
End-to-End Acknowledgements for Data Collection in Wireless
Sensor Networks

by

John-Paul Arp

TR10-198, February 1, 2010

This is an unaltered version of the author’s MCS thesis

Faculty of Computer Science

University of New Brunswick
Fredericton, N.B. E3B 5A3

Canada

Phone: (506) 453-4566

Fax: (506) 453-3566
E-mail: fcs@unb.ca

http://www.cs.unb.ca

Abstract

This thesis presents a novel method to improve the reliability of data collection in wireless

sensor networks. The Disseminated ACKnowledgment protocol (DACK) builds on collec-

tion and dissemination protocols to provide end-to-end acknowledgement of data samples.

A DACK protocol implementation was tested using simulations and experiments on TelosB

motes running TinyOS 2.1. Experiments were carried out on three floors of a building, with

14 motes transmitting data samples continuously until battery exhaustion. Results show

that the DACK protocol recovers all data samples that would have been lost using a col-

lection protocol only. The benefit of increased data collection reliability comes at the cost

of increased communication. In one experiment with 14 motes, 729 data samples were

dropped from a total of 749,904 data samples sent over six days; all these dropped samples

were recovered using the DACK protocol. This same experiment required an additional

720 collection packets to resend the dropped samples (in addition to the original 467,778

collection packets) plus 18,733 DACK packets.

ii

Acknowledgements

I would like to thank the following people who helped make thecompletion of this thesis

possible:

• My supervisor Brad Nickerson, for his detailed feedback, encouragement, patience,
and financial support.

• My father Paul Arp, for his financial and emotional support, as well as my mother
Maureen, and two brothers Peter and Alex.

• My friends Joel, Nash, Jeff, Natalie and Greg for distracting me from the stress of
completing this thesis.

• The UNB Faculty of Computer Science for their continued support of my research,
that stretched well beyond the ideal timeline.

• The TinyOS community, which provided all of the tools used toimplement and test
the DACK protocol.

iii

Table of Contents

Abstract ii

Acknowledgments iii

Table of Contents vi

List of Tables vii

List of Figures ix

1 Introduction 1
1.1 Communication in Wireless Sensor Networks 2
1.2 Data Collection and Dissemination in Wireless Sensor Networks 2
1.3 Motivation and Contribution .. . 3
1.4 Thesis Structure . 3

2 Communication in Wireless Sensor Networks 5
2.1 Challenges . 5

2.1.1 Energy Conservation . 5
2.1.2 Hardware Constraints . 6
2.1.3 Harsh Wireless Environment . 6
2.1.4 Implementations of Traditional Networking Models are Too Heavy 6
2.1.5 Modularity . 7

2.2 Protocols . 9
2.2.1 Physical Layer . 9
2.2.2 Link Layer . 10

2.2.2.1 Link Layer Acknowledgments 11
2.2.2.2 Adaptive Rate Control 12
2.2.2.3 Time Sloted MAC . 12
2.2.2.4 Low Power Listening 13
2.2.2.5 Link Quality Estimation 14

2.2.3 Network Layer . 15
2.2.3.1 Dissemination . 16
2.2.3.2 Mote Centric Collection 18
2.2.3.3 Gateway Centric Collection 20

iv

3 Implementation Context 22
3.1 Motes . 22
3.2 TinyOS and nesC . 22
3.3 TOSSIM-Live . 24
3.4 Libraries . 24

3.4.1 Collection Tree Protocol (CTP)24
3.4.2 DIssemination Protocol (DIP) .24
3.4.3 Drip . 25

3.5 Sensor Web Language (SWL) . 25

4 Disseminated end-to-end ACKnowledgment (DACK) Protocol 26
4.1 Overview . 28

4.1.1 Collection Process . 30
4.1.2 Dissemination Process . 36

4.2 End-to-End Messaging Scenarios and Timelines 44
4.2.1 Establishing a Connection . 46
4.2.2 Recovering Dropped Samples . 46
4.2.3 Full Acknowledgements . 48
4.2.4 Overcoming Message Latency . 49
4.2.5 Accounting for Lost Data on Noisy Channels 52
4.2.6 Handling Long Delays . 53
4.2.7 Accounting Errors . 56

4.2.7.1 False Positives . 56
4.2.7.2 False Negatives . 56

4.3 Metrics . 57

5 Implementation 59
5.1 Code Overview . 59
5.2 Packet Structures . 63
5.3 Base Station Data Structure Implementation 66
5.4 Protocol Verification .68

6 Simulation 70
6.1 Design . 70
6.2 Measurement Process . 72
6.3 Results . 73

6.3.1 Simulation One . 74
6.3.2 Simulation Two . 77
6.3.3 Comparing Simulation Results .79

7 Experiment 81
7.1 Design . 81
7.2 Measurement Process . 83
7.3 Results . 84

7.3.1 Experiment One: Power Level 5 84

v

7.3.2 Experiment Two: Power Level 9 85
7.3.3 Experiment Three: Power Level 7 87
7.3.4 Experiment Four: Power Level 6 89

8 Conclusions and Future Work 92
8.1 Conclusions . 92
8.2 Future Work . 92

8.2.1 Rate Control . 93
8.2.2 Alternative dissemination methods 93
8.2.3 Resolving False Positives .94
8.2.4 Resolving False Negatives . 94
8.2.5 Modularising DACK . 95
8.2.6 Scalability Analysis . 95

References 100

A Implementation Source Code and Descriptions 101
A.1 Makefile . 101
A.2 SimpleNetwork.h . 101
A.3 simconfig.txt . 103
A.4 simulate.py . 103
A.5 SimpleNetworkAppC.nc . 104
A.6 SimpleNetworkC.nc . 106

A.6.1 Processing Sample Events on a mote106
A.6.2 Process Report Event on mote . 108
A.6.3 Processing DACK Dissemination Packets on the mote 111

A.6.3.1 Processing D1 type packets 112
A.6.3.2 Processing D2 type packets 113
A.6.3.3 Processing D3 type packets 114

A.7 SimpleNetworkBS.java .116
A.7.1 Processing Samples on the Base Station 116
A.7.2 Disseminating Acknowledgments from the base station. 121

A.8 MoteIndex.java . 126

Vita 136

vi

List of Tables

6.1 Metrics from simulation results with F=50, W=24. 75
6.2 Simulation messaging and error results fro F=50, W=24 76
6.3 Metrics from simulation results with F=200, W=100 78
6.4 Simulation messaging and error results for F=200, W=100. 79
6.5 Comparing results from both simulations. 80

7.1 Metrics from simulation results with RF=9. 87
7.2 Experiment messaging and error results for RF=9. 87
7.3 Metrics from simulation results with RF=7 89
7.4 Experiment messaging and error results for RF=7 90
7.5 Metrics from simulation results with RF=6. 91
7.6 Experiment messaging and error results for RF=6 91

vii

List of Figures

2.1 WSN Communication Stack vs TCP/IP and OSI 8
2.2 Illustration of a slotted protocol. 13
2.3 Illustration of a sampling protocol. 14
2.4 Illustration of a dissemination protocol 16
2.5 Illustration of a collection protocol 18

4.1 Network overview of the DACK protocol. 27
4.2 DACK Timing Intervals. 28
4.3 DACK sequence diagram. 29
4.4 DACK timeline variables. .. 45
4.5 Timeline: establishing a connection. 46
4.6 Timeline: recovering data samples with a D1 message. 47
4.7 Timeline: blanket acknowledgment using a D2 message. 48
4.8 Timeline: ASN mismatch. 50
4.9 Timeline: recovering from an ASN mismatch with a D3 message. 51
4.10 Timeline: acknowledgement window overflow. 53
4.11 Timeline: recovering from a storage overflow with a D3 message. 55

5.1 Overview of source code used in experiments. 60
5.2 Overview of source code used in simulations. 61
5.3 Byte structure of a DACK data sample. 64
5.4 Byte structure of a DACK collection packet. 64
5.5 A DACK collection packet with the two additional4 byte metricsnC and

nRC. 64
5.6 Bit structure of a D1 DACK packet. .. 65
5.7 Bit structure of a D2 DACK packet. .. 65
5.8 Bit structure of a D3 DACK packet. .. 65

6.1 Grid topology and nS/nA for Simulation 1 74
6.2 Grid topology and nS/nA for Simulation 2 78

7.1 Deployment of TelsoB motes used for experiments. 82
7.2 Sample reception at power level 5 .. . 85
7.3 Energy Readingvs Day of Operationof a 14 mote sensor network experi-

ment running the DACK protocol at RF power level9: −12dBm and10.5mA. 86
7.4 Energy Readingvs Day of Operationof a 14 mote sensor network experi-

ment running the DACK protocol at RF power level7: −15dBm and9.9mA. 88

viii

7.5 Energy Readingvs Day of Operationof a 14 mote sensor network experi-
ment running the DACK protocol at RF power level6: −17dBm and9.5mA. 90

A.1 Mote index and storage example 1. .. . 108
A.2 Mote index and storage example 2. .. . 109
A.3 Mote index and storage example 3. .. . 112
A.4 Mote index and storage example 4. .. . 115
A.5 Mote index and storage example 5. .. . 116

ix

List of Symbols, Nomenclature or
Abbreviations

ackwaiting aflag indicating that the base staion is waiting for it’s last
disseminated message to be acknowledged.

ASN sequence number of the most recent consistantly acknowl-
eged data sample

ASNmismatch a flag indeicating whether a mote is reporting a differnt
ASN than the base station’sMI

B th acknowledgment vector for moteM
BS Base Station
C a DACK collection packet of the form(MID, DSN, SO,

ASN, LSN, S[s])
CTP Collection Tree Protocol
D1 A packet for trasnportingD1Ack messages.
D1Ack A D1 type acknoweldgment message,
D2 A packet for trasnportingD2Ack messages.
D2Ack A D2 type acknoweldgment message,
D3 A packet for trasnportingD3Ack messages.
D3Ack A D3 type acknoweldgment message,
DACK Dissemination ACKnowledgment protocol
DIP DIssemination Protocol
Drip Drip dissemination protocol
DSN sequence number of the most recent dissemiation packet

sent to moteM
ED Dissemenation event
ER Report event
ES Sample event
F The number of data samples that fit insideStorage

x

fn ’false negatives’: the number of data samples innd the
DACK protocol counts as dropped, but were actually re-
ceived.

fp ’false positives’: the number of data samples innr that were
counted as recovered after aD1Msgor D3Msg, but would
have been recovered anyway.

GC Collection Delay
GD Dissemination Delay
ID Dissemination interval
IR Report interval
IS Sample interval
L the bit length ofB
LSN sequence number of the most recently sent data sample
Mi a mote in wireless networkN with MID = i
M a mote in wireless networkN
MI the Mote Index containing sequence numbers and mote sta-

tus for moteM
MID Mote Identifier
MT the Mote Table is a hashtable on the base station that con-

tains theMI for each mote in the networkN .
n number of motes in the wireless networkN
N a wireless network
nA this is the number of samples the base station becomes

aware of through theASN andLSN values in collection
packets. This number may be smaller thannS if a mote
experiences storage overflows.

nC the total number of collection packets sent by motes in the
network duringT .

nCR the total number of collection packets sent by motes in the
network duringT containing data samples that were sent
previously.

nD the total number of DACK dissemination packets dissemi-
nated by the base station duringT .

nd the number of data samples sent by motes to the base sta-
tion, but not received by the time the base station sends a
D1Ack or D3Ack to recover the data sample. This can also
be thought of as the number of data samples dropped by the
collection protocol.

xi

nl the total number of data samples that the base station gives
up on trying to acknowledge.

no this is the number of samples the base staion sent aD1Ack
or D3Ack for that has not yet been recovered or lost.

nr the number of data samples that were recovered by the base
station after sending aD1Ack or D3Ack message request-
ing a mote resend dropped samples.

nRX the total number of data samples received at the base station.
nS the total number of data samples sent by a mote.
nso the number of storage overflows that occurred during an ex-

periment.
nwo the number of window overflows that occurred during an

experiment.
R a data sample reading
rr the recover ratio, measured asnr/(nd− no)
RSN the sequence number of the last data sample received by the

base station
RSNT the timestamp of the data sample with the sequence number

= RSN
S a data sample with the structure (R, SID, SN, TS)
s the number of data samples that can fit in a collection

packet.
SID the sensor identifier
SID a data sample sensor identifier
SN a data sample sequence number
SO the number of storage overflows that occured on moteM
Storage the allocated storage space on moteM
T the total amount of time that the network was running.
Vi a sensor on mote M withSID = i
v the number of sensors on moreM
V a sensor on moteM
W the acknowledgment window size
WindowOverflow a flage indicating moteM has a window overflow
WSN Wirless Sensor Network

xii

Chapter 1

Introduction

By the end of the 20th century, the continued miniaturization and mass production of micro-

processors, micro-sensors, and radio-frequency integrated circuits (RFIC) invited earnest

research into the problems and potential of building Wireless Sensor Networks (WSNs).

