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Abstract 
 
Finding parallelism that exists in a software program depends a great deal on determining 

the dependencies that exist between statements that exist in that program. Instructions 

that are found to be independent of one another can be executed in parallel with one 

another with the hope of increasing the execution speed of a software program. 

Determining dependence relationships between statements in software programs, 

however, is not an easy task. There exist many different methods for determining 

dependence relations, filling different requirements from speed to accuracy. This paper 

will discuss a number of these techniques, detailing several different classes of 

dependence analysis techniques as well as several different techniques within these 

classes.
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1. Introduction 

In recent years the realms of software development and hardware design have began 

to converge. Hardware design, once the domain of electrical engineers, has recently 

become more accessible to software developers through the rise of hardware description 

languages such as Handel-C and VHDL and reconfigurable hardware such as Field 

Programmable Gate Arrays. This shift allows software developers to leverage the 

potential of building customized hardware circuits which can improve the performance of 

their software systems. This move to high level hardware design does not come without 

problems. The hardware systems used to implement these high level hardware designs 

are well suited for parallel execution. Hardware designs do not need to leverage this 

potential parallelism but in doing so sacrifice much of the potential for increasing the 

performance of the system. In order to take advantage of this potential, however, the 

hardware designer needs to be aware of how to best parallelize the actions performed by 

their hardware systems. This can pose a problem to hardware designers using a high level 

description language such as Handel-C. These description languages enable developers to 

easily create a hardware system by using a language that is similar to a software 

programming language. In doing so, however, many developers fail to use the full 

potential of the hardware platform they are targeting.  

Even with the rise in parallel computation, finding developers that are experienced 

with parallel programming is challenging. Translating this lack of parallel programming 

skills to software developers who have moved into high level hardware design leads to an 

even smaller number of developers who are capable of creating parallelized hardware 

systems. In order for these developers to properly leverage the technology available to 
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them it is important to consider the creation of a tool set that is capable of automatically 

detecting and exploiting parallelism in a hardware design. The purpose of this paper is to 

investigate a number of different techniques that are currently being used for automated 

parallelism detection as well as any background material that is necessary to implement 

these techniques.  

2. Dependency Analysis 

One of the key requirements for determining the presence of parallelizable 

programming code, whether it hardware or software, is determining the data and control 

dependencies that exist between the different statements or actions in the source file. This 

section will discuss the types of dependencies that arise in computer programs and then 

discuss several techniques that have been proposed for determining where dependencies 

exist in a given program. 

2.1 Control Dependency 

The first type of dependency that will be discussed is the control dependency. Control 

dependencies arise in almost every software program written due to the inclusion of 

control structures such as conditional branching. One method for representing the control 

dependencies for a given program is the Control Flow Graph (CFG). Figure 1 shows an 

example of a control flow graph based on the pseudocode presented in Example 1.  A 

control flow graph is comprised of nodes which form a graph of all paths that can be 

traversed through a program. Each node in a CFG represents a basic block which is a 

sequential piece of code or jump target. Directed edges are used in a CFG to denote the 

target of branches and sequential execution. 
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Array x[10] 

for i <- 0 to 10 

 if i mod 2 = 0 then 

  x[i] = x[i]+i 

 else 

  x[i] = x[i]+i/2 

 end if 

end for  

Example 1: Example Pseudocode 

 

 

Figure 1: Example of a Control Flow Graph 
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Determining control dependencies is vital in the search for parallelism as some basic 

blocks of code may not contain a data dependency but still may not be executable in 

parallel due to a control dependency. Unlike data dependencies, control dependencies are 

much easier to resolve from program source code. Control flow graphs can be generated 

without any knowledge of the data that is being used in the system and thus require only 

simple parsing of the source file to locate branch targets [1]. 

2.2 Data Dependency 

As discussed in Section 2.1 data dependencies are not as trivial to resolve as control 

dependencies. In order to discuss data dependencies it is important to first discuss the 

different types of data dependencies that can arise in programs. Once this is complete 

several different techniques for handling data dependencies will be presented. 

2.2.1 True Data Dependencies 

A true data dependency arises in a program if one operation in the program creates a 

value that is used by another operation in the program. True data dependencies are also 

known as Read After Write or RAW dependencies. This type of dependency forces 

execution to take place in such a way that source values are created before they are 

needed by subsequent operations. True data dependencies cannot be removed from a 

program without extensively rewriting the program using different techniques. 

