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Abstract

The research that we discuss in this technical report shows that mathemati-
cal models of botnet propagation dynamics are a viable means of detecting early
stage botnet infections in an enterprise network, and thus an effective tool for con-
taining those botnet infections in a timely fashion. The main idea that underlies
this research is to localize weakly connected subgraphs within a graph that models
network communications between hosts, consider those subgraphs as representa-
tives of suspected botnets, and thus employ applied statistics to infer the underlying
propagation dynamics. The inferred dynamics are materialized into a model graph,
which we use within a subgraph isomorphism search process to determine whether
or not there is a match between the inferred propagation dynamics and the actual
propagation dynamics observed from the weakly connected subgraphs. We con-
duct modeling based on an intersection of statistics and graph theory such as a
match between the two leads to a timely identification of infected hosts. Our math-
ematical modeling relies on measures of network vulnerability rates, which in this
research we estimate via a statistical approach that draws on epidemiological mod-
els in biology. That estimation approach is based on random sampling and follows
a novel application of statistical learning and inference in a botnet-versus-network
setting. We have implemented this overall research in the Matlab and Perl program-
ming languages, and thus have validated its effectiveness in practice in the Emulab
network testbed. We have also validated the vulnerability rate estimation approach
extensively with respect to realistically simulated botnet propagation dynamics in
a GTNetS network simulation platform. In the technical report we describe our
overall approach in detail, and thus discuss experiments along with experimental
data that are indicative of the effectiveness of our overall approach to detect early
stage botnet infections in an enterprise network.



Contents

1 Introduction 1

2 Initial Modeling 4

3 Vulnerability Rate Estimation 8
3.1 Basic Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
3.2 A Logit Model for Finding Optimal Estimation Parameters . . . . 13

4 Model Graph Generation 17

5 Subgraph Isomorphism Search 27

6 Experimental Evaluation 29
6.1 Vulnerability Rate Estimation . . . . . . . . . . . . . . . . . . . . 29
6.2 Botnet Mitigation . . . . . . . . . . . . . . . . . . . . . . . . . . 31

7 Overview of variant: A Botnet Mitigation Tool 43

8 Literature Review 56
8.1 Virulence Estimation . . . . . . . . . . . . . . . . . . . . . . . . 56
8.2 Botnet Mitigation . . . . . . . . . . . . . . . . . . . . . . . . . . 58

9 Conclusions 62

Bibliography 63

i



List of Tables

3.1 Excerpt from the statistical learning data . . . . . . . . . . . . . . 16

4.1 Definitions of additional variables used in the model graph gener-
ation algorithm. . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

6.1 Pertinent data from the inferred dynamics of the test botnet in the
Emulab network testbed. . . . . . . . . . . . . . . . . . . . . . . 33

6.2 Possible offsprings of the first eight infected host numbers in the
model graph. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

6.3 Comparison in numbers of offsprings of each infected host num-
ber between the model graph and some of the weakly connected
subgraphs targeted by our approach. . . . . . . . . . . . . . . . . 34

6.4 Evolution of variability time windows throughout the processing
of some of the weakly connected subgraphs by our approach. . . . 35

ii



List of Figures

3.1 Plot of true vulnerability rate versus estimated vulnerability rate
for various ratios of the number of pools to the sample size with no
engagement of the logit model. . . . . . . . . . . . . . . . . . . . 13

4.1 Example of a model graph as generated by the algorithm (top), and
an instance of that model graph with mutually exclusive concurrent
edges removed (bottom). . . . . . . . . . . . . . . . . . . . . . . 25

4.2 Mutually exclusive concurrent edges in the model graph generated
by the algorithm. . . . . . . . . . . . . . . . . . . . . . . . . . . 26

6.1 Plot of observed estimation errors versus numbers of pools for ra-
tios of the sample size to the actual network size from 1:100 to
1:1000. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

6.2 Optimal numbers of pools found by the logit model for various
ratios of the sample size to the actual network size. . . . . . . . . 38

6.3 Comparison between estimated rates and true rates (top), and esti-
mation errors observed for those true rates (bottom), for a ratio of
the sample size to the actual network size of 1:1000. . . . . . . . . 39

6.4 Host infection times in the model graph and in some of the weakly
connected subgraphs targeted by our approach. . . . . . . . . . . 40

6.5 Some of the weakly connected subgraphs as derived and detected
by our approach. . . . . . . . . . . . . . . . . . . . . . . . . . . 41

6.6 Weakly connected subgraph G5 in its actual form as generated by
the test botnet (left), and in a derived form as built by our approach
(right). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

6.7 Hit rates observed empirically for various rounds of trials with the
test botnet in the Emulab network testbed. . . . . . . . . . . . . . 42

7.1 Command line interface of the variant tool along with a typical
botnet search session. . . . . . . . . . . . . . . . . . . . . . . . . 46

7.2 Estimation of the intercept terms and coefficient terms of the logit
model. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

7.3 Probability distribution of the optimal number of pools. . . . . . . 48
7.4 Reporting the optimal number of pools. . . . . . . . . . . . . . . 49

iii



7.5 A session of botnet virulence estimation. . . . . . . . . . . . . . . 50
7.6 Botnet propagation characteristics as reported by bots during ex-

perimental network infections (top), and as detected from the variant
tool (bottom). . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

7.7 A portion of botnet dynamics inferred statistically by the variant
tool. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

7.8 Probability distribution of the number of offsprings of an infected
host (top), and possible offsprings of each infected host in terms of
bot numbers (bottom). . . . . . . . . . . . . . . . . . . . . . . . 53

7.9 Mutually exclusive concurrent edges in the model graph. . . . . . 54
7.10 File content serving as basis for building the model graph. . . . . 55

iv



Chapter 1

Introduction

Mathematical models that capture propagation dynamics of botnets, i.e. networks
of compromised hosts that are referred to as bots and are controlled by remote at-
tackers who are known as botmasters (Ramachandran et al., 2007), and malware
in general have received considerable research attention in the last decade. Nev-
ertheless, the majority of that research focuses on the mathematical models per se
and not on possible ways of exploiting those models for network security. Dagon
et al. (Dagon et al., 2006) are among the first to propose a practical use of such
mathematical models. Dagon et al. employ botnet propagation dynamics predicted
via one of such models to comparatively rank botnets, and hence prioritize the re-
sponses to those botnets. In this report we propose a novel approach that exploits
botnet propagation dynamics to detect bot infections at their very early stage. The
ultimate objective behind such early state detection is botnet containment.

The approach that we discuss in this report is applicable to an enterprise net-
work or to a typical network that underlies the backbone routers of an Internet
Service Provider (ISP). The tactical design of botnets has been evolving towards
higher degrees of sophistication. In (Wang et al., 2010), Wang et al. discuss the de-
sign of a hybrid Peer-to-Peer (P2P) botnet that is even more advanced than current
real-world botnets. With this result, gaining insight into and predicting the prop-
agation dynamics of highly sophisticated botnets in a timely fashion is crucial to
their mitigation. That is a thesis that we prove in this research. More specifically,
this research proves that propagation dynamics are a viable means of early stage
botnet detection. For that purpose, we focus on one type of bots, namely uniform
scanning bots, and thus exploit a mathematical model that captures the propagation
dynamics of that type of bot.

There are also many other mathematical models that capture the propagation
dynamics of bots that employ other means of target selection. We believe that ap-
proaches similar to the one discussed in this report can be devised to work on those
bots by exploiting the corresponding mathematical models of propagation dynam-
ics. In terms of implementation we propose this research as a prototype whose
effectiveness has been tested in practice. We discuss that effectiveness later on in
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this report. We wrote bot code and practically analyzed its propagation character-
istics and dynamics in the Emulab network testbed (White et al., 2002). We sniffed
with tcpdump the network packets that were generated, and thus applied a graph
modeling on those packets to create graph structures within what in this report we
refer to as a data graph. The data graph is constructed as follows. Each distinct
host that participates in network communications as sender or receiver is modeled
as a vertex, which is labeled with the Internet Protocol (IP) address of that host.

Each edge directed from one vertex towards another vertex denotes a network
communication in which the host represented by the former vertex acts as source,
while the host represented by the latter vertex acts as destination. Each one of
such directed edges is assigned pairs of two attributes, namely a timestamp that
indicates the time at which the network communication took place along with a
string that indicates the specific network service that the network communication
in question relates to. When conducting a botnet detection and containment task in
a real-world network, we apply such graph modeling on all packets as we do not
know a priori which packets are generated by bots. Thus, the data graph comprises
vertices and edges that represent network communications which may be legitimate
or malicious. In various runs in the Emulab network testbed we noticed that bot
infections along with bot infection attempts create weakly connected subgraphs
within the data graph.

Thus, replacing all of the directed edges in each such subgraph with undirected
edges produces a connected undirected subgraph, i.e. for every pair of distinct
vertices in that undirected subgraph there exists a path from one to the other. Our
finding is to some degree similar to the finding of Ellis et al. (Ellis et al., 2004),
according to which worm network behavior is characterized by tree-like propaga-
tion and reconnaissance. We consider weakly connected subgraphs within the data
graph as suspected botnets, and hence the network services in them as suspected
vulnerable services. We then statistically infer the propagation dynamics that un-
derlies each one of such weakly connected subgraphs. An error-tolerant match
between the inferred dynamics and the actual dynamics observed on the network
enables us to determine in a timely fashion which hosts are infected, and thus take
action to filter network accesses to vulnerable network services in other hosts from
those vulnerable hosts.

The various mathematical models developed so far that capture the propagation
dynamics of botnets and self-replicating malware in general, i.e. viruses, worms,
etc., depend directly or indirectly on measures of network infection rates and net-
work susceptibility, i.e. vulnerability, rates, which are often referred to as malware
virulence. This research shares that characteristic as it relies on measures of net-
work vulnerability rates. In that regard, we have devised a statistical approach to
vulnerability rate estimation that draws on epidemiological models in biology. Few
other research works have investigated the problem of estimating the vulnerability
rate in an enterprise network. Choi et al. (Choi et al., 2010) apply maximum like-
lihood estimation (MLE) (Fisher, 1922) in an approach that estimates the size of
vulnerable host population in a local or enterprize network in relation to a worm.
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The estimation approach of Choi et al. exploits a deterministic relation between
the number of vulnerable hosts and the mean inter-arrival time between successive
host infections. As such, the estimation approach of Choi et al. relies on observa-
tion of host infections as those infections take place. In our case we do not know
a priori which computer network communications result in host infections, con-
sequently we cannot obtain the mean inter-arrival time between successive host
infections. In fact detecting those host infections at an early stage is exactly the
ultimate objective of this research. Our statistical approach to vulnerability rate
estimation also uses MLE in part. Nevertheless, it has no reliance on knowing host
infections in progress a priori, and thus can provide network vulnerability rates that
are usable within our overall approach.
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Chapter 2

Initial Modeling

We now discuss how we leverage a specific mathematical model to infer the prop-
agation dynamics of a suspected botnet in an enterprise network. Various research
in the area of epidemiology developed mathematical models that capture the prop-
agation of infectious diseases among humans (Anderson et al., 1992; Daley and
Gani, 1999; Andersson and Britton, 2000). The high degree of similarity in terms
of propagation between biological viruses and computer malware such as bots and
worms was a clear suggestion of the applicability of those mathematical models to
computer malware. The adoption of the mathematical models in question in com-
puter science research led to two main categories of formalisms that represent mal-
ware propagation dynamics, namely deterministic models (Staniford et al., 2002;
Chen et al., 2003; Dagon et al., 2006; Chen and Ji, 2005; Fan and Xiang, 2010)
and stochastic models (Rohloff and Basar, 2005; Sellke et al., 2008). Determin-
istic models perform well in modeling the dynamics of malware spread when the
number of infected hosts is large (Sellke et al., 2008), and thus do not produce
workable results when the number of infections is small.

Consequently deterministic models are not applicable to this research, namely
because we seek to detect and contain bot infections at their very early stage in an
enterprise network. Thus, unlike most of the related research discussed later on in
this report, our approach is applicable from the first few bot infections, and as such
it relies on characterization of the stochastic evolution of the botnet infection pro-
cess. Stochastic models provide better accuracy in the case malware propagation
is targeted at its early stage (Liljenstam et al., 2003). Epidemic models in gen-
eral capture mean behavior. A key factor that determines how much accurate the
captured behavior is consists of coping with the variability around that mean. The
variability in question is very high during the early stage of infections (Sellke et al.,
2008). Given that the botnet infection process per se is probabilistic, a stochastic
model naturally has better means of coping with such high variability.

