
A Data Structure for I/O Efficient Search of Objects Moving on a
Graph

by

Thuy T. T. Le and Bradford G. Nickerson

TR09 192, April 30, 2009

Faculty of Computer Science

University of New Brunswick

Fredericton, N.B. E3B 5A3

Canada

Phone: (506) 453-4566

Fax: (506) 453-3566

Email: fcs@unb.ca

www: http://www.cs.unb.ca

Abstract

We present a spatio-temporal data structure called minimum I/O Graph Strip
Tree (minGStree) to index moving objects on a graph. The minGStree is designed
to efficiently answer time instance and time interval queries about the past positions
of moving objects. The minGStree uses Θ(n

B) blocks of external memory, where n
is the number of moving object instances (unique entries of moving objects) and B
is the I/O block size. For n moving object instances randomly distributed on the E
edges of a graph over a time domain [0, T], the expected number of I/Os required to
determine the moving objects intersecting one edge (for both time instance queries
and time interval queries) in a minGStree is O(logB(n

E)+k), where k is the number
of disk blocks required to store the answer. We anticipate this data structure will
be practical to implement.

1 Introduction

A significant challenge in spatio-temporal databases is how to improve the response time
for query processing of moving objects. In these large databases, where data are stored
in external memory, the response time depends on the number of I/Os (disk accesses)
required to process queries. Saltenis et al [13] divide the problem of indexing the posi-
tions of continuously moving objects into two categories. Queries about the current and
anticipated future positions of moving objects define one category. Such queries are likely
to be used in real-time and near real-time systems. Applications such as traffic control,
emergency response and navigation while driving fall into this category. The second cate-
gory focusses on the history of the positions of moving objects. Queries on historical data
are likely to be used in applications such as planning, event reconstruction and training.
Our research addresses the latter category.

Two basic approaches are used to index moving objects. Indexing the trajectories of
the objects, with updates of trajectories triggering index updates, permits storage and
indexing of the paths of objects described as a function pi(t) of time t for moving point
i. This is the approach followed by Agarwal et al [1], so that a feasibly sized index can
be built for (potentially) many moving objects. The second approach considers updates
arriving at regular intervals for all objects. Hadjieleftheriou et al [10] follow this approach.
Regular interval updates simplify the update algorithm, but require more space to store
object positions that may be a linear extrapolation of the two previous object positions.

Most previous work for indexing moving objects assumes free movement of the objects
in space. If movement is restricted to edges of a graph, the index should be able to use
less storage than would be required if objects were free to move anywhere in space. Our
approach does this and updates moving objects twice on an edge (i.e., when objects enter
or leave edges).

1

2 Our Results

We address the problem of indexing moving objects on a graph (possibly disconnected)
defined by its edges and vertices. The graph can be non-planar as it is when representing
road networks [8]. The minGStree data structure extends previous work that gave rise to
the GStree [11]. The minGStree requires Θ(n/B) disk blocks by having only one time-
based I/O efficient interval tree Ti per edge along with one position-based I/O efficient
interval tree Pi per edge. We support two types of queries; time instant queries defined as
Q1 = (R, tq) to find the K moving objects intersecting rectangle R at time tq, and time
interval queries defined as Q2 = (R, [t1, t2]) to find the K moving objects intersecting
rectangle R at any time during time interval [t1, t2]. Both query types can be counting
queries (report only K) or reporting queries (report the identity of the K moving objects
satisfying the query).

For n moving object instances randomly distributed over E edges, we show that the
I/Os required to determine the moving objects on an edge satisfying a query (Q1 or Q2)
is expected to be O(logB

n
E

+ k), where k is the number of disk blocks required to store
the answer.

3 Related Work

There has been significant research into indexes able to store complete histories of data
repositories. Kinetic data structures [4] make search of complete histories of moving
objects possible by updating the data structure only when significant kinetic events occur.
For example, when a vehicle moving on a road network reports a position update, this
can be considered a significant event causing the insertion of a new trajectory for the
updated vehicle. An excellent summary of known index methods for moving points up
to the year 2002 or so is contained in Agarwal et al [1] and the references therein. A
recent paper by Ni and Ravishankar [12] contains a good overview of data structures
experimentally validated for moving object indexing. The characteristics of some of the
known approaches for indexing moving objects are summarized in Table 1.

