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Abstract

This report presents the implementation and evaluation of a computer vision task on a Field Pro-

grammable Gate Array (FPGA). As an experimental approach for an application-specific image-

processing problem it provides reliable results to measure gained performance and precision com-

pared with similar solutions on General Purpose Processor (GPP) architectures.

The project addresses the problem of detecting Binary Large OBjects (BLOBs) in a continuous

video stream. For this problem a number of different solutions exist. But most of these are re-

alized on GPP platforms, where resolution and processing speed define the performance barrier.

With the opportunity of parallelization and performance abilities like in hardware, the application

of FPGAs become interesting. This work belongs to the MI6 project from the Computer Vision

research group of the University of Applied Sciences Bonn-Rhein-Sieg. It address the detection of

the users position and orientation in relation to the virtual environment in an Immersion Square1.

The goal is to develop a light emitting device, that points from the user towards the point of inter-

est on the projection screen. The projected light dots are used to represent the user in the virtual

environment. By detecting the light dots with video cameras, the idea is to interface the position

and orientation of the relative position of the user interface. Fort that the laser dots need to be

arranged in a unique pattern, which requires at least five points.[29] For a reliable estimation a

robust computation of the BLOB’s center-points is necessary.

This project has covered the development of a BLOB detection system on a FPGA platform. It

detects binary spatially extended objects in a continuous video stream and computes their center

points. The results are displayed to the user and where validated for their ground truth. The

evaluation compares precision and performance gain against similar approaches on GPP platforms.

1http://www.cv-lab.inf.fh-brs.de
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1 Introduction

Computer Vision problems in general require the processing of a large amount of data for spe-

cific application areas. The data to be processed shows similarities since most of the time vision

tasks are reduced to a specific application environment with more or less stable conditions. De-

tection of humans or human faces was a problem where much effort has been invested in the

past.[7, 12, 25, 21] Although the invented approaches showed lots of improvement, a common

problem in computer vision is still the trade-off between precision and performance.[26] It has

been shown that the evolution of computer architecture reached a physical border. The strategy of

scaling down semiconductor elements and increasing the number of circuits is no longer profitable.

Therefore one way to increase processing power is done by parallelization and application-specific

processing devices. The Graphic Processing Unit (GPU), which was originally designed for sim-

ple monitor output, nowadays performs most of the image processing tasks on computers. Their

architecture is designed to solve various computations that are required in graphics processing.

The idea of parallelization to increase the processing performance is not new and has been realized

in many different ways. Some approaches used to build up clusters of homogeneous computers for

balancing the work load.[1, 22, 9] Another solution, which is applied in many mainframe computer

architectures, is vector processing. These units are specialized to perform the same operation on a

mass of similar data in parallel. The downside of parallelization in software is the overhead that is

required for synchronization, memory management, and deadlock avoidance. Realizing the same

functionality in hardware requires less overhead while performing faster.

More performance gains can be achieved if the algorithms are realized in hardware also known

as ASIC (Application Specific Integrated Circuit). ASICs are used for high-customized solutions

to process computationally-intensive problems. Their disadvantage is that once the circuit is cre-

ated, it can not be changed afterwards. Here is where FPGAs can go one step further. These

chips contain many free configurable logic units. The program, which is typically implemented in

a Hardware Description Language like VHDL or Verilog, configures the logic units of the FPGA

to implement the algorithm. A special characteristic is that the computation will be as fast as it

would be designed on a ASIC chip.

This characteristic and the fact that the prices for FPGAs are still decreasing are strong rea-

sons to use them for application specific solutions. The vendors of FPGAs provide their own

development environments. But if a developer prefers to work with high-level languages, such as

Handel-C, or wants to use different simulation tools, it is possible to extend these development
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environments with third-vendor products. Handel-C is a C-based programming language, which

will be translated into Verilog or VHDL by special compilers.

The presented work in this report is motivated by a project named 6 Degree-of-Freedom Multi-User

Interaction-Device for 3D-Projection Environments (MI6) of the Computer Vision research group

from Bonn-Rhein-Sieg University of Applied Sciences. Their work is targeting the development

of a passive detection system to improve human-machine interfaces (HMI) in virtual environments.

Nowadays the interaction with virtual environments works with standard-input devices, such

as keyboards or mice. But a computer mouse only has a relative position on the desk in relation

to its position on the screen. It can not serve as a representative for the user’s position in virtual

environments, because the mouse does not provide information about its absolute position. In

the common use-case the mouse sends data which describes its movement in X- and Y-direction.

It is probably possible to use the mouse wheel to navigate on the Z-axis, but this does not solve

the issue about the absolute position.

With a device that does not require the user to navigate by active manipulation the perception

of the virtual environment by the user could become more realistic. The user could manipulate

the ambiance without worrying about the handling of any input device.

This is where the detection of the position of the interactive device and its orientation becomes

interesting. It would allow the user to interact with the environment without the training phase

for teaching him to handle a specific 3D-input device. The representation of the system would

change dependent on the motions of the user carrying the 3D-input device. If he changes his

orientation to another point of interest, the system could just move this point to the center of

the user’s field of vision. Another benefit is the integration of the user into the virtual environ-

ment. This could be used for improving automated teaching and testing situations, such as those

required in bicycling-driving tests for children in Germany.

One problem is that the detection requires a fast computation but also a very precise one. If

the calculation of position and orientation takes too long, the system will become locked up. In

the current project the detection of the user’s position and orientation, in relation to the virtual

environment he is looking at, is addressed.