In this research we apply a stochastic model developed from research in the
field of epidemiology, which is discussed in (Andersson and Britton, 2000; Daley
and Gani, 1999). The model was adapted to capture computer worm behavior by

4



Rohloff and Basar in (Rohloff and Basar, 2005). Let γ denote the number of hosts
in the enterprise network, and ϕ the number of hosts that were originally vulnerable
just before the enterprise network was reached by bot infections. Thus, ϕ denotes
the number of hosts that could potentially get infected by bots. Let us denote
with β the bot infection parameter, namely the average rate at which a bot initiates
infection attempts against hosts in the enterprise network. In this research with j we
denote the possible sizes of the infected host population throughout the infectious
time. Thus, the values of j lie in {1, 2, ..., ϕ}. The infectious time represents the
duration of the botnet infection process in the enterprise network.

It is the amount of time that elapses between the moment in which the botnet
initiates the first infection attempt against the enterprise network and the moment in
which j = ϕ, namely the moment in which the original vulnerable host population
becomes exhausted and the infected host population reaches its maximum possible
size. The botnet infection process in the enterprise network is modeled as a Markov
jump process. Each state of that process, which we denote with I j, represents a
stage in which the botnet infection has progressed to j infected hosts. Thus, the
states of the botnet infection process are I1, I2, ..., Iϕ. Let T j denote the amount of
time that the botnet infection process is in state I j. T j is a random variable whose
mean or expected value E(T j) according to the conclusions provided in (Rohloff

and Basar, 2005; Andersson and Britton, 2000; Daley and Gani, 1999) is given by
the following equation:

E(T j) =
γ

β(ϕ − j) j
(2.1)

The practicality of the stochastic model in the form of Equation 2.1 is limited
when applied to enterprise networks of medium or large sizes, and thus the model
in that form is not employable in inferring the dynamics of a real-world suspected
botnet in those networks. Although not expressed explicitly in Equation 2.1, γ
refers to the size of the online host population in the enterprise network. Clearly
offline hosts do not count as they do not play any role in the botnet infection pro-
cess. A straightforward way of discovering γ would have been to send Internet
Control Message Protocol (ICMP) echo request packets to all IP addresses allo-
cated for use in the enterprise network, and thus merely count the number of hosts
that respond with an ICMP echo reply packet. Nevertheless, ICMP may not be
enabled in many hosts, and furthermore it is not rare for packet filter firewalls to
drop ICMP messages in transit because of network security reasons.

Host firewalls also may block ICMP messages. For example, in its default
settings the Windows 7 firewall blocks all incoming ICMP echo request packets.
Knowledge of the overall number of IP addresses allocated statically or dynam-
ically for use in the enterprise network does not imply knowledge of γ. Some
computers are turned off at evening or night, or even during the day depending on
the work schedules or habits of the corresponding users. Predicting whether or not
a computer user will turn of his/her computer along with the time in which a possi-
ble computer turn off will take place and the time frame during which the computer
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will remain turned off is not realistic. The use of laptop computers is quite common
in enterprise networks. Laptop computers were designed for mobile use, and thus
by definition imply varying presence in the enterprise network. Computer users are
often away from their habitual place of connection to the enterprise network due to
business trips or holidays, and thus their computers might possibly be disconnected
for the duration of those events.

Arguably all of these phenomena along with others that cause random vari-
ability in the size of the online host population in the enterprise network are not
feasibly predictable. The same discussion holds for ϕ, which in Equation 2.1 refers
to the size of the online vulnerable host population at the beginning of the botnet
infection process in the enterprise network. The infeasibility of predicting the phe-
nomena previously mentioned prohibits us from having a workable estimate of ϕ.
Dagon et al. (Dagon et al., 2006) approximate ϕ as a periodical function of time
with a period of 24 hours, which the authors refer to as a diurnal shaping function,
in relation to the computer networks in an entire time zone. Dagon et al. infer
diurnal shaping functions for specific past botnets empirically from botnet data
gathered via a sinkhole over a period of 6 months. Those diurnal shaping functions
are reusable in the case the mitigation efforts target a botnet that exploits the same
specific vulnerabilities as those botnets.

The approximation of ϕ to a periodical function of time is suitable for use in a
deterministic model such as the time zone-based botnet propagation model devel-
oped by Dagon et al. in (Dagon et al., 2006). That is because such model is not
concerned with the variability around mean behavior, as we wrote previously in this
chapter. Taking into account that the variability in question is not negligible in our
case, in this research we consider ϕ as a random function of time, i.e. the variation
of the size of the online vulnerable host population over time is random. Dagon
et al. infer ϕ from a post-mortem study, while we would need to have ϕ at hand
shortly after the beginning of the botnet infection process in the enterprise network.
Furthermore, we aim at employing a defensive approach that is applicable to any
botnet, regardless of whether or not that botnet exploits the same vulnerabilities as
past botnets that were subject to post-mortem analysis.

A brute force approach to discovering ϕ would require port scanning of each
individual online host in the enterprise network to determine whether or not that
host runs network services that we suspect are vulnerable to the suspected botnet.
Given that an enterprise network of medium or large size comprises hundreds or
thousands of hosts, respectively, a brute force approach is too costly in terms of
time from a botnet containment perspective. In this research we have found a
means of neutralizing the requirement of knowing γ and ϕ for being able to employ
in practice the stochastic model represented by Equation 2.1. We can observe in
Equation 2.1 that it indirectly incorporates a measure of the vulnerability rate that
corresponds to state I j of the botnet infection process. With vulnerability rate we
mean the proportion of online hosts in the enterprise network that run network
services exploitable by the various exploits implemented in the bot codebase.

In this report we denote that vulnerability rate with δ j. In the denominator,
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(ϕ − j) is the number of online vulnerable hosts that could get infected by bots
but are not yet infected by bots at a stage in which the botnet infection process is
in state I j. According to the definition of vulnerability rate previously mentioned
we have that δ j =

ϕ− j
γ , consequently we can conclude that γ

ϕ− j in Equation 2.1 is
exactly δ−1

j . With this observation, the stochastic model takes the following form:

E(T j) =
1

βδ j j
(2.2)

In the following chapter we show how we estimate δ j without any prior knowl-
edge of ϕ and γ. Later on in this report we show how we use vulnerability rate
estimates to derive the possible values of j, and thus acquire the ability to employ
in practice the stochastic model represented by Equations 2.1 and 2.2.
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Chapter 3

Vulnerability Rate Estimation

3.1 Basic Approach

Our approach to vulnerability rate estimation draws on the epidemiological models
discussed in (Bhattacharyya et al., 1979; Chiang and Reeves, 1962; Thompson,
1962; Walter et al., 1980). In this chapter, let us denote the vulnerability rate
with the generic term δ as our estimation approach is not dependent on the states
of the botnet infection process. We use a discrete uniform distribution of the IP
address space allocated to the enterprise network to randomly generate a sample
of IP addresses of hosts from that network. We then organize the IP addresses in
the sample into pools. The assignment of the IP addresses in the sample to specific
pools is performed in a random fashion. That random assignment creates pools
with various sizes within the sample. With size of a pool we mean the number
of IP addresses in the sample that have been assigned to that specific pool. We
consider an IP address as vulnerable if we find that the corresponding host runs
network services that are presumably vulnerable to the suspected botnet.

We consider a pool as positive if that pool contains one or more vulnerable IP
addresses, and negative otherwise. For each pool we need to determine whether or
not it is a positive pool. We do so by checking the IP addresses in a pool in a random
order. Once an IP address in a pool under examination is found to be vulnerable, the
inspection of that pool is considered complete and that pool is marked as positive.
Otherwise, the inspection proceeds with checks on the other IP addresses in the
pool in question. If at the end of the inspection process no IP addresses are found
to be vulnerable, the pool under examination is marked as negative. Let us consider
a data vector x = (x1, x2, ..., xm), in which xi is a random variable that denotes the
number of positive pools of size i ∀i ∈ {1, 2, ...,m}. In the remaining of this chapter,
when we refer to i either directly or indirectly we mean ∀i ∈ {1, 2, ...,m}.

Let us denote with f and fi the probability density functions of the data vector x
and xi, respectively. Testing whether or not a pool of size i is positive is a Bernoulli
trial as the probability that a pool of size i is positive, which in this report we
denote with εi, remains constant in all inspections of pools of size i. Thus, the
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inspections or tests of all pools of size i form a Bernoulli process. We can notice
that in such Bernoulli process the random variable xi follows a binomial model.
That is due to fact that the Bernoulli trials on pools of size i are independent of one
another, and εi remains constant from Bernoulli trial to Bernoulli trial as we wrote
previously. In this report with model we mean a parametric family of probability
density functions that are indexed by specific parameters. Let n = (n1, n2, ..., nm)
be a data vector whose elements ni are counts of pools of size i in the sample.

We have that xi ∼ Binom(ni, εi), and hence fi is a binomial distribution that can
be expressed as follows:

fi(xi | ni, εi) (3.1)

We can observe from Equation 3.1 that the family of binomial distributions
followed by xi is indexed by parameters ni and εi. Note that we obtain parameter
ni from the data in our sample. We now estimate the probability that a pool of size
i is positive, namely εi. Given that the vulnerability rate of the overall enterprise
network is δ, the probability that an IP address in a pool of size i is vulnerable
is also δ. Consequently the probability that an IP address in a pool of size i is
invulnerable is 1 − δ. The probability that all the i IP addresses in a pool of size i
are invulnerable is (1 − δ)i. The probability that not all the i IP addresses in a pool
of size i are invulnerable, which corresponds to the probability that a pool of size i
is positive, is given by the following equation:

εi = 1 − (1 − δ)i (3.2)

Equation 3.2 also shows that the probability that a pool of size i is positive
remains constant over all the Bernoulli trials on the ni pools of size i, which is a
statement that we made earlier in this chapter. That is because clearly both δ and i
remain invariable throughout the Bernoulli trials in question, and therefore produce
in Equation 3.2 a εi that also remains invariable throughout those Bernoulli trials.
Given that the random variable xi follows a binomial model, we can apply the
formula for the binomial distribution to estimate the probability of xi pools of size
i in the sample being positive out of ni such pools as shown below:

f (xi | ni, εi) =

(
ni

xi

)
εxi

i (1 − εi)ni−xi (3.3)

Let us briefly go through the arguments for the validity of Equation 3.3. Let
Ω be a set that comprises all possible xi-size subsets of the set of ni pools of size
i. Thus, each element of Ω is a subset that comprises xi pools of size i. The
probability that xi out of ni pools of size i are positive is a logical AND between: (a)
the probability that any element of Ω comprises pools of size i that are all positive;
and (b) the probability that the remaining ni−xi pools of size i are negative. Clearly
the probability that all pools of size i in an element of Ω are positive is εxi

i . Thus,
the contribution that an element of Ω makes to the probability that any element of
Ω comprises pools of size i that are all positive is εxi

i . Given that the total number

9



of contributors is equal to the cardinality of Ω, then the total contribution, i.e. the
probability that any element of Ω comprises pools of size i that are all positive, is
equal to εxi

i times the cardinality of Ω.
The binomial coefficient in Equation 3.3 calculates the cardinality of Ω. The

probability that a pool of size i is negative amounts to 1 − εi. Consequently the
probability that the remaining ni− xi pools of size i are negative is (1−εi)ni−xi . The
specification of such probability concludes Equation 3.3. By plugging Equation 3.2
into Equation 3.3 we get the following equation:

f (xi | ni, εi) =

(
ni

xi

)
(1 − (1 − δ)i)xi(1 − δ)i(ni−xi) (3.4)

As ni lies in n, and as from Equation 3.2 we can derive that εi is related to δ by
a fixed scaling constant, let us express the binomial distribution fi in the following
form, which is equivalent to Equation 3.1:

fi(xi | n, δ) (3.5)

For any l and k such that l, k ∈ {1, 2, ...,m} and l , k, xl and xk are statistically
independent of one another. For that reason, f can be expressed as a multiplica-
tion of all fi defined over ∀i ∈ {1, 2, ...,m} as shown in Equation 3.5. Thus, the
distribution of the data vector x is formulated as follows:

f (x = (x1, x2, ..., xm) | n, δ) =

m∏
i=1

fi(xi | n, δ) (3.6)

Solving for the binomial coefficient in Equation 3.4, and thereafter plugging
Equation 3.4 into Equation 3.6 gives us a more detailed formulation of the distri-
bution of the data vector x:

f (x | n, δ) =

m∏
i=1

(
ni!

xi!(ni − xi)!
(1 − (1 − δ)i)xi(1 − δ)i(ni−xi)

)
(3.7)

The model represented by Equation 3.7 comprises a family of probability den-
sity functions that are indexed by δ, given that data vectors x and n lie in the data in
our sample. Different values of parameter δ produce different probability density
functions for data vector x. We are interested in that specific probability density
function for data vector x that is most likely to have produced the data in our sam-
ple. For that purpose, we analyze the statistical relation between Equation 3.7 and
the data in our sample through the lens of MLE (Fisher, 1922). Let the likelihood
function L(δ | n, x) denote the likelihood of parameter δ given the data vectors n
and x, which we can observe from the pools of IP addresses. The likelihood func-
tion L(δ | n, x) is a function of parameter δ, therefore a specific value of parameter
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δ fed to that likelihood function results in a specific likelihood or unnormalized
probability of that specific value of δ itself.