A WSN is composed of autonomous computing nodes, or ”motes”.Each mote typically

contains a microprocessor, an RFIC, non-volatile storage,an energy supply, and either inte-

grated sensors or an expansion port for an external data acquisition board (DAQ). In 2003,

the potential applications of WSNs lead the MIT Technology review to rate WSN as one of

the top ten emerging technologies that will change the world[41].

Since then, WSN research has been rapidly expanding into research institutions around

the world, with several hardware platforms [40, 16], RFICs [6, 7], operating systems [23,

11], programing languages [13], and standards [18, 25] emerging to better accommodate

research and development. Applications that researchers have been working on include (but

are not limited to): environmental monitoring (e.g. habitat [37, 52], geological [54], indus-

trial [44], structural [21], etc.,); health [2]; object tracking [43]; surveillance [3]; hazard

detection [47]; and distributed control systems (e.g. agricultural [1, 15], industrial [53]).

1

1.1 Communication in Wireless Sensor Networks

Communication in WSNs posed many new challenges for researchers. The limited energy,

processing speed, storage, packet space, and memory of motes combined with bursty asym-

metric radio links, proved to be a hostile environment for long tested network protocols like

TCP/IP. Researchers typically aimed to make their WSN communication stacks follow the

OSI model, however optimizing for the limited resources andharsh environment forced

many teams to tightly couple the layers in their networking stack. This lead to a wealth

of novel communication schemes (see [28]), but it also caused a fair bit of splintering in

the research community. An brief overview of these techniques can be found in chapter 2.

Recently, research efforts have been focused on building a modular architecture to facilitate

the most popular communication patterns [48].

Research into networking protocols and modular network architectures has evolved to

the point where WSN developers can download and combine different networking proto-

cols into there applications. This paper explores buildinga novel transport layer acknowl-

edgment protocol on top of two commonly used network layer protocols: collection and

dissemination.

1.2 Data Collection and Dissemination in Wireless Sensor

Networks

Collection protocols manage the task of delivering data contained within each node in the

network to a base station. There are mote-centric, and gateway-centric methods for col-

lecting data. In a gateway-centric method, the logic for selecting multihop communication

paths is entirely on the gateway. The mote-centric method generally involves building a

routing tree between all nodes in a WSN to one or more gateway nodes, and then making a

best effort to deliver packets from each node to a base station. The Collection Tree Protocol

2

(CTP) [12] currently available in TinyOS 2.x makes a best effort to collect sampled data.

Though it does not guarantee 100% delivery, it achieved97% efficiency in harsh network

environments [14].

Another common technique is dissemination. Disseminationprotocols reliably and ef-

ficiently deliver a common data set to every node in a WSN. Dissemination is typically used

for sending configuration parameters [30], or for sending large binary images for wireless

in-network reprogramming [17]. Unlike collection, dissemination protocols aim to guaran-

tee reliability to all connected motes.

1.3 Motivation and Contribution

The reliability of data dissemination creates an opportunity to reliably acknowledge packets

delivered by a collection protocol. To our knowledge, no published work currently investi-

gates this opportunity. We anticipate that the end-to-end data reliability will improve with

an investment in extra dissemination messages.

To achieve this result we have implemented and tested the Disseminated end-to-end

ACKnowledgment (DACK) Protocol. By “end-to-end” we mean that for each data obser-

vation sent in a collection packet by a mote, the mote receives an acknowledgment that the

base station has received the data observation, and the basestation receives an acknowledg-

ment that the motes have received the data sample acknowledgment.

1.4 Thesis Structure

This thesis is broken up into 8 chapters. Chapter 2 gives an introductory overview of com-

munications in wireless sensor networks, and provides the context within which the this

thesis makes a contribution. Chapter 3 describes the various tools and libraries used to

implement the experiments and simulations discussed in this thesis. Chapter 4 details the

Disseminated end-to-end ACKnowledgment (DACK) Protocol in detail. Chapter 4 includes

3

discussions about the algorithms used by the DACK protocol,and illustrates the various

communication scenarios using time-lines, and provides a series of metrics which can be

used to measure the effectiveness and cost of the protocol. Chapter 5 goes into greater detail

of how the DACK protocol was implemented for the simulationsand experiment, including

descriptions of the source code and packet structures. Chapter 5 also presents tests that we

use to verify that the DACK protocol is functioning properly. Chapter 6 analyses the results

of two simulations, and Chapter 7 analyses the results of four experiments. Conclusions

are presented in Chapter 8, along with a discussion of methods to improve the DACK pro-

tocol in future work. Appendices are also provided, containing the source code used in the

simulations and experiment, and a more detailed discussionof the implementation.

4

Chapter 2

Communication in Wireless Sensor

Networks

This chapter provids the context to which the DACK protocol is making a contribution. The

aim of this chapter is to introduce the challenges of wireless communications in WSN, as

well as the techniques that have been developed to address them.

2.1 Challenges

2.1.1 Energy Conservation

The principal constraint in outdoor WSNs is energy conservation. The consequences of

minimizing energy use cascades into all aspects of WSN development. In the hardware,

memory size, processing speed, and radio strength are all limited in order to minimize

overall energy consumption. Wireless data transmission istypically the most energy con-

suming task a mote will have to perform. Wireless reception also creates an energy drain as

it requires the mote to power its RFIC and CPU. Energy efficient communication protocols

need to minimize the number of transmissions, and the amountof time spent listening for

new messages to keep the hardware in a low power state, all while operating within the

5

limited buffer and configuration memory space provided by the mote. The “duty cycle” of

a mote, is the ratio of time the mote spends in a powered state over the time it spends in a

sleep state.

2.1.2 Hardware Constraints

As of 2010, there are a wide variety of motes on the market. Mote hardware is designed

with energy consideration in mind. The main circuit board for a mote will typically include

a micro processor and integrated circuits for radio, storage, and sensing. CPU’s range from

8-bit Atmel Atmiga [8] in the Mica2 and MicaZ [19] motes, to the 32-bit ARM920T [29]

in the SunSPOT [45]. The common requirement for all mote CPU’s, is to be able to go into

low power sleep states below 50 uA, when not being used. The other integrated circuits

can be toggled on or off by the CPU to reduce energy consumption. For example, energy

conservation requires applications to keep their radios switched of as much as possible.

Motes usually have from 4KB to 10KB of RAM, 48KB to 128KB of program memory, and

512KB to 1MB of non-volatile memory [22] for storage.

2.1.3 Harsh Wireless Environment

Analysis done in [14] shows that links in WSN are asymmetric,and that signal strength

could oscillate between periods of very good and very poor reception for each link. These

conditions can lead to inaccurate link estimations, and inaccurate link estimations can lead

to inaccurate neighbor and routing tables in multihop networks. Multihop protocols need to

be able to adapt to dynamic wireless conditions in order to maintain robust communications.

2.1.4 Implementations of Traditional Networking Models are Too Heavy

The above constraints make WSN unsuitable for established but relatively resource heavy

networking protocols such as TCP/IP. The 7-layer Open Systems Interconnection (OSI)

6

Reference Model for a layered communication protocol [20],and the the 4-layer TCP/IP

Model [5], shown in Figure 2.1, demand a decoupling of layersthat has proved difficult

to do in WSN applications [38]. The 20-byte IPv4 header (or the 40-byte IPv6 header),

plus the 20 byte TCP header, were not designed for early mote hardware like the Mica2

in which the default packet size is itself only 38 bytes. Later generations of Motes using

IEEE 802.15.4 compatible protocols (see section 2.2.1) have larger maximum packet sizes

that are limited to 123 bytes [18]. The TCP/IP header still occupies a significant amount of

packet overhead. Further routing protocols like Open Shortest Path First (OSPF), the Bor-

der Gateway Protocol (BGP), and the Routing Information Protocol (RIP), require large

routing tables that are not suitable for memory constrainedmotes. Recently progress has

been made in migrating TCP/IP to WSN using compressed headers [32]. But the challenges

to porting classical routing protocols to large networks orresource constrained motes re-

mains.

2.1.5 Modularity

Because of the difficulty in using traditional networking protocols, developers of early

WSNs often had to implement the entire communication stack from scratch. As new ideas

were being developed at various research institutions, interoperability between the various

protocols was as challenging as it was desirable.

Figure 2.1 contrasts a typical WSN stack scenario with the OSI and TCP/IP model

stacks. The TCP/IP model defines protocols for layers 2 (DataLink) through 4 (Transport)

of the OSI model. The key feature of TCP/IP model is the Internet Protocol (IP) layer

which is common to all TCP/IP applications. The IP is a network addressing protocol

which assigns a unique IP address to for up to232 hosts (using IPv4) or2128 hosts (using

IPv6) on a network. Below the IP layer, multiple Data Link layer protocols route data

between hosts that are directly connected via a shared medium, such as the air, a wire, or

Local Area Network (LAN). Above the IP layer transport protocols are used to facilitate

7

Figure 2.1: A “messy: WSN communication stack on the right, beside the more standard-
ized 4 layer TCP/IP model in the middle, and the 7-layer Open Systems Interconnection
(OSI) reference model on the left. In the TCP/IP stack, the common IP layer decouples
transmission protocols from data link protocols. In the WSNstack on the right, there is
no common networking layer. Transport and networking functionality are frequently com-
bined, and may or may not be dependent on a specific data link layer protocol. The gap
between the edge of the stack and the network and data link protocols is used to illustrate
the interaction many WSN applications have with the lower layers.

the transport of packets from one host to any other host with an IP address, whether it is

directly connected to it, or ten routers away and physicallyon the other side of the planet.

The Transport Control Protocol (TCP) implements a reliableend to end link, in which all

lost data is recovered, whereas the User Datagram Protocol (UDP) simply makes a best

effort to deliver packets. It is up to applications to decidewhich transport protocols to

use. Also in the transmission layer, protocols like the Border Gateway Protocol (BGP) and

Routing Information Protocol (RIP) route IP packets acrossWide Area Networks (WANs).

On the right hand side of Figure 2.1 we see the messier WSN stack. There is no com-

mon network addressing layer. Instead there are multiple networking protocols in which

some use addressing schemes, whereas others are address-less (see sections 3.4.1 and 3.4.2

for examples of common WSN address-less networking protocols). Some network proto-

cols may require a specific data link layer protocol be used, and it may be impossible for

two networking protocols and/or two data link protocols to exist on the same mote. The

Dozer application [4] requires a time synchronization and aTime Division Multiple Access

(TDMA) scheme (see section) to function, whereas the Collection Tree Protocol, was tested

8

to work with and without TDMA [14].

Application developers may want tighter control of the lower networking layers. If an

application needs to conserve power, it may want to change the timing of the power cycling

of the radio. In a dense and noisy network, the application may want to reduce its radio

strength, or change the radio channel. A jam in one networking protocol, may provoke it to

send data via another. A more exhaustive discussion of the challenges to modularity can be

found in [38].

Recently the situation has improved. Many data link layer protocols and networking

protocols have become popular and standardized, helping tofocus the effort on modularity.

Though many parallel efforts still exist, thanks to contributions by the TinyOS and other

research communities, it is now possible to download and incorporate popular networking

protocols into a single application. However, many non-compatible protocol stacks are still

evolving, and a true modular architecture for sensornets still remains an evolving challenge

[49].

2.2 Protocols

This section describes some of the more significant protocoldevelopments at each layer in

the WSN stack.

2.2.1 Physical Layer

Physical layer communication hardware in WSNs currently varies between hardware ven-

dors. The original mica [16] used an RFM TR1000 radio, that used on-off keying (OOK) or

amplitude shift keying (ASK). The mica2 radio supports 38.4Kbaud radio interface using

frequency shift keying (FSK) modulation in the 868/916 MHZ and 433 Mhz ISM bands.

Manchester encoding is used at the bit level. Typical transmission range is between 10 and

100 meters. Other hardware platforms are also available.

