for the same n, then for uniformly
and randomly distributed k-d points, we expect the side length ∆ of the
query hypercube is the k-th root of F/n. For example, for n = 1, 000, 000
and E(F) = log2 n, when k=2, ∆ = (log2 n/n)1/2 ≈ 0.0045; when k=20,
∆ = (log2 n/n)1/20 ≈ 0.5821, which is larger than half of each dimension in
the search space. It is obvious that a range query with side length larger

1

Table 1: The average height of random Patricia tries (n=1,000,000).

k=2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
height 26 26 26 26 26 26 26 26 27 26 26 27 26 27 27 26 26 26 26

height+skips 41 41 40 42 41 40 40 41 41 41 40 42 40 41 41 42 41 40 41

than 0.5 must intersect with the region with side length equals to or larger
than 0.5 in every dimension, so we visit most of nodes in the Patricia trie
during the range search (See Fig.1).

 0

 0.2

 0.4

 0.6

 0.8

 1

 5 10 15 20 25 30

F
ra

ct
io

n
of

 th
e

tr
ee

 v
is

ite
d

k

’patriepoint.dat’

Figure 1: The fraction of the tree visited for the Patricia trie range search
with k-d hypercubes, where n = 1, 000, 000, 2 ≤ k ≤ 30 and F = log2 n.

The k-d tree is one of the original data structures for solving the point
range search problem. The k-d tree was proposed by Bentley [3] as a general-
ization of the binary search tree in k-d space. At each intermediate node, the
k-d tree divides k-d space into two parts by a (k-1)-dimensional hyperplane
parallel to the coordinate axes. The direction of the hyperplane alternates
between the k possibilities from one tree level to the next. The k-d tree
performs efficiently on small k (k ≤ log n), however, when k is getting larger,
the k-d tree is limited by the curse of dimensionality, i.e., the k-d tree tends
to visit most of nodes in the tree during range search.

In recent years, several mapping-based indexing schemes have been pro-
posed to improve the performance of range search in high-dimensional data
space, e.g. the Pyramid technique [5] and the iMinMax(θ) [14]. Berchtold
et al [5] showed that when processing range queries on large k, the perfor-

2

mance improves for increasing k. The basic idea is to transform the k-d data
points into 1-d values, and then store and access the values using a B+-tree.
A k-d range query is mapped to a union of 1-d range queries. Based on
the similarity between these schemes, Zhang et al. [17] proposed a general-
ized structure for multidimensional data mapping and query processing. The
mapping-based indexing scheme overcomes the high dimensionality problem.
However when k ≤ log n, the mapped-based indexing method tends to check
more data points to decide if the data points in range than conventional
indexing methods, e.g. the k-d tree and the Patricia trie.

1.2 Our Results

We combine the Pyramid technique and the k-d tree, called the PKD-tree
and the PKD+-tree, respectively, using the advantage of the k-d tree for
small k (k ≤ log2 n), and the superiority of the Pyramid technique for
k > log2 n. In Section 2 we have a closer look at the Pyramid technique
and its related work. In Sections 3 and 4, we proposed these two data struc-
tures, and theoretically analyzed their space requirement and range search
time in the worst case. We present the experimental results from an exten-
sive performance study to evaluate the PKD-tree and the PKD+-tree for
orthogonal range search in Section 5, using synthetic data and real data.
We compare the range search performance of the PKD-tree to the PKD+-
tree, the k-d tree, the Pyramid technique, the R∗-tree [2] and naive search.
Overall, our experiments show that the PKD-tree is greatly better than the
Pyramid technique when k ≤ log2 n, and it and its variant approximate the
Pyramid technique when k >> log2 n. The PKD-tree and the PKD+-tree
outperform the k-d tree and the R∗-tree when k ≥ log2 n and don’t deterio-
rate with increasing k. Without loss of generality, the following discussions
are all based on unit space [0, 1]k.

2 The Pyramid Technique and Related Work

2.1 Pyramid technique

The basic idea of the Pyramid technique is to transform the k-d point data
into 1-d values, and then store and access the 1-d values using a B+-tree.
The data space is divided in two steps: firstly, the data space is split into

3

2k pyramids having the center point of data space (0.5, 0.5, · · · , 0.5) as their
top and a (k − 1)-d surface of the data space as their base. Secondly, each
of the 2k pyramids is divided into several partitions, each corresponding to
one data block of the B+-tree. Fig.2 shows a 2-d example. The data space
is divided into 4 triangles, sharing the center point of the data space as their
top and one edge of the data space as a base. Then these 4 partitions are
split again into several data blocks parallel to the data boundary.

v

P

P

P

P

0

3

2

1

hv

Figure 2: A 2-d Pyramid technique example.

A number i (0 ≤ i < 2k) is assigned to each pyramid according to some
rule. Assume a point v = (v0, v1, · · · , vk−1) is in pyramid i. The height hv of
the point is defined to be the distance between v and the center in dimension
i mod k, i.e. hv = |0.5− vi mod k| ∈ [0, 0.5]. The pyramid value of v is defined
as the sum of its pyramid number i and its height hv: pvv = i + hv. The
pyramid i covers an interval of [i, i + 0.5] pyramid values and the sets of
pyramid values covered by any two different pyramids are disjoint.

After determining the pyramid value of a point v, we insert v into a B+-
tree using pvv as a key, and we store the point v in the corresponding leaf node
of the B+-tree. Two points may have the same pyramid value, but the points
are stored in the leaf nodes, so we don’t need an inverse transformation. We
give a 2-d example in Fig.3.