2.2.2 Storage Dependencies 

When writing a software program little thought is normally given to the underlying 

architecture that a program will be executing on. Variable names are used to abstract 

away the underlying storage structures that are used by the hardware such as registers and 
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other types of memory. In order for a program to execute on physical hardware it is 

necessary to be able to make use of limited storage resources during execution. This 

limited storage capability leads to storage dependencies where execution of some 

instructions must be delayed until the storage location for the result is no longer needed 

by previous instructions. Storage dependencies can be broken down into two separate 

categories: Write After Read (WAR) and Write After Write (WAW). Write After Read 

dependencies arise when an instruction needs to write a value to a storage location but the 

target storage location needs to be read by a previous instruction. This means that the 

instruction that needs to perform the write must now wait until the read has completed 

before performing its write. Write After Write dependencies occur when subsequent 

instructions attempt to write to the same storage location. One instruction must now wait 

until the other instruction has completed writing to storage before it can perform its write 

to storage. 

Unlike true data dependencies, however, storage dependencies can be removed by 

using a technique known as register or storage renaming. This technique is applied by 

using temporary storage locations in cases where WAR and WAW storage dependencies 

are found. This allows instructions that previously were blocked by the storage 

dependency to execute and then finalize their data storage at a later time.  

2.2.3 Data Flow Graph 

One common method for representing the dependencies in a software program is 

through a Data Flow Graph (DFG). A DFG utilizes the set of dependencies generated by 

different dependency testing techniques to construct a graph that illustrates the 

dependencies that exist in a program. A DFG is very similar to the CFG’s discussed 
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earlier in that they are a directed graph with each node representing some statement in a 

software program and each edge representing a dependency between two nodes. Figure 2 

shows an example DFG based on the example pseudocode shown in Example 1. 

 

Figure 2: Data Flow Graph 

2.3 Control-Data Flow Graph 

Given a set of data flow dependencies as calculated by the methods that will be 

discussed later in this paper, along with a control flow graph generated from the program 

source code, a Control-Data Flow Graph (CDFG) can be constructed. A CDFG is created 

by merging the data flow dependency graph with the control flow dependency graph into 

one combined graph. Figure 3 shows an example of a CDFG based on merging the 

graphs from Figures 1 and 2. 
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Figure 3: Control-Data Flow Graph Example 

2.3 Dependence Classification 

This section will discuss several criteria that is used for classifying the subscripts in 

pairs of array references. Complexity refers to the number of indices appearing within a 

subscript and separability describes whether a given subscript interacts with other 

subscripts for the purpose of dependence testing. 

Before continuing with this section it is important to introduce the definitions for 

indices and subscripts as they will be used for the purpose of this paper. 

Index (Indices) – The index variable for some loop surrounding both of the array 

references being tested for dependence. 
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Subscript – Subscript refers to the subscripted positions in a pair of array 

references. For example in the array reference A(I,J) = A(I,K) + X the index I 

appears in the first subscript and J and K appear in the second. 

2.3.1 Index Complexity  

When performing dependence testing it is possible to classify the subscript positions 

by the total number of loop indices that they contain. There are three possible types of 

complexity. 

Zero Index Variable (ZIV) – A subscript position contains no index in either 

reference.  

Single Index Variable (SIV) - A subscript position contains only one index in 

either array reference. 

Multiple Index Variable (MIV) – A subscript position contains more than one 

index in its array references. A special case of the MIV subscript exists which is 

known as the Restricted Double Index Variable (RDIV). An RDIV subscript has 

the form <a1i+c1, a2j+c2>. RDIV subscripts [2] are similar to SIV subscripts 

except that i and j are distinct indices. SIV tests may be extended to handle 

RDIV subscripts by observing the loop bounds for i and j. 

The following example demonstrates the three types of complexity classification. 