Table 1 differentiates data structures based on their support for future time queries
and whether or not they assume that the objects being indexed are constrained to move
on an underlying graph. If movement is restricted to a graph, then the index should be
able to take advantage of this to achieve less storage than would be required if objects
were free to move anywhere in space. As we will show, the minGStree is designed to
exploit this constraint.

Recently, the MON-tree [7] and PPFI [9] data structures combine R-trees to index
moving objects on a fixed network. In these approaches, the network is indexed first in an
R-tree. Moving objects are indexed on a forest of R-trees, whose roots are linked to leaf
nodes of the network tree. Our data structure utilizes strip trees[3] to index the network,
and interval trees to efficiently index moving objects.

2

Table 1: Different data structures for indexing moving objects. Here H = support for
queries on the history of moving objects, F = support for future time queries, C =
movement constrained to a planar graph, L = movement constrained to be piecewise
linear, E = experimental validation.

Name H? F? C? L? E?
TPR-tree N Y N Y Y [13]

partition tree N N N Y N [1]
kinetic range tree N Y N N N [1]

MON-tree Y N Y Y Y [6]
MVR-tree Y N Y Y Y [10]

PA-tree Y N N N Y [12]
minGStree Y N Y Y N this paper

To our knowledge, our research is the first to explore the theoretical performance of
data structures indexing objects moving on a graph.

4 The Primary Data Structure

We assume that N objects are constrained to move on a graph G with E edges and V
vertices. The moving objects are updated when they enter or leave edges. They can begin
and stop in the middle of edges. A moving object can be represented multiple times on
each edge as it leaves and enters edges on its travels. n is the total number of moving
object instances (i.e., time intervals on edges) of N moving objects on the entire graph
over the time domain [0, T].

The minGStree is a combination of strip trees and interval trees. The static strip trees
are used for spatial indexing of the graph edges, and are assumed to fit in main memory.
Each strip tree (at leaf level) represents a polyline (e.g., a road). The dynamic interval
trees are used to index the trajectories of objects moving on the graph, and stored in
external memory (as external interval trees [2]). Figure 1 illustrates a graph with V = E
= 4. Figure 2 illustrates the corresponding minGStree arising from the graph in Figure
1.

The static part of the minGStree is based on the strip tree, but it is generalized to
allow for indexing collections of strip trees representing a graph. It is a binary tree as each
interior node Mi has at most two children. The tree is constructed such that interior nodes
have one or two children, and such that the tree is height balanced. Besides pointing to
a strip tree indexing an edge, each leaf nodes Ci of this binary tree also points to a time
interval tree Ti indexing time intervals and a position interval tree Pi indexing position
intervals of the moving objects on edge ei.

A moving object instance oj
` on each edge ei is described by a time interval [tj1, t

j
2]

3

e1

e2

e4

e3
M1 M2

M3

C1

C2

C3

C4

v1
v2

v3

v4

Figure 1: An example graph G with 4 edges e1, ..., e4 and 4 vertices v1, ..., v4. The edges
are represented as strip trees, with C1, ..., C4 representing the root bounding boxes for each
strip tree. The strip trees are merged bottom up in pairs to construct the minGStree.

and a position interval [rj
1, r

j
2]. We assume that the subscript ` ∈ [1, .., N] refers to a

unique object identifier, and the superscript j ∈ [1, .., n`] refers to a unique instance of
the moving object o` at some continuous time interval [tj1, t

j
2]. We have n=

∑N
`=1 n`, where

n` is the total number of instances of object o` moving on edges. Figure 3 illustrates six

M3

M1 M2

C1

S1

C2

S2

C3

S3

C4

S4T1

P1

T2 T3 T4

P2 P3 P4

Figure 2: The minGStree corresponding to the graph in Figure 1. Each leaf Ci points to
the strip tree Si representing edge ei, as well as to two corresponding interval trees: time
interval tree Ti and position interval tree Pi.

