
A Survey of Techniques for the Co-Verification
of Hardware/Software Co-Designed Systems

by
Thomas S. Hall & Kenneth B. Kent

TR07-183, June 15, 2007

Faculty of Computer Science
University of New Brunswick
Fredericton, N.B. E3B 5A3

Canada

Phone: (506) 453-4566
Fax: (506) 453-3566
Email: fcs@unb.ca

www: http://www.cs.unb.ca

Abstract

This paper describes the process of designing and verifying a hardware/software
co-designed system. This is done by going through a complete case study involving
polygon clipping algorithms as applied to computer graphics. As is the case in many
software and hardware/software design processes, verification of the software part of
the system is done using test scenarios while the hardware partition is verified using
the SystemC Verification Standard methodology. This case study carries the design
process through to a partial integration of the hardware and software partitions using
SystemC simulation.

i

1 Introduction

The use of hardware/software co-design techniques in the creation of systems
that utilize a combination of hardware and software to perform their tasks
is common. The actual design and implementation techniques used are well
defined and there are many design tools available to assist in the process.
A major area of research in both the hardware/software co-design field (as
well as software and hardware) is the development of methodologies and
tools to verify the correctness of a design prior to its implementation. There
are techniques available in both hardware and software design to perform
both functional and formal verification of hardware and software only designs
respectively. In the area of hardware/software co-design, the primary method
for verifying a design, known as co-verification, has been to perform functional
verification of the entire design and then perform formal verification of the
hardware part of the co-designed system. To some extent, this makes sense
since the hardware part of a system is much more difficult to change once the
design has been fabricated into a physical device; but with the growing size of
hardware/software co-designed systems the need for formal verification of the
entire design is also increasing [1–3]. A major issue with many of the formal
verification techniques is the same as one faced by formal specifications of
systems; the very mathematical syntax of the techniques make it difficult for
them to be accepted in practice due to the large learning curve and high costs
in learning how to use them [4].

What is verification? Somerville [5] provides a simple and very succinct
answer to this question on page 516:

Verification: Are we building the product right?

In other words, is the design being created going to perform the task defined
by its specifications correctly. Functional verification can be considered to be
the process of ensuring that the design performs the tasks it is intended to
do correctly. Formal verification can be considered to be ensuring that these
tasks will always be performed correctly (e.g. no deadlock occurs).

Section 2 presents an overview of research in the areas of verification and
co-verification of co-designed systems. Section 3 then discusses how some of
the tools available in industry perform functional and semi-formal verification

1

and co-verification. Finally, Section 4 provides some conclusions about the
state of co-verification techniques and the future direction of the techniques
being developed to make it more useful in practice.

2 Co-Verification Research

This section describes some of the research carried out in an effort to pro-
vide effective formal verification and co-verification of hardware and hard-
ware/software co-designed systems. Techniques for both hardware/software
co-verification and hardware-only verification are discussed here as both are
used in co-verification.

The properties of a design that are checked by formal verification are called
temporal properties. These properties exist only for a finite period of time, in
this case the length of time that the design is in an operating state. There are
several properties that are commonly checked during verification. The most
common of these are safety and liveness meaning that the design is deadlock
free and will eventually terminate normally.

2.1 Predicate Abstraction

Predicate abstraction is a technique for generating formally verifiable abstract
models of a concrete design. This model is then used to determine if specific
temporal properties of the design are adhered to throughout the design [6]. It
is particularly useful for determining whether conditions such as deadlock and
infinite looping exist. There are a number of approaches that utilize predicate
abstraction. This section describes one developed by Clarke et al [6]. This
method uses both the Verilog source code and the bit-level representation
of a design as its input. Another is discussed in Section 2.3.1 that applies
specifically to designs created using C or C++ based tools. An alternative
general approach can be found in [7].

The bit-level representation of a design contains the entire design in a very
detailed and structured way since it is the basis for the hardware creation
process. The control structure of a design is most likely to be the part of
the design with problems in it and this is extremely difficult to extract from
the bit-level representation. Alternatively, using the source code of the design

2

along with the bit-level representation simplifies the extraction process [6]. In
hardware designs, control structures are represented as finite state machines
and the variables that represent the state of each of these are used as the basis
for generating predicates in the model. There is a major problem with naively
generating a predicate for each possible state of the design, there may be as
many as 22n

predicates created, where n is the number of control variables
in the design [6]. Except for very small designs this leads to an intractable
number of predicates. Rather than generating every possible predicate for a
design, a set of abstracted predicates is generated. Each abstract predicate
represents a set of concrete predicates that have common control variable
values. This permits the verification of the system to be performed much
more quickly than using all of the possible predicates.

The set of abstract predicates for a design is built from the design using
both its source and bit-level representation. As each predicate is created, it is
checked to see if there is a valid set of predicates including the new one that
leads to a successful completion of the abstracted design. If there is, then
that predicate represents a valid execution path within the real design and it
is kept as is, or combined with other similar predicates, thus further abstract-
ing the design. If the new predicate leads to an unsuccessful condition in the
abstract model, it either reveals an error in the design or is a spurious error
indicating that the abstract model requires further refinement. The only way
to determine if a valid error was found or not is to perform a simulation on
the actual design using the path taken by the predicate that produced the
error condition in reaching that condition. If the simulation fails, verification
stops reporting an error condition, otherwise additional abstract predicates
are added to the model to prevent this spurious error condition from being
reported again. This process is repeated until the entire design has been
successfully verified. Through the use of appropriate abstraction algorithms,
the size of the abstract model can be kept small and, thus, the total time
required to perform a verification can be minimized. The reported experi-
mental results show significant (orders of magnitude) performance increases
when compared to other verification techniques [6].

3

2.2 Bounded Model Checkers

Bounded model checkers are another formal co-verification technique that
deals with the state explosion issue by limiting the number of predicates
that are used during verification. Rather than abstracting the design into
a manageable number of predicates as is done in the predicate abstraction
technique (see Section 2.1), a pre-assigned limit is placed upon the length of
execution paths through a design when liveness and safety properties are be-
ing checked [8]. Predicates that produce longer paths than this limit permits
are not added to the model. The resulting predicates are then submitted to a
theorem prover for checking. A major problem with this type of verification
is determining a reasonable limit for the number of predicates to be used [6].
If the number is too small, inadequate checking is performed. Conversely, too
many predicates can cause the verification process to take too long or even
become intractable. This approach to bounded model checking is applicable
only to designs with a finite number of states.