But a challenging constraint is that the detection system has to be passive, which means that
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Figure 1. Immersion Square

it will not detect the user itself. Instead the application of a light emitting device, which points

from the user towards the point of interest to the projection screen, is a possible solution.[18, 29]

By detecting the light dots the idea is to determine the position and orientation of the user, based

on the position of the detected light dots on the projection screens. To achieve an appropriate

usability for the user, the processing has to fulfill real-time conditions. A change in the position

or orientation should change the representation of the virtual environment without a distracting

delay for the user. In addition, the applied light sources for the pointing device will work in

infrared range, to not distract the user by light dots on the projection screen. This allows the

application of infrared cameras which track only the light dots on the projection screen. These

cameras create greyscale image material which will be used for the BLOB detection.

This project covers the development of an FPGA based detection system for BLOBs in a contin-

uous video stream and the computation of their center points. The system has to perform these

processes in real-time with reliable precision. To estimate the ground-truth of the center points
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a representative amount of digitized video material containing sets of BLOBs will be used as test

data. The BLOB detection system will be compared against conventional software approaches in

terms of performance and scalability. The development of a light emitting device and the required

algorithms, for the computation of user’s position and orientation, are goals of the MI6 project

and not addressed in this work.
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2 State of the Art

A Field Programmable Gate Array contains blocks of logic gates which are freely configurable.

While satisfying the desire of application-specific solutions, their performance is similar to hard-

ware circuits. Strictly speaking, by implementing a program with a preferred Hardware Descrip-

tion Language it becomes a hardware circuit.

FPGAs have become an attractive opportunity for various kinds of automated processing. During

the past, the number of Logic Transistor Units (LTU) on the chip is increasing while the purchase

costs are going down. It has been shown in [10] that FPGA architectures are well qualified for

image processing tasks.

Real-time image processing requires the fast processing of large amounts of similar data. The

customized implementation of a algorithm on FPGA usually performs better than the same algo-

rithm on a standard x86 architecture. Metaphorically speaking, the algorithm becomes a hardware

circuit and every computation step is performed in an independent module of logic gates. In ad-

dition, the ability to parallelize the execution of the algorithm makes the application of FPGAs

even more interesting, especially for computer vision tasks[20].

Another fact that affects the rising interest of FPGAs is the increasing number of tools for design,

development and testing of such architectures and that they have become much more usable in

the last few years. Together with the cumulative community of developers there are good reasons

for the increasing usage of FPGAs[8].

One of the first approaches in the field of computer vision, where FPGAs have been applied,

was image convolution[4]. Other experimental solutions addressed the implementation of specific

image processing algorithms[2], distortion correction of raw camera data[23, 24] or application

problems like vision systems for mobile robots[6]. They showed that the technology does fulfill

real time constraints while also staying attractive for low-cost solutions. In [28, 27] a BLOB-

detection system has been established on an FPGA architecture to detect multiple BLOBs in

images. But they stated that problems of imprecision due to hardware inaccuracy’s were not yet

solved. Also they did not take advantage of the parallelization opportunities of FPGAs.

BLOB detection is a corner stone for object detection and recognition. Much effort has been

put into the exploration of new algorithms for BLOB detection, which allow to choose from a

wide range of methods. But there still seem to be room for improvement[11].
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A critical aspect of BLOB detection is the precision of detected pixels at the BLOB’s border.

Usually a BLOB shows a descent gradient of intensity at the border. In threshold based detec-

tion this causes the detection of false-positives and lead to imprecise results if the image material

contains to much noise. The number of identified pixels, which belong to the BLOB, estimate

the BLOB’s characteristics. A possible solution is the parallel processing with detection proce-

dures, in different image resolutions[16]. But this require to make multiple copies of the image

data and transform it into different image resolutions. In addition the results for the multi-

ple copies have to be merged to one general result. Other approaches use fixed parameters for

the detection of BLOBs. For example the reduction of the application environment to a fixed

background[17] to apply foreground-background segmentation. These methods are vulnerable for

changing parameters, like illumination conditions or changing perspectives. For the desired sys-

tem the foreground-background segmentation is not a useful method. The synchronization of the

original image with the tracked image from the projection surface would require a index or marker

that is visible on the image. That again is an undesired manipulation of the image material, which

could distract the user.

A precise computation of the BLOB’s center-point is very dependent on the precision of the

BLOB detection. Especially for BLOBs that are not perfectly circular- or squarely-shaped, the

detection and computation methods need to be exact. Precision is an important factor because

with only a few number of false-positive pixels the computed center point gets shifted. This will

cause a large error in the computations for the position and orientation of the light emitting device.

A common method to compute center-points of BLOBs is a bounding box which refers to the

minimum and maximum positions in the XY-coordinate system. The method of inner circle cre-

ates a circle of maximum size that fits into the BLOB area without intersecting the area around

it. Both methods do not solve the problem of precision, in reference to not perfectly circular- or

squarely-shaped BLOBs (Fig.2). A very common method is center-of-mass that refers to the num-

ber of pixels in relation to the coordinates of the pixels[11]. It computes the center of the BLOB

based on the number of pixels and weights them by a related value, for example the brightness of

the pixel.

It is possible to increase precision by applying a higher resolution, but this is the point where

GPP architectures reach their performance barrier. This is a big problem of computer vision.

With more data to analyze, the maximum frame rate goes down and the system is not able to
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Figure 2. Example of a BLOB image containing blur

achieve real-time processing speed any longer. In [10] it is shown that FPGA architectures have

the abitily to work around this problem. It does not solve the performance versus the amount

of data balancing issue, but it can process common algorithms much faster and therefore places

the barrier much higher. Another aspect is the parallelization of algorithms. This opportunity is

not exclusive only for FPGAs or hardware in general, but a software parallelization like OpenMP,

MPI or CORBA always creates more overhead for synchronization, dead lock prevention, and

resource management.