4

e1

e2

e4

e3

v1
v2

v3

v4

o1
2

o2
2 o3

2

o4
2

o5
2

o6
2

start end

Figure 3: Six moving object instances o1
2, ..., o

6
2 of o2 moving on the graph from Figure 1.

instances of o2 moving on the graph from Figure 1. Moving object instances oj
` are defined

as objects appearing on and disappearing from edge ei, with corresponding updates to
Pi and Ti. Position intervals [rj

1, r
j
2] are often [0, 1] (i.e., moving over the entire edge)

during a time interval of [tj1, t
j
2]. We use each time interval tree Ti to index time intervals

of moving objects on each edge, and use each position interval tree Pi to index position
intervals of these objects. Note that on a position interval tree, full intervals [0, 1] (i.e.,
those spanning the entire edge) do not need to be indexed. The number of intervals in Pi

is much less than the number in Ti. For each moving object instance oj
` stored in Ti, we

record if oj
` has position interval [0, 1] or not.

Theorem 1. For a graph containing E edges, and containing n moving object instances
over the time domain [0, T], the space required for the minGStree is Θ(E) memory cells
and Θ(n

B
) disk blocks, for B the number of elements transmitted by one external memory

access.

Proof. There are E nodes Ci, each requiring constant space. Each internal node Mi

requires constant space, and there are O(E) of them, so nodes Mi require O(E) space.
Each strip tree Si is a balanced binary tree, with the number of leaves depending on the
resolution of the strip tree, the degree of curvature of the underlying polyline comprising
the graph edge, and the number of line segments making up the polyline. We assume here
that there are a constant number of leaves in each strip tree, which means that all strip
trees Si, i = 1, ..., E require O(E) space. There are two pointers from nodes Ci to Ti and
Pi. For c the number of bytes per pointer, the space for these pointers is cE. Therefore,
the total space required for the minGStree is O(E) memory cells.

Since all n moving object instances are distributed over E edges, they are indexed
by E external time interval trees T1, .., TE. An external interval tree requires O(g

B
) disk

5

r=1

v1

v2

r=0

p2(0-9)

p5(16-25)
p3(10-15)

p4(5-13) p7(12-25)
p6(2-22)

p14(3-23)

p13(4-24)

p12(0-20)

p11(5-25)

p10(1-21)

p9(5-25)

p8(3-23) p1(5-10)

Figure 4: An example of 14 moving objects on edge e1 of the graph in Figure 1. There are
6 moving objects having their begin or end points falling inside the edge. Eight moving
objects p6, p8, ..., p14 move across the entire edge. Each directed polyline represents a
position interval of a moving object with a direction. The two numbers in parentheses
represent time intervals of corresponding moving objects. We assume that moving objects
on the same edge have the same velocity.

blocks to store g intervals (from Theorem 4.1 of [2]). The number of disk blocks used by
the E time interval trees is O(g1

B
) + O(g2

B
) + .. + O(gE

B
) = O(g1+g2+..+gE

B
) =O(n

B
), where

gi, i = 1, .., E is the number of moving object instances on Ti.
There are at most two position intervals 6= [0, 1] for each of N moving objects. We

have at most 2N moving object instances stored in E position interval trees. The number
of disk blocks required to store E position interval trees is O(N

B
)� O(n

B
). Therefore, the

total 2E external trees in the minGStree require O(n
B

) disk blocks.

Figure 4 shows an example of moving objects for edge e1 in Figure 1. Figure 5
illustrates how to index these moving objects on the time interval tree T1 and position
interval tree P1. Note how each moving object has at most one interval stored for each
unique time interval completely (or partially) spanning the edge. This is the minimum
amount of information required to determine when a moving object travels on this edge.
Along with the O(E) memory cells required to store the graph structure, we can see that
for graph-based moving object data structures, the space required for a minGStree is
optimal.

5 Searching in a minGStree

To answer a time interval query (R, [t1, t2]), the strip trees Si in the static part of the
minGStree are used to find edges intersecting R. If an edge ei does intersect R, a list
Fi of intersecting intervals between ei and R is constructed. Time interval trees Ti are

6

(b) Position interval tree

0.5 0.8
0.7 1
0.4 0.6
0 0.3
0.6 1
0 1
0 0.68
0 1
0 1
0 1
0 1
0 1
0 1
0 1

5 10
0 9
10 15
5 13
16 25
2 22
12 25
3 23
5 25
1 21
5 25
0 20
4 24
3 23

p1
p2
p3
p4
p5
p6
P7
p8
p9
p10
p11
p12
p13
p14

Position
Int.

