
Efficient Search of Path-Constrained Moving Objects

by

Bradford G. Nickerson and Thuy Thi Thu Le
Faculty of Computer Science

University of New Brunswick. Canada

Technical report TR08-191, September 08, 2008

Faculty of Computer Science

University of New Brunswick

Fredericton, N.B. E3B 5A3

Canada

Phone: (506) 453-4566

Fax: (506) 453-3566

Email: fcs@unb.ca

www: http://www.cs.unb.ca

1

Abstract

We present a spatio-temporal data structure called the Graph Strip Tree (GStree) for
indexing objects constrained to move on a planar graph. The GStree is designed to efficiently
answer range queries about the current or past positions of moving objects. To test the
efficiency of our data structure, a road network of 66,437 roads was used. A set of 443,983
moving objects was randomly positioned on edges of the planar graph, with location updates
made over 5, 50 and 100 time steps. This resulted in 3.2 · 106, 32 · 106 and 64 · 106 location
updates, respectively, indexed by the data structures. Average search times for random
queries to find moving objects indexed by a GStree were compared to average search times
for the same queries on moving objects indexed by a MON-tree. Results indicate that the
GStree is up to 24 times faster than the MON-tree for internal memory searching, and visits
between 3.6 and 38 times fewer nodes. Analysis indicates the GStree will be significantly
faster for external memory search where the search time is dominated by the number of disk
I/Os.

1 Notation

A = number of kinetic events in the time interval [tnow, tq] or [tq, tnow]
B = disk block size
Ci = leaf node of a graph strip tree containing a root bounding box for strip tree i and a pointer
to the corresponding interval tree Ii

D = average number of visited nodes for a query
Di = list of moving objects from edge ei intersecting a query rectangle R
ei = one edge in the planar graph representing the underlying network
E = number of edges in the underlying network planar graph
ε1
x = maxt(|f̂x(t)− fx(t)|) = maximum deviation for the x dimension

ε1
y = maxt(|f̂y(t)− fy(t)|) = maximum deviation for the y dimension

fx(t), fy(t) = object path in the xy-plane

f̂x(t), f̂y(t) = polynomial approximation of an object path in the x, y plane
Fi = list of intervals of one edge ei intersecting a query rectangle R
G = planar graph containing moving objects
H = total time interval that queries can be issued for
I = interior node of a tree
Ii = interval tree representation of a graph edge ei

K = number of points reported by a query
k = dK/Be = number of disk blocks to store the output reported by the query
L = set of sorted intervals (either left LL or right LR) in an interval tree
m = number of time intervals in [0, T]
M = maximum number of children of a multi-way search tree
Mi = interior node of a graph strip tree (GStree)
N = number of moving objects
n = dN/Be = number of disk blocks to store all N moving objects
pi(t) = position of pi at time t
Q1 = (R, tq) = query type 1; find moving objects intersecting rectangle R at time tq

2

Q2 = (R, [t1, t2]) = query type 2; find moving objects intersecting rectangle R at any time during
time interval [t1, t2]
r ∈ [0, 1] = position of a point along a polyline
S = p1, p2, ..., pN = set of moving points in the xy-plane
Si = strip tree representation of a graph edge ei

t = time
tb = begin time of a trajectory falling into one spatial cell
te = end time of a trajectory falling into one spatial cell
tnow = current time
tref = index creation time
tq = query time
T j

i = external interval tree for moving objects in time interval [tj−1, tj] on graph edge ei

UI = update time interval
vi = one vertex in the planar graph representing the underlying network
V = number of vertices in the network planar graph
W = limit on how far queries can ask into the future
[0, T] = time domain

2 Introduction

A significant challenge in spatial and spatio-temporal databases is how to improve the response
time for query processing of moving objects, called continuous query processing (e.g. [17], [15]).
Saltenis et al [18] divide the problem of indexing the positions of continuously moving objects
into two categories. Queries about the current and anticipated future positions of moving objects
define one category. Such queries are likely to be used in real-time and near real-time systems.
Applications such as traffic control, emergency response and navigation while driving fall into this
category. The second category focusses on the history of the positions of moving objects. Queries
on historical data are likely to be used in applications such as planning, event reconstruction and
training. Our research addresses the latter category.

Mokbel et al [14] describe three main types of continuous queries. They are (1) moving queries
on stationary objects, (2) stationary queries on moving objects, and (3) moving queries on moving
objects. In addition, queries can take the form of range queries (e.g. circular or rectangular)
or k-nearest neigbhor queries. For example, when the query is issued from a vehicle moving on
a highway, the following queries are examples of nearest neighbor queries of type (1): Which is
the nearest gas station now? or Based on my current direction and speed of travel, show me the
nearest two gas stations in the next five minutes? Answers for such questions require the location
of the moving object at the query time and a good location prediction technique for the moving
object. The answer changes continuously as the object issuing the query moves.

An example of a continuous range query of type (2) might be How many moving vehicles
will be in the center of the city ten minutes from now? Depending on the size of the query,
such a counting query might return an answer in the hundreds or thousands. The accuracy of
the returned answer depends on the accuracy of prediction of future positions of moving objects,
which depends, in turn, on the accuracy of the model of the underlying road network on which

3

the vehicles are travelling.
Two basic approaches are used to index the moving objects. Indexing the trajectories of the

objects, with updates of trajectories triggering index updates, permits storage and indexing of the
paths of objects described as a function pi(t) of time t for moving point i. This is the approach
followed by Vazirgiannis and Wolfson [20] and by Agarwal et al [2], so that a feasibly sized index
can be built for the (potentially) many moving objects. The second approach considers updates
arriving at regular intervals for all objects. Hadjieleftheriou et al [13] follow this approach. Regular
interval updates simplify the update algorithm, but require more space to store object positions
that may be a linear extrapolation of the two previous object positions.

3 Problem Definition

Our paper addresses indexing the history of the positions of moving objects whose positions are
updated on a regular basis. This corresponds to the second catgory mentioned in the Introduction.

In addition, our data structure supports stationary queries on moving objects. We assume
there are m + 1 positions for each moving object defined on m equally spaced time intervals in
the time domain [0, T]. In addition, we assume that the object positions are restricted to move
on a planar graph (possibly disconnected) defined by its edges E and vertices V . Figure 1 shows
a small part of a test road network. We support two types of queries; time instant queries defined
as Q1 = (R, tq) to find the K moving objects intersecting rectangle R at time tq, and time interval
queries defined as Q2 = (R, [t1, t2]) to find the K moving objects intersecting rectangle R at any
time during time interval [t1, t2]. Both query types can be counting queries (report only K) or
reporting queries (report the identity of the K moving objects satisfying the query).

4 Related Work

Since the work on persistent data structures by Driscoll et al [11], there has been significant research
into indexes able to store complete histories of data repositories. Kinetic data structures [6] make
search of complete histories of moving objects possible by updating the data structure only when
significant kinetic events occur. For example, when a vehicle moving on a road network reports a
position update, this can be considered a significant event causing the insertion of a new trajectory
for the updated vehicle. An excellent summary of known index methods for moving points up to
the year 2002 or so is contained in Agarwal et al [2] and the references therein. A recent paper by
Ni and Ravishankar [15] contains a good overview of data structures experimentally validated for
moving object indexing. We have summarized the characteristics of some of the known approaches
for indexing moving objects in 1.