The disadvantage of working with FPGA architectures is the required effort for the fine grained

design. It has to be taken care of the missing abstraction which comes with high-level languages

like C++ or JAVA. And parallelizing just any possible image-processing algorithm will not nec-

essarily lead to better performance. It has to have meaningful parts, which can be processed in

parallel.
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3 BLOB Detection

The aim of the BLOB detection for our requirements is to determine the center point of the

BLOBs in the current frame encoded in XY-coordinates. In the proposed project, a BLOB con-

sists of white and light gray pixels while the background pixels are black. This results from the

fact that, the cameras which track the laser dots work in the infrared range and do not recognize

image scenes from the projection of the immersion square. This is also a reason for not using

foreground-background segmentation in the system. For being independent from the camera tech-

nology of the application environment sample images have been created. With artificial modeled

input data like in Figure 3 the system has been tested for functionality and the precision of center

point computation. The number of BLOBs in the video frames can vary, which complicates the

Figure 3. Example of a BLOB image

conditions for the detection approach. This problem is caused by the construction of the appli-

cation environment. With the three-sided cubicle as a projection surface, the user can change his

orientation to any of the screens. If the user faces a point at the corner of the cubicle the light

dots will be distributed on two different video frames. This requires the processing of multiple

video streams in parallel, as another demand for the BLOB detection system.

To simplify the problem, an upper bound for the number of BLOBs to detect has been defined.

Two simple constraints are sufficient to decide if a pixel belongs to a BLOB:
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1) Is the brightness value of the pixel above a specified threshold?

2) Is the pixel adjacent to pixels of a detected BLOB?

The threshold is represented as a natural number value. It can be configured by the user or

computed by averaging arbitrary attribute values of all pixels in the current frame. Usually the

color value or the brightness value is used for this estimation process. The averaging requires the

application of a frame buffer to allow multiple processing of the same frame or a continuous ad-

justment of the threshold, while performing the BLOB detection with some initial threshold value.

To combine detected pixels to BLOBs a test of pixel adjacency needs to be performed. One

way is to check every single pixel on the frame for its adjacency to pixels which are already de-

tected and assigned to a BLOB. For the adjacency it is common to distinguish between a four

pixel neighborhood and an eight pixel neighborhood, illustrated in Figure 4. The image shows two

representative outtakes of pixel matrices containing either white or black pixels. Adjacent pixels

are labeled with the same index number and specify the object which they do belong to. In the

left image four BLOBs have been detected. The adjacency condition of four pixel neighborhood

checks for the horizontal and the vertical axis in the image. On the right image the same pixels are

detected in two BLOBs. In the eight pixel neighborhood pixels that are adjacent on the diagonal

axis are part of the same BLOB. With this adjacency condition, it is necessary evaluate all pixels

Figure 4. Four and Eight Pixel Neighborhood

of the frame, which are detected. Not only the adjacency of pixels need to be proofed during
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the detection. Having BLOBs with uncommon shapes like in Figure 5 the adjacency proof for

detected BLOBs need to be performed as well. A sequential scanning process would detect the

upper part of the object in the sample image as two independent BLOBs. The number of steps

Figure 5. Example of blob shape requires late merge

for estimating the adjacency to BLOBs can be reduced. A data compression method to allow this

is the run-length-encoding (RLE)[28]. RLE based detection searches for runs in the single line

of a frame. A run contains the coordinates of the first pixel above the threshold in a line of the

frame and the number of all of the following pixels in the line adjacent to it, which are above the

threshold as well. A frame line can contain multiple runs, for example if two BLOBs intersect on

their Y-axis and differ on X-axis.(Fig.6) Each BLOB consists of two runs at least. The maximum

number of runs in one frame is restricted to its resolution, since the concept of RLE is based on

the number of image lines. Considering a minimum distance of one pixel between two runs and a

minimum length of two pixels for a run, the number of runs for one image line is not greater than

N.

N =
[ (

horizontal resolution
2

)
− 1

]
The definition of the minimum-length and -distance for runs is defined in the design of the system.

The detection of runs is very similar to the pixel based detection of blobs. It scans a single line

of a frame for pixel values above a specified threshold. If a pixel is detected its coordinate is

stored as starting position of a run. From there on the algorithm adds all adjacent pixels in the

same line, which are above the threshold, to the run, by increasing a counter for the length of it.

This procedure need to be performed for all image lines. The RLE-based BLOB-detection has

the advantage that, the detection of runs can be done in parallel.
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By extending the detection of pixels to detection of runs, the proof of adjacency for the blob

detection later on can stop if the neighborhood condition of one pixel in the current run and the

corresponding BLOB is fulfilled. Also, it is not necessary to store coordinates of all pixels of the

current frame, which allows to save memory during execution.

The ability to parallelize part of the detection procedure is a feature that is perfectly qualified for

Figure 6. Run Length Encoding based BLOB Detection

FPGA architectures. FPGAs have some constraints due to their support of basic programming

theorems. The BLOB detection has to work without recursion, because it can not be implemented

on FPGA architectures. Necessary features for context switching are not offered like in GPP sys-

tems.

For the computation of the BLOB’s center-point different methods could be applied. Bound-

ing Box measures the center-point of the BLOB by checking for the minimal and maximal XY-

coordinates of the BLOB. If a new pixel is adjacent or in the range of the estimated XY coordinates

of the BLOB, it will be added to the BLOB and an adjustment of the min-/max-values is per-

formed. For the computation of the center-point the bounding box offers not enough information

about the BLOB to extract very precise results. The computation can be implement very effi-

ciently and will not cause big performance issues.

