
A Language for High-Level Description of
Adaptive Web Systems

S. Hossein Sadat K. Mohtasham and Ali A. Ghorbani

Intelligent and Adaptive Systems Group
Faculty of Computer Science, University of New Brunswick

Fredericton, NB, E3B 5A3, Canada

Abstract

This paper focuses on the proposal, design, and implementation of AWL, the Adaptive Web
Language. Also, an example application named PENS is explained and implemented in
AWL. AWL development was inspired by several issues and shortcomings in the develop-
ment of adaptive Web systems using the framework for adaptive Web systems, developed in
the Intelligent and Adaptive Systems Research Group, at the University of New Brunswick,
Fredericton, Canada. Lack of verification mechanisms and difficulty in development are
two of the existing issues in the framework. Not only does AWL address those issues in the
framework, but it also offers mechanisms to increase software quality attributes, especially,
reusability. AWL has been designed based on the analysis of adaptive Web systems, hav-
ing taken into account the principles of reuse-based software engineering (product-lines),
domain-specific languages, and aspect-oriented programming, all of which are ongoing re-
search fields in software engineering research. A compiler, named AWL Compiler has been
developed, as the implementation of AWL for our adaptive Web framework. AWL Com-
piler automates the development process through hiding the framework internals from the
application designer, and provides verification services so that applications can be verified
to be consistent and meaningful. PENS, a personalized e-News system, is explained and its
various aspects are developed using AWL.

Key words: Adaptive Web Systems, Domain-Specific Languages, Reuse-based Design

1 Introduction

As the World Wide Web is getting larger in size and more complex in structure, it
has become more crucial for websites to guide the users through to relevant infor-
mation, and present the information in an appropriate format. The users, in current
Web, are usually overwhelmed with the huge amount of irrelevant information (and

Preprint submitted to Elsevier Science 3 February 2006

links to information), that virtually makes them unable to navigate to find what they
were looking for in the first place. In adaptive Web literature this is referred to as
“lost-in-hyperspace” problem [1]. Furthermore, conventional websites provide the
same information for any type of user at any situation (context), regardless of their
background, knowledge, goals, and other context information. This “one-size-fits-
all” problem [1] leaves some users with less knowledge or interest in a subject
stranded and lost, while the other users become frustrated from seeing the same
things they already know or are not interested in.

Relevant information can be fetched, filtered, and presented taking into account
various context information. The user’s preferences (interest, background, knowl-
edge, etc.) and browsing behavior are part of the context information, which are
referred to as user model. The environment-related parameters such as the location
of the user, or the time, are considered as additional context information. Finally,
technology-related parameters, such as client device characteristics and network
bandwidth, are the other important elements of the context in an adaptive Web sys-
tem. Adaptive Web systems use the context information to tailor the response of
the system to the user’s request through three different types of adaptation: con-
tent adaptation, navigation adaptation, and presentation adaptation. While there is
some overlap between these types of adaptation, they are different in what they
target. Content adaptation adds and/or removes information fragments to/from the
page based on the current context. Navigation (structure) adaptation adds, removes,
hides, sorts, and changes the color of the links in a page, in order to provide the best
navigation structure in the current context for the user. Adding a recommended item
at the end of a page, falls in this class of adaptation. Finally, presentation adaptation
reformats the information fragments to achieve the appropriate final presentation
for the current context. Resizing the images for a mobile device falls into this kind
of adaptation.

The adaptive Web systems framework has been developed, in Intelligent and Adap-
tive Systems Group (IAS) at the Faculty of Computer Science, University of New
Brunswick, Fredericton, Canada, to provide the required platform for building adap-
tive Web systems. The framework provides components and protocols that allow a
programmer to create adaptive Web systems in different domains such as educa-
tional, e-News, etc.

AWL, a language for adaptive Web systems, is proposed, designed, and developed
to address the above issues. AWL is a domain-specific programming language, fo-
cused on the adaptive Web systems domain. AWL is the result of a reuse-based soft-
ware engineering perspective that views the adaptive Web systems as a family of re-
lated products. Hence, the commonalities are considered to be realized by reusable
components and the variabilities are supposed to be specified for each product. This
is the software product-line approach to development, which increases productivity
to a great extent.

2

The adaptive Web systems framework is supported through AWL Compiler, which
has been developed to translate AWL programs into the framework’s components
and descriptions. Currently, AWL Compiler is functional and can generate adaptive
Web applications for the framework in an easy, productive, and reusable form, as
exemplified in Section 6.

One valuable facility that is provided by AWL is the provisions for domain library
development. A domain library is a set of reusable artifacts and models, developed
in AWL and targeting a specific domain within the adaptive Web domain such as e-
News, e-Tailer, or e-Learning domains. Domain libraries maximize reuse: libraries
can be developed for each domain, so that when new applications are to be built
within that domain, many artifacts can be reused and extended. AWL has been
designed to provide facilities for both library development and application devel-
opment within the adaptive Web systems domain.

This paper is organized as follows. Section 2 is a summary of the concepts of adap-
tive Web systems, as well as a review of the past research in the area. Section
3 analyzes adaptive Web systems, as a family of related systems, to extract their
common features as well as their variabilities. The details of AWL language are
given in Section 4. Section 5 explains the AWL Compiler. First, the framework is
introduced. Then, the various compiler parts are discussed through the use of UML
diagrams. Section 6 presents PENS (Personalized Electronic News System) and
explains its implementation in AWL.

Section 7 concludes the paper and suggests some future work directions.

2 Background Review

Adaptive Web systems (AWS) are systems that can adapt their features such as,
presentation, content, and structure, based on the user’s behavior and preferences,
device capabilities, and environment attributes. Various models are used to describe
an AWS. Three most common of these models are domain model, user model, and
adaptation model [2]. The domain model describes the concepts, their relationships,
and the way information is connected to the concepts. One may define domain
model as consisting of content model (information model), concept model, and
their relationships. The user model abstracts users’ behavior and preferences to
be used by adaptation model. The adaptation model describes when and how the
system adapts.

3

2.1 Domain Model

The domain model describes the concepts and their relationships in the application
domain as well as the way information is represented by the concepts. In fact, any
application domain has a set of concepts specific to that domain, and well known to
the experts in the domain. For instance, an e-News system domain has news item,
report, and news category as its concepts.

Each domain has its own specific concepts and relationships. Therefore, creating
new domain models has been an important issue in most of the works. For in-
stance, AHA 2.0 introduces new visual tool to simplify the process of creating new
concepts and relationships [3]. The visual specification then translates the drawing
to XML specifications and adaptation rules. XML-based representations have been
widely used to express concepts and relationships (ontology) in various works [4].

2.2 Presentation Model

The presentation model in an AWS describes the layout of the generated Web pages
as well as the graphical style and attributes of the elements in them. When designed
statically, the author of a Web page considers many visual factors and uses proper
styles; whereas, when the pages are generated dynamically, the designer’s artistic
influence is absent. In order to minimize the inconsistencies in the dynamically gen-
erated pages, templates are used to enforce the layout and style of a group of pages.
Although templates are very effective to enforce most of the page presentation at-
tributes, they do not offer enough flexibility for page synthesis in AWS. It is de-
sirable to go beyond templates and have a presentation description which not only
allows the author to enforce the desired presentation through a top-down (template)
description, but also provides the flexibility to support bottom-up (constraint-based)
presentation description for highly dynamic pages. By bottom-up description we
mean an approach in which a layout is defined hierarchically by other elements
(which may have layout themselves) and the constraints and relationships between
the elements of the layout are defined in all levels of hierarchy, and at runtime, from
the lowest level to the top, the relationships are resolved and the final layout is gen-
erated. Using this approach, the author can both enforce a presentation template
and define context-dependent relationships and presentation constraints. Nora [5]
defines presentation model as the description of where and how navigation objects
and access primitives will be presented to the user, and proposes a process for mod-
eling the presentation. Although there are quite a few presentation languages that
could be used to express a presentation, there are still some works proposing new
languages for adaptable presentation modeling [6].

4

2.3 User Model

The user model abstracts users’ behavior and preferences to be used by AWS. User
model generally consists of two parts: demographic information (such as name,
age, address) and application-specific part (such as knowledge, interest). In some
systems, a table of attribute-values represents the user model [7]. Each attribute-
value belongs to a page or concept. For example, the user’s knowledge about the
domain concepts is represented by these attributes. In this case, the user model
is called an overlay user model. Many systems use overlay user models for their
simplicity and effectiveness [7–10].

2.4 Adaptation Model

Adaptation can be based on different information such as user model, environment,
and technology [11]. Adaptation can affect different aspects of the application: con-
tent, navigation, and presentation [12].

• adaptive content consists of selecting different information fragments (eg. text,
images) based on the adaptation dimensions (user model, environment).

• adaptive navigation manipulates the possible navigation paths a user can take as
well as the number, order, and target of the links.

• adaptive presentation deals with different layouts, and graphics features that may
be suitable for current context.

Different users in different contexts need to see different content. The goal of con-
tent adaptation is to tailor information and services for users with respect to the
context of the application. The content may be changed in different ways among
which are: adding explanations, hiding/showing parts of information and natural
language generation.

Different techniques have been used to do content adaptation: conditional frag-
ments [7] and page variants, which are based on static content.

The goal of adaptive navigation is to prevent the user from getting lost in the hy-
perspace of the application. The methods used are

• Global guidance and orientation: assist the user to find the shortest path to the
information she is looking for, and also to have a better view of the hyperspace
and her position in it.

• Local guidance and orientation: assist the user in just one navigation step, that
is, the best link to follow from current page.

• Personalized views: provide the user with a customized presentation of the ap-
plication based on her preferences.

5

The different techniques that are used to accomplish the above methods are direct
guidance, link annotation, link removing, link sorting, passive navigation, and map-
adaptation. The navigation structure is usually determined by the domain concepts
and the relations between them. The link relations are concept-based. That is, there
is a link between concepts not fragments related to those concepts.

There is a concept hierarchy which is static and will not change during application
life cycle. On the other hand, there might be changes in the relations and attributes
of the concepts, per user model. So, each user may have her own view (instantia-
tions) of the domain structure. The objective of adaptive presentation is to provide
different layouts and graphical attributes to different users in different contexts.
Different adaptation methods include the ordering of information fragments, col-
ors, font attributes and fragment size. The techniques used for content adaptation
can also be used here. Presentation adaptation comes into play when the contents
of a page and their link relationships are resolved. Then, the presentation of these
contents to the user is adapted based on some criteria. For instance, one common
scenario is when the user is using a handheld device. Because of the limited ca-
pabilities of the handheld devices, the presentation of the page should be changed,
in several ways, such as image size and color depth reductions and page layout
adjustments.

2.5 Dynamic Page Generation

A Web server produces a Web page in response to the user’s request. This Web page
is created either dynamically or already exists as a static file. Adaptive Web sys-
tems, like any other Web system, produce a page in response to the user’s request.
However, adaptive Web systems should change the response based on some adapta-
tion dimensions, such as user model, technology and environment [11]. Therefore,
the nature of these systems demands the dynamic creation of pages.