9

In WSNs there is a significant trade-off with respect to wherethe boundary between

hardware and software controlled communications is placed. Increasing the boundary on

the hardware side can lead to increased transmission success rates, but also reduces fine

grained control over power management and link level communications [28]. For exam-

ple, the original mica’s RFM TR1000 radio [42], had an interface allowing quick toggling

of the radio. The mica2’s CC1000, by comparison, has more advanced communication

functions in hardware. This provided more robust communications, but also increased the

radio toggling time by an order of magnitude. [40]

In 2003, the IEEE published the 802.15.4 standard for Wireless Personal Area Net-

works (WPAN) [18]. This standard described a physical and medium access control (MAC)

layer specification that can be used in WSNs. Fourth generation motes, including the Mi-

caz [19], and the TelosB [40] are ZigBee compliant using the Chipcon CC2420 [7] radio.

802.15.4 specifies usage in the unlicensed 868 MHz, 915 MHz, and 2.4 GHz ISM bands.

The transmission rate in the 2.4 GHz band is up to 250 Kbits perchannel using Direct

Sequence Spread Spectrum (DSSS) and Offset Quaternary Phase-Shift Keying (0-QPSK)

modulation. The ZigBee standard has strong industrial support, and will likely become a

standard for future sensor networks. The 802.15.4 standarddevices, including the CC2420,

also includes hardware implemented schemes for encryption, authentication, link layer ac-

knowledgments, and CRC checking of each packet.

2.2.2 Link Layer

Link layer communications in wireless networks must contend for access to a shared medium.

There are many medium access control (MAC) protocols for wireless communications. Fre-

quency Devision Multiple Access (FDMA) allows different links to share the same airspace

by using different frequencies. 802.15.4 defines 16 5Mz channels; however, most WSN ap-

plications developed in the 916 Mhz band have been designed to operate in a single channel.

One method for sharing a channel is Time Division Multiple Access (TDMA), in

10

which different motes are assigned different time slots formessage transmission. TDMA

does not scale very easily, and has difficulty adapting to changes in network topology.

Wired Ethernet uses a MAC protocol called CSMA/CD (Carrier Sense Multiple Access

with Collision Detection), which enabled scalable plug andplay networking. In this scheme

each connected device decides whether or not to transmit by sensing if the communication

channel is currently being used. If the channel is free, the device will send a message,

otherwise, the device will back off and then try again. Collision detection worked on wired

Ethernet, because every message is designed to reach every node on the shared medium.

This is not the case in wireless networks. It is possible thatthe transmission ranges of

devices in a wireless network do not overlap. There is no way for a transmitting device to

sense if other devices are transmitting within the range of the message destination. This is

known as the hidden node problem. One common solution, knownas Collision Avoidance,

involves having transmitting nodes send Request-To-Send (RTS) packets, and receiving

nodes send Clear-To-Send (CTS) packets to clear the air waves for communications. This

system is employed by 802.11, as well as several sensor network MAC protocols.

2.2.2.1 Link Layer Acknowledgments

Link Layer Acknowledgments can be used to detect the successful transmission of pack-

ets between two motes. However, due to the small size of the maximum transmission unit

(MTU, the maximum size of a datagram packet), acknowledgments can constitute signif-

icant communication overhead. The lossy nature of the wireless medium, and the low

transmission power of the radios involved, forces the MTU tobe small in comparison to

wired, or high powered wireless networks. 802.15.4 radios MTU is 128 bytes, and 916 Mhz

based radios have an MTU of less than 50 bytes. A stop and wait acknowledgment protocol

can result in a 40% overhead. [55]

11

2.2.2.2 Adaptive Rate Control

MAC protocols in sensor networks need to cooperate to increase the energy efficiency of

the entire network. In [55], Woo and Culler investigated various schemes to minimize en-

ergy consumption in a WSN. Woo and Culler used a test case sensor network, in which

every mote is both a data source and a data router, and all datamust be sent to a single

sink node. The topology of this test network can be visualized as a tree in which the sink

is the root mote. Woo and Culler’s analysis assumed the moteswould listen for transmis-

sions at all times. In addition to energy efficiency, Culler and Woo designed there solution

such that bandwidth was allocated fairly to all motes. To meet these two design goals, Woo

and Culler proposed an adaptive rate control scheme. In thisscheme, each mote linearly

increases the rate in which they transmit messages towards the sink after every successful

transmission, and multiplicatively decreases the rate at which messages are sent for every

failed (unacknowledged) transmission. Fairness was achieved by forwarding packets of

child motes towards parent motes on a cyclical basis. Further, messages originating locally

from a mote were given priority over messages originating from child motes. Woo and

Culler investigated various CSMA schemes for this test network. The one they found that

worked best was employing a random delay before every transmission, and phase shifting

transmission times. In phase shifting, when a mote finds thatits transmission period over-

laps with the transmission period of another mote, it will shift its period in the future, such

that the transmission times no longer overlap. The method described has limited energy

efficiency because the motes are required to listen at all times, except when backing off to

avoid collisions.

2.2.2.3 Time Sloted MAC

Slotted protocols rely on synchronizing the wake up and sleep times of each node in a

sensor network. Examples of slotted protocols include SMAC([57]) and the IEEE 802.15.4

standard. An illustration of the power consumption of a network of 4 nodes using a slotted

12

protocol can be seen in Figure 2.2.

N

N

N

N1

2

3

4

Figure 2.2: Illustration of a slotted protocol.

A low power MAC protocol called sensor-MAC (S-MAC) was proposed by Ye, Hei-

demann, and Estrich in [57]. The S-MAC protocol achieves lowpower consumption by

periodically turning the radio off. For example, toggling the radio at regular intervals can

reduce the duty cycle to50%. During the period that the radio is on, communication uses

CSMA/CA. Further energy efficiency is achieved by tuning theradio off during back off

periods. S-MAC requires that neighboring motes synchronize their sleeping schedule with

each other. S-MAC has many limitations. The sleep window increases latency at each hop

on the sensor network, and, like TDMA, the scheduling schemehas difficulty scaling and

adapting to changes in network topology.

2.2.2.4 Low Power Listening

Low Power Listening (LPL) is another MAC protocol techniquethat tries to minimize

radio energy consumption. In LPL, the mote is generally in sleep mode. The mote will

periodically wake up at a set interval and briefly check for radio activity. If activity is

discovered, the mote will wake up and listen for a full packet. Otherwise, the mote will go

back to sleep. Before sending data to a sleeping destinationmotes, the transmitting mote

must first transmit a long preamble. The transmission time ofthis preamble must be at least

as long as the sleep interval of the target motes in the network. Figure 2.3 illustrates motes

using a LPL MAC protocol.

In [39] Polastre, Hill and Culler, proposed a MAC protocol called Berkley-MAC (B-

13

N

N

N

1

2

3

4

N

preamble Data

Data

Data

Data

I W
I P

Figure 2.3: Illustration of a sampling protocol.

MAC) that can decrease the duty cycle of motes to 1% using low power listening (LPL)

and an adaptive preamble sampling scheme. B-MAC is designedto provide a core mini-

mum MAC functionality. More complicated MAC protocols, including S-MAC, could be

built on top of B-MAC. B-MAC provides a methods for CSMA/CA, adaptable link level ac-

knowledgments, packet back-off, and LPL. For carrier sensing B-MAC uses a clear channel

assessment (CCA) algorithm. CCA involves estimating the noise floor to create a reference

for carrier sensing. B-MAC parameters can be configures at higher layers to increase the

efficiency of any given application. For example, link layeracknowledgments can be en-

abled or disabled on a per packet basis, and the sampling/preamble period for low power

listening can be set at the application layer at any time. Like CSMA, B-MAC scales very

well because there no scheduling is involved.

2.2.2.5 Link Quality Estimation

Good link quality estimations are required by higher layer protocols to adapt to changes

in network topology. In [56] Woo, Tong, and Culler investigated the reliability of various

link discovery and link estimation techniques. Due to the high variability of link quality in

WSNs, signal strength has been found to be a poor estimator [10]. Due to the memory and

processing constraints on motes, complex link quality estimation techniques such as linear

regression and Kalman filters are unpractical [56]. The bestlink estimator that Woo, Tong,

and Culler found in there investigation was the window mean with exponentially weighted

14

moving average (WMEWMA). Woo et al. found that this estimator required as many as

100 packets to stabilize a link estimation with a 10% noise margin. This limits the rate of

mobility in a sensor network.

2.2.3 Network Layer

As discussed in section 2.1.5, transport layer and network layer functionality are often

mixed together in WSNs. One paper may refer to a protocol as being in the network layer,

wheras another paper may refer to the same protocol as being in the transport layer. This

is because the logic for transporting packets through the network, is often mixed with the

logic for determining which mote to send the next packet to. The wealth of networking

and transport layer protocols for WSN is too long to list here. A more exhaustive list can

be found in [36]. The remainder of this section will focus on the more recent networking

protocols, and the protocols that are most relevant to this thesis: dissemination and col-

lection. These protocols are considered mature because: they have been in development

for many years; they have been successfully tested in simulations and used in real world

WSN deployments; and finally they have published source codethat has been embraced

and extended by the broader research community.

Network protocols in WSN can be divided into two planes: the control plane and the

data plane. The control plane refers to messages and functions for managing the protocol

parameters and network topology. The data plane refers to data being transported by the

protocol. The ”overhead” of a network protocol is the ratio of control packet traffic to data

packet traffic.

15

2.2.3.1 Dissemination

Dissemination protocols are designed to reliably deliver data to every node in a WSN. Dis-

semination protocols are “address-less” in that packets are not routed through the network

based on a destination address. Instead, data (d) that motes wish to update via dissemination

are assigned a unique keyk, and a version numberv. Message propagation is accomplished

by having every mote periodically make sure it has the samev for k as other motes in the

network.

For dissemination to work, every mote in the network must have the samek for the

samed. Motes periodically broadcast their (k,v) information to check if they are up to

date. To send a message reliably through the network, the mote changes the value for

Figure 2.4: An illustration of the dissemination protocol.The base station sends a message
m, with a keyk, and a version numberv. For dissemination to work, each mote must have
a common key tied to a variable, or array. When motes detect beacons from other motes
advertising a newer version number fork, they request the newer version. Using the trickle
algorithm [26] to control the beacon rate, messages propagate to all nodes in a network
within seconds.

16

d and incrementsv. If a mote receives a broadcast from a neighbor containing anolder

version number, the mote rebroadcasts updated value. This process continues until the

entire network has the highest known version number. Done ina controlled fashion, this

can lead to timely and reliable dissemination through the entire network.

The most popular algorithm, Trickle [26], uses a policy of “polite gossip” to control

the rate at which dissemination packets are sent. Motes broadcast more frequently when

they overhear old version numbers, and less frequently overhear the same version number,

exponentially backing off to a maximum beacon interval under stable network conditions.

In practice the trickle algorithm is able to scale dissemination time and energy consumption

logarithmically with network size.

Protocols like Drip [51] and DIP [30], are designed to disseminate a lot of small values

(typically control parameters) efficiently. Other protocols like Deluge [17] and Mate [27]

use dissemination to transfer large multi-packet datasetsfor mote reprogramming.

17

2.2.3.2 Mote Centric Collection

In WSN, collection protocols are designed to reliably deliver messages from multiple sources

(motes) to a common sink (a gateway). In mote centric collection protocols, the logic for

the deciding the next hop address for a packet is located on the motes. Gateway centric col-

lection, in which the logic for determining the next hop is processed entirely on the gateway

or base station, is discussed in the next section.

Figure 2.5 illustrates a mote centric collection algorithm. Mote centric collection pro-

tocols form tree-like topologies, passing packets from child nodes to parent nodes, until

packets arive at the root node. Mote centric collection can also be ‘address-less’. For ex-

ample in the Collection Tree Protocol (CTP), motes decide the next hop destination using a

routing metric called the Expected number of Transmissions(ETX). ETX is an approxima-

tion of the expected number of times a packet will have to be transmitted before it reaches

the gateway. A mote that is one hop away from the gateway, withideal signal strength,

Figure 2.5: As its name implies, collection protocols transport packets from motes to a base
station.

18

and little interference, may have a ETX of 1. Another mote with a noisier connection to

the gateway may have an ETX of 1.5 or worse. A mote with no connection to a gateway

will search for a neighbor that has the smallest ETX. It then calculates its own ETX as the

expected number of transmission required to reach the neighbor, plus the neighbors ETX.

Collection routing was one of the first routing problems tackled by WSN researchers.