BLOB’s X center position = minX position + maxX position - minX position
2

BLOB’s Y center position = minY position + maxY position−minY position
2

Division by two can be realized by a bit shift and mathematic operations, such as addition and

subtraction, are not computationally expensive either.
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The center coordinates are strongly affected by the pixels at the BLOB’s border. With a threshold

based detection the pixels at the border can show flickering. This effect becomes even stronger for

BLOBs in motion. With reference to the light emitting device for our virtual environment, the

angle of the light beams to the projection surface change the shape of the BLOBs and increase the

range of pixels less intensity. The movement of the device by the user will cause motion blur on

the BLOB’s shape. These effects will increase the flickering of pixels at the BLOB’s border and

will cause a flickering in the computed center-point. For reducing these flickering effects another

method for the computation of the BLOB center point is the center-of-mass method. All pixels of

the detected BLOB are taken into account for the computation of the center point. The algorithm

applies the coordinate values of the detected pixels as weighted sum and calculates an averaged

center coordinate.

BLOB’s X center position =
∑

X position of all BLOB pixels
number of all BLOB pixels

BLOB’s Y center position =
∑

Y position of all BLOB pixels
number of all BLOB pixels

To get an even higher precision the brightness values of the pixels could be applied as weights as

well, which increases the precision of the center-point of a BLOB.

center position = =
∑

pixel position∗pixel brightness∑
pixel brightness

Since the available video material is converted into greyscale, the border of the BLOBs can show a

significant flickering, dependent on the threshold value and the color gradient. To avoid a similar

flickering in the computed center-position of the BLOB, the application of the proposed averaging

is recommended. This can be realized by applying a running summation of the values during the

detection phase. The division by the number of pixels can be done after all merging procedures

for the BLOBs has been executed.

The computation of the center point by inner-circle has not been taken into account here. The

reason is that it offers the same advantages and disadvantages as a bounding box.
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4 Implementation

4.1 Tools & Environment

For the implementation of the BLOB detection system, an Altera DE2 development and education

board with a Cyclone II FPGA has been used. It contains 33,215 logic elements (LEs) for high-

volume applications with large complexity. It comes along with several interfaces to receive and

send data in various representations. Altera provides a comprehensive development environment,

the Quartus II Web Edition (Fig.7), which contains a broad set of tools for design, implementation

and simulation of FPGA systems.

Altera also offers a library containing components with various kinds of functionalities. These

are known as blocks of intellectual property (IP) and can be customized by the developer. But

the application of IPs is restricted to licensing conditions. In regular case they cannot be used for

commercial products. In the field of FPGA development there are particularly two dominating

hardware description languages. Very High Speed Integrated Circuit Hardware Description Lan-

guage (VHDL) and Verilog HDL[5, 3, 19]. VHDL can be used to design a system in Behavioral,

Structural or RTL Dataflow Description or as a combination of all three of them, which we refer

to as Mixed Description.

The Behavioral Description defines processes which execute on changing conditions like signals

or register values. Processes define concurrent blocks of execution, the decision how to order the

execution depends on the connections between them. The Structural Description describes the

configuration of entities but not the functionality. It uses logic gates to design general-circuit com-

ponents. Register-Transfer-Level (RTL) Description is based upon the data-flow of the system.

A combination of all three description methods is also possible and specified as Mixed Description.

Verilog was developed at the same time as VHDL, however only meant for simulation of hardware

systems. A first standardized version became published as IEEE 1364-1995[13], also known as

Verilog-95. The last significant extension in 2001 changed the language abilities to a so-called

Hardware Description and Verification Language[14]. Todays standard is described in IEEE 1800

and is formally known as SystemVerilog[15]. The proposed development environment does allow

the combination of components written in either one of the hardware description languages. A

successful integration by the synthesizer depends on the correct definition of the module’s inter-

faces.
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Figure 7. Quartus II Dev. Environment. Code editor in upper window, Design Tool for waveform
simulation in lower window

The image material containing the BLOBs was provided either from a standard DVD player

or similar media devices, which had an analog composite output interface. For testing and eval-

uation of the BLOB detection the provided image material was scaled to a 640x480 resolution.

This was required since the analog-digital converter of the DE2 board was driven to convert the

image material into the same resolution. The test wise execution of the BLOB detection during

implementation phase, with different resolution scales, showed a slight error in precision due to

the scaling of input images. For continuous validation of the performed manipulation on the image

material, the digitized frames have been converted to RGB and displayed on the VGA output.

This allows an visual evaluation on the binarized image material and the impact of the threshold

value on the precision of the BLOB detection. The digitized video stream is converted pixel wise

from one-channel YCbCr format into a three-channel RGB model and transformed to greyscale
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Figure 8. source and destination of image processing

image data. The transformation into greyscale data can be configured on the DE2 board during

runtime. So it is either possible to run the BLOB detection with greyscale values or RGB color

values. As mentioned earlier the tracked image data from the video cameras is already in greyscale

format. This first approach was realized based upon an existing demonstration program which

was available from the Altera homepage.2

4.2 BLOB Detection

As a first approach the threshold based BLOB-detection for single pixels has been implemented(Fig.9).

The number of track-able BLOBs was reduced to one for the first revision. This simplification of

the problem-space allows one to forget about to check for adjacency of multiple BLOB parts or

the existence of multiple BLOBs in the frame. If a relevant pixel was detected only the adjacency

proof with already stored pixels needs to be applied. Every pixel in the current frame is checked

for its corresponding brightness value. This value is computed out of the three values of the RGB

channels containing the image data. If the pixel’s brightness value reaches the defined threshold

value it is recognized as BLOB relevant. The detected pixels are added to a data structure con-

taining the attributes of a BLOB, if the pixel is adjacent to the BLOB. With every pixel added

the BLOB’s coordinates are adjusted. If the end of the frame is reached, the center point of the

BLOB is computed and shown on the seven-segment-display.

4.3 Bounding Box

The bounding box method requires four registers for minimum and maximum X- and Y-coordinates

for each BLOB. These set of registers from here on are referred to as ”container”. For detecting

multiple BLOBs a sufficient number of container is required. With respect to the mentioned

problem of uncommon BLOB shapes the number of container has to be larger than the number

of BLOBs to detect. The condition for a pixel belonging to a BLOB is fulfilled if it matches the

2http://www.altera.com/support/examples/dsp-builder/exm-color-space-converter.html
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Figure 9. Bounding Box based BLOB Detection

inner region of the bounding box or is adjacent to it. The values for the bounding box of a BLOB

are initialized with the first detected pixel.