On the other hand, the dynamic generation of Web pages constitutes a continuum
that defines dynamism with different degrees. At one end we have static page de-
livery, and at the other end totally dynamic page content, template, and appearance
generation. There is no systematic procedure for this dynamism. Each application
may end up with some degree of dynamism.

With all this in mind, and also considering the fact that adaptive hypermedia sys-
tems can be defined by three models: User Model, Domain Model, and Adaptation
Model [13] , we are interested in formalizing and systematizing dynamic page gen-
eration based on the adaptive hypermedia system models. In other words, we want
to develop an engine that produces a page based on the current models of the sys-
tem. We refer to this engine as Synthesizer and the corresponding process is called
Synthesis.

6

According to the American Heritage Dictionary, synthesis is “the combining of
separate elements or substances to form a coherent whole.” In the adaptive Web
systems context, the “elements” and “substances” are information fragments (we
refer to them as components too) and the “whole” is the final Web page.

There are not many references to page synthesis in the adaptive hypermedia liter-
ature (see [1] for a review of adaptive hypermedia systems). Most of the systems
use available pages and remove or add some elements to adapt to the user (e.g.
AHA! [7,14–16]). However, some systems generate the pages dynamically based
on the user model (e.g. SETA [17]). In this section, some related projects that apply
some degree of synthesis are reviewed.

Index page synthesis [18], is one of the works that directly deals with the synthesis
problem. In this work, page synthesis is defined as the automatic creation of Web
pages. An index page is a page consisting of links to a set of pages that cover a
particular topic. The synthesis of a new index page is divided into the following
sub-problems:

1) What are the contents of the index page?
2) How are the contents ordered?
3) What is the title of the page?
4) How are the hyperlinks on the page labeled?
5) Is the page consistent with the site’s overall graphical style?
6) Is it appropriate to add the page to the site? If so, where?

In [18], only the first sub-problem is investigated. The rest of the problem remains
to be investigated. Besides, the page to be synthesized is an index page, not a gen-
eral page with variant layout and style. SETA [17] is a prototype toolkit for building
adaptive Web stores. It dynamically generates the pages of a Web store catalog and
selects the content of the pages based on the user’s interests and familiarity with
the products. Also, the system sorts the available items for a product class based
on the user’s preferences (See [19,20] for more details). SeAN [21] is an adaptive
system for personalized access to news. It uses a structured hierarchy to represent
news (domain model). SeAN has three goals: first, to select news topics relevant to
the user. Second, to present an appropriate level of details of the news based on the
user model and third, to provide advertisement most relevant to the current page
and the user.

Peba-II [22] is an on-line animal encyclopedia that produces descriptions and com-
parisons of animals as WWW pages. The Peba system contains information about
hundreds of animals. The system produces descriptions and comparisons of ani-
mals by using an underlying representation of information, which is similar to a
database. The Web pages presented to the user do not exist on the server, but are
dynamically created when you ask for information.

7

2.6 Domain-Specific Languages (DSL)

A domain-specific language is considered as the final phase of the evolution of
an application framework [23]. An application framework realizes the necessary
domain architecture and components, and a DSL, using the mature domain knowl-
edge, provides a systematic, reusable, and verifiable way of instantiating new ap-
plications within the domain. There has always been a need for more specialized
language support to solve problems in well-defined application domains, to enable
reuse and facilitate development. Several solutions have been practiced by devel-
opers to meet this need:

• Subroutine libraries
• Object-oriented frameworks and component frameworks
• A domain-specific language (DSL)

The first two approaches are quite common and we don’t address them here. The
third approach is the one we would like to use. “A domain-specific language is
a programming language or executable specification language that offers, through
appropriate notations and abstractions, expressive power focused on, and usually
restricted to, a particular problem domain.” [23] According to this definition, the
key characteristic of a DSL is its focused expressive power. VHDL hardware de-
scription language and SQL database query language are two examples of domain-
specific languages, specific to the hardware design domain and database domain,
respectively.

There are many issues related to DSL development. Here we bring some advantages
and disadvantages of DSLs. There are risks and opportunities in developing and
using a DSL. A well-designed DSL manages to find the proper balance between
advantages and disadvantages. The advantages of a DSL are:

• DSLs allow the solution to be specified at the level of abstraction of the problem
domain, hence, domain experts themselves can validate, modify, or develop DSL
programs

• DSL programs are concise, self-documenting, and reusable
• DSLs enhance productivity, reliability, maintainability, and portability
• DSLs embody domain knowledge, hence, enable the conservation and reuse of

knowledge
• DSLs allow validation and optimization at the domain level
• DSLs improve testability

Although these benefits justify developing a DSL, there are some disadvantages
that should be taken into account the most important of which are: the high cost
of designing, implementing, and maintaining a DSL, and the difficulty of balanc-
ing between domain-specificity and general-purpose programming language con-
structs.

8

3 Reuse-Based Design of Adaptive Web Systems

In this section, we analyze adaptive Web systems with a product-line-engineering
perspective to develop and justify the required basis for moving toward an adaptive
Web system specification language.

3.1 Adaptive Web Domain Engineering

A family of applications (products) is referred to as a domain, and domain engineer-
ing is the set of activities aiming at generating reusable assets across a domain. In
domain engineering, the domain expertise and knowledge are organized to develop
a framework of reusable components and artifacts, which can be instantiated to
generate products within the domain. Domain engineering includes two major pro-
cesses: domain analysis and domain implementation. Domain analysis is the pro-
cess of gathering, organizing, and modeling information about the products within
the domain. In domain implementation, an architecture is designed to support the
domain, based on the results of domain analysis phase.

3.1.1 Domain Analysis

In domain analysis, the scope of domain is determined and the terms of the do-
main are defined. Domain analysis includes several activities (see [24]), however,
its main activity is commonality analysis whose outcome is the commonalities and
variabilities among the products of the domain.

We define adaptive Web systems family (domain) as all Web-based software sys-
tems that adapt their response to the users, based on the current context information,
such as user browsing behaviour, environment, and device capabilities. Although
in this definition, all Web-based systems are considered as potential systems to be
adaptive, adaptive Web systems techniques are most effective for information pro-
viding systems, or online information systems, where the main purpose of these
systems is to present useful and relevant information to the user.

Since the notions and concepts of adaptive Web systems have been well defined
and explained in [5], they are not elaborated here; instead, the new features and the
family-based approach are emphasized.

¿From the usage perspective, adaptive Web systems share a common general use-
case.They provide relevant information, from different sources, to users. That is,
when the user asks for a specific concept, the system provides the information on
that concept from information sources, and tailors the information based on the
context of the request, which includes the user’s preferences, browsing history, and

9

so on. From this common ground, the basic commonality of AWSs can be extracted:
all AWSs constantly run the following high-level algorithm.

Algorithm 1 High-Level LOOP in AWS
WHILE (there is a request) {

Receive the request
Extract the relevant context information
Update context information
Compose and send the response

}

In fact, most Web-based systems share part of this commonality; they provide in-
formation as the users’ requests arrive. However, what is specific to AWSs is a sys-
tematic way of using and updating context information to keep up with the users’
changing interests, needs, and other conditions. Once a request is received from the
user, the requested concept, which abstracts and represents a piece of structured
information, is extracted from the request. Then, the system queries the informa-
tion sources (that has been designated as information providers for to the requested
concept) to gather and structure the information representing the concept. These
queries are formed taking into account various context information. For instance, if
a user connecting from Canada is requesting for national news headlines, an adap-
tive e-News systems would provide all headlines that are related to the location of
the user (which is a piece of context information); so, the user would see Canada’s
national news headlines.

After the information is fetched, there is still additional context information that
might be used to tailor the information presentation. If the user is connecting using
a hand-held device, for instance, the format and style of the information should be
adapted to be presentable by the device, considering the limitations, capabilities,
and preferences of the device, all of which form a part of context information.
Finally, the presentation is composed and sent back to the user.

Commonalities are abstracted, designed, and implemented as reusable components
to be reused within adaptive Web systems domain. Hence, when designing new
applications, commonalities are not implemented again. They are automatically in-
tegrated into the applications. This integration mechanism is supposed to be simple
and transparent, which is a major goal of the family-based design of the AWSs. Do-
main implementation realizes these common assets and components, and its pur-
pose is to design, implement, and test the components (within a framework) to be
reused later on through instantiation, parameterizations, or specialization.

3.1.2 Domain Implementation

Figure 1 shows the architecture of the framework that implements the domain of
adaptive Web systems. This architecture has been designed considering the impor-

10

Clients

Web Server
Extension

Web Server

Adaptation Server

Dispatcher

Process

Information
Providers

User Model
Manager

Device Profile
Manager

Concept-Relationship
Knowledge Provider

HTTP Request

Concept Request

Query / Update

Query / Update

Query / Update

Query / Update

Fig. 1. The Architecture of Adaptive Web Systems Framework

tant observations from the domain analysis process. These observations as well as
the architectural component that realizes the observation are as follows:

• Clients communicate with the AWSs through the HTTP protocol. Hence, a cen-
tralized HTTP request processing component (Front Controller [25]) receives all
clients’ requests and creates a more informative request for the system.

• All requests go through the same process; therefore, an adaptation server is de-
signed to be responsible for processing individual requests, querying different
information sources, and forming the final response.

• The framework needs a way of keeping users’ personal information, preferences,
and past (browsing) behaviour. This is realized by providing a dedicated compo-
nent for user model management.

• Users might be using various devices to connect to the AWS. The framework
needs facilities to recognize different devices and extract their characteristics,
limitations, and capabilities, in order to provide the best presentation adaptation.
Device Profile Manager provides these services.

• Adaptive Web systems might use existing domain knowledge and information
structure in terms of concepts and the relationships between them, to better pro-
vide related information. There should be a component that can store, manage,
and provide this information efficiently and easily. Concept-Relationship Knowl-
edge Provider is responsible for this important functionality.

• AWSs provide information to their clients. The information might be scattered
across various sources. There need to be components providing services for
querying and retrieving information from these sources; Information Providers
are such components.

11

3.2 Adaptive Web Application Engineering

Using a framework for adaptive Web systems, through which commonalities have
been realized, developed, and integrated in the form of reusable components, de-
veloping new applications should ideally be the process of specifying the varia-
tions; that is, the aspects which make an application different from others within
the domain. In domain engineering, the commonalities were implemented to pro-
duce reusable components. In application engineering, on the other hand, the varia-
tions are expressed using specification tools and models. Variations are the features,
functionalities, or qualities that vary from application to application in a family. In
AWS family, variations are specified by answering to these questions: how presen-
tations are organized and styled? What are the information structure and sources?
How is the user modeled and kept track of? When and how adaptation takes place?

In order to avoid confusion, whenever the term “domain” is used in the rest of this
paper, it refers to one of the application domains within adaptive Web systems do-
main, unless specified otherwise (the “domain analysis” and “domain engineering”
titles refer to the adaptive Web systems software domain, not to be confused with
the application domains, such as e-News and e-Tailer, just explained above).