Thus, different values of parameter δ have different likelihoods. Finding the
specific probability density function for data vector x in the model represented by
Equation 3.7 that is more likely to be at the origin of the data in our sample, is
equivalent to finding a specific value of parameter δ that maximizes the likelihood
function L(δ | n, x), i.e. finding the specific value of parameter δ that has the highest
likelihood given data vectors n and x. From probability theory we derive that the
likelihood function L(δ | n, x) can be defined as in the equation below:

L(δ | n, x) = f (x | n, δ) (3.8)

By plugging Equation 3.7 into Equation 3.8 we reach the following more de-
tailed formulation of our likelihood function:

L(δ | n, x) =

m∏
i=1

(
ni!

xi!(ni − xi)!
(1 − (1 − δ)i)xi(1 − δ)i(ni−xi)

)
(3.9)

Maximizing the likelihood function L(δ | n, x) is equivalent to maximizing
the log-likelihood function ln L(δ | n, x) as those two functions are monotonically
related to one another. We work with the log-likelihood function rather than the
likelihood function mainly because of computational convenience. By applying
the natural logarithm to both sides of Equation 3.9 we obtain the log-likelihood
function as shown below:

ln L(δ | n, x) =

m∑
i=1

ln
(

ni!
xi!(ni − xi)!

(1 − (1 − δ)i)xi(1 − δ)i(ni−xi)
)

(3.10)

By applying in Equation 3.10 the transformation rule that regards the logarithm
of products, we reach the following form of the log-likelihood function:

ln L(δ | n, x) =

m∑
i=1

(ln(
ni!

xi!(ni − xi)!
) + ln((1 − (1 − δ)i)xi)+

+ ln((1 − δ)i(ni−xi))) (3.11)

In Equation 3.11 we apply the transformation rule that regards the logarithm of
powers, and thus obtain the following refinement of the log-likelihood function:
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ln L(δ | n, x) =

m∑
i=1

(ln(ni!) − ln(xi!) − ln((ni − xi)!)+

+ xi ln(1 − (1 − δ)i) + i(ni − xi) ln(1 − δ)) (3.12)

We can omit the first three terms of Equation 3.12, namely ln(ni!) − ln(xi!) −
ln((ni − xi)!), as they do not depend on parameter δ, and therefore have no effects
on the specific value of parameter δ that maximizes the log-likelihood function
ln L(δ | n, x). According to the MLE principle, an existing value of parameter
δ that maximizes the log-likelihood function meets the requirement that the first
derivative of the log-likelihood function should be equal to zero, as shown in the
likelihood equation given below:

d ln L(δ | n, x)
dδ

= 0 (3.13)

This likelihood equation is an ordinary differential equation as the parame-
ter vector that maximizes the log-likelihood function contains only one element,
namely parameter δ. By plugging the pertinent part of Equation 3.12 into Equa-
tion 3.13 we get a formulation of the likelihood equation as the following ordinary
differential equation:

d
∑m

i=1(xi ln(1 − (1 − δ)i) + i(ni − xi) ln(1 − δ))
dδ

= 0 (3.14)

The estimate of parameter δ is obtained by solving the ordinary differential
equation 3.14. The requirement represented by the likelihood equation in 3.13 and
hence in 3.14 is due to the fact that the maximum or minimum of the log-likelihood
function ln L(δ | n, x) by definition imply that its first derivative converges to zero at
the values of parameter δ that maximize or minimize the log-likelihood function in
question. This means that the estimate of δ that we have found may be a minimum
of the log-likelihood function ln L(δ | n, x), i.e. it minimizes that log-likelihood
function instead of maximizing it. Always according to the MLE principle, we can
validate that our estimate of parameter δ maximizes the log-likelihood function
ln L(δ | n, x) by checking that its second derivative evaluated at our estimate of
parameter δ is negative.

Thus, for our estimate of δ to be a valid measure of vulnerability rate, its value
along with data vectors n and x observed from the data in our sample should satisfy
the equation below:

d2 ∑m
i=1(xi ln(1 − (1 − δ)i) + i(ni − xi) ln(1 − δ))

dδ2 < 0 (3.15)

If that is not the case, we search the parameter space further to identify a suit-
able estimate of δ that indeed maximizes the log-likelihood function ln L(δ | n, x).
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3.2 A Logit Model for Finding Optimal Estimation Pa-
rameters

During practical experiments with the proposed estimation approach we observed
that for each pair of sample size and network size values, the level of precision
of the approach exhibits dependence on the number of pools. Most numbers of
pools produced workable estimates of vulnerability rates with varying estimation
errors. Nevertheless, there were numbers of pools that resulted in estimation er-
rors which were so high that the corresponding vulnerability rate estimates were
quite unusable in models that predict botnet propagation dynamics. We summa-
rize in Figure 3.1 various estimations as produced by experiments in which the
dependency in question emerged most evidently.

Figure 3.1: Plot of true vulnerability rate versus estimated vulnerability rate for
various ratios of the number of pools to the sample size with no engagement of the
logit model.

In those experiments we employed a ratio of the sample size to the network size
of 1:1000. Figure 3.1 depicts a graph that compares the true rate with a series of
estimated rates for various ratios of the number of pools to the sample size. We can
notice in Figure 3.1 that values succeeding 1:5.48 are optimal ratios of the number
of pools to the sample size, while values such as 1:5.4 or 1:5.3 certainly are not.
Let z1 and z2 denote the sample size and the network size, respectively, and let τ
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denote the number of pools. Clearly τ =
∑m

i=0 ni, in which ni and m are defined as
in the previous discussion, namely ni denotes the number of pools of size i and m
is the largest pool size observed after the random assignment of the nodes in the
data sample to pools.

Let r and q denote a minimum value and a maximum value for τ, respectively.
In the experiments that we discuss later on in this report we tried ratios of the num-
ber of pools to the sample size from 1:1 to 1:10, which means that we worked with
numbers of pools from r =

z1
10 to q = z1. Note that there is no statistical signifi-

cance behind our selection of those specific numbers of pools. Thus, defenders can
employ a different range of numbers of pools according to the sample size that their
botnet membership detectors and/or passive vulnerability scanners can process in
a timely fashion in their network of reference. We seek to identify those numbers
of pools among any {r, r + 1, r + 2, ..., q} which are optimal, i.e. produce workable
estimates of vulnerability rates for any pair of sample size and network size values
(z1, z2).

We address such research problem by developing a logit model described herein
that calculates the probability distribution of τ with respect to the capability to
produce workable estimates of vulnerability rates. After we obtain that probabil-
ity distribution, we mark the values of τ with the highest probabilities as optimal
numbers of pools for the given (z1, z2). The remaining of our discussion in this
section is conducted within the context of applied logistic regression (Hosmer and
Lemeshow, 2000; Kleinbaum et al., 2007). We model τ as a dependent variable,
and z1 and z2 as exposure variables. We can notice that the possible values of τ are
ordered. If we consider each possible value of τ as an outcome category, then the
outcome categories or our logit model are ordered and therefore the type of logistic
regression that applies to our research problem is the ordinal logistic regression.

Given that we are dealing with two exposure variables, our logit model has two
coefficient terms, which in this report we refer to as β1 and β2. We associate those
two coefficient terms with z1 and z2, respectively. There are q − r comparisons
between the possible values of τ, consequently our logit model has q − r intercept
terms, namely α1, α2, ...αq−r. The intercept term α1 corresponds to r + 1, the inter-
cept term α2 corresponds to r + 2, and so on. No intercept term α0 corresponds to
r. Let us have h ∈ {0, 1, ..., q − r}. The probability that any value of τ equal to or
greater than r + h is optimal is given by the following equation:

P (τ ≥ r + h | z1, z2) =
1

1 + e−(αh+β1z1+β2z2) (3.16)

Similarly, the probability that any value of τ equal to or greater than r + h + 1
is optimal is provided by the equation below:

P (τ ≥ r + h + 1 | z1, z2) =
1

1 + e−(αh+1+β1z1+β2z2) (3.17)

Thus, the probability that any value of τ equal to r + h is optimal is:
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P (τ = r + h | z1, z2) = P (τ ≥ r + h | z1, z2) − P (τ ≥ r + h + 1 | z1, z2) (3.18)

By plugging Equations 3.16 and 3.17 into Equation 3.18 we obtain the proba-
bility of any value r + h of τ being optimal, namely:

P (τ = r + h | z1, z2) =
1

1 + e−(αh+β1z1+β2z2) −
1

1 + e−(αh+1+β1z1+β2z2) (3.19)

The following special cases apply to our logit model. If h is equal to zero,
Equation 3.16 is not applicable as there is no intercept term α0 that corresponds to
r. Intuitively, we know that P (τ ≥ r | z1, z2) = 1, consequently Equation 3.19 takes
the following form:

P (τ = r | z1, z2) = 1 −
1

1 + e−(α1+β1z1+β2z2) (3.20)

If h is equal to q−r, then Equation 3.17 is not applicable as there is no intercept
term αq−r+1 that corresponds to the non-possible value q + 1. We know intuitively
that P (τ ≥ q + 1 | z1, z2) = 0, therefore in this other case Equation 3.19 takes the
following form:

P (τ = q | z1, z2) =
1

1 + e−(αq−r+β1z1+β2z2)
(3.21)

The input of our logit model comprises z1 and z2 only. Thus, for being able
to use our logit model, we need estimates of the intercept terms and coefficient
terms embedded in that model. We obtain those estimates by conducting statis-
tical learning over data which comprise numbers of pools that are known to be
optimal for various sample sizes and network sizes. We obtained those learning
data from the experiments that we discuss later on in this technical report. In those
experiments the true network vulnerability rates were known to us, therefore we
could tell which numbers of pools appeared to be optimal for specific sample sizes
and network sizes. The learning data that we constructed from the experiments in
question took the form of those presented in Table 3.1. Defenders can easily con-
struct similar data by replaying the experiments in question with numbers of pools,
sample sizes, and network sizes of their choice.

We seek to identify those specific intercept terms and coefficient terms that
make the learning data more likely. If u denotes the number of learning data
records, let us number those records from 1 to u. For v ∈ {1, 2, ..., u}, let wvh be
a flag variable defined as follows:

wvh =

{
1 If in the v-th row, τ = r + h
0 If in the v-th row, τ , r + h

(3.22)
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Table 3.1: Excerpt from the statistical learning data
Optimal Number of Pools Sample Size Network Size

72 108 108418
47 142 113920
95 143 100388
121 181 109148
23 231 115824

The likelihood of the learning data is given by the following joint probability:

Ldata =

u∏
v=1

q−r∏
h=0

[P (τ = r + h | z1, z2)]yvh (3.23)

In Equation 3.23, Ldata is a function that returns the likelihood of the learning
data. By plugging Equation 3.19 into Equation 3.23 we obtain a more elaborate
definition of the likelihood of the learning data:

Ldata =

u∏
v=1

q−r∏
h=0

[
1

1 + e−(αh+β1z1+β2z2) −
1

1 + e−(αh+1+β1z1+β2z2)

]wvh
(3.24)

The values of z1 and z2 in Equation 3.24 are available from the learning data
records. After performing the multiplications of the probabilities contributed by
each individual learning data record in Equation 3.24, we obtain Ldata as a function
of the intercept terms and coefficient terms, namely Ldata(α1, α2, ..., αq−r, β1, β2).
The estimates of the intercept terms and coefficient terms that we are looking for
consist of those specific values of the terms in question that maximize Ldata, which
we now identify via the MLE principle. Let us organize the intercept terms and
coefficient terms in Ldata as a parameter vector θ =

(
θ1, θ2, ..., θq−r+2

)
. θ1, θ2, ..., θq−r

correspond to intercept terms α1, α2, ..., αq−r, while θq−r+1, θq−r+2 correspond to
coefficient terms β1, β2. For i ∈ {1, 2, ..., q− r +2}, the estimates that we are seeking
are the solutions of a system of partial differential equations of the following form:

∂ln [Ldata (θ)]
∂θi

= 0 (3.25)

Placing those estimates in Equations 3.19, 3.20, and 3.21, makes our logit
model ready to use for finding optimal numbers of pools. Armed with an estimate
of δ, we are now in the conditions of exploiting the stochastic model represented
by Equations 2.1 and 2.2.
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Chapter 4

Model Graph Generation

The dynamics of a suspected botnet that we infer statistically are materialized in
a directed attributed graph, which in this research we refer to as a model graph.
The vertices of the model graph represent hosts in the enterprise network that are
infected by bots. Each vertex is labeled with the infected population size reached
when the host represented by that vertex is infected by a bot, namely j, for j ∈
{1, 2, ..., ϕ}. Thus, a vertex with label j represents the host whose infection causes
the botnet infection process to enter state I j. In this research we refer to those vertex
labels as infected host numbers or bot numbers. It is a mapping between infected
host numbers and IP addresses observed in concrete network communications in
the enterprise network that leads us to identification of infected hosts. We discuss
that mapping process later on in this discussion. In the model graph, each directed
edge from an origin vertex to a destination vertex indicates infection of the host
that is represented by the destination vertex.