Time
Int.

Obj.
id

(a) Time interval tree
t0 25

p1

5 10 15 20

p3
p7

p5p2
p4

p6
p8

p9
p10

p11
p12

p13

p14

23 25

r
0 1

p4

.1 .2 .3 .4 .5 .6 .7 .8 .9

p1

p3
p2

p5
p7

.62 .75

r=1

v1

v2

r=0

0.62
0.75

R

(c) A query example on e1
Figure 5: An example of time interval tree T1 (a) and position interval tree P1 (b) for e1 of
the graph in Figure 1. The table on the left shows time intervals and position intervals of
14 moving objects on e1. There are 14 time intervals of 14 moving objects indexed in T1,
and there are only 6 position intervals of 14 moving objects indexed in P1 since the other
8 moving objects, moving entire the edge, do not need to be indexed. The dashed vertical
lines indicate slab boundaries for an external interval tree with B=7. (c) shows an example
of a Q2 query, where rectangle R intersects edge e1 in Figure 1 at the position interval
[r1, r2]=[0.62, 0.75] and the time interval query is [t1, t2]=[23, 25]. The results obtained
by the search algorithm in Figure 7 are as follows: L1 = {p14, p13, p11, p9, p8, p5, p7}, L1

1 =
{p14, p13, p11, p9, p8}, L2

1 = {p5, p7}, L2 = {p7, p5, p2, p1}, and L = {p7, p5}.

then used to find objects intersecting in time. With the query time interval [t1, t2], a time
interval tree returns a list L of moving objects having time intervals intersecting [t1, t2].
Position interval trees Pi are then used to further prune this list to those intersecting R.

7

Objects in L are in range if their position intervals in Pi intersect at least one of the
query position intervals in lists Fi.

In the theorem below, we assume that the minGStree “upper part” (i.e. all except
the external interval trees) can be stored in main memory. Thus, no I/Os are required to
search precisely which strip trees Si are intersected, and where.

Objects are moving continuously. The number of objects entering an edge at one time
(instant) or leaving an edge at one time is constrained by edge capacity. We assume that
only one moving object can enter and leave an edge at a time. In a time interval tree,
moving object instances oj

` are unique.

Lemma 1. For a Q1=(R, tq) query, if the position interval of an moving object instance
oj

` is [0, 1], R ∩ ei 6= ∅, and tj1 ≤ tq ≤ tj2 in the time interval tree Ti, then oj
` satisfies Q1.

Proof. For [rj
1, r

j
2]= [0, 1], the object oj

` moves across the entire edge, so oj
` intersects R if

R ∩ ei 6= ∅. All that remains is to check if the query time tq intersects the object time
interval [tj1, t

j
2].

A similar lemma holds for a query type Q2.

Lemma 2. The expected number of intervals in a time interval tree Ti is O(n
E

).

Proof. We assume objects are moving at a constant velocity v ∈ [vmin, vmax] per edge.
Initially, N moving objects are distributed in a uniform random fashion over the E edges
at a rate of η per unit distance. The number of moving object instances flowing through
short edges is equal to the number of moving object instances flowing through long edges
over the time interval [0, T]. For n moving object instances, as time t → T , where
T > max(ui)/vmin, ui is the length of edge ei, the number of moving object instances
per edge → n

E
. Thus, each time interval tree Ti stores O(n

E
) time intervals, one for each

moving object instance.

Lemma 3. The expected number of intervals in a position interval tree Pi is O(N
E

).

Proof. The number of moving object instances in Pi is the number of position intervals
6= [0,1] on edge ei. There are N unique moving objects on a graph with E edges. As an
object moves over time from one edge to another, only two end points exist (for the path
of one object in the graph). At most two moving object instances with position intervals
6= [0,1] can arise from each moving object, where 0 or 1 corresponds to vertex locations.
There are N objects moving on E edges, so we expect at most 2N

E
(or O(N

E
)) moving

object instances with position intervals 6= [0,1] in each tree Pi.

