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Abstract

We present a space optimal spatio-temporal data structure called minimum I/O
Graph Strip Tree (minGStree)to index objects assumed to move at constant ve-
locity on the edges of a graph. The minGStree is designed to efficiently answer
time instance and time interval queries about the past positions of moving objects.
The minGStree uses Θ( n

B ) blocks of external memory, where n is the number of
moving object instances (unique entries of moving objects) and B is the I/O block
size. We propose two variations of the minGStree: minGStreeI and minGStreeR.
For n moving object instances distributed in a uniform fashion on the E edges of a
graph over a time domain [0; T], the expected number of I/Os required to determine
the moving objects intersecting one edge (for both time instance queries and time
interval queries) in a minGStreeI is O(logB( n

E )+k). In the minGStreeR variation,
O(

√
n
E + k

′′′
) I/Os are required for the same query. k and k

′′′
are the number of

disk blocks required to store the time intervals intersecting the time query, and the
rectangles intersecting the query, respectively. We anticipate this data structure
will be practical to implement.

1 Introduction

A significant challenge in spatio-temporal databases is how to improve the response time
for query processing of moving objects. In these large databases, where data are stored
in external memory, the response time depends on the number of I/Os (disk accesses)
required to process queries. Saltenis et al [13] divide the problem of indexing the posi-
tions of continuously moving objects into two categories: indexing the current and future
positions of moving objects, and indexing the historical positions of moving objects. Our
research addresses the latter category. Queries on historical data are likely to be used in
applications such as planning, event reconstruction and training.

Two basic approaches are used to index moving objects. Indexing the trajectories of
the objects, with updates of trajectories triggering index updates, permits storage and
indexing of the paths of objects described as a function pi(t) of time t for moving point
i. This is the approach followed by Agarwal et al [1], so that a feasibly sized index can
be built for (potentially) many moving objects. The second approach considers updates
arriving at regular intervals for all objects [10]. Regular interval updates simplify the
update algorithm, but require more space to store object positions that may be a linear
extrapolation of the two previous object positions.

Most previous work for indexing moving objects assumes free movement of the objects
in space. If movement is restricted to edges of a graph, the index should be able to use
less storage than would be required if objects were free to move anywhere in space. Our
approach takes advantage of this restricted movement, and updates moving objects twice
on an edge (i.e., when objects enter or leave edges).
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2 Our Results

We address the problem of indexing moving objects on a graph (possibly disconnected)
defined by its edges and vertices. The graph can be non-planar as it is when representing
road networks [8]. We propose two variants of the minGStree: an I/O interval tree
version minGStreeI and priority R-tree version minGStreeR. We use minGStree to
refer to both versions. The minGStree data structure extends previous work that gave
rise to the GStree [11]. The minGStree requires Θ(n/B) disk blocks by having only one
time-based I/O efficient interval tree Ti per edge, or one priority R-tree per edge. This
efficient space bound assumes that n > BE; i.e., there are many more moving object
instances than edges on which they move. This assumption is reasonable for objects
moving on a static graph, especially when longer time domain [0, T ] are considered. We
support two types of queries: time instant queries defined as Q1 = (R, tq) to find the
K moving objects intersecting rectangle R at time tq, and time interval queries defined
as Q2 = (R, [t1, t2]) to find the K moving objects intersecting rectangle R at any time
during time interval [t1, t2]. Both query types can be counting queries (report only K) or
reporting queries (report the identity of the K moving objects satisfying the query).

For n moving object instances randomly distributed over E edges, we show that the
I/Os required to determine the moving objects on an edge satisfying a query (Q1 or
Q2) is expected to be O(logB

n
E

+ k) for the minGStreeI , and O(
√

n
E

+ +k
′′′

) for the
minGStreeR, where k is the number of disk blocks required to store the time intervals,
and k

′′′
is the number of disk blocks required to store the rectangles intersecting the query

Q1 or Q2.

3 Related Work

There has been significant research into indexes able to store complete histories of data
repositories. Kinetic data structures [5] make search of complete histories of moving
objects possible by updating the data structure only when significant kinetic events occur.
For example, when a vehicle moving on a road network reports a position update, this
can be considered a significant event causing the insertion of a new trajectory for the
updated vehicle. An excellent summary of known index methods for moving points up
to the year 2002 or so is contained in Agarwal et al [1] and the references therein. A
recent paper by Ni and Ravishankar [12] contains a good overview of data structures
experimentally validated for moving object indexing. The characteristics of some of the
known approaches for indexing moving objects are summarized in Table 1.

Table 1 differentiates data structures based on their support for future time queries
and whether or not they assume that the objects being indexed are constrained to move
on an underlying graph. If movement is restricted to a graph, then the index should be
able to take advantage of this to achieve less storage than would be required if objects
were free to move anywhere in space. As we will show, the minGStree is designed to
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Table 1: Different data structures for indexing moving objects. Here H = support for
queries on the history of moving objects, F = support for future time queries, C =
movement constrained to a graph, L = movement constrained to be piecewise linear, E
= experimental validation.

Name H? F? C? L? E?
TPR-tree N Y N Y Y [13]

partition tree N N N Y N [1]
kinetic range tree N Y N N N [1]

MON-tree Y N Y Y Y [7]
MVR-tree Y N Y Y Y [10]

PA-tree Y N N N Y [12]
PPFI Y Y Y Y Y [9]

minGStree Y N Y Y N this paper

exploit this constraint.
Recently, the MON-tree [7] and PPFI [9] data structures combine R-trees to index

moving objects on a fixed network. In these approaches, a network is indexed first in an
R-tree. Moving objects are indexed on a forest of R-trees, whose roots are linked to leaf
nodes of the network tree. Our data structure utilizes strip trees [4] to index the network
or graph, and interval trees (or priority R-tree) to efficiently index objects moving on the
graph. While strip trees have space advantages on indexing polylines, and I/O interval
trees support an optimal range search time for time intervals one edge, we believe that
combining them will introduce an efficient data structures to index objects moving on
edges.