Given a query rectangle W , the points in W are reported. In the first
step, we determine which pyramids are intersected by W . In the second
step, we determine which pyramid values inside an intersected pyramid pi

intersect W . Fig.4 shows the region visited when an orthogonal range search
is performed. The black area is the region of the query rectangle W , and the
cross-hatched area is the region we need to visit during the range search in
addition to W .

4

1

1

0 1

3

20

(0.1,0.3) (0.6,0.3)(0.3,0.4) (0.2,0.7)

(0.4,0.2) (0.2,0.1)

0.2 0.3 0.4 1.2 1.3 1.4 2.2 2.3 2.4 3.3 3.4

(0.5,0.3)

0.4 1.3 2.2 2.4

(0.7,0.6) (0.8,0.4) (0.9,0.7) (0.7,0.8) (0.5,0.9)

Figure 3: (above) A set of points in 2-dimensional data space (the numbers
in the triangles are the pyramid numbers i), and (below) the corresponding
B+-tree (the maximum number of keys is 4, and the point insertion order is
(0.2,0.7), (0.1,0.3), (0.3,0.4), (0.2,0.1), (0.4,0.2), (0.5,0.3), (0.6,0.3), (0.8,0.4),
(0.7,0.5), (0.9,0.7), (0.7,0.8), (0.5,0.9)).

hi
gh

��
��
��
��
��
��

��
��
��
��
��
��

��
��
��

��
��
��

��������
��������
��������
��������

��������
��������
��������
��������

hhigh

lowh

h
lo

w

h

Figure 4: The data space and the query rectangle W (the black area is the
region of W , and the cross-hatched area is the region needed to be visited
during the range search in addition to W) .

5

2.2 The P+-tree

Zhang and Ooi [18] noticed that the effectiveness of the Pyramid technique
is sensitive to the positions of the query rectangle and the performance of the
Pyramid technique is dependent on the distribution of the data set. They
proposed the P+-tree to avoid these problems: first, the data space is divided
into subspaces using the hyperplane parallel to the coordinate axes (like the
k-d tree), then each subspace is mapped into a hypercube so that the Pyramid
technique can be applied in each subspace (See Fig.5). They showed that the
P+ has 2 to 5 times performance improvements over the Pyramid technique
for orthogonal range search.

leafnode

0.5

0

1

0.6

0.4

1
d 0

d 1

0 0.6

0.5 0.41 1

leafnode leafnode leafnode

Figure 5: A P+-tree example. The leaf node points to the corresponding
pyramid.

3 The PKD-tree

Notice that if we divide each pyramid into subregions, e.g. as shown in Fig.6,
the pyramid is divided by the dotted lines, and the ideal search space is the
shadow area, which is a smaller region visited during range search compared
to Fig.4. Based on this key observation, we propose the PKD-tree.

3.1 The Structure of PKD-tree

Given a k-d key v = (v0, v1, · · · , vk−1), the attribute vi can be a point coor-
dinate value or a text string, 0 ≤ i ≤ k − 1. When vi is a text, we use the

6

hi
gh

��
��
��

��
��
��

�
�
�
�

�
�
�
�

�
�
�
�
�
�
�

�
�
�
�
�
�
�

hhigh

lowh
h

lo
w

h

Figure 6: Data space and query rectangle W . The black area is the region of
W , and the cross-hatched area is the region visited during the range search
in addition to W .

numeric mapping method [11] to get a numeric value in [0, 1] for vi: assume
the text data is comprised of symbols drawn from an alphabet of size α, and
each symbol is mapped to an integer in the range 0 to α-1. Let a string of
length c be s1s2 · · · sc, with each symbol si mapped to an integer ti, the string
s is mapped to t1

α
+ t2

α2 + t3
α3 + · · · + tc

αc , which is a one-to-one mapping. We
denote the k-d key v as v = (v0, v1, · · · , vk−1) after the numeric mapping,
vi = vi if vi is a point data, or vi is the numeric value of vi if vi is a text data.

We say a key v located in pyramid pi, i = jmax, if (vjmax < 0.5); i =
k + jmax, if (vjmax ≥ 0.5), where jmax = (j|(∀m, 0 ≤ (j,m) < k, j 6= m :
|0.5 − vj| ≥ |0.5 − vm|)) [5]. The distance from the point v to the center
point of data space is defined to be hv = |0.5 − vi mod k|, then the pyramid
value pvvof the point v is i + hvi mod k

. The algorithm for calculating pvv is
given in Fig.7.

We denote by T the PKD-tree constructed by inserting n keys into an
initially empty tree. The root of the PKD-tree is an internal node with
2k child pointers, indexing the 2k pyramids respectively. After determining
which pyramid the key v is in, we insert v into the corresponding B+-tree
using the pyramid value pvv as a key. When we reach the leaf level of the
B+-tree, we insert v into the associated k-d tree (See Fig.8). Let S be the
maximum number of points in the k-d tree. If the number of points in the
k-d tree is S before inserting v, the pyramid value pvv is inserted into the

7

PyramidValue(Point v)
1 jmax ← 0; hjmax ← |0.5− v0|
2 for (j = 1; j < k; j ← j + 1)
3 do if hjmax < |0.5− vj|
4 then jmax ← j; hjmax ← |0.5− vj|
5 if vjmax < 0.5
6 then i ← jmax

7 else i ← k + jmax

8 pvv ← i + hjmax

9 return pvv

Figure 7: Algorithm for calculating the pyramid value pvv of a point v.

