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1. Introduction

Unlike spatial databases [9] containing stationary spatial objects, (e.g., gas stations,
rivers, cities, roads, regions), spatio-temporal databases [3] contain spatial objects that
move over time (e.g., moving cars, moving people, clouds, flights). In last few decades,
both spatial and spatio-temporal databases have received much attention from researchers.
One of the biggest challenges in spatial and spatio-temporal databases is how to improve
the response time for query processing of moving objects, so called continuous query
processing [10]. One of queries related to moving objects is, for example, ”how many
moving cars are in the center of Fredericton in the time interval (t1, t2) ?”

In order to answer this kind of query efficiently, many indexes structured for capturing
moving objects have been introduced, such as the R*-tree [2], MON-tree [5], TPR-tree,
and FNR-tree [6]. While moving objects captured by the R*-tree and TPR-tree are not
constrained in any motion model, the FNR-tree and MON-tree are two new indexes,
which are especially used for moving objects in the road network. In [5], the MON-tree
is claimed to be two to four times faster than the FNR-tree.

In this report, the necessary background for the MON-tree, which is related to the
index structure, the insertion algorithm and the searching algorithms, is described in
Section 2. Section 3 then shows our experiments after we implemented the MON-tree as
well as our comparison results between the MON-tree and the R*-tree implemented for
rectangles. In Section 3, we also discuss the way we generated test data from the real
Canadian road network [1]. Finally, the conclusion of our report is shown.

2. Background of the MON-tree

2.1 Index Structure

The MON-tree stands for a tree for Moving Objects in Networks. This data structure
is based on the R-tree index structure [7]. In order to capture moving objects on road
networks, the data structure of the MON-tree contains three main parts. First, a top R-
tree is used to capture the road network. Second, a set of bottom R-trees, each of which
is connected by leaf nodes of the top R-tree, are used to represent moving objects on the
road. Finally, a hash table is used to organise these top and bottom R-trees efficiently.
Figure 1 shows an example of a road network. There are eight roads (e.g., e1, e2,..., and
e8) and eleven moving objects in this road network. Figure 2 shows the data structure of
the MON-tree representing these moving objects on the roads.
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Figure 1: Example of a road network [5].

Top R-treeHash table

Bottom
R-trees

Figure 2: Data structure of MON-tree [5].
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Figure 3: A rectangle representing time and positional interval.

a. Top R-tree

Like the conventional R-tree, the top R-tree of the MON-tree (see Figure 2) indexes
the bounding box of polylines. The bounding box for each leaf is the smallest box that
spatially contains a polyline (i.e., a road) of the road network, while the bounding box of
a non-leaf node is the smallest box that contains the bounding boxes of the child nodes.

b. Bottom R-trees

For movement representation, each bottom R-tree is used to index moving objects in
each road, which is indexed by the top R-tree. In order to represent a moving object (e.g.,
its location, its velocity, etc.), a time interval (t1, t2) and a position interval (p1, p2) are
necessary for each object. p1, p2 is the relative position of the objects inside the polyline
at times t1 and t2, respectively and 0≤ p1, p2 ≤ 1. This time interval and position interval
together are represented as a rectangle with two vertices (p1, t1) and (p2, t2) as in Figure
3.

In a bottom R-tree, each node contains an identification of an object (e.g., oid). If
the current node is a leaf node, it contains a rectangle formed by two vertices (p1, t1) and
(p2, t2). However, if it is an internal node, it keeps a maximum bounding box (MBB) of
all MBBs of time and position intervals of its child nodes. Since each node of a bottom
R-tree is actually a rectangle, we can use R*-tree algorithms for a set of rectangles [2] to
insert moving objects (i.e, a rectangle) into the bottom tree.

c. Hash table

The hash table is organized by the identification of the road (i.e., polyid). In addition,
each element of the hash table contains a link to a bottom R-tree. The purpose of the
hash table is to organize data in the top tree and bottom trees efficiently. Since a bottom
tree is pointed to by both the hash table and the top tree, we can check the presence of
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objects in a road through the hash table, without using the top tree. By doing this, if a
road does not have any moving object in it, this road does not need to be inserted into
the top tree. By avoiding the storage of polylines without moving objects in this way, we
can keep the top tree as small as possible, thus reducing the search time of the query in
the top tree.