That host infection is initiated by a bot running on the host represented by
the origin vertex. Each edge has an attribute that indicates the mean relative time
in minutes at which the corresponding host infection takes place in the enterprise
network. The time is considered relative to the infection of the first host in the
enterprise network. Thus, the mean infection time of infected host 1 is 0.0 minutes.
An example of a model graph is shown on the left part of Figure 4.1. That example
model graph was generated in relation to bots that initiate infection attempts at an
average rate of 2 per minute in a network of 10 hosts, 5 of which are vulnerable
to those bots. Model graph generation is mostly translated into estimating the
number of offsprings of each possible vertex, determining which vertex is parent
of what other vertex or vertices, and estimating the mean relative time at which bot
infections as modeled by concrete directed edges take place.

Recall from previous chapters that a suspected botnet is represented by a weakly
connected subgraph within the data graph, and that the network services suspected
to be vulnerable are those indicated on the edges of that weakly connected sub-
graph. Let us denote with ν the size of the infected host population at the moment
in which our approach begins processing a weakly connected subgraph formed
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within the data graph. Firstly, we estimate the vulnerability rate that applied to
the enterprise network before that network was reached by bot infections. Let that
estimate be denoted by δ0. At that point in time all possibly infected hosts cur-
rently represented in the weakly connected subgraph were still vulnerable and thus
uninfected. For that reason, we ignore the weakly connected subgraph when cal-
culating that estimate. More precisely, when determining whether an IP address in
a pool within a random sample is vulnerable, we port scan the host with that IP to
check if it runs any of the network services that are suspected to be vulnerable.

If that is the case, we conclude that the IP address in question is vulnerable re-
gardless of the fact that the corresponding host might be represented in the weakly
connected subgraph, and thus presently might be infected. Besides the consider-
ation just discussed, estimation of δ0 proceeds as described previously. Secondly,
we leverage the data in the sample used to estimate δ0 to determine the portion of δ0
that is due to 1 vulnerable IP address. In other words, we estimate the contribution
that a single vulnerable IP address makes to δ0. In the sample in question, we select
randomly an IP address that was found to be vulnerable during the estimation of
δ0. We then mark that IP address as infected, and thus invulnerable, and thereafter
repeat the estimation procedure from that point on, i.e. randomly organize the IP
addresses in the sample into pools, determine which pools are positive, etc.

In the above discussion we are making the assumption that an infected host
does not get reinfected as most contemporary botnets patch the exploited vul-
nerabilities or make those vulnerabilities unexploitable in order to prevent other
competing botnets from taking over hosts already under their control. With the
intervention previously discussed we obtain the equivalent of the estimation pro-
cess that produced δ0 as conducted when the botnet infection process is in state I1.
Once we obtain an estimate of δ1, we conclude that the contribution that a single
vulnerable IP address makes to δ0 is δ0 − δ1. Consequently we have that:

ϕ =
δ0

δ0 − δ1
⇒ j ∈ {1, 2, ...,

δ0

δ0 − δ1
} (4.1)

The number of vulnerable hosts in the enterprise network that we can save
from infection is about δ0

δ0−δ1
− ν. The vulnerability rate at any state I j of the

botnet infection process and the size of the online host population in the enterprise
network take the following form:

δ j = δ0 − jδ1 ⇒ γ =
δ0 − j(δ0 − δ1)
δ j(δ0 − δ1)

(4.2)

We now have at hand all the necessary elements to build the model graph. A
pertinent part of the model graph generation algorithm is given below. The model
graph generated by the algorithm applies to the entire infectious time, and thus is
usable for any ν < ϕ. The definition of various variables used by the algorithm
that have not been covered in our previous and current discussions is provided
in Table 4.1. Due to reasons that become clear later on in this report, vectors
and matrices used in the algorithm are considered as in the Matlab programming

18



language, namely the first element of each vector starts at index 1 rather than 0,
and the first element of each matrix starts at (row, column) indices (1, 1) rather
than (0, 0). When elaborating on the algorithm, when necessary we refer to the
example model graph shown in Figure 4.1 along with the corresponding example
botnet versus network setting.

Estimation of ϕ and hence of the possible values of j provides us with a defini-
tion of the possible infected host numbers in the model graph. Thus, at this point
we know that the possible infected host numbers are {1, 2, ..., ϕ}. The mean time
at which infection of the host represented by the vertex labeled with infected host
number j takes place, for j , 1, is equal to the sum of the mean amount of time
that it took the botnet infection process to reach state I j−1 and the mean amount of
time that the botnet infection process remains in state I j−1, namely E(T j−1). Given
that state I1 is reached at time 0.0, infected host number 2 is created at relative time
E(T1). According to our previous postulate, infected host number 3 is created at
relative time E(T1)+E(T2). In general, infected host number j, for j , 1, is created
at relative time E(T1) + E(T2) + ... + E(T j−1).

Thus, the mean times of infection of vulnerable hosts in the enterprise network,
and hence the mean times at which the corresponding infected host numbers are
created, are a function of E(T j), which we can estimate via the stochastic model
represented by Equations 2.1 and 2.2 [lines 1-6]. The mean times of creation of
infected host numbers estimated in relation to the example botnet versus network
setting are shown in the example model graph as attributes of the edges that enter
those infected host numbers. As we wrote earlier in this report, there is a variability
around the mean times at which the botnet infection process enters its states I j, for
j , 1. In this research we define a variability time window for each infected
host number j, for j , 1, to represent as much as possible those variabilities. A
variability time window is confined by a left endpoint and a right endpoint.

The left endpoint of the variability time window of an infected host number j
is halfway between the mean time of creation of infected host number j − 1 and
the mean time of creation of infected host number j. The left endpoint itself is not
part of the variability time window. In the case j = 2, the left endpoint is 0.0 as
we consider the time of creation of infected host number 1 to be exact rather than
a mean. The right endpoint of the variability time window in question is halfway
between the mean time of creation of infected host number j and the mean time
of creation of infected host number j + 1. In the case j = ϕ, the right endpoint is
set to be as far from the mean time of creation of infected host number j from the
right as the left endpoint is from the left. That specific right endpoint is considered
during estimation of the infectious time [line 7].

The right endpoint itself is part of the variability time window. The previous
formulation ensures that variability time windows are allocated evenly among in-
fected host numbers. In the model graph, the endpoints of the variability time win-
dow of an infected host number j are kept as attributes of the vertex labeled j as in
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Υ Vector in which indices represent
infected host numbers and elements
represent the corresponding infec-
tion time

ϑ Relative time elapsed until the bot-
net infection process reaches the in-
fected host number that precedes
the one currently under considera-
tion

Ψ Vector in which indices represent
infected host numbers and elements
represent the corresponding number
of infection attempts

ζ Refers to a specific infection at-
tempt initiated by a specific infected
host number

Λ Matrix in which row indices repre-
sent infected host numbers and col-
umn indices represent infection at-
tempts. Each element represents the
relative time in which the infected
host number represented by the row
index initiates the infection attempt
represented by the column index

Φ Matrix whose row indices and col-
umn indices are defined as in Λ.
Each element represents the prob-
ability of success of the infection
attempt represented by the column
index and initiated by the infected
host number represented by the row
index

Θ Matrix in which row indices rep-
resent infected host numbers and
column indices represent possible
numbers of offsprings starting from
0. Each element represents the
probability that the infected host
number represented by the row in-
dex generates the number of off-
springs represented by the column
index

Γ Matrix in which row indices and
column indices represent infected
host numbers. Each element rep-
resents the probability that the in-
fected host number represented by
the column index is an offspring
of the infected host number repre-
sented by the row index

Ξ Matrix whose rows represent re-
stricted weak integer compositions

∆ Vector in which indices represent
infected host numbers and elements
represent the corresponding number
of offsprings

µ Number of summands in restricted
weak integer compositions

α j Lower bound on the values of the
summand that corresponds to in-
fected host number j in restricted
weak integer compositions

σ j Upper bound on the values of the
summand that corresponds to in-
fected host number j in restricted
weak integer compositions

ρ Infected host number whose infec-
tion time precedes the time in which
a specific infection attempt was ini-
tiated

ς Infected host number targeted by a
specific infection attempt

ω Botnet infectious time

Table 4.1: Definitions of additional variables used in the model graph generation
algorithm.
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the example model graph. An estimate of the infectious time enables us to estimate
for each infected host number the number of infection attempts initiated by the cor-
responding infected host [lines 8-10]. Note that β can be approximated from the
weakly connected subgraph in consideration. We estimate for each infected host
number the mean time of occurrence of each infection attempt that corresponds to
that infected host number. The mean time of occurrence of an infection attempt
tells us what specific infected host number that infection attempt has potential to
create.

We discover the variability time window within which the mean time of oc-
currence in question falls, and thus conclude that it is creation of the infected host
number the variability time window in question belongs to that is targeted by the
infection attempt. The probability that the infection attempt causes an infection is
equal to the vulnerability rate of the enterprise network at the time in which that in-
fection attempt is initiated. If the infection attempt has potential to create infected
host number j, then the probability of success of the infection attempt is δ j−1. We
iterate this reasoning for all infection attempts [lines 11-28]. For each infected host
number, let us denote with ξ the overall number of infection attempts initiated by
the corresponding infected host, with ηi the probability of success of infection at-
tempt i, with τ a random variable that holds the actual number of successes, and $
the possible numbers of successes.

For the sake of clarity, with success of an infection attempt we mean the event
of that infection attempt causing an infection. Note that at this point we have
already estimated ξ and each ηi. We can notice that the infection attempts are
independent Bernoulli trials with possibly varying probabilities of success, con-
sequently we can conclude that τ has a Poisson Binomial distribution that can be
estimated as follows:

G(i) =

ξ∑
s=1

(
ηs

1 − ηs

)i

(4.3)

P(τ = $) =


∏ξ

i=1(1 − ηi) $ = 0
1
$

∑$
i=1(−1)i−1P(τ = $ − i)G(i) $ > 0

A successful infection attempt implies creation of an offspring of the infected
host number, therefore Equation 4.3 provides the probability distribution of the
number of offsprings of the infected host number in question. We estimate the
probability distribution of the number of offsprings of each infected host number
besides ϕ [lines 29-33]. Infected host number ϕ is the last to be created, and thus
it cannot have any offsprings as at that point the vulnerability rate in the enter-
prise network hits 0.0. In the example botnet versus network setting, this is how
part of the probability distribution of the number of offsprings of infected host
number 1 looks like: P(τ = 0) = 0.054867; P(τ = 1) = 0.196391; P(τ = 2) =

0.300714; P(τ = 3) = 0.257415, etc. The sum of the numbers of offsprings of
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all infected host numbers amounts to ϕ − 1 as all infected host numbers but 1 are
offsprings of some other infected host number.