To estimate the starting point of a frame the pixel XY-coordinates are checked for a tuple of

(0,0) coordinate values. This was possible because of the sequential processing of the digitalized

video-stream. For the output of the computed center-points the seven-segment-display has been

used. The coordinates are represented as hexadecimal values and were computed and displayed

for every frame.
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The outline of the SystemVerilog code shows the detection of BLOB pixels by the threshold

and the manipulation of the BLOB’s bounding-box attributes. First the brightness value of the

current pixel is checked for the threshold condition. Then the attributes of the BLOB’s bounding

box are updated. The lower if-block checks if a new frame has started. If that is the case the

center point of the blob is computed and transmitted to the display.

Pixel Detection by Threshold

.

.

//value > Threshold => pixel belongs to BLOB

if(( iVGA_R+iVGA_G+iVGA_B) > threshold)

begin

// check if pixel belongs to current frame

if(currentFrame == countFrames)

begin

// compute coordinates for bounding box

if(iPosX < minX) minX = iPosX;

if(iPosX > maxX) maxX = iPosX;

if(iPosY < minY) minY = iPosY;

if(iPosY > maxY) maxY = iPosY;

end

end // end threshold

// compute difference between minX , minY , maxX , maxY

diffX = ((maxX - minX)>>1); //>>1 == division by 2

diffY = ((maxY - minY)>>1); //>>1 == division by 2

.

.

//send BLOB attributs to output , if new frame starts

if(currentFrame < countFrames)

begin

othrPosX = (minX + diffX );

othrPosY = (minY + diffY );

currentFrame = countFrames;

maxX = 0;

minX = 1000;

maxY = 0;

minY = 1000;

end

.
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The bounding box based approach has been extended to process multiple video streams in par-

allel. In the second revision it can process three video streams at the same time. Because of the

limited number of composite-video inputs the system uses three times the same video stream. The

output of each detection module can be shown on the seven segment display by enabling one of

the Switches 14 to 16 on the board. For a processing of three different video streams, the system

needs to be extended to support other communication interfaces or using further DE2 boards and

connect them together.

In a third revision the detection has been extended to detect up to five BLOBs in one frame.

A set of containers was created to store the attributes of the BLOBs. An additional adjacency

proof was required to merge BLOB-parts during the detection phase. Dependent on the shape

of the BLOBs it can happen that pixels of the same BLOB were split into two different BLOB

containers. Therefore the container of each BLOB needs to be checked for adjacency. If that is

the case, the attributes of one BLOB are updated while the other container is cleared.

Merge of Pixels into BLOB-Container

.

// MERGING

// MERGE CONTAINER 2 TO CONTAINER 1

//if Container 2 is not empty , check for adjacency

if(BLOB2empty == FALSE && BLOB1empty == FALSE)

begin

//Merge Container 1 and 2 if adjacent

//check adjacency on Y axis

if( BLOB2minY >= (BLOB1minY -1) && BLOB2minY <= (BLOB1maxY +1) &&

BLOB2minX >= (BLOB1minX -1) && BLOB2minX <= (BLOB1maxX +1) ||

// check adjacency on X axis

BLOB2maxY >= (BLOB1minY -1) && BLOB2maxY <= (BLOB1maxY +1) &&

BLOB2maxX >= (BLOB1minX -1) && BLOB2maxX <= (BLOB1maxX +1))

begin

// Update attributes of Container 1 if required

if(BLOB2maxX > BLOB1maxX) BLOB1maxX = BLOB2maxX;

if(BLOB2maxY > BLOB1maxY) BLOB1maxY = BLOB2maxY;

if(BLOB2minX < BLOB1minX) BLOB1minX = BLOB2minX;

if(BLOB2minY < BLOB1minY) BLOB1minY = BLOB2minY;

//clear content of Container 2
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BLOB2maxX = 0;

BLOB2minX = 1000;

BLOB2maxY = 0;

BLOB2minY = 1000;

BLOB2diffX = 0;

BLOB2diffY = 0;

BLOB2empty = TRUE;

end

end

.

The disadvantage of the sequential processing of the video-data is that it restricts the scanning of

the image lines to be done in sequential. A parallel detection of all lines is not possible without

the extension of the system with an image-buffer unit. And the maximum frame-rate is restricted

to the performance of the analog-digital-converter of the DE2-board. Even with an image-buffer

the system would have to wait for the AD-converter until all the information of a full frame is

stored.

4.4 Run-Length-Encoding

With the ability to access the whole data of one frame in parallel the Run-Length-Encoding based

detection of the image becomes interesting. The adjacency check for the detected run can be

processed after the current frame is scanned(Fig.10). The identified runs will be combined to

binary large objects. RLE could be also applied for the sequential processing of the pixels to

reduce the number of adjacency proofs during the detection phase. An RLE based detection is

not realized in the current system. With the restricted sequential access to the image data it

would not bring a great benefit for the detection performance. But even with it, the concept

of center-point computation based on the bounding-box faces the problem of less precision than

center of mass. The shortcomings in computation of the BLOBs’ center-points, which are not

perfectly circular- or square-shaped can not be solved with it.

While the center-of-mass computation allows more precise results, it requires more data as well.

The mentioned weighting of the BLOB’s pixels by their brightness value requires to store the

information about the brightness values for the duration of the detection phase.