Another approach to bounded model checking is described in [8] that ex-
tends the technique to include designs with an infinite number of states. In
this approach, rather than converting the design directly into predicates, it is
first converted into a set of automata. Each automata can exhibit the char-
acteristics of one of six properties: safety, liveness, obligation, persistence,
recurrence and reactivity. These automata are then translated into a tempo-
ral logic called Presburger arithmetic after first being converted to safety or
liveness properties if not already in that form. Presburger arithmetic deals
with the problem of infinite state and permits the use of theorem provers to
check the design [8].

2.3 C/C++-based design Co-Verification

C and C++ have become popular as tools for designing hardware/software co-
designed and hardware-only systems. This has occurred for several reasons.
First the cost of a C or C++ development and runtime environment is consid-
erably less than a hardware description language simulator for evaluating a
hardware design [9]. Another reason is that speed of simulation is much faster
in a C or C++ prototype of the design than using a hardware description

4

language simulator for the hardware part of the system [9]. Thirdly, having
both hardware and software design teams working in the same development
environment allows for shorter design times and better inter-team communi-
cations [2]. The main drawback of performing hardware partition design in
C or C++ is that like any programming languages for software-only systems,
these two languages do not provide sufficient timing facilities or the ability
to describe system structure adequately. These deficiencies can be overcome
using special tools that provide simulation facilities that include strict timing
and structure definitions. These simulation facilities provide an abstraction
layer above the existing C and C++ runtime environments [10–12]. The tim-
ing provided by these simulators is based on the simulator’s internal clocking
mechanism and not necessarily real time. Two popular C/C++ design tools
are discussed in section 3. In this section, some techniques available for the
formal co-verification of designs created with them are presented.

There are a number of languages based on the C and C++ software pro-
gramming languages that are intended for the design of hardware systems.
These C/C++ based languages include Handel-C, Hardware-C, SpecC, Sys-
temC and Single Assignment C [2, 13]. Since these languages are based on
software programming languages they are, in some cases also suitable for
hardware/software co-designed systems. Two such languages are SpecC and
SystemC (see Sections 3.1 and 3.3). This section describes some of the formal
techniques available for the co-verification of systems developed using these
languages.

2.3.1 Predicate Abstraction

A common problem faced when attempting to verify hardware, software or
hardware/software co-designed systems is the large number of states that
any system can be in [2, 14]. One approach that can be used to reduce
the number of states that must be dealt with during verification is called
predicate abstraction (see Section 2.1). A difficulty faced in this type of
formal verification is how to convert the source code of the design into a
set of predicates that can be used by a theorem prover application to show
that the system is correct. One of the advantages of C and C++ is that the
programmer is free to choose any one of the almost limitless ways to solve a

5

problem that are functionally equivalent. For example, in C the for, while,
do...while and tag: if ...goto tag constructs can all be programmed to perform
the same functionality. Normally the choice of which to use is based upon
the semantics of the part of a system being coded. However, when it comes
to formally verifying a system, having multiple ways to perform the same
operation can lead to complications. As described in Section 2.1, when the
bit-level representation of a design is available it can be used along with the
source code to generate the predicates. The same is not true for the binary
version of a software program simulating the hardware portion of a design.
This is because the binary version of a simulation program is designed to run
on the targeted simulation platform and contains additional instructions for
the control of the simulation.

One approach to solving this issue is to manipulate the source code of a
system before beginning to generate the abstracted predicates [2]. The exact
changes made to the source code of the system depend upon the programming
language being used. For example, if the system is written in SpecC, it is
necssary to change all loop statements to have the format tag: if...goto tag.
Other changes include replacing increment and decrement operations (e.g.
i++) with standard assigment operations (e.g. i = i + 1) and replacing
all of the wait, waitfor and notify statements with explicit lock and unlock
operations. Function calls are replaced by inlining the corresponding function
bodies [2].

Figure 1 shows a simple example of how the source code of a SpecC com-
ponent is changed to prepare it for abstract predicate generation. Note that
the while loop is replaced with a tagged if statement and a goto statement.
The notify and wait functions are replaced with lock and unlock. The exact
format of the predicates that are created from the modified version of the
source code is dependent upon the theorem prover to be used.

Another method for using predicate abstraction to verify hardware/software
co-designed systems is presented in [15]. In this method, a SystemC specifica-
tion is automatically partitioned into hardware and software components dur-
ing the abstraction process. Hardware components are assumed to be those
parts of the system that are defined to be threads sensitive to all non-clocked
input signals (i.e. combinational logic) or sensitive only to a clocked signal.

6

behavior producer(

in event read_evt,

out event data_evt,

out int data_item){

int value = 0;

void main(){

while (value <= 20){

value++;

data_item = value;

notify(data_evt);

if (value <= 20)

wait(read_evt);

}

}

};

behavior producer(

in event read_evt,

out event data_evt,

out int data_item){

int value = 0;

void main(){

loop1: if (value <= 20){

lock data_evt;

value = value + 1;

data_item = value;

unlock data_evt;

if (value <= 20){

lock read_evt;

unlock read_evt;

}

goto loop1;

}

}

};

Figure 1: A simple example of a SpecC component before (left) and after (right) source code
modification for abstract predicate generation.

All threads that have no sensitivity to input signals are assumed to be the
software partition of the system [15]. Since the combinational logic threads
contain no synchronization-related control structures they are discarded from
the abstract model. Any object created with the new operator receives its
own predicate in the abstract model along with a control flag to indicate
when it is active (created) or inactive (deleted). Trials using this approach
show significant improvement in the time required to perform the verification
of a given system when compared to other verification techniques [15] .