Table 1 differentiates data structures based on their support for future time queries and whether
or not they assume that the objects being indexed are constrained to move on an underlying graph.
If movement is restricted to a planar graph, then the index should be able to take advantage of
this to achieve less storage than would be required if objects were free to move anywhere in space.
As we will show, the GStree is designed to exploit this constraint.

The time-parameterized R-tree (TPR-tree) of Saltenis et al [18] was one of the first data struc-
tures to answer queries about future moving object positions. Moving objects are represented as

4

Figure 1: Part of a road test network consisting of 257 polylines in Grand Manan Island in the
very southern part of the Province of New Brunswick, Canada.

Table 1: Different data structures for indexing moving objects. Here H = support for queries on
the history of moving objects, F = support for future time queries, C = movement constrained to
a planar graph, L = movement constrained to be piecewise linear, E = experimental validation.

Name H? F? C? L? E?
TPR-tree N Y N Y Y [18]

partition tree N N N Y N [2]
kinetic range tree N Y N N N [2]

SETI Y N N Y Y [7]
MON-tree Y N Y Y Y [9]
MVR-tree Y N Y Y Y [13]

PA-tree Y N N N Y [15]
GStree Y N Y Y Y this paper

5

reference points with a velocity vector at index creation time tref . Time-parameterized rectangles
bounding the positions of all moving points or other bounding rectangles are stored in R*-tree
interior nodes. Answering a query Q1 = (R, tq) to find moving objects inside rectangle R at time
tq requires computing specific bounding rectangles for R-tree nodes at time tq. Moving objects are
updated when a new position is obtained (which may also indicate a new velocity). Each update
deletes the updated reference point and inserts (using minimal overlap of the integral of area of
intersection of time-parameterized rectangles) the new point, updating interior R*-tree bounding
rectangles appropriately.

The simulations reported by Saltenis et al [18] run for 600 time units (minutes) with an average
time interval of UI = 60 time units between updates of moving object positions. An average of
four search queries per time unit are issued, giving a mixed workload of 2,400 queries plus the
1,000,000 updates of 100,000 simulated moving objects. Their experimental results indicate that
the TPR-tree is approximately an order of magnitude faster (in terms of number of disk I/O
operations) than the R*-tree for searching for the experimental data and workload used. For
values of W ∈ [0, 40] time steps, where W is the limit on how far queries can ask into the future,
minimum search times are obtained when H is between UI/2 + W and UI + W . H is the total
time interval that queries can be issued for.

Agarwal et al [2] present a data structure for indexing moving points that uses O(N/B) space,
for N = the number of moving points and B = the disk block size. Their result based on partition
trees answers a Q1 or Q2 query using O((N/B)1/2+ε+k) I/Os in the worst case, where k = dK/Be,
K is the number of moving objects reported and ε is a small positive constant. They coin the term
time-oblivious index for their approach as the index only needs to be updated when the trajectory
of a point changes. This partition-tree based index assumes that the points move in a straight
line with constant velocity. Updates on their moving point index requires O(log2

B n) expected
I/Os. Their data structure uses a primary partition tree for points representing the dual space
of the (x, t) projections of the lines representing paths of moving objects. Secondary partition
trees indexing point subsets from the dual of the (y, t) projections of the moving object paths are
placed strategically within the primary partition tree. Suitable choices for fanout of the primary
partition tree and which nodes to attach secondary partition trees to leads to the claimed space
and time bounds.

Using what they call a multiversion external kinetic range tree, Agarwal et al [2] show how
to answer Q1 queries in O(logB n + k) I/Os using O(n logB n/(logBlogBn)) disk blocks. Their
data structure requires a multiversion catalog structure at nodes of a priority search tree, and
two multiverison kinetic B-trees for tracking when x or y coordinates coincide, leading to two
deletions and two insertions corresponding to the swap in order of two moving points. An event
queue stored in a B-tree keeps track of when the next kinetic event (change in order of two moving
points or change in trajectory of one moving point) occurs. Agarwal et al also introduce the notion
of a query that is a monotonically increasing function of |tq− tnow|, where tnow is the current time.
This data structure requires O((A/n)1/2nε+k) expected I/Os, where 0 ≤ A ≤

(
n
2

)
is the number of

kinetic events in the time interval [tnow, tq] or [tq, tnow]. This data structure attaches a multiversion
kinetic B-tree at every node of a grid tree. To achieve the expected I/Os bound, the moving point
positions are assumed to be drawn from a uniform random distribution.

SETI, a Scalable and Efficient Trajectory Index [7], has a three-part indexing structure. An
in-memory part called the front-line uses a hash table to store the last known position of all objects

6

being indexed. An object position update triggers generation of a new line segment starting at
the last known position and ending at the updated position. This line segment is inserted into a
spatial cell index structure (that splits the line segment at cell boundaries) and the corresponding
temporal index. In their paper, Chakka et al [7] use a uniform rectangular grid for defining spatial
cells. Each spatial cell has its own temporal index. The new position replaces the previous one in
the front-line. The temporal index contains lifetime values (tb, te) for all line segments on a data
page falling into this spatial cell in the time interval [tb, te]. The data page lifetimes are indexed
using an R*-tree. When the index is searched with a Q2(R, [t1, t2]) query, the temporal indices of
all spatial cells intersecting R are searched to find data pages containing segments of trajectories
∈ [t1, t2].

As Chakka et al [7] point out, the fact that moving objects fill data pages in chronological
sequence means that the R*-tree leaves of the temporal index have very little overlap, giving
good discrimination for the temporal part of the search. In their experimental evaluation with
1,000 moving objects consisting of 4,000,000 segments (with uniform random initial locations
and movements), SETI required about 1/40 of the space to store the index compared to a 3-
dimensional R-tree. Q2 queries on the same data with 0.1% of the data in range showed SETI
requiring less than half the I/Os (on average) compared to the TB-tree (Trajectory Bundle tree)
[16]. In addition, this testing showed SETI requiring less than 1/3 the overall time for this type of
query (on average) compared to the TB-tree. The SETI spatial cell subdivision was experimentally
found to be optimal (for the test data used) when the number of cells was 400 (20 by 20 rectangular
cells).

In tests with 1,000 objects (modelling cell phone users) moving on the road network of San
Joaquin county, a 0.1% of data in range Q2 type query took (on average) about 1/2 the time using
SETI compared to using the TB-tree. A second test simulated up to 9,200 objects moving on
the San Joaquin county road network for 8 hours, then stopped for 16 hours for each of 30 days
(what they call long update interval testing). On average, SETI answered 0.1% type Q2 queries
nine times faster than the same data indexed by a TB-tree. Chakka et al [7] compare SETI to the
TB-tree with up to 160,000 moving objects, each having 100 segments. With this larger number
of moving objects, SETI was able to answer 0.1% type Q2 queries about eight times faster (on
average) than the TB-tree. The significant advantage of SETI is due to the separate R*-tree
temporal indices for each spatial cell that give very little overlap at the leaf level.