B+-tree as a key, and the k-d tree is partitioned into two k-d trees according
to the key values in the B+-tree. As we know that the k-d tree is relatively
slow for large k, we define S =

√
n
2k

such that each k-d tree has fewer points
when k is large. This means more of the search is done in the pyramid part
of the PKD-tree, which is more efficient for large k. After preprocessing all
n keys, we obtain the tree T , which allows us to carry out an orthogonal
range search. In the following discussions, we assume the B+-tree has order
M . The internal nodes of a B+-tree of order M contains between M and
2M keys, and a node with m keys has m + 1 children.

Theorem 1 The PKD-tree built from n k-d data points requires O(kn)
space.

Proof. The root node of the PKD-tree requires 2k space. Assume Bi is
the number of data points in the pyramid i, 0 ≤ i ≤ 2k − 1. There are at
most 2Bi

M
nodes in the B+-tree indexing the pyramid i. So totally there are∑2k−1

i=0
2Bi

M
nodes in the B+-trees for all pyramids. Note that

∑2k−1
i=0 Bi = n,

we have
∑2k−1

i=0
2Bi

M
= 2n

M
. So the B+-trees require O(n) space. With the

storage kn required for the k-d trees, the total storage is O(kn). ¤

3.2 Orthogonal Range Search

Given a query rectangle W = [L0, H0]× [L1, H1]×· · ·× [Lk−1, Hk−1], the key
v = (v0, v1, · · · , vk−1) is in the range iff vi ∈ [Li, Hi], ∀i ∈ (0, 1, · · · , k − 1).

8

 0 1 2 ... 2k−1

...

B −tree B −tree B −tree B −tree
+ + + +...

...
k

−
d

 t
re

e

k
−

d
 t

re
e

k
−

d
 t

re
e

k
−

d
 t

re
e

Figure 8: The data structure of the PKD-tree.

We define W = [L0, H0]× [L1, H1]× · · · × [Lk−1, Hk−1], where Li = Li − 0.5
and H i = Hi − 0.5. A pyramid pi is intersected by W if and only if

1. Li ≤ −MIN(Lj, Hj), if i < k, and

2. H i−k ≥ MIN(Lj, Hj), if k ≤ i < 2k

∀j, 0 ≤ j < k, where MIN(Lj, Hj) = 0, if Lj ≤ 0 ≤ Hj, else MIN(Lj, Hj) =
min(|Lj|, |Hj|) [5]. The algorithm for calculating the pyramids intersected
W is given in Fig. 9.

Then we need to calculate the interval [hi
low,hi

high] that the pyramid values
of all point data inside the intersection of W and pyramid pi are in the interval
[i + hi

low,i + hi
high]. We define a more restricted value of hlow than the one in

[5].

The modified query rectangle W̃ for pyramid i W̃i = [L̃0, H̃0]× [L̃1, H̃1]×
· · · × [L̃k−1, H̃k−1], where

1. L̃j = Lj, H̃j = min(Hj, 0), if i < k and j = i mod k, or

2. L̃j = max(Lj, 0), H̃j = H j, if k ≤ i < 2k and j = i mod k

3. L̃j = Lj and H̃j = Hj for 0 ≤ j < k, j 6= i mod k

9

Intersection(W)
1 Initialize boolean array intersect[2*k]←0
2 for (i = 0; i < k; i ← i + 1)
3 do x ← 0
4 y ← 0
5 for (j = 0; j < k and j 6= i; j ← j + 1)
6 do if (Li ≤ (−MIN(Lj, Hj)))
7 then x ← x + 1
8 if (H i ≥ MIN(Lj, Hj))
9 then y ← y + 1

10 if (x = k − 1)
11 then intersect[i] ← 1
12 if (y = k − 1)
13 then intersect[k + i] ← 1

Figure 9: Algorithm determining which of 2k pyramids are intersected by
W .

Given a query rectangle W and an affected pyramid pi, the intersection
interval [hlow, hhigh] is define as follows:

1. hi
low = 0, if Lj ≤ 0 ≤ Hj, ∀j ∈ {0, 1, · · · , k − 1}, or

2. hi
low=

∧
j∈{0,··· ,k−1} max(MIN(L̃i mod k, H̃i mod k),MIN(L̃j, H̃j))

3. hi
high = max(|L̃i mod k|, |H̃i mod k|)∧

j∈{0,··· ,k−1} aj is the minimum of the numbers aj. The algorithm deter-
mining hlow and hhigh is given in Fig.10.

Range search begins from the root of the PKD-tree. If the pyramid i
(0 ≤ i ≤ 2k − 1) is intersected by W (Intersection algorithm in Fig.9),
we visited the B+-tree which the ith child the root points to using interval
[i + hi

low,i + hi
high]. When we reach the last level of the B+-tree, we visit the

according k-d tree to determine if the points inside W : starting at the root
of the k-d tree, at each node v, we compare the vj attribute of the current
node with [Lj,Hj] (0 ≤ j < k, j is the current node’s discriminator). If
vj ≤ Lj, the search continues on the left child of v; if vj > Hj, the search
continues on the right child of v; otherwise, we check if v inside W and the
search continues on both children of v.

10

INTERVAL(W)
1 for (i = 0; i < 2k; i ← i + 1)
2 do if (i < k)
3 then qimin

← Li

4 qimax ← min(H i, 0)
5 else qimin

← max(Li−k, 0)
6 qimax ← H i−k

7 m ← 0
8 for (j = 0; j < k; j ← j + 1)
9 do if (Lj ≤ 0) and (Hj ≥ 0)

10 then m ← m + 1
11 if (m = k)
12 then hlow[i] ← 0
13 else qjmax ← 0
14 qjmin

← 0.5
15 for (j = 0; j < k and j 6= i; j ← j + 1)
16 do qjmax = max(MIN(qimin

, qimax),MIN(Lj, Hj))
17 if qjmin

> qjmax

18 then qjmin
← qjmax

19 hlow[i] ← qjmin

20 hhigh[i] ← max(|qimin
|, |qimax|)

Figure 10: Algorithm for determining hi
low and hi

high in each pyramid i.