Within the adaptive Web systems domain, there are application domains with a
common set of concepts, information structures, abstractions, and functionalities.
For example, adaptive Web-based course tutoring (educational) domain features
online course materials and facilities that, through using user’s knowledge and
background, make learning easier for the users. E-Tailer domain includes systems
that provide personalized recommendation of products and services, based on the
user’s interest, history of browsing and shopping, and other criteria. E-News do-
main includes news presentation systems that, based on various context informa-
tion, provide users with the most related and interesting news items. There are
other domains such as online books, libraries, online museums, encyclopedia that
can generally be referred to as online information systems (See [26] for a list of
adaptive Web systems and their domains).

Our approach in the design and implementation of adaptive Web systems is a reuse-
based approach. Hence, whenever there is the opportunity to apply reuse principles,
they are applied. Hence, not only was the domain engineering a reuse-centric pro-
cess, but also the application engineering applies reuse extensively. That is, for all
the variations that should be specified to develop new applications, it is desirable
to abstract and specify them in a reusable fashion. For instance, in e-News domain,
the domain library developer (e-News domain developer or designer) may assume
that all e-News applications, no matter what functionality they provide, use some
common terminology, concepts, presentation format, and even adaptations. There-
fore, these common feature might be abstracted and implemented in a reusable way.
In order to develop an e-News application, then, these reusable elements are cus-

12

tomized, instantiated, or just used without any change. It is not a crisp decision to
extract identify some elements as reusable ones; it totally depends on the designer
of the system.

Here is application engineering process proposed based on the approach explained
in this section:

1) Application requirements elicitation and analysis (as traditional software en-
gineering processes).

2) Extracting and abstracting the information structure in terms of concepts and
their relationships.

3) Modeling users of the system through the design of a user model; this includes
selecting those attributes of the user that may be used to provide more relevant
information, such as demographic as well as dynamic behavioural attributes.

4) Developing the necessary information provider components to support infor-
mation retrieval for the application. If a domain library has already been de-
veloped that contains such components, then the components are just reused.

5) Specification of presentation templates, including the hierarchies of fragments,
their styles, and the information they present.

6) Adaptation specification, including content, navigation, and presentation adap-
tations (as defined before).

This process can be applied to a domain such as e-News, e-Tailer, etc., or it might
be applied to an application within a domain. In either case, the same process is fol-
lowed with one difference. When applying the process to design a domain library,
reusability is the main concern (designing reusable assets); however, when apply-
ing it to an application, reusing the existing domain library (reusable elements) is
to be practised in all phases of the process.

3.3 Towards a Domain-Specific Language for Adaptive Web Systems

In previous sections, a family-based approach to adaptive Web systems develop-
ment was presented that applies reuse, as its main principle, to all phases of devel-
opment. The results of such reuse-based engineering is a framework with reusable
components; however, there is no mechanism that enforces the reuse of these com-
ponents or the way they are supposed to be reused. No readily-available process
exists to verify the way these component are used within an applications. In other
words, a framework is a step forward toward reuse, but, how reuse is supposed to
be applied by application engineer, is not enforced or provisioned within the frame-
work. Therefore, in order to meet the goals of reuse-based software engineering in
the domain of adaptive Web systems, we need a mechanism that, based on the un-
derlying (existing) framework(s), provides reuse mechanism in a systematic, hence,
verifiable process.

13

A domain specific language (DSL), for adaptive Web systems domain, is the means
to enforce reuse within the domain. In fact, “a DSL is viewed as the final and most
mature phase of the evolution of an object-oriented application framework.” [23]

A DSL brings many other important advantages to our AWS development frame-
work. A DSL, designed for AWSs, has expressive power focused on AWSs. There-
fore, it allows the solution to be specified at the level of abstraction of the problem
domain; that is, the user of the DSL only deals with the concepts within the AWSs
domain. Hence, domain experts themselves can develop. validate, and modify DSL
programs. Such a DSL enhances productivity, reliability, maintainability, and porta-
bility, all because of its simple, reusable, and domain-specific structure that auto-
matically reuses the framework assets. Furthermore, a DSL allows validation and
optimization at the domain level.

Although the advantages are tempting enough to inspire us to develop such a lan-
guage, it should be noted that these advantages do not come for free. The cost of
designing, implementing, and maintaining a DSL is high; especially, the designer
has to have both domain knowledge and programming language and compiler de-
velopment expertise.

4 AWL: Adaptive Web Language

An adaptive Web system framework can provide reusable components to be used
for creating adaptive Web systems. In fact, creating a new application using the
framework would be much simpler than creating one from scratch, since many
components and protocols (which are supported through the framework) do not
need to be implemented. Nevertheless, although a framework supports reuse-based
software development by providing reusable components, the framework user, or
rather, the application programmer remains responsible for actually reusing the
components, which makes application development not only hard but also error
prone. The application programmer has to be familiar with the general purpose
programming language that the framework uses; (s)he has to know the framework
and how it works in detail; and (s)he has to decide what components to use at what
circumstances.

The best tool that can support a framework in a systematic fashion is a domain-
specific language (DSL) designed specifically for the framework. Such a DSL can
hide the framework’s internals from the application programmer. The programmer
can use the DSL to create new applications, knowing only the DSL’s vocabulary
and constructs, which are usually the same as the framework’s domain vocabulary.

In the following sections, a language for the adaptive Web systems framework
(AWL), which is a DSL focused on adaptive Web systems, is proposed. In Sec-

14

Fig. 2. Using a domain library to develop a new application

 AWL Program

Domain Library
(e.g. E-News)

Compiler Adaptive Web System

tion 4.1 the language requirements are elaborated. Then, in Section 4.2, the syntax
of AWL is presented and Section 4.3 explains the semantics of AWL. Section 4.4
proposes a development process when using AWL. Two AWL design perspectives
are discussed in Section 4.5.

4.1 Language Requirements

AWL should provide abstractions, facilities, and constructs that allow the designer
and/or the author of an AWS to specify various aspects of the AWS that are vari-
ations not commonalities, according to the adaptive Web systems family architec-
ture. In addition to the variations, the language should provide necessary means for
reusable modeling. That is, even at the time of reusing framework’s components
(through the language), reusability still remains an important concern. Reusability
at the language level can be best achieved through a library-of-reusable-code strat-
egy: adaptive Web systems fall into different categories; for instance, e-News sys-
tems, e-Tailers, and etc., each of which is called an application domain (as pointed
out in the previous section, this shouldn’t be confused with “domain” when used
for AWS family-based development, since it refers to the adaptive Web domain.)

Different applications within these domains share a lot in common. Hence, based
on reuse principles, it is desirable to model the commonalities as reusable assets
in a library, to be used for the applications within the domain (Figure 2). A DSL
for AWS should provide facilities for both library (domain) development and ap-
plication development. That is, if one wants to design an e-Tailer, if there already
exists an e-Tailer library implemented in the language, then the library is used along
with other extensions, instantiations, and customizations to create the application.
Otherwise, everything should be implemented from scratch.

Based on the architecture presented for AWS and the above discussions, the fol-
lowing requirements are extracted to be met by the language:

• The language should provide some mechanisms for abstracting and modeling
information structure, in terms of concepts and relationships. These mechanisms
should include both information modeling and querying.

• The language must provide necessary means for hierarchical presentation speci-

15

fication, which includes both layout and formatting definitions.
• The language should be independent from the final (generated) presentation lan-

guage; that is, the programs written in the language might be translated to various
concrete presentation outputs (e.g. HTML), hence, the language structure should
not be affected by any target presentation output.

• The language must provide user model specification constructs, so that authors
will be able to design custom user models that suit a specific target domain.

• The language must provide the necessary constructs, operations, and abstraction
facilities to to express adaptation. Adaptation must be expressible in a separate
model. This requirement implies that if the adaptation model is removed from an
application, then the result would be a non-adaptive version of the application.

• The language should allow reuse of existing specifications, such as presentations,
user model, and adaptation models, through inheritance and parameterizations.

• The language should provide other handful modularization facilities (functions,
for instance) to allow authors to produce a more reusable code.

• The language should be usable at two levels: library level, and application level.
This requirement comes from the fact that there might be two users with different
programming capabilities and domain expertise. For example, for designing an
e-News Web application, a designer/programmer who has a quite good knowl-
edge of both programming and the domain of e-News, analyzes, abstracts, and
codes a set of reusable components, including concept and relationships (infor-
mation structure), user model, presentations, and even adaptation specifications,
and produces an e-News domain library. Afterwards, an author, who is expected
to have less expertise in programming, uses the domain library to create an ap-
plication (a specific e-News Web system). In this way, the author just uses the
already designed elements of the domain, although (s)he can extend or overwrite
them.

• The language should be simple enough to be learned, in a fairly short time, by
ordinary Web developers.

4.2 Language Syntax and Program Structure

The syntax of a language determines the structure of the acceptable programs in the
language. When designing the AWL syntax, usability, simplicity (writability, and
readability of programs [27]), and separation of concerns (as the main principle
of aspect-oriented programming [28]) were the main quality attributes taken into
account. The EBNF [29] syntax of the language is as follows:

(1) <AWS>⇒{<CONCEPT> |<RELATIONSHIP> |<PRESENTATION> |<USERMODEL> |
<ADAPTATION> |<EXTENDED-ELEMENT> |
<FUNCTION>} [<INSTANCE-MODEL>]

(2) <PRESENTATION>⇒ [<PRES-MODIFIER>] ‘fragment’ <ID> [‘extends’ <ID>] [‘realizes’ <ID>]
‘{’{(<ITEM> |<ITEM-LIST> |<ATTRIBUTES> |<PROPERTY>)} [<INIT>] ‘}’

(3) <PRES-MODIFIER>⇒ ‘main’ | ‘page’
(4) <ITEM>⇒ ‘item’ <ID> ‘:’ <FRAGMENT-TYPE>

‘{’ {<ITEM-SPEC>} ‘}’
(5) <ITEM-LIST>⇒ (‘verticalBox’ | ‘horizontalBox’) ‘(’<EXPR-LIST>‘)’ ‘item’ <ID> ’[’‘$’‘]’ ‘:’

<FRAGMENT-TYPE> ‘{’ {<ITEM-SPEC>} ‘}’
(6) <FRAGMENT-TYPE>⇒ (‘Image’ | ‘Text’ | ‘XHTML’ |<ID>) [‘(’ <EXPR-LIST> ‘)’]

16

(7) <ITEM-SPEC>⇒ (<ASSIGNMENT> |<ITEM-PROP>) ‘;’
(8) <ITEM-PROP>⇒ (‘linksTo’ | ‘top’ | ‘bottom’ | ‘rightmost’ | ‘leftmost’ | ‘left’ | ‘right’ | ‘above’ | ‘below’ | ‘bold’ | ‘underlined’ | ‘italic’ | ‘large-

FontSize’ |
‘smallFontSize’ | ‘strongText’ | ‘paragraph’ | ‘emphasized’) [<ENTITY-NAME> [‘(’ <EXPR-LIST> ‘)’]]

