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Abstract

A decreasing radius k-nearest neighbor search algorithm for
the mapping-based indexing schemes is presented. We implement
the algorithm in the Pyramid technique and the iMinMax(θ), re-
spectively. The Pyramid technique divides d-dimensional data
space into 2d pyramids, and the iMinMax(θ) divides the data
points into d partitions. Given a query point q, we initialize the
radius of a range query to be the furthest distance of the k can-
didate nearest neighbors from q in the pyramid (partition) which
q is in, then examine the rest of the pyramids (partitions) one
by one. After one pyramid (partition) is checked, the radius of
the range query decreases or remains the same. We compare the
decreasing radius k-nearest neighbor search algorithm with the
increasing radius k-nearest neighbor search algorithm using the
Pyramid technique and the iMinMax(θ). Moreover, the decreas-
ing radius k-nearest neighbor search performance of these two
mapping-based indexing schemes is compared to the BBD-tree,
the R∗-tree and naive search. Experimental results show that
our decreasing radius k-nearest neighbor search algorithm for the
mapping-based indexing schemes is efficient when d ≤ log2 n.
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1 Introduction

Similarity searching is very important for many applications, such as com-
puter graphics, multimedia databases [10][12][24], geographic information
systems, knowledge discovery and data mining [11], and computer aided de-
sign systems [17][22], etc. Similarity searching often reduces to finding the k
nearest neighbors to a query point. Given a set S of n d-dimensional (d-d)
data points and a query point q, the k-nearest neighbor (KNN) search is to
find a subset S ′ ⊆ S of k≤ n data points such that for any data point u ∈
S ′ and v ∈ S − S ′, dist(u,q)≤dist(v,q). Several KNN search algorithms have
been discussed in [6][7].

1.1 Related Work

In [21], the authors presented a branch-and-bound search algorithm for pro-
cessing KNN queries for R-trees. R-trees were proposed as a natural exten-
sion of B-trees in higher than one dimensions [13]. An internal node of the
R-tree contains entries of the address of a child node and a minimum bound-
ing rectangle (MBR) of all rectangles which are entries in that child node. A
leaf node contains entries of the pointer to data object and an MBR which is
the enclosing rectangle of that data object. Roussopoulos et al. defined two
distance functions, MINDIST and MINMAXDIST. MINDIST is the mini-
mum distance from the query point to the enclosed MBR. MINMAXDIST
is the minimum of the maximum possible distances from the query point to
the vertices of the MBR. When processing KNN search, MINDIST and MIN-
MAXDIST are used for ordering and pruning the search. The KNN search
algorithm can be applicable to other R-tree-like structures, e.g. the R∗-tree
[3], the SS-tree [23], the X-tree [5] and the SR-tree [16].

The M -tree [8] was proposed to organize and search large data sets from
a generic metric space, i.e., where object proximity is only defined by a dis-
tance function satisfying the positivity, symmetry, and triangle inequality
postulates. The M -tree partitions objects on the basis of their relative dis-
tances, as measured by a specific distance function, and stores these objects
into fixed-size nodes, which correspond to constrained regions of the metric
space. Leaf nodes of an M -tree store all indexed objects, and internal nodes
store the so-called routing objects. For each routing object Or, there is an
associated pointer, denoted ptr(T (Or)), which references the root of the sub-
tree, T (Or), called the covering tree of Or. All objects in the covering tree of
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Or, are within the distance r(Or) from Or, r(Or)>0, which is called the cov-
ering radius of Or. Finally, a routing object Or is associated with a distance
to P (Or), its parent object, that is, the routing object that references the
node where the Or entry is stored. For KNN search, they use a branch-and-
bound technique, similar to the one designed for R-trees [21], which utilizes
a priority queue PR, a queue of pointers to subtrees where qualifying objects
can be found, and a k elements array NN to contain the result.

The vector approximate file (V A-file) [20] divides the data space into 2b

rectangular cells where b denotes a user specified number of bits (e.g. some
number of bits per dimension). Instead of hierarchically organizing these
cells like in grid-files or R-trees, the VA-file allocates a unique bit-string of
length b for each cell, and approximates data points that fall into a cell
by that bit-string. The V A-file itself is simply an array of these compact,
geometric approximations. When searching for the k nearest neighbors, the
entire approximation file is scanned, and upper and lower bounds on the
distance to the query can easily be determined based on the rectangular
cell represented by the approximation. The vast majority of vectors from
the search is excluded (filtering step) based on these approximations. After
the filtering step, a small set of candidates remain. These candidates are
then visited in increasing order of their lower bound on the distance to the
query point q, and the accurate distance to q is determined. However, not all
candidates must be accessed. If a lower bound is encountered that exceeds
the k-th nearest distance seen so far, the KNN search stops.