The Moving Objects in Networks (MON) tree [9] can represent moving objects on a planar
graph of edges consisting of polylines, or on routes consisting of sets of edges from a planar graph.
If one assumes that moving objects have a constant velocity along a route, the route oriented
model leads to fewer entries in the index data structure. The MON-tree data structure consists
of two R-trees and a hash table. The top 2-dimensional R-tree has leaf nodes corresponding to
one polyline (or one set of polylines for the route model) from the planar graph. Each leaf node
of the top R-tree points to a bottom 2-dimensional R-tree that indexes all moving objects on this
polyline or route. The two dimensions indexed by the bottom R-tree are position r ∈ [0, 1] and
time t ∈ [0, T]. A leaf node of the bottom R-tree stores a rectangle of one moving object’s position
interval [r1, r2] corresponding to the time interval [t1, t2] when it was moving along this polyline
(or route). A separate hash table with polyline (route) number as the key is used on inserting a
new position, time interval for a moving object. The hash table points to the bottom R-tree for
an existing polyline (route). This avoids visiting the top R-tree, and proceeds immediately to the

7

appropriate moving object index.
De Almeida and Güting [9] compare the MON-tree to the Fixed Network R-tree (FNR-tree)

[12]. The planar graph chosen for testing was a German road network consisting of 4,273 edges
(995 routes), and data sets with up to 50,000 moving objects (on 100 time steps) were indexed.
Every node in the R-tree index structures was assumed to occupy one disk page. For queries
covering 50% of the total time and 20% of the total space, the MON-tree required about 1/2 of
the I/Os (disk accesses) required by the FNR-tree. When the query covers a smaller time interval
(e.g. less than 10% of the entire time), the FNR-tree requires about 1.5 times the I/Os required
by the MON-tree for the same queries.

The MultiVersion R-tree (MVR-tree) of Hadjieleftheriou et al [13] uses multiple 3-dimensional
R-trees. The root node of each R-tree corresponds to a disjoint time interval. MVR-trees have
time and two orthogonal spatial dimensions as the three bounding box axes. Deciding how to split
moving object trajectories to balance the two opposing needs of minimizing bounding box volume
while keeping the number of MVR-tree nodes to a manageable size is a signficant challenge for
the MVR-tree indexing method.

Polynomial approximation (PA) trees [15] index historical moving object trajectories. The
time domain [0, T] is divided into m equal time intervals. Each moving object’s path fx(t), fy(t)

in the Cartesian x, y plane is modelled by 2m Chebyshev polynomials, f̂x(t) and f̂y(t), 2 for
each time interval. Leaf nodes of the PA-tree have a 6-tuple containing the first two coefficients
of the Chebyshev polynomial for each of f̂x(t) and f̂y(t), plus the maximum deviation errors

ε1
x = maxt(|f̂x(t) − fx(t)|) and ε1

y = maxt(|f̂y(t) − fy(t)|). Leaf nodes also have a pointer to a
more precise representation of the polynomial approximation that can include more than two
coefficients depending on an error threshold. Interior nodes are formed similar to R*-tree nodes,
except the bounding box is formed from the minimum and maximum values of the four coefficients
of each child. Thus, the PA-tree has the structure of a 4-dimensional R*-tree. An interior node I
contains up to M 10-tuples and M child pointers, where M is the maximum number of children
for an R*-tree node. Each 10-tuple contains the minimum and maximum of the four Chebyshev
polynomial coefficients stored in it’s associated subtree, along with the maximum deviation errors
ε1
x, ε1

y in the subtree.
Ni and Ravishankar [15] illustrate why the PA-tree indexes less empty space compared to

indexes using orthogonal axis-aligned bounding boxes. On a 5,000 trajectory test dataset with
1,000 timesteps (6,390,000 location updates), the PA-tree covers two to five times less empty space
compared to minimum bounding rectangles covering the equivalent trajectory time intervals. This
observation carries through into the experimental validation, with the PA-tree requiring about 5.5
times fewer I/Os to answer timestamp queries compared to the MVR-tree, which is based on
minimum bounding rectangles. Further comparison to SETI with 1% of R type Q1 queries, SETI
required 30% fewer I/Os compared to the PA-tree index. For type Q2 queries when [t1, t2] spans
between 5% and 10% of the time domain [0, T] for which data is indexed, the PA-tree requires
around 1/2 of the I/Os that SETI requires. Ni and Ravishankar [15] also arrive at a cost model
for predicting the expected number of I/Os required for a PA-tree search with a given query. The
model assumes a uniform random distribution of R in the unit square and [t1, t2] in [0, T], as well
as a random distribution of moving object trajectories in the plane. For the experiments they ran,
the I/O cost model has a relative error of no more than 25% compared to the actual number of
I/Os incurred.

8

5 The Primary Data Structure

We assume that N objects are constrained to move on a planar graph G with E edges and
V vertices. The graph can be disconnected, corresponding, for example, to disconnected road
networks in a jurisdiction with islands or remote areas (as in Figure 1). The moving objects are
entered m times into the data structure, giving a total of n = mN location updates. The update
interval UI separating update times is assumed to be constant.

The primary data structure used for indexing the planar graph is called the graph strip tree,
or GStree for short. The GStree is based on the strip tree [5], but it is genaralized to allow for
indexing collections of strip trees representing a planar graph. Figure 2 illustrates a planar graph
with V = E = 4. Figure 3 illustrates the corresponding GStree arising from the planar graph in
Figure 2.

Figure 2: An example graph G with 4 edges e1, ..., e4 and 4 vertices v1, ..., v4. The edges are
represented as strip trees, with C1, ..., C4 representing the root bounding boxes for each strip tree.
The strip trees are merged bottom up in pairs to construct the GStree.

The static part of the GStree shown in Figure 3(a) is a binary tree as each interior node Mi has
at most two children. The tree is constructed such that interior nodes have one or two children,
and such that the tree is height balanced. This tree is a spatial index to the static part of the
data; i.e. the planar graph on which objects move. For purposes of analysis, we assume the static
part of the GStree that depends only on the underlying planar graph fits in main memory. The
interval trees T j

i indexing the dynamic part of the data are assumed to reside in external memory.

9

Figure 3: The graph strip tree (GStree) corresponding to the planar graph in Figure 2. (a) Each
leaf Ci points to the strip tree Si representing the graph edge ei, as well as to the corresponding
moving object interval sets Ii. (b) Interval sets Ii are an array of size m. Each element of Ii points
to an external memory interval tree T j

i representing the moving objects during interval j on edge
ei.

Theorem 1. Assuming a constant size graph containing E edges, and containing N moving objects
over m time intervals, the space required for the GStree is O(mE) memory cells and O(n/B) disk
blocks, for B the number of elements transmitted by one external memory access.

Proof. There are E nodes Ci, each requiring constant space. Each internal node Mi requires
constant space, and there are O(E) of them, so nodes Mi require O(E) space. Each strip tree Si

is a balanced binary tree, with the number of leaves depending on the resolution of the strip tree,
the degree of curvature of the underlying polyline comprising the graph edge, and the number of
line segments making up the polyline. We assume here that there are a constant number of leaves
in each strip tree, which means that all strip trees Si, i = 1, ..., E require O(E) space.