2.3.2 Boolean Programs and Equivalence Checking

Another approach to formally verifying designs is to break the verification
into two parts, execution path checking and equivalence between refinement
steps [16]. As any design (software, hardware or hardware/software) executes
portions of the design need to be processed in a specific order with respect to
each other. This is especially true when determining whether parts of a design
executing in different threads or processes are behaving correctly. This type of

7

analysis can be achieved by defining a set of temporal properties that describe
the expected execution characteristics of the design and then analyzing the
source code of the design for adherence to these properties. This can be
achieved by converting the design from its original source code into a boolean
program [16, 17]. A boolean program generated from a program written in
a common programming language has the same control flow structure as the
original program with all of the functional statements removed from it and
replaced by a skip operation. In addition, all of the decision variables in the
control structures are replace with boolean variables. The boolean program is
analyzed for execution paths through it that violate the properties defined for
the original program. If a path that produces a violation is found, that path
is then checked on the original program to verify that it is in fact a violation.
If the path is not a violation of the rules in the original program or design,
then the boolean program is modified by adding additional boolean variables
to the control structure to prevent the incorrect path from being found again.
This process is repeated until all paths through the design have been checked
and found correct or a real violation of the properties is found [16].

When using SystemC or SpecC to develop a system design, it is common
to refine the design from a pure software one to its final hardware/software
co-design or hardware only one in small increments [16]. This refinement,
necessarily, changes the source code of the design to gradually contain more
and more hardware synthesize-able code, but is the source code in each suc-
cessive refinement equivalent to its immediate predecessor. There are two
approaches to checking the equivalence of two successive increments of the
same design, re-verify the entire design or check only the changed portions of
the design and any portions of it that directly impact or are directly impacted
by the changed portion. It is simple to find the changed portions of a design
by using the Unix diff command on the source code of the two increments
of the design. This produces a listing of all of the changes made to the de-
sign. From this listing select one of the variables involved and extract all of
the source code that impacts the chosen variable from the designs and check
them to make sure they are equivalent. Similarly, check all of the source
code that is dependent upon the selected variable for equivalence [16]. If all
of the changed and impacted portions are equivalent the new version of the

8

design is equivalent to its predecessor. This is repeated for each variable in
the difference listing. When testing only the changed part of the system and
the parts directly related to it, it may not be possible to retain the timing
relationships of the entire design during the testing process. This is because
the timing of a design depends upon the entire design and not just upon the
individual components of that design.

2.3.3 Model Checkers

Model checkers1 are blocks of code that are inserted into a design to check
specific properties of that design [18]. These checkers can be used to check
the temporal properties of the execution of the design during simulation and
after full implementation. This is achieved by defining the checker in such
a way that it can be implemented as a shift register. For example, consider
a memory read operation. The part of the design requesting data from the
memory places the address of the data on the memory address bus and then
sets a flag to indicate to the memory module that it wants the data at the
specified address. Figure 2 shows the timing for successful (a) and unsuccess-
ful (b) operation of this design. Assume that the memory module is designed
such that it set a data ready flag 3 clock cycles after the request flag is set.
A temporal property for the design can be stated as: the memory module
shall set the data ready flag 3 clock cycles after the request flag is set. To
check this property, a checker with a 3 bit shift register is required along with
an AND gate. One input of the AND gate is connected to the data ready
flag and the other to the output of the third state of the shift register. The
input to the shift register is the data request flag and it is clocked by the
same clock as the memory module. As the clock runs, the data request flag
is moved through the stages of the shift register until it reaches the output
stage 3 clock cycles after it entered. At the same time as the data request flag
reaches the output of the shift register and hence the input of the AND gate,
the data ready flag should be set and applied to the other input of the AND
gate. At this point, the AND gate is set if the timing is correct, otherwise it
will not change state indicating that an error condition exists.

This type of checking is less formal than some of the other techniques

1This type of model checker is not the same as Bounded Model Checkers as described in Section 2.2.

9

Request

Ready

Clock

Checker Output

(a) Successful memory access (Ready set after 3 clock cycles).

Request

Ready

Clock

Checker Output

(b) Unsuccessful memory access (Ready set after 4 clock cycles).

Figure 2: Timing diagram for the model checker memory module example. Set is assumed
to be high and unset low.

10

already described [18]. Its advantages are its simplicity and that it can be
carried over into the actual implementation of a design. It is also applicable
to any of the C/C++ based design techniques as well as other hardware de-
scription languages, although this is not stated in [18] which refers specifically
to SystemC.

2.4 Polyhedral System Verification

It is possible to model co-designed systems using a polyhedral model. Such a
model uses affine recurrence equations to describe the system being modelled
as evidenced by the MALPHA description language [19]. The structure of the
language and associated semi-automated refinement tools attempts to ensure
that each design has the correct control structures for proper operation. This
is not guaranteed since manual modification of a design are allowed. Verifi-
cation of this type of design is performed using a mathematical approach to
the generation and proving of abstract predicates than were described in the
previous section. When an execution path through the system ends in a false
result then an error is reported without the need to check for spurious error
conditions.

2.5 Non-abstracting Verification

The issue of state explosion during the generation of predicates for formal
verification have lead to techniques such as predicate abstraction to limit the
number of predicates to be necessary (see Sections 2.1 and 2.3.1). These
techniques normally only consider designs with control structures having a
finite number of states and remove data variables which potentially have an
infinite number of values [20].

In situations where it is not desirable to remove the data manipulation
portion of the design during verification (e.g. a Mealy finite state machine
that combines data path), abstraction techniques cannot be used. An ap-
proach that does provide a means to verify a complete design is the use of
a theorem prover such as ACL2 and a modal υ-calculus. This permits the
definition of a set of rules governing the generation of predicates in such a
manner that there is no state explosion. There are a total of eighteen rules,

11

described in [20].

2.6 CSP

Communicating Sequential Processes (CSP) is a formal modelling, technique
that uses a process algebra to define the communication behavior of the
processes in a system, whether hardware or software. Processes are defined by
the events that occur to stimulate their operation rather than the operation
itself [4]. This is because CSP is designed to model the communications
between processes, not their internal workings. CSP can also be used in
a hierarchical manner when one process is composed of one or more sub-
processes. As a result of its formal nature, CSP models can be directly
input to theorem provers for verification of the design at the interprocess
communication level.

Two issues that arise from the formal nature of CSP are that it is not
executable in its algebraic form and that it does not model the internal oper-
ations of the processes being modelled. These issues are addressed by Gardner
in [4, 21]. CSP++ is a framework tool that converts the CSP algebra into
a C++ program. The designer can then add functionality for the processes
and execute the model to further check its validity.