In [9], a multi-tier index structure, called ∆-tree, was proposed to speed
up processing of high-dimensional KNN queries in the main memory envi-
ronment. Each tier in the ∆-tree represents the data space as clusters in
different number of dimensions and tiers closer to the root partition the data
space using fewer number of dimensions. The leaf level contains the data
at their full dimensions. The numbers of tiers and dimensions are obtained
using the Principal Component Analysis [15] technique. Each level of the
tree serves to prune the search space more efficiently as the reduced dimen-
sions can better exploit the small cache line size. Moreover, the distance
computation on lower dimensionality is less expensive. An extension, called
∆+-tree, was proposed that globally clusters the data space and then further
partitions clusters into small regions to reduce the search space. Two data
structures are used to facilitate KNN search: a priority queue to maintain
entries in non-descending order of distance. Each item in the queue is an
internal node the ∆-tree. The second is the list of KNN candidates. The
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distance between the k-th nearest neighbor and the query point is used to
prune away points that are further away.

In [14], the authors proposed an efficient method for KNN search in multi-
dimensional data space, called iDistance. iDistance partitions the data and
defines a reference point for each partition. The data points in each partition
are transformed into a 1-d data space based on their similarity with respect
to the reference point. Then the distance of each data point is indexed to
the reference point of its partition. A B+-tree is used to index this distance.
For a KNN query centered at q, a range query with radius r is issued. The
iDistance KNN search algorithm searches the index from the query point
outwards, and for each partition that intersects with the query sphere, a
range query is resulted. If the algorithm finds k elements that are closer
than r from q at the end of the search, the algorithm terminates. Otherwise,
it extends the search radius by ∆r, and the search continues to examine the
unexplored region in the partitions that intersects with the query sphere.
The process is repeated till the stopping condition is satisfied.

Due to the hardness of processing exact KNN queries, Arya et al. [1] [2]
turn to approximate KNN search. Given a relative error bound ε, a point p is
a (1+ε)-approximate jth nearest neighbor to a point q if its distance from q is
a factor of at most (1+ε) times the distance to q’s true jth nearest neighbor.
An answer to the approximate k-nearest neighbors query is a sequence of k
distinct data points p1, p2, · · · , pk, such that pj is a (1+ε)-approximation to
the jth nearest neighbor of q, for 1 ≤ j ≤ k. The approximate KNN search
algorithm is based on a balanced box-decomposition (BBD) tree. Data space
is recursively subdivided into a collection of cells, each of which is either a d-d
rectangle or the set-theoretic difference of two rectangles, one enclosed within
the other. The ratio between the longest and shortest sides of rectangles is
bounded. Each node of the BBD-tree is associated with a cell, and hence it
is implicitly associated with the set of data points lying within this cell. Each
leaf cell is associated with a single point lying within the bounding rectangle
for the cell. The leaves of the tree define a subdivision of space. The KNN
search algorithm locates the leaf cell containing the query point q, and then
enumerates cells in increasing order of distance from q. The k candidates are
stored in a balanced binary search tree sorted by their distance to q. The
search terminates as soon as the distance from the current cell to q exceeds
rk/(1 + ε), where rk is the distance of the k-th nearest neighbor to q.
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1.2 Our Results

In Section 2 we have a closer look at the Pyramid technique [4] and the
iMinMax(θ) [19], and present their orthogonal range search algorithms. To
facilitate the KNN search, we make some modifications on these two mapping-
based indexing schemes. The Pyramid technique divides d-d data space into
2d pyramids, and the iMinMax(θ) divides the data points into d partitions.
We proposed decreasing radius KNN search algorithms for the Pyramid tech-
nique and the iMinMax(θ) in Section 3. The radius r of a range query is
initialized to be the distance of the k-th nearest neighbor candidate after
examining the data points in the pyramid (partition) the query point q in.
A query square W centered at q with side length 2r is generated, then an
orthogonal range search is performed in one of the remaining 2d-1 pyramids
(partitions). If the search finds some data points closer to q than r, the
k candidate nearest neighbors answer set is updated, and r is reset to be
the current furthest distance of the k candidates. The search continues to
examine one of the unexplored pyramids (partitions), and the radius r de-
creases if at least one new candidate is found. The process is repeated until
all pyramids (partitions) are examined.