Like the hash table, the top tree also points to bottom trees. However, the top tree is
useful for window queries to find which polylines (i.e., roads) intersect the query window.

2.2 Insertion Algorithm

a. Polyline Insertion

To avoid having polylines without moving objects in the top R-tree, the insertion
of a polyline does not actually happen until this polyline has the first moving object in
it. Thus, given a new road, we first initialize a polyid with a null pointer in the hash
table. We start to insert it whenever we need to insert the first object of this polyline to
a bottom tree.

b. Moving Object Insertion

A moving object with an object identification (i.e., oid), polyline identification (i.e.,
polyid), a position interval p = (p1, p2) and a time interval t = (t1, t2) are inserted into
the tree. The insert algorithm follows three main steps:

• A search for the polyline (polyid) in the hash table

• If the bottom R-tree of the polyline is NULL

– the polyline’s MBB is inserted to the top R-tree

– the rectangle (p1, p2, t1, t2) is inserted to the corresponding bottom R-tree

– the leaf node in the top R-tree and Hash table to the bottom R-Tree are linked

• Else: the rectangle (p1, p2, t1, t2) is inserted to the corresponding bottom R-tree

Consider the following algorithm for building the MON-tree. The call BuildTree(T, E, n)
builds the MON-tree whose root is pointed by T . E is an array containing data of n roads
on the networks. The insertBottom algorithm creates the bottom R-tree pointed to
hashi.bottomTree. The insertTop algorithm inserts a road E[i] into the top R-tree.
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BuildTree(T, E, n)
1 oid← 0
2 for (i = 0; i < n; i← i + 1)
3 do m← a random number ∈ {0, ..,max} of moving objects in each road
4 if (m 6= 0)
5 then pp← m pairs of random position intervals
6 pt← m pairs of random time intervals
7 hashi ← the element of the hash table corresponding to road E[i]
8 while (pp 6= NULL)
9 do if (hashi.bottomTree = NULL)

10 then insertBottom(hashi.bottomTree, pp, pt, oid)
11 insertTop(T, E[i], hashi.bottomTree)
12 oid← oid + 1
13 else insertBottom(hashi.bottomTree, pp, pt, oid)
14 oid← oid + 1
15 pp← pp.NextP tr
16 pt← pt.NextP tr

Figure 4: The algorithm for building a MON-tree.

2.3. Searching Algorithm

Like the query example discussed in Section1 ”how many moving cars are in the center
of Fredericton in the time interval (t1, t2) ?”, a query window Q = (x1, x2, y1, y2, t1, t2)
will find all objects within the area Qw = (x1, x2, y1, y2) during the time interval Qt =
(t1, t2). Figure 5 shows an example of the window query, which intersects six roads (e1,
e2, e3, e4, e5, and e6) and has five objects in range.

In order to answer the window query, the searching algorithm of the MON-tree is
performed on the top tree and the bottom trees as follows:

1. The polylines’ MBBs that intersect the query rectangle Qw in the top R-tree are
found.

2. In each polyline, the intervals where the polyline intersects Qw are found using the
real polyline representation. Figure 6 shows an example where Qw intersects three
roads (e7, e8, and e5). While intersecting road e7, this query rectangle divides
e7 into three position intervals lying inside the query rectangle such as (0, 0.1),
(0.6, 0.7), and (0.8, 1). These three intervals are combined with the time interval
Qt = (t1, t2) to form three sub-query windows for the bottom R-tree of the road e7
(see the middle part of Figure 6).

3. Given a set of window queries Q′ found in the second step for each polyline, where
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Query area

Figure 5: Example of a window query.

