

A Survey of Data Dependence Analysis
Techniques for Automated Parallelization

by
Joseph C Libby and Kenneth B. Kent

TR07-188, December 7, 2007

Faculty of Computer Science
University of New Brunswick

Fredericton, NB, E3B 5A3
Canada

Phone: (506) 453-4566
Fax: (506) 453-3566
Email: fcs@unb.ca

www: http://www.cs.unb.ca

Abstract

Finding parallelism that exists in a software program depends a great deal on determining

the dependencies that exist between statements that exist in that program. Instructions

that are found to be independent of one another can be executed in parallel with one

another with the hope of increasing the execution speed of a software program.

Determining dependence relationships between statements in software programs,

however, is not an easy task. There exist many different methods for determining

dependence relations, filling different requirements from speed to accuracy. This paper

will discuss a number of these techniques, detailing several different classes of

dependence analysis techniques as well as several different techniques within these

classes.

Table of Contents

Abstract .. 2
1. Introduction .. 4
2. Dependency Analysis.. 5

2.1 Control Dependency ... 5
2.2 Data Dependency.. 7

2.2.1 True Data Dependencies... 7
2.2.2 Storage Dependencies .. 7

2.2.3 Data Flow Graph.. 8
2.3 Control-Data Flow Graph.. 9
2.3 Dependence Classification ...10
2.3.1 Index Complexity..11
2.3.1 Index Separability ...12
2.3 Dependence Analysis Techniques ..13

2.3.1 Direction Vectors ..16
2.3.2 Distance Vectors ...16

2.4 Dependence Tests ..17
2.4.1 A Partition Based Algorithm ...17

2.4.1 Simple and Approximate Dependence Tests..18
2.4.1.1 Simple Dependency Tests...19
2.4.1.2 Banerjee’s Inequalities for Loops with Known Limits20

2.4.2 Symbolic Tests..21
2.4.2 The Delta Test...22

2.4.3 Multiple Subscript Tests..26
2.5 Integer Programming Based Dependence Tests ..28

2.5.1 Simplex Based Integer Programming Test ...29
2.5.2 The Omega Test ..29

3.0 Summary ...30
3.1 Conclusion...31
4.0 Acknowledgements..31
5.0 References ...31

 4

1. Introduction

In recent years the realms of software development and hardware design have began

to converge. Hardware design, once the domain of electrical engineers, has recently

become more accessible to software developers through the rise of hardware description

languages such as Handel-C and VHDL and reconfigurable hardware such as Field

Programmable Gate Arrays. This shift allows software developers to leverage the

potential of building customized hardware circuits which can improve the performance of

their software systems. This move to high level hardware design does not come without

problems. The hardware systems used to implement these high level hardware designs

are well suited for parallel execution. Hardware designs do not need to leverage this

potential parallelism but in doing so sacrifice much of the potential for increasing the

performance of the system. In order to take advantage of this potential, however, the

hardware designer needs to be aware of how to best parallelize the actions performed by

their hardware systems. This can pose a problem to hardware designers using a high level

description language such as Handel-C. These description languages enable developers to

easily create a hardware system by using a language that is similar to a software

programming language. In doing so, however, many developers fail to use the full

potential of the hardware platform they are targeting.

Even with the rise in parallel computation, finding developers that are experienced

with parallel programming is challenging. Translating this lack of parallel programming

skills to software developers who have moved into high level hardware design leads to an

even smaller number of developers who are capable of creating parallelized hardware

systems. In order for these developers to properly leverage the technology available to

 5

them it is important to consider the creation of a tool set that is capable of automatically

detecting and exploiting parallelism in a hardware design. The purpose of this paper is to

investigate a number of different techniques that are currently being used for automated

parallelism detection as well as any background material that is necessary to implement

these techniques.

2. Dependency Analysis

One of the key requirements for determining the presence of parallelizable

programming code, whether it hardware or software, is determining the data and control

dependencies that exist between the different statements or actions in the source file. This

section will discuss the types of dependencies that arise in computer programs and then

discuss several techniques that have been proposed for determining where dependencies

exist in a given program.

2.1 Control Dependency

The first type of dependency that will be discussed is the control dependency. Control

dependencies arise in almost every software program written due to the inclusion of

control structures such as conditional branching. One method for representing the control

dependencies for a given program is the Control Flow Graph (CFG). Figure 1 shows an

example of a control flow graph based on the pseudocode presented in Example 1. A

control flow graph is comprised of nodes which form a graph of all paths that can be

traversed through a program. Each node in a CFG represents a basic block which is a

sequential piece of code or jump target. Directed edges are used in a CFG to denote the

target of branches and sequential execution.

 6

Array x[10]

for i <- 0 to 10

 if i mod 2 = 0 then

 x[i] = x[i]+i

 else

 x[i] = x[i]+i/2

 end if

end for

Example 1: Example Pseudocode

Figure 1: Example of a Control Flow Graph

 7

Determining control dependencies is vital in the search for parallelism as some basic

blocks of code may not contain a data dependency but still may not be executable in

parallel due to a control dependency. Unlike data dependencies, control dependencies are

much easier to resolve from program source code. Control flow graphs can be generated

without any knowledge of the data that is being used in the system and thus require only

simple parsing of the source file to locate branch targets [1].