The first major mote centric collection algorithm was MintRoute [56]. MintRoute uses the

WMEWMA link quality estimator, discussed in section 2.2.2.5, and a minimum transmis-

sion routing metric similar to ETX. Link quality estimates are calculated using received

signal strength indicator (RSSI) readings from the mote hardware. The MultiHopLQI pro-

tocol adapted the MintRoute protocol to use the link qualityindicator on the CC2420 radio

to improve link estimations. However, the protocol struggles to deliver packets reliably.

MintRoute was tested (in conjunction with other protocols)in a large scale environmental

sensor networks in the Great Duck Island experiment [46], and in a Redwood tree in Berke-

ley [52]. In both of these experiments, more than half of the motes failed to deliver any

data, and many other motes had poor reception rates.

The Collection Tree Protocol (CTP) is built off of the research of the MintRoute algo-

rithm, and as of 2009 has demonstrated high reliability in experiments and simulations. In

[14] the CTP achieved 99% reliability in 4 test beds. CTP improved on MintRoute in three

significant ways. First, the hardware link estimators used by MintRoute and MultihopLQI

suffered from “sampling bias”: they measure the quality of the received packets, but they

do not take into account packets that were lost altogether. The bias is significant because

low power wireless links tend oscillate between a strong in weak signal. CTP improved on

this by adding sequence numbers to routing beacons, allowing motes to take lost packets

into consideration when estimated link quality. Second, the trickle algorithm (discussed in

section 2.2.3.1) was applied to the timing of routing beacons to minimize the control packet

overhead. Third CTP snoops on data traffic to detect routing loops and inefficiencies in

network topology.

19

CTP was designed, and has been tested, to work on top of various link layer protocols.

Using BMAC (described in section 2.2.2.4) for low power listening, CTP is theorized to

achieve long battery life times. In [14] Gnawali et al, calculated that a mote using AA

batteries that measures a sample and sends a collection packet once every 6 minutes could

last for 400 days.

Another low power mote centric collection protocol that hasachieved success is the

Dozer protocol [4]. Dozer achieved high reliability on a 40 mote network using a 0.2%

duty cycle. Unlike CTP, Dozer is not portable to multiple link layer protocols, instead it

contains a customized stack developed to meet the goal of theultra low duty cycle. Dozer

uses a TDMA scheme coordinate communications. Dozer does not have a network wide

time synchronization. Instead, time synchronization happens locally between child nodes

and parent nodes on the routing tree.

Mote centric collection protocols do not provide end-to-end acknowledgments, and

focus on making a best effort to deliver packets to the sink. Reliability is improved by

establishing reliable links and paths, collision avoidance, and hop by hop acknowledgments.

2.2.3.3 Gateway Centric Collection

In gateway centric collection protocols, all routing logicis handled at the gateway or base

station. Motes collect data at a regular interval, but do nottransmit the data until instructed

to do so by the gateway (or base station). When the gateway is ready to receive new data

from a specific mote, it generates one or more reliable paths to that mote. It then uses source

routing, embedding the path to the destination into the packet, such that it can be relayed

by intermediate motes. The mote then sends all archived datadown the reliable path. The

one mote at a time methodology make it easier to establish a reliable link to motes, but as a

consequence data is retrieved in a less timely fashion than in mote centric routing.

In [50] Stathopoulos et al. introduced the gateway centric collection protocol Cen-

tRoute. In their tests, CentRoute was able to achieve 95% delivery of all data sent by

20

motes, and used 60% less overhead than MintRoute. In [33] Musaloiu-E et al. introduce

the Koala protocol. Koala improves on the ideas of CentRoutein may ways, including:

adding optional end-to-end acknowledgments for data delivered down the reliable path;

implementing channel switching on 802.14.5 based radios; and implementing a new link

layer technique called Low Power Probing (LPP). LPP is a protocol to proactive wake up

an entire network. Using this technique Koala was able to achieve high reliability and very

low duty cycles.

21

Chapter 3

Implementation Context

This chapter describes the various components used in the implementation of the DACK

protocol.

3.1 Motes

Development and testing was done with TelosB [40] motes. TelosB motes have 10 Kbytes

of RAM and 1 Mbyte of storage. The TelosB motes use the CC2420 [7] radio, which is

compatible with th IEEE 802.15.4 specifiation.

3.2 TinyOS and nesC

TinyOS is a free and open source Operating System for tiny embedded devices published

under the BSD license. TinyOS was designed to have to low energy footprint. Threads

and dynamic memory allocation were not included in the core design, because they could

quickly overwhelm the limited stack space in a motes RAM. TinyOS uses component ori-

ented architecture, in which programs are sets of Components that interact with each other

through Interfaces. Components use a static amount of stackspace, allowing the program-

mer to precisely control the RAM usage of their program. Concurrency is handled through

22

a Task scheduler. ATask is run to completion and then the stack is freed, before the

Scheduler posts the nextTask. It’s up to the application developer to place code sensitive

to concurrency errors inside aTask, and then post theTask to the scheduler.

Components allow the hardware software boundary in TinyOS to vary from platform

to platform. An encryption component may be implemented as software on one platform,

and as hardware on another platform. This fine grained control over hardware gives TinyOS

fine grained control over the energy consumption on the motes. TinyOS knows to only

supply power to the hardware that requires it to process a certain function, and then turn it

off after the process completes.

Interacting with hardware components in TinyOS usually requires split phase opera-

tions. Software components can have split phase operationsas well. Split phase operation

are operations that have an initialization method to start the operation, and a completion

method that is triggered when the operation has finished. Forexample, to write a message

to storage in TinyOS, you call awrite() operation. After thewrite() operation completes,

it will trigger a writeDone() event. Split phase operations can split up the flow of logic in

a TinyOS program, and requires attention to synchronization issues. For example, only one

message can be written to storage at a time. To avoid collisions writing to storage, you can

set astorage−busy flag totrue before calling thewrite operation, and setstorage−busy

to false in thewriteDone event.

TinyOS 2.x was used for the implementation described in thisthesis. TinyOS 2.x is

a mature operting system for sensor network research, and comes bundled with a number

of libraries, tools, and demo applications. There is also anactive research community that

contributes to the TinyOS source code repository on Sourceforge, as well as in discussion

forums, and working groups.

23

3.3 TOSSIM-Live

TOSSIM [24] is a TinyOS SIMulator that simulates entire TinyOS applications. TOSSIM

for TinyOS 2.x currently simulates the hardware of the MICAzmote hardware platform,

such that code written for the MICAz can be recompiled to run on the simulator instead. At

the time this research was conducted, TOSSIM for TinyOS 2.x had a short coming in that

both serial communications and non-volatile storage emulation were not yet implemented.

A recent masters thesis [31] has contributed a fork of TOSSIMcalled TOSSIM-Live,

that includes serial communications, as well as a throttling mechanism to slow down simu-

lation times. TOSSIM-Live was used for the simulations of the DACK protocol discussed

in chapter 6.

3.4 Libraries

As discussed in the introduction, the DACK protocol is builton top of a collection protocol

and a dissemination protocol. This section describes the TinyOS implementations of these

protocols that were used for the simulation and experiment described in chapters 5 and 6.

3.4.1 Collection Tree Protocol (CTP)

An implementation of the Collection Tree Protocol (CTP) [14] described in section 2.2.3.2

is available as a core network library for TinyOS 2.

3.4.2 DIssemination Protocol (DIP)

DIP [30], is also available as a core network library in TinyOS 2. DIP is a dissemination pro-

tocol (described in section 2.2.3.1) designed for disseminating numerous small values, such

as control parameters. For example, it could be used to change sampling intervals or switch

digital I/O channels. In previous dissemination protocols, overhead scaled linearly with

24

the number of data items being disseminated. In DIP, overhead as scalesO(log(log(T))),

whereT is he number of data items.

3.4.3 Drip

The Drip [51] is an alternative dissemination protocol, that can be found in the TinyOS 2.x

libraries. Though we were able to use DIP in our simulations,we were unable to get it to

work in our experiment. For this reason the Drip protocol wasused for both the experiment

and the simulation.

3.5 Sensor Web Language (SWL)

The Sensor Web Language (SWL) is a programing language with aset of compilers and

code templates that can be used to simplify the development of deployable WSNs [34]. The

DACK protocol is designed to be compatible with SWL, such that it can be used on WSNs

built with SWL.

25

Chapter 4

Disseminated end-to-end

ACKnowledgment (DACK) Protocol

This chapter describes the Disseminated end-to-end ACKnowledgment (DACK) protocol,

a method for improving the reliability of data collection inWireless Sensor Networks. This

method is designed to sit on top of a best effort data collection protocol as described in sec-

tion section 3.4.1, and a reliable data dissemination protocol as described in section 3.4.2. If

the collection protocol can deliver most packets from the sensor network to the base station,

and the dissemination protocol can reliably disseminate packets from the base station to ev-

ery mote in the sensor network, then the DACK protocol can be used to deliver end-to-end

acknowledgments, for the purpose of retrieving data lost bythe collection protocol. Figure

4.1 shows how the DACK protocol is built on top of a collectionprotocol as described in

Figure 2.5 and a dissemination protocol as described in Figure 2.4.

Conceptually, each mote in the network tags all data sampleswith a contiguous se-

quence number before sending them to the base station. As these samples are collected at

the base station, the base station evaluates the sequence numbers to determine if there are

any dropped data samples. The base station then periodically creates a list of all the unre-

ceived sequence numbers from every mote in the network. Thislist is then compressed and

26

Figure 4.1: A network overview of the DACK protocol. In the above example, solid lines
represent the path of a collection packet from the mote to thebase station. Dashed lines
represent dissemination packets being disseminated from the base station to each mote in
the network. Motea is a gateway mote connected to abase station. In this snapshot,
collection packet containing samplesd1 from moted is lost on the path to the gateway.
At the beginning of the next dissemination interval (ID), the base station disseminates a
negative acknowledgment for recent dropped samples in the network in aD1 packet, as well
as a positive acknowledgment for the samples that have been received from the network in
a D1 andD2 type packet. Once the dissemination packets are received bymoted, moted
notes that it needs to resend the data samplesd1 at the beginning of the next report interval
IR.

disseminated out to the entire network, letting each mote know which data was received

and which was not. Dissemination is reliable, but expensive, so compression is vital to

the efficiency of the method. Figure 4.2 illustrates the various time epochs considered for

the dissemination process. The sample intervalsIS, report intervalIR, and dissemination

intervalID, trigger the sample eventES, report eventER, and dissemination eventED re-

spectively, as shown in Figure 4.3. In the present implementation, the network operator

27

Figure 4.2: An example of the timing intervals required on a mote using the DACK proto-
col. I1 andI2 indicate two sampling time intervals tied to two separate sensors on a single
mote.IR indicates the mote’s report interval, andID the interval at which disseminated data
should be received on the mote from the base station. Sampling intervals can be changed at
any time to achieve the data frequency the network operatorsrequire.

must tuneIS, IR, andID to match the scale of there network. Potential methods to auto-

matically adaptID to minimize the number of disseminations required to provide a network

with acknowledgments is discussed in Section 8.2.1.

4.1 Overview

The DACK protocol negotiates end-to-end acknowledgementsbetween a base stationBS,

and a wireless networkN of n motes in acontinuous near-realtime data collection net-

work. In a data collection network, n motes collect samples at preprogrammed intervals,

and then periodically relay this information through the network to a common base station.

A network iscontinuousif it prioritizes collecting and relaying new data, over preserving

old data. Anoncontinusousnetwork will stop collecting new data from a mote if old data

readings have not been acknowledged.Noncontinuousoperation is more common when a

network is designed to log a transient event, rather than continuously monitor an environ-

ment over a long period of time. A network isnear-realtimewhen motes report readings

frequently relative to sampling time. For example, if a motecollects one sample per minute,

and relays the sample in a report every five minutes it isnear-realtime. If the same mote

28

Figure 4.3: Sequence diagram of a mote and a base station using the DACK protocol to
acknowledge a data sample. AMStack indicates the TinyOS active message radio stack
[35]. The eventsES, ER, andED are shown. Sending and writing to storage in TinyOS
is a split phase operation (see section 3.2). Percentages given in the send commands over
the multihop link indicate an example probability of successful end-to-end delivery of the
message.

instead reported its readings once every 24 hours, then the network readings would be much

farther from realtime.