 DO 5 i 

  DO 5 j 

   DO 5 k 

    A(5, i+1, j) = A(N, I, K) + X 

Example 2: Three types of complexity classification 
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When performing dependence testing between the two array references to A in the 

code above the first subscript is ZIV, the second is SIV and the third is MIV. [3] 

2.3.1 Index Separability   

When performing dependence testing on multidimensional arrays a subscript position 

is said to be separable if its indices do not occur in the other subscripts [4,5]. Two 

different subscripts are said to be coupled when they contain the same index [6]. In the 

following example the first subscript is separable, but the second and third are coupled 

because they both contain the index J. ZIV subscripts are by nature separable because 

they have no indices. 

DO 5 I 

 DO 5 J 

  DO 5 K 

   A(I,J,J) = A(I,J,K) + X 

Example 3: Subscript Examples 

When dealing with multidimensional arrays separability becomes a key issue because 

it can introduce imprecision in the dependence testing. One approach, suggested in [7], is 

called the subscript-by-subscript approach and tests each subscript separately and then 

intersects the resulting sets of direction vectors (Section 2.3.1). One issue with this 

technique is that it may produce direction vectors that do not exist. The following 

example highlights this problem. 

 DO 5 I 

  A(I+1, I+2) = A(I,I) + X 

Example 4:  Separability Example 
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Performing the subscript-by-subscript test on the array reference in this example would 

produce a direction vector of the form (<) which can easily be shown to be incorrect 

because the above example contains no actual data dependence. 

While this technique may cause problems when the subscripts are separable, if the 

subscripts are separable it can be used to compute the direction vector for each subscript 

independently, merging the direction vectors on a positional basis without losing any 

precision. The example below demonstrates this by producing a direction vector of the 

form (<.=,>) or the distance vector (Section 2.3.2) of the form (1,0,-1). 

 DO 5 I 

  DO 5 J 

   DO 5 K 

    A(I+1,J,K-1) = A(I,J,K) + X 

Example 5:  Separable subscripts example 

2.3 Dependence Analysis Techniques 

Locating dependencies between variables with static addresses is trivial and is not the 

focus of much work in the field of performing dependency analysis. Problems arise, 

however, when attempting to determine data dependencies between storage locations 

referenced by variable pointers. Without taking variable pointers (indices) into 

consideration potential flow dependence between two statements Sv and Sw can be 

identified if both statements exist in the body of the same, possibly nested loop and if 

both statements refer to the same array. If statement Sv refers to the array on the left hand 

side of the statement and Sw on the right there is the potential for a flow dependence 

between these statements. The following method describes how to determine if a 
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potential flow dependence will resolve to an actual flow dependence or if no dependence 

between the two statements exist. Whenever a potential flow dependence is identified it is 

necessary to invoke the dependence tests that will decide if an actual dependence exists. 

When describing analysis techniques most of the focus is on programs that contain 

array references (variable pointers) and these references are contained within (possibly 

nested) loops. In order to demonstrate this problem Figure 4 shows a n-dimensional array 

X, with array indices provided by functions fi and gi which map from Zd to Z (where Z 

is the collection of all integers). The iteration space is the set of all possible values the 

vector of loop indices can assume, or I  = (I1,I2,…,Id). 

DO I1 = L1,U1 

… 

DO Id = Ld, Ud 

Sv: X(f1(I1,…,Id),…,fn(I1,…Id)) =  

Sw: X(g1(I1,…,Id),…,gn(I1,…Id) 

END DO 

… 

END DO 

Figure 4: Generic Nested Loop [1] 

It must now be decided whether or not some value computed by Sv is used by Sw. In 

this case a flow dependence would exist between the statements Sv and Sw. In order to 

determine if a flow dependence exists between Sv and Sw  it is necessary to show the 

following conditions are met: 
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1) The execution of Sv takes place in the iteration I ’ = (I’1, I’2,…,I’d) 

and the execution of Sw takes place in the iteration I ’’ = 

(I’’1,I’’2,…,I’’d). Both I ’ and I ’’ are in the iteration space so (Lj 

<= I’j, I’’j<=Uj, 1<= j <= d). 

2) fi( I ’) = gi( I ’’) for all (1<= I <=n) 

3) I ’ <= I ’’ 

What this set of conditions states is that for each pair of statements in a loop, a flow 

dependency exists between them if Sw is either located in the same loop iteration as Sv or 

a future loop iteration (both must be in the same loop or loop space), the index produced 

by index function fi must equal the loop index produced by index function gi and finally 

the loop indices I ’ must be less than or equal to the loop indices I ’’. 