For evaluation of the achieved precision, the computed coordinates should be transmitted to

a connected host PC. Any available communication interface of the DE2-board that provides

sufficient bandwidth could be applied. The serial interface can provide up to 38,400 bits/second

which will be enough while a BLOB’s center-point can be encoded in 24 bit. The system would
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Figure 10. Run-Line-Encoded based BLOB Detection

be able to transmit the computed coordinates to the Host-PC for a processing speed of up to 80

frames per second. Under the condition that a frame does not contain more than 20 BLOBs.

4.5 Problems

At the beginning of the project, the literature search for related material with meaningful content

became quite difficult. Even if the quantity of the work about image-processing systems based on

FPGAs is quite high, only a few publications cover the topic around the applied solution sufficient

enough to understand it in detail. Besides that, the number of persons in the area of the hardware

and hardware-describing development is hardly noticeable, compared with the large community’s

of high-level languages like C++ or JAVA. Therefore, the availability of tutorials and documented

program examples is extremely small, except for Altera’s support homepage, which offers a con-

siderable collection of sample programs around the functions for the DE2-board to test it. But

test benches and waveform files to observe the internal proceedings, while simulating the system,
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are not provided. The test programs do not provide any functionality to display internal values

on the on-board displays or send it to one of the available interfaces.

At first it was necessary to analyze the available hardware designs by their source code and

show selected register contents on the board’s displays. This kind of training became particularly

time-consuming, since all programs were written in Verilog and the author did not know much

about it at the beginning. Also, the assigned tools for implementation and design required a

longer training phase than was expected from usual development environments, such as NetBeans

or Eclipse.

As a basis for the project, a sample program from Altera was used, that reads an analog video-

signal on the video-in interface and converts it to an RGB signal for sending it to the VGA output.

The analysis of the source code showed that, the manipulation of the video signal works straight

sequential. The program offered a good starting point to apply some experimental changes on the

video signal. First, a new hardware module in Verilog has been implemented to proof the pixels

for a defined threshold value and to alternatively transfer the video signal into a greyscale format.

It should be made possible to change the threshold value during runtime, by the keys 1 for

plus one and 2 for minus one on the board. The implementation of an appropriate routine turned

out to be more difficult than expected. The value did not change with each depressing of the keys

instead it jumped with different step-sizes between the minimum and maximum value.

As a first assumption it seems logical that the keys cause a jitter in the pin signals since they

were not debounced. In order to eliminate the problem an additional register was used to rep-

resent a mutex. This should prevent a repeated execution of incrementing or decrementing of

the threshold value within consecutive execution cycles. The desired success was missing in this

solution. In addition the documentation of the DE2-board said that all keys are debounced with

a Schmitt-Trigger, so this could not be the source of the problem.

To eliminate the problem a counting variable was used. This was set to zero by pressing one

of the two keys on the board and prevented each further manipulation of the threshold value for

the following clock cycles, until a defined number of clock cycles passed. This solution did not

lead to the desired success as well. The reason for this could be an insufficiently low value for the

number of clock cycles. In order not to lose to much time with the realization of this program

feature, the switches 0 to 9 for the manipulation of the threshold value were used instead. These
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make it possible to set the value in a range from 0 to 1023.

With the implementation of the BLOB-detection procedure, on the basis of the Run-Length-

Encoding, it did come into problems, which could not be solved up to the project’s end. The

implemented module to recognize runs within frames could not be proofed for correct function-

ality. The assumptions to the ranges of values of the used input signals for the module were

based only on the isolated expenditures of these values on the 7-segment display. Therefore there

was no warranty that the internal processing of the analog video signal ran off in the expected

sequential order. But since the bounding-box based approach was close to the expected outcome,

the assumptions about the internal values should be correct. For the proof of the functionality

of the module for detection of runs, a Waveform file (Fig.11) was provided. The defined input

signals in the Waveform file reflecting the assumptions of the methods of analysis mentioned ear-

lier. The simulation on the basis of the waveform file showed that the detection of the runs works

Figure 11. Waveform Simulation Report

correctly. However, simulation proceeds from a perfect switching attitude of the hardware and

is not a reliable source to conclude to real-world execution. Signal rise- and fall-times are not

considered which again do not allow any conclusion about the internal operational sequence of

the synthesized algorithm. It is worth to mention that the created waveform file was reduced to

an outtake of the estimated image data. The file represents only a single line with two disjoint
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runs to detect. For the definition of a waveform file that simulates the input signals of a whole

frame it would probably take about a week to create it. Since it would not necessarily lead to

better consolidated findings about the internal proceedings such a file was not created.

In order to make a further evaluation of the module possible, the implementation of a com-

munication interface to a standard PC has been started. This should allow to log the determined

coordinates of the run for further processing of the BLOB’s attributes later on. For a first proof

of concept the serial interface should provide a sufficient bandwidth and offer the simplest tech-

niques for data transmission. With the available 50 MHz input clock of the DE2-board a data

transmission-rate of 38,400 bits per second could be achieved. For the transfer of data, concern-

ing a run, not more than 32 bits are necessary. The resolution of the frame in the RGB signal

is 640x480 pixel and for a run the maximum length was set to 254 pixel. Thus the information

of a run can be transmitted within 32 bits.(Fig.12) To be able to evaluate the data conveyed by

Figure 12. Attributes of a run encoded in 32 bit

the DE2 board an appropriate logging program was implemented, which writes the received bytes

down as a bit-stream into a text file. Existing terminal programs of the Host-PC’s operating

system as well as freely available tools could not fulfill this requirement. Available applications

would in most cases apply a conversion of the individual bytes into ASCII-format. There are other

programs which place the received bytes in the hexadecimal format instead. With the selected

encoding for runs or BLOBs to a 32 bit string, the implementation of an own parser program was

necessary. It required a dissimilar splitting of the 32 bits into the XY-coordinates and additional

attributes.