To our knowledge, our research is the first to explore the theoretical performance of
data structures indexing objects moving on a graph.

4 The Primary Data Structure

We assume that N objects are constrained to move on a graph G with E edges and V
vertices. The moving objects are updated when they enter or leave edges. They can begin
and stop in the middle of edges. A moving object can be represented multiple times on
each edge as it leaves and enters edges on its travels. There are a total of n moving object
instances (i.e., time intervals on edges) of N moving objects on the entire graph over the
time domain [0, T ].

The minGStree is a combination of strip trees (static part) and interval trees or
priority R-tress (dynamic part). The strip trees are used for spatial indexing of the graph
edges, and are assumed to fit in main memory. This is a reasonable assumption based
on actual road network statistics. For example, the number of edges in the entire road
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Figure 1: An example graph G with 4 edges e1, ..., e4 and 4 vertices v1, ..., v4. The edges
are represented as strip trees, with C1, ..., C4 representing the root bounding boxes for
each strip tree. The strip trees are merged bottom up in pairs to construct a graph of
strip tress in the minGStree.

M3
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C1

S1

C2

S2
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S3

C4

S4T1 T2 T3 T4
Figure 2: The minGStree corresponding to the graph in Figure 1. Each leaf Ci points to
strip tree Si representing edge ei, and interval tree (or priority R-tree) Ti indexing moving
objects on ei.

network of Canada [14] has E = 1,869,898, with an average of 7.32 segments per edge. If we
assume a merged strip tree with E = 2,000,000, with each strip tree requiring 1,000 bytes
(a generous allocation), a main memory size of 2 GB will suffice to hold the merged strip
tree. In contrast, the number of moving objects through busy intersections is reported
[15] as over 500,000 per day, which would result in a much larger space requirement for
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Figure 3: Six moving object instances o1
2, ..., o

6
2 of o2 moving on the graph from Figure 1.

typedef struct {
no_intvl; ;//number of keys stored in the node
Interval[B_data];

} LeafNode;

typedef struct {
no_keys;//number of keys stored in the node
keys[Bf-1];//values of keys to partition
ch_pt[Bf];//byte offset of starting positions of the children in the tree file

left_pt[Bf];// byte offset w.r.t. beginning of left slab list file
left_no[Bf];//number of items (intervals) stored in each of the Bf left lists
left_min[Bf];//the minimum value of all left endpoints in each left list

right_pt[Bf]; // byte offset w.r.t. beginning of right slab list file
right_no[Bf]; //number of items (intervals) stored in each of the Bf right lists
right_max[Bf];//the maximum value of all right endpoints in each right list

multi_pt[(Bf-1)*(Bf-2)/2]; // byte offset w.r.t. beginning of multi slab list file
multi_no[(Bf-1)*(Bf-2)/2]; //number of items stored in each of the Bf multi lists

}IntervalNode; 

typedef struct {
objectid;
t1, t2;//time interval
p1,p2;//position interval

} Interval;

Figure 4: Interval tree node structures are described using the C language. Bf is the
branching factor of the tree. B data is the number of intervals fitting in a disk block.
Intervals in each left slab list are sorted by the increasing order of left end points (i.e., t1).
Intervals in each right slab list are sorted by the decreasing order of right end points (i.e.,
t2). Each left, right, and multi slab list stores a set of up to B data Interval structures.
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the interval trees.
Each strip tree Si (Figure 2) represents a polyline (e.g., a road). The interval trees are

used to index the trajectories of objects moving on the graph, and are stored in external
memory as external interval trees [3]. Figure 1 illustrates a graph with V = E = 4. Figure
2 illustrates the corresponding minGStree arising from the graph in Figure 1.

The static part (graph of strip trees) of the minGStree is based on the strip tree [4],
but it is generalized to allow for indexing collections of strip trees representing a graph.
This static part is a binary tree as each interior node Mi has at most two children. The
tree is constructed such that interior nodes have one or two children, and such that the
tree is height balanced. Besides pointing to a strip tree indexing an edge, each leaf node
Ci of this binary tree also points to a time interval tree Ti indexing time intervals and
storing position intervals of the moving objects on edge ei, or to a priority R-tree Ti

indexing moving object instances as rectangles of time and position intervals.
The rest of this section and Section 5 discuss the dynamic part of the minGStreeI and

searching in a minGStreeI , respectively. Section 6 discusses the minGStreeR variation.
A moving object instance oj

` on each edge ei is described by a time interval [tj1, t
j
2] and

a position interval [rj
1, r

j
2]. The subscript ` ∈ [1, .., N ] refers to a unique object identifier,

and the superscript j ∈ [1, .., n`] refers to a unique instance of the moving object o` at
some continuous time interval [tj1, t

j
2]. We have n=

∑N
`=1 n`, where n` is the total number

of instances of object o` moving on edges. Figure 3 illustrates six instances of o2 moving
on the graph from Figure 1. Moving object instances oj

` are defined as objects appearing
on and disappearing from edge ei, with corresponding updates to Ti. Position intervals
[rj

1, r
j
2] are often [0, 1] (i.e., moving over the entire edge) during a time interval of [tj1, t

j
2].