If it is necessary to determine a flow dependence between Sv and Sw where Sv is 

located lexically after Sw the same conditions 1 and 2 hold while condition 3 must be 

modified as such: I ’ < I ’’. If these conditions are satisfied then statements Sv and 

Sw cannot be executed in parallel due to the existence of a data dependency. 

This also applies to the two other types of data dependencies that were discussed in 

the background section: anti-dependency and output dependency. In order for an anti-

dependency to exist it is necessary for the element of array X to be on the right hand side 

in statement Sv and on the left hand side in Sw. For an output dependency to exist it is 

necessary for both references to X to be on the left hand side of the statements Sv and Sw.  
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2.3.1 Direction Vectors 

One method that is often used for determining flow dependence is decomposing the 

relationship between the components of vectors I ’ and I ’’ into several sub-

problems. Each of these sub-problems represents each possible ordering relationship 

between the components of I ’ and I ’’. For example, if I ’’ and I ’ both exist in 

Z2 then the condition I ’ < I ’’ is decomposed into four cases [8]. 

Usually these cases are specified using direction vectors. These direction vectors take 

the form of Y = (y1,y2,…,yd) where each yk is either <, >, or = and represents the 

ordering relation between I ’k and I ’’k. The direction vectors derived from Example 1 

would consist of: (<.<), (<,=) and (=,<).  Direction vectors were first introduced by Wolfe 

[7] and are useful for calculating the level of loop carried dependences [4,9]. 

2.3.2 Distance Vectors 

Distance vectors were first used by Kuck and Muaoka in [10, 11] and are more 

precise versions of the Direction vectors discussed in Section 2.3.1. Distance vectors are 

used to specify the actual distance between two accesses to the same memory location 

and have been used to guide optimizations which exploit parallelism [12,13,14,15,16] 

and memory hierarchy [17,18,19]. The following example demonstrates how a distance 

vector is computed from a set of array references. 
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 DO 5 I 

  DO 5 J 

   DO 5 K 

    A(I+1,J,K-1)  = A(I,J,K) + X 

Example 6: Computing a Distance Vector 

In this example the distance between I+1 and I is 1, J and J is 0 and K-1 and K is -1. This 

produces a distance vector of the form (1,0,-1). In some cases a direction vector or 

distance vector alone may be insufficient to completely describe a dependence and so 

both the distance and direction vector may be required. 

2.4 Dependence Tests 

There exist many different types of dependence tests that can be used to determine if 

dependencies exist between statements in a piece of software. This section will discuss 

several of these dependence tests and highlight their strengths and weaknesses. These 

tests will be broken down into two main categories: integer programming and simple or 

approximate based dependence tests.  

2.4.1 A Partition Based Algorithm 

In [3] an algorithm is presented that demonstrates a natural partition-based approach 

for determining dataflow dependencies. The algorithm is as follows: 

 1. Partition the subscripts into separable and minimal coupled groups. 

 2. Label each subscript as ZIV, SIV or MIV, 

3. For each separable subscript, apply the appropriated single subscript test 

(ZIV,SIV,MIV) based on the complexity of the subscript. This will produce 
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independence or direction vectors for the indices occurring in that subscript. 

Several of these tests are discussed in further detail later in this paper. 

4. For each coupled group, apply a multiple subscript test to produce a set of 

direction vectors for the indices occurring within that group 

5. If any test yields independence, no dependences exist. 

6. Otherwise merge all the direction vectors computed in the previous steps into a 

single set of direction vectors for the two references. 

This algorithm is implemented in both PFC, an automatic vectorizing and parallelising 

compiler, as well as ParaScope, a parallel computing environment [13,20,21]. 

The algorithm presented above takes advantage of the properties of separability by 

classifying all subscripts in a set of array references as separable or part of a minimal 

coupled group. A minimal coupled group cannot be partitioned into two non-empty 

subgroups with distinct index sets. Once this partitioning is complete each separable 

subscript or group of coupled subscripts have disjoint sets of indices. With the disjoint 

sets of indices it is now possible to test each partition separately, merging the resulting 

distance or direction vectors without the fear of losing precision. 