Each moving object interval set Ii is an array of m pointers to m external interval trees [4].
There are E of these interval trees, one per planar graph edge, so the space required for all
Ii, i = 1, ..., E moving object interval sets is cmE bytes, for c = the number of bytes per pointer.

Each Ii stores m pointers, each pointing to an external interval tree. Each interval tree stores
some fraction of the moving objects. For time interval [tj−1, tj], all N moving objects are dis-
tributed across the E external interval trees. Assuming the N moving objects are distributed in
a uniform random fashion across the E edges, on average each interval tree stores N/E moving
objects for each time interval. An external interval tree uses O(g/B) disk blocks to store g inter-
vals (from Theorem 4.1 of [4]). For the GSTree, g = N/E, and there are E external interval trees.
Thus, each time interval requires O(N/B) disk blocks, and m time intervals requires O(n/B) disk
blocks.

10

6 Secondary Data Structure

Each moving object interval set Ii contains m pointers to external interval trees. Each external
interval tree T j

i stores the intervals of moving objects on graph edge ei for time interval [tj−1, tj].
Figure 4 illustrates a moving object interval set for edge e1 in Figure 2.

v1

v2
r = 1

r

r = 0

0 1

p1(t2+Δ1)

p1

p2(t2)

p11(t2+Δ4)

p7(t2+Δ3)

p6(t2+Δ2)

p1(t3)
p3(t2)

p2(t3) p4(t2) p3(t3) p5(t3)p5(t2)
p6(t2) p4(t3)

p8(t2)p7(t3)p9(t2)p10(t2)p8(t3)
p9(t3)

p11(t2)
p10(t3)

.1 .2 .3 .4 .5 .6 .7 .8 .9

p2 p4

p3

p11 p9

p10

p6p5

p7

p8

LR={8,3,9,2}LL={2,9,3,8}

LR={7,4,5}LL={4,7,5}LR={10,1,11}LL={1,11,10}

LR={6}LL={6}

Figure 4: An example interval tree T 3
1 for e1 of the graph in Figure 2. There are 11 intervals

representing 11 moving objects during the time interval [t2, t3]. Moving objects p1, ..., p6 are
moving from vertex v1 to vertex v2. Moving objects p7, ...p11 are moving in the opposite direction
from v2 to v1.

Figure 4 also illustrates the interval tree T 3
1 arising from the interval set I1. Interval trees

are height balanced linear space data structure that can report all intervals in a set I of size g
intersecting a query point in O(log g + K) time, where K is the number of reported intervals (see
e.g. [10]). Interval tree T 3

1 has 4 nodes, and is height balanced.

7 Building a GStree

There are E edges ei (i.e., polylines representing the centerlines of roads) in a planar graph
respresenting a road network. We first build E strip trees Si. These E strip trees are then

11

merged, two at a time, to produce a packed GStree structure as shown in Figure 3.

7.1 Pack algorithm for GStree

The PACK(Edges) algorithm shown in Algorithm 1 is used to pack edges (strip trees) together
in a binary GStree. This algorithm works recursively and returns a pointer to the root node of
a fully-packed GStree containing all strips (or edges) in Edges. Edges is a list of strips indexing
edges (or road segments) of a road network.

When the number of edges in Edges is 1 or 2 (statements 2, 3, and 4), the algorithm will
return a pointer to this only edges, or to a GSnode created by merging two strips in Edges. If
the number of edges in Edges is more than 2 (statements 6,..., 15), the algorithm will repeatedly
find the edge, E2, among edges in Edges, which has the minimum coverage with the first edge,
E1, in Edges. This is done by the MinCover algorithm (Algorithm 2). E1 and E2 will be removed
from Edges, merged, and pushed back to a new edge list, called MEdges, until Edges is empty.
Therefore, after the while loop (statements 7, ..., 14), we obtain MEdges which is a list of packed
edges. In the statement 15, the algorithm is recursively called with the new input MEdges until
the packed items in MEdges is smaller than or equal to 2.

Algorithm 1: GSnode: Pack(Edges, dcel)

The algorithm for packing all strips
input : Edges: a list of strips, indexing edges (or road segments) of a road network; dcel: a graph

of DCEL
output: A pointer to the root node of a fully-packed GStree containing all strips (or edges) in

Edges

begin1

if |Edges| ≤ 2 then2

G0← a new GSnode pointing to edges in Edges3

return G04

else5

MEdges← NULL6

while |Edges| > 1 do7

E1← the first edge of Edges8

Edges← Edges− E19

E2←MinCover(Edges,E1, dcel)10

Edges← Edges− E211

G1← a new GSnode created by merging E1 and E212

MEdges←MEdges ∪G113

if |Edges| = 1 then MEdges←MEdges ∪ Edges14

return Pack(MEdges)15

end16

Such an approach leads to a minimum area coverage of all pairwise-merged strips, and thus to
a minimum coverage for all oriented rectangles at all interior nodes of the GStree.

12

Algorithm 2: Mincover(GSlist, S, dcel)

The algorithm finding a strip, which having minimal coverage when merged with an input strip
input : GSlist: a list of strips; S: a strip; and dcel: a graph of DCEL
output: A strip which forms a minimal coverage (area) when merged with S

begin1

minArea←∞2

chosenS ← NULL3

foreach X in GSlist do4

T ← mergeStrips(S, X)5

area← Area(T)6

if area < minArea then7

minArea← area8

chosenS ← X9

delete T10

return chosenS;11

end12

Algorithm 3: mergeStrips(S1, S2)

The algorithm of merging two strips
input : Two strips S1 and S2
output: A regular and merged strip

begin1

chosenS ← NULL2

T1← strip from begin (b) and end (e) points of S1 and updated wr and wl from points of S23

area1← Area(T1)4

if IsRegular(T1) then5

chosenS ← T16

minArea← area17

T2← strip from b, e of S2 and updated wr and wl from points of S18

area2← Area(T2)9

if IsRegular(T2) then10

if (chosenS = NULL) or (chosenS 6= NULL and area2 < area1) then11

chosenS ← T212

minArea← area213

T3← strip from b, e of both S1 and S214

area3← Area(T3)15

if IsRegular(T3) then16

if (chosenS = NULL) or (chosenS 6= NULL and area3 < minArea) then17

chosenS ← T3
else18

chosenS ← T3 after being regularized19

return chosenS;20

end21

13

7.2 Construct a List of Interval Trees

A moving object pi[tj, tj+1] is specified by a time interval j = [tj, tj+1] and an edge ek (road
segment) on which it moves. One moving object can be stored many times depending on the
number of time steps.

The update interval UI = tj+1−tj is assumed to be constant. The interval tree list construction
algorithm (Algorithm 4) takes as input a list of moving objects, the edge (or road) they move
on during a specific time interval, and the position interval [rj, rj+1] corresponding to this time
interval. The output is a list of interval trees as illustrated in Figure 3.