Position intervals on e7
(0, 0.1)
(0.6, 0.7)
(0.8, 1)

Position intervals on e8
(0,1)

Position intervals on e5
(0.8, 1)

Figure 6: Example of polyline intersected intervals.

Q′ = (position intervals, a time interval), the search algorithm now goes down to the
corresponding bottom tree of the polyline and searches for moving objects falling in
one of the rectangles in Q′. The MBB of a node in the bottom tree satisfies Q′ if it
intersects with at least one sub-window in Q′.

For more detail, we used Figure 7 and Figure 8 to show the search algorithm for the
MON-tree. In these figures, the algorithms are described by a pseudo code. In Figure 7,
the algorithm, so called Searching(T, E,Qw, Qt), has its inputs including a pointer T
to the root of the MON-tree, an array E containing the real representation of roads, a
rectangle query Qw, and a time interval query Qt. Corresponding to the first and second
steps above, this algorithm repeatedly finds nodes whose MBBs intersect to Qw (see lines
4 to 7) until a leaf node is reached. When this situation happens (line 1), a list of position

6



intervals formed by intersections of roads and Qw is searched (line 2) and the algorithm
SearchBottomTree (line 3) is called to continue with searching on the corresponding
bottom MON-tree.

In Figure 8, the algorithm SearchBottomTree(T, Qws, Qt) has its inputs including
a pointer T to the root of a bottom MON-tree, and a list of query rectangles formed by
a set of position interval Qws, and a time interval Qt. As discussed in the third step
above, the MBB of a node of T is satisfied if it intersects with at least one query rectangle
formed by Qws and Qt. Towards this idea, lines 3 to 13 are recursively called to check
if a descendant of T intersects with at least one query rectangle. When a descendant of
T is reached to a leaf node of the bottom MON-tree (line 1), the corresponding moving
object of this leaf node is counted as an object in range (line 2).

3. Experiments

3.1. Implementation

In this report the MON-tree is implemented using C++. Besides conventional al-
gorithms the R-trees, such as inserting nodes, splitting a node, checking the least en-
largement of a bounding box when choosing the inserted node, the MON-tree algorithms
also work with a hash table and several R-trees (e.g., a top tree and bottom trees) when
building a MON-tree and deal with the polyline intersection problem when processing
query windows.

In order to compare the MON-tree and R*-tree, we use the R*-tree as a 3D R-tree to
represent moving objects. A leaf node of this R*-tree contains a two-dimensional rectangle
for a real position interval of an object and one additional dimension for the time interval
of the object. The R*-tree source code for a set of rectangles [12] is re-used. However,
some modifications on this source code are made to ensure that the program will run

Searching(T,E,Qw, Qt)
1 if (T.attribute = LEAF )
2 then Qws ← a list of road intervals created by intersections of roads and Qw

3 searchBottomTree(T.bottomTree, Qws, Qt)
4 else n← number of child nodes of T
5 for (i = 0; i < n; i← i + 1)
6 do if (intersect(T.child[i], Qw) = TRUE)
7 then Searching(T.child[i], Qw, Qt)

Figure 7: The algorithm for searching on the top MON-tree.
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searchBottomTree(T,Qws, Qt)
1 if (T.attribute = LEAF )
2 then return one moving object in range
3 else n← number of child nodes of T
4 for (i = 0; i < n; i← i + 1)
5 do pw ← Qws

6 flag ← FALSE
7 while (pw 6= NULL)
8 do
9 if (intersect(T.child[i], pw) = TRUE)

10 then flag ← TRUE
11 pw ← pw.NextP tr
12 if (flag = TRUE)
13 then searchBottomTree(T.child[i], Qws, Qt)

Figure 8: The algorithm for searching on a bottom MON-tree.

properly with our generated test data.
Since we only focus on moving objects (e.g., vehicles) on a road network, we use

the New Brunswick road network (see Figure 10), real road data from a real Canadian
road network [1] for testing. This data file contains 65688 roads (i.e., polylines). For the
MON-tree, all test data are prepared as follows:

1. We first generate data of the New Brunswick road network from the Canadian road
network. Since the original GML data file of the New Brunswick road network con-
tains some information on roads, such as road identifications, road classes, addresses
of roads, and coordinates of roads, we transformed this GML data file into a smaller
text file, which contains only coordinates of polylines (i.e., roads). In the Appendix,
we show an example of the input GML file, and its transformed text file.