3 Functional Verification in Industry Tools

This section presents three tools that are used in industry to design and per-
form functional verification of hardware and hardware/software co-designed
systems. SpecC [12, 22] and SystemC [10, 23] are based on the C and C++
software development languages2. SystemVerilog is a superset of the Ver-
ilog hardware description language [24–26]. These three tools were chosen
because they provide an overview of the various functional verification tech-
niques available in the field and for their diverse overall design methodologies.

This section focuses primarily on the functional verification of designs as
this is the verification technique currently supported by these tools either
through the use of built-in functionality or external tools.

2Industry use of SpecC is limited, however, it is used extensively by researchers.

12

3.1 SpecC

SpecC is a design language based upon the ANSI standard version of the
C programming language [12, 22]. SpecC is a true superset of the ANSI-C
language supporting the design of both the hardware and software portions
of a system. There is a procedure specified for SpecC that permits an entire
system to be initially specified at a very high level and then gradually refined
to the desired level [22]. This permits the hardware and software partitions
of the system to be developed concurrently in a single design environment.
The software partition is already in a software programming language so it
only needs to be compiled for the target device once it has been refined.
The hardware partition can be refined to the point where it can be directly
translated into a netlist or other format that is directly accessible by hardware
implementation tools. Throughout the entire design process the complete
design is executable in software [12,22].

The SpecC project team have shown that the design methodology asso-
ciated with the SpecC language produces equivalent functionality when fol-
lowed correctly [27]. SpecC, however, does not directly support any means to
formally or functionally verify a design. SpecC does, though, have the ability
within its simulation engine to detect the occurrence of deadlock.

3.2 SystemVerilog

SystemVerilog is an extension to the Verilog hardware description language
[24,25]. The additional features contained within SystemVerilog are intended
to aid in the verification of system designs, but neither the Verilog nor Sys-
temVerilog language contain verification functionality. SystemVerilog pro-
vides the facilities to capture and output simulation traces in a format that
can be directly input to verification tools, such as implementations of the
OpenVera hardware verification language [25,28]3.

SystemVerilog supports verification through the use of assertions [24]. Un-
like the assertions found in languages such as C and C++, SystemVerilog as-
sertions do not necessarily terminate the execution of a design’s simulation.

3There are two versions of the OpenVera standard. The first, described in this document, generates direct
output during simulation while the second one is intended for use with testbenches [29].

13

They can generate warning and information messages as well as the usual
error messages. Two types of assertions are available, immediate and concur-
rent. Immediate assertions are similar to those found in other programming
languages and execute only when they are encountered in the design during
execution. Concurrent assertions use clock semantics to control their actions.
That is, the activation of a concurrent assertion is time dependent rather than
executing whenever it is encountered during execution. Concurrent assertions
provide a snapshot of the state of one or more specified data items at specific
times during the simulation of a design [24]. Concurrent assertions are par-
ticularly useful for generating output for formal verification tools since the
output produced is time sequenced on clock transitions.

The immediate assertion has the BNF form (page 198 of the SystemVerilog
Language Reference Manual [24]):

immediateassertstatement :=

assert (expression) actionblock

actionblock: :=

statement_or_null

| [statement] else statement

where assert is the syntactic name of the immediate assertion;
expression is a valid SystemVerilog expression that evaluates

to 0, X (undefined) or Z (high resistance) for false
(expression failed) and any other value for true
(expression succeeded); and

actionblock is the action to be performed when the expres-
sion succeeds. The actionblock can be empty or
contain a single statement. It may also have an
else clause that is executed if the expression fails.

When an assertion succeeds, the statement in the action block is executed
(if there is one) and then the simulation continues after the action block.
When the expression within the assertion fails, the else clause of the action
block is executed. The severity of the failure can be set to fail (default),

14

error, warning or information as desired [24]. This allows the behavior of
the immediate assertion to be customized to suit the purpose for which it is
being used. The output generated for each severity level can be determined
by the system developer allowing for the output of data suitable for the type
of analysis being performed.

Unlike immediate assertions which are evaluated each time the statement is
encountered, the evaluation of the concurrent assertion depends upon a clock
event specified by the designer. The values used in determining whether the
assertion succeeds or fails are the samples of the data values taken at the time
of the clock event and not those present at the time the assert statement is
encountered. The clock used by a concurrent assertion is configurable for each
assertion statement used in a design and need not be tied to the simulation
clock [24]. The syntax of the concurrent assertion is given by the following
BNF (page 247 of the SystemVerilog Language Reference Manual [24]).

concurrentassertionitem :=

[blockidentifier :] concurrentassertionstatement

concurrentassertionstatement :=

assert_property_statement

|assume_property statement

|cover_property statement

assert_property_statement: :=

assert property (property spec) actionblock

assume_property statement: :=

assume property (property spec);

cover_property statement: :=

cover property (property spec)statement_or_null

The concurrent assertion statements evaluates a property rather than an
expression. This property describes the values that are to be examined by the
assertion and, where appropriate, the timing of each value’s evaluation [24].

15

The property of a concurrent assertion can be either a single boolean
expression or a sequence of boolean expressions. A simple linear sequence is
a sequence of expressions whose evaluation follows a sequential time ordering
that matches their order of appearance in the sequence. Each expression
within a linear sequence is evaluated on consecutive clock ticks. When more
complex behavior is needed, linear sequences can be concatenated together.
When the sequences are concatenated, the start time for each sequence is
specified. This allows concurrent assertions to be evaluated over extended
periods of time during a simulation. Times are specified as delays with respect
to the completion of the previous linear sequence. The delay time for the
evaluation of a sequence can be given as either a fixed number of clock ticks
or as a range of clock ticks after the previous evaluation [24]. When a time
range is given, the evaluation of the sequence can occur at any time during
that range.

The assert property version of the current assertion is used to check the
values specified within the given property. Success and fail processing occurs
in a manner similar to the immediate assertion statement [24].

The assume property concurrent assertion statement is used to define val-
ues of the components of the property similar to a hypothesis to be proved.
When this type of assertion is used, SystemVerilog tools are to constrain the
generated design such that it conforms to this hypothesis. This is useful for
setting conditions for formal verification although such verification does not
need to check these assumed values. During simulation or verification, failure
of any assumed property causes an appropriate report to be generated [24].