(9) <PROPERTY>⇒ (<ALIGNMENT> |<MARGIN> |<HEADER>) ‘;’
(10) <ALIGNMENT>⇒ ‘align’ (‘left’ | ‘right’ | ‘top’ | ‘bottom’) [‘:’ <ID> {‘,’ <ID>}]
(11) <MARGIN>⇒ (‘marginX’ | ‘marginY’) ‘=’ <EXPR>
(12) <HEADER>⇒ ‘header’ ‘:’ {<ID> <EXPR> ‘;’} ‘header’
(13) <USERMODEL>⇒ [<USER-MODIFIER>] ‘usermodel’ <ID> [‘extends’ <ID>] ‘{’{<USER-ATTRIBS> |<STRUCT-DEF>} [‘events’ ‘:’

{<EVENT-DEF>}] [<INIT>] ‘}’
(14) <USER-MODIFIER>⇒ ‘main’
(15) <USER-ATTRIBS>⇒ [‘overlay’ ‘(’<ID> ‘)’] <ATTRIBUTES>
(16) <STRUCT-DEF>⇒ ‘define’ <ID> ‘{’ {<ATTRIBUTES> }‘}’
(17) <EVENT-DEF>⇒ ‘on’ <ID> <PARAMETERIZED-BLOCK>
(18) <ADAPTATION>⇒ [<ADP-MODIFIER>] ‘adaptation’ <ID> [‘extends’ <ID>]

‘{’ [{<ADP-PROP>}] {<ADP-TARGET-DEF> |<ADP-STATEMENT>} ‘}’
(19) <ADP-MODIFIER>⇒<ID>
(20) <ADP-PROP>⇒ (<ASSIGNMENT> |<ID> [<ID>]) ‘;’
(21) <ADP-TARGET-DEF>⇒ ‘target’ <ID> [‘(’ <ID>{‘,’ <ID>} ‘)’] ‘:’

<ADP-TARGET-SET> ‘;’
(22) <ADP-TARGET-SET>⇒<PATTERN> { (‘+’ | ‘-’) <ADP-TARGET-SET>} | ‘(’<ADP-TARGET-SET> ‘)’
(23) <PATTERN>⇒<STRING>
(24) <ADP-ADAPT>⇒ ‘adapt’ <ID> [‘(’<ID>{‘,’ <ID>} ‘)’]

‘{’ {<STATEMENT>} ‘}’
(25) <CONCEPT>⇒ [<CONCEPT-MODIFIER>] ‘concept’ <ID> [‘extends’ <ID>] ‘{’{<ATTRIBUTES> |<RELATIONSHIP-DECLARATIONS>

} [<INIT>] ‘}’
(26) <CONCEPT-MODIFIER>⇒<ID>
(27) <RELATIONSHIP-DECLARATIONS>⇒<MODIFIER> ‘relationship’ <ID> <ID> : <ID> {‘,’ <ID> <ID> : <ID> } ‘;’
(28) <RELATIONSHIP>⇒<REL-MODIFIER> ‘relationship’ <ID>

‘(’<PARAMETER-LIST> ‘)’ ‘{’<REL-BODY>‘}’
(29) <REL-MODIFIER>⇒<ID>
(30) <REL-BODY>⇒<CLAUSE> {‘or’ <CLAUSE>}
(31) <CLAUSE>⇒ ‘(’<CLAUSE> ‘)’ |<PREDICATE-CALL>

{‘and’ <PREDICATE-CALL>}
(32) <PREDICATE-CALL>⇒<ID> ‘(’ <PARAMETER-LIST> ‘)’
(33) <EXTENDED-ELEMENT>⇒ ‘define’ <ID> ‘as’ <TYPE>

‘{’<EXTENDED-BODY> ‘}’
(34) <EXTENDED-BODY>⇒ (‘get’ ‘:’ | ‘set’ <PARAMETER-LIST> ‘:’)

{<STATEMENT>}
(35) <FUNCTION>⇒ ‘define’ <ID> <PARAMETERIZED-BLOCK>
(36) <INSTANCE-MODEL>⇒ ‘instantiation’ ‘{’{<STATEMENT>}‘}’
(37) <PARAMETERIZED-BLOCK>⇒ ‘(’<PARAMETER-LIST>‘)’

‘{’{<STATEMENT>}‘}’
(38) <STATEMENT>⇒ (<ASSIGNMENT> |<EXPR> |<IF-STATEMENT> |<OPERATION> |

<INSTANTIATION> |<REL-QUERY> |<FACT>) ‘;’
(39) <FACT>⇒ ‘.’ <PREDICATE-CALL>
(40) <REL-QUERY>⇒ ‘?’ <PREDICATE-CALL>
(41) <INSTANTIATION>⇒ ‘instantiate’ [‘list’ ‘of’] <ID> [<LIST>]
(42) <OPERATION>⇒ ‘!’ <ID> [‘(’<EXPR-LIST>‘)’] ‘;’
(43) <IF-STATEMENT>⇒ ‘if’ <EXPR> ‘{’ {<STATEMENT>} ‘}’ [‘else’ ‘{’ {<STATEMENT>} ‘}’]
(44) <ASSIGNMENT>⇒<ENTITY-NAME> ‘=’ <EXPR>
(45) <ATTRIBUTES>⇒<MODIFIER> ‘attribute’ <ID> ‘:’ <ATTRIB-TYPE> {‘,’ <ID> ‘:’ <ATTRIB-TYPE> } ‘;’
(46) <ATTRIB-TYPE>⇒ ‘realNumber’ | ‘string’ | ‘boolean’ | ‘date’ |

‘list’ ‘of’ <ID> |<ID> | ‘alternative’ ‘{’ <STRING> {‘,’ <STRING> } ‘}’
(47) <INIT>⇒ ‘init’ ‘:’ <PARAMETER-LIST> ‘{’ {<STATEMENT> } ‘}’
(48) <PARAMETER-LIST>⇒ [‘%’] <ID> ‘:’ <ATTRIB-TYPE> { ‘,’ [‘%’] <ID> ‘:’ <ATTRIB-TYPE> }
(49) <EXPR>⇒<CONDITIONAL-AND-EXPR>

{‘or’ <CONDITIONAL-AND-EXPR> }
(50) <CONDITIONAL-AND-EXPR>⇒<RELATIONAL-EXPR>

{ ‘and’ <RELATIONAL-EXPR> }
(51) <RELATIONAL-EXPR>⇒

<ADDITIVE-EXPR> [<RELATIONAL-OP> <ADDITIVE-EXPR>]
(52) <ADDITIVE-EXPR>⇒<TERM> {(‘+’ | ‘-’) <TERM>}
(53) <RELATIONAL-OP>⇒ ‘<’ | ‘>’ | ‘<=’ | ‘>=’ | ‘==’ | ‘<>’ | ‘in’
(54) <TERM>⇒<FACTOR> {(‘*’ | ‘/’) <FACTOR>}
(55) <FACTOR>⇒ ‘-’ <FACTOR> | ‘(’<EXPR>‘)’ |<LITERAL> |<LIST> |<ENTITY-NAME> |<FUNCTION-CALL> |<PREDEFINED>
(56) <PREDEFINED>⇒ ‘userID’ | ‘sessionID’ | ‘clientIP’ | ‘URI’ | ‘browserType’
(57) <LITERAL>⇒<STRING> |<INTEGER-NUMBER> |<REAL-NUMBER> | ‘false’ | ‘true’ | ‘$’
(58) <ENTITY-NAME>⇒<BRACK-ENTITY> { ‘.’ <BRACK-ENTITY> }
(59) <BRACK-ENTITY>⇒<ID> [‘[’ <SUBSCRIPT> ‘]’]
(60) <SUBSCRIPT>⇒<EXPR> [‘..’ <EXPR>]
(61) <LIST>⇒ ‘[’ <EXPR-LIST> ‘]’
(62) <EXPR-LIST>⇒<EXPR> {‘,’ <EXPR>}
(63) <FUNCTION-CALL>⇒ ‘call’ [<ID> ‘.’] <ID> [‘(’ <EXPR-LIST> ‘)’]
(64) <ID>⇒<LETTER> {<LETTER> |<DIGIT> }
(65) <INTEGER-NUMBER>⇒<DIGIT> {<DIGIT>}
(66) <REAL-NUMBER>⇒ (<DIGIT>{<DIGIT>}‘.’ {<DIGIT>}

| ‘.’ <DIGIT>{<DIGIT>})‘r’
(67) <DIGIT>⇒ [‘0’-‘9’]
(68) <LETTER>⇒ [‘a’-‘z’] | [‘A’-‘Z’] | ‘ ’
(69) <STRING>⇒ ‘′’ { ∼ [‘′’,‘\’,‘\n’,‘\r’] | (‘\’ [‘n’,‘t’,‘b’,‘r’,‘f’,‘\’,‘′’]) } ‘′’

Figure 3 shows the structure of an AWL program. All the modules inside a program
are processed by AWL compiler and weaved to generate the necessary components
and artifacts in the framework.

17

Fig. 3. The structure of an AWL program
A AWL Program

User Model Presentations

Concepts
Relations

Adaptation
Modules

Functions and Extended Elements

AWL Compiler

Comp. 2

Comp. n

Comp. 1

AWS Framework Components

.

.

.

4.3 Language Semantics

The semantics of a language is the meaning of the program elements and units,
coded in the language. The meaning of language statements, expressions, and con-
structs can be used by compiler developers (to develop compilers for the language),
or by programmers who want to program in the language. In this section, the con-
cepts of adaptive Web systems domain are used to explain the AWL semantics.
When AWL parser reads a part of a program that corresponds to a production rule
in the syntax, it creates an object to represent the left-hand-side element in the
production rule. This object keeps references to all the elements on the right hand-
side of the production rule. Hence, at the end of parsing, the parser returns a tree
whose root node represents the highest-level element in the syntax, i.e. <AWS>.
This tree holds the structure of the parsed program in terms of language syntax
elements. This tree is referred to as the abstract syntax tree of the program. How-
ever, the tree that is built in the above way is not only an abstract syntax tree, but
also a semantic tree. In fact, the objects created for each intermediate node in the
syntax tree (the intermediate nodes are those that are not leaf; in other words, they
are left-hand-side elements of at least one production rule) have the meaning of the
production rule embedded. In this section, the meaning of the production rules is
informally explained.

