
Sensor web language for dynamic
sensor networks

by

Gunita Saini and Bradford G. Nickerson

TR09-196, 15 Jan, 2010

Faculty of Computer Science

University of New Brunswick

Fredericton, N.B. E3B 5A3

Canada

Phone: (506) 453-4566

Fax: (506) 453-3566

Email: fcs@unb.ca

www: http://www.cs.unb.ca

Contents

1 Introduction 2
1.1 Mesh SWL . 2
1.2 Fuzzy SWL . 3
1.3 Reliable protocol for communication in WSN 3
1.4 Dynamic Adaptation . 4

2 Existing single hop structure 4

3 The sensor node program structure 7

4 Gateway mote 10

5 Base station 11
5.1 SWLAnnounce . 13

5.1.1 RequestAnnounce message 14
5.1.2 SWLAnnounce message 14

5.2 Comparison of SWLAckListner (Version 1.5) program to SWL-
Listner (Version 1.0) base station program 17

6 Browser Applet communication 17

7 Database population 18

8 Unique Identifiers 21
8.1 Session ID . 21
8.2 UUID . 21

9 Conclusion 22

A Header File - SWLMsg.h 25

B Base station code 26
B.1 SWLAnnounce.java . 26
B.2 SWLAnnResponceCollector.java 37
B.3 Moteindex.java . 39

C Browser Applet code 40
C.1 SensorNetworkBridge . 40
C.2 SerialPlug . 40

1

1 Introduction

Sensor Web Language (SWL) [1, 5] is an extensible, object oriented language
supporting robust message passing among various components: sensor nodes,
gateway nodes, communication computers, LINUX server and web browser.
SWL was first developed by University of New Brunswick (UNB) for sensor
web configuration and query processing in hierarchical sensor networks in
2004.

SWL supports hierarchical routing using the same message structure
through the sensor web. An SWL user can send a request for an on-site
reading from the browser. The request is then received by the base station
which, in turn, sends the request to the gateway. The gateway relays the
request to the appropriate sensor node. The sensor node gets the reading
from the appropriate sensor and sends the reading to the gateway.

The gateway then relays the reading back to the base station which, in
turn, sends the response to the browser. SWL [2] provided an initial user
interface to send a request to, and get response from the field in near real time.
An initial implementation of the SWL compiler made it easy to configure the
sensor web. Sensor nodes have to route messages to the base station through
one gateway node. Command line development environments and a visual
editor for Java, JavaCC, MySQL and nesC (running on TinyOS) were used
in the software development.

SWL is modified various times to make it dynamic, robust and reliable.
For clarity, we have divided SWL in versions, where,

• Version 1.0 is SWL for mesh architecture,

• Version 1.5 is SWL for mesh architecture with Acknowlegdement (ACK),
and

• Version 2.0 is SWL for mesh architecture with ACK and Announce
capabilities.

1.1 Mesh SWL

Zhongwei Sun presented a ’Sensor Web Language (SWL) [6, 10] for mesh
architecture in 2005. The mesh SWL software architecture builds on the
previous hierarichal SWL architecture. She added a full mesh architecture
in the application layer of SWL. SWL toolkit was developed using Eclipse
for generating standard SWL code for sensor networks. The browser gener-
ated by SWL compiler automatically places the gateway and sensor nodes
in their appropiate geographical location. A square button represented a

2

gateway and a triangular button represented the sensor nodes. Sensors were
represented by small buttons around the gateway and the sensor nodes. A
MySQL database was designed for the SWL server. For mesh architecture in
SWL, 5 new message types and 13 objects were added in SWL. This provided
more reliable sensor web communication. Test results showed that a sensor
web language supporting mesh architecture provides a sound foundation for
flexible and reliable sensor web communication.

1.2 Fuzzy SWL

Ke Deng [4, 7] presented a sensor network programming platform using fuzzy
logic to improve the responsiveness of Wireless Sensor Networks (WSNs). A
fuzzy controller model is used to dynamically control the rate of observation
of environmental variables. Differing rates arise from changing environmen-
tal conditions. Inferencing using linguistic rules provides a compact, human
friendly way to represent the knowledge base for controlling environmental
sensor networks. This approach reduces gateway communication and thus
reduces energy consumption. Each sensor node can have multiple sensors
attached to it. network state changes are transmitted only among sensors
residing on different sensor nodes. This also results in less energy consump-
tion. The fuzzy SWL was build over the previous non fuzzy SWL. Hence the
fuzzy SWL grammar extends on the previous SWL grammar. Conclusions
made after implementing Fuzzy SWL were:

• The message reception rate of fuzzy SWL was approximately 95%,

• The power consumption (with -2.7 dBm transmission power) overhead
of fuzzy SWL was approximately 15% when compared with Crossbow’s
benchmark without fuzzy SWL (using 0 dBm transmission power) ,

• The SWL fuzzy control system made monitoring more frequent during
heavy rainfall, and conserved energy during light or no rainfall, and

• The RAM and ROM usage of fuzzy SWL increased linearly as the
number of rules increased.

The experimental results confirmed that fuzzy SWL control system is
feasible and effective for environmental monitoring sensor networks.

1.3 Reliable protocol for communication in WSN

John Paul Arp [8] presented a Disseminated ACKnowledgement (DACK)
protcol for data collection in WSNs. The goal is to improve the reliability

3

of data collection in WSNs using dissemination to achieve end-to-end ac-
knowledgement of data samples. Objectives of the thesis were to minimize
the energy consumption of the wireless nodes while communicating and to
minimize the data loss during communication thereby enhancing reliablity.

1.4 Dynamic Adaptation

In WSNs nodes appear and disappear, and WSN communication protocols
(such as Zigbee, 6LowPan and DYMO) in tier 1 and 2 of the WSN (shown in
Figure 1) are designed to adapt to this dynamic environment [9]. The goal of
this report is to document the changes made in SWL toolkit for dynamically
adapting a changing WSN to the the tiers 3 and 4 of the WSN (i.e the Base
Station and the Web Browser).

To dynamically adapt a changing WSN to the base station (tier 3) of
WSN, changes are made in SWLMote code, base station code, the SWLcom-
piler and the SWLdatabase. For dynamic adaptation on the web browser
(tier 4) of WSN, without recompiling the whole code, we propose to integrate
the OGC standard Sensor Observation Service (SOS) [3] as an interface for
adding real time sensor updates into the web.

2 Existing single hop structure

The updated SWL message grammar can be seen in Table 2. A new Request
type RequestAnnounce is added in the grammar to recognize the Reques-
tAnnounce message sent from the base station to the sensor nodes. A new
Response type SWLAnnounce is also added. NodeConfig consists of the
NodeUUID, latitude, longitude, session ID, number of sensors attached to
the node and the sensor UUIDs. The sessionID and UUIDs are further ex-
plained in the sections 6.2.1 and 6.2.2, respectively. The RequestAnnounce
and ResponseAnnounce message are further explained in sections 8.1 and
8.2, respectively.