Theorem 2 Given a PKD-tree built from n k-d data points drawn from a
uniform random distribution [0, 1]k, and a query square W with side length
∆, an orthogonal range query visits

1. O(k log n
kS

+ n(1−(1−2∆)k)

S1/k + F), if ∆ ≤ 0.5

2. O(k log n
kS

+ n(1+(2∆−1)k)

S1/k + F), if ∆ > 0.5

nodes in the PKD-tree, where F is the number of data points in range.

Proof. We assume the input data points are randomly and uniformly dis-
tributed. For an input size n, the number of data points in each B+-tree is
on average n

2k
. Let S be the maximum number of nodes in the associated k-d

tree, then the number of k-d trees in each B+-tree of order M is on average

11

n
2kS

, and the expected height of all B+-trees of order M is logM+1
n

2kMS
. The

worst case happens when W is in the corner of the data space (See Fig.11).
When ∆ ≤ 0.5, the volume of pyramid i to be visited intersecting W is

1
2k
− (2(0.5−∆))k

2k
= 1

2k
(1− (1− 2∆)k). There are n

2k
(1− (1− 2∆)k) data points

in the shadow region of pyramid i. The number of k-d trees associated to
the B+-tree for the pyramid i to be visited is d n

2kS
(1 − (1 − 2∆)k)e. The

worst case of the number of nodes visited in the k-d tree having S nodes
during range search is O(S(1−1/k) + f), where f is the number of nodes in
range in the k-d tree. The number of leaf nodes visited in the B+-tree is

d d n
2kS

(1−(1−2∆)k)e
M

e, and the number of internal nodes visited is the height of
the B+-tree. There are k pyramids intersecting W , so the total nodes visited

in the PKD+-tree is thus O(k logM+1
n

kMS
+ n(1−(1−2∆)k)

S1/k + F).
In a similar way, when ∆ > 0.5, the center of the data space is contained

in W , so all pyramids are intersected by W . The total volume to be visited is

k(1
2k

+ (2(∆−0.5))k

2k
)=1

2
(1 + (2∆− 1)k), The maximum number of nodes visited

in the PKD+-tree is thus O(k logM+1
n

kMS
+ n(1+(2∆−1)k)

S1/k + F). ¤

����
����
����
����
����

����
����
����
����
����

���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���

��������
��������
��������
��������

��������
��������
��������
��������

����
����
����
����
����

����
����
����
����
����

∆ ≤ 0.5 ∆ > 0.5

Figure 11: The data space and the query square W (the black area is the
region of W , and the cross-hatched area is the region needed to be visited
during the range search in addition to W).

Theorem 3 The expected number of nodes visited for an orthogonal range
search in the PKD-tree built from n uniform and random k-d data points is
Ω(k log n

kS
+ F), where F is the number of data points in range.

12

Proof. Given a query square W with side length ∆, the lower bound of the
number of nodes visited during an orthogonal range search happens when
the center of W is the center of the data space. All the 2k pyramids intersect
W . In this case, we don’t need to search extra region except the region of
W . As illustrated in Fig.12, the region of the space needed to be visited
is ∆k, we have F = ∆k. As the expected height of each B+-tree of order
M is logM+1

n
2kMS

, the total number of nodes visited in the PKD-tree is
2k logM+1

n
2kMS

+ F . ¤

Figure 12: The data space and the query square W for the best case or-
thogonal range search (the black area is the region of W , which is the region
needed to be visited during the range search).

4 The PKD+-tree

The challenge for the PKD-tree is to determine an appropriate S in the k-d
trees such that an excellent range search performance of the PKD-tree is
always achieved. We arrange the k-d tree and the B+-tree in another way,
called the PKD+-tree.

The basic structure of the PKD+-tree is a B+-tree of order M . The
pyramid values of the points data are used as the key value in the nodes of
the B+-tree. An internal node with m keys of the PKD+-tree has one right
pointer, m + 1 child pointers and m + 1 associated k-d tree pointers, each
child pointer is related to a k-d tree (denoted as KD) pointer. The data
points stored in the leaf nodes of the subtree which the child pointer pointed
to are store in the nodes of the k-d tree (e.g. in Fig. 13, the leftmost KD of
the root contains (0.3,0.4) and (0.2,0.7), and the rightmost KD has (0.9,0.7),

13

(0.7,0.8) and (0.5,0.9)). The leaf node of the PKD-tree with m keys has one
right pointer and m data point pointers. The right pointer points to the
immediate right node at the same level.

Theorem 4 The PKD+-tree of order M built from n k-d data points re-
quires O(kn log n).

Proof. The height of the B+-tree of order M is O(logM+1 n). The number
of the nodes in the B+-tree is O(n

M
), which require O(n) spaces. The leaf

nodes need additional kn space for the data points. At each level above the
leaf node level, there are totally n nodes in all associated KDs, which require
kn spaces. With the storage required for the B+-tree, the total storage is
O(kn logM+1 n). ¤

KD

(0.3,0.4) (0.2,0.7)

(0.4,0.2) (0.2,0.1)(0.1,0.3) (0.6,0.3) (0.7,0.5) (0.8,0.4) (0.9,0.7) (0.7,0.8) (0.5,0.9)

0.2 0.3 0.4 1.2 1.3 1.4 2.2 2.3 2.4 3.3 3.4

(0.5,0.3)

0.4 1.3 2.2 2.4

KD KD KDKD

Figure 13: A 2-d PKD+-tree example.