In Section 4, we conduct a series of experiments to evaluate the decreas-
ing radius KNN search performance. We first compare the increasing radius
KNN search approach with the decreasing radius KNN approach using the
Pyramid technique and the iMinMax(θ), then we compare the decreasing ra-
dius Pyramid and iMinMax KNN search performance with the R∗-tree, the
BBD-tree and naive search. Our experiments are performed using uniformly
and randomly distributed data points from the interval [0, 1]d. Overall, the
experimental results show that the decreasing radius KNN search algorithm
outperforms the increasing radius approach, and the decreasing radius Pyra-
mid KNN search is efficient when d ≤ log2 n.

Without loss of generality, the following discussions are all based on
unit space [0, 1]d. Distances are measured using any Minkowski Lm dis-
tance metric. For any integer m ≥ 1, the Lm-distance between points
p = (p0, p1, · · · , pd−1) and q = (q0, q1, · · · , qd−1) in Rd is defined to be the
mth root of Σd−1

i=0 |pi− qi|m. In the limiting case, where m = ∞, this is equiv-
alent to maxd−1

i=0 |pi − qi|. The L1, L2 and L∞ metrics are the well-known
City Block (Manhattan) distance, Euclidean distance, and Chebyshev dis-
tance (max metrics), respectively. In our experiments, we use the Euclidean
distance.
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2 Two Mapping-based Indexing Schemes

In recent years, several mapping-based indexing schemes have been proposed
to improve the performance of range search in high-dimensional data space,
e.g. the Pyramid technique [4] and the iMinMax(θ) [19]. The basic idea is
to transform the d-d data points into 1-d values, and then store and access
the 1-d values using a B+-tree. A d-d range query is mapped to a union of
1-d range queries. Based on the similarity between these schemes, Zhang et
al. [25] proposed a generalized structure for multidimensional data mapping
and query processing. The mapping-based indexing scheme overcomes the
high dimensionality problem. In the following subsections, we had a close
look at the Pyramid technique and the iMinMax(θ), and made some little
modifications to facilitate the KNN search.

2.1 The Pyramid Technique

The basic idea of the Pyramid technique [4] is to transform the d-d data
points into 1-d values, and then store and access 1-d values using a B+-tree.
The data space is divided in two steps: firstly, the data space is split into
2d pyramids having the center point of data space (0.5, 0.5, · · · , 0.5) as their
top and a (d-1)-d surface of the data space as their base. Secondly, each of
the 2d pyramids is divided into several partitions, each corresponding to one
data block of the B+-tree.

2.1.1 Mapping d-d Data into 1-d Value

Assume a data point v = (v0, v1, · · · , vd−1) is in pyramid i. The height hv of
the point is defined to be the distance between v and the center in dimension
i mod d, i.e. hv = |0.5 − vi mod d| ∈ [0, 0.5]. As shown in Fig.1(a), the data
space [0, 1]2 is divided into 4 triangles, sharing the center point (0.5, 0.5) as
their top and one edge as base. Each triangle is assigned a number between
0 and 3. The pyramid value pvv of v is defined as the sum of its pyramid
number i and its height hv: pvv = i + hv. The algorithm for calculating pvv

is given in Fig.2. The pyramid i covers an interval of [i, i + 0.5] pyramid
values and the sets of pyramid values covered by any two different pyramids
are disjoint. After determining the pyramid value of v, we insert v into a
B+-tree using pvv as a key, and store v in the corresponding leaf node of the
B+-tree (See Fig.1(b)).
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0.4     1.3     2.2     2.4  

(0.7,0.6) (0.8,0.4)      (0.9,0.7) (0.7,0.8) (0.5,0.9)

(b)

Figure 1: (a) A set of points in 2-d data space [0, 1]2 (the numbers in the
triangles are the pyramid numbers), and (b) the corresponding B+-tree (the
maximum number of keys is 4, and the point insertion order is (0.2,0.7),
(0.1,0.3), (0.3,0.4), (0.2,0.1), (0.4,0.2), (0.5,0.3), (0.6,0.3), (0.8,0.4), (0.7,0.6),
(0.9,0.7), (0.7,0.8), (0.5,0.9)).

The internal nodes of a B+-tree of order M contain between M and 2M
keys. An internal node of the B+-tree with m keys has m + 1 child pointers.
The leaf node with m keys has one left pointer (added for the purposes of
KNN search and practical efficiency), one right pointer and m data point
pointers. The left (right) pointer points to the immediate left (right) sibling
node at the leaf level in the B+-tree.