2.2 Data Dependency

As discussed in Section 2.1 data dependencies are not as trivial to resolve as control

dependencies. In order to discuss data dependencies it is important to first discuss the

different types of data dependencies that can arise in programs. Once this is complete

several different techniques for handling data dependencies will be presented.

2.2.1 True Data Dependencies

A true data dependency arises in a program if one operation in the program creates a

value that is used by another operation in the program. True data dependencies are also

known as Read After Write or RAW dependencies. This type of dependency forces

execution to take place in such a way that source values are created before they are

needed by subsequent operations. True data dependencies cannot be removed from a

program without extensively rewriting the program using different techniques.

2.2.2 Storage Dependencies

When writing a software program little thought is normally given to the underlying

architecture that a program will be executing on. Variable names are used to abstract

away the underlying storage structures that are used by the hardware such as registers and

 8

other types of memory. In order for a program to execute on physical hardware it is

necessary to be able to make use of limited storage resources during execution. This

limited storage capability leads to storage dependencies where execution of some

instructions must be delayed until the storage location for the result is no longer needed

by previous instructions. Storage dependencies can be broken down into two separate

categories: Write After Read (WAR) and Write After Write (WAW). Write After Read

dependencies arise when an instruction needs to write a value to a storage location but the

target storage location needs to be read by a previous instruction. This means that the

instruction that needs to perform the write must now wait until the read has completed

before performing its write. Write After Write dependencies occur when subsequent

instructions attempt to write to the same storage location. One instruction must now wait

until the other instruction has completed writing to storage before it can perform its write

to storage.

Unlike true data dependencies, however, storage dependencies can be removed by

using a technique known as register or storage renaming. This technique is applied by

using temporary storage locations in cases where WAR and WAW storage dependencies

are found. This allows instructions that previously were blocked by the storage

dependency to execute and then finalize their data storage at a later time.

2.2.3 Data Flow Graph

One common method for representing the dependencies in a software program is

through a Data Flow Graph (DFG). A DFG utilizes the set of dependencies generated by

different dependency testing techniques to construct a graph that illustrates the

dependencies that exist in a program. A DFG is very similar to the CFG’s discussed

 9

earlier in that they are a directed graph with each node representing some statement in a

software program and each edge representing a dependency between two nodes. Figure 2

shows an example DFG based on the example pseudocode shown in Example 1.

Figure 2: Data Flow Graph

2.3 Control-Data Flow Graph

Given a set of data flow dependencies as calculated by the methods that will be

discussed later in this paper, along with a control flow graph generated from the program

source code, a Control-Data Flow Graph (CDFG) can be constructed. A CDFG is created

by merging the data flow dependency graph with the control flow dependency graph into

one combined graph. Figure 3 shows an example of a CDFG based on merging the

graphs from Figures 1 and 2.

 10

Figure 3: Control-Data Flow Graph Example

2.3 Dependence Classification

This section will discuss several criteria that is used for classifying the subscripts in

pairs of array references. Complexity refers to the number of indices appearing within a

subscript and separability describes whether a given subscript interacts with other

subscripts for the purpose of dependence testing.

Before continuing with this section it is important to introduce the definitions for

indices and subscripts as they will be used for the purpose of this paper.

Index (Indices) – The index variable for some loop surrounding both of the array

references being tested for dependence.

 11

Subscript – Subscript refers to the subscripted positions in a pair of array

references. For example in the array reference A(I,J) = A(I,K) + X the index I

appears in the first subscript and J and K appear in the second.

2.3.1 Index Complexity

When performing dependence testing it is possible to classify the subscript positions

by the total number of loop indices that they contain. There are three possible types of

complexity.

Zero Index Variable (ZIV) – A subscript position contains no index in either

reference.

Single Index Variable (SIV) - A subscript position contains only one index in

either array reference.

Multiple Index Variable (MIV) – A subscript position contains more than one

index in its array references. A special case of the MIV subscript exists which is

known as the Restricted Double Index Variable (RDIV). An RDIV subscript has

the form <a1i+c1, a2j+c2>. RDIV subscripts [2] are similar to SIV subscripts

except that i and j are distinct indices. SIV tests may be extended to handle

RDIV subscripts by observing the loop bounds for i and j.

The following example demonstrates the three types of complexity classification.

 DO 5 i

 DO 5 j

 DO 5 k

 A(5, i+1, j) = A(N, I, K) + X

Example 2: Three types of complexity classification

 12

When performing dependence testing between the two array references to A in the

code above the first subscript is ZIV, the second is SIV and the third is MIV. [3]

2.3.1 Index Separability

When performing dependence testing on multidimensional arrays a subscript position

is said to be separable if its indices do not occur in the other subscripts [4,5]. Two

different subscripts are said to be coupled when they contain the same index [6]. In the

following example the first subscript is separable, but the second and third are coupled

because they both contain the index J. ZIV subscripts are by nature separable because

they have no indices.