Algorithm 4: itreeList(R,numObjects)

The algorithm of creating a list of interval trees for moving objects on a road
input : An array R contains numObjects entries of moving objects. Each R[i] includes the

identify of a road roadid, the identify of a moving object objectid, a time interval t1, t2,
and a position interval r1, r2

output: A List I[i] of interval trees

begin1

R← sorted in ascending order of roadid, then t1, then t22

I[i]← ∅3

i← 04

while i < numObjects do5

t1 ← R[i].t16

t2 ← R[i].t27

numIndex← number of moving objects at time interval [t1, t2]8

MyInterval ∗ ii← new MyInterval[numIndex]9

V alList < double > endpoints10

for j ← 0 to numIndex do11

ii← insert(ii, R[j].r1, R[j].r2)12

if notBelong(R[i].r1, endpoints) then insert(endpoints,R[i].r1)13

if notBelong(R[i].r2, endpoints) then insert(endpoints,R[i].r2)14

i← i + 115

sort(endpoints)16

IntervalTree < MyInterval > itree(endpoints)17

itree.t1 = t118

itree.t2 = t219

for k ← 0 to numIndex do insert(itree, ii[k])20

Insert itree into I[i]21

return I[i]22

end23

8 Searching in a GStree

A search with query Q2 = (R, [t1, t2]), in the form of a rectangular query R and a time interval
[t1, t2], is performed from the root node to the leaf nodes of the GStree. The rectangular query R

14

is used first to find edges intersecting R. For each intersected edge, the time interval query [t1, t2]
is used in interval trees to find moving objects satisfying the query.

The GStree is first used to find position intervals in each edge intersecting the query rectangle
R. Figure 5 illustrates three cases that can arise.

(a) no intersection (b) two intersecting intervals (c) one intersecting interval

R

R
R

0

0.52

0 0
0.69

0.39

11

0.1

0.87

1

Figure 5: Three cases for the intersection between a graph edge and a query rectangle R.

If an edge ei does intersect R, a list Fi of intersecting intervals between ei and R is constructed.
For example, there are two intersecting intervals [0.39, 0.52] and [0.69, 0.87] in Figure 5 (b), and
there is one intersecting interval [0, 0.1] in Figure 5 (c). Interval trees whose time interval intersects
with the query time interval [t1, t2] are used for the next search step.

With the input lists Fi, the algorithm searches in the appropriate interval trees T j
i and returns

the list Di of moving objects intersecting the query intervals. The appropriate interval trees T j
i

to be searched are those for which ta ≤ t1 and tb ≥ t2, for a, b ∈ 1, ...,m. This guarantees that all
retrieved intervals representing moving objects are within UI of the query time tq (for Q1 queries)
or query interval [t1, t2] (for Q2 queries).

Algorithms 5 and 6 show the search algorithm for Q1 type queries in the GStree. Algorithms
8 and 9 show the search algorithm for Q2 type queries in the GStree. The searchObject algorithm
(see Algorithm 7) performs a range search to find all intervals in the interval tree intersecting
the query fragment range [r1, r2]. In the theorem below, we assume that the GSTree ’upper part’
(i.e. all except the external interval trees T j

i) can be stored in main memory. Thus, no I/Os are
required to search precisely which strip trees Si are intersected, and where.

Theorem 2. For N moving objects randomly distributed on the E edges of a planar graph, the
number of I/Os required to determine the moving objects intersecting one edge at time tq in a
GStree is expected to be O(logB

N
E

+ k), where k is the number of disk blocks required to store the
answer.

Proof. We assume that the number of fragments |Fi| for one edge ei intersecting R is constant.
Algorithm searchObject performs two time instant queries (one for r1 and one for r2), and
collects all intervals intersecting [r1, r2] by visiting all interior nodes in the subtree rooted at
the nearest common ancestor of the leaves visited for the r1 and r2 time instant queries. From
Theorem 4.1 of Arge and Vitter [4], we know that an external interval tree containing g intervals
can answer a time instant query in O(logB g + k) I/Os in the worst case. We have m external
interval trees for each edge ei, only one of which is visited for Q1 = (R, tq) queries. For randomly

15

distributed moving objects, we expect N/E moving objects in each external interval tree, giving
an expected number N/E intervals in one external interval tree T j

i . The two time instant queries
thus require O(logB

N
B

+ k) I/Os. Internal nodes visited on the path from the nearest common
ancestor contribute intervals falling between r1 and r2. The disk I/Os needed to retrieve internal
node intervals are counted towards the O(k) disk blocks needed to store the answer.

Given a GStree tree built from a planar graph G containing E edges, and containing N moving
objects on m time intevals, the above theorem shows that the expected number of I/Os required
to answer a Q1 query is O(JE logB

N
E

+ k), where k is the number of disk blocks required to store
the answer, and J is the fraction ∈ [0, 1] of the edges in planar graph G intersected by R.

Algorithm 5: GSSearch(Mroot, R, tq)

The algorithm for Q1 searching on the GStree.
input : Root node of GStree: Mroot, query rectangle R, and query time tq
output: List of moving objects satisfying Q1 = (R, tq)

begin1

if intersect(Mroot, R) then2

if Mroot.attribute = Ci then3

fraglist← FragIntervals(Mroot,Mroot.id, R)4

if fraglist 6= NULL then5

return intervalSearch(Ii, tq, fraglist)6

else7

return GSSearch(Mroot.left, R, tq) ∪GSSearch(Mroot.right, R, tq)8

else9

return ∅10

end11

Algorithm 6: intervalSearch(Iroot, tq, fraglist)

The algorithm for Q1 searching on a list of interval trees Iroot

input : itree list: Iroot, query time tq, and list of query interval fragments: fraglist
output: List of unique moving objects in Iroot satisfying tq and intersecting at least one fragment

in fraglist

begin1

oList← ∅2

T j
root ← interval tree, ∈ Iroot containing time tq, found using a binary search3

while fraglist 6= NULL do4

push(oList, searchObject(T j
root, fraglist.r1, fraglist.r2))5

fraglist← fraglist.next6

return oList7

end8

16

Algorithm 7: searchObject(itree, r1, r2)

The algorithm for searching on an interval tree itree

input : Root node of interval tree itree, and positional interval [r1, r2]
output: List of moving objects in itree intersecting with [r1, r2]

begin1

oList← ∅2

if itree = NULL then return ∅3

if (itree.split ≥ r1) and (itree.split ≤ r2) then4

if itree.minlist 6= NULL then5

while tmp← itree.minlist.next do6

push(oList, tmp.oid)7

push(oList, searchObject(itree.left, r1, r2) ∪ searchObject(itree.right, r1, r2))8

else9

if itree.split > r2 then10

if itree.minlist 6= NULL then11

while (tmp← itree.minlist.next) and (tmp.min ≤ r2) do12

push(oList, tmp.oid)13

push(oList, searchObject(itree.left, r1, r2))14

else15

if itree.split < r1 then16

if itree.maxlist 6= NULL then17

while (tmp← itree.maxlist.next) and (tmp.max ≥ r1) do18

push(oList, tmp.oid)19

push(oList, searchObject(itree.right, r1, r2))20

return oList21

end22

17

Algorithm 8: GSSearch(Mroot, R, t1, t2)