We use interval tree Ti to index time intervals of moving objects on edge ei. Figure 4
displays the node structure of an interval tree. Each time interval [tj1, t

j
2] of a moving

object instance oj in an interval tree is store with its corresponding position interval
[rj

1, r
j
2]; however, only the time interval is used to create the tree. The position interval is

used later in the query step to obtain the velocity of the moving object instance and to
check if the current object is in range. Further explanation of the I/O efficient interval
tree structure is presented in [3].

Theorem 1. For a graph containing E edges, and containing n moving object instances
over the time domain [0, T ] where n > BE, the space required for the minGStreeI is
Θ(E) memory cells and Θ( n

B
) disk blocks, for B the number of elements transmitted by

one external memory access.

Proof. There are E nodes Ci, each requiring constant space. Each internal node Mi

requires constant space, and there are O(E) of them, so nodes Mi require O(E) space.
Each strip tree Si is a balanced binary tree, with the number of leaves depending on the
resolution of the strip tree, the degree of curvature of the underlying polyline comprising
the graph edge, and the number of line segments making up the polyline. We assume
here that there are a constant number of leaves in each strip tree, which means that all
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strip trees Si, i = 1, ..., E require O(E) space. There is a pointer from nodes Ci to Ti. For
c the number of bytes per pointer, the space for these pointers is cE. Therefore, the total
space required for the minGStree is O(E) memory cells.

Since all n moving object instances are distributed over E edges, they are indexed
by E external time interval trees T1, .., TE in the minGStreeI . An external interval tree
indexing g intervals requires O( g

B
) disk blocks (from Theorem 4.1 of [3]). In interval

trees of the minGStreeI , each node stores a set of time intervals and associated position
intervals, or two intervals for each indexed time interval. Each interval tree Ti thus
requires O( g

B
) disk blocks, for g the number of moving object instances stored for edge ei.

Assuming n > BE and all gi > B, the number of disk blocks used by the E time interval
trees is O(g1

B
) + O(g2

B
) + .. + O(gE

B
) = O(g1+g2+..+gE

B
) =O( n

B
), where gi, i = 1, .., E is the

number of moving object instances stored in Ti.

Figure 5 shows an example of moving objects for edge e1 in Figure 1. Figures 6
and 7 illustrates how to index these moving objects on the time interval tree T1, and
how to perform a query on Ti, respectively. Note each moving object has at most one
time interval [t1, t2] and one position interval [r1, r2] stored for each unique time interval
completely (or partially) spanning the edge. This assumes that each object is moving at a
constant velocity over the time interval [t1, t2], and is the minimum information required
to determine when a moving object moves on an edge. As the minGStreeI requires Θ(E)
memory cells and Θ(n/B) disk blocks, it is space optimal assuming constant velocity of
objects moving on an edge.

5 Searching in a minGStreeI

To answer a time interval query (R, [t1, t2]), the static part of the minGStreeI is used to
find edges intersecting R. If an edge ei does intersect R, a list Fi of intersecting intervals
between ei and R is constructed. This Fi list will be an input in the next query step.
Time interval trees Ti are then used to find objects intersecting in time. With the query
time interval [t1, t2], searching on a time interval tree produces a list L of moving objects
having time intervals intersecting [t1, t2]. However, before returning L, each element in L
is checked to ensure its intersected time interval [t1′ , t2′ ] corresponding position interval
[r1′ , r2′ ] actually intersect the query (see Figure 7(d) and Algorithm 6.

Algorithm 1 InteSearch(Ti, Fi, t1, t2, queryType) details the search of an I/O efficient
interval tree Ti. With the inputs a root node of Ti, a query time interval [t1, t2], a list Fi

of query position intervals on edge ei, and a query type queryType, whose value is 1, 2,
or 3 if [t1, t2], only t1, or only t2 ∈ the current node boundary, respectively, the output
of this algorithm is a list L of moving objects in range of tree Ti. Line 9 of Algorithm
1 calls SearchIn(Ti, Fi, t1, t2, queryType), which reports objects in range of the current
node of Ti. Lines 10 to 32 of Algorithm 1 recursively call the function itself for children
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o3(10-15)
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o12(0-20)
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o10(1-21)

o9(5-25)

o8(3-23) o1(5-10)

Figure 5: An example of 14 moving objects on edge e1 of the graph in Figure 1. There are
6 moving objects having their begin or end points falling inside the edge. Eight moving
objects o6, o8, ..., o14 move across the entire edge. Each directed polyline represents a
position interval of a moving object with a direction. The two numbers in parentheses
represent time intervals of corresponding moving objects. We assume that moving objects
on the same edge have the same velocity.

0.5 0.8
0.7 1
0.6 0.4
0.3 0
1 0.6
0 1
0 0.68
0 1
0 1
0 1
1 0
1 0
1 0
1 0

5 10
0 9
10 15
5 13
16 25
2 22
12 25
3 23
5 25
1 21
5 25
0 20
4 24
3 23

o1

o2

o3

o4

o5

o6

o7

o8

o9

o10

o11

o12

o13

o14

[r1,r2][t1,t2]id

(b)
t0 25

o1

5 10 15 20

o3
o7

o5o2
o4

o6
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o10

o11
o12 o13

o14

23 25

(a)

r=1

v1

v2

0.62
0.75

R

(c)

r=0

Figure 6: An example time interval tree T1 (b) for 14 moving objects on e1 described
by table (a), another representing of moving objects from Figure 5. In the table (a),
each object is depicted by a time interval and a position interval. The dashed vertical
lines in (b) indicate slab boundaries for an external interval tree. (c) shows an example
of a Q2 query, where rectangle R intersects edge e1 in Figure 1 at the position interval
[r1, r2]=[0.62, 0.75] and the time interval query is [t1, t2]=[23, 25].
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Algorithm 1: InteSearch(Ti, Fi, t1, t2, queryType)