2. Based on the road data, we then randomly generate data (normalized position in-
tervals (p1, p2)) of moving objects on roads. We assumed that in each road, the
velocity v of moving objects is the same. In addition, each road is limited to a
specific velocity, which is randomly generated between a maximum velocity Vmax

(e.g., 100 km/h) and a minimum velocity Vmin (e.g., 10 km/h).

3. Finally, we generate time intervals [t1, t2] for moving objects. Since a distance ∆s
= v ×∆t, we compute ∆t =(t1− t2) =∆s÷ v = (p2− p1)÷ v. A time interval is
generated by assigning t1=0 and t2 = ∆t. Figure 9 illustrates a randomly generated
moving object with velocity 10 km/h.
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t1 = 0
t1 = 1

Velocity=10 km/h
Distance=10 km

t2 = 0
t2 = 1

Figure 9: Example of two randomly generated moving objects

noname 03/02/2007
Printed with the TatukGIS Viewer: www.TatukGIS.com

Figure 10: The road network of New Brunswick containing 65,688 roads. This picture
was drawn using the TatukGIS Viewer open source tool.
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Figure 11: An area of the New Brunswick road network. Each road is drawn in a different
color using a custom openGL program.

In order to compare the MON-tree to the R*-tree, similar test data must be generated
for the R*-tree. Unlike the MON-tree, which indexes a road network and moving objects
on it separately, the R*-tree indexes moving objects, their position intervals on the road
network, and time intervals together. The test data for the MON-tree are transformed
into test data for the R*-tree as follows:

1. Data of objects (real position intervals) from the test road data and the moving
object data of the MON-tree are computed.

2. The random time intervals for moving objects used for the MON-tree testing are
reused.

Furthermore, we also compare the MON-tree with a näıve linear search. Like the
data preparation for the R*-tree, we reuse the same randomly generated data used for
building the MON-tree.

3.2. Comparing the MON-tree, the R*-tree and a näıve Search

The building tree algorithm and searching algorithm for the MON-tree, the näıve
searching algorithm, and the building algorithm of the R*-tree are run on UNIX’s quar-
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Table 1: Building trees; times (in seconds) and sizes for the MON-tree and the R*-tree.
Max objects is the maximum number of moving objects in each road. Note that in all
cases, 65688 roads are used. Size is the number of nodes in the tree. The number in
parentheses is the ratio of the R*-tree construction time to the MON-tree construction
time.

Max objects N MON-tree R*-tree
size time size time

10 294,841 423,064 32.06 344,991 39.42 (1.23)
20 624,736 825,086 60.14 732,290 88.94 (1.48)
30 956,542 1,213,726 107.23 1,119,660 141.22 (1.32)
40 1,283,823 1,590,992 122.21 1,501,710 191.65 (1.57)

tet.cs.unb.ca. However, the searching algorithm for the R*-tree is run on UNIX’s cho-
rus.cs.unb.ca. The following tables show the running times of these algorithms.

Building Tree Time

Based on the R-tree, both the MON-tree and R*-tree are implemented with the same
criteria. The maximum (e.g., M) and minimum (e.g., m) numbers of entries in each node
are 10 and 5, respectively. In addition, the MON-tree uses 100 buckets in the hash table.
Note that MON-tree, the R*-tree and the näıve search are tested using the same set of
objects, randomly generated as mentioned in Section 3.1.

From the results shown in Table 1, we see that the time for building the MON-tree
is about 1.4 times faster (on average) than that of the R*-tree even though the number
of nodes of the MON-tree is about 1.12 times greater (on average) than those of R*-tree.