2.4.1 Simple and Approximate Dependence Tests 

When searching literature on dependence testing one of the most common names 

referenced is Banerjee. Banerjee developed several different approximate dependence 

testing techniques [22,23] that have been widely adopted in both commercial as well as 

experimental compilers. Banerjee’s work has also given rise to much other work 

[6,24,25] which will be discussed later in this section. 
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Simple and approximated dependence testing has a main goal of being capable of 

breaking potential data dependencies without the large processing cost of integer 

programming techniques that will be discussed in Section 2.4.2. The main difference 

between these tests and the integer programming tests is that simple and approximate 

tests analyze only one subscript at a time.  This means that the test will only show a 

dependence as being broken if for some subscript i, there exist no index vectors I ’ and 

I ’’ within the iteration space that satisfy the equation fi( I ’) = gi( I ’’) where 

fi and gi are the array index function as in Figure 1. This test is considered to be 

conservative because if there exist coupled subscripts the system of equations may not 

have a solution even if all of the individual equations have solutions. 

2.4.1.1 Simple Dependency Tests 

The first test that will be discussed in this section is the constant test. The constant 

test is capable of breaking potential dependencies as well as proving that dependencies do 

indeed exist. Using the constant test it can be shown that if all subscripts in two array 

references are loop invariant and have the same value, then there exists a data 

dependence for all possible direction vectors. If any pair of corresponding subscripts are 

constant and are not equal then there exists no data dependence between them. Loop 

invariant terms that exist in both subscripts in the potential dependence can be cancelled 

before the comparison is performed.[8] 

Another simple test that is used to determine flow dependencies is the Generalized 

Greatest Common Divisor (GGCD) test [23]. This test can be used to find criterion for 

the solution to the equation fi( I ’) = gi( I ’’) as shown earlier. This test can be 
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used to show that if both fi and gi are linear that a solution to the equation exists if the 

greatest common divisor of the coefficients multiplies I ’ and I ’’ and also divides 

the constant term. If the GCD does not divide the constant term then no solution to the 

equation can exist.  

2.4.1.2 Banerjee’s Inequalities for Loops with Known Limits 

This section will discuss Banerjee’s inequalities for loops with known limits as well 

as some work that has been done based on these inequalities. In order to describe 

Banerjee’s inequalities we first assume that 

fi( I ) = a1I1 + a2I2 + … + adId + a0 

and 

gi( I ) = b1I1 + b2I2 + … + bdId + b0 

This allows the equation fi( I ) = gi( I ’’) to be written as (a1I’1 – b1I’’1) 

+ … + (adI’d – bdI’’d) = (b0 – a0).  The function F( I ) = (a1I’1 – 

b1I’’1) + … + (adI’d – bdI’’d) is continuous in R2d. Let Bmin, Bmax denote 

any two values of F in a connected set R (subset) R2d, which contains all possible values 

of the iteration space. Suppose also that Bmin <= b0 – a0 <= Bmax . Then, from the 

intermediate value theorem, we know that the equation F( I ) = b0 –a0 has a solution 

u  = (u1,u2,…,u2d) exists in R and Banerjee’s test assumes that a dependence exists.  

Since u  only belongs to the iteration space when it is an integer vector it can be said that 

this is a conservative assumption to make. 

If we define Bmin and Bmax as the minimum and maximum values of F in R the 

relation shown above, Bmin <= b0 – a0 <= Bmax, does not hold so no solution can 
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exist and potential dependencies are broken. It has been shown in [22,23] that 

dependence tests based on this formulation of Banerjee’s dependence inequalities apply 

in two general cases.  

Loop limits are either constant or linear functions creating an iteration space in the 

shape of a trapezoid. In this case a constant limit would be a constant value that can be 

determined by the compiler at compile time. 

2.4.2 Symbolic Tests  

The basis of symbolic testing for resolving data flow dependencies is the idea that c2-

c1, the difference between the constant terms in two array reference subscripts, can be 

symbolically formed and simplified. The result of this simplification can then be used 

like a constant in order to break possible dependencies. 

The test that will be discussed in this section deals with two array references that are 

held at two different levels of nested loops as shown in Example 7.  