The +n sign in grammar rules 21, 49, 50, 51 from Table 2 indicate that
precisely ’n’ instances of the preceeding token appear.

Figure 2 shows the modified SWLMessage structure including two added
fields for Announce. The two added fields are message size and sessionid dis-
cussed in sections 3 and 8.1, respectively. AckSeqNo is the acknowlegement
sequence number, an unsigned 1 byte int. Sender id is the id of the node
sending the message, an unsigned 2 byte int. SwlMsgType is the message
type, an unsigned 1 byte int. All message types defined in SWL are shown

4

Figure 1: WSN architecture from ([9]).

typedef struct SWLMsg {
uint8 t ackSeqNo;
uint16 t senderID;
uint8 t swlMsgType;
uint8 t swlMsgID;
uint16 t swlSeqNo;
uint8 t message size;
uint8 t sessionid;
uint8 t payload[22];
} SWLMsg;

Figure 2: Modified SWLMsg structure extended from [10].

5

1 Goal ::= MainClass [{ ClassDeclaration }+ |
{ Action }+] EOF

2 MainClass ::= sensornet Identifier { MainDecl }*
3 MainDecl ::= main (Arg) { { VarDecl }* {

Statement }* }
4 ClassDeclaration ::= ClassSimpleDecl | ClassExtendsDecl
5 ClassSimpleDecl ::= class Identifier { { VarDecl }* {

Constructor }* { MethodDecl }* }
6 ClassExtendsDecl ::= class Identifier extends Identifier

{ { Statement }* { VarDecl }* {
Constructor }* { MethodDecl }* }

7 Constructor ::= Identifier ({ Arg }*) { {
SuperCon }* { Statement }* }

8 SuperCon ::= super ({ Param }*) ;
9 Action ::= request { SensorNetId { Request

}* } | response { SensorNetId
{ Response }* } | report {
SensorNetId { Response }* } | alert
{ SensorNetId { Response }* } |
changeI { SensorNetId { Response
}* } | switchG { SensorNetId {
Response }* }

10 SensorNetId ::= sensornet (Identifier)
11 Request ::= RequestBasic | RequestArray |

RequestConfig | RequestAnnounce
12 RequestBasic ::= { Identifier.IdRest ([Param])};
13 RequestArray ::= { ArrayRef.IdRest ([Param])};
14 RequestConfig ::= { Configuration;}
15 RequestAnnounce ::= {Identifier .ga();}
16 Response ::= ResponseConstructor

| ResponseArrayCon |
ResponseArrayValue | ResponseConfig
| ResponseAnnounce

17 ReponseConstructor ::= {Identifier.IdRest ([Param]);}
18 ResponseArrayCon ::= {ArrayRef.IdRest ([Param]);}
19 ResponseValue ::= { Identifier.IdRest = Exp ;}
20 ResponseConfig ::= {Configuration{{varDecl }*{Exp }*}}
21 ResponseAnnounce ::= {nid={Hexdigit}+16;lt={ N |

S}deg,min,sec ;s={IntegerType };ln={
E | W }deg,min,sec ;n={IntegerType }(;SID={Hexdigit +})}
| { NodeConfig }

22 NodeConfig ::= {Configuration{{varDecl }*{Exp }*}}
...

49 deg ::= {Digit }+2
50 min ::= {Digit }+2
51 sec ::= {Digit}+5
52 IntegerType ::= int

...
98 Digit ::= {0 | ... | 9}
97 HexDigit ::= {0 | ... | 9 | a | ... | f}

Table 2: A portion of Adaptive SWL Grammar extended from [4, 10].

6

in Table 3. Every SWL message is split into packets which fit in the payload
within a TinyOS packet of size 22 bytes.

Table 3: SWL message types.
Message SWL Msg. Type

ALIVE 0
REQUEST 1
RESPONSE 2

REPORT 3
SWITCHG 4

ALERT 5
CHANGEI 8

CHECKSTAT 9
RXREADY 10
TXDONE 11

SLEEP 12
WAIT 13

RESET 14
ANNOUNCE 15

3 The sensor node program structure

There are 2 sensor node programs - SWLMote.nc and SWLMoteM.nc and 2
header files - SWLMsg.h and config.h. SWLMote.nc is a top-level configura-
tion file and the source file which the nesC compiler uses to generate an ex-
ecutable file. SWLMoteM.nc provides the implementation of the SWLMote
application. SWLMsg.h defines the structure of SWLMsg and the AckMsg.
Figure 3 shows a diagrammatic view of the sensor node program compilation
process.

As seen in the figure the mote program is installed and compiled on the
motes using the Makefile. An example makefile is shown in Figure 4.

In figure 3 the config.h file is generated by the compiler. The Config.h
file is a unique file for each sensor node. It has the nodeUUID, latitude,
longitude, number of sensors attached to the node and description of the
sensors attached. The description contains the sensorUUIDs, sensor type,
sensor channel, sensor bit and sensor parameter. An example config.h file is
shown in Figure 5 for a sensor node with three sensors (temperature, waterfall
and battery) attached.

7

Figure 3: The sensor node program compilation process.

COMPONENT=SWLMote
SENSORBOARD=mda300
XBOWROOT={TOSROOT}/contrib/xbow/tos
XBOWBETAROOT={TOSROOT}/contrib/xbow/beta/tos
PFLAGS = -I$(XBOWBETAROOT)/platform/mica2
PFLAGS += -I$(XBOWBETAROOT)/CC1000RadioPulse
PFLAGS += -I$(XBOWBETAROOT)/lib/ReliableRoute Low Power
$(SENSORBOARD)
PFLAGS += -I$
/opt/tinyos-1.x/contrib/xbow/beta/tos/sensorboards/mda300
PFLAGS += -I$(XBOWBETAROOT)/interfaces
PFLAGS += -I$(XBOWBETAROOT)/system
PFLAGS += -I$(XBOWBETAROOT)/lib
PFLAGS += -I$(TOSROOT)/tos/lib/Queue
PFLAGS += -I$(TOSROOT)/tos/lib/Broadcast
PFLAGS += -I$ /opt/tinyos-1.x/contrib/ucb/tos/lib/RandomMLCG
PROGRAMMER EXTRA FLAGS = -v=2
include $TOSROOT/contrib/xbow/apps/MakeXbowlocal
include $TOSROOT/apps/Makerules

Figure 4: Makefile for compiling and installing a sensor node program on the
wireless nodes.