Collection protocols have recently achieved very high reliability using best effort

mechanisms [14]. The Collection Tree Protocol (CTP) discussed in 3.4.1 provides a very

reliable protocol for buildingcontinuous near-realtime data collection networks. CTP is

able to achieve greater than99% reliable delivery of packets in many network configura-

tions.

29

The DACK protocol uses dissemination to add an end-to-end acknowledgment mech-

anism to help recover the data samples lost by CTP. The DACK protocol, as described

below, acknowledges samples, and not messages. This focuses DACK on acknowledging

a continuous stream of data samples, rather than insuring the delivery of a specific mes-

sage. The DACK protocol does not guarantee reliability, butmakes a best effort to recover

dropped data samples before they get too old. The DACK protocol has a maximum window

sizeW that limits how old a dropped data sample can be before the protocol gives up trying

to recover the sample.

4.1.1 Collection Process

Each moteMMID in network N has a unique ID numberMID, andv sensors. Each

sensorVSID on moteMMID is identified by a unique sensor IDSID. Mote MMID will

trigger a sampling eventESID for the sensorVSID at the end of intervalISID for each

connected sensor. Each moteMMID also triggers a report eventER at the end of every

report intervalIR. In the report eventER, moteMMID will send all data samples collected

in the preceding report intervalIR. If the mote is inaggressive mode, the mote will also

send all unacknowledged data samples. If the mote is inpassive mode, the mote will

also send all negatively acknowledged data samples. The definition for passive mode and

aggressive mode can be summarized as:

• aggressive mode: always resend data samples until a positive acknowledgment of
successful receipt by the base station is received by the mote.

• passive mode: resend data samples only when a negative acknowledgment for the
samples from the base station is received by the mote.

In each sample eventESID, moteMMID collects one new sample readingS(R, SID,

SN, TS) from VSID. R refers stores the data reading on the sensor,TS is a timestamp of

the time that the sample was taken, andSN is a sequence number that is incremented in

30

each sample event. Each sampling event must run atomically.This causes some sampling

events to be delayed while waiting for other sampling eventsto complete, but insures that

each sampleS is given a contiguousSN .

Each moteMMID allocates enough storage spaceStorage to storeF samples. Sam-

plesS(R, SID, SN, TS) are stored inStorage[SN] relative to their sequence number

SN . To keep track of which samples have been sent, and which samples have been ac-

knowledged, the mote keeps an indexMIMID containing the values:(F, SN, ASN, LSN,

DSN, B, L, W, SO), which are defined as follows:

• F : the total number of samples that can be stored on the mote.

• SN : the sequence numberSN of the newest data sample in storage.

• ASN : the SN of last consecutively acknowledged data sample. A data sample is
consecutively acknowledged if all data samples with an older timestamp have been
either acknowledged or lost.

• LSN : theSN of the last data sample that moteMMID sent in a report event.

• DSN : the sequence number of the last acknowledgment message received. DSN
also doubles as a status flag that the mote can write to indicate a window overflow or
a storage overflow.

• B: anL-bit vector referred to as the acknowledgment vector. Bits in B correspond
to the data samples with a sequence numberSN betweenASN andLSN . For each
bit b at positioni in B, a value of0 indicatesSN ← (ASN + i) mod F requires
a negative acknowledgment, and a1 indicatesSN ← (ASN + i) mod F requires
a positive acknowledgment.B is generated by the base station, and is received in
acknowledgment messages.

• L: the number of bits inB.

• W : the maximum size of the acknowledgment vectorB, called the acknowledgment
window. WhenB grows larger thanW , it causes an acknowledgment window over-
flow error.

• SO: the number of storage overflows that have occurred on the mote. A storage
overflow occurs whenever a mote has to overwrite a data samplebefore it is acknowl-
edged.

Algorithm 1 shows the values that the parameters in the mote indexMI are initialized

31

to when the mote boots up. The values forF andW are not shown. These can vary at the

discretion of the network operator, and the storage capacity of the motes being used.

Trigger: EB invoked when the mote boots up
Data: Global MoteIndex MI
Result: Initialize the mote’s index.
MI.DSN ← 250;
MI.SN ← 0;
MI.ASN ← −1;
MI.LSN ← −1;
MI.L← 0;
MI.SO ← 0;

Algorithm 1 : Mote Boot EventEB

Algorithm 2 shows a procedure for handling a sample eventES. Each incoming data

sample is tagged with a contiguousSN . The sequence numberSN is calculated asSN ←

(SN + 1) mod F , such that, if necessary, the newest sample always overwrites the oldest

sample in storage. The sampling event also catches storage overflow errors when theSN

overwrites the oldest data sampleASN that is still waiting to be acknowledged. If a storage

overflow occurs, the mote resets the values in the mote index.

Trigger: ES invoked by a clock interrupt everyIS

Data: DataReading R, SensorID SID
Result: Insert new sample into storage.
MI.SN ← (MI.SN + 1) mod MI.F ;
if (MI.SN = MI.ASN) or ((MI.ASN = −1) and (MI.SN = 0)) then

MI.DSN ← STORAGEOVERFLOW;
MI.SO ←MI.SO + 1 MI.L← 0;
MI.SN ← 0;
MI.ASN ← −1;
MI.LSN ← −1;

end
S ← newDataSample;
S.SN ←MI.SN ; S.SID ← SID; S.R← R; S.T ← NOW ();
Storage[MI.SN]← S;

Algorithm 2 : Mote Sampling EventES

Algorithm 3 shows a procedure for handling a report eventER. The mote loops

through the data samples in storage, fromASN to SN , and packs all new data samples

and negatively acknowledged data samples into collection packetsC(MID, DSN, SO,

32

ASN, LSN, S[s]), and sends the packets to the base station via the collectionprotocol.

MID identifies the sender of the message;DSN reports the ID of the lastACK received;

SO reports the number of storage overflows the mote experienced; LSN andASN report

the mote’s current sampling and acknowledgment status; andS[s] is an array ofs samples.

If the mote is inpassive mode, then negatively acknowledged samples and new samplesare

appended toC for delivery. If the mote is inaggressive mode, then all unacknowledged

samples are also appended to collection packets for delivery.

Trigger: ER invoked by a clock interrupt everyIR

Data: Global MoteIndex MI, Global Storage S
Result: Send all new and unacknowledged messages to the base station.
C ← newCollectionPacket;
b← 0;
MI.LSN ←MI.SN ;
foreach S in Storage betweenStorage[MI.ASN] and Storage[MI.SN] do

if (MODE = PASSIV E) then
if ((S.T > Storage[MI.LSN].T) or ((b < L) and (bit b of B = 0))) then

appendS to C; // append negative acked samples and new samples
end

end
if (MODE = AGGRESSIV E) then

if ((b > L) or ((b < L) and (bit b of B = 0))) then
appendS to C; // append all unacked samples

end
end
b← b + 1;
if ((C is full) or (S.SN = MI.SN)) then

C.MID ←MI.MID; C.DSN ←MI.DSN ;
C.ASN ←MI.ASN ; C.LSN ←MI.LSN ;
C.SO ←MI.SO; collectionsend(C);
C ← newCollectionPacket;

end
end

Algorithm 3 : Mote Reporting EventER

To process incoming collection messages, the base station creates a local mote index

objectMI for each mote in the network. EachMI object is stored in the mote tableMT ,

in which motes are referenced byMID. On the base station eachMI object contains the

following values:

33

• MID: The mote ID of the mote this MoteIndex object is keeping track of.

• ASN : The last consecutive acknowledged data sampleSN received from mote
MMID.

• LSN : The last known data sampleSN that was sent in a report interval from mote
MMID, but not necessarily received.

• RSN : The last data sampleSN actually received from moteMMID.

• RSNT : The timestamp of the last data sample with sequence numberRSN .

• DSN : The sequence number of the last dissemination packet sent containing an
acknowledgment forMMID.

• ASNmismatch: Set toTRUE when theMoteIndex object and incoming collec-
tion packets from the corresponding mote disagree on the value ofASN .

• B: the most recentL-bit acknowledgment vector sent to moteMID.

• L: the size of the vectorB.

• F : The max number of samples that can be stored on moteMMID.

• W : is the maximum size of the acknowledgment vectorB.

• SO: the number of storage overflows that have occurred on moteMID.

• WindowOverflow: Set toTRUE for moteMID when theDSN value inside an
incoming collection packet from moteMMID is set to255. This indicates that the
mote has detected an Acknowledgment Window Overflow Error, and is alerting the
base station.

• ackwaiting: An integer value indicating how many more dissemination intervals
ID the base station will wait before it sends a new ack message toa mote. If a
mote includes theDSN of the previous dissemination message in a collection packet
beforeackwaiting = 0 then the base station will setackwaiting ← 0 and send an
ack message to motei at the nextED.

• Storage[]: This is a mirror of the Storage on the moteMMID that is used for refer-
ence. It storesF data samples of the formS(R, SID, SN, TS, Dropped, Count).
R, SID, SN , andT reflect the most recently received values from the moteMMID.
Dropped is a flag that is used to indicate whether the base station believes the data
sampleSN was sent by moteMMID but not received.Count is the number of
samples that have been received with the same sequence number SN , but different
timestamps.

• dropped: The number of data samples that have been dropped and required negative

34

acknowledgments.

• lost: The number of data samples that have been permanently lost.

• received: number of data samples received.

• recovered: number of data samples that were marked as dropped, but eventually
recovered.

When collection messages are received on the base station, the base station triggers

the collection message received eventEC , and the message is added to a queue called

messagequeue. The messagequeue is processed at the beginning of the dissemination

eventED. Algorithm 5 shows where the message queue is processed in the dissemination

event. Algorithm 4 shows the procedure for processing a single message in the queue.

For each message, the base station checks theMID to find out whichMI object in the

MoteTable to update. If the message contains a newMID not found in theMT , then a

new MI object is created for it. Otherwise, the appropriateMI object is selected. The

base station then checks to see if the mote is reporting a storage overflow error, by checking

if the storage overflow value in the collection packetC.SO against the storage overflow

value in the mote indexMI.SO. The current reaction to a storage overflow error is to treat

MID as a new mote and resume sample collection fromLSN . After this, the base station

loops through every sample contained in the packet. For eachsample, the base station

checks if the sample is new by comparing the timestampS.T of the data sampleS, with the

timestamp of the previous sample stored atStorage[S.SN]. TheStorage[S.SN].Dropped

flag is checked to see if the database was waiting for an acknowledgment of this sample.

If this sample contains the most recent timestamp that the base station has ever seen for

moteMID, thenRSN andRSNT are all updated to the values of the sample, andLSN

is updated to the value contained in the collection packet.

35

Trigger: Invoked in the queue processing section of the dissemination eventED

Data: DACKCollectionPacket C, MoteTable MT
Result: Update MoteTable
if (MT.containsKey(C.MID)) then

MI ←MT.get(MID);
else

MI ← newMoteIndex;
end
if (C.SO > MI.SO) then

MI.resetCounters(); ASNmismatch← TRUE; ASN ← LSN ;
end
if (C.DSN = MI.DSN) then

MI.ackwaiting ← 0;
if ¬(MI.ASNmismatch) then MI.ASN ← C.ASN ;
if (MI.DSNtype = D3) then

MI.ASNmismatch← FALSE;
end

end
foreach S in C do

if ¬(MI.Storage[S.SN].T < S.T) then
MI.Storage[S.SN]← S; MI.received++;
MI.Storage[S.SN].Count++;
if (MI.Storage[S.SN].Dropped) then

MI.recovered++;
MI.Storage[S.SN].Dropped← FALSE;

end
end
if (S.T > MI.RSNT) then

MI.RSNT ← C.T ; MI.RSN ← C.SN ; MI.LSN ← C.LSN ;
end

end
MI.DSNmote← C.DSN ;
MT.put(MI.MID, MI);

Algorithm 4 : Base station processMessage() function for processing a collection
packet

4.1.2 Dissemination Process

As discussed in section 2.2.3.1, there are many possible ways to disseminate acknowledg-

ments in a wireless sensor network. The method described here is tailored to make use of

either the DIP or Drip dissemination protocols discussed inSections 3.4.2 and 3.4.3, which

were designed to disseminate single packets.

The DACK protocol consists of three types of acknowledgmentmessages, and corre-

36

sponding packet types for bundling sets of acknowledgment messages. The three DACK

message types are defined as follows:

• D1Ack: A D1Ack message contains the values(MID, L, B) to acknowledge mote
MMID with ackvectorB of sizeL, and indicates that moteMMID needs to resend
the samples referenced by theB vector.