Range search algorithm is given in Fig.14. hi
low and hi

high are the same as
the ones in the PKD-tree range search.

Theorem 5 Given a PKD+-tree build from n k-d data points drawn from
a uniform random distribution [0, 1]k, and a query square W with side length
∆, an orthogonal range search query visits

1. O(k log n + n(1− (1− 2∆)k)), if ∆ ≤ 0.5

2. O(k log n + n(1 + (2∆− 1)k)), if ∆ > 0.5

nodes in the PKD+-tree.

14

RangeSearch(W)
1 A ← empty set // the set of points intersecting W
2 l ← the height of the B+-tree
3 for (i = 0; i ≤ 2k − 1; i ← i + 1)
4 do if (intersect[i] = 1)
5 then j ← 0
6 m ← the number of keys in the node t
7 t.key[s] ← the largest key ≤ i + hi

low in the root node
8 while (s < m and j < l)
9 do if (s < m− 1)

10 then if ([t.key[s], t.key[s + 1]] ∈ [i + hi
low, i + hi

high])
11 then KDS(t.kd[s],W,A)
12 s ← s + 1
13 else t ← t.child[s]
14 s ← 0
15 j ← j + 1
16 else s ← 0
17 if (t.right 6= null)
18 then tright ← t.right
19 if ([t.key[m− 1], tright.key[s]] ∈ [i + hi

low, i + hi
high])

20 then KDS(t.kd[m],W,A)
21 KDS(tright.kd[s],W,A)
22 t ← tright

23 else t ← t.child[m]
24 j ← j + 1
25 else t ← t.child[m]
26 j ← j + 1
27 if (j = l)
28 then while (t 6= nil and t.key[0] ≤ i + hi

high)
29 do s ← 0
30 while (s < m and t.key[s] ≤ i + hi

high)
31 do if (t.key[s] ∈ [i + hi

low, i + hi
high])

32 then Check(t.point[s],W,A)
33 s ← s + 1
34 t ← t.right

Figure 14: Orthogonal range search algorithm for the PKD+-tree.

15

Proof. The worst case happens when the range search doesn’t search any
KD and checks the data points in leaf nodes, and W is in the corner of the
data space, sharing a vertex and k edges with the space (See Fig.11). The
height of the B+-tree of order M is at most blogM+1 nc.

When ∆ ≤ 0.5, the volume of pyramid i to be visited intersecting W

is 1
2k
− (2(0.5−∆))k

2k
= 1

2k
(1 − (1 − 2∆)k). There are k pyramids intersecting

W , so the total volume to be visited is 1
2
(1 − (1 − 2∆)k). For uniformly

and randomly distributed points, there are at most 1
2
n(1 − (1 − 2∆)k)/M

leaf nodes in the B+-tree, and 1
2
n(1 − (1 − 2∆)k) data points pointed by

the leaf nodes visited. With the number of internal nodes visited in the
B+-tree, the maximum number of nodes visited in the PKD+-tree is thus
k logM+1 n + M+1

2M
n(1− (1− 2∆)k).

When ∆ > 0.5, the center of the data space is contained in W , so all
pyramids are intersected by W . The total volume to be visited is k(1

2k
+

(2(∆−0.5))k

2k
)=1

2
(1 + (2∆− 1)k), so there are at most 1

2
n(1 + (2∆− 1)k)/M leaf

nodes in the B+-tree, and 1
2
n(1 + (2∆− 1)k) data points pointed by the leaf

nodes visited. The maximum number of nodes visited in the PKD+-tree is
thus 2k logM+1 n + M+1

2M
n(1 + (2∆− 1)k). ¤

Theorem 6 The expected number of nodes visited for an orthogonal range
search in the PKD+-tree built from n uniform and random k-d data points
is Ω(k log n + F), where F is the number of data points in range.

Proof. Given a query square W with side length ∆, the lower bound of the
number of nodes visited during an orthogonal range search happens when
the center of W is the center of the data space. In this case, we don’t need
to search extra region except the region of W . As illustrated in Fig.12, the
region visited is ∆k, we have F = ∆k. All 2k pyramids intersect W . As the
expected height of the B+-tree of order M is logM+1 n, the total number of
nodes visited in the PKD+-tree is 2k logM+1 n + F . ¤

16

5 Experiments

We have conducted a series of experiments to evaluate the range search per-
formance of the PKD-tree. Our experiments were performed using uniformly
and randomly distributed data points from the interval [0, 1]k, a color his-
togram data set [10] and the text data which are the name strings randomly
chosen from the Canadian geographical names database [9], for 2 ≤ k ≤ 100,
and n up to 1,000,000. The programs were written in C++, and run on a
Sun Microsystems V60 with two 2.8 GHz Intel Xeon processors and 3 GB
main memory. Each experimental point in the following graphs was done
with an average of 300 test cases.

5.1 Pyramid Technique

The number of nodes visited in the B+-tree includes two parts: the number
of pages accessed in the B+-tree and the number of data points visited whose
i + hlow ≤ pvv ≤ i + hhigh when we reach the leaf node of the B+-tree. We
built the B+-tree of order Mwith different values of M . The number of pages
accessed and the points visited comparison between different M is shown in
Fig.15, where the number of the set of data points n = 1, 000, 000, and the
expected number of points in range E(F) = log2 n. There is a great difference
between the number of pages accessed due to different M , but the number
of data points visited is the same because the number of data points whose
pyramid value in the interval [i+hlow,i+hhigh] depends on the query rectangle
only, independent of the B+-tree. In the following discussion, the number of
nodes visited using the Pyramid technique is the sum of the number of nodes
visited in the B+-tree and the number of data points pointed visited by the
leaf nodes in the B+-tree. For our testing, we used a value of M=5 for the
B+-tree.