2.1.2 Mapping Range Queries

Given a query rectangle W = [L0, H0]× [L1, H1]×· · ·× [Ld−1, Hd−1], the key
v = (v0, v1, · · · , vd−1) is in the range iff vi ∈ [Li, Hi], ∀i ∈ (0, 1, · · · , d − 1).
We define W = [L0, H0]× [L1, H1]× · · · × [Ld−1, Hd−1], where Li = Li − 0.5
and H i = Hi − 0.5. A pyramid pi is intersected by W if and only if

6



PyramidValue(Point v )
1 dmax ← 0
2 hv ← |0.5− v0|
3 for (j = 1; j < d; j ← j + 1)
4 do if (hv < |0.5− vj|)
5 then dmax ← j
6 hv ← |0.5− vj|
7 if (vdmax < 0.5)
8 then i ← dmax

9 else i ← d + dmax

10 pvv ← i + hv

11 return pvv

Figure 2: Algorithm for calculating the pyramid value pvv of a point v,
adapted from [4].

1. Li ≤ −MIN(Lj, Hj), if i < d, and

2. H i−d ≥ MIN(Lj, Hj), if d ≤ i < 2d

∀j, 0 ≤ j < d, where MIN(Lj, Hj) = 0, if Lj ≤ 0 ≤ Hj, else MIN(Lj, Hj) =
min(|Lj|, |Hj|) [4].

Then we need to calculate the interval [hi
low,hi

high] that the pyramid values
of all data points inside the intersection of W and pyramid pi are in the
interval [i + hi

low,i + hi
high]. We define a more restricted value of hlow than

the original one in [4].

The modified query rectangle W̃ for pyramid pi W̃i = [L̃0, H̃0]×[L̃1, H̃1]×
· · · × [L̃d−1, H̃d−1], where

1. L̃j = Lj, H̃j = min(Hj, 0), if i < d and j = i mod d, or

2. L̃j = max(Lj, 0), H̃j = H j, if d ≤ i < 2d and j = i mod d

3. L̃j = Lj and H̃j = Hj for 0 ≤ j < d, j 6= i mod d

Given a query rectangle W and an affected pyramid pi, the intersection
interval [hi

low, hi
high] is define as follows:

1. hi
low = 0, if Lj ≤ 0 ≤ Hj, ∀j ∈ {0, 1, · · · , d− 1}, or
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2. hi
low=mind−1

j=0max(MIN(L̃i mod d, H̃i mod d),MIN(L̃j, H̃j))

3. hi
high = max(|L̃i mod d|, |H̃i mod d|)

Range search begins from the root T of the B+-tree. If pyramid pi (0 ≤
i ≤ 2d− 1) is intersected by W , we do 1-d range search on the B+-tree using
interval [i + hi

low,i + hi
high]. When we reach the leaf level of the B+-tree,

we determine if the data points pointed by the leaf node intersect W . The
detailed orthogonal range search algorithm is given in Fig.3. Fig.4 shows the
region visited when an orthogonal range search is performed in the Pyramid
technique.

2.2 iMinMax(θ)

For a data point v = (v0, v1, · · · , vd−1), let vmax=maxd−1
i=0 vi, and vmin=mind−1

i=0 vi

be the maximum value and minimum value among the d dimensions of v,
and let dmax and dmin denote the dimensions at which vmax and vmin occur.
iMinMax(θ) [19] uses either vmax or vmin as the representative index key for
the point v, and store and access the key value in a B+-tree. The data point
v is mapped to a 1-d value θv as follows:

θv =

{
dmin + vmin, if vmin + θ < 1− vmax

dmax + vmax, otherwise

where θ is a real number. For simplicity, we call this 1-d value as iMinMax
value, and we number the partition which the point v is in by bθvc, called
partition number, which is between 0 and d-1. There are d partitions alto-
gether. There are two extremes: when θ ≥ 1, the transformation maps all
points to their maximum value (denoted as iMax); when θ ≤ −1, all points
are mapped to their minimum value (denoted as iMin). A 2-d example is
given Fig.5, where θ = −1 (iMin). The data points and the insertion order
are as same as ones in Fig.1. To facilitate the KNN search, left pointers are
added at the leaf nodes of the B+-tree.