Rule 1 defines <AWS>, which represents a program in AWL. When a program is
parsed, the parser returns an object of the type <AWS>. <AWS> has methods and
attributes for storing a program’s meaning in the form of concepts (<CONCEPT>),
relationships (<RELATIONSHIP>), presentations (<PRESENTATION>), adap-
tation modules (<ADAPTATION>), user model modules (<USERMODEL>),
extended entities (<EXTENDED-ELEMENTS>), functions (<FUNCTIONS>,
and instantiation model (<INSTANCE-MODEL>). This production rule defines
an AWL program as containing a set of modules, each of which describes an as-
pect of the application. Concepts and relationships are used to model the domain,
to which the application belongs (e.g. e-News, or e-Learning). Presentation specifi-

18

Table 1
Fragment styles that are set through assignment

Property Example Values

color ‘blue’, ‘#E0EEEE’

bgcolor ‘blue, ‘#E0EEEE’

fontFace ‘helvetica’, ‘times’

textScale ‘100%’

scale ‘100%, ‘50%’

border ‘InFrame’, ‘Floor’

length (text) ‘300’

width ‘300’

height ‘200’

cations describe how information is presented to the user, using a hierarchical frag-
ment structure. Adaptation modules abstract the adaptation strategies provisioned
by the designer in the application. The user model module specifies the structure
and dynamics of the user model. Functions and extended entities are not essen-
tial parts of the language, however, they provide the means for a designer to make
domain libraries that are easy to use; hence, authors (that might not have a general-
programming-language expertise) can easily express the application through cus-
tom domain vocabulary extended by the designer. The instantiation module can be
used for configurations and one-time initializations. Currently, it is not being used
in the language, but is reserved for later language extension.

The production rules 2 to 12 define a presentation module. A <PRESENTATION>
may inherit from other presentations (through extends keyword), and it may also be
the corresponding presentation description of a domain concept, in which case,
the name of the concept would come after realizes keyword. A presentation is
composed of a set of attributes (<ATTRIBUTES>), items (<ITEM>), item lists
(<ITEM-LIST>), presentation properties (<PROPERTY>), and an optional ini-
tialization -parametrization section (<INIT>).

The presentation modifier (<PRES-MODIFIER>) can be used to mark a presenta-
tion as a page or as the main presentation module of the system, which makes the
presentation the front page of the system (the first page the user sees when connect-
ing to the system). The attributes (defined by rule 45) of a presentation define the
information presented by the presentation module. They can also be used as vari-
ables that hold intermediate results during the information retrieval and processing.
The items define the fragments inside a presentation, and are themselves defined
through the production rule 4. An item has a name and a type. The fragment type
can be text, image, XHTML, or a user-defined presentation. An item list defines an

19

array of fragments with the same type and properties (rule 5). The item lists can
be vertical or horizontal in the presentation layout. The parameters that are passed
to an item list may determine the list’s size and ordering criteria (currently only
size is supported). The item properties (rule 8) specify various formatting and style
attributes of the fragment (Table 1 shows those style properties that are set by an
assignment), as well as layout and hypermedia relations, such as linksTo relation
that links a fragment to another presentation. The presentation can also have prop-
erties that specify margin, alignment, and header (if it is a page) information (rule
9).

The Production rule 13 defines a user model module. In a program, there can be as
many user model modules defined as possible; however, only one can be the main
user model, which can be specified through the user model modifier (<USER-
MODIFIER>). The user model consists of a set of attributes; the attributes can
have either primitive types (string, realNumber, etc.) or user-defined structures. An
attribute in user model can be defined as an overlay attribute, meaning that there is
not just one value associated with the attribute but a vector of values, each of which
corresponds to a concept in the domain. The user-defined structures are defined
inside the user model module. They are recursively defined as a set of attributes
(rule 16). In addition to static structure of user model, the dynamic aspect of user
model (how it is updated) needs to be specified too. Events are used to specify when
and how the user model is updated. An event has a name, a parameter list, and a
block of statements that can update attributes of user model (rule 17). For instance,
the event corresponding to a page visit is named visited and it takes one parameter:
the name of the visited page.

The production rule 18 defines an adaptation module (<ADAPTATION>). An
Adaptation module is composed of a set of target definitions (<ADP-TARGET-
DEF>) and adaptation statements (<ADP-ADAPT>). Each adaptation target spec-
ifies a set of presentation items, which will be adapted through adaptation state-
ments inside the module. According to rules 21 to 22, a target has a name and a
parameter list. The name is used in the adaptation statements to refer to the target
set. The parameter list is not currently used. A target is recursively defined as the
union or difference of other target sets (<ADP-TARGET-SET>). The recursion
stops when the set is a pattern string. A pattern string is used to easily and effec-
tively select presentation elements based on the item’s name, type, or containing
presentation. For instance, if one wanted to define target allImages to be the set of
all images in all the presentations, the target definition would be written as follows.

target allImages: ‘item *:image’;

The wildcard character means any match. The type of the items is specified after
‘:’ in the pattern string. If all the images inside Banner were to be selected, the
following pattern could be used.

20

target bannerImages: ‘item *:image in Banner’;

Currently, the pattern expressions, though simple, are strong enough to hook into
the presentation descriptions for adaptation purposes; however, the pattern matcher
can be customized to accept more sophisticated patters.

The adapt statements (<ADP-ADAPT>) are used inside an adaptation module to
express how the targets are adapted. The target of an adaptation statement is spec-
ified after the adapt keyword after which a list of parameters (not currently used)
follows. Then, a block of statements will affect the targets. Although any sentence
is syntactically allowed to be used inside the block, it is not semantically legal or
meaningful to have certain statements. It is presumed that the compiler performs
validity checks to enforce this. Rule 38 defines a statement; the <OPERATION>
statements are specifically defined to be used within adaptation blocks. The oper-
ation statements along with the conditional statements (<IF-STATEMENT>, rule
43) define conditional or non-conditional adaptation statements. As rule 42 shows,
an operation starts with a ‘!’ character, and has a name and a list of parameters.
Table 2 lists some of the operations that can be used to affect the targets in the
adaptation packages. These operations are easily extendible. The adaptation prop-
erties are defined for later extension of the adaptation model.

Concepts (<CONCEPT>) are composed of a set of attributes that can represent a
domain concept, or rather, a piece of information structure. Relationship declara-
tions indicate what relationships exist between the concepts. The actual relationship
definitions are defined through the rules 28 to 32. The relationship definition fol-
lows the predicate logic ideas in an object-based manner. The relationship body
consists of a set of clauses that are connected with logical or. If any of the clauses

Table 2
Adaptation Operations

Operation Name Parameter(s) Description

show make the item visible

placeTop place at the top of the layout

placeBottom place at the bottom of the layout

placeRightmost place on the rightmost part

placeLeftmost place on the leftmost part

placeAbove x: item place above x

placeBelow x: item place below x

placeLeft x: item place on the left of x

placeRight x: item place on the right of x

changeColor x: string change the color to x

changeBGColor x: string change the background color to x

changeScale x: string change the scale to x

changeFontFace x: string change the font to x

scale x:realNumber, y:realNumber scale with x, and y factors

changeBorder x: string change the border to x

makeBold make bold

makeUnderlined make underlined

makeItalic make italic

makeStrong make strong

makeEmphasized make emphasized

21

evaluates to be true, then the relationship holds. Each clause is a set of predicates
connected with logical and operator. Predicates can be predefined, such as compar-
isons, or can defined by the designer based on the domain’s requirements.

A statement (rule 38) can be an assignment (<ASSIGNMENT>), an expression
(<EXPR>), an operation (<OPERATION>), a fact definition (<FACT>), an in-
stantiation (<INSTANTIATION>), a query (<QUERY>), or a conditional state-
ment (<IF-STATEMENT>). An assignment simply evaluates an expression and
assigns the result to an attribute. The expression is produced from rule 49 and its
definition is quite similar to the traditional expressions in common programming
languages.

A fact inserts a record of information, into the system’s knowledge base, about a
relationship between two concepts. For instance, the prerequisite relationship be-
tween two course concepts x and y can be asserted into the system by .prerequisite(x,
y), given that prerequisite relationship is declared to be a valid relationship between
x and y concept types. On the other hand, queries inquire about existing knowledge
through calling the relationships and passing parameters to them. If the relationship
holds, then a value of true is returned.

The other production rules are self-explanatory and general in the sense that most of
the modern languages support them in one way or the other. Especially, expressions
are very common elements in programming languages, and are not elaborated here.

4.4 AWL Adaptive Web System Development Methodology

Although software development process is much more crucial when it comes to
general purpose languages (compared to domain-specific ones), it is a good prac-
tice that the best development process be outlined by the designer of the language
whenever a new language is proposed. AWL software development process is pro-
posed as follows:

1) Analyze domain (this is the application domain, such as e-News, e-Tailer, etc.)
and abstract its common notions into concepts and the relationships between
them.

2) Design the presentation fragments in a hierarchical and reusable fashion, based
on the functionality that the application is supposed to offer. The presentations
should be designed with adaptation in mind. That is, the designer should pro-
vide enough flexibility in a presentation to make it adaptable.

3) Package frequently-used statements into functions.
4) Extract frequently-used information and implement them as extended entities

to make the programming easier for authors.
5) Extract the related user’s characteristics and implement them as a user model.

Express the dynamic behaviour of the user model through events.

22

6) List all the adaptation instances that the system should provide. This list should
be processed to extract related adaptations and abstract them into adaptation
modules.

4.5 AWL Design Perspectives

AWL language has been designed to support the development of adaptive Web sys-
tems. The languages that support Web development, such as PHP and Perl, are
too general-purpose to be regarded as a domain-specific language. They do not
offer any specific model, abstraction, or construct to support expressing the adap-
tiveness of Web applications. AWL is designed to offer more focused support for
expressing the adaptivity of Web systems, compromising the generality of them.
AWL allows separation of concerns through provisioning different models. The
presentation model of an application is independent of its adaptation model; if the
adaptation model is removed from an application description, the result would be a
non-adaptive version of the application.

AWL can be viewed from two perspective. It can be regarded as a high-level de-
scription language that aims at simplifying application development using the adap-
tive Web systems framework which was developed in IAS group. From this per-
spective, the design of AWL is the process of providing high-level interfaces and
constructs to the framework’s low-level facilities. The result will be a framework-
dependant language with a limited coverage of the adaptive Web systems.

AWL can also be regarded as a specification language that provides abstractions
and constructs that allow the authors to describe the different aspects of adaptive
Web systems. From this perspective, AWL is the result of a reuse-based software
engineering process that starts with domain analysis and framework implemen-
tation. Therefore, the language structure and constructs originate from the notions
and terminologies that exist in the target domain. This approach leads to a language
that is independent from a specific framework.

In this work, we emphasize on the second perspective, however, in compiler imple-
mentation phase, the first perspective is dominant.

AWL is a declarative language in the sense that, it allows the authors specify what
an application is composed of. The presentation model of the application is speci-
fied in a declarative fashion; the final presentation might be different depending on
the request context.

23

5 AWL Compiler Implementation

We explain the development of AWL Compiler in this section. AWL Compiler is
a compiler that translates programs written in AWL into adaptive Web systems
framework components.