5.2 Synthetic Uniform Point Data

In this section, we considered the input data are k-d points which were uni-
formly and randomly generated. We compared the number of nodes visited
and the time taken to perform the range search in the PKD-tree with the
Pyramid technique, the k-d tree and the naive search. We assumed the whole
PKD-tree resides in the main memory, and there is no I/O disk access.

17

 0

 20000

 40000

 60000

 80000

 100000

 20 18 16 14 12 10 8 6 4 2

S
um

 o
f n

od
es

 a
nd

 d
at

a
po

in
ts

 v
is

ite
d

k

B+-tree nodes visited (M=5)
data points examined (M=5)

B+-tree nodes visited (M=30)
data points examined (M=30)

Figure 15: The sum of the number of nodes visited and the number of data
points visited from the leaf nodes in the B+-tree during range search for
different values of M , where E(F) = log2 n, 2 ≤ k ≤ 20 and n = 1, 000, 000.
Note that the number of data points visited is independent of M .

5.2.1 Effects of k

To determine the influence of the dimension on the range search performance,
we varied k from 2 to 100. We fixed the input data points size n = 100, 000,
and the output F = log2 n. Theorems 2 and 5 give the upper bound of the
number of nodes visited when performing an orthogonal range search for the
PKD-tree and the PKD+-tree, respectively, and Theorems 3 and 6 give the
lower bounds. The comparison between the experimental number of nodes
visited and the theoretical results for the PKD-tree and the PKD+-tree is
shown in Fig.16. For the constant F , the query rectangle varies according
to k. The experimental results in Fig.17 show that the PKD-tree and the
Pyramid technique don’t deteriorate with the increment of k, but the k-d
tree suffers from the curse of dimensionality. When k ≤ 11, in terms of the
range search time spent, the PKD-tree is a little worse than the k-d tree, but
great better than the Pyramid technique, with a speed-up factor up to 60;
when k > 11, the PKD-tree is much better than the k-d tree, and the range
search performance of the PKD-tree approximates the Pyramid technique
when k approximates 100.

18

 0

 10000

 20000

 30000

 40000

 50000

 60000

 70000

 80000

 10 20 30 40 50 60 70 80 90 100

T
he

 n
um

be
r

of
 n

od
es

 v
is

ite
d

k

Experimental results
Theorem 2
Theorem 3

 0

 10000

 20000

 30000

 40000

 50000

 60000

 70000

 80000

 10 20 30 40 50 60 70 80 90 100

T
he

 n
um

be
r

of
 n

od
es

 v
is

ite
d

k

Experimental results
Theorem 5
Theorem 6

(a)PKD-tree (b)PKD+-tree

Figure 16: The experimental number of nodes visited and the theoretical
results, where E(F) = log2 n, 10 ≤ k ≤ 100 and n = 100, 000. The large
difference is due to the theoretical results corresponding to upper bounds
and lower bounds.

 0

 5000

 10000

 15000

 20000

 25000

 30000

 35000

 40000

 2 4 6 8 10 12 14 16 18 20

T
he

 n
um

be
r

of
 n

od
es

 v
is

ite
d

k

k-d tree
PKD-tree

PKD+-tree
Pyramid technique

 0

 2

 4

 6

 8

 10

 12

 2 4 6 8 10 12 14 16 18 20

R
an

ge
 s

ea
rc

h
tim

e
(m

s)

k

k-d tree
R*-tree

PKD-tree
PKD+-tree

Pyramid technique
Naive search

 0

 20000

 40000

 60000

 80000

 100000

 10 20 30 40 50 60 70 80 90 100

T
he

 n
um

be
r

of
 n

od
es

 v
is

ite
d

k

k-d tree
PKD-tree

PKD+-tree
Pyramid technique

 0

 10

 20

 30

 40

 50

 60

 70

 10 20 30 40 50 60 70 80 90 100

R
an

ge
 s

ea
rc

h
tim

e
(m

s)

k

k-d tree
R*-tree

PKD-tree
PKD+-tree

Pyramid technique
Naive search

Figure 17: The experimental number of nodes visited and the range search
time comparison between the PKD-tree, the PKD+-tree, the k-d tree, the
R∗-tree, the Pyramid technique and the naive search (n = 100, 000, (above)
2 ≤ k ≤ 20, (below) 20 ≤ k ≤ 100 and E(F) = log2 n).

19

5.2.2 Effects of n

In these experiments, we measured the range search performance behavior
with n varying from 100,000 to 1,000,000. The number of data points in
range F is set to be (log2 n)2, and the dimension k is 16 in Fig.18 For the
number of nodes visited during the range search, the PKD-tree has a speed-
up factor over the k-d tree up to 2.9, and a speed-up factor over the Pyramid
technique up to 2. In terms of the range search time spent, the PKD-tree is
up to 3.9 times faster than the k-d tree, 3.6 times faster than the Pyramid
technique, and 2.4 times faster than the R∗-tree.