Time for searching

We ran both the trees and the näıve search with the same numbers of moving objects
generated from 65,688 roads. The roads and objects are the same in the three tests. We
generated 400 random window queries and used them for each test. In our testing, a
window query is a square, which is formed by its central point and the length of its edges.
Such a random query is generated by three steps. First, we randomly generated the central
point of the window query. Second, we generated a random size for the query. Note that
the central point of a query must belong to the road network area. Moreover, the size
of each window query is up to the width of the road network area of New Brunswick.
Finally, a time interval of the query was also randomly generated.

We categorized queries into five types based on the number (F) of moving objects

falling in range of their query rectangles, such as [0, log
1/2
2 (N)), [log

1/2
2 (N), log2(N)),

[log2(N), log2
2(N)), [log2

2(N), log3
2(N)) and [log3

2(N), N], called Type 1, Type 2, Type 3,
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Table 2: Example of milestones used to categorize queries. N is the number of moving
objects.

N log
1/2
2 (N) log2(N) log2

2(N) log3
2(N)

294,841 4.26258 18.1696 330.134 5,998.39
624,736 4.38781 19.2529 370.674 7,136.54
956,542 4.45729 19.8675 394.716 7,842.01

1,283,823 4.50467 20.292 411.766 8,355.56

Table 3: Average search times (in seconds) and numbers of visited nodes when F ∈ [0,

log
1/2
2 (N)) for the MON-tree, the R*-tree, and the näıve search. h is the number of range

searches (out of 400) that were averaged to obtain these results. v is the average number
of visited nodes. The number in parentheses is the ratio of the average MON-tree time
to this time.

N MON-tree R*-tree näıve search
h time v time v time

294,841 17 0.000675 26 0.0000014 (489.45) 42 0.03412 (0.01980)
624,736 24 0.000610 25 0.0000009 (701.53) 32 0.10042 (0.00608)
956,542 20 0.000002 20 0.0000005 (3.76) 24 0.1545 (0.00001)

1,283,823 17 0.000700 24 0.0000018 (397.96) 61 0.21118 (0.00332)

Type 4 and Type 5, respectively. Note that N is the total number of moving objects in
a tree. Table 2 shows an example of the number of objects falling in these categorized
queries. The test harness code is shown in Figure 12.

In order to benchmark the search times of the algorithms, we ran 400 random queries
on each set of the generated data for moving objects. For each query we counted the
average search time and the number of visited nodes. Five tables Table 3, Table 4, Table
5, Table 6, and Table 7 are used to show the search results for the five types of queries
Type 1, Type 2, Type 3, Type 4, and Type 5, respectively. Each of these tables contains
the search results for the MON-tree, the R*-tree, and the näıve search.

Table 3 shows that when F ∈ [0, log
1/2
2 (N)), the average search time of the MON-tree

is about 4 to 702 times greater than that of the R*-tree. However, the average search
time of the MON-tree is about 51 to 82181 times faster than that of the näıve search.

Similar to results in Table 3, Table 4 shows that when the number of objects in range
is small, (e.g., F ∈ [log

1/2
2 (N), log2(N)), the average search time of the MON-tree is about

88 to 1815 times greater than that of R*-tree. However, the average search time of the
MON-tree is about 23 to 129 times faster than that of the näıve search.

When the number of objects in range is larger, (e.g., F ∈ [log2(N), log2
2(N)), Table 5

shows that the R*-tree runs about 320 to 2593 times faster than the MON-tree. In most
cases, the MON-tree runs 2 to 10 times faster than the näıve search even though there is
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GlobalSearching(T,N)
1 v1, v2, v3, v4, v5 ← 0 //number of visited nodes for five types of queries
2 h1, h3, h3, h4, h5 ← 0 //number of queries
3 timeh1 , timeh2 , timeh3 , timeh4 , timeh5 ← 0 //total time for executing queries
4 for (i = 1; i <= N ; i← i + 1)
5 do center ← a random point ∈ the rectangle [Xmin, Y min,Xmax, Y max]
6 sizew ← a random number ∈ [0, Sizemax]
7 Qw ← a square whose center point is center and whose edges’ size is sizew