The cover property variant of the concurrent assertion is used to gather
data about the items specified in its property so that the operation of the de-
sign can be checked after simulation is complete. This assertion only executes
associated statements if the assertion succeeds [24].

An immediate assertion can be used only within a procedural block in the
SystemVerilog source code. The concurrent assertion statement is more flex-
ible. It can also be used within a module, interface or program component.
When a concurrent assertion is declared outside a procedural block, it be-
haves like it’s declaration was preceded by the always keyword. This causes
the property to be continuously evaluated throughout the simulation of the

16

design. When a concurrent assertion is placed within a procedural block, it’s
evaluation is affected by the characteristics of that block, in particular the
manner in which that block is clocked [24].

A similar technique for verification using assertions is described in [30].
In this case the LISA instruction set architecture language is used rather
than SystemVerilog and the assertions are coded using the OVA and SVA
languages (OpenVera compatible). The assertions are defined at the high-
est level of abstraction during the design process for consistent verification
throughout the design process.

3.3 SystemC

SystemC is a system specification and simulation tool based on the C++
programming language that includes a tool set for the functional verification
of both hardware-only and hardware/software co-designed systems [10,23,31,
32]. Like SystemC itself, the verification tool set is a class library for C++.

The SystemC Verification Standard consists of a number of classes and
templates that support the following operations [23]:

• transaction-based verification - Systems can be verified at any level of
abstraction that is executable by defining the beginning and end of a
transaction so that the results of input data can be compared to output
values for all executions of the simulation at various levels of abstraction.

• data introspection - The ability to inspect, change and randomize data
values within a SystemC model at runtime. This is applicable for any
data type supported by SystemC. The inspection can recover type and
size information as well as the actual data value (or values for a com-
posite type).

• transaction recording - information regarding a transaction can be recorded
for analysis. The actual format of the recorded information is left to the
implementor. The open source reference distribution, for example, out-
puts plain text.

• data randomization - any data item can be randomized provided that it
is of a SystemC supported type except strings. This randomization can

17

be unbounded, constrained or weighted (not supported by the reference
implementation).

• HDL connection - a means of connecting a SystemC model to a model
in VHDL or Verilog permits the simulation of designs that include both
SystemC and one of these hardware design languages.

• assertions - boolean expressions used to detect erroneous conditions
within a design. This feature is not included in version 1.0e of the
Standard.

• exceptions - The Verification Standard includes an exception handling
facility to deal with unusual but not erroneous conditions [23,31].

Two important terms used throughout the remainder of this section are
transaction and transactor. The SystemC Verification Standard provides the
following definitions for them on page 4 [23]:

transaction: A set of information that represents some bounded
activity within the execution of a design or testbench. A transaction
has a begin-time, an end-time, and a set of attributes (name-value
pairs).

transactor: An adaptor between a transaction-level test and a de-
sign typically at a different level. It is also referred to as a transac-
tion verification model (TVM).

Transaction model verification permits the development of a single test-
bench program in SystemC that can be used throughout the verification
process of the system. By defining the testbench at the highest level of ab-
straction testing of the system at that level and all lower levels of abstraction
can use the same test program with the addition of appropriate transactors
as necessary. This enables consistency in testing to be achieved with minimal
effort on the part of the test team. Transactors act as the bridge between
the software-based transaction testbenches and the hardware structure of a
system model.

18

#include "scv.h"

#ifndef __PATH_PT_H

#define __PATH_PT_H

struct path_point {

int elevation;

int distance;

sc_int<8> obstruction;

sc_int<16> obs_height;

sc_int<8> terrain;

long freznels[3];

string desc;

};

#endif

Figure 3: Header file path pt.h containing the basic description of a set of data items that
are to be examined using introspection.

The key component of the entire SystemC Verification Standard is intro-
spection. This set of classes, templates and macros provides the function-
ality to access and change data within the system. The ability to record
transaction information and randomize data is possible because of this func-
tionality. The basic introspection services can be implemented using the
SCV EXTENSIONS macro that creates a C++ class containing the intro-
spection capabilities for the class with which it is associated. Additional
macros and method definitions are used to set up portions of this class such
as constructors and the handling of composite data types [23].

An example of the way in which simple introspection can be used is shown
in Figures 3 through 6. Figure 3 shows a header file that defines a data
structure using standard C and SystemC language constructs and types. Note
the inclusion of the scv.h header file within this header file providing access
to the SystemC and SystemC Verification Standard data types, macros and
classes. This data structure is representative of one that could be used in
an application that determines the availability of a microwave radio path
between two points on the surface of the Earth.

Figure 4 contains the header file path pt ext.h that contains the defini-
tion of the extensions to the data structure shown in Figure 3. The code
in this file uses template classes to create the introspection extensions in-

19

#ifndef __PATH_PT_EXT_H

#define __PATH_PT_EXT_H

#include "path_pt.h"

template<> class scv_extensions<path_point>: public

scv_extensions_base<path_point> {

public:

scv_extensions<int > elevation;

scv_extensions<int > distance;

scv_extensions<sc_int<8> > obstruction;

scv_extensions<sc_int<16> > obs_height;

scv_extensions<sc_int<8> > terrain;

scv_extensions<long [3] > freznels;

scv_extensions<string > desc;

SCV_EXTENSIONS_CTOR(path_point){

SCV_FIELD(elevation);

SCV_FIELD(distance);

SCV_FIELD(obstruction);

SCV_FIELD(obs_height);

SCV_FIELD(terrain);

SCV_FIELD(freznels);

SCV_FIELD(desc);

}

};

#endif

Figure 4: Header file path pt ext.h containing the definition of the introspection facilities
for the path point structure.

stead of the SCV EXTEN-SIONS macro presented earlier. The template
instantiation creates a new class named scv extensions that contains defini-
tions of the extensions to the individual elements of the path point structure.
These extensions are created by using the pre-defined extension classes for
the data types of those elements. The SCV EXTENSIONS CTOR macro is
then used to create a constructor for the new class. The constructor uses
the SCV FIELD macro to denote each of the elements as part of a structure
known to the class.