Lemma 4. On an interval tree containing g intervals, performing a range query [t1, t2]
takes O(logB g+k) I/Os, where k is the number of disk blocks required to store the answer.

8

Proof. From Theorem 4.1 of [2], a stabbing query on a interval tree containing g intervals
requires O(logB g + k′) I/Os, where k′ is the number of disk blocks required to store the
answer. A range query requires I/Os for two stabbing queries at t1 and t2, plus I/Os for
intersecting intervals stored in tree nodes in the ’middle part’. We call the two leaf nodes
that stabbing queries at t1 and t2 reach βL and βR, respectively. Assume β is the nearest
common ancestor of βL and βR. The ’middle part’ contains all nodes of the interval tree
that fall between the two paths from β to βL and β to βR (see Figure 6). All intervals
stored in the ’middle part’ nodes intersect [t1, t2], which require reading all the ’middle
part’ nodes from disk. If the stabbing query at t1 requires O(logB g+k1) I/Os, the stabbing
query at t2 requires O(logB g + k2) I/Os, and reading the ’middle part’ nodes requires k3

I/Os, the number of I/Os required for a range query is O(logB g + k1 + logB g + k2 + k3)
= O(logB g + k), where k is the number of disk blocks required to store the answer.

β

… …

… …
…

…

βRβL

… … …

Figure 6: Illustration of external interval tree nodes in a range query [t1, t2]. βL and βR are
the two leaf nodes that two stabbing queries at t1 and t2 reach. β is the nearest common
ancestor of βL and βR. The shaded area contains nodes in the ’middle part’ between two
stabbing query paths β to βL and β to βR.

Theorem 2. For n moving object instances randomly distributed on the E edges of a
graph, the number of I/Os required to determine the moving objects intersecting one edge
at time tq (or at time interval [tq1, tq2]) in a minGStree is expected to be O(logB

n
E

+ k),
where k is the number of disk blocks required to store the answer.

Proof. From Lemma 1, the corresponding time interval tree Ti is used to find objects
intersecting the query time tq or time interval [tq1, tq2]. The expected number of intervals
in Ti is O(n

E
) (Lemma 2), and searching on Ti takes O(logB

n
E

+k1) I/Os (Lemma 4). The
query then visits position interval tree Pi for pruning moving objects in range in time but
not in positions.

As shown in Figure 7, the list of objects in range from Ti is called L1. Since L1

includes objects satisfying the query time, if L1 is empty, we don’t need to search on Pi.
Otherwise, we divide L1 into two parts: L1

1 for objects with their position intervals = [0,

9

1], and L2
1 with their position intervals 6= [0, 1]. The list of objects in range from Pi is

called L2. Reported objects will be objects in L1
1, and common objects from L2

1 and L2.
As steps for dividing L1 and finding the common objects from L2

1 and L2 are performed
in main memory, the number of I/Os required comes solely from the interval search on Ti

and Pi.
From Lemma 3, the number of intervals in Pi is O(N

E
), so searching on Pi requires

O(logB
N
E

+ k2) I/Os. Therefore, a Q1 or Q2 query on one edge of a minGStree requires
O(logB

n
E

+ logB
N
E

+ k1 + k2), or O(logB
n
E

+ k) I/Os (since n� N).

Figure 5(c) gives an example of a query rectangle R intersecting edge e1 and also
illustrates how objects in range of e1 are computed based on the searching algorithm in
Figure 7.

6= [0, 1]. The list of objects in range from Pi is called L2. Reported objects
will be objects in L1

1, and common objects from L2
1 and L2. As steps for

dividing L1 and finding the common objects from L2
1 and L2 are performed

in main memory, the number of I/Os required comes solely from the interval
search on Ti and Pi (see Algorithm 1).

From Lemma 3, the size of Pi is O(N
E), searching on Pi, thus, requires

O(logB
N
E + k2) I/Os. Therefore, a Q1 or Q2 query on a minGStree tree

requires O(logB
n
E +logB

N
E +k1 +k2), or O(logB

n
E +k) I/Os (since n > N).