 Do 5 I = 1, N1 

  A(a1i+c1) = … 

  DO 10 J = 1, N2 

   … = A(a2j+c2) 

Example 7: Two Array References at Different Levels 

Based on the above example, and assuming for simplicity that a1 is greater than or equal 

to zero. A dependence exists if the following dependence equation is satisfied: 

A1i – a2j = c2 – c1 

For some value of I, 1<= I <= N1 and j, 1 <= j <= N2. 
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In this test there are two cases that must be considered. a1 and a2 may have the same 

sign and in this case a1i –a2j assumes the maximum value for i=n1 and j=1 and its 

minimum value for i=1 and j=n2. Based on this a dependence exists if and only if: 

A1-a2N2 <= c2-c1 <= a1N1 – a2 

In this case, if either inequality is violated then the dependence cannot exist. In the 

second case a1 and a2 now have different signs. a1i – a2i now assumes its maximum 

for I = N1 and j = N2 so a dependence only exists if:  

A1 – 2a <= c1 – c2 <= a1N1 – a2N2 

Again, if either of these inequalities are violated the dependence does not exist. 

2.4.2 The Delta Test 

The main idea behind the delta test [6,26] is that constraints derived from SIV 

subscripts may be efficiently propagated into other subscripts in the same coupled group 

without losing any precision. The delta test can find independence if any of its ZIV or 

SIV tests determine independence. If no independence is found using the ZIV and SIV 

tests the delta algorithm then converts all SIV subscripts into constraints and propagates 

them into MIV subscripts when possible. This conversion is repeated until no new 

constraints can be found then constraints for RDIV subscripts are propagated. Once this 

is completed remaining MIV subscripts are tested. The results are then intersected with 

existing constraints. The algorithm for the Delta test is outlined in Figure 4. 
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INPUT: coupled SIV and/or MIV subscripts 

OUTPUT: hybrid distance/direction vector, 

constrained MIV subscripts 

initialize elements of constraint vector C
r
to <none> 

while !3 untested SIV subscripts do 

apply SIV test to all untested SIV subscripts, 

return independence or 

derive new constraint vector 'C

r
 

'' CCC

rrr
!"  

if 'C

r
= 0 then 

return independence 

else if 'CC

rr
! then 

'CC

rr
!  

propagate constraint (C
r
 into MIV subscripts, 

possibly creating new ZIV or SIV subscripts 

apply ZIV test to untested ZIV subscripts, 

return independence or continue 

endif 

endwhile 

while ! untested RDIV subscripts do 

test and propagate RDIV constraints 

endwhile 

test remaining MIV subscripts, then 

intersect resulting direction vectors with C
r
 

return distance/direction vectors from C
r
 

 
Figure 4: The Delta Test [3] 

Some key points from the above algorithm will now be discussed briefly:  

Constraints:  Assertions on indices derived from subscripts. A dependence 

distance is an example of a simple constraint. A constraint vector contains one 

constraint for each of the n indices in a coupled subscript group. The Delta test 
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uses constraint vectors to store constraints generated by the SIV tests. These 

vectors can be easily converted into distance or direction vectors. A given 

constraint in the constants vector can take the following form: 

- Dependence line: A line <ax+by = c> representing the dependence 

equation. 

- Dependence distance: the value <d> of the dependence distance. 

Equivalent to the dependence line <x - y = -d>. 

- Dependence point: a point <x,y> representing dependence from 

iteration x to y. 

 

Intersecting Constraints: Dependence equations from all subscripts must be 

solved simultaneously for a dependence to exist, intersecting constraints from 

each subscript results in greater precision. Constraints are intersected by 

performing the SIV tests and then performing a comparison of the resulting 

constraint vectors. If the vectors do not contain a common point, distance or 

dependence line then no dependence exists. 

 

Restricted DIV Constraints:  Restricted DIV constraints discussed in Section 

2.3 are a special case when dealing with propagating restraints. Given the 

following set of dependence equations propagation of RDIV constraints will be 

demonstrated.   

i+c1 = j’ +c3 

j+c2 = I’+c4 
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While each of these dependence equations can be tested for dependence 

separately without losing precision they must be considered together when 

computing the distance and direction vectors. The constraints may now be 

propagated by replacing the instances of index I and J with i+!I and j+!J , 

where !I and !J is the distance between the two occurrences of I and j 

respectively. This yields the following set of dependence equations: 

i + c1 = j + !j + c3 

j+c2 = i+ !I + c4 

These equations can now be rewritten as: 

!I + !j  = c1 + c2 + c3 + c4 

This equation can now be used to test dependence when given a specific distance 

or direction vector. 