 0

 50000

 100000

 150000

 200000

 250000

 300000

 350000

 1 2 3 4 5 6 7 8 9 10

T
he

 n
um

be
r

of
 n

od
es

 v
is

ite
d

n (in 100 thousands)

k-d tree
PKD-tree

PKD+-tree
Pyramid technique

 0

 20

 40

 60

 80

 100

 10 9 8 7 6 5 4 3 2 1

R
an

ge
 s

ea
rc

h
tim

e
(m

s)

n (100 thousand)

k-d tree
R*-tree

PKD-tree
PKD+-tree

Naive search
Pyramid technique

Figure 18: The experimental number of nodes visited and the range search
time comparison between the PKD-tree, the k-d tree, the Pyramid technique
and the naive search, where E(F) = (log2 n)2, 100, 000 ≤ n ≤ 1, 000, 000 and
k = 16.

5.2.3 Effects of F

We varied F from 0.00001n to 0.1n. The size of data points n = 1, 000, 000,
and the dimension k = 20. The experimental results are shown in Fig.20.
It is reasonable that as F increases, the number of nodes visited and the
range search time become larger. The PKD-tree outperforms the k-d tree
and the Pyramid technique tree in both the number of nodes visited and
the range search time for different F . For the number of nodes visited, the
PKD-tree has a speed-up factor up to 5.7 over the k-d tree and 1.8 over the
Pyramid technique. In terms of the range search time spent, the PKD-tree
is up to 6.6 times faster than the k-d tree, 5.1 times faster than the Pyramid
technique and 8.2 times faster than the R∗-tree.

20

 0

 200000

 400000

 600000

 800000

 1e+006

 1e-005 0.0001 0.001 0.01 0.1

T
he

 n
um

be
r

of
 n

od
es

 v
is

ite
d

volumn

k-d tree
PKD-tree

PKD+-tree
Pyramid technique

 0

 100

 200

 300

 400

 500

 1e-005 0.0001 0.001 0.01 0.1

R
an

ge
 s

ea
rc

h
tim

e
(m

s)

volumn

k-d tree
PKD-tree

PKD+-tree
Pyramid technique

Naive search

Figure 19: The experimental number of nodes visited and the range search
time comparison between the PKD-tree, the k-d tree, the Pyramid technique
and the naive search, where volumn = E(F)/n, n = 1, 000, 000 and k = 20.

5.3 Real Data

We tested data structures on color histogram data set [10], which has 68,040
32-dimensional data points on [0, 1]32. In Fig.20, the volume of the query
square W with side length ∆ (volume=∆d=E(F)/n) is varied from 0.0001
to 0.1. The PKD-tree has a speed-up factor between 2.4 (volume=0.1)
and 16 (volume=0.0001) compared to the k-d tree, and between 1.1 and 3.4
compared to the Pyramid technique. The PKD-tree is slightly faster than
the PKD+-tree.

 0.1

 1

 10

 0.0001 0.001 0.01 0.1

R
an

ge
 s

ea
rc

h
tim

e
(m

s)

volume

k-d tree
PKD-tree

PKD+-tree
Pyramid technique

Naive search

Figure 20: volume=E(F)/n, n=68,040 and d=32.

21

5.4 Combined Text and Point Data

In this section, the point data are randomly and uniformly generated, and the
text data are the name strings randomly chosen from the Canadian geograph-
ical names database [9]. We used kr to denote the number of the dimensions
of the text data, i.e. given a k-d key v = (v0, v1, · · · , vk−1), kr = 2 means
that 2 attributes in v (any two in v) are the text data, and the rest k − 2
attributes are the point data. We tested the range search performance of the
PKD-tree with different k and F as what we did in the last section, and
compared the PKD-tree to the k-d tree, the Pyramid technique and naive
search.

From the experimental results shown in Fig.22, when E(F) = log2 n and
n = 1, 000, 000, in terms of the range search time spent, when k ≤ 10, the
PKD-tree is a little worse than the k-d tree, but with the increment of k, the
PKD-tree is up to 8 times faster than the k-d tree. The PKD-tree is always
better than the Pyramid technique, and it runs 7 to 56.8 times faster than
the Pyramid technique. The difference is getting smaller when k is getting
larger. When the expected output size E(F) = (log2 n)2, the k-d tree is at
most 2 times faster than the PKD-tree for k ≤ 7, however the PKD-tree is
1.2 to 11.2 times faster than the k-d tree when k > 7. With the increment
of k, the ratio between the k-d tree and the PKD-tree is getting larger. The
PKD-tree is always better than the Pyramid technique, and it is 3.3 to 27.5
times faster than the Pyramid technique. Fig.21 shows that the PKD-tree
is always the best and up to 13.6 times faster than the k-d tree and 8.5 times
faster than the Pyramid technique in terms of the range search time.

 0

 200000

 400000

 600000

 800000

 1e+006

 1e-005 0.0001 0.001 0.01 0.1

T
he

 n
um

be
r

of
 n

od
es

 v
is

ite
d

volume

k-d tree
PKD-tree

Pyramid technique

 0

 500

 1000

 1500

 2000

 1e-005 0.0001 0.001 0.01 0.1

R
an

ge
 s

ea
rc

h
tim

e
(m

s)

volume

k-d tree
PKD-tree

Pyramid technique
Naive search

Figure 21: Comparisons between the PKD-tree, the k-d tree, the Pyramid
technique and the naive search for combined text and point data, where
volume = E(F)/n, n = 1, 000, 000, k = 20 and kr = 2.