8

#define nodeUUID "46f52dc76c6042319dde600f48d39d53"
#define LAT DEG "N45"
#define LAT MIN "95"
#define LAT SEC "599999"
#define LONG DEG "W66"
#define LONG MIN "63"
#define LONG SEC "339128"
#define SENSOR1 UUID "c6cf046dc1fa4e6381b2f8375ec863db"
#define SENSOR2 UUID "cfdf449efd554fe0be2bb6b29ec46778"
#define SENSOR3 UUID "391e816927484bcbb39a548ccc88bc6c"
#define NUM SENSORS 3
enum {
REPORT INT = 15, // Report Interval = 15 seconds
SENSOR1 TYPE = BATTERY,
SENSOR1 CHANNEL = 0,
SENSOR1 BIT = 0x0001, // A unique bit for each sensor
SENSOR1 INT = 20, // Sample Interval = 20 seconds
SENSOR1 PARAM = SAMPLER DEFAULT,
SENSOR2 TYPE = ANALOG,
SENSOR2 CHANNEL = 0,
SENSOR2 BIT = 0x0002,
SENSOR2 INT = 900,
SENSOR2 PARAM = EXCITATION 25,
SENSOR3 TYPE = TEMPERATURE,
SENSOR3 CHANNEL = 0,
SENSOR3 BIT = 0x0004,
SENSOR3 INT = 900,
SENSOR3 PARAM = SAMPLER DEFAULT,

};

Figure 5: Sample Config.h file.

9

An example SWLMsg.h file can be seen in Appendix A. The announce
message type is defined as 15. We have added 2 more parameters: sessionid
and message size in the SWL message. Both are integer type. If a message
is sent in 6 parts then the message size will be 6. We have also defined a
struct SessionParam to keep track of the sessionid.

The announce message consists of the nodeUUID, latitude, longitude,
sessionID, number of sensors attached to the node and the sensor’s UUID.
The SWLMoteM program takes the NodeUUID, latitude, longitude, number
of sensors and sensorUUID from the config.h file. When SWLMoteM recieves
a RequestAnnounce message for a node, the node responds back with a
SWLAnnounce message for that node. The Announce message is divided
into a header consisting of three packets plus one additional packet for each
sensor attached to the sensor node.

Each part of the SWLAnnounce message is written into the SWLMsg
payload and then sent to the gateway, which further relays the message to
the base station. Each packet of the SWLAnnounce message is sent only if
an acknowledgement of the previous message is recieved by the SWLmoteM
program. An example SWLMsg is shown in Table 3 containing a 6-packet
SWLAnnounce message. In the payload column the values inside the square
brackets is the length of that field in bytes.

Table 4: Example SWLMsg containing the SWLAnnounce message split
into six packets. Each packet fits in the payload within a TinyOS packet.
nid=nodeUUID, lt=latitude, s=sessionID, ln=longitude, n=number of sen-
sors attached to the node, SID=sensorUUID, 15 is SWLAnnounce message
type.
Sender SWL Msg. Msg. SWL Seq Message Session Payload

ID Type ID No. size ID

1 15 1 0 6 66 nid=[16];
1 15 1 1 6 66 lt=[3],[2],[5];s=[3];
1 15 1 2 6 66 ln=[4],[2],[5];n=[2];
1 15 1 3 6 66 SID=[16];
1 15 1 4 6 66 SID=[16];
1 15 1 5 6 66 SID=[16];

4 Gateway mote

The gateway mote program is built on the previous Mesh SWL gateway
mote program. The gateway mote code was modified by John Paul for his

10

Figure 6: The gateway, sensor node and base station communication when a
connection with the base station is generated.

DACK protocol [8]. In the current gateway mote code, before starting com-
munication the gateway sends an alive message to the base station to check
if it is alive. If the gateway recieves the alive message back, the gateway
sends RXREADY message as a response to the sensor node’s CHECKSTAT
message. Then the sensor nodes start communication by sending their sen-
sor readings to the gateway. The gateway passes these sensor readings to
the base station and sends an acknowledgement to the sensor nodes. The
CHECKSTAT communication mechanism is shown in the Figures 6 and 7.

Figure 8 shows a diagrammatic view of the gateway mote program struc-
ture. A makefile uses the nesc gateway programs and TOS libraries to install
an compile the SWL gateway mote program.

For the SWLAnnounce message, we used the single hop gateway mote
program used by Zhongwei Sun [10] and written by John Paul Arp. The
only addition is that the gateway forwards any SWLAnnounce message it
receives from the sensor nodes to the base station.

5 Base station

The base station consists of programs - SWLAnnounce.java, Moteindex.java,
SWLResponseCollector.java, SWLAnnResponseCollector.java, and AnnRe-
sponseMsg.java.

11

Figure 7: The gateway, sensor node and base station communication when
the base station is not operational and then becomes operational at time T1.

Figure 8: The gateway mote program structure.

12

Figure 9: The Base station program structure.

SWLAnnounce.java is the central program for the Announce operation
and talking to the SWL database. SWLAnnounce.java is discussed in length
in the next section. SWLResponseCollector.java, SWLAnnResponseCollec-
tor.java and AnnResponseMsg.java are object classes used by SWLAnnounce.java.
SWLResponseCollector.java and SWLAnnResponseCollector.java collect the
whole response in an array while messages are received one by one by SWLAn-
nounce.java. SWLResponseCollector.java collects RESPONSE messages and
SWLAnnResponseCollector.java collects ANNOUNCE messages. The length
of the ANNOUNCE message is always three + number of sensors attached to
a sensor node. Moteindex.java is also an object class called by the SWLAn-
nounce.java. Moteindex.java is also discussed in the next section. The base
station program structure is shown in Figure 9. mig is a message interface
generator for nesc. mig is a tool to generate code that processes tinyOS mes-
sages. Here mig generates SWLMsg.java and AckMsg.java (for base station
use) from SWLMsg.h and AckMsg.h (TinyOS header files) respectively.

5.1 SWLAnnounce

SWLAnnounce.java receives and sends SWLMessages from and to the gate-
way. The gateway further forwards messages from and to the sensor nodes.

13

If messages received by SWLAnnounce are acknowledge (ACK) messages,
then SWLAnnounce prints the message on standard output.

When communication is setup between the sensor node, the gateway and
the base station and SWLAnnounce start receiving messages, SWLAnnounce
saves the session(s) of that node with a Sender ID in a hashtable. If a new
node enters the network, it has a new Sender ID, not present in the hashtable.
SWLAnnounce now knows that a new node has entered the network and,
needs to announce itself. SWLAnnounce sends a RequestAnnounce packet to
the gateway. The gateway then forwards the RequestAnnounce to the sensor
node. If a node is restarted, the Sender ID node will have a new session ID
not present in the hash table. With this SWLAnnounce comes to know that
a node is restarted and needs to announce itself. Moteindex.java is an empty
class having only two member variables, id and sessionid. Moteindex.java is
called by SWLAnnounce to save the latest session ID of each senderID into
Moteindex.java’s member variables. Moteindex.java is attached in Appendix
B.3. For clearer understanding, pseudocode for the node announce process
is shown in Algorithm 1. The complete code is in the messageReceived()
function of program SWLAnnounce.java attached in Appendix B.1.