Figure 5 presents the main program for the example. All SystemC pro-
grams must contain a function named sc main which is the entry point for
the program. In this simple example the sc main function performs all of the

20

#include "path_pt_ext.h"

int sc_main(int argc, char **argv) {

scv_smart_ptr<path_point> path_p("Point");

path_p->elevation = 100;

path_p->distance = 1000;

path_p->obstruction = 10;

path_p->obs_height = 20;

path_p->terrain = 9;

path_p->freznels[0] = 20;

path_p->freznels[1] = 55;

path_p->freznels[2] = 5;

path_p->desc = "Test Path Point";

scv_out << "Printing Test Object: " << path_p->get_name() << endl;

path_p->print();

return 0;

}

Figure 5: Source file path pt test.cc containing the program for the example.

operations of the program. A smart pointer to an instance of the path point
class is created with name Point. The use of smart pointers provides a con-
sistent way of accessing objects of different classes within the SystemC envi-
ronment. Following the creation of the class instance, values are assigned to
all of its data elements. Once the values are set, some of the introspection
methods of the path point class are used to print out the label assigned to
the class instance (get name()) and all of the data element values (print()).
Figure 6 shows the output produced by this example.

The above example is very simple but shows some of the available in-
formation from the introspection facility. The scv extensions template class
provides access to many different types of information about a set of data ele-
ments. This information can be obtained as necessary for the type of analysis
being performed on the data.

The SystemC Verification Standard supports the randomization of all data
types except strings. This includes the C data types, the SystemC data types
and user defined data types. SystemC uses its own randomization techniques
and permits three different styles of randomization. One technique is similar
to the standard C rand() function except that any supported data type can

21

SystemC 2.0.1 --- Jan 31 2006 09:57:42

Copyright (c) 1996-2002 by all Contributors

ALL RIGHTS RESERVED

Printing Test Object: Point {

elevation:100

distance:1000

obstruction:10

obs_height:20

terrain:9

freznels {

[0]:20

[1]:55

[2]:5

}

desc:Test Path Point

}

Figure 6: Example output.

be randomized over its entire range of values [33]. The resulting random
sequence is uniformly distributed. The second technique is also uniformly
distributed but allows an upper and lower bound to be set on the generated
values. It also permits the exclusion of ranges of values within the bounded
range. The third technique uses user-defined distribution to generate the ran-
dom values. The distribution of values is defined in a data structure referred
to as a bag. Each item placed in a bag comprises a pair {value, percentage}
or {value pair, percentage}. The first pair format specifies that discrete val-
ues are to occur with the probability represented by the percentage in the
second part of the pair. The second format specifies that values within a
specific range are to occur with the given probability [23,31].

Figure 7 shows a modified version of the program shown in Figure 6 that
uses the SystemC randomization facility. The first step in using randomiza-
tion is to provide a seed value for the random generator. In SystemC this
is a global setting [23]. A constant seed value should always be provided
for the SystemC randomization facility to ensure repeatability of verification
simulations. Not providing a seed, or using the system time as is common
in software systems eliminates repeatability since the seed value is either un-

22

known or guaranteed to be different each time the simulation is executed [23].
The next step is to set up the randomization method to be used for

each data item. In the example, fields elevation, obs height and terrain
use bounded uniform distribution; obstruction uses user-defined distribution
with discrete values; freznels and desc have randomization disabled; and dis-
tance uses unbounded uniform distribution by default. The desc field must
have randomization disabled as it is of type string. Each time a new set of
random values is required for the fields the next() method is called on the
scv extensions object. Figure 8 shows the output produced by the program.

Transactions in SystemC permit the user to group operations together
in order to monitor the results of those operations as a whole. Transaction
recording is performed by writing transaction details to a database. The
reference version of the SystemC Verification Standard will only output to a
text file, other implementations may use their own output formats as well [23].
Within the SystemC Verification Standard document and in the examples
provided with the open source version of the reference implementation there
is a pipelined read/write example [23,34]. Figure 9 shows some of the output
written to a text database file. This sample output was produced using a
computer with a 600 MHz Pentium processor and 256 MB of memory running
Linux.

The first four blocks of information in the output shown in Figure 9 show
the setting up of the transaction monitoring and control functionality defined
for the program. Following that, are three complete transactions. Transac-
tions 2 and 3 are nested within transaction 1. This permits the measurement
of the amount of time taken for specific parts of transaction 1 (i.e. trans-
actions 2 and 3) and the overall time taken to perform the entire operation
(transaction 1). This format of transaction recording does not include spe-
cific data values; they can be gathered using normal program I/O techniques
as included in the sample program. Transaction control is normally placed
within a transactor module so that monitoring can be performed on the inter-
face between hardware and software. This is especially important when the
software is purely a testbench and will not appear in the final implementation
of the design.

Constraints are another important feature of the SystemC Verification

23

#include "path_pt_ext.h"

int sc_main(int argc, char **argv) {

scv_smart_ptr<path_point> path_p("Point");

scv_random::set_global_seed(101);

path_p->freznels[0] = 0;

path_p->freznels[1] = 1;

path_p->freznels[2] = 2;

path_p->desc = "Test Path Point";

path_p->elevation.keep_only(0,59);

scv_bag<sc_int<8> > obs_dist("Obstruction_Dist");

obs_dist.add(0,20);

obs_dist.add(1,25);

obs_dist.add(2,15);

obs_dist.add(3.40);

path_p->obstruction.set_mode(obs_dist);

path_p->obs_height.keep_only(0,59);

path_p->terrain.keep_only(1,64);

path_p->freznels[0].disable_randomization();

path_p->freznels[1].disable_randomization();

path_p->freznels[2].disable_randomization();

path_p->desc.disable_randomization();

path_p->next();

scv_out << "Printing Test Object: " << path_p->get_name() << " (random)" << endl;

path_p->print();

return 0;

}

Figure 7: File path pt test.cc using random value generation for some of the data elements
of path point.

24

SystemC 2.0.1 --- Jan 31 2006 09:57:42

Copyright (c) 1996-2002 by all Contributors

ALL RIGHTS RESERVED

Printing Test Object: Point (random) {

elevation:46

distance:1077938815

obstruction:2

obs_height:56

terrain:2

freznels {

[0]:0

[1]:1

[2]:2

}

desc:Test Path Point

}

Figure 8: Sample output of the program in Figure 7.