Algorithm 1: Searching(Ti, Pi, R, t1, t2)

The general algorithm for time interval searching on one edge ei.
input : Root node of Ti, root node of Pi, query time interval [t1, t2], and

R: list of query intervals on edge ei

output: a list L of moving objects in range

begin1.1

L← ∅1.2

L1 ← intervalSearch(Ti, t1, t2)1.3

if L1 6= NULL then1.4

L1
1 ← entries in L1 with [r1, r2] = [0, 1]1.5

L2
1 ← L1 − L1

11.6

L2 ← intervalSearch(Pi, R)1.7

L← L1
1 ∪ (L2

1 ∩ L2)1.8

return L;1.9

end1.10

Theorem 3. For n object edge instances randomly distributed on the E
edges of a planar graph, the number of I/Os required to determine the moving
objects intersecting query rectange R at time tq (or at time interval [tq1, tq2]
) in a minGStree is expected to be O(D logB

n
E + k), where k is the number

of disk blocks required to store the answer, and D is the number of edges
intersecting R.

Proof. From Theorem 2 searching on one edge requires O(logB
n
E +k) I/Os.

Therefore, searching on D edges takes O(D logB
n
E +k) I/Os, where k is the

number of disk blocks required to store the answer.

In the wosrt case, when R intersects all E edges, the number of I/Os
required to determine moving objects falling in range is O(E logB

n
E + k).

10

Figure 7: The general algorithm for time interval searching on one edge ei.

Theorem 3. For n moving object instances randomly distributed on the E edges of a
planar graph, the number of I/Os required to determine the moving objects intersecting a
Q2 query in a minGStree is expected to be O(logB

n
E

+ k), where k is the number of disk
blocks required to store the answer.

Proof. Strip trees Si, stored in the main memory, are used to determine if R intersects
an edge ei. This step takes zero I/Os. From Theorem 2 searching on one edge requires
O(logB

n
E

+ k) I/Os. If R of Q2 intersects D edges of the graph, searching on D edges
takes O(D logB

n
E

+ k). Assuming D is a constant, much smaller than E, the expected
number of I/Os required to answer a Q2 query is O(logB

n
E

+ k), where k is the number
of disk blocks required to store the answer.

10

In the worst case, when R intersects all E edges, the number of I/Os required to
determine moving objects falling in range is O(E logB

n
E

+ k). However, in the next
corollary, we will show that this bound is dominated by k.

Corollary 4. When rectangle R intersects all E edges and the time domain of the
minGStree [0, T] ⊂ [t1, t2], the number of I/Os required to answer this query is O(E logB

n
E

+
k). This expression is dominated by k, where k is the number of disk blocks required to
store the answer.

Proof. Assume at most Ec moving objects N on the graph, for c a small constant and
greater than 1. Assume each moving object travels on O(E) edges. Thus, the number of
moving object instances n = O(Ec+1). If all moving object instances of one edge ei fall
in range, we expect ki = n

EB
. For R intersecting E edges, the number of I/Os expected is

E×O(logB
n
E

+ki) = O(E logB
n
E

+E× n
EB

) = O(E logB
n
E

+ n
B

) = O(E logB
Ec+1

E
+ Ec+1

B
)

= O(E logB E
c + Ec+1

B
) = O(E(logB E + Ec

B
)). For large graphs, we assume B is always

smaller than E, so logB E is always smaller than Ec

B
, or E logB E is always smaller than

Ec+1

B
. Therefore, the number of I/Os k dominates the expression O(E logB

n
E

+ k).
For reasonable assumptions about the size of N and E, the number of I/Os required

in the worst case is dominated by k, the number of blocks of external memory required
to store the output.

Corollary 5. Inserting or deleting an moving object instance into or from the minGStree
is expected to require O(logB

n
E

) I/Os amortized.

Proof. Insertion or deletion of an moving object instance in the minGStree happens in
one time interval tree Ti and one position interval tree Pi. From [2], we know that the
amortized I/Os required for updating an I/O interval tree are O(logB

n
E

).