We draw on number theory to identify the most likely assignment of numbers
of offsprings to infected host numbers. We can notice that each possible assign-
ment of numbers of offsprings to infected host numbers is a weak composition of
ϕ− 1. Recall from number theory that the weak composition of an integer is an or-
dered sequence of positive integers or 0 whose sum is equal to that integer. A weak
composition that relates to the example botnet versus network setting is the follow-
ing: (2, 1, 1, 0, 0). In our context that weak composition indicates that infected host
number 1 has 2 offsprings, infected host number 2 has 1 offspring, and so forth.
We generate weak compositions of ϕ−1 via the algorithm for generating restricted
integer compositions discussed by Opdyke in (Opdyke, 2009). The compositions
generated by that algorithm can be constrained simultaneously by upper and lower
bounds on the number of summands and upper and lower bounds on the values of
those summands.

We know that infected host number ϕwill have 0 offsprings, therefore we focus
on the remaining infected host numbers by setting the number of summands to pre-
cisely ϕ − 1. Practical experiments with this research showed that the probability
distribution of the number of offsprings of each infected host number constantly
indicated a most likely number of offsprings that was smaller than the actual num-
ber of offsprings. For each infected host number j, we use that specific most likely
number of offsprings as a lower bound on the value of the summand that corre-
sponds to that infected host number. In other words, summing up the numbers of
offsprings with the highest probabilities in the distributions of τ discussed previ-
ously produces a number that is less than ϕ − 1.

For each infected host number j, we sum up the numbers of offsprings with the
highest probabilities in the distributions of τ estimated for infected host numbers
other than j, and thus subtract the resulting sum from ϕ− 1. We use the final result
as an upper bound on the values of the summand that corresponds to infected host
number j. Once we generate the weak compositions constrained by the parameters
just discussed, we estimate the likelihood of each one of those weak compositions
by multiplying the probabilities associated with the values of the respective sum-
mands. The weak composition with the highest probability forms the assignment
of numbers of offsprings to infected host numbers that we apply in the model graph
[lines 34-43]. The number of offsprings of each infected host number is kept as an
attribute of the corresponding vertex as in the example model graph.

We now estimate the probability that an infected host number q is offspring
of an infected host number j. Each one of the infection attempts initiated by the
infected host corresponding to infected host number j, which has potential to create
infected host number q, has a probability of success % = δq−1. That postulate
stems from the fact that the infection rate in the enterprise network by the time the
botnet infection process enters state Iq is δq−1. Let us denote with χ the number
of infection attempts initiated by the infected host corresponding to infected host
number j and whose probabilities of success amount to δq−1. Also, let κ denote a
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random variable that holds the number of successes of those χ infection attempts.
We can notice that κ ∼ Binom(χ, %).

The probability that infected host number q is offspring of infected host num-
ber j is equal to the probability that the infection attempts in question cause an
infection, which in turn is equal to the probability that κ = 1. That probability is
obtained from the formula for the binomial distribution as in the following equa-
tion:

P(κ = 1) = χ %(1 − %)χ−1 (4.4)

We iterate the above estimation for each infected host number q and j, for
q , j and j < ϕ, and thus conclude that the parent of infected host number q is that
specific infected host number j whose probability returned by Equation 4.4 is the
highest [lines 44-61].

1: ϑ← 0.0
2: Υ(1)← 0.0
3: for j = 2 to ϕ do
4: Υ( j)← ϑ + 1

βδ j−1 j−1
5: ϑ← Υ( j)
6: end for
7: ω← Υ(ϕ) +

Υ(ϕ)−Υ(ϕ−1)
2

8: for j = 1 to ϕ - 1 do
9: Ψ( j)← (ω − Υ( j)) ∗ β

10: end for
11: for j = 1 to ϕ do
12: for ζ = 1 to Ψ( j) do
13: Λ( j, ζ)← Υ( j) + ((1/β) ∗ ζ)
14: ρ← infected host number such that Υ(ρ) precedes Λ( j, ζ)
15: if ρ = 1 then
16: ς ← 2
17: else if ρ = ϕ then
18: ς ← ϕ

19: else
20: if Λ( j, ζ) > Υ(ρ) +

Υ(ρ+1)−Υ(ρ)
2 then

21: ς ← ρ + 1
22: else
23: ς ← ρ

24: end if
25: end if
26: Φ( j, ζ)← δς−1
27: end for
28: end for
29: for j = 1 to ϕ do
30: for ζ = 1 to Ψ( j) + 1 do
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31: Θ( j, ζ)← feed Equation 4.1 for τ = (ζ−1) with Φ( j, q), ∀q ∈ {1, 2, ...,Ψ( j)}
32: end for
33: end for
34: µ← ϕ − 1
35: for j = 1 to ϕ − 1 do
36: tmp var ← column index of Max(Θ( j, q)), ∀q ∈ {1, 2, ..., ϕ}
37: α j ← tmp var − 1
38: end for
39: for j = 1 to ϕ − 1 do
40: σ j ← ϕ − 1 −

∑ϕ−1
q=1,q, j αq

41: end for
42: Ξ ← feed restricted integer composition generator with µ, α j, and σ j, ∀ j ∈
{1, 2, ..., ϕ − 1}

43: ∆← specific row v of Ξ with Max(
∏ϕ−1

q=1 Θ(q,Ξ(v, q) + 1))
44: for j = 1 to ϕ − 1 do
45: for q = j + 1 to ϕ do
46: %← δq−1
47: χ← 0
48: for ζ = 1 to Ψ( j) do
49: if Φ( j, ζ) = % then
50: χ = χ + 1
51: end if
52: end for
53: if χ = 0 then
54: Γ( j, q)← 0.0
55: else if χ = 1 then
56: Γ( j, q)← %

57: else
58: Γ( j, q)← χ %(1 − %)χ−1

59: end if
60: end for
61: end for

A relevant question that rises is why we need to estimate the number of off-
springs of each infected host number while we can determine the parent-offspring
relation between all possible infected host numbers. We could have deterministi-
cally derived the number of offsprings of each infected host number j by simply
counting the infected host numbers that have j as a parent. Nevertheless, doing so
does not produce accurate results. Our practical experiments showed that it is quite
common that several infected host numbers appear as parents of the same infected
host number with equal probabilities. At the modeling level it is virtually unfea-
sible for us to determine which one of those equally likely but mutually exclusive
parents is indeed the actual parent. Because of that reason, the model graph con-
tains mutually exclusive concurrent edges. The concurrent edges observed in our

24



example model graph are shown in Figure 4.2, while one of the several possible
instances of the example model graph with those edges removed is shown on the
bottom part of Figure 4.1.

Figure 4.1: Example of a model graph as generated by the algorithm (top), and an
instance of that model graph with mutually exclusive concurrent edges removed
(bottom).

25



Figure 4.2: Mutually exclusive concurrent edges in the model graph generated by
the algorithm.
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Chapter 5

Subgraph Isomorphism Search

The purpose behind the model graph is to use it as basis for proving or disproving
that a given weakly connected subgraph within the data graph is caused by a botnet.
We do so by searching for an isomorphism between any subgraph of the model
graph with infected host number 1 as root and the weakly connected subgraph
under analysis. If an isomorphism between the two is found, we conclude that
the inferred dynamics of the propagation of a suspected botnet match the actual
propagation dynamics observed on the network. As our experimentation with this
research has shown, an exact match between the two is seldom observed. We
tolerate deviations from the inferred dynamics by defining an error model based
on the variability time window of each infected host number along with indication
of mutually exclusive concurrent edges in the model graph. We assign two vertex
attributes to each vertex in the weakly connected subgraph.

One vertex attribute, which in this research we refer to as possible identity
(ID), holds a possible infected host number that might correspond to the vertex.
At the beginning of our processing of the weakly connected subgraph we identify
the vertex whose incoming edge has the earliest timestamp, and thus consider it
as root. If at the end our search has not found an isomorphism, we try with the
succeeding vertices as root one at a time according to the age of the timestamps
of their incoming edges. Once we set a specific vertex in the weakly connected
subgraph to be the root, the time on the edges the enter the vertices of the weakly
connected subgraph currently in consideration are considered relative to the time
on the edge that enters the root. The ID attribute of the root vertex is set to 1. For
each vertex, we examine each relative time on each edge that enters the vertex to
search for the variability time window in the model graph it lies within.

The infected host number that has that variability time window becomes an
ID of the vertex. The other vertex attribute, which in this research we refer to
as offsprings number (ON), holds the number of offsprings of the corresponding
vertex in the weakly connected subgraph whose IDs are among the infected host
numbers that are indicated in the model graph as possible offsprings of the infected
host number held by the ID attribute of the vertex in question. We identify the most
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recent relative time that enters a leaf vertex in the weakly connected subgraph, and
thus consider that specific part of the model graph that extends up to that relative
time. For each infected host number in that part of the model graph we consider the
number of offsprings along with the specific offsprings generated by that infected
host number up to the relative time in question.

At that point we are ready to start the search process. We first see whether we
can validate the ID attribute of the root vertex in the weakly connected subgraph.
We do so by checking whether the value of the ON attribute of the root vertex is
greater than or equal to the predicted number of offsprings of infected host number
1. We allow values of the ON attribute that are less than the predicted number
of offsprings of infected host number 1 by a threshold. Our practical experiments
showed that an adequate value of that threshold is 1, given the small number of
vertices we are dealing with. We then proceed in a similar fashion with the vertex
whose ID attribute has a value of 2. We check whether the value of the ON attribute
of that vertex is greater than or equal to the predicted number of offsprings of
infected host number 2 minus 1. Once we localize infected host number 2 in the
weakly connected subgraph, we move on to the vertex whose ID attribute has a
value of 3, and so forth.

We develop an incremental auto-corrective feature within our isomorphism
search process. Each time we localize an infected host number in the weakly
connected subgraph, we take the relative time on the edge that enters that corre-
sponding vertex and set it directly as the infection time of that infected host number
within the model graph generation process. We then replay the model graph gen-
eration process, and thus update the model graph along with the values of the at-
tributes of the remaining vertices of the weakly connected subgraph. For example,
if we have localized infected host number 2 in the weakly connected subgraph, we
take the relative time on the edge that enters the vertex whose ID is 2, and thus use
that time as the infection time of infected host number 2 within the model graph
generation process.

Instead of using the stochastic model to estimate the infection time of infected
host number 2, we take that infection time directly from the weakly connected
subgraph as just discussed. Replaying the graph generation process with such an
intervention incorporated produces a more accurate variability time window for
infected host number 3, and thus increases our chances of correctly localizing in-
fected host number 3 in the weakly connected subgraph. Once we localize infected
host number 3, we follow the same technique to increase our chances of correctly
localizing infected host number 4, and so forth. After processing the last leaf node
in the weakly connected subgraph, for each vertex in the weakly connected sub-
graph we verify that the value of its ON attribute does not vary more than 1 in either
direction with respect to the number of offsprings of the infected host number indi-
cated by the ID attribute of that vertex. That check is performed by consulting the
numbers of offsprings of the vertices in the pertinent part of the model graph.
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Chapter 6

Experimental Evaluation

6.1 Vulnerability Rate Estimation

We implemented our approach to vulnerability rate estimation in the Matlab pro-
gramming language (Mathworks Inc., 2010), and thus tested the effectiveness of
that approach experimentally in relation to simulated botnet propagation dynamics
in a Georgia Tech Network Simulator (GTNetS) (Riley et al., 2004). The GTNetS
tool enabled us to simulate moderate to large scale networks. We mostly worked
with simulated networks whose size had an order of magnitude of 3x105 possible
nodes and 105 actual nodes. The topology of each one of those simulated networks
was a random tree as provided by the GTNetS tool. The distribution of nodes
throughout constituent subnetworks was also conducted by the GTNetS tool in a
random fashion. The GTNetS tool provides for simulation of worms over simulated
networks. We used that functionality to simulate botnet propagation dynamics in
various simulated networks.

We modified the GTNetS code such as to simulate techniques for vulnerability
scanning and botnet membership assessment. That additional code allowed us to
log the properties of each node in a sample of nodes from each simulated network
of reference, i.e. determine whether or not the node is vulnerable and whether or
not the node is infected. We also developed code within GTNetS to randomly gen-
erate a sample of nodes from each simulated network of reference, and thereafter
randomly distribute those nodes into pools. In that code, we could programmat-
ically set both the sample size and the number of pools. The GTNetS tool itself
allowed for setting the vulnerability rate in each simulated network of reference.
In this report we refer to that rate as true vulnerability rate.