8 Qt ← a random time interval
9 timebefore ← get the current time

10 {F, v} ← Searching(T, Qw, Qt)
11 timeafter ← get the current time
12 timetotal ← timebefore − timeafter

13 switch
14 case 0 ≤ F < log

1/2
2 (N) :

15 v1 ← v1 + v
16 h1 ← h1 + 1
17 timeh1 ← timeh1 + timetotal

18 case log
1/2
2 (N) ≤ F < log2(N) :

19 v2 ← v2 + v
20 h2 ← h2 + 1
21 timeh2 ← timeh2 + timetotal

22 case log2(N) ≤ F < log2
2(N) :

23 v3 ← v3 + v
24 h3 ← h3 + 1
25 timeh3 ← timeh3 + timetotal

26 case log2
2(N) ≤ F < log3

2(N) :
27 v4 ← v4 + v
28 h4 ← h4 + 1
29 timeh4 ← timeh4 + timetotal

30 case F ≥ log3
2(N) :

31 v5 ← v5 + v
32 h5 ← h5 + 1
33 timeh5 ← timeh5 + timetotal

34
35 return // {average query time, average number of visited nodes for each type of queries}
36 {timeh1 ÷ h1, v1 ÷ h1}
37 {timeh2 ÷ h2, v2 ÷ h2}
38 {timeh3 ÷ h3, v3 ÷ h3}
39 {timeh4 ÷ h4, v4 ÷ h4}
40 {timeh5 ÷ h5, v5 ÷ h5}

Figure 12: The test harness code for N queries.
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Table 4: Average search times (in seconds) and numbers of visited nodes when F ∈
[log

1/2
2 (N), log2(N)) for the MON-tree, the R*-tree, and the näıve search. h is the number

of range searches (out of 400) that were averaged to obtain these results. v is the average
number of visited nodes. The number in parentheses is the ratio of the average MON-tree
time to this time.

N MON-tree R*-tree näıve search
h time v time v time

294,841 2 0.001518 85 0.000008 (202.33) 162 0.035 (0.04)
624,736 2 0.000774 117 0.000009 (87.68) 162 0.100 (0.01)
956,542 2 0.006352 151 0.000004 (1,814.86) 109 0.145 (0.04)

1,283,823 2 0.001940 104 0.000016 (121.23) 346 0.210 (0.01)

Table 5: Average search times (in seconds) and numbers of visited nodes when F ∈
[log2(N), log2

2(N)) for the MON-tree, the R*-tree, and the näıve search. h is the number
of range searches (out of 400) that were averaged to obtain these results. v is the average
number of visited nodes. The number in parentheses is the ratio of the average MON-tree
time to this time.

N MON-tree R*-tree näıve search
h time v time v time

294,841 13 0.10615 864 0.000041 (2592.91) 461 0.0354 (3.00)
624,736 10 0.05555 673 0.000049 (1133.61) 430 0.0960 (0.58)
956,542 12 0.02676 462 0.000055 (482.64) 600 0.1542 (0.17)

1,283,823 6 0.02167 489 0.000068 (320.18) 741 0.2150 (0.10)
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Table 6: Average search times (in seconds) and numbers of visited nodes when F ∈
[log2

2(N), log3
2(N)) for the MON-tree, the R*-tree, and the näıve search. h is the number

of range searches (out of 400) that were averaged to obtain these results. v is the average
number of visited nodes. The number in parentheses is the ratio of the average MON-tree
time to this time.