Standard. In the earlier example on randomization (Figure 7), two forms of
constraints were used although not discussed as such there. The keep only
method constrains the range of values that can be randomly generated for
a data element. The sc bag class can be used to constrain the generation of
random values for a specific data element to certain discrete values or ranges
of values using probabilities of occurrence.

Another use for constraints in the SystemC Verification Standard is to
ensure that necessary relationships between certain data values or sets of
data values within a design are maintained. This is achieved through the use
of sub-classes of the scv contraint base class. Instances of these subclasses
are associated with specific data elements and are used to check constraint
relationships as necessary [23].

The HDL connection facility of the SystemC Verification Standard pro-
vides a basic set of functionality for interfacing with models written in VHDL
or Verilog. This interface permits the use of SystemC testbenches with mod-
els written in one of these hardware description languages. There are limits
on the level of access that a SystemC model and a HDL model can inter-
act with each other. For example, a SystemC model cannot access memory

25

scv_tr_stream (ID 1, name "pipelined_stream", kind "transactor")

scv_tr_stream (ID 2, name "addr_stream", kind "transactor")

scv_tr_stream (ID 3, name "data_stream", kind "transactor")

scv_tr_generator (ID 4, name "read", scv_tr_stream 1,

begin_attribute (ID 0, name "addr", type "UNSIGNED")

end_attribute (ID 1, name "data", type "UNSIGNED")

)

scv_tr_generator (ID 5, name "write", scv_tr_stream 1,

begin_attribute (ID 0, name "addr", type "UNSIGNED")

end_attribute (ID 1, name "data", type "UNSIGNED")

)

scv_tr_generator (ID 6, name "addr", scv_tr_stream 2,

begin_attribute (ID 0, name "addr", type "UNSIGNED")

)

scv_tr_generator (ID 7, name "data", scv_tr_stream 3,

begin_attribute (ID 0, name "data", type "UNSIGNED")

)

tx_begin 1 4 0 s

a 0

tx_begin 2 6 0 s

a 0

tx_relation "addr_phase" 2 1

tx_end 2 6 100 ns

tx_begin 3 7 100 ns

a UNDEFINED

tx_relation "data_phase" 3 1

tx_end 3 7 260 ns

tx_end 1 4 260 ns

Figure 9: Portion of the transaction information recorded in the database file for the pipelined
read/write example program [23].

26

blocks in a Verilog model directly [23].
While SystemC version 2.0.1 contains an exception handling facility, the

designers of the SystemC Verification Standard found that it was inadequate
for their purposes. They provided a new exception handling system which
will replace the original SystemC method in a later release [23]. The excep-
tion handler in the SystemC Verification Standard includes multiple levels of
severity,user configurable actions when an exception occurs and multiple pro-
cess logging support. This provides a very flexible methodology for reporting
bugs detected within an executing simulation of a design [23].

An example of the incorporation of the SystemC Verification Standard into
commercial tools can be found in [32]. In this example, a popular embed-
ded processor architecture is modeled in SystemC with SystemC Verification
Standard facilities included in the model. The testbench programs to evalu-
ate designs utilizing this model can thus use these facilites to gather data for
verification.

An alternate approach for functional co-verification using SystemC uses
the tracing facilities of SystemC without the need for the SystemC Verifica-
tion Standard [35]. In this technique, the hardware and software parts of a
co-designed system are both implemented in SystemC and the appropriate
tracing functionality within SystemC is enabled to gather the necessary data
for verifying the design. Depending upon the level of abstraction of the de-
sign at any given point during its development, timing accuracy may or may
not be achieved. Software execution can be done in one of two ways, as a
standard C++ program running within the SystemC environment or as tar-
get processor instructions running on an instruction set simulator. The first
approach provides the fastest simulation while the second provides a cycle
accurate timing simulation but takes longer to execute [35].

3.4 Using Multiple Co-verification Tools

There are some cases where the use of a single co-verification tool is not
sufficient for the design being checked. An example of such a situation is
described in [36] when dealing with a system incorporating a USB 2.0 com-
munications link. In this case, the authors created a tool called SSDE that
provides a functional verfication flow using all of the tools necessary to per-

27

form the co-verification. All of the tools they use are commercially available
but none of them provides the fill set of services required [36].

4 Conclusion

This paper has given an overview of the state of formal and functional verifi-
cation in research and practice. It has shown that while formal verification of
hardware/software co-designed systems is desirable, there are very few tools
available in industry to do so. Research in the area of formal verification is
progressing and will provide the necessary tools in the near future.

28

References

[1] S. Shukla, T. Bultan, and C. Heitmeyer. Panel: given that hardware verification has
been an uphill battle, what is the future of software verification? In Proceedings. Second
ACM and IEEE International Conference onFormal Methods and Models for Co-Design,
pages 157 – 158, June23-25 2004.

[2] H. Jain, D. Kroening, and E. Clarke. Verification of specc using predicate abstraction.
In Proceedings. Second ACM and IEEE International Conference onFormal Methods
and Models for Co-Design, pages 7 – 16, June23-25 2004.

[3] T. Bultan, C. Heitmeyer, and J. O’Leary. Panel on design for verication. In Proceedings.
Third ACM and IEEE International Conference on Formal Methods and Models for Co-
Design, pages 232 – 235, July11 - 14 2005.

[4] W. Gardner. CSP++: An Object-Oriented Application Framework for Software Syn-
thesis from CSP Specifications. PhD thesis, University of Victoria, 2000.

[5] I. Somerville. Software Engineering, seventh Edition. Addison-Wesley, 2004.

[6] E. Clarke, O. Grumberg, M. Talupur, and D. Wang. High level verification of control
intensive systems using predicate abstraction. In Proceedings, First ACM and IEEE
International Conference on Formal Methods and Models for Co-Design, 2003. MEM-
OCODE ’03, pages 55 – 64, June24 - 26 2003.

[7] R. Bryant. System modeling and verification with uclid. In Proceedings. Second ACM
and IEEE International Conference onFormal Methods and Models for Co-Design, pages
3 – 4, June23-25 2004.