DO 5 I

 DO 5 J

 DO 5 K

 A(I,J,J) = A(I,J,K) + X

Example 3: Subscript Examples

When dealing with multidimensional arrays separability becomes a key issue because

it can introduce imprecision in the dependence testing. One approach, suggested in [7], is

called the subscript-by-subscript approach and tests each subscript separately and then

intersects the resulting sets of direction vectors (Section 2.3.1). One issue with this

technique is that it may produce direction vectors that do not exist. The following

example highlights this problem.

 DO 5 I

 A(I+1, I+2) = A(I,I) + X

Example 4: Separability Example

 13

Performing the subscript-by-subscript test on the array reference in this example would

produce a direction vector of the form (<) which can easily be shown to be incorrect

because the above example contains no actual data dependence.

While this technique may cause problems when the subscripts are separable, if the

subscripts are separable it can be used to compute the direction vector for each subscript

independently, merging the direction vectors on a positional basis without losing any

precision. The example below demonstrates this by producing a direction vector of the

form (<.=,>) or the distance vector (Section 2.3.2) of the form (1,0,-1).

 DO 5 I

 DO 5 J

 DO 5 K

 A(I+1,J,K-1) = A(I,J,K) + X

Example 5: Separable subscripts example

2.3 Dependence Analysis Techniques

Locating dependencies between variables with static addresses is trivial and is not the

focus of much work in the field of performing dependency analysis. Problems arise,

however, when attempting to determine data dependencies between storage locations

referenced by variable pointers. Without taking variable pointers (indices) into

consideration potential flow dependence between two statements Sv and Sw can be

identified if both statements exist in the body of the same, possibly nested loop and if

both statements refer to the same array. If statement Sv refers to the array on the left hand

side of the statement and Sw on the right there is the potential for a flow dependence

between these statements. The following method describes how to determine if a

 14

potential flow dependence will resolve to an actual flow dependence or if no dependence

between the two statements exist. Whenever a potential flow dependence is identified it is

necessary to invoke the dependence tests that will decide if an actual dependence exists.

When describing analysis techniques most of the focus is on programs that contain

array references (variable pointers) and these references are contained within (possibly

nested) loops. In order to demonstrate this problem Figure 4 shows a n-dimensional array

X, with array indices provided by functions fi and gi which map from Zd to Z (where Z

is the collection of all integers). The iteration space is the set of all possible values the

vector of loop indices can assume, or I = (I1,I2,…,Id).

DO I1 = L1,U1

…

DO Id = Ld, Ud

Sv: X(f1(I1,…,Id),…,fn(I1,…Id)) =

Sw: X(g1(I1,…,Id),…,gn(I1,…Id)

END DO

…

END DO

Figure 4: Generic Nested Loop [1]

It must now be decided whether or not some value computed by Sv is used by Sw. In

this case a flow dependence would exist between the statements Sv and Sw. In order to

determine if a flow dependence exists between Sv and Sw it is necessary to show the

following conditions are met:

 15

1) The execution of Sv takes place in the iteration I ’ = (I’1, I’2,…,I’d)

and the execution of Sw takes place in the iteration I ’’ =

(I’’1,I’’2,…,I’’d). Both I ’ and I ’’ are in the iteration space so (Lj

<= I’j, I’’j<=Uj, 1<= j <= d).

2) fi(I ’) = gi(I ’’) for all (1<= I <=n)

3) I ’ <= I ’’

What this set of conditions states is that for each pair of statements in a loop, a flow

dependency exists between them if Sw is either located in the same loop iteration as Sv or

a future loop iteration (both must be in the same loop or loop space), the index produced

by index function fi must equal the loop index produced by index function gi and finally

the loop indices I ’ must be less than or equal to the loop indices I ’’.

If it is necessary to determine a flow dependence between Sv and Sw where Sv is

located lexically after Sw the same conditions 1 and 2 hold while condition 3 must be

modified as such: I ’ < I ’’. If these conditions are satisfied then statements Sv and

Sw cannot be executed in parallel due to the existence of a data dependency.

This also applies to the two other types of data dependencies that were discussed in

the background section: anti-dependency and output dependency. In order for an anti-

dependency to exist it is necessary for the element of array X to be on the right hand side

in statement Sv and on the left hand side in Sw. For an output dependency to exist it is

necessary for both references to X to be on the left hand side of the statements Sv and Sw.

 16

2.3.1 Direction Vectors

One method that is often used for determining flow dependence is decomposing the

relationship between the components of vectors I ’ and I ’’ into several sub-

problems. Each of these sub-problems represents each possible ordering relationship

between the components of I ’ and I ’’. For example, if I ’’ and I ’ both exist in

Z2 then the condition I ’ < I ’’ is decomposed into four cases [8].