The general algorithm for interval tree searching on one edge ei.
input : Adrress of the root node of Ti, query time interval [t1, t2], and Fi: list of query

position intervals on edge ei
output: a list L of moving objects in range

begin1.1

//queryType← 1,2, or 3 if [t1, t2], only t1, or only t2 ∈ current node boundary1.2

Read the current node Ti from disk1.3

L← ∅1.4

if Ti is a leaf then1.5

foreach [tj1, t
j
2]k ∈ Ti.intervalList, k ∈ [1, |Ti.intervalList|] do1.6

L← L ∪ IntPosCheck([tj1, t
j
2]k, [r

j
1, r

j
2]k, t1, t2, Fi)1.7

else1.8

L← L ∪ SearchIn(Ti, Fi, t1, t2, queryType)//report items at current node1.9

kl ← key boundary of t11.10

kr ← key boundary of t21.11

if queryType = 1 then1.12

if kl = kr then1.13

//e.g., δ node in Figure 81.14

L← L ∪ InteSearch(Ti.child[kl], Fi, t1, t2, queryType)1.15

else1.16

//e.g., β node in Figure 81.17

L← L ∪ InteSearch(Ti.child[kl], Fi, t1, t2, 2)1.18

L← L ∪ InteSearch(Ti.child[kr], Fi, t1, t2, 3)1.19

for w = kl + 1 to kr − 1 do1.20

L← L ∪ retrieveItems(Ti.child[w])1.21

//report items in the middle part;

else1.22

if queryType = 2 then1.23

//e.g., γL node in Figure 81.24

L← L ∪ InteSearch(Ti.child[kl], Fi, t1, t2, 2)1.25

for w = kl + 1 to Ti.lastBoundary do1.26

L← L ∪ retrieveItems(Ti.child[w])1.27

//report items in the middle part;

else1.28

//queryType = 3 e.g., γR node in Figure 81.29

L← InteSearch(Ti.child[kr], Fi, t1, t2, 2)1.30

for w = 0 to kr − 1 do1.31

L← L ∪ retrieveItems(Ti.child[w])1.32

//report items in the middle part;

return L;1.33

end1.34
9
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ro7
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.62 .75

o8

(e)
0 1.1 .2 .3 .4 .5 .6 .7 .8 .9

o14

o13

o11

0 0
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Figure 7: Following Figure 6, (d) lists objects falling in range during time interval [23,
25] with their intersected time intervals and the corresponding position intervals at those
intersected time intervals. (e) shows that with those intervals obtained in (d), two moving
object instances p5 and p7 are in range with the query at Figure 6(c). Note ∗ in the first
column of the table (d) means that objects move from v2 to v1 instead of v1 to v2, giving
r2 > r1.

of Ti based on queryType. Algorithms 3 and 4 describe two functions checkRightList
and reportRightList, respectively, called by Algorithm 2. Since intervals in a right slab
list are sorted by the decreasing order of tj2 of all moving object oj in this right slab
list, checkRightList selects intervals having tj2 ≥ t2 to ensure [tj1, t

j
2] intersecting the

query time [t1, t2]. IntersectPosInt is then called for each intersected [tj1, t
j
2] to check

the intersection of the query position. With reportRightList, all intervals in the input
right slab list already intersected to the query time [t1, t2], the algorithm goes through all
of those intervals to report objects having position intervals intersecting to Fi.

Note that IntersectPosInt([tj1, t
j
2], [r

j
1, r

j
2], t1, t2) called by Algorithm 6 returns an

intersected position interval (rj
1′ , r

j
2′) from a time interval, a position interval, and a query

time interval (t1, t2) using equation 2. Based on the time interval [tj1, t
j
2] and position

interval [rj
1, r

j
2], the velocity velj of a moving object instance oj on edge ei can be computed

as follows:

velj =
(rj

2 − r
j
1)|ei|

tj2 − t
j
1

(1)

where |ei| is the length of edge ei. When rj
2 ≥ rj

1, oj moves toward the direction from
r = 0 to r = 1, and vice versa. The value velj can be equal to, greater than, or less than
0. From here, we can compute an arbitrary position r of oj at a time t ∈ [tj1, t

j
2] on edge

ei by r = rj
1 + (velj ∗ 4t)/|ei|, where 4t=(t− tj1). This formula of r can be simplified to

the convex combination

r =
rj
1(t

j
2 − t) + rj

2(t− t
j
1)

(tj2 − t
j
1)

(2)

A moving object in L is in range if the corresponding position interval [r1′ , r2′ ] of its
intersected time [t1′ , t2′ ] intersects with at least one of the intervals in Fi. For example,
moving object o7 (Figure 6) has [t71, t

7
2]=[12, 25], [r7

1, r
7
2]=[0, 0.68], giving r=0.58 for t=23,

10



Algorithm 2: SearchIn(Ti, F, t1, t2, queryType)