Orthogonal range queries on the original d-d data space have to be trans-
formed to the union of d 1-d range queries. Given a query rectangle W =
[L0, H0]× [L1, H1]×· · ·× [Ld−1, Hd−1], the orthogonal range search algorithm
is given in Fig.6. Fig.7 shows the region visited when an orthogonal range
search is performed in the iMinMax(θ).
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PyramidRangeSearch(T,W )
1 A ← emptyset
2 for (i = 0; i < d; i ← i + 1)
3 do Li ← Li − 0.5
4 H i ← Hi − 0.5
5 for (i = 0; i < 2d; i ← i + 1)
6 do intersect ← 0
7 if (i < d)
8 then for (j = 0; j < d and j 6= i; j ← j + 1)
9 do if (Li ≤ −MIN(Lj, Hj))

10 then intersect ← intersect + 1
11 qimin

← Li

12 qimax ← min(H i, 0)
13 else for (j = 0; j < d and j 6= i− d; j ← j + 1)
14 do if (H i−d ≥ MIN(Lj, Hj))
15 then intersect ← intersect + 1
16 qimin

← max(Li−d, 0)
17 qimax ← H i−d

18 if (intersect = d− 1)
19 then m ← 0
20 for (j = 0; j < d; j ← j + 1)
21 do if (Lj ≤ 0) and (Hj ≥ 0)
22 then m ← m + 1
23 if (m = d)
24 then hlow ← 0
25 else qjmax ← 0
26 qjmin

← 0.5
27 for (j = 0; j < d and j 6= i mod d; j ← j + 1)
28 do qjmax ← max(MIN(qimin

, qimax),MIN(Lj, Hj))
29 if (qjmin

> qjmax)
30 then qjmin

← qjmax

31 hlow ← qjmin

32 hhigh ← max(|qimin
|, |qimax|)

33 BplusTreeRangeSearch(T, i + hlow, i + hhigh,W,A)
34 return A

Figure 3: Orthogonal range search algorithm for the Pyramid technique,
adapted from [4]. MIN(a, b)=0, if a ≤ 0 ≤ b, else MIN(a, b) = min(|a|, |b|).
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Figure 5: A 2-d iMin example. (a) A set of points in 2-d data space [0, 1]2,
which is divided by the diagonal y=x to two right-angled triangles, numbered
0 and 1 (i.e. dmin), respectively. (b) the corresponding B+-tree (the maxi-
mum number of keys is 4, and the point insertion order is (0.2,0.7), (0.1,0.3),
(0.3,0.4), (0.2,0.1), (0.4,0.2), (0.5,0.3), (0.6,0.3), (0.8,0.4), (0.7,0.6), (0.9,0.7),
(0.7,0.8), (0.5,0.9)).
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iMinMaxRangeSearch(W )
1 A ← emptyset
2 Lmin ← mind−1

i=0 Li; Lmax ← maxd−1
i=0 Li

3 Hmin ← mind−1
i=0 Hi; Hmax ← maxd−1

i=0 Hi

4 for (i = 0; i < d; i ← i + 1)
5 do if (Lmin + θ ≥ 1− Lmax)
6 then hlow ← Lmax

7 hhigh ← Hi

8 else if (Hmin + θ < 1−Hmax)
9 then hlow ← Li

10 hhigh ← Hmin

11 else hlow ← Li

12 hhigh ← Hi

13 if (hlow ≤ hhigh)
14 then BplusTreeRangeSearch(T, i + hlow, i + hhigh,W,A)
15 return A

Figure 6: Range search algorithm for iMinMax(θ), adapted from [19].
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(b) iMin

Figure 7: Sample search space in 2-d data space [0, 1]2 (the black area is the
region of the query rectangle W , and the cross-hatched area is the region
needed to be visited during range search in addition to W ) .
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3 DR KNN Search Algorithms

To find the k nearest neighbors of a query point q, the distance of the kth
neighbor from q defines the minimum radius required for searching k-nearest
neighbors. Such a distance can’t be determined in advance. The simplest
KNN search algorithm is based on using a range search algorithm with in-
creasing radius. For example, in [14][26], the KNN search starts with a query
sphere centering at q with a small initial radius r. A candidate answer set
is maintained which contains data points that could be the k nearest neigh-
bors of q. Then the query sphere is enlarged gradually and the candidate
answer set is updated accordingly until the k candidate answers are the true
k nearest neighbors of q. Since the range search complexity grows sharply
on the search radius, the cost of increasing radius approach can be very close
to the cost of a range search with the appropriate r. The increasing radius
method can be adapted to any data structure which supports range search.
Fig.8 shows the increasing radius KNN algorithm in the Pyramid technique
explored in [25].

qq0

1

2

3

0

1

2

3

(a) (b)

Figure 8: An illustration of a 2-d KNN search using increasing radius ap-
proach. (a) shows the KNN search with an initial radius, and (b) shows
the KNN search with an increasing radius. The cross-hatched region is the
search region.