SWLAnnResponseCollector.java is shown in Appendix B.2. SWLAnnRe-
sponseCollector is an object class used by SWLAnnounce to save the An-
nounce messages in an array.

SWLAnnounce also connects to the database. After recieving the an-
nounce message from the nodes, SWLAnnounce interacts with the database
answerind queries and storing data. The database operations done by SWLAn-
nounce using MySQL are discussed further in Section 7. SWLAnnounce.java
can be seen in Appendix B.1. Figure 10 shows the SWLAnnounce program
communication with the gateway, the sensor nodes and MySQL database.

5.1.1 RequestAnnounce message

An example Request Announce message sent from the base station to a node
via the gateway is shown in Figure 11. The message is sent by the base
station to sensor node 3 to announce itself via the gateway.

5.1.2 SWLAnnounce message

An example Announce message sent as response to the RequestAnnounce
message is shown in Figure 12.
In Figure 12, nid is the node UUID, lt is Latitude of the node, s is the
sessionID of that node, ln is the longitude, n is the number of sensors attached
to the node and SID is the Sensor UUID of a sensor attached to the node. The

14

input : int id // Sender ID

int sess id // session ID

Hashtable Sessiontable
Moteindex mi /* mi is object of class Moteindex */

Hashtable<Integer, Moteindex> Sessiontable = new
Hashtable<Integer, Moteindex>()

/* defined the hashtable */

if Sessiontable.containsKey(id) then /* If Sessiontable

contains the current Sender ID */

if mi.sessionid 6= sess id then /* compare the current

session ID with the moteindex’s session ID */

mi.id=id
mi.sessionid=sess id

/* The values ID and session ID are updated in

the Moteindex class */

SWLAnnounce announce = new SWLAnnounce()
announce.sendMsg()
/* sendMsg is a function to send Announce message

to the node with SenderID=id */

end

else
mi.id=id
mi.sessionid=sess id

/* Save new Sender ID and session ID in Moteindex

class */

SWLAnnounce announce = new SWLAnnounce()
announce.sendMsg() /* Sends Announce message to a new

node with SenderID=id */

end

Algorithm 1: Pseudo code to describe announcing mechanism in
the messageRecieved() function of program SWLAnnounce.java.

15

Figure 10: SWLAnnounce program interface with the sensor node, gateway
and the SWL test browser.

request{
s3.ga();
}

Figure 11: Example SWL Request Announce message.

16

response{
nid=46f52dc76c6042319;
lt=N45,94,599999;s=97;
ln=W66,63,339128;n=3;
SID=c6cf046dc1fa4e638;
SID=cfdf449efd554fe0b;
SID=391e816927484bcbb;
}

Figure 12: Example SWL response to a request announce message.

latitude and longitude of a node is written as lt=degrees, minutes, seconds.
Seconds are recorded using units of 1/10000 arc seconds.

5.2 Comparison of SWLAckListner (Version 1.5) pro-
gram to SWLListner (Version 1.0) base station
program

The SWLAckListner (Version 1.5) program is built on the SWLListner (Ver-
sion 1.0) base station program. The modifications are as follows:

1. Messages sent to the base station by the sensor nodes are send via the
gateway. The Gateway sends an acknowledgement for these messages
to the sensor node [8].

2. All the messages from the base station to the nodes are first buffered
in the gateway. The gateway forwards node messages when a sensor
node wakes up for communication.

3. The format of the messages are changed as shown in sections 5.1.1 and
5.1.2.

6 Browser Applet communication

There are two browsers called SWL Browser and SWL Test Browser. Figure
13 illustrates the SWL Browser and SWL Test Browser communication with
other SWL modules. The SWL Browser communicates with the servlet which
in turn communicates with the SWL database. SWL Test Browser directly
communicates with the SWLAnnounce program in the base station. The
SensorNetworkBridge (See Appendix C.1) is a java program enabling serial

17

Figure 13: SWL Browser and SWL Test Browser communication with the
SWLServer and MySQL modules.

communication on a com port when the gateway is directly connected to the
base station. SerialPlug (See Appendix C.2) is a java program connecting the
SensorNetworkBridge with the gateway. Socket Client another java program
connecting the SensorNetworkBridge with the SWL Gateway or a cellular
network.

7 Database population

A MySQL database was designed for recording sensor readings on the linux
based base station. The intial relational schema designed for the SWL is
defined in [10]. Initially there were 11 tables in the Sensor Web Language
database. Now one more table ’SESSION’ was added and four tables, ’SEN-
SOR’, ’SENSORNODE’, ’GATEWAY’, and ’POSIT’ tables were modified.
The updated relational database schema is shown in Figure 14. UUID of
the sensor node and the sensor are unique for each sensor node and sensor
respectively thoughout the database. Every component (eg. sensor, sensorn-
ode and gateway) has a posit id, that is the position in latitude and longitude
for each component is defined.

18

Figure 14: Updated relational database schema from [10].

19

All SWL queries are run using MySQL embedded in the java program
(SWLAnnounce). SWLAnnounce queries and updates four database tables,
as follows:

1. GATEWAY table
Contains an additional field posit id.

2. SESSION table
The nodeID (SenderID), node’s sessionID and datetime are saved in
this table. SessionID of each node with time stamps is stored. If a
node enters the WSN or the sessionID of a node changes, then a new
entry is added to the SESSION table.

3. SENSORNODE table
Two fields posit id and UUID were added in SENSORNODE table.
SWLAnnounce checks the node UUID, obtained from the SWLAn-
nounce message, with that in the SENSORNODE table. If present,
SWLAnnounce retrieves the record from the database and passes the
node’s attributes to the browser. If the UUID is not present then
SWLAnnounce inserts the node UUID in the SENSORNODE table.

4. SENSOR table
IN SENSOR table also two fields, posit id and UUID were added.
The SWLAnnounce program queries the SENSOR table in the same
way SWLAnnounce queried the SENSORNODE table. SWLAnnounce
checks the sensor UUID, obtained from the SWLAnnounce message,
with that in the SENSOR table. If present, SWLAnnounce retrieves
the record from the database and passes the node’s attributes to the
browser. If the UUID is not present then SWLAnnounce inserts the
sensor UUID in the SENSOR table.

5. POSIT table
POSIT table contains the position of each component in the WSN.
A new field component id was added. Component id is the UUID of a
sensor node or a sensor or a SWL gateway node. SWLAnnounce checks
the sensor node and sensor’s UUID, obtained from the SWLAnnounce
message, with that in the POSIT table. If present the SWLAnnounce
compares the latitude and the longitude, obtained from the SWLAn-
nounce message, of that UUID with the ones in the POSIT table. If
not almost equal (±ε), the SWLAnnounce ends the record by setting
the end date as the current date and inserts a new record of compo-
nent’s new latitude and longitude in the POSIT table. If the component

20

UUID is not present in the POSIT table then SWLAnnounce inserts
the UUID with component’s latitude and longitude into the table.