After botnet propagation dynamics were simulated long enough to affect the
whole simulated network, the true vulnerability rate became true infection rate as
at that point in time each vulnerable node became an infected node. Thus, esti-
mating the vulnerability rate at the beginning of each simulation was equivalent
to estimating the infection rate at the end of that simulation as both of those true
rates had the same value. We tried the Matlab implementation of the estimation
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approach in practice in relation to a large number of experiments with various sim-
ulation parameters, namely true vulnerability and infection rates, actual network
sizes, sample sizes, and numbers of pools. In empirical terms, the estimation ap-
proach proved to support a ratio of the sample size to the actual network size of up
to 1:1000 when employed in networks of medium or large sizes.

The outcome of each experiment was an estimate of the vulnerability or infec-
tion rate, which we compared to the true rate that was in place during that exper-
iment in order to derive the corresponding estimation error. Figure 6.1 shows our
findings from those experiments. The ratios of the sample size to the actual network
size employed varied from 1:100 to 1:1000, while the numbers of pools employed
varied from a few, namely 11, to as many as 1200. Clearly if defenders could in-
spect each or almost each actual node for vulnerability in an amount of time that
meets botnet mitigation requirements, the random sampling would not apply and
moreover the calculation of vulnerability rates would have been straightforward.

Because of that postulate, we deemed that given the order of magnitude of the
employed actual network size, the lower bound 1:100 was approximately a mini-
mum ratio of the sample size to the actual network size for the random sampling to
find applicability in our problem domain. The motive for the upper bound 1:1000
is its representation of a ceiling ratio of the sample size to the actual network size,
which the estimation approach can support reliably. The sample sizes employed in
the experiments are a direct derivation from the actual network sizes and the afore-
mentioned ratios. We followed ratios of the numbers of pools to the sample sizes
from 1:1 to 1:10, which explains the numbers of pools employed, namely from 11
to 1200.

The sign of the observed estimation errors represents the direction of departure
of the estimated vulnerability rates from the respective true rates. An estimation
error is positive when the estimated vulnerability rate is lower than the true rate, and
negative when the true rate is lower than the estimated vulnerability rate. Note that
the experimental results conveyed in Figure 6.1 do not reflect the use of the logit
model. The pertinent prediction outcomes of the logit model, namely numbers of
pools found to be highly likely optimal for given sample sizes and actual network
sizes discussed earlier in this section, are depicted in Figure 6.2.

Figures 6.1 and 6.2 are such that the experimental results that those two figures
show can be correlated. For each ratio of the sample size to the actual network size
employed, we can observe the associated optimal number of pools from Figure 6.2.
With the optimal number of pools at hand, we can observe the associated estimation
error from Figure 6.1 by referring to the graph that corresponds to the ratio of the
sample size to the actual network size under consideration. The overall highest
estimation errors observed during these experiments regard a ratio of the sample
size to the actual network size of 1:1000. This comes natural as for such ratio
the number of nodes in the sample is considerably small with respect to the whole
population of nodes in a network of reference.

The estimation errors diminish as we move towards lower ratios of the sample
size to the actual network size. Figure 6.3 shows a direct comparison between
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estimated rates and true rates for a ratio of the sample size to the actual network
size of 1:1000. For lower ratios of the sample size to the actual network size,
the estimated rates line follows more closely the true rates line on the left part
of Figure 6.3, while the corresponding estimation error line on the right part of
Figure 6.3 fluctuates closer to zero as it moves along the true rates that we tried in
these experiments.

6.2 Botnet Mitigation

We implemented the overall approach to early stage botnet detection and contain-
ment in the Matlab and Perl programming languages. More specifically, we im-
plemented in Matlab the part of this research that regards statistical inference of
botnet dynamics. A large portion of that code uses functions from the Matlab’s
Statistics Toolbox. We implemented in Perl the subgraph isomorphism search part
of this research. That code relies on the Graph::Directed module, i.e. a Compre-
hensive Perl Archive Network (CPAN) module that provides functions for creating
and processing directed graphs. The implementation takes the form of a unified
tool referred to as variant which allows an analyst to interface with the Matlab
code. The Perl code is transparent as it is invoked by Matlab. Matlab has an in-
struction, perl(), that allows for calling Perl code directly from within Matlab code.
The input of the variant tool is comprised of pcap files generated by tcpdump or
any other derivative network sniffing tool.

The output produced by the variant tool comprises a list of IP addresses found
to be infected by bots along with thorough details of inferred dynamics and of the
subgraph isomorphism search process. In fact a considerable part of the experi-
mentation data that we provide in this section were produced from the variant tool.
We wrote bot code in order to test the effectiveness of this research in practice in
a controlled fashion. The bot code exploits a network service that we wrote in
Perl especially for being able to experiment with that bot code. The vulnerabil-
ity lies in incomplete validation of input data to an open() function. If input data,
which in our case is a file name, contains a pipe, that function by definition at-
tempts to execute whatever comes after the pipe. The exploit works by injecting
′| perl − e < bot payload >′ into the open() function in question. We also wrote
a program to collect propagation data from bots.

Upon infection of a host, each bot reports to the collector program with data
that comprises infection time, namely a timestamp that the bot gets on the infected
host by the time of infection, the IP address of the infected host, and the IP address
of the host that initiated the infection. Such monitoring data enabled us to directly
compare the results reported by the variant tool to the actual facts in the propaga-
tion of the test botnet. We conducted the practical experiments with this research
in the Emulab network testbed (White et al., 2002). Our test network consisted of
100 hosts with IP addresses in the range 10.1.1.2 − 10.1.1.101. A portion of these
hosts were made vulnerable to the test botnet by simply running on them the vul-
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nerable network service discussed previously. We sniffed network traffic in our test
network via the tcpdump tool. We do not need all TCP packets that flow over the
network of reference, but only those that start the three-way handshake. The actual
tcpdump filter that we used in our experiments in conjunction with the variant tool
is the following: ′((tcp[tcp f lags] & tcp − syn ! = 0) or udp) and ip′

We conducted several rounds of trials in relation to various botnet versus net-
work settings. Due to space limitations, in our following discussion we refer to ex-
periments in which the bots of the test botnet initiated an average number of infec-
tion attempts of 3 per minute. In those experiments our test network had δ0 = 0.3.
The IP addresses of the vulnerable hosts varied from 10.1.1.2 to 10.1.1.31. The
inferred propagation dynamics as incorporated in the model graph are shown in Ta-
ble 6.1. The mean infectious time estimated was 9.3784 minutes. We do not show
the complete parent-offspring relations between infected host numbers through the
corresponding model graph as its size along with the density of those relations
makes that graph hardly readable when depicted on one page. Nevertheless, the
possible offsprings of the first eight infected host numbers are given in Table 6.2.

Recall from the previous chapters that possible offsprings of an infected host
number as expressed in the model graph are only candidates for being offsprings of
that infected host number. Due to concurrent edges, only a part of those possible
offsprings will be actual offsprings of the infected host number in question at each
run. In the experiments in question our approach began processing weakly con-
nected subgraphs formed within data graphs at ν = 8. As propagation of a botnet
is a stochastic process, the times at which vulnerable hosts got infected by bots
was different at each trial. Figure 6.4 shows host infection times until the botnet
propagation process enters state I8 for five of those trials from the rounds of trials
conducted in this research, which in this section we refer to as G1, G2, G3, G4,
and G5. Figure 6.4 also shows predicted host infection times in the model graph
for comparative purposes.

Also, due to the stochastic nature of the botnet propagation process the actual
number of offsprings of each infected host number may vary from trial to trial.
Table 6.3 shows on one hand the predicted number of offsprings of each one of the
first eight infected host numbers in the model graph until the botnet propagation
process enters state I8. And on other hand, Table 6.3 shows the actual number of
offsprings of each one of those infected host numbers in each one of the G1-G5
trials. We do not show the same kind of data about the other trials due to space
limitations. A direct consequence of the variability around host infection times in
each trial is that the variability time windows used by our approach to recognize
infected host numbers varies from trial to trial. That is due to the incremental
auto-corrective feature of our approach.
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Bot Num. Inf. Time Num. Offsprings Act. Time Attempts
1 0.0 4 9.378388 28
2 1.1494 3 8.228962 24
3 1.7447 2 7.633724 22
4 2.1562 2 7.222202 21
5 2.4767 2 6.901689 20
6 2.7434 2 6.635022 19
7 2.9748 1 6.403541 19
8 3.1819 1 6.196501 18
9 3.3713 1 6.007107 18
10 3.5476 1 5.830741 17
11 3.7143 1 5.664074 16
12 3.8738 1 5.504584 16
13 4.0281 1 5.350263 16
14 4.179 1 5.199434 15
15 4.3278 1 5.050624 15
16 4.4759 1 4.902476 14
17 4.6247 1 4.753667 14
18 4.7756 1 4.602837 13
19 4.9299 1 4.448516 13
20 5.0894 1 4.289026 12
21 5.256 0 4.122360 12
22 5.4324 0 3.945993 11
23 5.6218 0 3.756599 11
24 5.8288 0 3.549560 10
25 6.0603 0 3.318078 9
26 6.327 0 3.051411 9
27 6.6475 0 2.730899 8
28 7.059 0 2.319376 6
29 7.6542 0 1.724138 5
30 8.8037 0 0.0 0

Table 6.1: Pertinent data from the inferred dynamics of the test botnet in the Emu-
lab network testbed.
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1⇒ 2 4 5 6 7 9 11 13 15 17 19 21 23 25 26 28 30
2⇒ 3 4 5 6 8 10 12 14 16 18 20 22 24 25 26 29
3⇒ 4 5 6 7 9 11 13 16 18 20 22 24 25 26 29
4⇒ 5 6 8 10 12 14 16 18 20 22 24 25 27 29
5⇒ 6 8 10 12 14 16 18 20 22 24 25 26 29
6⇒ 7 9 11 13 16 18 20 22 24 25 26 29
7⇒ 9 11 13 15 17 19 21 23 25 26 28 30
8⇒ 10 12 14 16 18 21 22 24 25 27 29

Table 6.2: Possible offsprings of the first eight infected host numbers in the model
graph.

Bot Number M G1 G2 G3 G4 G5
1 2 3 2 2 2 4
2 2 2 1 2 2 2
3 1 1 1 2 1 1
4 1 1 1 1 0 0
5 1 0 1 0 1 0
6 0 0 1 0 1 0
7 0 0 0 0 0 0
8 0 0 0 0 0 0

Table 6.3: Comparison in numbers of offsprings of each infected host number
between the model graph and some of the weakly connected subgraphs targeted
by our approach.
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Bot Number M G1 G2
1 0.0 - 0.0 0.0 - 0.0 0.0 - 0.0
2 0.0 - 1.4470 0.0000 - 1.4470 0.0000 - 1.4470
3 1.4470 - 1.9504 1.6376 - 2.1410 0.9643 - 1.4677
4 1.9504 - 2.3164 2.2118 - 2.5778 1.2058 - 1.5718
5 2.3164 - 2.6100 2.5003 - 2.7938 1.4903 - 1.7838
6 2.6100 - 2.8591 2.8063 - 3.0554 1.7933 - 2.0424
7 2.8591 - 3.0784 3.1157 - 3.3350 2.1124 - 2.3317
8 3.0784 - 3.2766 3.4435 - 3.6417 2.4335 - 2.6317

Bot Number G3 G4 G5
1 0.0 - 0.0 0.0 - 0.0 0.0 - 0.0
2 0.0000 - 1.4470 0.0000 - 1.4470 No Match
3 0.6276 - 1.1310 1.2976 - 1.8010 1.4470 - 1.9504
4 1.2351 - 1.5287 1.8724 - 2.2384 2.0219 - 2.3879
5 1.4936 - 1.7872 2.1603 - 2.4538 2.4936 - 2.7872
6 1.7967 - 2.0457 2.4667 - 2.7157 No Match
7 2.1157 - 2.3350 2.7824 - 3.0017 No Match
8 2.4335 - 2.6317 3.1035 - 3.3017 No Match

Table 6.4: Evolution of variability time windows throughout the processing of
some of the weakly connected subgraphs by our approach.

Table 6.4 shows how those variability time windows evolve throughout the
processing of weakly connected subgraphs in the G1-G5 trials with respect to the
variability time windows predicted in the model graph. As the data discussed so
far seem to suggest, the internals of the processing by our approach of weakly
connected subgraphs, which are formed by the same botnet in a network whose
characteristics do not change from trial to trial, vary from trial to trial according
to the departure of the actual propagation dynamics from the mean propagation
dynamics. If that departure exceeds the boundaries of the error model that accom-
panies the model graph, then the botnet will go undetected. Trials G1-G4 are a
few examples in which our approach detected the corresponding weakly connected
subgraphs as botnets.