Algorithm for searching objects at current node T intersecting time query t1, t2 and query
positions in F

input : Adrress of the root node of Ti, query time interval [t1, t2], list F of query
position intervals on the current edge, and queryType carrying the type of
[t1, t2] on the current node

output: a list L of moving objects in range

begin2.1

L← ∅2.2

kl ← key boundary of t12.3

kr ← key boundary of t22.4

if queryType = 1 then2.5

L← L ∪ checkRightList(Ti, kl, t1, t2, F )2.6

L← L ∪ checkLeftList(Ti, kr, t1, t2, F )2.7

L← L ∪ reportMultiList(Ti, kl, kr, t1, t2, F )2.8

if kl 6= kr then2.9

for i = kl to kr − 1 do2.10

L← L ∪ reportLeftList(Ti, i, t1, t2, F )2.11

L← L ∪ reportRightList(Ti, kr, t1, t2, F )2.12

else2.13

if queryType = 2 then2.14

L← L ∪ checkRightList(Ti, kl, t1, t2, F )2.15

L← L ∪ reportMultiList(Ti, kl, kr, t1, t2, F )2.16

for i = kl to kr − 1 do2.17

L← L ∪ reportLeftList(Ti, i, t1, t2, F )2.18

else2.19

L← L ∪ checkLeftList(Ti, kr, t1, t2, F )2.20

L← L ∪ reportMultiList(Ti, kl, kr, t1, t2, F )2.21

for i = kl to kr do2.22

L← L ∪ reportRightList(Ti, i, t1, t2, F )2.23

return L;2.24

end2.25

and r=0.68 for t=25 using equation 2 for r. Thus, [r7
1′ , r7

2′ ]=[0.58, 0.68].
checkLeftList and reportLefttList in Algorithm 2 are similar to checkRightList

and reportRightList, respectively. Note that intervals in a left slab list are sorted in the
increasing order of tj1; thus the condition in the while loop of checkLeftList is tj1 ≤ t1
to ensure [tj1, t

j
2] intersecting the query time [t1, t2]. reportMultiList in Algorithm 5 is

11



Algorithm 3: checkRightList(T, slab, t1, t2, F )

The algorithm for finding objects falling in range in a right slab list of the current tree node
T .

input : Tree node T , slab key slab of T , query time interval [t1, t2], and F : list of query
position intervals on edge ei

output: List of objects falling in range

begin3.1

Read right slab list SL from disk at address T.rightSlab[slab]3.2

L← ∅3.3

while tj2 ≥ t1, where[t
j
1, t

j
2]k ∈ SL do3.4

L← L ∪ IntPosCheck([tj1, t
j
2]k, [r

j
1, r

j
2]k, t1, t2, F )3.5

return L;3.6

end3.7

Algorithm 4: reportRightList(T, slab, t1, t2, F )

The algorithm for finding objects falling in range in a right slab list of the current tree node
T .

input : Tree node T , slab key slab of T , query time interval [t1, t2], and F : list of query
position intervals on edge ei. Note that objects in the right slab list at slab
already intersect [t1, t2].

output: List of objects falling in range

begin4.1

Read right slab list SL from disk at address T.rightSlab[slab]4.2

L← ∅4.3

foreach [tj1, t
j
2]k ∈ SL, k ∈ [1, |SL|] do4.4

L← L ∪ IntPosCheck([tj1, t
j
2]k, [r

j
1, r

j
2]k, t1, t2, F )4.5

return L;4.6

end4.7

used to reporting objects falling in range in multi slab lists.
In the theorem below, we assume that the minGStreeI “upper part” (i.e. all except

the external interval trees) can be stored in main memory. Thus, no I/Os are required to
search precisely which strip trees Si are intersected, and where.

Objects are moving continuously. The number of objects entering an edge at one time
(instant) or leaving an edge at one time is constrained by edge capacity. We assume that
only one moving object can enter and leave an edge at a time. In a time interval tree,
moving object instances oj

` are unique.

Lemma 1. The expected number of intervals in a time interval tree Ti is O( n
E

).
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Algorithm 5: reportMultiList(T, slabL, slabR, t1, t2, F )

The algorithm for reporting objects falling in range in multi slab lists intersecting slab
[slabl, slabR] of the current tree node T .

input : Tree node T , two slab keys slabL and slabR of T , query time interval [t1, t2], and
F : list of query position intervals

output: List of objects falling in range

begin5.1

L← ∅5.2

foreach multislab list M intersects slab[slabL, slabR] of current node T do5.3

Read M from disk5.4

foreach [tj1, t
j
2]k ∈M,k ∈ [1, |M |] do5.5

L← L ∪ IntPosCheck([tj1, t
j
2]k, [r

j
1, r

j
2]k, t1, t2, F )5.6

return L;5.7

end5.8

Algorithm 6: IntPosCheck([tj1, t
j
2], [rj

1, r
j
2], t1, t2, F )

The algorithm for checking if a current moving object is in range.

input : Time interval [tj1, t
j
2] and position interval [rj

1, r
j
2] of object oj , query time

interval [t1, t2], and F : list of query intervals on edge ei
output: return oj if intersected position interval of oj is in range; otherwise; return

empty

begin6.1

(rj
1′ , r

j
2′)← IntersectPosInt([tj1, t

j
2], [rj

1, r
j
2], t1, t2)6.2

if IntersectCheck(rj
1′ , r

j
2′ , F ) then6.3

return oj ;6.4

return ∅;6.5

end6.6

Proof. We assume objects are moving at a constant velocity vel ∈ [velmin, velmax] per
edge. Initially, N moving objects are distributed in a uniform random fashion over the
E edges at a densityof η per unit distance. As moving objects arrive at a vertex vi,
they are redirected uniform randomly into one of the |vi| edges connected to vi. As time
t → T , and within a constant factor → velmax

velmax
, the number of moving object instances

flowing through short edges is equal to the number of moving object instances flowing
through long edges over the time interval [0, T ]. For n moving object instances, as time
t → T , where T > max(|ei|)/velmin, the number of moving object instances per edge
→ n

E
. Thus, each time interval tree Ti stores O( n

E
) time intervals, one for each moving

object instance.