8 Unique Identifiers

A new message named AnnounceRequest is introduced. This message will be
send by a sensor node to the base station when it joins the WSN. To achieve
this two new unique identifiers are added in the current SWL message packet.
They are session id and UUID.

8.1 Session ID

Session ID is a 1 byte unique integer defined for each node in the network.
While sensor nodes communicate with the base station, nodes send their
session ID and sender ID to the base station. If the base station encounters
a new sender ID or for that sender ID a new session ID, base station will
assume a new node has entered the network. Then the base station will send
a Request Announce message to the that particular sensor node asking that
node to announce itself. The session id is stored in node’s flash memory.

8.2 UUID

UUID [11] is a 16byte universally unique identifier used for uniquely identify-
ing each sensor node type and sensors attached to it throughout the network.
The node’s uuid and the sensor’s uuid are also saved in the node’s flash mem-
ory. Whenever the node aanounces itself to the base station in responce to
the RequestAnoounce message from the base station the node sends a Re-
sponseAnnounce message containing node’s UUID and the UUIDs of all the
sensors attached to the node.

The sensornode and sensor tables in the database are modified with one
more column, UUID. The UUID will uniquely identify each node type and
each sensor type. When ResponseAnnounce message is send by the nodes to
the base station the UUID’s of the nodes and sensors will be compared to
get more information of that particular node and sensor from the database
tables sensor and sensornode tables.

Through this the base station will have all the information of the new
node and sensors attached to the node entering the WSN.

Figure 15 displays the communication between the base station, gateway
and the nodes when WSN changes:

21

Figure 15: Communication between the MySQL Server, Base station and
nodes to announce a new node in the network.

9 Conclusion

During the base station and the node communication, the node sends it’s
nodeid (senderID) and the sessionID to the base station via the gateway.
Whenever the base station gets a new node id or a new session id with respec-
tive to the same node id, the base station sends a RequestAnnounce message
to the node. SWL compiler is updated to add Request Announce message.
The node sent it’s nodeUUID, sensorUUID, latitude, longitude, number of
sensors attached to the node to the base station as Announce message. With
the nodeUUID and sensorUUID, base station queries the SWL database for
the rest of node and it’s sensors information. If the database does not con-
tain any record of that nodeUUID and sensorUUID, SWLAnnounce program
updates the database by adding the nodeUUID and sensorUUID in the SEN-
SOR and SENSORNODE table. The node location values are added to the
POSIT table. The sessionID of each node are saved in Session table. At
last this updated information is shown in the SWL Web browser. With this
dynamic data adaption in WSN is achieved, that is when a new node enters
into the network it automatically pops up in the web browser. To ensure end
to end reliability DACK protocol is proposed to be used.

22

References

[1] J.-P. Arp and B. G. Nickerson, A user friendly toolkit for building robust
environmental sensor networks, CNSR ’07: Proceedings of the Fifth
Annual Conference on Communication Networks and Services Research
(Fredericton, NB, Canada), IEEE Computer Society, 2007, pp. 76–84.

[2] J. P. Arp, B. G. Nickerson, J. Lu, and Z. W. Sun, Sensor web lan-
guage communications protocol, Tech. Report TR04-167, UNB Faculty
of Computer Science, May 16 2004.

[3] Mark Priest Arthur Na, Sensor observation service, OpenGIS Imple-
mentation Standard, Version 1.0 (2007).

[4] Ke Deng, Improving responsiveness of the sensor webs, Master’s thesis,
The University of New Brunswick, Fredericton, NB, Canada, November
2008.

[5] B. G. Nickerson and J. Lu, A language for wireless sensor webs, CNSR
’04: Proceedings of the Second Annual Conference on Communication
Networks and Services Research (CNSR’04) (Fredericton, NB, Canada),
IEEE Computer Society, May 19-21 2004, pp. 293–300.

[6] B. G. Nickerson, Z. Sun, and J. Arp, A sensor web language for mesh
architectures, CNSR ’05: Proceedings of the 3rd Annual Communication
Networks and Services Research Conference (CNSR’05) (Halifax, NS,
Canada), IEEE Computer Society, 2005, pp. 269–274.

[7] Bradford G. Nickerson and Ke Deng, An adaptive programming model
for environmental sensor networks using fuzzy logic, CNSR ’08: Pro-
ceedings of the 3rd Annual Communication Networks and Services Re-
search Conference (CNSR’08), 2008, pp. 350–357.

[8] Arp John Paul and Bradford G. Nickerson, The disseminated acknowl-
edgement (dack) protocol for data collection in wireless sensor networks,
Poster at the 11th Annual GEOIDE Scientific Conference (Vancouver,
B.C.), May 27-29 2009.

[9] Gunita Saini, Automated sensor web adaptation to sensor networks,
UNB Faculty of Computer Science MCS thesis proposal (2009).

[10] Z. Song, Mesh architecture for environmental sensor webs, Master’s
thesis, The University of New Brunswick, Fredericton, NB, Canada,
September 2005.

23

[11] Wikipedia, Universally unique identifier, September 2009.

24

A Header File - SWLMsg.h

SWLMsg.h defines the structure of SWLMsg and AckMsg. The enum below,
assignes the SWL message size types to the SWLmessages. Announce message is
assigned 15 as the message type. The structures SWLMsg and AckMsg define the
SWLMsg packet.

#include "TosTime.h"
#define BATTERY_PORT 7

enum {
ALIVE = 0,
REQUEST = 1,
RESPONSE = 2,
REPORT = 3,
SWITCHG = 4,
ALERT = 5,
CHANGEI = 8,
CHECKSTAT = 9,
RXREADY = 10,
TXDONE = 11,
SLEEP = 12,
WAIT = 13,
RESET = 14,
ANNOUNCE = 15,

// Add TSYNC message for helping time sync
};

enum {
UP = 1,
DOWN = 0,
};

enum {
TEST_ID0 = unique("ByteEEPROM"),
TEST_ID1 = unique("ByteEEPROM"),
TEST_ID2 = unique("ByteEEPROM"),
TEST_ID3 = unique("ByteEEPROM"),
TEST_ID4 = unique("ByteEEPROM")
};

enum {
AM_SWLMSG = 8,

25

AM_ACKMSG = 9,
};

typedef struct SWLMsg {
uint8_t ackSeqNo;
uint16_t senderID; // 0x007E = TOS_UART_ADDR = Base Station
uint8_t swlMsgType;
uint8_t swlMsgID;
uint16_t swlSeqNo;
uint8_t message_size;
uint8_t sessionid;
uint8_t payload[22];

} SWLMsg;

typedef struct ACKMsg {
uint8_t swlMsgType;
uint8_t ackSeqNo;
uint16_t receiverAddress;