Usually these cases are specified using direction vectors. These direction vectors take

the form of Y = (y1,y2,…,yd) where each yk is either <, >, or = and represents the

ordering relation between I ’k and I ’’k. The direction vectors derived from Example 1

would consist of: (<.<), (<,=) and (=,<). Direction vectors were first introduced by Wolfe

[7] and are useful for calculating the level of loop carried dependences [4,9].

2.3.2 Distance Vectors

Distance vectors were first used by Kuck and Muaoka in [10, 11] and are more

precise versions of the Direction vectors discussed in Section 2.3.1. Distance vectors are

used to specify the actual distance between two accesses to the same memory location

and have been used to guide optimizations which exploit parallelism [12,13,14,15,16]

and memory hierarchy [17,18,19]. The following example demonstrates how a distance

vector is computed from a set of array references.

 17

 DO 5 I

 DO 5 J

 DO 5 K

 A(I+1,J,K-1) = A(I,J,K) + X

Example 6: Computing a Distance Vector

In this example the distance between I+1 and I is 1, J and J is 0 and K-1 and K is -1. This

produces a distance vector of the form (1,0,-1). In some cases a direction vector or

distance vector alone may be insufficient to completely describe a dependence and so

both the distance and direction vector may be required.

2.4 Dependence Tests

There exist many different types of dependence tests that can be used to determine if

dependencies exist between statements in a piece of software. This section will discuss

several of these dependence tests and highlight their strengths and weaknesses. These

tests will be broken down into two main categories: integer programming and simple or

approximate based dependence tests.

2.4.1 A Partition Based Algorithm

In [3] an algorithm is presented that demonstrates a natural partition-based approach

for determining dataflow dependencies. The algorithm is as follows:

 1. Partition the subscripts into separable and minimal coupled groups.

 2. Label each subscript as ZIV, SIV or MIV,

3. For each separable subscript, apply the appropriated single subscript test

(ZIV,SIV,MIV) based on the complexity of the subscript. This will produce

 18

independence or direction vectors for the indices occurring in that subscript.

Several of these tests are discussed in further detail later in this paper.

4. For each coupled group, apply a multiple subscript test to produce a set of

direction vectors for the indices occurring within that group

5. If any test yields independence, no dependences exist.

6. Otherwise merge all the direction vectors computed in the previous steps into a

single set of direction vectors for the two references.

This algorithm is implemented in both PFC, an automatic vectorizing and parallelising

compiler, as well as ParaScope, a parallel computing environment [13,20,21].

The algorithm presented above takes advantage of the properties of separability by

classifying all subscripts in a set of array references as separable or part of a minimal

coupled group. A minimal coupled group cannot be partitioned into two non-empty

subgroups with distinct index sets. Once this partitioning is complete each separable

subscript or group of coupled subscripts have disjoint sets of indices. With the disjoint

sets of indices it is now possible to test each partition separately, merging the resulting

distance or direction vectors without the fear of losing precision.

2.4.1 Simple and Approximate Dependence Tests

When searching literature on dependence testing one of the most common names

referenced is Banerjee. Banerjee developed several different approximate dependence

testing techniques [22,23] that have been widely adopted in both commercial as well as

experimental compilers. Banerjee’s work has also given rise to much other work

[6,24,25] which will be discussed later in this section.

 19

Simple and approximated dependence testing has a main goal of being capable of

breaking potential data dependencies without the large processing cost of integer

programming techniques that will be discussed in Section 2.4.2. The main difference

between these tests and the integer programming tests is that simple and approximate

tests analyze only one subscript at a time. This means that the test will only show a

dependence as being broken if for some subscript i, there exist no index vectors I ’ and

I ’’ within the iteration space that satisfy the equation fi(I ’) = gi(I ’’) where

fi and gi are the array index function as in Figure 1. This test is considered to be

conservative because if there exist coupled subscripts the system of equations may not

have a solution even if all of the individual equations have solutions.

2.4.1.1 Simple Dependency Tests

The first test that will be discussed in this section is the constant test. The constant

test is capable of breaking potential dependencies as well as proving that dependencies do

indeed exist. Using the constant test it can be shown that if all subscripts in two array

references are loop invariant and have the same value, then there exists a data

dependence for all possible direction vectors. If any pair of corresponding subscripts are

constant and are not equal then there exists no data dependence between them. Loop

invariant terms that exist in both subscripts in the potential dependence can be cancelled

before the comparison is performed.[8]

Another simple test that is used to determine flow dependencies is the Generalized

Greatest Common Divisor (GGCD) test [23]. This test can be used to find criterion for

the solution to the equation fi(I ’) = gi(I ’’) as shown earlier. This test can be

 20

used to show that if both fi and gi are linear that a solution to the equation exists if the

greatest common divisor of the coefficients multiplies I ’ and I ’’ and also divides

the constant term. If the GCD does not divide the constant term then no solution to the

equation can exist.