The weakly connected subgraphs that were derived by our approach in those
trials are given in Figure 6.5. These are a few examples of weakly connected
subgraphs that our approach found to be isomorphic to that part of the model graph
that extends up to ν = 8. Note that our approach does not need to know ν a priori.
The actual value of ν emerges when our approach has completed processing of
weakly connected subgraphs within the data graph. G5 is an example of a trial in

35



which the actual propagation dynamics of the test botnet exceeded the boundaries
of the error model that accompanies the model graph. In cases such as G5 our
approach fails to detect the botnet. The weakly connected subgraph as actually
exhibited in G5 and as derived from our approach is given in Figure 6.6.

Although possible, departures beyond the boundaries of the error model that
accompanies the model graph are relatively rare to a random degree. Empirical ob-
servations of the effectiveness of our approach in ten rounds of trials are shown in
Figure 6.7. Replaying those rounds of trials will produce different results. Never-
theless, the overall hit rates oscillate around similar high values. To our experience
this research does not produce false positives when applied to an enterprise network
with standard Windows and/or Linux network services. We suspect that P2P appli-
cations might represent a challenge in that regard due to their worm-like behavior.
Nevertheless, we do not expect P2P applications to represent a limitation of this
research as we deem that the worm-like behavior of most P2P applications is ex-
hibited in terms of topology and not as persistent propagation dynamics. However,
this research did not include a practical validation of the robustness of our approach
from a false positives perspective with respect to a representative set of real-world
P2P applications. Consequently we leave that issue open, and thus consider it as
possible future work.
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Figure 6.1: Plot of observed estimation errors versus numbers of pools for ratios
of the sample size to the actual network size from 1:100 to 1:1000.
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Figure 6.2: Optimal numbers of pools found by the logit model for various ratios
of the sample size to the actual network size.
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Figure 6.3: Comparison between estimated rates and true rates (top), and estima-
tion errors observed for those true rates (bottom), for a ratio of the sample size to
the actual network size of 1:1000.
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Figure 6.4: Host infection times in the model graph and in some of the weakly
connected subgraphs targeted by our approach.
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Figure 6.5: Some of the weakly connected subgraphs as derived and detected by
our approach.

Figure 6.6: Weakly connected subgraph G5 in its actual form as generated by the
test botnet (left), and in a derived form as built by our approach (right).
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Figure 6.7: Hit rates observed empirically for various rounds of trials with the test
botnet in the Emulab network testbed.
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Chapter 7

Overview of variant: A Botnet
Mitigation Tool

The variant tool is a workable and functional prototype implementation of the re-
search discussed in this report. The variant tool produces consistent results each
time it is run. Our motivation behind choosing the name variant for this tool lies
in the fact that botnet dynamics targeted by this research vary among network in-
fections. Even the same botnet launched in the same network several times may
exhibit different dynamics at each one of those individual launches. That phe-
nomenon is due to the stochastic nature of a botnet infection process that belongs
to the category of malware considered in this research. As we wrote earlier in this
report, the variant tool takes in input pcap files generated by tcpdump or any other
derivative network sniffing tool. In the case of a positive botnet interception, the
output produced by the variant tool consists of a textual description of the final
form of the weakly connected subgraph formed by the botnet infection process
within the data graph until the moment of intervention.

Typical forms of that specific output are shown in the bottom half of Figure 7.1
and in the bottom half of Figure 7.6. In the case of absent formation of weakly
connected subgraphs within the data graph, or in the case of lack of isomorphism
between the model graph and weakly connected subgraphs within the data graph,
the variant tool simply notifies that no botnets were detected. The variant tool can
function in total independence from any human intervention, and thus can conduct
automatic early state botnet detection and containment tasks. Nevertheless, we
decided to equip the variant tool with an interactive interface in order to enable a
network security analyst to explore the internals of each processing session. That
interactive interface also helped us debug the overall approach as it progressed
throughout a processing session.

The variant tool provides a command line interface to the network security an-
alyst. The available commands and their possible respective options are shown in
the top half of Figure 7.1. The variant tool is designed to process simultaneously
several pcap files created by network sniffers deployed at various points in an enter-
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prise network. The netpackets command sorts entries from those pcap files and
places them in a unified file, which is then processed by other commands. The logit
model that we developed in this research can be solved via the logit command as
shown in Figures 7.2, 7.3, and 7.4. The botnet virulence can be estimated via the
virulence command, which accepts three options, namely -i, -v, and -b. Those
options allow for estimating the infection rate only, the vulnerability rate only, and
both infection rate and vulnerability rate, respectively. A typical session is shown
in Figure 7.5.

The various plots of statistical data that we used in this research to characterize
the effectiveness of various components of our approach can be drawn via the plot
command. That command is not required for conducting real-world botnet contain-
ment tasks. Nevertheless, we developed the functionality behind the command in
question as we use the variant tool also as a research tool. The propagation
command is used to display data on the botnet propagation process in an enterprise
network. It is accompanied by two options, namely -a and -d. The -a option
displays propagation data based on reports generated by bots and gathered from
the collector program during an experiment in the Emulab network testbed. That
option is only needed when the variant tool is employed as a research tool. The -d
option displays propagation data that characterize botnet propagation dynamics as
inferred by the variant tool.

A typical session of displaying propagation data is shown in Figure 7.6. A
detailed insight into the inferred dynamics can be obtained via the dynamics com-
mand. As we wrote earlier in this report, our overall approach is equipped with an
incremental auto-corrective feature. The variant tool keeps intermediate findings
as a table that it stores in a file named IntermediateResults.dat. Each entry in
that table represents a specific phase or step within the inference process. The ta-
ble in question is taken into account in full from the dynamics command, and thus
the data displayed by that command are generated on the basis that the findings
represented by entries in that table hold. In other words, the data displayed by the
dynamics command correspond to the degree of progress made by the inference
process, which is denoted by the last entry in the table in question.

If we need to display inferred dynamics at the beginning of the inference pro-
cess, we would have to remove all possible entries from the table in question.
Similarly, if we need to display inferred dynamics at the end of the inference pro-
cess, we would have to have all table entries in place at the moment of running
the dynamics command. The -d option allows for obtaining the infection time of
each infected host as labeled by a bot number. A typical session is shown on top of
Figure 7.7. The -o option allows for viewing the estimated number of offsprings
for each infected host along with an estimation of the botnet infectious time and an
estimated period of time during which the infected host can cause other infections
in the enterprise network. The -o option also allows for viewing the average num-
ber of infection attempts that are predicted to originate from each infected host as
labeled by a bot number.

A typical use of the -o option is shown in the middle of Figure 7.7. The vari-
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ability time windows for each infected host can be displayed via the -w option, as
shown on the bottom of Figure 7.7. The option formed by - and a bot number al-
lows for viewing the estimated probability distribution of the number of offsprings
of the infected host labeled with that specific bot number. A typical session involv-
ing the use of that option is shown on top of Figure 7.8. The -f option displays
possible offsprings of each infected host in terms of bot numbers, as shown on
the bottom of Figure 7.8. Mutually exclusive concurrent edges, i.e. concurrent
parent-child relationships between infected hosts, can be viewed via the -c option,
as shown in Figure 7.9. As we wrote earlier in this report, botnet dynamics are
inferred by the Matlab code within the variant tool.

The inferred dynamics are written in a file named ModelGraph.dat. The Perl
code within the variant tool reads the content of that file, and hence uses it to
generate the model graph. The content in question can be viewed via the -m option,
as shown in Figure 7.10. Each record of the file ModelGraph.dat is formatted as
follows. The first field indicates the infection time of a host labeled by a bot number
that is represented by the fifth field. The third field indicates a bot number that
corresponds to the host that initiated the infection. The presence of an X instead of
a bot number denotes that the host that initiated the infection is not located within
the perimeter of the enterprise network. The sixth and the seventh fields indicate
the boundaries of the variability time window that applies to the infected host.
The last field indicates the estimated number of offsprings that the infected host is
predicted to have after exhaustion of the vulnerable host population.

The subgraph isomorphism search is conducted via the -s option, as shown
on the bottom of Figure 7.1. In conclusion, the network security analyst can issue
the storedb command to store in a MySQL database all of the data discussed in
this chapter. Those data can then be visualized via a web application, which lies
outside the scope of this report.
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Figure 7.1: Command line interface of the variant tool along with a typical botnet
search session.
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Figure 7.2: Estimation of the intercept terms and coefficient terms of the logit
model.
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Figure 7.3: Probability distribution of the optimal number of pools.
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Figure 7.4: Reporting the optimal number of pools.
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Figure 7.5: A session of botnet virulence estimation.
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Figure 7.6: Botnet propagation characteristics as reported by bots during experi-
mental network infections (top), and as detected from the variant tool (bottom).
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Figure 7.7: A portion of botnet dynamics inferred statistically by the variant tool.
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Figure 7.8: Probability distribution of the number of offsprings of an infected host
(top), and possible offsprings of each infected host in terms of bot numbers (bot-
tom).
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Figure 7.9: Mutually exclusive concurrent edges in the model graph.
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Figure 7.10: File content serving as basis for building the model graph.
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Chapter 8

Literature Review

8.1 Virulence Estimation

Dagon et al. (Dagon et al., 2006) discuss a model of botnet propagation that shows
how time zones and hence time and geographic location affect malware spread
dynamics. This model relies on estimates of the number of vulnerable hosts and
infected hosts in a time zone, among other factors, and hence on the vulnerability
and infection rates in the network of networks that extends over that time zone.
All these parameters are calculated empirically from botnet data gathered over a
period of six months via a sinkhole. Those empirical estimates reflect the specific
vulnerabilities exploited by the botnets that were subject to the post-mortem study,
and thus are quite reusable in the case the mitigation efforts are directed against a
botnet that exploits the same vulnerabilities as those botnets.

Our approach to vulnerability rate estimation complements the model of Dagon
et al. in that it creates the conditions for this model to be applied against any botnet,
regardless of whether or not that botnet exploits the same vulnerabilities as the
botnets that were subject to the post-mortem study. The most recent related work
as of this writing consists in a logic matrix approach to modeling the propagation of
worms in P2P networks provided by Fan and Xiang in (Fan and Xiang, 2010). The
worm propagation model of Fan and Xiang is based on P2P network vulnerability
and infection rates, which the authors consider as follows. If n is the total number
of peers in a P2P network, the authors use a row logic vector V of length n such as
each element v j of V , for j ∈ {1, 2, ..., n}, indicates whether or not peer j in the P2P
network is vulnerable to the worm.

Vulnerability rate is the ratio of the number of elements of V that indicate the
corresponding peer is vulnerable to the total number of peers in the P2P network of
reference, namely n. Similarly, the authors use a row logic vector S of length n with
its element s j indicating whether or not peer j in the P2P network has been infected
by the worm. Infection rate is the ratio of the number of elements of S that indicate
the corresponding peer is infected to n. The practicality of the worm propagation
model of Fan and Xiang is limited as it requires inspection of each individual peer
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in a P2P network to determine: a) whether or not the peer is vulnerable to the
worm, and b) whether or not the peer is infected by the worm. In P2P networks
whose size is not small, as is the case of most real world P2P networks, inspecting
each individual peer is not practical.

Furthermore, point b is equivalent to estimating the total population of infected
peers, which is a task that is known to require considerable time (Dagon et al.,
2006), and hence does not allow for a timely response. Our work complements the
worm propagation model of Fan and Xiang as it manages to estimate vulnerability
rates via random sampling, and thus does not require individual inspection of each
node in a network of reference. In (Chen and Ji, 2005), Chen and Ji discuss a model
of the propagation dynamics of malware that spread by taking into account network
topology. The authors use the concept of malware network, which is constructed
by removing invulnerable nodes and the edges associated with these nodes in a
network of reference.

Given the topology of a malware network, infection rates, i.e. rates at which
infected nodes can infect their vulnerable neighbors, death rates, i.e. rates at which
infected nodes become vulnerable, and an initial infected node, the model of Chen
and Ji estimates the number of infected nodes at a given point in time t. The model
is based on a directed graph representation of a malware network, in which each
edge is associated with a vulnerability rate and each node is associated with a death
rate. When applied to a concrete computer network, the model requires measures
of vulnerability rates and death rates for each couple of neighboring nodes in the
corresponding malware network, respectively.