[8] T. Schuele and K. Schneider. Bounded model checking of infinite state systems: ex-
ploiting the automata hierarchy. In Proceedings. Second ACM and IEEE International
Conference onFormal Methods and Models for Co-Design, pages 17 – 26, June23-25
2004.

[9] P. Jain. Cost-effective co-verification using rtl-accurate c models. In Proceedings of the
1999 IEEE International Symposium on Circuits and Systems, pages 460 – 463, May30
- June2 1999.

[10] Open SystemC Initiative. SystemC 2.0.1 Language Reference Manual Revision 1.0,
2003. Cited 10 Jan 2006, Available at www.systemc.org.

[11] Open SystemC Initiative. SystemC Version 2.0 Users Guide Update for SystemC 2.0.1,
2002. Cited 10 Jan 2006, Available at www.systemc.org.

[12] R. Domer, A. Gerstlauer, and D. Gajski. SpecC Language Reference Manual Version
2.0, 2002. Cited 3 Apr 2005 , Available at www.specc.org.

29

[13] J. Hammes, B. Rinker, W. Bohm, W. Naijar, and B. Draper. Cameron: High level
language compilation for reconfigurable systems. In Proceedings, 1999 International-
Conference on Architectures and Compilation Techniques, pages 236 – 244, Newport
Beach, CA, U.S.A., Oct.12 - 16 1999.

[14] A. Ray. Security check: A formal yet practical framework for secure software architec-
ture. In New Security Paradigms Workshop 2003, pages 59 – 65, Ascona Switzerland,
2003.

[15] D. Kroening and N. Sharygina. Formal verification of systemc by automatic hard-
ware/software partitioning. In Proceedings. Third ACM and IEEE International Con-
ference on Formal Methods and Models for Co-Design, pages 101 – 110, July11 - 14
2005.

[16] M. Fujita. Formal verification of c language based vlsi designs. In Proceedings. 17th
International Conference on VLSI Design, pages 93 – 100, 2004.

[17] T. Ball and S. K. Rajamani. Boolean programs: A model and process for soft-
ware analysis (technical report 2004-14), 2004. Cited 18 March 2006, Available at
http://research.microsoft.com/slam.

[18] D. Grosse and R. Drechsler. Checkers for systemc designs. In Proceedings. Second ACM
and IEEE International Conference onFormal Methods and Models for Co-Design, pages
171 – 178, June23-25 2004.

[19] D. Cachera and K. Morin-Allory. Verification of control properties in the polyhedral
model. In Proceedings, First ACM and IEEE International Conference on Formal Meth-
ods and Models for Co-Design, 2003. MEMOCODE ’03, pages 265 – 274, June24 - 26
2003.

[20] M. Contensin and L. Pierre. Combining acl2 and a /spl nu/-calculus model-checker to
verify system-level designs. In Proceedings, First ACM and IEEE International Con-
ference on Formal Methods and Models for Co-Design, 2003. MEMOCODE ’03, pages
75 – 84, June24 - 26 2003.

[21] W. Gardner. Bridging csp and c++ with selective formalism and executable speci-
fications. In Proceedings, First ACM and IEEE International Conference on Formal
Methods and Models for Co-Design, 2003. MEMOCODE ’03, pages 237 – 245, June24
- 26 2003.

[22] A. Gerstlauer, R. Domer, J. Peng, and D. Gajski. SYSTEM DESIGN A Practical Guide
with SpecC. Kluwer Academic Publishers, 2001.

[23] O. S. Initiative. SystemC Verification Standard Specification Version 1.0e, 2002. Cited
10 Jan 2006, Available at www.systemc.org.

30

[24] Accellera Orgainization, Inc. SystemVerilog 3.1a Language Reference Manual, Ac-
cellera’s Extensions to Verilog, 2004. Cited 16 Dec. 2005, Available at www.accellera.org.

[25] S. Sutherland, S. Davidmann, and P. Flake. SystemVerilag For Design, A Guide to
Using SystemVerilog for Hardware Design and Modeling. Kluwer Academic Publishers,
2004.

[26] D. Thomas and P. Moorby. The Verilog Hardware Description Language, Fifth Edition.
Kluwer Academic Publishers, 2002.

[27] S. Abdi and D. Gajski. Formal verification of specification partitioning, Mar. 2003.
Technical Report CECS-TR-03-06.

[28] Synopsys Inc. OpenVera Lanuage Reference Manual: Assertions Version 1.4.1, 2004.
Cited 5 Feb. 2006, Available at www.open-vera.com.

[29] Synopsys Inc. OpenVera Lanuage Reference Manual: Testbench Version 1.4.3, 2006.
Cited 26 March 2006, Available at www.open-vera.com.

[30] A. Chattopadhyay. Integrated verification approach during adl-driven processor design.
In to appear in Proceeding Seventeenth IEEE International Workshop on Rapid System
Prototyping, 2006.

[31] C. N. Ip and S. Swan. A tutorial introduction on the new systemc verification standard,
2003. Cited 26 January 2006, Available at www.systemc.org with the open source
distribution of the SystemC Verification Standard.

[32] F. Carbognani, C. Lennard, C. Ip, A. Cochrane, and P. Bates. Qualifying precision of
abstract systemc models using the systemc verification standard. In Design, Automation
and Test in Europe Conference and Exhibition, 2003, pages 88 – 94, 2003.

[33] S. Harbison and G. Steele. C A Reference Manual, Third Edition. Prentice Hall, 1991.

[34] O. S. Initiative. Systemc verification standard open source reference implementation,
2002. Cited 10 Jan 2006, Available at www.systemc.org.

[35] L. Semeria and A. Ghosh. Methodology for hardware/software co-verification in c/c++.
In Proceedings of the 2000 conference on Asia South Pacific design automation, pages
405 – 408, Yokohama, Japan, June 2000.

[36] T.-F. Omnes, G. Postuma, J. VerHaegh, M. Boonen, and N. Gatherer. Using ssde for
usb2.0 conformance co-verification. In Proceedings, First ACM and IEEE International
Conference on Formal Methods and Models for Co-Design, 2003. MEMOCODE ’03,
pages 113 – 122, June24 - 26 2003.

31