In practical usage the precision of the Delta test depends greatly on the type of 

coupled subscripts being tested. The SIV tests applied in the first phase of the Delta test 

algorithm as well as the constraint intersection algorithm are exact and suffer from no 

loss of precision. The Delta test does, however, have several sources of imprecision: 

- Constraint propagation of dependence lines and distances may be 

imprecise if an index cannot be eliminated from both references. 

- Complex iteration spaces such as triangular loops may impose 

constraints between subscripts not utilized in the Delta test. 

- The Delta test does not propagate constraints from general MIV 

subscripts. This may cause coupled MIV subscripts to remain at the 
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end of the delta test. In this case more expensive tests such as the        

! -test or Power [6,27] test must be used. 

2.4.3 Multiple Subscript Tests 

This section discusses a number of multiple subscript dependence tests that have been 

developed. Multiple subscript tests provide precision at the cost of performing tests on all 

subscripts simultaneously. 

Fourier-Motzkin Elimination: One of the earliest methods used for handling 

multiple subscript tests utilized the Fourier –Motzkin elimination. The Fourier-

Motzkin elimination is a linear programming method based on the pair wise 

comparison of linear inequalities. Some work done in dependence analysis using 

the Fourier-Motzkin elimination included Kuhn [28] and Triolet et al. [29] who 

attempted to represent array access in convex regions. These regions may be 

intersected by using Fourier-Motzkin elimination and may also be used to 

summarize memory accesses for entire segments of a program. One downside to 

these techniques is their processing time taking 22 to 28 times longer than 

conventional dependence testing [29]. 

 

Multidimensional GCD: Using Gaussian elimination modified for integers, 

Bajerjee’s multidimensional GCD test checks for simultaneous unconstrained 

integer solutions in multidimensional arrays [23].  This creates a compact system 

where all integer points provide integer solutions for the original dependence 

system. The multidimensional GCD test has also been extended in [27] to provide 

an exact test for distance vectors. 
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! Test: Another multidimensional version of Banerjee’s inequalities is the ! test, 

presented in [6] by Li et al. The ! test checks for simultaneous constrained real-

valued solutions by forming linear combinations of subscripts that eliminate one 

of more instances of indices. The result is then tested using Banerjee’s 

inequalities. Simultaneous real valued solutions exist if and only if Banerjee’s 

inequalities find solutions in all linear combinations generated. 

The ! test can also be used to test direction vectors as well as triangular loops. 

The precision of the ! test can be improved by also using the GCD or single-

index exact tests. One issue with the ! test is that it is not possible to extend the 

test to prove the existence of simultaneous integer solutions. The !  test is exact 

in two dimensions if an unconstrained integer solution exists and the coefficients 

of the index variables are all either 1, 0 or -1 [30]. Even with these restrictions the 

! test is not exact for three or more coupled dimensions. 

 

Constraint-Matrix:  In [26] Wallace developed the Constraint Matrix test which 

is a simplex algorithm modified for integer programming. Its precision and 

expense are difficult to determine since it halts execution after an arbitrary 

number of iterations to avoid cycling. The simplex algorithm itself has a worst 

case exponential time complexity but in reality takes linear time for most linear 

programming problems. In [31], however, it is shown that in combinatorial 

problems where coefficients tend to be 1,0 or -1 the simplex algorithm is very 

slow and may cycle for certain pivot rules. 



 28 

 

Power Test: The Power Test, developed by Wolfe and Tseng [27], gains great 

precision by applying loop bounds by using Fourier-Motzkin elimination to the 

dense system resulting from the multidimensional GCD test [27]. In practice the 

Power test is quite expensive as compared to other methods for determining 

dependence, but it is also very flexible and is well suited for providing precise 

dependence information such as direction vectors in imperfectly nested loops, 

loops with complex bounds and non-direction vector constraints. 

One of the benefits of the Power test, as well as the Delta test is their ability to 

detect and discard linearly dependent subscripts as part of their basic algorithm. 

Constraint-Matrix and ! tests, on the other hand, both require a pre-test be 

performed to eliminate the linearly dependant subscripts. 