2.4.1.2 Banerjee’s Inequalities for Loops with Known Limits

This section will discuss Banerjee’s inequalities for loops with known limits as well

as some work that has been done based on these inequalities. In order to describe

Banerjee’s inequalities we first assume that

fi(I) = a1I1 + a2I2 + … + adId + a0

and

gi(I) = b1I1 + b2I2 + … + bdId + b0

This allows the equation fi(I) = gi(I ’’) to be written as (a1I’1 – b1I’’1)

+ … + (adI’d – bdI’’d) = (b0 – a0). The function F(I) = (a1I’1 –

b1I’’1) + … + (adI’d – bdI’’d) is continuous in R2d. Let Bmin, Bmax denote

any two values of F in a connected set R (subset) R2d, which contains all possible values

of the iteration space. Suppose also that Bmin <= b0 – a0 <= Bmax . Then, from the

intermediate value theorem, we know that the equation F(I) = b0 –a0 has a solution

u = (u1,u2,…,u2d) exists in R and Banerjee’s test assumes that a dependence exists.

Since u only belongs to the iteration space when it is an integer vector it can be said that

this is a conservative assumption to make.

If we define Bmin and Bmax as the minimum and maximum values of F in R the

relation shown above, Bmin <= b0 – a0 <= Bmax, does not hold so no solution can

 21

exist and potential dependencies are broken. It has been shown in [22,23] that

dependence tests based on this formulation of Banerjee’s dependence inequalities apply

in two general cases.

Loop limits are either constant or linear functions creating an iteration space in the

shape of a trapezoid. In this case a constant limit would be a constant value that can be

determined by the compiler at compile time.

2.4.2 Symbolic Tests

The basis of symbolic testing for resolving data flow dependencies is the idea that c2-

c1, the difference between the constant terms in two array reference subscripts, can be

symbolically formed and simplified. The result of this simplification can then be used

like a constant in order to break possible dependencies.

The test that will be discussed in this section deals with two array references that are

held at two different levels of nested loops as shown in Example 7.

 Do 5 I = 1, N1

 A(a1i+c1) = …

 DO 10 J = 1, N2

 … = A(a2j+c2)

Example 7: Two Array References at Different Levels

Based on the above example, and assuming for simplicity that a1 is greater than or equal

to zero. A dependence exists if the following dependence equation is satisfied:

A1i – a2j = c2 – c1

For some value of I, 1<= I <= N1 and j, 1 <= j <= N2.

 22

In this test there are two cases that must be considered. a1 and a2 may have the same

sign and in this case a1i –a2j assumes the maximum value for i=n1 and j=1 and its

minimum value for i=1 and j=n2. Based on this a dependence exists if and only if:

A1-a2N2 <= c2-c1 <= a1N1 – a2

In this case, if either inequality is violated then the dependence cannot exist. In the

second case a1 and a2 now have different signs. a1i – a2i now assumes its maximum

for I = N1 and j = N2 so a dependence only exists if:

A1 – 2a <= c1 – c2 <= a1N1 – a2N2

Again, if either of these inequalities are violated the dependence does not exist.

2.4.2 The Delta Test

The main idea behind the delta test [6,26] is that constraints derived from SIV

subscripts may be efficiently propagated into other subscripts in the same coupled group

without losing any precision. The delta test can find independence if any of its ZIV or

SIV tests determine independence. If no independence is found using the ZIV and SIV

tests the delta algorithm then converts all SIV subscripts into constraints and propagates

them into MIV subscripts when possible. This conversion is repeated until no new

constraints can be found then constraints for RDIV subscripts are propagated. Once this

is completed remaining MIV subscripts are tested. The results are then intersected with

existing constraints. The algorithm for the Delta test is outlined in Figure 4.

 23

INPUT: coupled SIV and/or MIV subscripts

OUTPUT: hybrid distance/direction vector,

constrained MIV subscripts

initialize elements of constraint vector C
r
to <none>

while !3 untested SIV subscripts do

apply SIV test to all untested SIV subscripts,

return independence or

derive new constraint vector 'C

r

'' CCC

rrr
!"

if 'C

r
= 0 then

return independence

else if 'CC

rr
! then

'CC

rr
!

propagate constraint (C
r
 into MIV subscripts,

possibly creating new ZIV or SIV subscripts

apply ZIV test to untested ZIV subscripts,

return independence or continue

endif

endwhile

while ! untested RDIV subscripts do

test and propagate RDIV constraints

endwhile

test remaining MIV subscripts, then

intersect resulting direction vectors with C
r

return distance/direction vectors from C
r

Figure 4: The Delta Test [3]

Some key points from the above algorithm will now be discussed briefly:

Constraints: Assertions on indices derived from subscripts. A dependence

distance is an example of a simple constraint. A constraint vector contains one

constraint for each of the n indices in a coupled subscript group. The Delta test

 24

uses constraint vectors to store constraints generated by the SIV tests. These

vectors can be easily converted into distance or direction vectors. A given

constraint in the constants vector can take the following form:

- Dependence line: A line <ax+by = c> representing the dependence

equation.