5.1 The Target Framework

Adaptive Web Systems Framework [30] has been developed by the IAS research
group, in the Faculty of Computer Science, at the University of New Brunswick, to
provide the necessary components, protocols, and basis for building adaptive Web
systems. The framework has a Synthesis Engine that accepts a Web site descrip-
tion in a RDF [31] file and synthesizes Web pages for each request. Also, a User
Front-End component is responsible for receiving HTTP requests and transforming
them into synthesis requests. The framework supports domain-specific processing
through Conceptual Tasks, which are independent components that run as a process,
possibly on different machines, and provide the synthesis engine with requested in-
formation. There are generic Conceptual Tasks in the framework that can be used
for applications in any domain. For instance, User Profile Manager accepts an RDF
description of a user model, and creates the necessary back-end database to support
the user model handling at run-time. There is, also, a Device Profile Manager that
keeps track of different connecting devices’ characteristics and provides requested
information for synthesis engine.

AWL can be translated into components, models, and artifacts of the adaptive Web
framework. In fact, the AWL Compiler has been developed to support the frame-
work with a high-level interface. Some of the advantages of AWL Compiler are as
follows:

• AWL Compiler hides the unnecessary details of the framework from the author;
hence, the author would not be concerned with how different framework com-
ponents work together, or how a protocol works; instead, (s)he can just focus on
the problem itself and use the high-level constructs and abstractions of AWL to
express the solution.

• The possibility of misusing the framework’s features is removed by using AWL
Compiler, since AWL Compiler is in charge of using the framework’s features.

• When AWL Compiler is used to develop an application, the description of the
application is an AWL program. Therefore, if in any circumstances the frame-
work internals change, it would not affect the developed application; only AWL
Compiler for the framework needs to be changed.

• Because of the high-level constructs of AWL, system development is much faster,
simpler, and more productive.

24

Fig. 4. Several compiler components are defined as visitors

• Reusability of programs and artifacts that are developed in AWL allows the au-
thors to save a substantial amount of time when developing new adaptive Web
systems.

• Systems developed using AWL Compiler are easily modifiable.
• AWL Compiler offers various verification facilities that can be used to verify

developed systems.

The following section takes a closer look into the design of AWL Compiler.

5.2 Compiler Design and Implementation

AWL Compiler includes the traditional compiler components, such as lexical ana-
lyzer, parser, semantic analyzer, and code generator. In the following subsections,
different AWL Compiler’s components are explained.

5.2.1 Lexical Analysis and Parsing

AWL Compiler uses JavaCC [32] to generate the lexical analyzer and the parser.
JavaCC accepts a special notation as a language syntax specifier and generates a
Java class that accepts programs in the specified language. The EBNF syntax of
AWL is converted to the input format that JavaCC accepts. However, a parser that
only accepts input programs is of no use. The ultimate goal of the parser is to
generate the abstract syntax tree of input programs. As explained in the previous
section, several classes are designed to represent the semantics of the language
production rules. These classes are used to enhance the AWL Compiler’s parser
to generate an abstract tree representing the input program. Later phases of the
compiler use the generated abstract tree as input. The generated tree only has useful
information about the program and excludes the syntactic sugar (elements of the
language that added for readability and beauty of programs).

After the abstract tree is generated, it has to be semantically processed and verified.
Most of AWL Compiler’s components have been developed following the visitor

25

Fig. 5. LAWSSymbolVisitor and supporting classes

design pattern [33]; each component that processes the tree is implemented as a vis-
itor that accepts the abstract tree as input. Figure 4 shows some of the visitor classes
implemented in AWL Compiler. All of the visitors extend the abstract LAWSVisitor
class, which provides methods for visiting all the semantic objects generated by the
parser. The simplest visitor is LAWSPrintVisitor, which simply traverses the whole
tree and prints the information inside its nodes. The other visitors will be explained
in the following sections.

5.2.2 Symbol Table Visitor

The symbol table keeps information about the program entities that are not part of
the keyword set of the language, such as item and attribute names. Figure 5 shows
the LAWSSymbolVisitor class, which is derived from the LAWSVisitor class. The
elements of the symbol table are of type Symbol, which has a symbol table embed-
ded. This originates form the structure of AWL that allows some entities to be de-
fined inside other entities. Each symbol object has information about the symbol’s
name, type, address, and semantic object (generated by the parser). LAWSSymbol-
Visitor, provides these information, for other compiler components, to be used in
later phases.

5.2.3 Register Management

Synthesis engine has a bank of registers, which is used for storing various informa-
tion about the current user request and the current Web application. These registers
are the only memory storage that compiler-generated systems can use to store in-
formation. Registers are mostly used for storing the results of information queries
from Conceptual Tasks as well as intermediate results of expression evaluation. The
attributes of each presentation fragment are assigned a location in the register bank
and the address is assigned to the corresponding symbol in the symbol table.

5.2.4 Adaptation Weaver

Since the adaptation modules are expressed separately from the presentation de-
scriptions, it is the compiler’s responsibility to weave the adaptation into the pre-
sentation descriptions. This is accomplished by the Adaptation Manager (Figure 6).

26

Fig. 6. Adaptation Weaver and the helper classes

<sdv:CTPut rdf:ID="CVP1cmd1">
 <!-- User Profile Manager Task ID -->
 <sdv:cTaskID>5555</sdv:cTaskID>
 <!-- Request: checkValue -->
 <sdv:reqID>23</sdv:reqID>
 <rdf:value>
 <rdf:Seq>
 <rdf:li rdf:resource="#SEReg1." />
 <rdf:li>newsID</rdf:li>
 <rdf:li rdf:resource="#SEReg37." />
 </rdf:Seq>
 </rdf:value>
</sdv:CTPut>

Fig. 7. Hand-coded Conceptual Task call in RDF description

Adaptation Manager uses a parser class to interpret the target pattern string used
to specify adaptation targets. Then, the target item’s semantic object is retrieved
through the symbol table. For each adaptation, affecting an item, a constraint ob-
ject is created, which encapsulates the necessary instructions and conditions that
enforce the adaptation of the item.

5.2.5 Service Manager

Conceptual Tasks provide several services that can be used by applications using
the framework. Figure 7 shows part of the generated code from a Web site descrip-
tion that calls a service form the User Profile Manager (UPM) Conceptual Task
to check if a news item has been read by the user. As the picture shows, it is not
very easy to make service calls; especially when service composition is needed. In
AWL, services can be called similar to a function call. For instance, for the service
call in Figure 7, the author can write:

upm.checkValue(userID, ‘newsID’, news);

where, userID is a keyword; ‘newsID’ is the attribute name whose value is being
checked; and news is an attribute defined somewhere and is supposed to hold the
news ID. AWL Compiler translates this code to the low-level code that is under-
standable by synthesis engine.

27

Fig. 8. Service Manager and the supporting classes

Fig. 9. Code generators class hierarchy

In order to translate the service calls in AWL programs to low-level RDF code,
the compiler has to know the existing Conceptual Tasks and the services they offer
as well as their parameters and return types. Service Manager (Figure 8) manages
the conceptual tasks and their services and provides necessary information for the
compiler to translate service calls in programs to low-level RDF description.

5.2.6 Application Description Generator

Figure 9 shows the heart of the compiler, i.e, SDGenerator. This class is responsible
for generating the final site description using the other components of the compiler
such as register manager and expression evaluation code generator. SDRDFGener-
ator offers methods for creating RDF objects for framework entities. For expression
code generation, each expression in the abstract tree is passed to ExprVisitor, which,
in turn, generates an expression tree whose nodes are objects of type Expression.
Expression class has a method called generatePostfixEval, which processes the ex-
pression tree and generates RDF code that will evaluate the expression at runtime.
As Figure 9 shows, UMGenerator is another visitor class that generates the user
model in RDF format.

5.2.7 Logic-Base Generator

The concepts and relationships that are defined in an AWL program best fit a logic-
based paradigm of programming. This comes from the fact that, concepts and re-
lationships should be defined for later queries and inference; that is, similar to the
logic programming language paradigm, after providing rules and facts in a domain,
it is desirable to inquire about unknown predicates. AWL Compiler translates con-
cepts and relationships to Prolog predicates. These predicates, then, are read by a
framework’s component called Concept Manager, which is a logic base that pro-
vides run-time services for updating domain information modeled as concepts and

28

Fig. 10. Class hierarchy of program verifiers

relationships; besides, it provides facilities for querying the logic base.

5.2.8 Program Error-Checking and Verification

Figure 10 shows the hierarchy of verifier classes that accept the semantic object
hierarchy (created by the parser) and verify it against language semantic rules. For
instance, LAWSTypeChecker will check the expressions and statements to find any
type inconsistencies. Once it finds such inconsistencies, it creates a LAWSError
object and in the end, reports all the errors.

Other verifiers check programs for their soundness. LAWSLayoutVerifier builds a
graph of all the placement relationship between items of a presentation and through
executing an algorithm, finds any layout inconsistencies between the items. For in-
stance, if item x is said to be above item y, and item y is said to be at top, this is a
violation and will be reported by the verifier. The algorithms and further informa-
tion can be found in [6].

6 Example Application

In this section an example system, which is developed in AWL, is presented. First,
the application functionalities and features are explained. Then, the program mod-
ules of the application are presented.

6.1 PENS: Personalized E-News System

Personalized Electronic News System (PENS) [34] is an adaptive Web system that
provides the user with the most relevant news, taking into account the user’s brows-

29

Fig. 11. PENS front page

ing history, interests, and location. In addition, PENS takes the target device’s char-
acteristics (limitations and features) into account in order to deliver the most suit-
able information presentation to the client.

The front page of PENS, which is what users see when they access the system,
is shown in Figure 11. It has a banner, at the top, and a main section below the
banner. The banner is adaptive to the location of the user. That is, if the user is
connecting from UNB’s Saint John campus, then the banner will include the “Saint
John” image; if the user is connecting from Fredericton campus, then the “Fred-
ericton” image is shown in the banner. On the left side of the main section, a list
of different news categories is provided so that the user can view the most recent
news in any of the categories. On the right side is the section presenting the most
recent news items. This section, in turn, is divided into two sub-sections: the upper
sub-section, “top news” , which shows three news items with their abstracts, and
the lower sub-section, “more topics”, which shows just the titles of four more news
items.

The “new” icon beside a news item indicates that the item is new since the last visit
of the user. This is a navigation adaptation through link annotation. Each news title
is linked to a page that presents the full news body. Figure 12 shows a full news
body page. In the full news body, in addition to news correspondent and full text,
there is a section that provides a link to the most related news item to the current
news. This is considered as navigation adaptation through link suggestion.

30

Fig. 12. The full news page Fig. 13. The front page after a full news visit

When the user visits the front page, after reading a news item, (s)he will not see
the abstract part of the visited news item. This is done based on the assumption that
the user is most likely not interested in the abstract of the news items that (s)he
has already read. This is content adaptation through conditional fragments. Figure
13 shows how the front page may look, after the user reads the full news page.
There is also another adaptation that takes place in PENS. The news items in front
page are sorted according to their publish date. That is, the most recent news will
come first from the top. However, if the user is connected from Fredericton campus,
and the top news is related to Saint John campus, while the second top news is
related to Fredericton campus, then the second top news item is moved up above
the otherwise top news item. The same adaptation applies when the user connect
from Saint John campus. This adaptation only takes place for the “top news” news
items.