N MON-tree R*-tree näıve search
h time v time v time

294,841 58 2.7355 17,480 0.000385 (7,112.26) 3,377 0.0348 (78.54)
624,736 56 1.3639 9,866 0.000541 (2,523.27) 4,031 0.1016 (13.42)
956,542 67 1.0269 9,632 0.001579 (650.35) 5,098 0.1597 (6.43)

1,283,823 48 0.6506 9,142 0.001042 (624.60) 8,785 0.2121 (3.07)

Table 7: Average search times (in seconds) and numbers of visited nodes when F ∈
[log3

2(N), N) for the MON-tree, the R*-tree, and the näıve search. h is the number of
range searches (out of 400) that were averaged to obtain these results. v is the average
number of visited nodes. The number in parentheses is the ratio of the average MON-tree
time to this time.

N MON-tree R*-tree näıve search
h time v time v time

294,841 310 30.361 179,373 0.03256 (932.55) 155,251 0.0440 (689.53)
624,736 308 21.065 166,670 0.04722 (446.15) 219,672 0.1151 (182.97)
956,542 299 20.414 205,281 0.06217 (328.36) 318,066 0.1803 (113.24)

1,283,823 327 21.579 272,661 0.04309 (500.80) 251,720 0.2441 (88.40)

a case that the average search time of the näıve search is about 3 times faster than that
the MON-tree.

When the number of objects in range becomes really large, (e.g., F ∈ [log2
2(N),

log3
2(N)), or [log3

2(N), N], both Table 6 and Table 7 show that the R*-tree and the näıve
search run faster than the MON-tree. For example, Table 6 show that the R*-tree runs
about 625 to 7112 times faster than the MON-tree, also about 328 to 933 times faster
than the MON-tree in Table 7. Furthermore, being compared with the MON-tree, the
R*-tree runs about 3 to 79 times faster (in Table 6), and about 88 to 689 times faster (in
Table 7).

4. Discussion

After implementing and comparing the results of the Mon-tree, the R*-tree, and the
näıve search, we would like to discuss the following:
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4.1. What are some reasonable prediction queries for traffic?

In this report, each moving object is indexed by a position interval on a road and
a time interval that the object moves on it. A window query is used to ask for moving
objects falling in an area (e.g., a rectangle or a square) within a time interval [t1, t2].
Note that the moving time of an object is a certain time in the past up to the present
(i.e., the time when the tree is updated); however, the time interval of a query can be in
the past, present, or future. If the query is asked for a time interval, which belongs to
some objects indexed in the tree, we can search through the tree and find the objects in
range. Of course, if the time interval of the query does not exist in the tree (e.g., a time
interval in the far past or in the future), there will be no objects in range in this case if
we directly search in the tree. However, we can make a prediction about moving objects
in the past time or in the future time based on information indexed on the tree. There
are some approaches used to predict moving objects [4][13]. An example of a prediction
window query is ”How many moving cars will be at a specific section of a road in the
next ten minutes?” A linear movement is considered to simply predict a moving point
(i.e., moving objects) [5][13]. Assume an object moves without changing its velocities; the
location of the moving object is computed by the following formula: x(t) = x(t0) + v *(t
- t0), where x(t0) is the location of the object at a referent time t0; x(t) is the location of
the object at a time t; and v is the velocity of the object. Since the values of x(t0), v, t
and t0 are known, the value of x(t) is easily computed by the formula. For more accurate
results, Jidong Chen et al. considered the situation where a moving object in a road
network has many constraints [4], such as the maximum velocity of the road, the number
of moving objects moving on that road at the same time of the current moving object.
For example, if too many cars are moving on the same road at the same time, all cars
must reduce their speeds, or some cars should change lanes to other less trafficked lanes.
By applying typical laws on moving objects, the authors claimed that their prediction of
the location of moving objects are more accurate than that of the earlier approach [13].

Considerable transportation network modeling (e.g., number of lanes, lane directions,
and traffic light positions) is available from the TRANSIMS [8] software package. useful
predictions will need to account for realistic road networks. The TRANSIMS model is
probably a good starting point.

4.2. What happens when an object moves from one polyline to another during

the time interval [t1, t2]?