For R∩G = ∅, or [t1, t2]∩ [0, T] = ∅, we can trivially determine that the query answer
is ∅ with 0 I/Os.

6 Conclusion

We present a new data structure, the minGStree, for efficient search of moving objects
(e.g. vehicles) on planar (or non-planar) graphs. The minGStree is a combination of strip
trees and interval trees. Strip trees are used for spatial indexing of the graph edges. Each
strip tree (at leaf level) represents a polyline (corresponding to a road or road segment in
a road network). The interval trees are used to index the trajectories of moving objects
on graphs indexed by strip trees. There are some advantages for the minGStree. First,
the top strip trees and the bottom interval trees are independent. For example, one can
update interval trees without changing the strip tree indexing for edges, or update a strip

11

tree when an edge changes, without affecting other strip trees (at leaf level). Second,
since moving objects on a graph edge belong to a strip tree, we can easily answer queries
which count moving objects on a specific edge; for example, how many vehicles move on
a specific road at a specific time or during a specific time interval.

The minGStree is directly implementable as an I/O efficient data structure by replac-
ing the internal memory interval trees with the optimal external memory interval tree. It
remains to experimentally validate the minGStree with an implementation of I/O-efficient
external memory interval trees. (e.g. [5]).

7 Acknowledgements

This research is supported, in part, by the Natural Sciences and Engineering Research
Council (NSERC) of Canada, the UNB Faculty of Computer Science, the Harrison McCain
Foundation, MADALGO - Center for Massive Data Algorithmics (a Center of the Danish
National Research Foundation) and the government of Vietnam.

References

[1] P. K. Agarwal, L. Arge, and J. Erickson. Indexing moving points. Journal of Com-
puter and System Sciences, 66:207–243, 2003.

[2] L. Arge and J. S. Vitter. Optimal external memory interval management. SIAM J.
Comput., 32(6):1488–1508, 2003.

[3] D. H. Ballard. Strip trees: a hierarchical representation for curves. Communications
of ACM, 24(5):310–321, 1981.

[4] J. Basch, L. J. Guibas, and J. Hershberger. Data Structures for Mobile Data. In
SODA: ACM-SIAM Symposium on Discrete Algorithms, pages 747–756, New Or-
leans, Louisiana, US, 5-7 January, 1997.

[5] Y.-J. Chiang and C. T. Silva. External memory techniques for isosurface extraction
in scientific visualization. In in External Memory Algorithms and Visualization,
DIMACS Series in Discrete Mathematics and Theoret. Comput. Science 50, pages
247–277, 1999.

[6] V. T. de Almeida and R. H. Güting. Indexing the trajectories of moving objects in
networks. GeoInformatica, 9(1):33–60, 2005.

[7] V. T. de Almeida and R. H. Güting. Indexing the trajectories of moving objects in
networks. GeoInformatica, 9(1):33–60, 2005.

12

[8] D. Eppstein and M. T. Goodrich. Studying (non-planar) road networks through an
algorithmic lens. In ACM GIS ’08, pages 1–10, November, 5-7 2008.

[9] Y. Fang, J. Cao, Y. Peng, and L. Wang. Indexing the past, present and future posi-
tions of moving objects on fixed networks. In CSSE ’08, pages 524–527, Washington,
DC, USA, 2008. IEEE Computer Society.

[10] M. Hadjieleftheriou, G. Kollios, V. J. Tsotras, and D. Gunopulos. Indexing spa-
tiotemporal archives. VLDB Journal, 15(2):143–164, 2006.

[11] T. T. T. Le and B. G. Nickerson. Efficient Search of Moving Objects on a Planar
Graph. In ACM GIS ’08, pages 367–370, Irvine, CA, USA, November, 5-7 2008.

[12] J. Ni and C. V. Ravishankar. Indexing spatio-temporal trajectories with efficient
polynomial approximations. IEEE Transactions on Knowledge and Data Engineer-
ing, 19(5):663–678, May 2007.

[13] S. Saltenis, C. S. Jensen, S. T. Leutenegger, and M. A. Lopez. Indexing the positions
of continuously moving objects. In SIGMOD Conference, pages 331–342, Dallas,
Texas, United States, May 15 - 18, 2000.

13