Thus, the model requires examination of each couple of neighboring nodes in
the malware network. Furthermore, construction of the malware network out of a
network of reference requires inspection of each individual node in the network to
determine whether or not it is vulnerable. From the practicality perspective, the
limitation of the model stems from the two aforementioned observations. Besides
malware and hence bot propagation models, effective target scanning techniques
such as those discussed in (Chen and Ji, 2007; Zou et al., 2005) that increase mal-
ware virulence rely directly or indirectly on vulnerability and/or infection rates.
In (Zou et al., 2005), Zou et al. leverage the so called simple epidemic model pro-
vided by Daley and Gani in (Daley and Gani, 1999) to devise a technique that a
worm can use to reduce its scanning space without ignoring potential vulnerable
nodes.

That scanning technique relies on measures such as the number of infected
nodes at a specific point in time t along with the number of vulnerable nodes.
Zou et al. do not estimate those measures, but assume that they are available, and
thus demonstrate the effectiveness of their scanning technique upon estimates taken
from post-mortem studies of the Code Red worm. In (Chen and Ji, 2007), Chen
and Ji provide the design of an optimal scanning technique that leverages knowl-
edge of the vulnerable-host distribution in a network of reference. The authors
do not calculate estimates of vulnerable-host distributions, but assume that those
distributions are available or obtainable. The authors validate their optimal scan-
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ning technique using estimates extracted from post-mortem studies of the Witty
and Code Red worms. In conclusion, from the mitigation perspective the scanning
techniques of Zou et al. in (Zou et al., 2005) and Chen and Ji in (Chen and Ji,
2007) are subject to the same applicability limitation as the work of Dagon et al.
in (Dagon et al., 2006).

8.2 Botnet Mitigation

Nagaraja et al. (Nagaraja et al., 2010) conduct graph theoretical analysis of com-
munication graphs in order to identify hosts that are infected by bots. A commu-
nication graph is defined as an undirected graph in which vertices represent hosts
and edges represent network communications between hosts. Communication net-
works are built upon traces of network packets sniffed from the backbone network
of an ISP or from an enterprise network. Nagaraja et al. leverage the fact that
P2P botnets are making use of network overlay structures (Stover et al., 2007; Por-
ras et al., 2007, 2009). Those network overlay structures provide for low delay
network communication from any infected host to any other infected host via low-
latency paths, low maintenance overhead, robustness in the face of network churn,
and tolerance to infected host failures.

Furthermore, the lack of centralization in such network overlay structures en-
ables a botmaster to join and command the botnet from any arbitrary infected
host, and thus evade tracking. Nagaraja et al. develop an inference algorithm
that searches for network overlay structures within a communication graph, and
thus marks the hosts that are members of any such structures localized within the
communication graph as being suspected of carrying a bot. Although the accuracy
of the overall approach of Nagaraja et al. is not the best possible, that approach
can be used in conjunction with existing botnet detection techniques in order to
complement them (Nagaraja et al., 2010). The main advantage of our research lies
in earlier identification of the subgraph that comprises hosts infected by bots. The
botnet detection approach of Nagaraja et al. does not detect infected hosts until
they settle to network overlay structures that are visible from the network traffic
monitors deployed.

Such waiting time window allows the occurrence of host infections that are
conducted during the amount of time which elapses from the first few host infec-
tions in the network of reference to the establishment of network overlay structures
within the communication graph. Our research identifies the subgraph that com-
prises infected hosts from the first few host infections in the network of reference,
and thus is not subject to such as large waiting time window. From a botnet con-
tainment perspective, the concrete gain that is obtained from our approach consists
in avoiding the occurrence of those host infections which would have taken place
throughout the waiting time window. Our research has a similar advantage over
the botnet detection and bot identification approach of Collins and Reiter described
in (Collins and Reiter, 2007). That approach applies to bots that employ hit-lists
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for target selection (Staniford et al., 2002), and employs protocol graph modeling.
Protocol graphs are similar to the communication graphs of Nagaraja et al.,

with the only difference being that the edges in a protocol graph represent network
communications between hosts using a specific application protocol. Collins and
Reiter postulate that hit-list bot infections either inflate the number of vertices in a
communication graph or connect disjoint connected subgraphs of a communication
graph. Their empirical observations of network traffic in a large network indicate
that: (1) protocol graphs for application protocols such as HTTP, FTP, SMTP, and
Oracle have predictable sizes; and (2) the size of the largest connected subgraph of
each one of those protocol graphs is also predictable. Collins and Reiter employs
those predictable sizes as threshold sizes. The presence of a botnet is detected by
deviations of those two graph properties from the threshold sizes.

Once a botnet is detected, Collins and Reiter determine which vertices in a
protocol graph represent infected hosts by counting the number of connected sub-
graphs that are created after removal of high degree vertices. That technique is
based on the postulate that removing a vertex which represents an infected host
from a protocol graph causes a separation of connected subgraphs, and hence in-
creases the number of overall connected subgraphs in the protocol graph. Similarly
to the approach of Nagaraja et al., the approach of Collins and Reiter is also sub-
ject to a waiting time window. That approach does not detect a botnet and hence
identify bots until the number of vertices in a protocol graph or the number of ver-
tices in the largest connected subgraph of that protocol graph exceeds preliminarily
predicted threshold sizes. The necessities of hosts in a network of reference to com-
municate with other hosts change dynamically according to the inner working of
system services deployed and the decision making of host users.

For the threshold sizes to accommodate such dynamism, those threshold sizes
have to tolerate infrequent but quite possible increments of the number of vertices
in a protocol graph or of the number of vertices in the largest connected subgraph
of that protocol graph. The waiting time window consists in the amount of time that
elapses during the occurrence of increments of those two graph properties which
are due to host infections rather than the dynamism in question until the threshold
sizes are exceeded. In (Ellis et al., 2004), Ellis et al. construct abstract communi-
cation networks to model end-to-end network communications between hosts. Ab-
stract communication networks are defined similarly to the communication graphs
of Nagaraja et al., with the addition that the edges in an abstract communication
network are directed and also preserve the features of the network communications
that they represent, including headers, payload, and timing.

Furthermore, there may be several edges between any two vertices in an ab-
stract communication network. Ellis et al. define a worm propagation network as
that part of an abstract communication network that pertains to network communi-
cations generated by the propagation of a worm. Ellis et al. postulate that a worm
propagation network forms a set of spanning trees with specific properties, and
thus define thresholds for those properties with respect to specific edge predicates
in order to identify the worm propagation network. Examples of the spanning tree
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properties in question include the depth of the furthest descendant of a given ver-
tex at specific points in time, the overall number of descendants of a given vertex,
branching quantification, and the average time from one generation of vertices to
the next. Our research follows a similar path as the worm detection approach of
Ellis et al. in that we construct a graph that models end-to-end network commu-
nications between hosts in a network of reference, and thus identify the subgraph
that models the propagation of bots.

Our research complements the research of Ellis et al. The authors do not pro-
vide in (Ellis et al., 2004) a concrete method for estimating thresholds for the
aforementioned spanning tree properties, while in our research we draw on the
intersection of graph theory and probability theory to estimate in practice temporal
and spatial graph properties, which in turn allow for identifying the subgraph that
models the propagation of bots. The edge predicates in an abstract communication
network are developed upon patterns in reconnaissance, protocol usage, and pay-
load content, which persist over host infections. Consequently, constructing those
edge predicates requires a detailed analysis of worm behavior, which would slow
down any containment process. The time required for the overall worm behavior to
become detectable would allow worms to propagate further (Gopalan et al., 2006).

Our research exploits botnet propagation dynamics, and thus is not subject to
that dependency. The botnet containment approach that we discuss in this report
moves along the line of the Livshits and Cui’s research on detection and contain-
ment of Javascript worms, which the authors discuss in (Livshits and Cui, 2008).
Livshits and Cui employ a proxy to intercept, examine and possibly tag the pages
that flow between a browser and a Web application. When a Web browser uploads
content that includes HTML code, the proxy creates a tag, i.e. a long integer, adds
the tag to the page, and thereafter allows the page augmented with the tag to be
uploaded and hence stored at the server. When the tagged page is requested by a
Web browser, the proxy examines the page and thus identifies the tag. The proxy
creates a new session ID, which it associates with the tag, removes the tag from the
page, and then passes the page augmented with the session ID to the Web browser.

The session ID is stored in a cookie within the Web browser. When the Web
browser that originally requested the tagged page attempts to upload that page to
the server, the cookie is sent along with the page in question. The proxy inspects
the cookie and thus identifies the tag the cookie is associated with. The proxy then
adds a new tag to the page, and hence creates a list of tags for that page. This is the
point in which Livshits and Cui initially create and thereafter update propagation
graphs. A propagation graph is a directed graph in which each vertex represents
a tag and edges represent causality. With reference to our previous discussion,
initially we would have a vertex that represents the old tag, a vertex that represents
the new tag, and a directed edge that extends from the former to the latter. Each
vertex carries the IP address of the client that the corresponding tag originates from.

The steps described above are iterated, but this time the page will be augmented
with a list of tags and each iteration will possibly update the propagation graph.
Overall, a propagation graph indicates propagation of a page between IP addresses.
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Livshits and Cui define the diameter of a propagation graph as the maximum dis-
tance between any two vertices in that propagation graph, and thus postulate that a
Javascript worm is detected when the diameter in question exceeds a user provided
threshold. When a Javascript worm is detected, the proxy suppresses the aforemen-
tioned upload requests in order to prevent the Javascript worm from propagating
any further. Similarly to the research of Livshits and Cui, we rely on graph theo-
retical representation and analysis to model and capture the propagation of bots in
a network of reference, resulting in a containment approach founded on infected
population detection.

The realm of the research of Livshits and Cui consists in a single Web site,
given that the same-origin policy of the JavaScript language prohibits the spread of
Javascript worms across multiple Web servers. Extending that realm to a computer
network and hence targeting generic worms may not be practical. The challenge
lies in content tagging, which would have consisted in determining whether or
not specific content received from a host is the content which that host sends to
other hosts. In other words, we would have needed to determine that some con-
tent is being propagated amongst hosts in a network of reference, and hence track
that propagation by tagging content. Clearly polymorphism and metamorphism
limit our ability to compare content in ingress and egress at a host. Research such
as (Crandall et al., 2005; Newsome et al., 2005) indicates that there might be limits
in the amount of polymorphism and metamorphism available to the attacker during
a vulnerability exploitation, and thus even polymorphic or metamorphic exploits
may contain multiple invariant substrings.

Nevertheless, generating signatures for those exploits in order to compare con-
tent in ingress and egress at a host establishes an equivalence between a possible
application of the approach of Livshits and Cui to generic worms and existing lo-
cal misuse approaches to worm or bot detection. Similarities or relations of content
in ingress and egress at a host do not necessarily denote content propagation. In
several application protocols such as FTP or SMTP input is similar to output (Ellis
et al., 2004). For example, a user may upload a file from a host to a FTP server, and
that file may be downloaded at another host by another user later on. Furthermore,
P2P applications and other common network applications such as Windows work-
groups may exhibit worm-like network communication patterns (Gopalan et al.,
2006), and as such, make overall signatures of worm network communications
quite ineffective.
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Chapter 9

Conclusions

In this technical report we discussed a novel approach to the detection of early
stage botnet infections in an enterprise network. That approach relies on mathe-
matical modeling and operates from a botnet containment perspective. We showed
how we use statistical inference and mathematical modeling to infer botnet prop-
agation dynamics of a suspected botnet. We then discussed how we employ in-
ferred dynamics within a subgraph isomorphism search process to localize infected
hosts within weakly connected subgraphs formed within a graph representation of
network communications between hosts. As this research relies on measures of
network vulnerability rates, we devised a feasible statistical method that provides
those measures in a timely fashion within the overall approach. That estimation
method draws on epidemiological models in biology, is based on random sam-
pling, and overall consists in a novel application of statistical learning and infer-
ence. The correctness of the estimation method in question lies in the validity of its
underlying mathematical formulation and mathematical transformations that lead
to workable estimates of network vulnerability rates. We have implemented our
overall approach in practice in the Matlab and Perl programming languages, and
thus in the report we discussed experimentation with this research in the Emulab
network testbed. In the report we also discussed experiments with the vulnerability
rate estimation method embedded within the overall approach in relation to simu-
lated botnet propagation dynamics in a GTNetS network simulation platform. The
ultimate objective of this research is to demonstrate the viability of mathematical
models of botnet propagation dynamics as botnet mitigation tools. The experi-
ments along with experimental data that we described in this technical report are
indicative of the effectiveness of our overall approach, and also suggest a clear po-
tential of mathematical models of botnet propagation dynamics for practical botnet
mitigation.
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