22

 0

 20000

 40000

 60000

 80000

 100000

 120000

 140000

 160000

 180000

 2 4 6 8 10 12 14 16 18 20

T
he

 n
um

be
r

of
 n

od
es

 v
is

ite
d

k

k-d tree
PKD-tree

Pyramid technique

 0

 50

 100

 150

 200

 2 4 6 8 10 12 14 16 18 20

R
an

ge
 s

ea
rc

h
tim

e
(m

s)

k

k-d tree
PKD-tree

Pyramid technique
Naive search

 0

 50000

 100000

 150000

 200000

 250000

 300000

 350000

 2 4 6 8 10 12 14 16 18 20

T
he

 n
um

be
r

of
 n

od
es

 v
is

ite
d

k

k-d tree
PKD-tree

Pyramid technique

 0

 100

 200

 300

 400

 500

 2 4 6 8 10 12 14 16 18 20

R
an

ge
 s

ea
rc

h
tim

e
(m

s)

k

k-d tree
PKD-tree

Pyramid technique
Naive search

Figure 22: The experimental number of nodes visited and the range search
time comparison between the PKD-tree, the k-d tree, the Pyramid technique
and the naive search for combined text and point data. (above) E(F) =
log2 n, and (below) E(F) = (log2 n)2 (n = 1, 000, 000, 2 ≤ k ≤ 20 and
kr = 2).

6 Conclusions and Future Work

We propose two new data structures for orthogonal range search in high
dimensional data space, called the PKD-tree and the PKD+-tree, respec-
tively. They combine the Pyramid technique and the k-d tree, using the
advantage of the k-d tree in low dimension (k ≤ log n), and the superiority
of the Pyramid technique in high dimensional data spaces. We conducted
an extensive experimental study to evaluate the range search performance of
the PKD-tree and the PKD+-tree, and compared them to the k-d tree, the
R∗-tree, the Pyramid technique and naive search, using uniform randomly
generated point data, real data [10] and place names selected from the Cana-
dian names database [9]. Overall, the experimental results show that the
PKD-tree and its variant work well for any value of k (2 ≤ k ≤ 100), and

23

they are always better than the Pyramid technique, and outperform the k-d
tree and the R∗-tree when k ≥ log2 n. The challenge for the PKD-tree are
to determine an appropriate maximum number of nodes in each associative
k-d tree such that an excellent range search performance of the PKD-tree is
always achieved. What is the expected range search time of the PKD-tree
and the PKD+-tree?

References

[1] P. Agarwal. Handbook of Discrete and Computational Geometry, chapter
Range Searching, pages 575–598. CRC Press LLC, Boca Raton, FL, 1997.

[2] N. Beckmann, H.-P. Kriegel, R. Schneider, and B. Seeger. The R∗-tree: an
efficient and robust access method for points and rectangles. In Proc. ACM
SIGMOD Int. Conf. on Management of Data, pages 322–331, Atlantic City,
NJ, 1990.

[3] J. Bentley. Multidimensional binary search trees for associative searching.
Communications of the ACM, 18(9):509–517, 1975.

[4] J. Bentley and J. Friedman. Data structures for range searching. ACM
Computing Surveys, 11(4):397–409, December 1979.

[5] S. Berchtold, C. Bohm, and H.-P. Kriegel. The pyramid-technique: Towards
breaking the curse of dimensionality. In Proc. ACM SIGMOD Int. Conf. on
Management of Data, pages 142–153, Seattle, Washington, USA, 1998.

[6] C. Böhm, S. Berchtold, and D. A. Keim. Searching in high-dimensional
spaces–index structures for improving the performance of multimedia
databases. ACM Computing Surveys, 33(3):322–373, September 2001.

[7] E. Chávez, G. Navarro, R. Baeza-Yates, and J. L. Marroquín. Searching in
metric spaces. ACM Computing Surveys, 33(3):273–321, September 2001.

[8] V. Gaede and O. Gunther. Multidimensional access methods. ACM Comput-
ing Surveys, 30:170–231, 1998.

[9] GeoBase. Homepage: http://www.geobase.ca, 2004.
[10] S. Hettich and S. D. Bay. The UCI KDD Archive. http://kdd.ics.uci.edu,

Department of Information and Computer Science, University of California,
Irvine, CA, 1999.

[11] H. Jagadish, N. Koudas, and D. Srivastava. On effective multi-dimensional
indexing for strings. In Proceedings of the 2000 ACM SIGMOD international
conference on Management of data, pages 403–414, Dallas, Texas, USA, May
2000.

[12] D. Knuth. The art of computer programming: sorting and searching, volume 3,
pages 492–512. Addison-Wesley, Reading, Mass., 2 edition, 1998.

24

[13] D. Morrison. Patricia - practical algorithm to retrieve information coded in
alphanumeric. Journal of the ACM, 14(4):514–534, October 1968.

[14] B. C. Ooi, K.-L. Tan, C. Yu, and S. Bressan. Indexing the edges - a simple and
yet efficient approach to high-dimensional indexing. In 19th ACM SIGMOD-
SIGACT-SIGART Symposium on Principles of Database Systems, pages 166–
174, Dallas, Texas, USA, May 2000.

[15] H. Samet. The design and analysis of spatial data structures. Computer
Science Department, University of Maryland, College Park, Maryland, 2004.

[16] Q. Shi and B. G. Nickerson. k-d range search with binary patricia tries.
Technical report, TR04-168, Faculty of Computer Science, University of New
Brunswick, December 2004, 35 pages.

[17] R. Zhang, P. Kalnis, B. C. Ooi, and K.-L. Tan. Generalized multidimensional
data mapping and query processing. ACM Transactions on Database Systems,
30(3):661–697, September 2005.

[18] R. Zhang, B. C. Ooi, and K.-L. Tan. Making the pyramid techique robust to
query types and workloads. In Proceedings of the 20th international confer-
ence on data engineering, pages 313–324, Washington, DC, USA, 2004. IEEE
computer society.

25