2.5 Integer Programming Based Dependence Tests 

Data dependence analysis of linear array references is equivalent to deciding if there 

exists an integer solution to a set of linear equalities and inequalities. The problem of 

integer programming can be stated as follows: Does there exist an x such that A x  = b , 

B x  >= 0, x  >= 0 for integer x  [32]. 

When compared to the approximate tests described above, general integer 

programming techniques show several advantages. Integer programming techniques have 

the ability to simultaneously consider all of the subscripts of an array reference which 

allows this type of dependency test to correctly analyze coupled subscripts. Another 

benefit to integer programming solutions for dependence testing is the ability to 

incorporate both affine loop limits for trapezoidal loops, as well as covering conditionals, 
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into the equations. Since these tests work on the integer domain the existence of a non-

integer solution does not cause the test to assume that a dependence exists while 

Banerjee’s test would. 

2.5.1 Simplex Based Integer Programming Test 

One type of integer programming test is known as the simplex based integer 

programming test and is based around using a branch and bound algorithm which first 

applies a linear programming algorithm to find a real-valued solution. This solution is 

then checked to see if all of its components are integers. The first non-integer 

components is then selected and is used to create two new problems with constraints. The 

first problem is the same as the addition problem with the added constraint xi <= ! "ix  and 

the second problem is the same as the first problem with the constraint xi <= ! " xi . This 

process generates a binary tree of problems that repeatedly divide the problem domain. 

The branch-and-bound algorithm does an optimized exhaustive search of the problem 

domain. If a region of the problem domain does not have a real valued solution that 

region will not be searched for an integer solution. Once an integer solution is found, the 

process stops and reports success. If all branches of the search lead to empty sets the 

process reports that no solution exists. 

2.5.2 The Omega Test 

The Omega test is based on the Fourier-Motzkin algorithm, discussed earlier in this 

paper, and provides an extension to this algorithm by introducing integer constraints on 

the solution vector [33]. The Omega test is a very powerful method that subsumes the 

Simplex based methods discussed in Section 2.5.1 and includes a number of additional 
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capabilities. Although the Omega test is only used to determine if there exists an integer 

valued solution to a dependence equation it can also be used to eliminate value based 

transitive dependences and accurately compute distance vectors. 

In cases where simple subscripts are used, like the kind handled by Banerjee’s test, 

the Omega test is usually a small constant factor slower than Banerjee’s test [22]. As the 

subscripts being tested increase in complexity the execution time will increase for the 

Omega test until it reaches a worst-case exponential runtime in the number of variables.  

3.0 Summary 

This literature survey was conducted as part of preparation for a project that centered 

around extracting parallelism from a Handel C hardware specification. Based on the 

research completed for this survey it was decided that the method to be used for this 

project would be Banerjee’s Inequalities for Loops with Known Limits. This method was 

chosen due to its simple implementation and the wide body of software projects that have 

been completed using this technique. This will make implementation of the project easier 

by providing implementation examples. The other dependence analysis techniques are 

either too slow (integer based solutions) or rely heavily upon an existing implementation 

of the Banerjee method. This means that creating a solution from the ground up would 

require implementing Banerjee’s methods so it was decided that this would be the best 

starting point. If in the future a more comprehensive method is required, the Banerjee 

method can be augmented with another method.   
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3.1 Conclusion 

This survey discussed many of the methods that are available for determining the 

dependence relationships between statements in computer programs. While this paper is 

by no means exhaustive it does provide a good basis for beginning a project that includes 

the use of dependence analysis techniques. Multiple dependence analysis techniques were 

presented, from slow but accurate integer based solutions to fast techniques that rely 

heavily on constraining the dependencies being analyzed and may introduce some 

inaccuracies in the dependencies that are found. 

The survey also follows the development of modern dependence techniques from 

Banerjee’s method to the multitude of techniques that build upon it as well as techniques 

that use a combination of both Banerjee’s method with other techniques to gain added 

accuracy or processing speed. After researching this topic it can be said that there is still 

much room for growth in this field as there exist few fast and accurate methods capable 

of determining dependence relationships. Research must be done to determine how best 

to leverage the speed of simple dependence tests with the accuracy of integer based tests 

to create a dependence testing method that can satisfy all dependence analysis problems.  
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