• D2Ack: A D2Ack message is a blanket acknowledgement indicating that all samples
have been received. AD2Ack can either be a singleMID, or twoMIDsMID1 and
MID2 indicating a range of contiguousMIDs identified by the smallest (MID1)
and largest (MID2) MID in the range.

• D3Ack: A D3Ack message contains the values(MID, ASN , L, B) to acknowl-
edge moteMMID with ackvectorB of sizeL starting from the data sample after the
sequence number of the last consecutively acknowledged data sampleASN .

A D1 packet consists of a list ofD1Ack messages, aD2 packet consists of a list of

D2Ack messages, and aD3 packet consists of a list ofD3Ack messages. TheD1, D2, and

D3 packets required to acknowledge samples collected from every mote in the network are

generated and sent in each dissemination eventED. The base sation triggers a dissemination

eventED at the end of every dissemination intervalID.

Algorithm 5 shows a procedure for handling a dissemination eventED. First, the base

station processes all queued colelction messages using theprocessMessage() function

described in Algorithm 4. Next the following five function prepare and send the dissemina-

tion packets:updateMoteStatus() is defined in algorithm 6;generateD1() is defined in

algorithm 7;generateD2() is defined in algorithm 9; andgenerateD3() is defined in algo-

rithm 11.disseminate() involves disseminating all the packets generated by the preceding

functions in the network. An implementation of the disseminate function can be found in

Appendix A.7.

37

Data: MoteTable MT
Result: Prepare and then disseminate acknowledgments into the network
while (messagequeue is not empty)do

processMessage(messagequeue.pop());
end
updateMoteStatus();
generateD1();
generateD2();
generateD3();
disseminate();

Algorithm 5 : Dissemination eventED

Before disseminating acknowledgments into the network, the base station loops through

everyMI object to check each mote’s status, set the appropriate flags, and generate the lat-

est ack vectorB. Algorithm 6 shows the mote status update process. The base station first

checks to see if the value forASN that was most recently reported by the mote matches

theASN value in storage. The functionfindASN is not defined here, but an implemen-

tation is in appendix A.8. If the values forASN do not match, then the base station sets

theMI.ASNmismatch flag, indicating that the mote requires aD3Ack type acknowledg-

ment. Next the base station generates the ack vectorB for each mote. The ack vector is

created by checking each sample in reverse from the sample atLSN (the sequence number

of the last known data sample collected on the mote) to the sample afterASN . In this

way the oldest sample becomes the least significant bit of theack vector. If every sam-

ple is acknowledged,B andL are both set to0, indicating that the mote needs aD2Ack

type acknowledgment. IfASNmismatch is false, but one or more samples are dropped,

a D1Ack is sent. Next the base station checks for windows overflow errors. If there is a

window overflow error thenB andL are set to0, ASN is set toLSN andASNmismatch

is set to true. This forces the the mote to stop resending samples older thanLSN . This can

create some false negatives (samples assumed to be lost, when in fact they are not) if the

samples do arrive later.

38

Trigger: invoked byED

Data: MoteTable MT
Result: Decide which type of ACK is required for each mote
foreach (MI in MT) do

MI.ackwaiting ←MI.ackwaiting − 1;
if (MI.ASN 6= MI.findASN()) then

MI.ASN ←MI.findASN();
MI.ASNmismatch← TRUE;

end
MI.B ← 0; MI.L← 0; allclear ← TRUE;
foreach S in MI.Storage

from MI.Storage[(ASN + 1) mod F]
to MI.Storage[LSN] do

MI.B ←MI.B << 1; L++;
if (S.Count < MI.Storage[RSN].Count) then

S.Dropped← TRUE; allclear ← FALSE;
MI.B ←MI.B & 0;

else
MI.B ←MI.B & 1;

end
end
if (allclear) then MI.B ← 0; MI.L← 0;
if (MI.L > MI.W) then /* window overflow error */

for b← 1 to L do
if bit b in B = 0 then

S ←MI.Storage[(ASN + b + 1) mod F];
S.Dropped← FALSE; MI.dropped++;
S.Count←MI.Storage[RSN].Count;
S.T ←MI.RSNT ;

end
end
MI.B ← 0; MI.L← 0; ASN ← LSN ; RSN ← LSN ;
MI.ackwaiting ← 0; MI.ASNmismatch← TRUE;

end
end

Algorithm 6 : Generate B vectors and set flags for each mote at the base station.

After generating theB vectors and setting flags for each mote, the base station gen-

erates the three types of DACK dissemination packets. Algorithm 7 shows the procedure

for generatingD1 type packets.DSN is incremented to give the packet a unique sequence

number.DSN is also used by the mote to indicate a storage overflow error bysettingDSN

to STORAGEOV ERFLOW . The enumerated value forSTORAGEOV ERFLOW is

greator thanMAXDSN . To complete theD1 packet, the base station loops through every

39

mote in the mote table. IfB indicates dropped data samples, there is noASNError, and

the base station is not currently waiting for a response to a previous dissemination, then the

mote’sMID, L, andB are appended to the packet.

Trigger: invoked byED

Data: MoteTable MT
Result: Populate a D1 message
D1← newD1DACKMsg;
DSN ← (DSN++) mod MAXDSN ;
D1.DSN ← DSN ;
foreach (MI in MT) do

if (MI.B 6= 0) and (¬MI.ASNmismatch) and (MI.ackwaiting ≤ 0)) then
D1.append(MI.MID,MI.L,MI.B);
MI.ackwaiting ← 2;

end
end

Algorithm 7 : Generating a D1 packet on the base station.

Algorithm 8 shows the process for handling an incomingD1 packet on the mote. The

mote loops through theD1 looking for itsMID. If the mote finds itsMID, the local values

for DSN , L, andB, are updated. Next the mote loops through the bits ofB starting from

the least significant bit. If the least significant bit ofB is a1, thenASN gets incremented,

B loses its least significant bit, andL is decremented to reflect the shrinking size ofB. The

loop terminates whenever the least significant bit ofB becomes0.

Trigger: D1 packet is received on moteMID

Data: D1Packet D1
Result: Update MI
foreach (D1Ack in D1) do

if (D1Ack.MID = MI.MID) then
MI.DSN ← D1Ack.DSN ;
MI.L← D1Ack.L;
MI.B ← D1Ack.B;
while (MI.B & 1) do

MI.ASN++;
MI.B ←MI.B >> 1;

end
end

end

Algorithm 8 : Processing an incomingD1 packet on a mote.

Algorithm 9 shows the procedure for generatingD2 type packets on the base station.

40

The base station incrementsDSN and creates an ordered array of all theMI objects in

the mote tableMT , sorting byMID. This allows the base station to create a shortACK

message for motes with contiguousMIDs and no dropped data samples. Thelookahead()

function looks ahead in the ordered array ofMIDs, returning the largestMID it can find

from its current position that is fully acknowledged. A range is generated as a sequence

of bytes in the form ’MID1 250 MID2’. This creates the side effect that no mote in the

sensor network can have the value250 in the most significant byte of itsMID.

Data: MoteTable MT
Result: Populate a D2 message
D2← newD2DACKMsg;
DSN ← (DSN + +) mod MAXDSN ;
D2.DSN ← DSN ;
MoteIndex[MT.numElements()] MI ← getSortedArray(MT);
nummotes←MI.size(); i← 0;
while (i < nummotes) do

if ((MI[i].B = 0) and (¬MI[i].ASNmismatch) and
(MI[i].ackwaiting ≤ 0)) then
D2.append(MI[i]);
MI[i].ackwaiting ← 2;
j ← lookahead();
if (j − i > 1) then

D2.append(250, MI[j]);
for (k ← i to j) do MI[k].ackwaiting ← 2;
i← j;

end
end
i++;

end

Algorithm 9 : Generating a D2 packet on the base station

Algorithm 10 shows the process for handling an incomingD2 packet on the mote.

The algorithm loops through theD2 packet looking for an explicit reference to the mote’s

MID, or a range that includes an implicit reference to the mote’sMID. The bit structure

of aD2 packet is illustrated in Figure 5.7.

41

Data: D2DACKPacket D2
Result: Update MI
ACK ← FALSE;
tMID, tMID1, tMID2← 0;
mB ← sizeInBytes(MID);
dB ← sizeInBytes(D2);
D2b← byte array of D2;
i← 0;
while (i + mB ∗ 2 + 1 < dB) do

if (D2b[i + mB] = 250) then
tMID1← D2b[i : i + mB − 1];
tMID1← D2b[i + mB + 1 : i + 2 ∗mB];
if (tMID1 ≤MID ≤ tMID2) then

ACK ← TRUE;
break;

end
i← i + mB ∗ 2 + 1;

else
tMID ← D2b[i : i + mB − 1];
if (tMID = MID then

ACK ← TRUE;
break;

end
i← i + mB;

end
end
if (ACK) then

MI.ASN ←MI.LSN ;
MI.L← 0;
MI.B ← 0;

end

Algorithm 10 : Processing an incoming D2 packet on the mote

Algorithm 11 shows the procedure for generatingD3 type packets on the base station.

Generating aD3 type packet is much the same as generating aD1 type packet, except in

this case the value forASNmismatch is TRUE, and the value forASN is included after

theMID.

42

Data: MoteTable MT
Result: Populate a D3 message
D3← newD3DACKMsg;
DSN ← (DSN++) mod MAXDSN ;
D3.DSN ← DSN ;
foreach (MI in MT) do

if (MI.ASNmismatch) and (MI.ackwaiting ≤ 0)) then
D3.append(MI.MID,MI.ASN,MI.L,MI.B);
MI.ackwaiting ← 2;

end
end

Algorithm 11 : Generating a D3 packet on the base station

Algorithm 12 shows the process for handling an incomingD3 packet on the mote.

Data: D3DACKPacket D3
Result: Update MI
foreach (D3Ack in D3) do

if (D3Ack.MID = M3.MID) then
MI.DSN ← D3Ack.DSN ;
MI.ASN ← D3Ack.ASN ;
MI.L← D3Ack.L;
MI.B ← D3Ack.B;
while (MI.B & 1) do

MI.ASN++;
MI.B ←MI.B >> 1;

end
end

end

Algorithm 12 : Processing an incoming D3 packet on the mote

43

4.2 End-to-End Messaging Scenarios and Timelines

This section discusses how the DACK protocol defined in the previous section operates

under a variety of communication conditions. Various end-to-end timing scenarios for

the DACK protocol are illustrated in each section. In each timing scenario, motes oper-

ate inpassive mode. Recovering dropped samples is discussed in Section 4.2.2. Send-

ing a blanket acknowledgment is discussed in Section 4.2.3.Section 4.2.4 shows how an

ASNmismatch can be caused by message latency. For the DACK protocol to be effective

in recovering lost samples, it is necessary for the dissemination protocol to be significantly

more reliable than the collection protocol. Poor dissemination reliability can lead to win-

dow errors as discussed in Section 4.2.5, and storage overflow as discussed in section 4.2.6.

There are two major messaging delays in the end-to-end operation of the DACK pro-

tocol, each of which is described below, and illustrated in figure 4.4:

• Dissemination DelayGD: the time it takes to disseminate a DACK Message from
the base station to the target mote.

• Collection DelayGC : the time between when a report event is invoked on the mote,
and the time that the base station receives the first of any of the samples in the report.
(The first collection packet that is received may not be the first packet that was sent.)

The DACK protocol requires the network operator to fine tune dissemination interval

ID to meet the needs of their network. If disseminations are sent too frequently, this can

lead to a significant energy drain on the network. If disseminations are sent too infrequently,

then we increase the chance of permanently losing data samples through acknowledgment

window overflow errors.

For the DACK protocol to function,ID must be greater thanGD, andIR must be

greator thanGC . The CTP protocol described in [14], is able to deliver packets from a mote

to the base station over multiple hops in milliseconds. The collection process is occasionally

subject to transient routing loops, which can cause non-deterministic delays. The main

bottleneck for the DACK protocol is the dissemination delayGD. DIP, the DIssemination

44

Protocol, described in [30], was able to disseminate64 data items to80 motes in86 seconds.

In experiments discussed in chapter 7, the Drip protocol [51] was able to disseminate one

to three DACK packets to 14 motes in under 10 seconds. In the simulations, dissemination

on a network of the same size could take as long as a few minutes.