Typically, when an object oid moves from one polyline to another during the time
interval [t1, t2], the object will be updated to move only on the new road [4][13]. For
example, at a time t1’=t1+∆t, the object begins to go on a new road. Its new time
interval [t1’, t2] and its new position interval on the road will be updated in the tree. In
our opinion, the prediction about the movements of objects will be more realistic if we
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split the time interval into two time intervals [t1, t1’] and [t1’, t2]. We then compute
the corresponding position intervals of these two time intervals. This object oid will be
inserted into the tree two times along with its two different polylines and time intervals.

4.3. Why is the search time of MON-tree worse than that of R*-tree?

From the experiment in Section 3.2, we see that the search time of the MON-tree
worse than that of the R*-tree. There are two main reasons. First, the number of nodes
in the MON-tree is 1.08 to 1.22 times greater than that of the R*-tree. Second, for
searching in the R*-tree, we only need to visit nodes in a tree. The MBB of each node in
the R*-tree is compared to one query rectangle at a time, which decide whether we stop
or continue traveling down to the deeper levels of the tree. However, in the MON-tree,
after reaching each leaf node of the top tree, we have to break the window query into
several window sub-queries. Consequently, each node in the corresponding bottom tree
of the top tree’s leaf will be compared to a set of the sub-queries. If there are many roads
falling in or intersecting with the window query, the set of sub-queries will be very large,
which increases the search time for the MON-tree.

4.4. Is there any new index structure that can improve the search time?

Since the R*-tree for MBBs of polylines runs faster than the MON-tree in searching,
we can combine such R*-tree and the strip trees for representing polylines. The R*-tree
will be used as the top tree, while each of its leaf nodes is linked to a strip tree, carried
the detail of the intersections between the window query and the current polyline.

5. Conclusion

Indexing moving objects (e.g., moving vehicles, moving airplanes, moving ships) is
one of the open problems of spatio-temporal data structures in recent years. Some work
has been done to index moving objects in both a constrained network (e.g., movements
of cars on a road network) and a non-constrained network (e.g., movements of ships on
ocean) using data structures, such as the R*-tree [2] and TPR-tree [11]. However, for
objects moving in a constrained network, a better approach is to limit the movement of
objects on the constrained network such as roads or lanes. By doing this, we can predict
their velocities and positions more accurately. Based on this idea, the FNR-tree and
MON-tree are two new index structures for moving objects on constrained networks. In
[5], authors claimed that the times for building the MON-tree and searching on it can be
four times faster than those of the FNR-tree.
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In order to understand the data structure of the MON-tree thoroughly, this project
implemented the MON-tree data structure and compared it to the R*-tree data structure
for moving objects. The MON-tree is an interesting data structure for moving objects
in constrained networks. It is constructed by a hash table, a top R-tree, and a set of
bottom R-trees linked to the top R-tree and the hash table. The experiment in Section
3.2 shows that the running time for building trees of the MON-tree is faster than that
of the R*-tree. However, the MON-tree ’s average search time is worse than that of the
R*-tree. Also, when the number of objects falling in range is large, the average search
time of the MON-tree is also worse than that of the näıve search.
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Appendix

We used test data from the Canadian road network [1]. The data are digital repre-
sentation of Canada’s national road network, containing information such as street name,
type, direction and address ranges. We downloaded the road data of New Brunswick.
The format of the file containing these data is GML (Geography Markup Language). The
size of this file is 46,145 KB. We then transformed this GML file into a smaller text file,
which contains only the coordinates of polylines (i.e., roads). Figure 6 shows an example
of the input GML file.

After being transformed, the text file data is used in our testings. The size of the
text file is 16,840KB. The corresponding test file data of the GML data in Figure 13 is
shown as follows:

-63.78544312566555, 46.13002349989367
-63.785318416885985, 46.1303573552171
-63.78440400663378, 46.1316057113912
-63.78036082388033, 46.134045437308345
-63.77902236753822, 46.13461253836588:

Figure 13: Sample of the input GML file.
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