} ACKMsg;

typedef struct SessionParam {
uint8_t sessionid;
}SessionParam;

B Base station code

B.1 SWLAnnounce.java

SWLAnnounce.java is the base station program. SWLAnnounce sends and recieves
messages to a sensor node and a gateway. For announce mechanism, SWLAn-
nounce keep track of all nodes in WSN. If a node restarts or a new node comes in
the WSN, SWLAnnounce asks that node to announce itself. The SWLAnnounce
program also queries and updates the mysql database.

import java.sql.*;
import java.util.*;
import java.lang.*;
import java.io.*;
import javax.comm.*;
import net.tinyos.util.*;
import net.tinyos.message.*;
import net.tinyos.packet.*;

26

public class SWLAnnounce implements MessageListener
{

MoteIF moteif;
SWLResponseCollector swlRC;
SWLAnnResponseCollector swlARC;
AnnResponseMsg ARM;
FileOutputStream out;
PrintStream p;
Vector swlLines;
PrintWriter log;
Hashtable<Integer, Moteindex> Sessiontable;
Connection conn;
Statement stmt;
ResultSet rs;
short gateway;
short swlMsgID;
short sessionid;
short largestID = 256;
short payload[] = {0,0,0,0,0,0,0,0,

0,0,0,0,0,0,0,0,
0,0,0,0,0,0};

public SWLAnnounce()
{

int i;
gateway = 0;
swlMsgID = 0;
swlLines = new Vector();
swlRC = new SWLResponseCollector();
swlARC = new SWLAnnResponseCollector(13);
ARM = new AnnResponseMsg();
Sessiontable = new Hashtable<Integer, Moteindex>();
Calendar cal = Calendar.getInstance();

String logdate = "log_"+cal.get(Calendar.DAY_OF_MONTH) + "-" +
(cal.get(Calendar.MONTH) + 1) + "-" +
cal.get(Calendar.YEAR) + ".dat";

try
{

log = new PrintWriter(new FileWriter(new File (logdate), true));
moteif = new MoteIF(PrintStreamMessenger.err);
//moteif = new MoteIF(BuildSource.makePhoenix("

27

network@localhost:9001", PrintStreamMessenger.err));
if (moteif == null)
{ System.out.println("Invalid packet source ");

System.exit(2);
}
}

catch (Exception e)
{ System.out.println("Failed to access mote: " + e);

System.exit(2);
}

try
{

Class.forName("com.mysql.jdbc.Driver").newInstance();
conn = DriverManager.getConnection("jdbc:mysql://localhost/swl",

"swluser", "swlsecret");
stmt = conn.createStatement();

log = new PrintWriter(new FileWriter(new File (logdate), true));

moteif = new MoteIF(PrintStreamMessenger.err);
if (moteif == null)
{ System.out.println("Invalid packet source");

System.exit(2);
}

}
catch (Exception e)
{ System.out.println("Failed to access mote: " + e);

System.exit(2);
}

}

public void run()
{

moteif.registerListener(new SWLMsg(), this);
moteif.registerListener(new ACKMsg(), this);
moteif.start();

}

public void sendMsg(String cmd)
{

SWLMsg msg1 = new SWLMsg();

28

try
{

File file = new File(cmd);
BufferedReader br = new BufferedReader(new FileReader(file));

int numLines = 0;
br.readLine();
String line = br.readLine();

while((line!=null) || !(line.trim().compareTo("}")==0))
{ StringTokenizer st = new StringTokenizer(line, " ");

String str = st.nextToken();
swlLines.add(str);
line = br.readLine();
if (line.trim().compareTo("}")==0) {break;}

}

}
catch(IOException e)
{ e.printStackTrace();
}

int val = 0;
int rxTime = 10;

try
{

swlRC = new SWLResponseCollector(swlLines.size());
//swlARC = new SWLAnnResponceCollector(13);

for (int i = 0; i < swlLines.size(); i++)
{

char tstWordArray[] = ((String)swlLines.get(i)).toCharArray();

// convert the string into a list of integers.
for (int j = 0; j < payload.length; j++)
{ if (j < tstWordArray.length)

{ payload[j] = (short)tstWordArray[j];
}
else
{ payload[j] = 0;
}

}

29

SWLMsg rmsg = new SWLMsg();
rmsg.set_swlMsgType((short)1);
rmsg.set_swlMsgID(swlMsgID);
rmsg.set_swlSeqNo((short)(i+1));
rmsg.set_senderID(0x007E);
rmsg.set_payload(payload);
//moteif.send(MoteIF.TOS_BCAST_ADDR, rmsg);
moteif.send(gateway, rmsg);

int crc = Crc.calc(rmsg.toString().getBytes(),
rmsg.toString().getBytes().length - 2);

System.out.println(tstWordArray + "\t" +
rmsg.get_swlMsgType() + "\t" +
rmsg.get_swlMsgID() + "\t" +
rmsg.get_swlSeqNo() + "\t" +
crc);

Thread.sleep(350);
}

}
catch(Exception e)
{ e.printStackTrace();
}

}

public void messageReceived(int to, Message m)
{

//System.out.print("Recieved a message:");
Calendar newCal = Calendar.getInstance();

String time = newCal.get(Calendar.HOUR_OF_DAY) + ":" +
newCal.get(Calendar.MINUTE) + ":" +
newCal.get(Calendar.SECOND);

if (m instanceof SWLMsg)
{

SWLMsg msg = (SWLMsg)m;
int id = (int)msg.get_senderID();
int sess_id = (int)msg.get_sessionid();
int seqNo = (int)msg.get_swlSeqNo();
String payload = msg.getString_payload();

30

int nodeid;

if (Sessiontable.containsKey(id))
{

Moteindex mi = Sessiontable.get(id);

if (mi.sessionid != sess_id)
{

System.out.println("Announce");
mi.id=id;
mi.sessionid=sess_id;
SWLAnnounce announce = new SWLAnnounce();
swlARC = new SWLAnnResponseCollector(13);

try
{

// Create a new file output stream
out = new FileOutputStream("TestAnnounce2.txt");

// Connect print stream to the output stream
p = new PrintStream(out);
p.println ("request{");
p.println ("s"+id+".ga();");
p.println ("}");
p.close();

}
catch (Exception e)
{

System.err.println ("Error writing to file");
}

try
{ announce.sendMsg("TestAnnounce2.txt");
}
catch(Exception e){

e.printStackTrace();
}

}
}
else
{ Moteindex mi = new Moteindex();

mi.id=id;
mi.sessionid=sess_id;