13



The above model is reasonable for the purpose of simulating objects moving on a graph
(e.g., vehicles on a road network). If moving objects stop moving for a long period, our
assumption about the number of objects leaving an edge using the same for all edges does
not hold.

Lemma 2. On an interval tree Ti containing g intervals, performing a Q2 = (R, [t1, t2])
query takes O(logB g + k) I/Os, where k is the number of disk blocks required to store
moving object instances intersecting [t1, t2].

Proof. From Theorem 4.1 of [3], a stabbing query on an interval tree containing g intervals
requires O(logB g + k′) I/Os, where k′ is the number of disk blocks required to store the
answer (i.e., time intervals intersecting [t1, t2]). At each of k′ intersected time intervals,
its corresponding intersected position interval is checked for the intersection with R. This
step takes zero I/Os. Note that the number of moving objects in range is k′′, which is
smaller than or equal to k′. A range query requires I/Os for two stabbing queries at t1 and
t2, plus I/Os for intersecting intervals stored in tree nodes in the ’middle part’ (shaded
area in Figure 8). We call the two leaf nodes that stabbing queries at t1 and t2 reach
βL and βR, respectively. Assume β is the nearest common ancestor of βL and βR. The
’middle part’ contains all nodes of the interval tree that fall between the two paths from β
to βL and β to βR. All intervals stored in the ’middle part’ nodes intersect [t1, t2], which
require reading all the ’middle part’ nodes from disk. If the stabbing query at t1 requires
O(logB g + k1) I/Os, the stabbing query at t2 requires O(logB g + k2) I/Os, and reading
the ’middle part’ nodes requires k3 I/Os, the number of I/Os required for a range query
is O(logB g+ k1 + logB g+ k2 + k3) = O(logB g+ k), where k is the number of disk blocks
required to obtain time intervals intersecting the query [t1, t2].

β

… …

… …
…

…

βRβL

… … …

δ

γL γR

Figure 8: Illustration of external interval tree nodes in a range query [t1, t2]. βL and βR are
the two leaf nodes that two stabbing queries at t1 and t2 reach. β is the nearest common
ancestor of βL and βR. The shaded area contains nodes in the ’middle part’ between two
stabbing query paths β to βL and β to βR.
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Theorem 2. For n moving object instances randomly distributed on the E edges of a
graph, the number of I/Os required to determine the moving objects intersecting one edge
at time tq (or at time interval [tq1, tq2]) in a minGStreeI is expected to be O(logB

n
E

+ k),
where k is the number of disk blocks required to store the time intervals intersecting the
query time [t1, t2].

Proof. The expected number of intervals in Ti is O( n
E

) (Lemma 1), and searching on Ti

takes O(logB
n
E

+ k) I/Os (Lemma 2).

Note that the number of moving object instances in range k′′ is smaller than or equal
to k (the number of intersecting time intervals). In the worst case k′′ → 0 when none of
the moving objects on ei intersects query rectangle R during query time interval [t1, t2].

Theorem 3. For n moving object instances randomly distributed on the E edges of a
graph, the number of I/Os required to determine the moving objects intersecting a Q2

query in a minGStreeI is expected to be O(logB
n
E

+ k), where k is the number of disk
blocks required to store the time intervals intersecting the query time [t1, t2].

Proof. Strip trees Si, stored in the main memory, are used to determine if R intersects
an edge ei. This step takes zero I/Os. From Theorem 2 searching on one edge requires
O(logB

n
E

+ k) I/Os. If R of Q2 intersects D edges of the graph, searching on D edges
takes O(D logB

n
E

+ k). Assuming D is a constant, much smaller than E, the expected
number of I/Os required to answer a Q2 query is O(logB

n
E

+ k), where k is the number
of disk blocks required to store the time intervals intersecting the time query.

In the worst case, when R intersects all E edges, the number of I/Os required to
determine moving objects falling in range is O(E logB

n
E

+ k). However, in the next
corollary, we will show that this bound is dominated by k.

Corollary 4. Assume at most Ec moving objects N on the graph, for c a small constant
and greater than 1. When rectangle R intersects all E edges and the time domain of
the minGStreeI [0, T ] ⊂ [t1, t2], the number of I/Os required to answer this query is
O(E logB

n
E

+ k). This expression is dominated by k, where k is the number of disk blocks
required to store the time intervals intersecting the time query.

Proof. Assume each moving object travels on O(E) edges. Thus, the number of moving
object instances n = O(Ec+1). If all moving object instances of one edge ei fall in
range, we expect ki = n

EB
. For R intersecting E edges, the number of I/Os expected is

E×O(logB
n
E

+ki) = O(E logB
n
E

+E× n
EB

) = O(E logB
n
E

+ n
B

) = O(E logB
Ec+1

E
+ Ec+1

B
)

= O(E logB E
c + Ec+1

B
) = O(E(logB E + Ec

B
)). For large graphs, we assume B is always

smaller than E, so logB E is always smaller than Ec

B
, or E logB E is always smaller than

Ec+1

B
. Therefore, the number of I/Os k dominates the expression O(E logB

n
E

+ k).
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For reasonable assumptions about the size of N and E, the number of I/Os required
in the worst case is dominated by k, the number of blocks of external memory required
to store the time intervals intersecting the time query.

Corollary 5. Inserting or deleting a moving object instance into or from the minGStreeI

is expected to require O(logB
n
E

) I/Os amortized.

Proof. Insertion or deletion of a moving object instance in the minGStreeI happens in
one time interval tree Ti From [3], we know that the amortized I/Os required for updating
an I/O interval tree are O(logB

n
E

).