Due to limitations of the current implementation, it is necessary to tune the dissemi-

nation intervalID to be greater than or equal to the longest report interval of any mote in

the network. In the experiments and simulations discussed in the following chapters, every

mote in the network has the same report intervalIR, and the base station has a dissemination

intervalID equal to the report interval. In many cases settingID = IR may be inefficient,

but it makes analysis of the operations of the protocol easier to illustrate. Section 8.2.1 dis-

Figure 4.4: Motei triggers event reportER at the end of each report intervalIR, and sends
data samples in collection packetsC to the base station. After a delay ofGC , the message
arrives at the base station, and triggers the collection event EC . Later, the base station
triggers eventED at the end of the dissemination intervalID, and sends an ack message to
motei. After a delay ofGD, the ack message arrives at the mote and triggers eventEA.

45

cusses possible methods to have the base station automatically adjustID to meet the needs

of the network.

4.2.1 Establishing a Connection

Figure 4.5: The above timeline illustrates how end to end connections are established in the
DACK protocol. At the first report eventER motei sends collection packetC1 to the base
station containing samples0 and1. Because this is the first time the base station heard from
motei, the base station responds at the next dissemination eventED with a D3Msg with
an empty B vector, and theASN set to 1.

When the base station receives a message from a new mote for the first time, the base

station will start acknowleging all data samples starting from theSN of the last data sam-

ple receivedRSN . All data samples beforeRSN will be ignored. The protocol behaves

similarly when receiving a storage overflow message from a mote. (This scenario is de-

scribed in the scenario in Section 4.2.6.) Figure 4.5 shows asimple scenario, in which mote

i only sends one collection message containing two samples every report event, and the first

collection packet sent by the mote is received by the base station.

4.2.2 Recovering Dropped Samples

Sometimes collection packetsC(MID, DSN, ASN, LSN, S[s]) become lost in transmis-

sion from a mote to the base station. If at least one collection packet in a report successfully

makes it to the base station, then the base station will be able to deduce how many data sam-

ples were lost from theLSN value. Figure 4.6 illustrates this sample recovery process. If

46

Figure 4.6: The above timeline illustrates when aD1 packet is used in the DACK protocol.
Mote i sends samples0 and1 in collection packetC1, and samples2 and3 in collection
packetC2. Collection packetC1 gets lost in transmission, and the base station only recieves
C2. Because the collection packet includes theASN and theLSN for motei inside each
collection packet, the base station is able to determine that samples0 and1 are dropped. The
base station then disseminates aD1 packet containing anACK for samples2 and3, as well
as a negative acknowledgment of samples0 and1 at the beginning of the next dissemination
intervalID. The next report intervalIR on motei begins afterD11 is received, so motei
resends samples0 and1 in collection packetC3 before sending new samples.

no packets in a report arrive at the base station, then the base station will have no knowl-

edge of the dropped data samples unless or until a collectionpacket from a later report

arrives. If the range of dropped data sample sequence numbers (SNs) does not exceed

the acknowledgement window sizeW , then the dropped data samples can be recovered

using either aD1Ack(MID, L, B) message, or aD3Ack(MID, ASN, L, B) message.

Figure 4.6 illustrates a scenario when aD1Ack is required to recover a lost data sample.

Sometimes messaging latency causes anASNmismatch, and aD3Ack is required. The

ASNmismatch scenario is discussed further in section 4.2.4.

47

4.2.3 Full Acknowledgements

If every data sample sent by a mote is received by the base station, then the base station

replies with a full acknowledgment. Full acknowledgments are made with theD2Ack. As

described in section 4.1.2, theD2Ack can take the form of a single mote ID“MID” or

range of mote IDs“MID1 250 MID2”. Figure 4.7 illustrates a scenario in which the bas

station sendsD2Ack message“i” inside aD2 packet to acknowledge that all samples have

been received from motei. The range format allows theDACK protocol to run efficiently

in sensor networks that have little data loss. A singleD2Ack message can acknowledge

every mote in a WSN with the message“0 250 MIDn”, whereMIDn is the largest numeric

mote ID in the network.

Figure 4.7: The above timeline illustrates whenD2 packets are used in the DACK protocol.
Mote i sends samples0 and1 in collection packetC1 , and samples2 and3 in collection
packetC2 . Both samples are received by the base station. At the next dissemination interval
ID, the base station is able to deduce from theLSN values contained in the collection
packet that all packets sent by motei have been received. The base station then sends a
blanket acknowledgement to motei by including the mote’s ID number in the nextD2
packet.

Sending aD2Msg at all may be considered wasteful in a network with very smalldata

48

loss. It is possible to modify the protocol to only useD3Ack messages to acknowledge

samples when they get lost. This would save us from disseminating any thing at all for suc-

cessfully received packets. This approach would not be an end-to-end messaging protocol,

because motes would have no way of knowing whether the messages were received by the

base station.

4.2.4 Overcoming Message Latency

We defineT (ER), T (ED), T (EC), andT (EA) as follows:

T (ER): the time a report eventER is invoked on the mote.

T (ED): the time a dissemination eventED is invoked on the base station.

T (EC): the time the first collection packet sent inER is received by the base station.

T (EA): the time that the DACK message sent inED arrives at the mote.

Let X be a set of collection packetsC1, ..., Cx sent in a report eventER wherex is

the number of collection packets in the set. If any or all collection packets inX become

lost enroute to the base station, and if the base station sends aD2Msg to the mote be-

fore any of the messages inX arrive at the base station, and if theD2Msg arrives at the

mote after the lost collection packets were transmitted by the mote, then the mote will erro-

neously assume that theD2Ack message is acknowledging the lost data samples, causing

anASNmismatch. Figure 4.8 shows the time range relative to a disseminationeventED

when anASNMismatch can occur.

When theD2Ack message is received by the mote, the mote assumes that the base

station is acknowledging all sent data samples, and erroneously updates itsASN value

to LSN . The base station does not learn of theASNMismatch until the revisedASN

is received in a subsequent collection packet. In the next dissemination eventED after

the collection packet with the erroneousASN arrives, the base station notices that the

49

Figure 4.8: In the above timeline the shaded area indicates the time range when an
ASNMismatch can occur. For anASNMismatch to occur, the report eventER must
occur afterT (ED)−GC whereGC is the time it takes for the first packet in the report to be
received by the base station, one or more collection packetssent inER must become lost,
and the lost collection packets must be sent beforeT (EA) = T (ED) + GD.

ASN value in the collection packet is different than theASN value in the mote’s index

object. The base station resolves theASNmismatch by sending aD3Ack message to the

mote. Figure 4.9 illustrates a scenario in which anASNmismatch occurs, and aD3Ack

is required to acknowledge dropped data samples.

To avoid additionalASNmismatch scenarios, the base station should not send a new

ack message to a mote until the mote has had enough time to respond to the previous ack

message. IfID ≥ IR + GD + GC , it will reduce the likelihood of anASNMismatch. GC

andGD can be highly variable because they depend on network conditions and the routing

decisions of the underlying collection and dissemination protocol. If the network operator

chooses the minimumID = IR, then it is more likely thatID 6≥ IR + GD + GC . To reduce

the likelihood ofASNMismatch errors, the base station sends the next ack message at

twice the dissemination interval time; i.e. at timeT (ED) + 2ID. For example, letED1 be a

dissemination event in which the base station sends aD2Msg in packetD2d with DSN = d

to motei. Let ED2 be the next dissemination event atT (ED2) = T (ED1) + ID . If the base

50

Figure 4.9: The above timeline illustrates when aD3 packet is used in the DACK protocol.
Samples0 through3 are correctly received by the base station from collection packetsC1

andC2. At the next dissemination interval the base station sends aD21(i) to acknowledge
that it has received all known samples. Due to routing delaysD21(i) is not received by
motei until after motei sends collection packetsC3 andC4. If bothC3 andC4 are received
by the base station, then everything is fine. If either packetC3 or C4 are lost, then this
causes motei to erroneously believe thatC3 andC4 were acknowledged, andASN is set
to 7 instead of3 in the next collection packetC5. WhenC5 is received, the base station
detects that theASN value inC5 does not match the base stationASN value in the mote
index object for motei. At the next dissemination event, the base station sends aD3 packet
to correct the problem. When motei receives theD3 packet, it corrects its value forASN ,
and resends the dropped samples.

station receives a collection packet from motei containing aDSN = d, then receipt of the

D2d packet is acknowledged, and the base station knows it is safeto send a new ack message

to motei in packetD2d+1 . Otherwise, the base station skips sending an ack message to

motei at ED2 , and waits until the next dissemination event atT (ED3) = T (ED2) + ID to

51

send the next ack message to motei. At this point the base station sends a new message to

motei regardless of whether or not a collection packet withDSN = d was received.

4.2.5 Accounting for Lost Data on Noisy Channels

If the gap between the sequence number of the last sent data sample LSN , and the se-

quence number of the last acknowledged data sampleASN becomes greater thanW then

the DACK protocol will permanently lose all data samples collected before the most re-

cently collected sample. Ignoring old data samples prevents theB vector from growing to

the size ofF and avoids dissemination packets growing too large or too numerous.

Figure 4.10 shows a scenario in which the DACK protocol is forced to drop samples

due to this so-called window overflow. Both the mote and the base station can detect a

window overflow. If the mote detects a window overflow, the mote sets itsDSN value

to theWO = WINDOWOV ERFLOW flag. When the base station detects a window

overflow, it setsASN to LSN and sends aD3Ack message to the mote to update the

mote’sASN , preventing the mote from resending old samples. The base station counts the

number of samples that are lost due to window overflows.

52

Figure 4.10: The above timeline shows how the DACK protocol handles an acknowledg-
ment window overflow withW = 20. In the above case, the combination of a shortIS with
respect toIR, a small value forW , and a noisy link cause several collection packets and
a dissemination packet to become lost. Later, when the base station detects a gap between
LSN andASN that is greater thanW , it gives up on all the lost samples by updatingASN
to LSN , and sends aD3Ack message to inform the mote.

4.2.6 Handling Long Delays

A storage overflow occurs if the break in communication between the mote and the base

station continues long enough that the mote is forced to overwrite an unacknowledged data

sample in storage. Figure 4.11 shows a timeline scenario in which a storage overflow

53

occurs. Only motes can detect a storage overflow. When a mote does detect a storage

overflow, it sets theDSN to the flagSO = STORAGEOV ERFLOW . This allows

the base station to learn about the storage overflow from theDSN value in the collection

packets sent by the mote. When the base station learns about the storage overflow, the

mote’s localASN is set to theLSN contained in the informing collection packet, and a

D3Ack message is sent to the mote to synchronize it with the newASN . Unlike handling

window overflows, when a storage overflow occurs, the base station is unable to detect how

many data samples were lost. It would be possible to account for all of these lost samples

by counting unacknowledged data samples on the mote, and then having the mote relay this

information to the base station. This feature has been left for future work.

54

Figure 4.11: The above timeline shows how the DACK protocol handles a storage overflow
error. In this case no message is successfully transmitted between motei and the base sta-
tion until after the entire sample storage space on motei has been written to. When motei
detects that it is overwriting the sample stored atASN , it setsDSN to STORAGEOVER-
FLOW. When the base station sees thisDSN in a collection packet, it confirms the update
by settingASN to DSN and then sending aD3Ack message to inform the mote of the new
ASN . TheDSN valuex varies depending on how many DACK packets were disseminated
in the interim.

55

4.2.7 Accounting Errors

Experiments and simulations of the current implementationof the DACK protocol show

that in certain cases it can produce false positives and false negatives. False positives are

discussed in section Section 4.2.7.1, and false negatives are discussed in Section 4.2.7.1.

Potential methods to resolve false positives and false negatives are discussed in Sections

8.2.3 and 8.2.4 respectively.

4.2.7.1 False Positives

As described in algorithm 4, the DACK protocol counts every data sample that is recovered

by a D1Msg or D3Msg. A false positiveoccurs when the base station assumes that a

data sample was recovered by aD1Msg or D3Msg, but in fact the data sample would

have arrived anyway. In the current implementation, false positives have been observed to

occur if data samples arrive during the time interval between when the base station updates

dissemination status in algorithm 6 line 28 (see Section 4.1.2) and when the base station

forms the dissemination packets. In the simulations and experiments discussed in Chapters

6 and 7, this interval could be as long as 800 milliseconds. Inthe experiment described

in Section 7.3.4, 20 of 719 samples that were recovered over the course of the experiment

were actually false positives.