3.1 DR Pyramid KNN Search Algorithm

In constrast to the KNN search algorithm with increasing radius (IR) for the
Pyramid technique mentioned above [25], we present a KNN search algorithm

12



with decreasing radius (DR). We use a list A to contain the k current can-
didate nearest neighbors sorted by their distance from q in decreasing order.
Without loss of generality, we use the Euclidean distance (L2). Let D(v, q)
be the Euclidean distance between points v and q in d-d space, and Dmax be
the maximum distance between the data points in A and q. Moreover, let
C(q, r) be a circle centered at q with a radius r.

In the first step, we initialize A to be empty, and determine which pyramid
q is in and its pyramid value pvq, using the algorithm in Fig.2. Assume q
is in pyramid pi, we search the B+-tree to locate the leaf node which has
the key value = pvq, or the largest key value less than pvq (using function
LocateLeaf). After locating the leaf node, we use function SearchLeft
(SearchRight) to check the data points of the node towards to the left
(right) to determine if they are among the k nearest neighbors, and update
A accordingly. Note that if a point v is in the same pyramid as q, the
difference between their pyramid values is no greater than their Euclidean
distance, i.e. |pvq − pvv| ≤ D(q, v). SearchLeft (SearchRight) stops
when the key value of the leaf node is less (greater) than i (i+0.5), or there
are k data points in A and the difference between the current key value in
the node and the pyramid value of q is greater than Dmax.

In the second step, since an exact circle shaped range search is hard to
define in the Pyramid technique, we generate a query square W enclosing
C(q, r) to perform an orthogonal range search, which guarantees the correct-
ness of the query results. If there are k data points in A, the radius r is ini-
tialized to be Dmax, otherwise r=

√
d such that C(q, r) covers the whole data

space [0, 1]d (the maximum Euclidean distance between point v and point q
in space [0, 1]d is

√
d). For simplicity, we assume there are k data points in A

after the first step. We examine the rest of the pyramids one by one in any
order. If the pyramid intersects W , we perform a PyramidRangeSearch
to check if the data points in this pyramid intersecting W are among the k
nearest neighbors. The center of W is fixed, but its side length ∆ is updated
every time after a pyramid is examined. If the pyramid doesn’t intersect W ,
we can prune the search in this pyramid. The KNN search stops when all
the pyramids are checked. The KNN algorithm is given in Fig.9.

Fig.10 shows a KNN search example in 2-d data space. In this case,
the number of the nearest neighbors k=4, and the data point q denoted as
an unfilled circle is the query point. Firstly, we can determine that q is in
pyramid p0, then we search the B+-tree using interval [0, 0.5] to find the k
candidate nearest neighbors of q in p0, and store them in the list A, i.e. the
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PyramidKNN(Point q , int k )
1 A ← empty set
2 i ← pyramid number of the pyramid q is in
3 node ← LocateLeaf(T, q)
4 SearchLeft(node,A, q, i)
5 SearchRight(node,A, q, i + 0.5)
6 Dmax ← D(A0, q)
7 Generate W centered at q with ∆ ← 2Dmax

8 for (j = 0; j < 2d; j ← j + 1)
9 do if (j 6= i) and (W intersects pyramid j )

10 then PyramidRangeSearch(T, W, q, A)
11 Update W with updated ∆ ← 2Dmax

12 return A

Figure 9: The decreasing radius Pyramid KNN search algorithm.

data points in C(q, r) as shown in Fig.10(a), where r is the distance of the
furthest data point from q in A (we assume there are k data points in A).
Secondly, a query square W enclosing C(q, r) is generated. We examine the
rest of the pyramids in counterclockwise order. The cross-hatched area in
pyramid p1 in Fig.10(b) is the search region when we perform a 1-d range
search on the B+-tree. One candidate is found and A is updated, and so is r.
The query square W is updated to enclose the updated C(q, r). As a closer
data point to q is found, we search with smaller radius and the search becomes
cheaper. Because there is no intersection between W and pyramid p2 (See
Fig.10(c)), we don’t need to check the data points in this pyramid. When
we reach pyramid p3, we examine the data points in cross-hatched region
in Fig.10(d), and find that none of them is among the k-nearest neighbors.
After checking 4 pyramids, we get the result, i.e. the data points except q in
C(q, r) in Fig.10(d).