- Dependence distance: the value <d> of the dependence distance.

Equivalent to the dependence line <x - y = -d>.

- Dependence point: a point <x,y> representing dependence from

iteration x to y.

Intersecting Constraints: Dependence equations from all subscripts must be

solved simultaneously for a dependence to exist, intersecting constraints from

each subscript results in greater precision. Constraints are intersected by

performing the SIV tests and then performing a comparison of the resulting

constraint vectors. If the vectors do not contain a common point, distance or

dependence line then no dependence exists.

Restricted DIV Constraints: Restricted DIV constraints discussed in Section

2.3 are a special case when dealing with propagating restraints. Given the

following set of dependence equations propagation of RDIV constraints will be

demonstrated.

i+c1 = j’ +c3

j+c2 = I’+c4

 25

While each of these dependence equations can be tested for dependence

separately without losing precision they must be considered together when

computing the distance and direction vectors. The constraints may now be

propagated by replacing the instances of index I and J with i+!I and j+!J ,

where !I and !J is the distance between the two occurrences of I and j

respectively. This yields the following set of dependence equations:

i + c1 = j + !j + c3

j+c2 = i+ !I + c4

These equations can now be rewritten as:

!I + !j = c1 + c2 + c3 + c4

This equation can now be used to test dependence when given a specific distance

or direction vector.

In practical usage the precision of the Delta test depends greatly on the type of

coupled subscripts being tested. The SIV tests applied in the first phase of the Delta test

algorithm as well as the constraint intersection algorithm are exact and suffer from no

loss of precision. The Delta test does, however, have several sources of imprecision:

- Constraint propagation of dependence lines and distances may be

imprecise if an index cannot be eliminated from both references.

- Complex iteration spaces such as triangular loops may impose

constraints between subscripts not utilized in the Delta test.

- The Delta test does not propagate constraints from general MIV

subscripts. This may cause coupled MIV subscripts to remain at the

 26

end of the delta test. In this case more expensive tests such as the

! -test or Power [6,27] test must be used.

2.4.3 Multiple Subscript Tests

This section discusses a number of multiple subscript dependence tests that have been

developed. Multiple subscript tests provide precision at the cost of performing tests on all

subscripts simultaneously.

Fourier-Motzkin Elimination: One of the earliest methods used for handling

multiple subscript tests utilized the Fourier –Motzkin elimination. The Fourier-

Motzkin elimination is a linear programming method based on the pair wise

comparison of linear inequalities. Some work done in dependence analysis using

the Fourier-Motzkin elimination included Kuhn [28] and Triolet et al. [29] who

attempted to represent array access in convex regions. These regions may be

intersected by using Fourier-Motzkin elimination and may also be used to

summarize memory accesses for entire segments of a program. One downside to

these techniques is their processing time taking 22 to 28 times longer than

conventional dependence testing [29].

Multidimensional GCD: Using Gaussian elimination modified for integers,

Bajerjee’s multidimensional GCD test checks for simultaneous unconstrained

integer solutions in multidimensional arrays [23]. This creates a compact system

where all integer points provide integer solutions for the original dependence

system. The multidimensional GCD test has also been extended in [27] to provide

an exact test for distance vectors.

 27

! Test: Another multidimensional version of Banerjee’s inequalities is the ! test,

presented in [6] by Li et al. The ! test checks for simultaneous constrained real-

valued solutions by forming linear combinations of subscripts that eliminate one

of more instances of indices. The result is then tested using Banerjee’s

inequalities. Simultaneous real valued solutions exist if and only if Banerjee’s

inequalities find solutions in all linear combinations generated.

The ! test can also be used to test direction vectors as well as triangular loops.

The precision of the ! test can be improved by also using the GCD or single-

index exact tests. One issue with the ! test is that it is not possible to extend the

test to prove the existence of simultaneous integer solutions. The ! test is exact

in two dimensions if an unconstrained integer solution exists and the coefficients

of the index variables are all either 1, 0 or -1 [30]. Even with these restrictions the

! test is not exact for three or more coupled dimensions.

Constraint-Matrix: In [26] Wallace developed the Constraint Matrix test which

is a simplex algorithm modified for integer programming. Its precision and

expense are difficult to determine since it halts execution after an arbitrary

number of iterations to avoid cycling. The simplex algorithm itself has a worst

case exponential time complexity but in reality takes linear time for most linear

programming problems. In [31], however, it is shown that in combinatorial

problems where coefficients tend to be 1,0 or -1 the simplex algorithm is very

slow and may cycle for certain pivot rules.

 28

Power Test: The Power Test, developed by Wolfe and Tseng [27], gains great

precision by applying loop bounds by using Fourier-Motzkin elimination to the

dense system resulting from the multidimensional GCD test [27]. In practice the

Power test is quite expensive as compared to other methods for determining

dependence, but it is also very flexible and is well suited for providing precise

dependence information such as direction vectors in imperfectly nested loops,

loops with complex bounds and non-direction vector constraints.