31

Sessiontable.put(id, mi);
/*SWLtest announce1 = new SWLtest();
try
{ announce1.run("TestAnnounce.txt");
}
catch(Exception e){

e.printStackTrace();
}*/

}
if(msg.get_swlMsgType() == 0)
{

try
{ msg.set_senderID(0x007E);

moteif.send(id, msg);
}
catch(Exception e)
{ e.printStackTrace();
}

}

System.out.println(time + ":\t" + (int)msg.get_swlMsgID() + "\t"
+ (int)msg.get_swlSeqNo() + "\t"
+ (int)msg.get_swlMsgType() + "\t"
+ (int)msg.get_sessionid() + "\t"
+ (int)msg.get_senderID() + "\t"
+ msg.getString_payload());

log.println(time + ":\t"+ (int)msg.get_swlMsgID() + "\t"
+ (int)msg.get_swlSeqNo() + "\t"
+ (int)msg.get_swlMsgType() + "\t"
+ (int)msg.get_sessionid() + "\t"
+ msg.getString_payload());

if (msg.get_swlMsgType() == 2)
{

short incoming[] = msg.get_payload();
char incChar[] = new char[incoming.length];

for (int i = 0; i < incoming.length; i++)
{ incChar[i] = (char)incoming[i];
}

String input = new String(incChar);
swlRC.addLine((int)msg.get_swlSeqNo(), input);

32

if(swlRC.ready())
{ System.out.println("response ready:");

System.out.println(swlRC.toString());
//System.exit(0);

}
}
if(msg.get_swlMsgType() == 15)
{

short incoming[] = msg.get_payload();
char incChar[] = new char[incoming.length];

for (int i = 0; i < incoming.length; i++)
{ incChar[i] = (char)incoming[i];
}

String input = new String(incChar);
swlARC.addLine((int)msg.get_swlSeqNo(), input);

if(swlARC.ready())
{ System.out.println("response ready:");

System.out.println(swlARC.toString());
ARM.parseAnnResponse(id, swlARC.totalLines, swlARC.response);
databaseOperations(id);
//System.exit(0);

}
}

}

if (m instanceof ACKMsg)
{ ACKMsg msg = (ACKMsg)m;

System.out.println("\t ACK! \t" + (int)msg.get_swlMsgType() + "\t"
+ (int)msg.get_ackSeqNo() + "\t"
+ (int)msg.get_receiverAddress());

log.println("\t ACK! \t" + (int)msg.get_swlMsgType() + "\t"
+ (int)msg.get_ackSeqNo() + "\t"
+ (int)msg.get_receiverAddress());

}
}

public void databaseOperations(int SenderID)
{

String dnUUID="";

33

int stot_rec = 0;
int ntot_rec = 0;
int postot_rec = 0;
int j=0;
String node_lat="";
String node_lon="";
int dsID[] = new int[ARM.nsensors];
String dsmanufacturer[] = new String[ARM.nsensors];
String dsdescrip[] = new String[ARM.nsensors];
String dsmodel[] = new String[ARM.nsensors];
String dsname[] = new String[ARM.nsensors];
String dsunit[] = new String[ARM.nsensors];
int dsattnodeid[] = new int[ARM.nsensors];
String dsUUID[] = new String[ARM.nsensors];
String dspositID[] = new String[ARM.nsensors];

//Query for Sensor Node table
try
{

rs = stmt.executeQuery("SELECT DISTINCT UUID from SENSORNODE where id="
+SenderID);

while(rs.next()) {
dnUUID = rs.getString("UUID");

}
if(ARM.nUUID.equals(dnUUID))
{

rs = stmt.executeQuery("SELECT * from SENSORNODE where UUID="+"’"
+ARM.nUUID+"’");

while(rs.next()) {
int dnID = rs.getInt("id");
String dnmanufacturer = rs.getString("manufacturer");
String dnmodel = rs.getString("model");
String dnname = rs.getString("name");
String dntype = rs.getString("type");
int dnGCDID = rs.getInt("attached_GCD_id");
int dnnetID = rs.getInt("sensor_network_id");
String dnpositID = rs.getString("posit_id");
dnUUID = rs.getString("UUID");
//System.out.println(dnID+" "+dnmanufacturer+" "+dnmodel+" "+dnname

+" "+dntype+" "+dnGCDID+" "+dnnetID+" "+dnUUID);
}

}
else

34

{
rs = stmt.executeQuery("SELECT count(*) as num_record from SENSOR");
while(rs.next()) {
ntot_rec = rs.getInt("num_record");
}
int ncount = ntot_rec +1;
stmt.executeUpdate("INSERT INTO SENSORNODE(ID,"

+"UUID)"
+"VALUES"+"("+ncount+","
+"’"+ARM.nUUID+"’)");

System.out.println("Writing to database complete!!!");
}
//Query for Sensor table
rs = stmt.executeQuery("SELECT DISTINCT UUID from SENSOR");
while(j<ARM.nsensors)
{

while(rs.next()) {
dsUUID[j] = rs.getString("UUID");
break;

}
j++;

}

for(int i=0; i<ARM.nsensors;i++)
{

if(ARM.sUUID[i].equals(dsUUID[i]))
{

rs = stmt.executeQuery("SELECT * from SENSOR where UUID="+"’"
+ARM.sUUID[i]+"’");

while(rs.next()) {
dsID[i] = rs.getInt("id");
dsmanufacturer[i] = rs.getString("manufacturer");
dsdescrip[i] = rs.getString("description");
dsmodel[i] = rs.getString("model");
dsname[i] = rs.getString("name");
dsunit[i] = rs.getString("unit");
dsattnodeid[i] = rs.getInt("attached_Node_id");
dsUUID[i] = rs.getString("UUID");
dspositID[i] = rs.getString("posit_id");

//System.out.println(dsID[i]+" "+dsmanufacturer[i]+" "+dsdescrip[i]+" "
+dsmodel[i]+" "+dsname[i]+" "+dsunit[i]+" "+dsattnodeid[i]+" "+dsUUID[i]);

}
}

35

else
{

rs = stmt.executeQuery("SELECT count(*) as num_record from SENSOR");
while(rs.next()) {
stot_rec = rs.getInt("num_record");
}
int scount = stot_rec +1;
stmt.executeUpdate("INSERT INTO SENSOR(ID,"

+"UUID)"
+"VALUES"+"("+scount+","
+"’"+ARM.sUUID[i]+"’)");

System.out.println("Writing to database complete!!!");
}

}

//Query for POSIT table
rs = stmt.executeQuery("SELECT latitude, longitude from POSIT where UUID=’"

+ARM.nUUID+"’");
while(rs.next()) {
node_lat = rs.getString("latitude");
node_lon = rs.getString("longitude");
}

if(!(ARM.lttot.equals(node_lat) && ARM.lntot.equals(node_lon)))
{

rs = stmt.executeQuery("SELECT count(*) as num_record from POSIT");
while(rs.next())
{

postot_rec = rs.getInt("num_record");
}
int poscount = postot_rec +1;
stmt.executeUpdate("update POSIT SET end_date =CURDATE() where UUID=’"