3.2 DR iMinMax KNN Search Algorithm

The KNN search algorithm with decreasing radius for the iMinMax(θ) is
given in Fig.7, which is similar to PyramidKNN algorithm in Fig.9. Firstly
we initialize A to be empty, and calculate the iMinMax value θq of q. We
search the B+-tree to locate the leaf node which has the key value = θq, or the

14



(b)

0
3

qq

3
0

2

1

q

(d)

1

3

q

(c)

1

1

3

2

2 2

0

0

(a)

Figure 10: An illustration of a 2-d KNN query processing. The union of
cross-hatched region in these four figures is the total search region for the
KNN query.

largest key value < θq. Then we use function SearchLeft (SearchRight)
to check the data points of the node towards to the left (right) to determine if
they are among the k nearest neighbors, and update A accordingly. Note that
if a point v is in the same partition as q, the difference between their iMinMax
values is no greater than their Euclidean distance, i.e. |θq − θv| ≤ D(q, v).
SearchLeft (SearchRight) stops when the key value of the leaf node
is less (greater) than θq (θq+1), or there are k data points in A and the
difference between the current key value in the node and the iMinMax value
of q is greater than Dmax.

Secondly, we generate a query square W enclosing C(q, r) to perform an
orthogonal range search. We examine the rest of the partitions one by one
in any order. We perform a iMinMaxRangeSearch to check if the data
points in the partition intersecting W are among the k nearest neighbors. If
there are some data points found in the partition whose distances less than
Dmax, A is updated. After finishing the search in this partition, r is reset to
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iMinMaxKNN(Point q , int k )
1 A ← empty set
2 i ← the number of the partition which q is in
3 node ← LocateLeaf(T, q)
4 SearchLeft(node,A, q, i)
5 SearchRight(node,A, q, i + 1)
6 Dmax ← D(A0, q)
7 Generate W centered at q with ∆ ← 2Dmax

8 for (j = 0; j < d and j 6= i; j ← j + 1)
9 do iMinMaxRangeSearch(T, W, q, A)

10 Update W with updated ∆ ← 2Dmax

11 return A

Figure 11: The decreasing radius iMinMax KNN search algorithm.

the updated Dmax. The search continues to examine one of the unexplored
partitions. The KNN search stops when all the partitions are examined.

A 2-d DR iMinMax KNN search example is shown in Fig.12, where θ=-1
and k=4. Firstly, we can determine the query point q is in partition 1, then
we search the B+-tree using interval [1,2] to find the k candidate nearest
neighbors in this right-angled triangle, stored in A, i.e. the data points in
C(q, r) as shown in Fig.12(a), where r=Dmax. Secondly, we use a square
enclosing C(q, r) to perform an orthogonal range search on partition 0. The
data points in solid circle in Fig.12(b) are the query results.

1

q q

0

(b)(a)

1

0

Figure 12: An illustration of a 2-d KNN query processing. The union of
cross-hatched region in (a) and (b) is the total search region for the KNN
query.
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4 Experimental Evaluation

We have conducted a series of experiments to evaluate the DR KNN search
performance. We first compared the increasing radius KNN search approach
with the decreasing radius KNN approach using the Pyramid technique and
the iMinMax(θ), then we compared the DR Pyramid and DR iMinMax KNN
search performance with the R∗-tree, the BBD-tree and naive search. Our
experiments were performed using uniformly and randomly distributed data
points from the interval [0, 1]d, for 2 ≤ d ≤ 100, and n up to 1,000,000. The
programs were written in C++, and run on a Sun Microsystems V60 with
two 2.8 GHz Intel Xeon processors and 3 GB main memory. We assume all
data structures tested reside in the main memory, and we don’t account for
no I/O disk access. Each experimental point in the following graphs was
done with an average of 300 queries which followed the same distribution of
the data points.

4.1 DR vs. IR

For increasing radius KNN search, if the distance of the k-th nearest neigh-
bor from the query point q (i.e. the minimum radius required for searching
the k-nearest neighbors) can be determined in advance, the optimal IR KNN
search performance can be achieved. However such a distance can’t be pre-
determined. In our experiments, we set the initial radius of the range query
as close to the minimum radius as possible. The volume of d-d ball with
radius r is πd/2rd

Γ( 1
2
d+1)

. For uniform and random data points, when searching for

the k nearest neighbors, the expected volume of query ball is k
n
. Then the

initial radius r=(
kΓ( 1

2
d+1)

nπd/2 )1/d.
Fig.13 and Fig.14 show the comparison between the IR KNN search

and our DR KNN search performance for the Pyramid technique and the
iMinMax(θ), respectively. The data points were drawn uniformly and ran-
domly from d-d data space [0, 1]d. The performance of the iMinMax(θ) is
affected by the value of θ, as shown in [19]. We set θ=0 in our experiments.
The increasing radius ∆r for each step in the IR KNN search was set to be
r
m