For R∩G = ∅, or [t1, t2]∩ [0, T ] = ∅, we can trivially determine that the query answer
is ∅ with 0 I/Os.

6 A minGStree Variation

As an interesting variation, we define the minGStreeR where all time interval trees in
the minGStree can be replaced by priority R-trees [2]. Each moving object instance oj

`

described by a 4-tuple [tj1, t
j
2], [r

j
1, r

j
2] is treated as a rectangle Rj

` . As the construction and
the searching algorithm on an priority R-tree are detailed in [2], we do not repeat those
here. We focus on the combination of priority R-trees with a graph of strip trees to form
the minGStreeR.

Assuming B is the number of rectangles that can fit in one disk block, rectangles are
grouped in sets of size B to form the leaves of a priority R-tree Ti. From Lemma 1, we
expect the number of rectangles stored in one priority R-tree Ti to be O( n

E
). For efficiency,

a packing heuristic is used to maximize the overlap among the rectangles stored in one
leaf.

An R-tree indexing g rectangles occupies Θ(g/B) disk blocks (Section 1.1 of [2]).
Therefore, Theorem 1 holds for the minGStreeR variation. In other words, for a graph
containing E edges, and containing n moving object instances over the time domain [0, T ],
the space required for the minGStreeR is Θ(E) memory cells and Θ( n

B
) disk blocks, for

B the number of elements transmitted by one external memory access.
From Theorem 2 of [2] and Lemma 1, we arrive at the following claim.

Theorem 6. For n moving object instances randomly distributed on the E edges of a
graph, the number of I/Os required to determine the moving objects intersecting one edge
at time tq (or at time interval [tq1, tq2]) in a minGStreeR is expected to be O(

√
n

EB
+k

′′′
),

where k
′′′

is the number of disk blocks required to store the rectangles intersecting the
query.

Using the same arguments as in the proof of Theorem 3 (i.e., a small number of edges
ei intersect the query rectangle R), we have the following claim.
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Figure 9: Rectangles in dashed lines illustrating the [tj1, t
j
2], [r

j
1, r

j
2] rectangles of 14 moving

object instances in Figure 6(a). Five rectangles of moving objects o5, o7, o9, o11, and
o13 intersect with the shaded query Q3 = ([23,25],[0.62,0.75]) in Figure 6(c). Only two
moving objects o5 and o7 are actually in range as shown in Figure 7(e).

Theorem 7. For n moving object instances randomly distributed on the E edges of a
graph, the number of I/Os required to determine the moving objects intersecting a Q2

query in a minGStreeR is expected to be O(
√

n
EB

+ k
′′′

), where k
′′′

is the number of disk
blocks required to store the rectangles intersecting Q2.

In the worst case, when R intersects all E edges, the number of I/Os required to

determine moving objects falling in range is O(E
√

n
EB

+ k
′′′

), or O(
√

nE
B

+ k
′′′

).

Note that k
′′′

is likely to be larger than k′′, the number of disk blocks required to
store the query answer, but less than k from the searching complexity O(logB

n
E

+ k) of
the minGStreeI . For example, the query in Figure 6(c) has two moving objects in range
as shown in Figure 7(e). The minGStreeI search has seven time intervals in range (see
Figure 7(d)). The minGStreeR search reports five rectangles in range (see Figure 9).
There is a trade-off between the O(logB

n
E

+ k) I/Os required by the minGStreeI and the

O(
√

n
EB

+ k
′′′

) I/Os required by the minGStreeR.

7 Ordered Polyline Representation

The problem of objects moving at constant velocity on the edges of graphs is more precisely
represented by a diagonal line segment of the [t1, t2] × [r1, r2] rectangle for each moving
object on each edge. Each point on this line segment corresponds to a position of moving
object at a specific time. If a line segment intersects a rectangle query, its corresponding
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moving object is in range. Our problem is now how to index line segments efficiently to
achieve an efficient search on moving objects. Figure 10 shows an example of 18 objects
moving at constant velocity over an edge.

Ordered polylines pi are created by connecting parts of line segments formed from their
intersection (with each other and with the r = 0, and r = 1 boundary). For example, the
first two ordered polylines in Figure 10 are p1 = {o1.1, o2.2} and p2 = {o2.1, o1.2}. Ordered
polylines are arranged as a balanced search tree based on each pi dividing the space.
Points to the left of pi are guaranteed to be in the left subtree of the node containing pi;
similarly points to the right of pi are in the right subtree of the node containing pi.
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Figure 10: Line segments represent 18 moving objects traveling at a constant velocity
over an edge.

In the worst case, every line segment representing a moving object instance intersects
the line segments representing all other moving object instances on the same edge (see
Figure 11). For gi moving object instances on edge i, this worst case results in O(g2

i )
line segments, with each ordered polyline requiring O(gi) line segments. The number of
ordered polylines is still precisely gi. We thus need O(log(gi)) time to find which line
segments of a single ordered polyline intersect the Q2 query.

0

1
r

tTo1 o2 o3 o4 o5 o6 o7 o8

Figure 11: Example of 8 polylines representing 8 moving object instances o1, ..., o8 in the
worst case.
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Theorem 8. Time to search for line segments of a single ordered polyline intersecting a
Q2 query is O(log(gi) + a), for a the number of line segments intersecting Q2.

Proof. In order to index an ordered polyline (see Figure 12), we use a one-dimensional
range tree to index its points. Since points (t, r) in a polyline are ordered increasing on
both t and r values, we can choose either t or r as the key of the range tree without
changing its structure. In our range tree, a leaf node of the tree contains two values t and
r of a point, and an internal node contains two average values (t̄,̄r), which are the average
of the (t, r) values in the rightmost left node in the left subtree and the leftmost leaf node
in the right subtree. All leaf nodes are threaded. Figure 13 shows the range tree indexing
the ordered polyline in Figure 12.