One of the benefits of the Power test, as well as the Delta test is their ability to

detect and discard linearly dependent subscripts as part of their basic algorithm.

Constraint-Matrix and ! tests, on the other hand, both require a pre-test be

performed to eliminate the linearly dependant subscripts.

2.5 Integer Programming Based Dependence Tests

Data dependence analysis of linear array references is equivalent to deciding if there

exists an integer solution to a set of linear equalities and inequalities. The problem of

integer programming can be stated as follows: Does there exist an x such that A x = b ,

B x >= 0, x >= 0 for integer x [32].

When compared to the approximate tests described above, general integer

programming techniques show several advantages. Integer programming techniques have

the ability to simultaneously consider all of the subscripts of an array reference which

allows this type of dependency test to correctly analyze coupled subscripts. Another

benefit to integer programming solutions for dependence testing is the ability to

incorporate both affine loop limits for trapezoidal loops, as well as covering conditionals,

 29

into the equations. Since these tests work on the integer domain the existence of a non-

integer solution does not cause the test to assume that a dependence exists while

Banerjee’s test would.

2.5.1 Simplex Based Integer Programming Test

One type of integer programming test is known as the simplex based integer

programming test and is based around using a branch and bound algorithm which first

applies a linear programming algorithm to find a real-valued solution. This solution is

then checked to see if all of its components are integers. The first non-integer

components is then selected and is used to create two new problems with constraints. The

first problem is the same as the addition problem with the added constraint xi <= ! "ix and

the second problem is the same as the first problem with the constraint xi <= ! " xi . This

process generates a binary tree of problems that repeatedly divide the problem domain.

The branch-and-bound algorithm does an optimized exhaustive search of the problem

domain. If a region of the problem domain does not have a real valued solution that

region will not be searched for an integer solution. Once an integer solution is found, the

process stops and reports success. If all branches of the search lead to empty sets the

process reports that no solution exists.

2.5.2 The Omega Test

The Omega test is based on the Fourier-Motzkin algorithm, discussed earlier in this

paper, and provides an extension to this algorithm by introducing integer constraints on

the solution vector [33]. The Omega test is a very powerful method that subsumes the

Simplex based methods discussed in Section 2.5.1 and includes a number of additional

 30

capabilities. Although the Omega test is only used to determine if there exists an integer

valued solution to a dependence equation it can also be used to eliminate value based

transitive dependences and accurately compute distance vectors.

In cases where simple subscripts are used, like the kind handled by Banerjee’s test,

the Omega test is usually a small constant factor slower than Banerjee’s test [22]. As the

subscripts being tested increase in complexity the execution time will increase for the

Omega test until it reaches a worst-case exponential runtime in the number of variables.

3.0 Summary

This literature survey was conducted as part of preparation for a project that centered

around extracting parallelism from a Handel C hardware specification. Based on the

research completed for this survey it was decided that the method to be used for this

project would be Banerjee’s Inequalities for Loops with Known Limits. This method was

chosen due to its simple implementation and the wide body of software projects that have

been completed using this technique. This will make implementation of the project easier

by providing implementation examples. The other dependence analysis techniques are

either too slow (integer based solutions) or rely heavily upon an existing implementation

of the Banerjee method. This means that creating a solution from the ground up would

require implementing Banerjee’s methods so it was decided that this would be the best

starting point. If in the future a more comprehensive method is required, the Banerjee

method can be augmented with another method.

 31

3.1 Conclusion

This survey discussed many of the methods that are available for determining the

dependence relationships between statements in computer programs. While this paper is

by no means exhaustive it does provide a good basis for beginning a project that includes

the use of dependence analysis techniques. Multiple dependence analysis techniques were

presented, from slow but accurate integer based solutions to fast techniques that rely

heavily on constraining the dependencies being analyzed and may introduce some

inaccuracies in the dependencies that are found.

The survey also follows the development of modern dependence techniques from

Banerjee’s method to the multitude of techniques that build upon it as well as techniques

that use a combination of both Banerjee’s method with other techniques to gain added

accuracy or processing speed. After researching this topic it can be said that there is still

much room for growth in this field as there exist few fast and accurate methods capable

of determining dependence relationships. Research must be done to determine how best

to leverage the speed of simple dependence tests with the accuracy of integer based tests

to create a dependence testing method that can satisfy all dependence analysis problems.

4.0 Acknowledgements

The authors would like to acknowledge the funding support of the Natural Sciences

and Engineering Research Council as well as the Canadian Microelectronics Corporation

for equipment used in this research.

5.0 References

1. GNU Compiler Collection (GCC) Internals - Control Flow Graph,

 32

http://gcc.gnu.org/onlinedocs/gccint/Control-Flow.html, Accessed on November 30, 2007.

2. M.J. Wolfe, C. Tseng, Optimizing Supercompilers for Supercomputers, The MIT

Press, Cambridge, MA, 1989.

3. G. Goff, K. Kennedy, C. Tseng, Practical Dependence Testing, Proceedings of the

ACM SIGPLAN '91 Conference on Programming Language Design and Implementation,

June 26-28, 1991.