, where m is an integer. We varied m to examine the effect of the ∆r in
the IR KNN search performance. We observed that when d increases, the
large ∆r leads to a better performance, because there will be less iterations
to reach the final query results. For the Pyramid technique, the DR KNN
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search has a speedup factor between 1.1 and 6.8 over the IR KNN search.
For the iMinMax(θ), the DR KNN search has a speedup factor between 1.1
and 2.4 over the IR KNN search.
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Figure 13: KNN search in the Pyramid technique, where n=1,000,000, 2≤
d ≤20, and k=10.
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Figure 14: KNN search in the iMinMax(θ), where θ=0, n=1,000,000, 2≤
d ≤20, and k=10.
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4.2 DR Pyramid Technique vs. Other Techniques

We compared the DR KNN performance of the Pyramid technique to the
R∗-tree using the KNN algorithm in [21], the BBD-tree [2] and naive search.
Naive search is a simple brute-force search. The BBD-tree was proposed for
approximate KNN search, but it is able to return exact k-nearest neighbors
when the error bound ε=0. The source code of the BBD-tree approximate
KNN search is downloaded from [18]. To have a reasonable and fair com-
parison, we use the same uniform and random data points generator in all
programs.

To determine the influence of the dimension d on KNN search perfor-
mance, we varied d from 2 to 20. We fixed n=1,000,000, and k=10. In terms
of search time, the experimental results in Fig.15 show that when d < 8, the
DR Pyramid technique is slightly worse than the R∗-tree, and when d ≥ 8,
the DR Pyramid technique has a speedup factor up to 3.2 over the R∗-tree.
The DR Pyramid KNN search outperforms the DR iMinMax KNN search.
The BBD-tree is up to 13.4 times faster than the DR Pyramid technique;
with increasing d, the KNN search performance for both data structures is
approximately the same.
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Figure 15: n=1,000,000, 2≤ d ≤20, and k=10.

Fig.16 shows the effect of k on the performance. k is varied from 5 to 50
stepping by 5. In Fig.16, d=16, the DR Pyramid technique has a speedup
factor between 1.5 and 2.5 over the DR iMinMax, and a speedup factor
between 1.6 and 3.0 over the R∗-tree. The BBD-tree has a speedup factor
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between 1.3 and 1.7 over the DR Pyramid technique. In the experiment of
Fig.17, we examined the correlation between the input data size with the
KNN search time. We varied the number n of data points from 100,000
to 1,000,000. The experimental results are shown in Fig.17, where k=20
and d=16. The KNN search time of the DR Pyramid technique, the BBD-
tree, the R∗-tree and naive search increases linearly as n increases. The DR
Pyramid technique has a speedup factor between 1 and 1.9 over the DR
iMinMax, and a speedup factor between 1.3 and 2.2 over the R∗-tree. The
BBD-tree is up to 1.2 times faster than the DR Pyramid technique.
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Figure 16: n=1,000,000, d=16, and 5≤k≤ 50.
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5 Conclusions

In this report, we present a decreasing radius KNN algorithm for mapping-
based indexing schemes. We implemented our DR KNN algorithm using the
Pyramid technique and the iMinMax(θ), and conducted an extensive exper-
imental evaluation to study the KNN search performance. The experiments
show that the algorithm scales up well with both the number of nearest
neighbors requested and the size of the data sets. For uniform random data
points, the KNN performance of the DR Pyramid technique is faster than the
IR Pyramid technique, the DR iMinMax and the R∗-tree. The BBD-tree
is the best in all these data structures in experiments for d ≤ log2 n. The
Pyramid technique [4] and the iMinMax(θ) [19] have been shown to work
well in high dimensional data spaces; can our DR KNN algorithm be im-
proved to support efficient KNN search for large d (d>log2 n)? We somehow
need to overcome the unnecessary space searched due to expanding the d-d
query ball of radius r to a d-d query square of side length 2r. The ratio
between the volume ((2r)d) of d-d square with side length 2r and the vol-

ume (πd/2rd/Γ(1
2
d + 1)) of d-d ball with radius r is

Γ( 1
2
d+1)

(
√

π/2)d , which increases

rapidly with the increment of d. For example, for d=2, the ratio≈1.27; for
d=12, the ratio≈3067.48. What is the expected time Q(k, d, n) for the KNN
search using the DR Pyramid approach?
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[6] C. Böhm, S. Berchtold, and D. A. Keim. Searching in high-dimensional
spaces–index structures for improving the performance of multimedia
databases. ACM Computing Surveys, 33(3):322–373, September 2001.
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