7 Conclusions and Future Work

7.1 Conclusions

In this work, we proposed AWL as a new language for adaptive Web systems de-
velopment. Various production issues and shortcomings in the adaptive Web frame-
work inspired us to look for solutions that not only address those issues, but also
bring in extra features that enhance the quality of developed software.

AWL can be viewed from two perspectives: a high-level description language for
our framework, and a domain-specific language for adaptive Web systems. The

31

contributions of this work can also be viewed from each of these perspectives.

As a high-level description language for the adaptive Web framework, AWL aims
at simplifying application development using the framework which was developed
in IAS group. From this perspective, the design of AWL is the process of providing
high-level interfaces and constructs to the framework’s low-level facilities.

As a domain-specific language for adaptive Web systems, AWL provides abstrac-
tions and constructs for authors to model applications in the adaptive Web domain.
From this perspective, AWL is the result of the adaptive Web domain engineer-
ing process; users of AWL do not need to know the details of the domain imple-
mentation. They only need to know the application engineering process that AWL
suggests. Therefore, the commonalities of adaptive Web domain are realized and
implemented once and the AWL compiler will make use of them. Authors (pro-
grammers) just need to express the variations through the AWL.

In Section 4, based on the analysis of adaptive Web systems, the language require-
ments were explained, and then the EBNF syntax was presented. The semantics of
the language was also explained using UML class diagrams. Then, a development
process was suggested to be used when developing in AWL.

AWL Compiler development was discussed in Section 5. AWL Compiler was specif-
ically developed to translate programs in AWL into the adaptive Web framework’s
components and models. It also provides facilities for verification of programs.

PENS, personalized e-News system, was presented as the proof-of-concept appli-
cation developed to prove the functionalities of the adaptive Web framework as well
as AWL language.

7.2 Future Work

Potential future work is suggested as follows:

• AWL needs to go through an extensive review, evaluation, and revision. For in-
stance, one of the biggest challenges in designing domain-specific languages is
the decision on the generality of the language. It is of great importance to find out
if AWL is too general purpose (within the adaptive Web domain), or too specific,
hence limited, to express some features.

• There are many domains, within the adaptive Web systems, in which we have
not developed any application using AWL. It is important to use AWL to develop
applications in other domains; the results of these developments can greatly con-
tribute to the AWL evolution. For instance, it should be very interesting to know
how AWL facilitates adaptive e-Book or adaptive e-Tailer development.

• AWL is a two-level language, meaning that, it is designed to be used to develop

32

both domain libraries and applications. It is very useful to select a set of candi-
date domains and develop domain libraries for them using AWL. These libraries,
then, would be provided along with AWL Compiler, to help authors easily de-
velop applications for those domains. As mentioned in Section 6, most of the
development time in AWL is put for developing artifacts that are reusable for an
application domain and will not be reinvented in case a domain library is used.

• Visual tools can increase the productivity of a compiler. It is a valuable effort to
build an IDE (Integrated Development Environment) to harness the power and
facilitate the use of AWL Compiler.

References

[1] M. Kilfoil, A. Ghorbani, W. Xing, Z. Lei, J. Lu, J. Zhang, X. Xu, Toward an adaptive
web: The state of the art and science, in: the 1st Annual Conference on Communication
Networks and Services Research (CNSR 2003), 2003, pp. 119–130.

[2] H. Wu, P. D. Bra, A. T. M. Aerts, G.-J. Houben, Adaptation control in adaptive
hypermedia systems, in: Proceedings of the International Conference on Adaptive
Hypermedia and Adaptive Web-Based Systems, Springer-Verlag, 2000, pp. 250–259.

[3] P. D. Bra, A. Aerts, B. Rousseau, Concept relationship types for AHA! 2.0, in: E-
Learn’02, Montreal, Canada, AACE, 2002, pp. 1386–1389,
http://www.win.tue.nl/ debra/elearn2002/brendan.pdf.

[4] J. A. Macas, P. Castells, Adaptive hypermedia
presentation modeling for domain ontologies, in: 10th International Conference on
Human-Computer Interaction (HCII 2001), New Orleans, Louisiana, 2001, pp. 710–
714, http://www.ii.uam.es/ castells/publications/hcii01.pdf.

[5] N. P. de Koch, Software engineering for adaptive hypermedia systems, Ph.D. thesis,
Ludwig-Maximilians-Universitt Mnchen (2000).

[6] S. Hossein Sadat K. M., Ali A. Ghorbani, A presentation description language for
adaptive web systems, in: Communicaiton Networks and Services Research (CNSR
2005), IEEE, Halifax, Canada, 2005, pp. 169–175.

[7] P. D. Bra, N. Stash, AHA! adaptive hypermedia for all, in: SANE 2002 Conference,
Maastricht, 2002, pp. 411–412.
URL citeseer.nj.nec.com/debra02aha.html

[8] G. Weber, H.-C. Kuhl, S. Weibelzahl, Developing adaptive internet based courses with
the authoring system netcoach, in: Revised Papers from the nternational Workshops
OHS-7, SC-3, and AH-3 on Hypermedia: Openness, Structural Awareness, and
Adaptivity, Springer-Verlag, 2002, pp. 226–238.

[9] P. Brusilovsky, D. W. Cooper, ADAPTS: Adaptive hypermedia for a web-based
performance support system, in: Proceedings of the 2nd Workshop on Adaptive
Systems and User Modeling on the WWW, 1999, pp. 41–47.

33

[10] J. E. Peter Brusilovsky, E. Schwarz, Web-based education for all: a tool for developing
adaptive courseware, in: Computer Networks and ISDN Systems, Vol. 30, Nos. 1–7,
1998, pp. 291–300.
URL
http://www7.scu.edu.au/programme/fullpapers/1893/com1893.htm

[11] M. Cannataro, A. Cuzzocrea, A. Pugliese, XAHM: an adaptive hypermedia model
based on XML, in: Proceedings of the 14th international conference on Software
engineering and knowledge engineering, ACM Press, 2002, pp. 627–634.

[12] N. Koch, Software engineering for adaptive hypermedia systems:reference model,
modeling techniques and development process, Ph.D. thesis, Ludwig-Maximilians-
University of Munich (December 2000).

[13] P. D. B. Hongjing Wu, Geert-Jan Houben, Aham: A dexter-based reference model for
adaptive hypermedia, in: Proceedings od the 10th ACM Conference on Hypertext and
Hypermedia, Darmstadt, Germany, 1999, pp. 147–156.
URL http://wwwis.win.tue.nl/ hongjing/pub/ht99.ps

[14] P. D. Bra, Design issues in adaptive web-site development, in: Proceedings of the 2nd
Workshop on Adaptive Systems and User Modeling on the WWW, 1999, pp. 29–39.

[15] P. D. Bra, N. Stash, B. D. Lange, AHA! adding adaptive behavior to websites, in:
Proceedings of the NLUUG Conference, Ede, The Netherlands, 2003, pp. 21–23.
URL citeseer.nj.nec.com/585332.html

[16] P. D. Bra, A. Aerts, B. Berden, B. D. Lange, B. Rousseau, T. Santic, D. Smits, N. Stash,
AHA! the adaptive hypermedia architecture, in: Proceedings of the ACM Hypertext
Conference, ottingham, UK, 2003, pp. 81–84.
URL http://wwwis.win.tue.nl/ debra/ht03/pp401-debra.pdf

[17] L. Ardissono, A. Goy, R. Meo, G. Petrone, L. Console, L. Lesmo, C. Simone,
P. Torasso, A configurable system for the construction of adaptive virtual stores, World
Wide Web 2 (3) (1999) 143–159.
URL citeseer.nj.nec.com/209232.html

[18] M. Perkowitz, O. Etzioni, Adaptive web sites: Automatically synthesizing web pages,
in: AAAI/IAAI, 1998, pp. 727–732.
URL citeseer.nj.nec.com/perkowitz98adaptive.html

[19] L. Ardissono, L. Console, I. Torre, An adaptive system for the personalized access to
news, AI Commun. 14 (3) (2001) 129–147.

[20] L. Ardissono, A. Goy, G. Petrone, M. Segnan, L. Console, L. Lesmo, C. Simone,
P. Torasso, Agent technologies for the development of adaptive web stores, in: Agent
Mediated Electronic Commerce, The European AgentLink Perspective., Vol. vol.
1991, Springer-Verlag, London, UK, 2001, pp. 194–213.

[21] L. Ardissono, C. Barbero, A. Goy, G. Petrone, Adaptive web stores, in: Agents’99
Workshop: Agents for Electronic Commerce and Managing the Internet-Enabled
Supply-Chain, 1999, pp. 9–13.
URL citeseer.nj.nec.com/218285.html

34

[22] M. Milosavljevic, J. Oberlander, Dynamic hypertext catalogues: Helping users to
help themselves, in: Proceedings of the 9th ACM Conference on Hypertext and
Hypermedia (HT’98), Pittsburgh, PA, USA, 1998, pp. 20–24.
URL citeseer.nj.nec.com/milosavljevic98dynamic.html

[23] A. van Deursen, P. Klint, J. Visser, Domain-specific languages: an annotated
bibliography, SIGPLAN Not. 35 (6) (2000) 26–36.

[24] H. Mili, A. Mili, S. Yacoub, E. Addy, Reuse-Based Software Engineering, Techniques,
Organization, and Controls, John Wiley & SONS, INC., 2002.

[25] D. Alur, J. Crupi, D. Malks, Core J2EE Patterns: Best Practices and Design Strategies,
1st Edition, Prentice Hall, 2001.

[26] Hossein Sadat, Ali A. Ghorbani, On the evaluation of adaptive web systems, in:
to appear in WSS04, The Second International Workshop on Web-based Support
Systems in conjunction with AI 2004, Beijing, China, 2004, pp. 127–136.

[27] S. Robert W, Concepts of Programming Languages, 4th Edition, Addison Wesley,
1999.

[28] G. Kiczales, J. Lamping, A. Mendhekar, C. Maeda, C. Lopes, J. M. Loingtier, J. Irwin,
Aspect-oriented programming, in: ECOOP97 Object-Oriented Programming, 11th
European Conference, volume 1241 of Lecture Notes in Computer Science, 1997,
pp. 220–242.
URL
http://www2.parc.com/csl/groups/sda/publications/papers/
Kiczales -ECOOP97/for -web.pdf

[29] EBNF Syntaxt Specification Standard, EBNF: ISO/IEC 14977 : 1996(E).
URL http://www.cl.cam.ac.uk/ mgk25/iso-14977.pdf

[30] IAS Group, Adaptive web sites (AWS) framework: High-level design document,
Tech. Rep. TR03-102, Intelligent and Adaptive Systems Researh Group, Faculty
of Computer Science, University of New Brunswick, Fredericton, NB, Canada
(December 2003).

[31] W3C, Resource description framework (RDF).
URL http://www.w3.org/RDF/

[32] Sun Microsystems, Java Compiler Compiler (JavaCC), the Java Parser Generator.
URL https://javacc.dev.java.net/

[33] E. Gamma, R. Helm, R. Johnson, J. Vlissides, Design Patterns: Elements of Reusable
Object-Oriented Software, 1st Edition, Addison Wesley, 1995.