+ARM.nUUID+"’");
stmt.executeUpdate("INSERT INTO POSIT(ID,"

+"UUID,"
+"LATITUDE,"
+"LONGITUDE,"
+"START_DATE)"

+ "VALUES" +"("+poscount+","
+"’"+ARM.nUUID+"’,"
+"’"+ARM.lttot+"’,"
+"’"+ARM.lntot+"’,"
+"CURDATE()"+")");

36

System.out.println("Writing to the database complete!!!!!!");
}

}
catch(Exception e)
{

e.printStackTrace();
}

}

public static void main(String args[])
{

if (args.length != 1)
{ System.err.println("Usage: java SWLAnnounce [SWLmessage]");

System.exit(2);
}
System.out.println("\nSWLAnnounce started. Running request: "+args[0]);

SWLAnnounce reader = new SWLAnnounce();

try
{ reader.run();

reader.sendMsg(args[0]);
}
catch (Exception e) {

e.printStackTrace();
}

}
}

B.2 SWLAnnResponceCollector.java

SWLAnnResponseCollector.java is an object class used by SWLAnnounce.java.
SWLAnnResponseCollector is used to collect the Announce messages.

import java.lang.*;
import java.util.*;
import java.util.*;
import java.io.*;

public class SWLAnnResponseCollector
{

String response[];
boolean collected[];
public int totalLines;

37

public int j=0, count=0;

public SWLAnnResponseCollector () {}

public SWLAnnResponseCollector (int n)
{

totalLines = n+2;
response = new String[totalLines];
collected = new boolean[totalLines];

response[0]= "response{";
collected[0] = true;

for (int i = 1; i < totalLines-2; i++)
{ response[i] = "";

collected[i] = false;
}

response[totalLines-1] = "}";
collected[totalLines-1] = true;

}

public void reset(int n)
{

totalLines = n+2;
response = new String[totalLines];
collected = new boolean[totalLines];

}

public void addLine(int lineNo, String line)
{

response[lineNo] = line;
collected[lineNo] = true;

if (collected[3] == true)
{

String id = response[3];
int num_sensor = 0;
StringTokenizer st = new StringTokenizer(id, ";");
String long1 = st.nextToken(); if(!st.hasMoreTokens()) return;
String sensor = st.nextToken();
num_sensor = Integer.parseInt(sensor.substring(2));
int tot_size;

38

tot_size = 3 + num_sensor;
totalLines = tot_size+2;
response[totalLines-1] = "}";
collected[totalLines-1] = true;

}
}

public boolean ready()
{

boolean result = true;
for (int i = 0; i < totalLines; i++)
{ if (collected[i] == false)

{ result = false;
}

}
return result;

}

public String toString()
{ String str = "";

for (int i = 0; i < totalLines; i++)
{ str = str + response[i] + "\n";
}
return str;

}
}

B.3 Moteindex.java

Moteindex.java is an object class for the SWLAnnounce. While, the SWLAn-
nounce communicates with the sensor nodes, Moteindex.java saves the session ID
of each node with respect to the sender ID.

import java.util.*;

public class Moteindex
{

public int id;
public int sessionid;

public Moteindex()
{ id = 0;
sessionid = 0;

39

}
public Moteindex(int i, int s)
{ id = i;
sessionid = s;

}
};

C Browser Applet code

C.1 SensorNetworkBridge

SensorNetworkBridge is a java program enabling serial communication on a com
port when the gateway is directly connected to the base station.

import java.io.*;
public class SensorNetworkBridge
{ public static void main(String[] args)

{ Bridge bridge = new Bridge();
BaseStationSocketServer b = new BaseStationSocketServer(9003, bridge);
ClientSocketServer c = new ClientSocketServer(9001, bridge);
bridge.setBaseStationSocketServer(b);
bridge.setClientSocketServer(c);

c.start();
b.start();

}
}

C.2 SerialPlug

SerialPlug is a java program connecting the SensorNetworkBridge with the gate-
way.

import java.io.*;
import java.net.*;
import java.util.*;
import javax.comm.*;

public class SerialPlug extends Thread implements SerialPortEventListener
{

CommPortIdentifier portId;
InputStream serialInputStream;

40

OutputStream serialOutputStream;
SerialPort serialPort;
Socket socket;
Thread readThread;

public static void main(String[] args)
{ SerialPlug sp = new SerialPlug();

sp.start();
}

public SerialPlug()
{

try
{

//System.out.println(CommPortIdentifier.getPortIdentifiers());
portId = CommPortIdentifier.getPortIdentifier("/dev/ttyS0");
//socket = new Socket("131.202.243.10", 9003);
socket = new Socket("127.0.0.1", 9003);

}
catch (Exception e)
{

e.printStackTrace();
}
try
{

serialPort = (SerialPort) portId.open("ClientSerialServerApp", 2000);
}
catch (PortInUseException e)
{ e.printStackTrace();
}

try
{

serialInputStream = serialPort.getInputStream();
serialOutputStream = serialPort.getOutputStream();

}
catch (IOException e)
{}

try
{

serialPort.addEventListener(this);
}

41

catch (TooManyListenersException e)
{}

serialPort.notifyOnDataAvailable(true);

try
{

//serialPort.setSerialPortParams(19200,
serialPort.setSerialPortParams(57600,

SerialPort.DATABITS_8,
SerialPort.STOPBITS_1,
SerialPort.PARITY_NONE);

}
catch (UnsupportedCommOperationException e)
{}

readThread = new Thread(this);
readThread.start();

}

/* Method declaration**/
public void run()
{

try
{
BufferedReader streamReader = new BufferedReader(new InputStreamReader(socket.

getInputStream()));
while (true)
{

try { Thread.sleep(20); } // don’t hog cpu
catch (Exception e) { e.printStackTrace(); }
if (socket.getInputStream().available() > 0)
{

while (socket.getInputStream().available() > 0)
{

int b = socket.getInputStream().read();
serialOutputStream.write(b);
serialOutputStream.flush();

}
}

}
}

42

catch (Exception e)
{ e.printStackTrace();
}

}

public void serialEvent(SerialPortEvent event)
{

switch (event.getEventType())
{

case SerialPortEvent.BI:
case SerialPortEvent.OE:
case SerialPortEvent.FE:
case SerialPortEvent.PE:
case SerialPortEvent.CD:
case SerialPortEvent.CTS:
case SerialPortEvent.DSR:
case SerialPortEvent.RI:
case SerialPortEvent.OUTPUT_BUFFER_EMPTY:
break;
case SerialPortEvent.DATA_AVAILABLE:
byte[] readBuffer = new byte[20];

try
{

while (serialInputStream.available() > 0)
{

int b = serialInputStream.read();
socket.getOutputStream().write(b);
socket.getOutputStream().flush();

}
}
catch (IOException e)
{}

break;
}

}
}

43