The implemented module for the serial communication worked in its first version. There it was

supposed to send a simple character string of ”Hello World!” to the connected Host-PC. The

output could be observed on the hyper-terminal application of Windows XP. For the transmission

of the runs data, the routine has been modified. The code listing shows the structure of the

implemented buffering procedure to allow the transmission of run’s data to the RS232 interface.

It executes with a clock rate of 50 MHz and checks the content of the TXD Buffer Flag reg-

ister. If the bit at position 15 is set to 1 the register TXD Buffer in the range [127:120] has to be

transmitted to the serial interface. Meanwhile, it checks on every clock-tick if the run-detection

module has found a new run. If yes, the data is appended to the end of the TXD Buffer register
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and five new flag bits are added to the TXD Buffer Flag register. The byte 2’h0A represents

the carriage-return of the ASCII-Table and is used to separate the data at the receiving protocol

application. RS232 Transmission Buffer

.

reg [31:0] tmpRun;

reg [127:0] TXD_Buffer;

reg [15:0] TXD_Buffer_Flag;

always@(CLK_50) begin

if(! iReset)

begin // Initialize Buffer Registers

TXD_Buffer = 128’b0;

TXD_Buffer_Flag = 16’b0;

end

//If run detection found run , add to Buffer Register

if(( foundRun == TRUE) && (tmpRun != runRegister )) begin

//copy register for check of duplicate in next iteration

tmpRun = runRegister;

// append register to Buffer

TXD_Buffer = {TXD_Buffer [87:0] , runRegister , 2’h0A};

//set flags to enable writing

TXD_Buffer_Flag = {TXD_Buffer_Flag , 5’b11111 };

end

//if flag on MSB position ==1, Buffer Register contains data

if(TXD_Buffer_Flag [15] == TRUE) begin

// enable write signal

oTXD_Start = 1’b1;

//copy 8 bits to UART Register

oTXD_DATA = TXD_Buffer [127:120];

end

else

begin

oTXD_Start = 1’b0; // disable write signal

end

//shift flag register by 1 bit

TXD_Buffer_Flag = {TXD_Buffer_Flag [14:0] , 1’b0};

//shift buffer register by 8 bit

TXD_Buffer = {TXD_Buffer [119:0] ,8 ’ b00000000 };

end
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The simulation of the serial communication as part of the run-detection module worked properly.

(Fig.11) For the transmission of real data it did not. The received data contained information

that matches the expected data, but most of the time the number of bits before a carriage return

where not 32. There were either more or less bits received. As a first problem, it could not been

ruled out that the bit combination of 0000-1010 is a valid combination that could occur in one

of the four bytes encoding the run details. Therefore the appended flag to mark the end of a

transmission has been changed to 1111-1111. But it did not solve the described problem.

A possible solution to figure out why this problem occurs is to separate the procedure of data

transmission from the BLOB-detection module. The transmission of each byte can be interrupted

by short transmission breaks to avoid the overflow of the UART buffer on either the sender and/or

receiver side. Let us assume that a BLOB contains around 30 runs under the condition that the

resolution of the frame is 640x480 pixels. The current system is driven by a 27 MHz clock-rate

and has a frame-rate of 88 frames per second on average. If in the provided video stream a frame

contains 6 BLOBs the communication interface has to have a bandwidth of 506,880 bit per second.

506,800 bit per second = 30 runs x 88 frames x 6 BLOBs x 32 bits per BLOB

Apparently this is 13 times faster than the serial interface of the current implementation can

handle. Till the end of the project phase a serial communication to transmit the detected runs

could not been established. But it is also not really required since the computation of the BLOB

center-point will be performed on the system as well.

For the transmission of the computed BLOB’s center points 32 bits are required for each BLOB.(Fig.13)

Instead of the length of a run the index of a BLOB and the frame index will be sent to the con-

nected PC. The frame index is a continuous number that can be used to distinguish BLOB

positions in consecutive frames. The BLOB index should relate to the same BLOB in consecutive

frames, to allow computations on the user’s movement. An appropriate communication between

Figure 13. Attributes of a BLOB encoded in 32 bit

the DE2-board and Host-PC could not be established. Since the main target was the detection

of BLOBs the solving of the serial-communication problems has been postponed.

As described in the last section the BLOB detection could be implemented for up to five BLOBs
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in a single frame. But the missing serial communication did not allow to validate the BLOB

detection on a continuous video-stream. The system can perform the detection, but since the

computed center-points for the BLOBs are only visible on the seven-segment-display of the DE2-

board, it is not possible to extract meaningful results. While performing the BLOB-detection the

estimated center-point’s positions changes to fast to allow the user to read the values.

Another problem occurred for the precision of the computed center point. The system showed a

systematic error of -3 on the X-axis and +4 on the Y-axis. This error could be observed for all

BLOBs on different input images. When this problem occurred the first time a simple workaround

has been applied to eliminate this error. By shifting the computed center-point with this constant

error-values the result was pushed closer to the expected outcome. Later on, it could be observed

that the problem initially comes from the scale of the applied input image. The first BLOB images

did not have a resolution of exactly 640x480 pixels. Since the applied video-input devices scale

the image to a NTSC format with different resolution, this transformation shifts the positions of

the BLOBs in relation to the RGB output. After changing the resolution of the input images to

640x480 pixels the systematic error changed but was not eliminated completely. The new error

showed a constant shift of the BLOB’s center point by +2 on X- and Y-axis.