[34] M. Nadjarbashi-Noghani, J. Zhang, S. Hossein Sadat K. M., Ali A. Ghorbani, PENS:
A personalized electronic news system, in: Communicaiton Networks and Services
Research (CNSR 2005), IEEE, Halifax, Canada, 2005, pp. 31–38.

35

APPENDIX: PERSONALIZED ELECTRONIC NEWS SYSTEM (PENS)

A PENS’ Application Code in AWL

The following sections present the different models of PENS system, coded in
AWL.

A.1 PENS’ Presentation Model

The presentation model is an important model for an application since without it
nothing can be presented to the user. Also, a program in AWL can be translated
successfully with only a presentation description. This originates from the idea that
an adaptive Web application should be described in a way that if its adaptation
model is removed, then the rest of the application should work similar to a non-
adaptive version of the application. Since AWL has been designed based on the
“separation of concerns” principle, the separation of presentation and adaptation
aspects are automatically supported.

main fragment frontPage {

header:

title ’News@UNB Compiler Generated Application’;
identified ’card1’;
entitled ’News@UNB!’;

header;

item banner: Banner(’newsAtUNB.gif’, ’unbLogo.gif’, ’fred.gif’, ’sntj.gif’, ’banner.jpg’)
{

top;
}

item mainSection: Section
{

border = ’InFrame’;
top;

}
}

Fig. A.1. The fragment def-
inition of the front page of
PENS

fragment Banner {

attribute im1: String, im2: String, im3: String,
 im4: String, im5: String;

item img1: Image(im1)
{

width = 323; height = 32;
}
item img3: FredSj(im3, im4) {}
item img2: Image(im2)
{

width = 162; height = 76;
}
item img5: Image(im5)
{

border = ’FloorNCeil’;
width = 644; height = 80;

}

init: i1:String, i2:String,i3:String, i4:String, i5: String
{

im1 = i1; im2 = i2; im3 = i3;
im4 = i4; im5 = i5;

}
}

Fig. A.2. Banner fragment definition

It should be noted that presentation abstraction and design highly depend on the de-
signer’s concerns. For instance, one might consider reusability as a very important
quality factor when designing presentation model. Others might aim at a smaller
presentation model.

36

Figure A.1 shows the front page presentation description. Since AWL is a domain-
specific language designed for adaptive Web systems, it is very simple to find out
what a presentation specification means. The header section is used only in frag-
ments that are to be rendered as Web page. It is the place in which the author can
specify title and meta information for webpages. The main modifier indicates that
this presentation fragment is the main presentation, hence the front page, of the
application. The front page is composed of two fragments: a banner, which is a
fragment of the type Banner with parameters that specify the image names in the
banner, and a main section that is a fragment of type Section. The banner is set to
be at the top of the presentation, and the mainSection is set to have a frame border.

fragment Section {

item categories : CategorySection
{

bgcolor = ’#E0EEEE’;
valign = ’top’;
left news;

}
item news: NewsBoard {}

}

Fig. A.3. Section fragment
definition

fragment NewsBoard {

item firstSection: DetailedNews {}
item secondSection: ShortNews {}

}

Fig. A.4. Fragment definition
of a news board

fragment FredSj {

attribute im1: String, im2: String;

item img1: Image(im1)
{

width = 150; height = 19;
}
item img2: Image(im2)
{

width = 150; height = 19;
}

init: i1:String, i2:String
{

im1 = i1; im2 = i2;
}

}

Fig. A.5. Fragment definition
of FredSJ item type

Figure A.2 shows the definition of fragment Banner. Banner is composed of three
images and a custom fragment FredSj. As Figure A.5 shows, FredSj fragment is
composed of two images. The init section of each fragment is used to initialize its
attributes. The parameters of init block hold the values sent to the fragment in a
type instantiation.

The Section fragment (Figure A.3) is composed of a CategorySection and a News-
Borad (Figure A.4). The background color of the category section is set to be dif-
ferent than the news section. In addition, it is positioned on the left of the news
board. Figures A.6, A.8,and A.7 show some other parts of the PENS presentation
specification.

A.2 PENS’ User Model

The user model for PENS has been designed in a special fashion. First, all the at-
tributes and structures that are needed to define a user model in e-News domain
are defined and abstracted in a user model package (Figure A.10). Then, this base
package can be used for initializations, extensions, and dynamic behaviour spec-
ifications. In PENS though, there in not much of an extension; however, the user

37

fragment DetailedNews {

attribute newsIDs : list[3] of String;

item title : Text(’TOP NEWS’)
{

largefontsize; italic; bold; underlined;
color = ’maroon’;
textScale = ’100%’;
fontFace = ’helvetica’;

}

verticalBox(3)
item newsitems[$]: NewsItem(newsIDs[$]) {}

init:
{

newsIDs[0] = call NewsFeeder.getNewsID(1);
newsIDs[1] = call NewsFeeder.getNewsID(2);
newsIDs[2] = call NewsFeeder.getNewsID(3);

}
}

Fig. A.6. Fragment definition
of top news section

fragment NewsItem {

attribute newsID: String;
attribute title: String;
attribute abstract: String;

item headline: Text (title) {

linksTo fullNews (newsID);
}

item icon : Image(’new.gif’) {

right headline;
}

item abstract: Text (abstract) {

length = 150;
}

init:ne: String {

newsID = ne;
title = call NewsFeeder.getHeaderByID(newsID);
abstract = call NewsFeeder.getBodyByID(newsID);

}
}

Fig. A.7. Fragment definition of a news
item

fragment fullNews {

attribute newsID: String;
attribute relatedNewsID: String;
attribute hl: String;

header:

title hl;
identified ’card1’;
entitled ’News@UNB - University of New Brunswick’;

header;

item ban: Banner(’newsAtUNB.gif’, ’unbLogo.gif’, ’fred.gif’, ’sntj.gif’, ’banner.jpg’) {

top;
}

item headline: Text (hl) {}
item info: Text (call NewsFeeder.getCorrespondent (newsID)) {}
item full: Text (call NewsFeeder.getBodyByID(newsID)) {}

item relatedText: Text (’Related News’) {

largefontsize; italic; bold;
color = ’maroon’;
textScale = ’100%’;
fontFace = ’helvetica’;

}
item related: Text (call NewsFeeder.getHeaderByID(relatedNewsID)) {

linksTo fullNews (relatedNewsID);
}
item return: Text (’return to main page!’) {

italic;
linksTo frontPage;

}

init: ns: String {

newsID = ns;
relatedNewsID = call AssociationMiner.recommend(userid, newsID, 1);
hl = call NewsFeeder.getHeaderByID(newsID);

}
}

Fig. A.8. Fragment definition
of the full news page

adaptation BannerAdaptations {

target fred : ’item img1 in FredSj’;
target sj : ’item img2 in FredSj’;

adapt fred
{

if call iplocator.locateip(ClientIP) == 1
{

!show;
}

}

adapt sj
{

if call iplocator.locateip(ClientIP) == 0
{

!show;
}

}
}

Fig. A.9. Banner adaptation based
on user location

model updating behaviour is specified through an event construct (Figure A.11).

38

usermodel enewUserModel {
attribute test: realNumber,

userID: String,
password: String,
dgInfor: DGModel,
groupInfor: GroupInfor,
interestedTopics: InterestedTopics,
visitedNews: VisitedNews,
domainExperties: DomainExperties,
detailedLevel: DetailedLevel,
advertisements: Advertisements;

define DGModel {
attribute age: realNumber,

gender: alternative{’male’, ’female’},
educationLevel: alternative {’high school’, ’bachelor’, ’master’, ’phd’},
educationField: alternative {’Computer Science’, ’Business Administration’,

 ’Electric Engineering’, ’Chemical Engineering’},
occupation: alternative {’programmer’, ’Manager’, ’CEO’},
jobField: alternative {’IT’, ’Business’, ’Engineering’, ’Chemical Engineering’},
englishLevel: alternative {’basic’, ’Medium’, ’Advance’},
email: String

 }

}

.

.

.

Fig. A.10. Part of a user
model for e-News domain

main usermodel newusermodel extends enewUserModel
{

events:
on visit (fullNews)
{

call upm.addValue(userid, ’newsID’, newsID, ’sessionID’,
sessionID, ’newsCat’, ’ACADEMIC’);

}
}

Fig. A.11. The PENS’ user model de-
rived from the e-News user model

adaptation UserbasedAdaptations {

target abstract : ’item abstract in NewsItem’;
target icon : ’item icon in NewsItem’;

adapt abstract
{

if call upm.checkValue(userID, ’newsID’, newsID) == 0
{

!show;
}

}

adapt icon
{

if((call upm.getLastSessionDate(userID, ’sessionID’, sessionID)
 <

 call NewsFeeder.getNewsDate(newsID))
 and

call upm.checkValue(userID, ’newsID’, newsID) == 0)
{

!show;
}

}
}

Fig. A.12. News abstract
removal adaptation

adaptation TopNewsAdaptations1 {

target news2 : ’item newsitems[1] in DetailedNews’ ;

adapt news2
{

if (
 (call iplocator.locateip(ClientIP) == 1
 and

call NewsFeeder.getLocationByID(parent.newsIDs[0]) == ’saintjohn’
 and

call NewsFeeder.getLocationByID(parent.newsIDs[1]) == ’fredericton’
)
or
 (call iplocator.locateip(ClientIP) == 0
 and

call NewsFeeder.getLocationByID(parent.newsIDs[0]) == ’fredericton’
 and

call NewsFeeder.getLocationByID(parent.newsIDs[1]) == ’saintjohn’
)
)

{

!placeAbove (newsitems[0]);
}

}
}

Fig. A.13. Adaptation description for the top
news items

A.3 PENS’ Adaptation Model

AWL allows designers to abstract adaptation in a flexible way. Adaptation can be
defined in several packages. Each package can hold any number of adaptation.

Figure A.9 shows the adaptation package describing banner adaptation based on
user location. Two targets are defined: fred and sj, referring to img1 and img2 items,
respectively, in FredSj presentation. The adaptation statements then describe how
these targets adapt. In case the user location is 1, the fred target will be shown,
and if the location is 0, then the sj target is selected (IPLocator is a framework
component that provides a service through which the location code for a user IP
can be acquired).

39

Figure A.12 shows the adaptation package that affects a news item in the top news
section. The first adapt statement queries the user profile manager (emphupm,
which is a framework component responsible for updating the user model) to find
out if the user has already visited the news item. If the user has already read the
item, then the news abstract is not shown. The New icon is also conditional, and
might be removed if the item is not new to the user. Figure A.13 describes the
adaptation that affects the order of the items in the top news section.

It should be noted that the implementation of PENS includes models that could
have been implemented in an e-News domain library, in which case, PENS-specific
models and code fragments would have been developed, using the domain library,
in much faster and more concise fashion.

40