The algorithm for Q2 searching on the GStree.
input : Root node of GStree: Mroot, query rectangle R, and query time interval [t1, t2]
output: List of moving objects satisfying Q2 = (R, [t1, t2])

begin1

if intersect(Mroot, R) then2

if Mroot.attribute = Ci then3

fraglist← FragIntervals(Mroot,Mroot.id, R)4

if fraglist 6= NULL then5

return intervalSearch(Ii, t1, t2, fraglist)6

else7

return GSSearch(Mroot.left, R, t1, t2) ∪GSSearch(Mroot.right, R, t1, t2)8

else9

return ∅10

end11

Algorithm 9: intervalSearch(Iroot, t1, t2, fraglist)

The algorithm for Q2 searching on a list of interval trees Iroot

input : itree list: Iroot, query time interval [t1, t2], and list of query interval fragments: fraglist
output: List of unique moving objects in Iroot satisfying [t1, t2] and intersecting at least one

fragment in fraglist

begin1

oList← ∅2

for each T j
root ∈ Iroot do3

if T j
root.tmin ≤ t2 and T j

root.tmax ≥ t1 then4

while fraglist 6= NULL do5

uniqueL← unique(searchObject(T j
root, fraglist.r1, fraglist.r2))6

push(oList, uniqueL)7

fraglist← fraglist.next8

return oList9

end10

18

Figure 6: Example of a generated moving object with two time steps. For example, with velocity
of 15 km/h (250 m/minute), at each time step the object moves 1,250 m.

9 Experimental Results

9.1 Implementation

The GStree and the MON-tree were implemented using C++. We then compare the GStree to
the MON-tree and to näıve search.

Our focus is on moving objects (e.g., vehicles) on a planar graph, and we used the New
Brunswick road network (see Figure 7), road data from a Canadian road network [19] for testing.
This data file contains 66,437 roads (i.e., polylines), each of which is treated as an edge in our
planar graph E. All test data for the MON-tree and GStree are prepared as follows:

1. We first store the 66,437 edges of the road network into a doubly connected edge list (DCEL)
(e.g. [10]). The DCEL helps us to keep objects moving on the planar graph, whose edges
are bidirectional. When a vehicle moves to the end of an edge, it will exit onto an edge
connected to it, or turn back in the same edge with the opposite direction if the edge is
unconnected.

2. We next randomly generate r1 (normalized first position) of a moving object on edge ei on
the DCEL graph. We assume that in each edge, the velocity yi of moving objects is the same.
In addition, velocities are randomly generated between a maximum velocity ymax (e.g., 100
km/h) and a minimum velocity ymin (e.g., 10 km/h).

3. For each time step, compute r2 using the edge velocity yi, the beginning normalized position
r1 and the update interval UI (e.g. 5 minutes). Repeat for all m time steps, each time
computing the normalized position interval (r1, r2) by setting r1 to the previous r2 value
while accounting for “end of edge” conditions.

Algorithm 10 Generator(E, m,UI) is used to generate random data of moving objects on
E roads with m time steps. Each time step (or time interval) is UI minutes . The randomly
generated data is kept in text files as input for testing the MON-tree, the GStree, and the näıve
search. In Algorithm 10, insert(oj, ei, r0, r1, t0, t1) is used to insert a moving object oj on the road
ei with its position interval (r0, r1) and its time interval (t0, t1) into a text file. The numbers of
moving objects on an edge is constrained to lie between 4 and 40 per km of edge length. For the
test graph shown in Figure 7, this resulted in a total of 443,983 moving objects in the test data.
For m = 5, 3,288,689 total instances of moving objects arose as objects move from one edge to
another when arriving at a vertex v in the graph.

19

Algorithm 10: Generator(E,m, UI)

The algorithm for generating random data of moving objects
Input : E roads with m time steps, each of which contains UI minutes.
output: Random data of moving objects on E roads with m time steps.

begin1

for i = 0 to E − 1 do veloi ← a random velocity ∈ {Vmin, Vmax}2

for i = 0 to E − 1 do3

numobject← a random number ∈ {mino(ei), ..,maxo(ei)} of moving objects on road ei4

if numobject 6= 0 then5

foreach oj ∈ {o0, .., onumobject} do6

r1 ← the first random position for oj7

t1 ← 0; velo← veloi8

direction← current direction of ei9

for step← 1 to m do10

t0 ← t1; t1 ← t0 + UI11

r0 ← r1; r1 ← r0 + velo× UI12

if overRoad(r1) then13

tmid ← time when current object at the end of ei14

r1 ← position at the end point of ei15

insert(oj , ei, r0, r1, t0, tmid)16

t0 ← tmid17

if incidents(ei) > 0 then18

ek ← a random incident road of ei19

ei ← ek; velo← velok20

r0 ← 0; r1 ← velo× (t1 − t0)21

direction← current direction of ek22

else23

direction← reverse current direction24

r0 ← position at the end point of ei25

r1 ← position after tmid time moving of current object26

insert(oj , ei, r0, r1, t0, t1)27

if endRoad(r1) then28

if incidents(ei) > 0 then29

ek ← a random incident road of ei30

ei ← ek; v ← vk31

direction← current direction of ek32

r1 ←position at the start point of ek33

else34

direction← reverse current direction35

r1 ← position at the end point of ei36

end37

20

noname 03/02/2007
Printed with the TatukGIS Viewer: www.TatukGIS.com

Figure 7: The road network of New Brunswick consisting of a planar graph with 66,437 edges and
54,827 vertices (ratio of 1.21). The average, minimum and maximum length (in m) of polylines
defining the edges is 694, 5 and 31,334, respectively. The average number of points in a polyline
is 7. This picture was drawn using the TatukGIS Viewer open source tool [1].

9.2 Comparing the GStree to the MON-tree and näıve search

The tree building algorithm and search algorithms for the GStree, the MON-tree, and näıve search
are run on a Linux-based parallel cluster with 62 nodes called “mahone2”. Each node has 16 GB
RAM and two AMD Opteron 2.6 (or 2.8) GHz processors. All experiments were run on a single
processor.

9.2.1 Time for searching

We ran both trees and näıve search with the same set of 443,983 moving objects on 66,437 roads.
One set of 400 random queries was generated, and the same set was used for each test. In our
testing, query rectangles R are from 1 to 10 percent of the size of the road network bounding box.
A random query is generated in three steps. First, we randomly generated the central point of
the query, which must fall inside the road network bounding box. Second, we generated random
vertical and horizontal sizes. Finally, a time tq ∈ [0, T] or time interval [t1, t2], for t1 ∈ [0, T] and
t1 < t2, for the query was also randomly generated.

We categorized queries into five types based on the number K of moving objects meeting the
query requirements. The five query result ranges are [0, log

1/2
2 (n)), [log

1/2
2 (n), log2(n)), [log2(n),

log2
2(n)), [log2

2(n), log3
2(n)), and [log3

2(n), n], called query range 1, 2, 3, 4, and 5, respectively. Note
that n = mN is the total number of instances of moving objects in a tree. When n = 3,288,689,
then the upper bounds for ranges 1 though 4 are 5, 22, 469 and 10,147, respectively. Table 2 shows
an example of the number of objects falling in these categorized queries. Algorithm 11 shows the
test harness code for numQuery queries.