During the first phase of the project a DVD Player with a USB interface was used to provide

an input signal to the analog video-interface of the DE2-board. This input source was no longer

available since the project location changed due to the study process of the author. At this time

the video material should be provided with a regular DVD Player. This caused some problems

because of missing experience in burning DVD’s in video format. Even with famous mainstream

programs like Nero 9 c© the creation process failed several times. As a momentary solution an avail-

able Sony Play Station 3 c© System has been applied as input source. A temporary workaround

was to provide the input signal from a PC, that was connected to a VGA to Composite-Video

converter. But the additional conversion caused a higher error in the computed BLOBs’ center

points and was useless for the project. The creation of a useful Video-DVD could be successfully

completed and is used in the current system’s setup.
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5 Evaluation

Since the communication on the serial interface to the Host-PC could not be established a useful

evaluation of precision of the center-point computation was not possible for continuous video-

streams. The validation was therefore reduced to static images like in Figure 3. As mentioned

earlier a systematic error in the computed center point could be observed, which was caused by

scaling effects from the input source and a missing constant in the computation method. The first

evaluation of the system showed a constant precision error(Fig.14). Figure 14 shows the difference

Figure 14. Center Point Precision Error

between the ground-truth center-point (green/top) and the center-point computed on the FPGA

system (red/bottom). The coordinates for the center-points, which are referred to as ground-truth

center-points, have been computed with a bounding-box approach on a GPP architecture. Since

the provided images show perfectly-circular BLOBs only, the disadvantages of the bounding box

method have not been taken into account. For further evaluation other images with different

BLOB shapes have been used(Fig.15). For the processing of image frames, based on the sequen-

tial processing, a performance of up to 64 frames per second could be measured. This was limited

by the performance of the analog-digital-converter, which translate the analog-video-signal input

into digital-video-stream format.

To achieve higher frame-rates another approach to provide video frames to the BLOB-detection

module needs to be realized. The BLOB detection system in the current version requires 8,449

logic elements, which allocate 25% of the FPGAs surface. The functionality of the system only

covers the processing of a single video stream.

With the configuration changed to process three input streams in parallel the system requires
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Figure 15. Diamond and U-shaped BLOB

21,786 logic elements which allocates 66% of the FPGA surface. This does leave some space for

further functionality.

Compared to the performance of the same BLOB detection approach on a GPP architecture,

which reached up to 91 frames per second, the FPGA approach does not offer an advantage.

It took much longer to develop the system and systematic errors could not be eliminated. But

this can not be taken as a serious outcome for an evaluation since the maximum performance is

restricted to the speed of the underlying video-in to RGB-out transformation. For valid evalua-

tion of the performance gain another input interface for the image or video material need to be

applied. This requires the implementation of an device-specific module to receive and pre-process

the image data.
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6 Future Work

For the continuation of the project there are several steps which can be taken next. For a mean-

ingful evaluation of the possible performance gain by the FPGA architecture, the problem of

providing image and video data to the system needs to be solved first. Since the BLOB detection

has been evaluated on static images only no statements can be made about precision error caused

by motion blur.

This effect can happen dependent on how fast the user moves the light emitting device in the

Immersion Square. The shape of the BLOBs will become elliptical with orientation to the direc-

tion of movement. This is another point which needs improvement to get more precise results in

the center point computation. The detection of BLOBs has to be changed such that the process-

ing of the whole frame is reduced to the area around the last computed BLOB coordinates. In

addition, the intersection of the BLOB pixels of two consecutive frames could be used to eliminate

false positives and to increase BLOB detection performance. This requires an additional image

buffer to allow access to more than one frame.

An important next extension will be the RLE-based BLOB-detection method. It will allow us to

take advantage of the parallelization aspect. But only under the condition that an appropriate

frame buffer can be provided.

To analyze the extracted center points, but also for further processing, the transmission of the

BLOBs’ center-coordinates to a connected Host-PC is required. A test implementation for the

serial interface has been realized and needs further improvement, if it will be used later on. This

requires a module which can buffer the data, before sending it to the Host-PC. Otherwise the

timing requirements of the RS232 chip can not be fulfilled. As mentioned before the data needs

to be separated into blocks of 8 bit length or the transmission buffer will run into an overflow.

The current basis of the BLOB-detection system permits a sequential processing of the pixels

while searching for BLOBs. This does of course not offer any point to parallelize the program

execution. Also the access to the content of the frames is restricted to a single time. This can be

solved by implementing a frame buffer that can hold one or more whole frames during the BLOB

detection. This would provide random access to the frame instead of the sequential processing of

the video data on single pixels.

A feature which is interesting for a future project would be the processing of different video
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streams in parallel on one FPGA. But it requires the extension of the board interface to connect

two more video sources to the system. The connection of two additional DE2 boards on the IDE

interfaces could be a possible solution. These two boards can provide the already digitalized video

stream from their analog-video interfaces.

In the current system the video stream is provided on the analog video interface. The theo-

retical upper bound of frames that can be processed is restricted to the provided frame rate of the

connected video input-device. The DE2-board also contains an Ethernet interface which could be

used to connect Gigabit Ethernet cameras to it. But this requires the implementation of our own

API to put the camera frame packets into the correct order at the receiving DE2-board.
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7 Summary

FPGA systems are an upcoming technology and of special interest for Computer Vision problems.

These are still known as computationally intensive and require large processing power. Another

reason are the decreasing prices for FPGA chips while the number of Logic Units increases.

With the growing number of projects and therefore developers as well, the entrance into this

field will become easier. The vendors of FPGAs have recognized the indications of time and pro-

vide a larger support and free development and simulation environments.

It can not be concealed that the learning phase for VHDL or Verilog will consume more time

than high-level languages like C or JAVA. But once the concepts are familiar, it will offer the

ability to design individual solutions for all kinds of problem definitions. And these will be able

to perform any required computation a hundred times faster than any C or JAVA program ever

can achieve. In addition the higher level languages like Handel-C are more and more supported

and will set the entrance barrier lower for new developers.

The implementation of a complete BLOB-detection system to detect multiple BLOBs in a contin-

uous video stream could not be finished during the project. With the experimental approach of

threshold based BLOB detection it has been proofed that the concept in general can be realized

on a FGPA system. During the project many options of further directions for the implementation

has come to mind.
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