0

1
r

t
(1,0)

(3.8,0.09)

1

.1

5

.5

(5.2,0.16)

(6.2,0.28)

(8.2,0.38)

10

(8.7,0.53)

13

(10.3,0.62)

(11.3,0.76)

(11.7,0.9)
(12.2,1.0)

A
B

C
D

E

F
G

H

I
J

Figure 12: Example of an ordered polyline containing 10 points A, B,.., J.

Searching for segments of an ordered polyline intersecting a query Q3 = [t1, t2]×[r1, r2]
starts from the root of the range tree, then go to the left child or the right child based on
the (t, r) values. When a leaf node is reach, we follow the threads from the current leaf
to check for the intersection between the query and line segments.

At an internal node, the (t̄, r̄) values are compared to the [t1, t2] and [r1, r2] ranges of
the query rectangle Q3. We follow the proper child based on the following four choices:

1. If the r̄ (t̄) value of the current node falls in the [r1, r2] ([t1, t2]), and the t̄ (r̄) value
does not, we travel down based on the t̄(r̄) value.

2. If both t̄ and r̄ values fall outside [t1, t2] and [r1, r2], respectively, and result in travel
to the same child, we follow that child.
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Figure 13: Example of a range tree indexing the ordered polyline shown in Figure 12.

3. If both t̄ and r̄ values fall outside [t1, t2] and [r1, r2], respectively, and t̄ and r̄ values
make us travel down to different sides of the current node, we halt.

4. If both t̄ and r̄ values fall inside [t1, t2] and [r1, r2], respectively, we travel down one
side (e.g., left side) of the current node until reaching a leaf node l. We then check
the intersection of the segments threaded from l (e.g., to the right direction) until
we reach a line segment that does not intersect Q3.

From the above algorithm, we see that in the worst case, when the root node meets
the fourth choice above, the time required is log2(gi) + a or O(log2(gi) + a), where gi is
the number of points in the ordered polyline pi, and a is the number of line segments
intersecting Q3.

Theorem 9. For a single edge ei containing gi moving object instances, the time to answer
a Q2 query in the worst case is O(log(gi)

2 +k), where k is the number of ordered polylines
in range.

Proof. An ordered polyline tree indexes ordered polylines pi as a balanced search tree
based on each pi diving the space. Each internal node contains a range tree indexing line
segments of an ordered polyline used to divide space, and points to two other children
indexing dividing ordered polylines. Each leaf node contains a range tree for an ordered
polyline. Figure 14 shows an example of the ordered polyline tree indexing the 18 ordered
polylines shown in Figure 10.

Since an ordered polyline tree is a balanced search tree, and indexes gi ordered polylines
pi, its height is log2gi. From theorem 8, searching at each range tree at each node on the
ordered polyline tree takes O(log(gi)) time in the worst case. Therefore, searching on the
ordered polyline tree for ordered polylines intersecting Q2 requires O(log2(gi)×log(gi)+k),
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or O(log(gi)
2 + k) time in the worst case, where k is the number of ordered polylines in

range.

p9

p4
p14

p2 p6
p11 p16

p1 p3 p5 p7

p8

p10 p12

p13

p15
p17

p18

Figure 14: Example of the ordered polyline tree indexing the 18 ordered polylines shown
in Figure 10. Ordered polyline p9 = {o9.1, o8.2, o8.3}.

Note that in the best case, when each ordered polyline is a line segment, searching
on a range tree for this line segment requires O(1) time; thus, searching on the ordered
polyline tree only requires O(log(gi) + k), where k is the number of ordered polylines in
range. The space for an ordered polyline in the best case is O(gi), versus in the worst
case (see Figure 11) where the space required is O((gi)

2).

8 Conclusion

We present a new data structure, the minGStree, for efficient search of moving objects
(e.g. vehicles) on planar (or non-planar) graphs. The minGStree is a combination of strip
trees and interval trees. Strip trees are used for spatial indexing of the graph edges. Each
strip tree (at leaf level) represents a polyline (corresponding to a road or road segment in
a road network). The interval trees (in the minGStreeI version) or priority R-trees (in
the minGStreeR version) are used to index the trajectories of moving objects on graphs
indexed by strip trees. There are some advantages for the minGStree. First, the top
strip trees indexing the graph geometry, and the bottom interval trees indexing only time
intervals of moving objects are independent. For example, one can update the bottom
trees (interval trees or priority R-trees) without changing the strip tree indexing for edges,
or update a strip tree when an edge changes, without affecting other strip trees (at leaf
level). Second, since moving objects on a graph edge belong to a strip tree, we can easily
answer queries which count moving objects on a specific single edge; for example, how
many vehicles move on a specific road at a specific time or during a specific time interval.

The minGStree is directly implementable as an I/O efficient data structure by re-
placing the internal memory interval trees with the optimal external memory interval
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trees, or priority R-trees. It remains to experimentally validate the minGStree with an
implementation of I/O-efficient external memory interval trees (e.g. [6]).

It is an open problem whether the expected number of I/Os required to answer a Q1

or Q2 query can be made output sensitive (i.e. k is precisely the number of disk blocks
required to store the answer). Another open problem is how to efficiently index ordered
polylines representing moving object instances so as to achieve an I/O efficient worst case
optimal search complexity, or how to build an I/O efficient data structure to achieve a
polylogarithmic search time on a set of gi moving object instances.
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