4. J.R. Allen, Dependence Analysis for Subscripted Variables and Its Application to

Program Transformations, PhD thesis, Rice University, April 1993.

5. D. Callahan, Dependence Testing in PFC: Weak Separability, Supercomputer

Software Newsletter 2, Dept. of Computer Science, Rice University, August 1986.

6. Z. Li, P.Yew, C. Zhu, Data dependence analysis on multi-dimensional array

references, Proceedings of the 1989 ACM Internaional Conference on Supercomputing,

Crete, Greece, June 1989.

7. M.J. Wolfe, Optimizing Supercompilers for Supercomputers, PhD thesis, Dept. of

Computer Science, University of Illinois at Urbana-Champaigne, October, 1982.

8. P.M. Petersen, D.A. Padua, Static and Dynamic Evaluation of Data Dependence

Analysis Techniques, ICS93, 1993.

9. J.R. Allen, K. Kennedy, Automatic translation of Fortran programs to vector Form,

ACM Transactions on Programming Languages and Systems, October 1987.

10. D. Kuck, The Structure of Computers and Computations, Volume 1, John Wiley and

Sons, New York, NY, 1978.

11. Y. Muraoka, Parallelism Exposure and Exploitation in Programs, PhD thesis, Dept of

Computer Science, University of Illinois at Urbana-Champaigne, February 1971.

12. R. Heuft and W. Little, Improved time and parallel processor bounds for Fortran-like

loops, IEEE Transactions on Computers, January 1982.

13. K. Kennedy, K.S. McKinely, C. Tseng, Analysis and transformation in the ParaScope

Editor, IEE Transactions on Parallel and Distributed Systems, July 1991.

14. L. Lamport, The Parallel Execution of DO Loops, Communications of the ACM,

 33

February 1974.

15. M.J. Wolfe, M. Lam, Maximizing Parallelism Via Loop Transformations, Proceedings

of the Third Workshop on Languages and Compilers for Parallel Computing, August

1990.

16. M.J. Wolfe, Loop Skewing: The Wavefront Method Revisited, International Journal of

Parallel Programming, August 1986.

17. D. Callahan, S. Carr, K. Kennedy, Improving Register Allocation for Subscripted

Variables, Proceedings of the ACM SIGPLAN 1990 Conference on Program Language

Design and Implementation, June 1990.

18. D. Gannon, W. Jalby, K. Gallivan, Strategies for Cache and Local Memory

Management By Global Program Transformations, Proceedings of the First

Internation Conference on Supercomputing, June 1987.

19. A. Porterfield, Software Methods for Improvement of Cache Performance, PhD

thesis, Rice University, May 1989.

20. D. Callahan, K. Cooper, R. Hood, K. Kennedy, ParaScope: A Parallel Programming

Environment, The international Journal of Supercomputer Applications, Winter 1988.

21. K. Kennedy, K.S. McKinely, C. Tseng, Interactive Parallel Programming Using the

ParaScope Editor, IEE Transactions on Parallel and Distributed Systems, July 1991.

22. U. Banerjee, Speedup of Ordinary Programs, PhD thesis, University of Illinois at

Urbana-Champaigne, October 1979.

23. U. Banerjee, Dependence Analysis for Supercomputing, Kluwer Academic Publishers,

1988.

24. X. Kong, D. Klappholz, K. Psarris, The I Test : A new Test for Subscript Data

Dependence, Proceedings of the 1990 Internationl Conference on parallel Processing,

August 1990.

25. M. Wolfe, C.W. Tseng, The Power Test for Data Dependence, IEEE Transactions on

Parallel and Distributed Systems, September 1992.

26. D. Wallace, Dependence of Multi-dimensional Array References, Proceedings of the

 34

Second International Conferences on Supercomputing, July 1988.

27. M.J. Wolfe, C. Tseng, The Power Test For Data Dependence, Technical Report, Dept.

of Computer Science and Engineering, Oregon Graduate Institute, August 1990.

28. R. Kuhn, Optimization and Interconnection Complexity for: Parallel Processors,

Single-Stage Networks and Decision Trees, PhD Thesis, Dept of Computer Science,

University of Illinois at Urbana-Champaigne, February 1980.

29. R. Triloet, F. Irigoin, P. Feautrier, Direct Parallelization of CALL Statements,

Proceedings of the SIGPLAN ’86 Symposium on Compiler Construction, July 1986.

30. Z. Li, P. Yew, Some Results On Exact Data Dependence Analysis, Languages and

Compilers for Parallel Computing, The MIT Press, 1990.

31. A. Schrijver, Theory of Linear and Integer Programming, John Wiley and Sons, 1986.

32. H.M. Salkin, K. Mathur, Foundations of Integer Progamming, North Holland, 1989.

33. W. Pugh, The Omega Test: A Fast and Practical Integer Programming Algorithm for

Dependence Analysis, Communications of the ACM, August 1992.