21

Algorithm 11: GlobalSearching(Mroot, Q, numQuery, n)

The test harness code for numQuery queries.
input : Root of the GStree Mroot, a set of numQuery queries, n moving objects
output: Show average search time and average visited nodes for five query ranges.

begin1

d1, d2, d3, d4, d5 ← 0 //number of visited nodes for five query ranges of queries2

h1, h3, h3, h4, h5 ← 0 //number of queries3

timeh1 , timeh2 , timeh3 , timeh4 , timeh5 ← 0 //total time for executing queries4

for i = 1 to numQuery do5

R, t1, t2 ← query rectangle and query time interval of Qi6

olist← GSSearch(Mroot, R, t1, t2)7

F ← oList.size() //number of objects in range8

timetotal ← search time of this query9

D ← number of visited nodes of this query10

switch the value of F do11

case [0, log
1/2
2 n)12

d1 ← d1 + D13

h1 ← h1 + 114

timeh1 ← timeh1 + timetotal15

case [log1/2
2 n, log2n)16

d2 ← d2 + D17

h2 ← h2 + 118

timeh2 ← timeh2 + timetotal19

case [log2n, log2
2n)20

d3 ← d3 + D21

h3 ← h3 + 122

timeh3 ← timeh3 + timetotal23

case [log2
2n, log3

2n)24

d4 ← d4 + D25

h4 ← h4 + 126

timeh4 ← timeh4 + timetotal27

otherwise28

d5 ← d5 + D29

h5 ← h5 + 130

timeh5 ← timeh5 + timetotal31

return {average query time, average number of visited nodes for each query range}32

{timeh1 ÷ h1, d1 ÷ h1}33

{timeh2 ÷ h2, d2 ÷ h2}34

{timeh3 ÷ h3, d3 ÷ h3}35

{timeh4 ÷ h4, d4 ÷ h4}36

{timeh5 ÷ h5, d5 ÷ h5}37

end38

22

Table 2: Example query result categorization ranges. n is the number of entries of moving objects.
Range 1 2 3 4 5

n [log
1/2
2 n] [log2n] [log2

2n] [log3
2n] > [log3

2n]
3,288,689 4 21 468 10,146

To benchmark the search times of the algorithms, we ran 400 random queries on a set of the
generated data for n = 3,288,689 entries (443,983 moving objects with 5 time steps). We counted
the average search time and the number of visited nodes D. For the MON-tree D is the number
of visited nodes in the bottom R*-trees. For the GStree D is the total number of nodes visited
in interval trees. As for the experiments done by de Almeida and Güting [9], the MON-tree was
constructed with R*-trees having nodes with a maximum number of children M that fit on one
disk block. In our case, the disk block size is 4,096 bytes, 56 bytes are required for the bounding
box and pointer information for one child of the R*-tree, so M = 73. Näıve search defines an
array of size n, and scans all n elements of the array to determine those moving objects matching
the query.

Table 3 shows the Q1 search results for the five query ranges 1, 2, 3, 4 and 5, respectively on
the GStree, the MON-tree, and näıve search. Note that numbers in parenthesis are the ratios of
the current number of the MON-tree or näıve search to the corresponding number of the GStree.
Table 4 shows the Q2 search results for the same five query ranges. Similarly, Tables 5 and 6
shows search results of Q1 and Q2, respectively, when m = 50. Table 7 shows search results for
the same five query ranges, but for the GStree and näıve search only with m = 100. At the time
of submission of this technical report, the MON-tree ran out of memory when attempting to run
experiments for m = 100.

Table 3: Average search times (in seconds) and numbers of visited nodes for the GStree, the MON-
tree, and the näıve search. h is the number of range searches (out of 400) that were averaged to
obtain these results. D is the average number of visited nodes.

Range h GStree MON-tree näıve
time D time D time

1 179 0.00043 0.03 0.00009(0.22) 1.28(38.17) 0.123(284.96)
2 3 0.00233 7.00 0.00500(2.14) 100.67(14.38) 0.125(53.57)
3 32 0.00355 167.52 0.01187(3.35) 832.44(4.97) 0.123(34.79)
4 180 0.01941 1,659.21 0.25942(13.37) 10,595.50(6.39) 0.132(6.78)
5 6 0.07749 7,276.33 1.87738(24.23) 45,371.00(6.24) 0.160(2.07)

10 Discussion

For low numbers of points in range, the in-memory search experiments performed here show that
the MON-tree is up to 5 times faster, but with significantly more nodes accessed (on average)
compared to the GStree. If one disk access is required for one visited node of the MON-tree,
then the number of I/Os required for searching in a MON-tree will likely be much higher than

23

Table 4: Average search times (in seconds) and numbers of visited nodes for the GStree, the MON-
tree, and the näıve search. h is the number of range searches (out of 400) that were averaged to
obtain these results. D is the average number of visited nodes.

Range h GStree MON-tree näıve
time D time D time

1 179 0.00047 0.03 0.00012(0.26) 1.28(38.17) 0.122(257.61)
2 2 0.00300 9.50 0.00150(0.50) 81.00(8.53) 0.124(41.50)
3 23 0.00309 195.00 0.00804(2.61) 646.39(3.31) 0.123(40.00)
4 173 0.01722 2,287.62 0.15290(8.88) 9,249.58(4.04) 0.133(7.73)
5 23 0.05921 10,039.35 0.74206(12.53) 36,595.87(3.65) 0.165(2.79)

Table 5: Results of Q1 when m=50. Average search times (in seconds) and numbers of visited
nodes for the GStree, the MON-tree, and the näıve search. h is the number of range searches (out
of 400) that were averaged to obtain these results. D is the average number of visited nodes.

Range h GStree MON-tree näıve
time D time D time

1 157 0.00052 0.02 0.00012(0.23) 1.35(70.00) 1.120(2156.47)
2 4 0.00160 18.00 0.00500(3.13) 213.40(11.86) 1.112(694.83)
3 57 0.00598 235.74 0.14524(24.29) 2240.54(9.50) 1.123(187.78)
4 180 0.03400 2028.48 1.30556(38.40) 25543.09(12.59) 1.130(33.22)
5 2 0.19347 12362.50 4.81927(24.91) 189054.00(15.29) 1.254(6.48)

Table 6: Results of Q2 when m=50. Average search times (in seconds) and numbers of visited
nodes for the GStree, the MON-tree, and the näıve search. h is the number of range searches (out
of 400) that were averaged to obtain these results. D is the average number of visited nodes.

Range h GStree MON-tree näıve
time D time D time

1 155 0.00057 0.00 0.00016(0.28) 1.00 1.120(1973.45)
2 5 0.00200 14.75 0.00325(1.63) 167.25(11.34) 1.116(558.08)
3 39 0.00491 237.24 0.03348(6.82) 1496.36(6.31) 1.137(231.65)
4 195 0.02811 2972.32 0.42108(14.98) 20726.65(6.97) 1.142(40.63)
5 6 0.12077 12834.64 3.04339(25.20) 116543.64(9.08) 1.196(9.91)

24

Table 7: Average search times (in seconds) and numbers of visited nodes for the GStree and the
näıve search at 100 time steps. h is the number of range searches (out of 400) that were averaged
to obtain these results. D is the average number of visited nodes.

Range GStree näıve
h time D time

1 158 0.00106 0.28 2.150(2034.53)
2 4 0.01125 11.25 2.184(194.20)

Q1 3 61 0.06024 218.16 2.169(36.02)
4 177 0.61456 2013.59 2.181(3.55)
1 156 0.00053 0.01 2.210(4154.55)
2 5 0.00360 23.40 2.279(633.32)

Q2 3 41 0.01905 253.09 2.213(116.15)
4 195 0.24437 3227.82 2.244(9.18)
5 3 1.05821 14189.38 2.269(2.14)

for searching in a GStree. The external memory interval tree of Arge and Vitter [4] is optimal
in the worst case. The GStree is directly implementable as an I/O efficient data structure by
replacing the internal memory interval trees with the optimal external memory interval tree (e.g.
as implemented by Chiang and Silva [8]). Optimal I/O-efficient versions of R-trees can be used
(e.g. the priority R-tree [3]) for the MON-tree. The GStree will still likely require fewer I/Os due
to the top spatial index composed of oriented rectangular strips rather than axis-aligned bounding
boxes used by R-trees. This conjecture is supported by the observation in Tables 3 and 4 for
query range 1 (with less than log1/2 n moving objects in range). The GStree averages 0.03 interval
tree nodes visited whereas the MON-tree averages 1.28 bottom R*-tree nodes for the same set of
queries. This implies that the GStree top structure (merged strip trees indexing the planar graph)
is pruning the search space more efficiently than the top R*-tree of the MON-tree.

11 Conclusion

In this paper we present a new data structure, the so-called GStree, for efficient search of moving
objects (e.g., vehicles) on planar graphs. The GStree is a combination of strip trees and interval
trees. Strip trees are used for indexing edges in a planar graph. Each strip tree (at leaf level)
represents a polyline (corresponding to a road or road segment in a road network). The interval
trees are used to index the trajectories of moving objects on roads indexed by strip trees. There
are some advantages for the GStree. First, the top strip trees and the bottom interval trees are
independent; thus, we can update one of them without affecting the others. For example, one can
update interval trees without changing the strip tree indexing for edges, or update a strip tree
when an edge changes, without affecting other strip trees (at leaf level). Second, since moving
objects on a graph edge belong to a strip tree, we can easily answer queries which count moving
objects on a specific edge; for example, how many vehicles move on a specific road at a specific
time or during a specific time interval.

It remains to experimentally validate the GStree with an implementation of I/O-efficient ex-
ternal memory interval trees (e.g. [8]).

25

12 Acknowledgements

This research is supported, in part, by the Natural Sciences and Engineering Research Council
(NSERC) of Canada, the UNB Faculty of Computer Science, the Harrison McCain Foundation,
MADALGO - Center for Massive Data Algorithmics (a Center of the Danish National Research
Foundation) and the government of Vietnam.

References

[1] The web page: Tatukgis viewer: Geographic information system software products and solu-
tions. http://www.tatukgis.com/Home/home.aspx, Last accessed: June 15, 2007.

[2] P. K. Agarwal, L. Arge, and J. Erickson. Indexing moving points. Journal of Computer and
System Sciences, 66:207–243, 2003.

[3] L. Arge, M. D. Berg, H. Haverkort, and K. Yi. The priority r-tree: A practically efficient and
worst-case optimal r-tree. ACM Trans. Algorithms, 4(1):1–30, 2008.

[4] L. Arge and J. S. Vitter. Optimal external memory interval management. SIAM J. Comput.,
32(6):1488–1508, 2003.

[5] D. H. Ballard. Strip trees: a hierarchical representation for curves. Communications of ACM,
24(5):310–321, 1981.

[6] J. Basch, L. J. Guibas, and J. Hershberger. Data Structures for Mobile Data. In SODA: ACM-
SIAM Symposium on Discrete Algorithms (A Conference on Theoretical and Experimental
Analysis of Discrete Algorithms), pages 747–756, New Orleans, Louisiana, US, 5-7 January,
1997.

[7] V. P. Chakka, A. C. Everspaugh, and J. M. Patel. Indexing large trajectory data sets with
seti. In Proceedings of the Conference on Innovative Data Systems Research (CIDR 2003),
Jan. 5-8, 2003.

[8] Y.-J. Chiang and C. T. Silva. External memory techniques for isosurface extraction in scien-
tific visualization. In in External Memory Algorithms and Visualization, DIMACS Series in
Discrete Mathematics and Theoret. Comput. Science 50, pages 247–277, 1999.

[9] V. T. de Almeida and R. H. Güting. Indexing the trajectories of moving objects in networks.
GeoInformatica, 9(1):33–60, 2005.

[10] M. de Berg, M. van Kreveld, M. Overmars, and O. Schwarzkopf. Computational Geometry
Algorithms and Applications. Springer-Verlag, 2000.

[11] J. R. Driscoll, N. Sarnak, D. D. Sleator, and R. E. Tarjan. Making data structures persistent.
J. Comput. Syst. Sci., 38(1):86–124, 1989.

26

[12] E. Frentzos. Indexing objects moving on fixed networks. In Proceedings of the 8th Interna-
tional Symposium on Spatial and Temporal Databases, pages 289–305, Santorini, Greece, July
24-27, 2003.

[13] M. Hadjieleftheriou, G. Kollios, V. J. Tsotras, and D. Gunopulos. Indexing spatiotemporal
archives. VLDB Journal, 15(2):143–164, 2006.

[14] M. F. Mokbel, X. Xiong, and W. G. Aref. Sina: Scalable incremental processing of continuous
queries in spatio-temporal databases. In Proceedings of SIGMOD 2004, pages 623–634, 2004.

[15] J. Ni and C. V. Ravishankar. Indexing spatio-temporal trajectories with efficient polynomial
approximations. IEEE Transactions on Knowledge and Data Engineering, 19(5):663–678,
May 2007.

[16] D. Pfoser, C. S. Jensen, and Y. Theodoridis. Novel approaches in query processing for moving
object trajectories. In VLDB 2000, Proceedings of 26th International Conference on Very
Large Data Bases, September 10-14, 2000, Cairo, Egypt, pages 395–406. Morgan Kaufmann,
2000.

[17] J. F. Roddick, M. J. Egenhofer, E. G. Hoel, D. Papadias, and B. Salzberg. Spatial, temporal
and spatio-temporal databases - hot issues and directions for PhD research. SIGMOD Record,
33(2):126–131, June, 2004.

[18] S. Saltenis, C. S. Jensen, S. T. Leutenegger, and M. A. Lopez. Indexing the positions of
continuously moving objects. In SIGMOD Conference, pages 331–342, Dallas, Texas, United
States, May 15 - 18, 2000.

[19] Statistics and Canada. 2006 road network file. http://geodepot.statcan.ca/Diss2006/DataProducts/RNF2006 e.jsp,
last accessed: June 24, 2008.

[20] M. Vazirgiannis and O. Wolfson. A spatiotemporal model and language for moving objects on
road networks. In SSTD ’01: Proceedings of the 7th International Symposium on Advances in
Spatial and Temporal Databases. Lecture Notes in Computer Science, Springer-Verlag, volume
2121, pages 20–35, London, UK, July 12 - 15, 2001.

27