4.2.7.2 False Negatives

A false negativeoccurs when the base station counts a data sample as permanently lost,

when in fact the data sample does eventually arrive. False negatives can occur after the

base station has already sent aD3Msg to resolve a window overflow as discussed in section

4.2.5, or to resolve a storage overflow as discussed in section 4.2.6. If any data samples

arrive at the base station having a timestamp older than the timestamp of the data sample

with SN equal to theASN sent in theD3Msg, then the base station will ignore the data

samples. These samples were recovered, but the base stationcounts them as lost, so they

56

are false negatives. In the simulations described in Chapter 6 and the experiments described

in Chapter 7, false negatives were very rare.

4.3 Metrics

The efficiency of the DACK protocol is relative to the efficiency of the dissemination and

collection protocols it is built on top of. The cost of the DACK protocol is measured as the

number of packets disseminated, and the number of collection packets sent for the purpose

of resending lost data samples. The benefit of the DACK protocol is measured as the num-

ber of data samples it recovers. The effectiveness of the DACK protocol is measured as the

ratio of the number of data samples dropped to the number of data samples recovered. The

following definitions define the metrics used to determine the DACK protocol benefit and

cost:

• nD - ’number of disseminations’: the total number of DACK dissemination packets
disseminated by the base station duringT .

• nC - ’number of collection packets sent’: the total number of collection packets sent
by motes in the network duringT .

• nCR - ’number of collection packets resent’: the total number ofcollection pack-
ets sent by motes in the network duringT containing data samples that were sent
previously.

• nS - ’number of samples’: the total number of data samples sent by a mote.

• nA - ’number of acknowledgeable samples’: this is the number ofsamples the base
station becomes aware of through theASN andLSN values in collection packets.
This number may be smaller thannS if a mote experiences storage overflows.

• nRX - ’number of received samples’: the total number of data samples received at
the base station.

• nd - ’number dropped’: the number of data samples sent by motes to the base station,
but not received by the time the base station sends aD1Msg or D3Msg to recover the
data sample. This can also be thought of as the number of data samples dropped by
the collection protocol.

57

• nr - ’number recovered’: the number of data samples that were recovered by the base
station after sending aD1Ack or D3Ack message requesting a mote resend dropped
samples.

• nl - ’number lost’: the total number of data samples that the base station gives up on
trying to acknowledge as described in Sections 4.2.5 and 4.2.6.

• no - ’number outstanding’: this is the number of samples the base station sent a
D1Msgor D3Msgfor that has not yet been recovered or lost.

• nso - ’number of storage overflows’: the number of storage overflows that occurred
during an experiment (see section 4.2.6).

• nwo - ’number of window overflows’: the number of window overflowsthat occurred
during an experiment (see section 4.2.5).

• fp - ’false positives’: the number of data samples innr that were counted as recov-
ered after aD1Msgor D3Msg, but would have been recovered anyway, as described
in section 4.2.7.1.

• fn - ’false negatives’: the number of data samples innd the DACK protocol counts
as dropped, but were actually received, as described in section 4.2.7.2.

The dissemination cost of using the DACK protocol isnD. The collection cost for

using the DACK protocol isnCR. The benefit of the DACK protocol is the number of

recovered data samples minus the false positives; i.e.nr − fp. The recover ratiorr is

a measure of the effectiveness of the DACK protocol at recovering dropped samples.rr

is calculated by dividing recovered data samplesnr by the number of samples dropped

samplesnd minus the samples still outstandingno; i.e,

rr = nr/(nd− no) (4.1)

58

Chapter 5

Implementation

The DACK protocol has been implemented into a prototype application calledSimpleNet-

work. TheSimpleNetworkapplication was developed for TinyOS 2.1. Targeting for TinyOS

allowed us to use the same source code for experiments using TelosB motes, and simula-

tions using the TinyOS simulator TOSSIM. The DACK protocol has not yet been modular-

ized, such that it can be used as a library by other applications. The current implementation

provides a prototype application as a proof of concept. Section 8.2.5 discusses potential

methods to modularize the implementation for use in other applications.

TheSimpleNetworkapplication was first developed targeting TOSSIM, and latermi-

grated to run on TelosB motes. The same code is used for both the simulations in Chapter

6 and the experiments in Chapter 7.

5.1 Code Overview

TheSimpleNetworkapplication consists of a mote application written in nesC,a base station

application written in Java, simulation configuration files, and a make file. Additionally, a

Python script is used to parse theSimpleNetworkapplications log file. Detailed listings of

the code can be found in appendices A.1 to A.8. The source coderepository is maintained

by the sensor web language group at UNB.

59

Figure 5.1: Overview of the files in the DACK prototype applicationSimpleNetworkused
to build a network on TolosB Mote hardware. Rectangles represent programs, torn pages
represent text or binary files, trapezoids represent compilers, and circles represent services.
Directional arrows represent input from files and output from compilers and services. Bidi-
rectional arrows represent communication between services. Circles markedA andB mark
the connection points to the files used to build aSimpleNetworksimulation shown in figure
5.2.

Figure 5.1 shows the various files used in the implementationof the SimpleNetwork

application, and how they relate to each other. The mote application for SimpleNetwork

was written in nesC for TinyOS 2.1, and consists of the following three files:

60

Figure 5.2: Overview of the files required for simulation of the DACK prototype application
SimpleNetwork. Circles markedA andB mark the connection points to the files shown in
figure 5.1. Communication with TOSSIM by the SerialForwarder requires the TOSSIM-
Live extension discussed in chapter 3.

• SimpleNetwork.h: This is a header file containing packet structures and configuration
parameters for the mote application. A complete listing of the source code can be
found in appendix A.2.

• SimpleNetworkC.nc: This is the core implementation component of theSimpleNet-
work mote application, and contains implementations of the moteside algorithms
discussed in section 4.1. Excerpts from the source code, along with detailed descrip-
tions, can be found in appendix A.6.

61

• SimpleNetworkAppC.nc: This is the top-level configuration file for the mote applica-
tion. It links the implementation inSimpleNetworkC.ncwith other components in the
TinyOS library. A complete listing of the source code can be found in appendix A.5.

The base station application forSimpleNetworkwas written in Java 1.5, and takes

advantage of the TinyOS 2.1 Java support libraries for communicating with motes. To

coordinate message structures with the mote application, the TinyOS Message Interface

Generator (mig) is used to generate convenient Java object definitions for the messages

structures defined in the SimpleNetwork.h header file.DACKDissSerialMsg.javais gen-

erated to define dissemination messages, andDACKCollMsg.javais generated to define

collection messages. The base station application code consists of the following files:

• SimpleNetworkBS.java: This is the main base station application, and contains im-
plementations of the base station algorithms discussed in section 4.1. Excerpts from
the source code, along with detailed descriptions can be found in appendix A.6.

• MoteIndex.java: This is a definition of theMoteIndexobject described in section
4.1.1. A complete listing of the source code can be found in appendix A.8.

The following two files were defined to run theSimpleNetworkapplication in the

TinyOS Simulator:

• simconfig.txt: This file is used to define a radio signal model for motes in the
wireless sensor network. Parameters can be set to representmote locations and other
network conditions for use in the simulation. This file is parsed by the program
LinkLayerModelin the TinyOS 2.1 Java support library to producelinkgain.out, a
text file containing theLinkLayerModel’s estimations for the link gain between each
mote in the network. An examplesimconfig.txtused for one of the simulations can
be found in Appendix A.3.

• simulate.py: This is a Python script that controls the TOSSIM simulation. This
script parses thelinkgain.outfile, and uses this info to boot and run emulated motes
in the simulation. An examplesimulate.pyused for one of the simulations can be
found in appendix A.4.

Finally, the following Pyhon script is used to parse the log files produced by the sim-

ulation and the experiment.

62

• tabbs.py: This python script is used to compile the results of an entire simulation or
experiment. Because the results for each mote get reset on the base station after each
storage overflow,tabbs.pysums the results of each instance of communication be-
tween the base station and the mote for the final tally. An instance of communication
refers to the time interval between when the base station initializes theMoteIndexfor
a motei, and the time a storage overflow is detected on Motei. The results are parsed
into tables used in the results in Chapters 6 and 7.

As shown in Figures 5.1 and 5.2 theMakefileinvokes the nesC compiler to compile

theSimpleNetworkmote code for either the simulation (sim.o), or an actual mote (main.o).

main.ocan be installed on one or several motes, andsim.ocan be used by TOSSIM to

simulate one or several motes. TheMakefilealso invokesmig to generate the java object

definitions for message structures as described above. TheSimpleNetworkbase station code

is compiled withjavac, and then theSimpleNetworkbase station can be run as a service

using java. The base station communicates with an actual mote via a USB cable, or with a

simulated gateway mote running inside TOSSIM with theSerialForwarderapplication.

5.2 Packet Structures

In Chapter 4 packets were defined abstractly. This chapter lists the actual DACK packet

structures used in the implementation of theSimpleNetworkapplication.

Figure 5.3 shows the9 byte data sample structure used for data samplesS(SN, SID,

R, T). Sequence numbersSN are2 bytes. The Sensor ID (SID) is only one byte, which

is sufficient to map a unique integer to the TelosB’s8 ADC inputs,2 digital inputs, and5

internal sensors. Sensor readingR is 2 bytes as the TelosB ADC precision is12 bits. The

timestampT is 4 bytes because it uses the TinyOSLocalTimeMilliC component, which

returns a32 bit timestamp of the number of binary milliseconds the mote has been running.

Note that there are1024 binary milliseconds per second [9].

Figure 5.4 shows the25 byte packet structure for a basic DACK collection packet used

in theSimpleNetworkapplication. Two bytes for the mote idMID reflects the 16-bit data

type used forMIDs in TinyOS. The last consecutively acknowledged data sample ASN

63

Figure 5.3: Structure of a Data Sample with a sequence numberSN , sensor IDSID, a
readingR, and a timestampT . TheSID is a sensor identifier which maps the reading to
the sensor channel number, type, and data acquisition parameters (see section 3.5).

and the last sent data sampleLSN are both2 bytes, reflecting the size of sample sequence

numbersSNs described above. The dissemination sequence numberDSN is one byte.

Thenso metric is2 bytes, allowing a maximum of65536 storage overflows to be counted.

These values are followed by two “slots” that can each hold one data sample.

Figure 5.4: Structure of a DACK collection packet. This structure is embedded in a CTP
(or other collection protocol) packet before being sent to the base station. Figures on top
are in bytes. Each data sample is placed in one of two “slots”.

To recover an accurate metric of the collection cost in experiments using SimpleNet-

work, the DACK collection packet is supplemented with the two 4 byte metricsnC and

nCR, as shown in Figure 5.5. These are not crucial to the functioning of the DACK pro-

tocol, but are included to recover accurate metrics in experiments. It is not necessary to

include these values in simulations, as they can be recovered from parsing the simulation

log file.

Figure 5.5: A DACK collection packet with the two additional4 byte metricsnC andnRC.

As shown in Figures 5.6, 5.7, and 5.8, each of the three types of dissemination packets

contain the8-bit DSN as the last byte of the packet. The length of the dissemination packet

limits the number of acknowledgment massages that can fit in the packet. In the current

implementation, dissemination length is set to48 bytes. DACK messages inD1 andD3

64

packets can vary in length depending on the lengthL of the acknowledgment vectorA. If

there are too many pendingD1, D2, or D3 messages to fit in aD1, D2, or D3 packet in a

dissemination interval, then a secondD1, D2, orD3 can be generated. Each dissemination

packet sent in parallel, requires a unique buffer on the motes. Memory is limited on motes,

so the current application only buffers room for twoD1 packets, twoD2 packets, and two

D3 packets.

Figure 5.6: Bit structure of aD1 type DACK dissemination packet containingx acknowl-
edgments consisting of a sequence of (MID, L, B) triplets.

Figure 5.7: Bit structure of aD2 type DACK dissemination packet containingx acknowl-
edgments consisting of a sorted sequence ofMIDs and ’-’ characters. AMIDi −MIDk

pattern indicates all MIDs between and includingMIDi andMIDk are acknowledged.

Figure 5.8: Bit structure of aD3 type DACK dissemination packet containingx acknowl-
edgments consisting of a sequence of (MID, ASN , L, B) 4-tuples.

In D1, andD3 messages, the length ofB is expanded to the nearest byte boundary.

For example, if the lengthLi of the ack vectorBi is 6 bits, then a full byte of packet space

will be used to storeBi. We definedP to be the number of bytes required to storeL bits,

such thatP ← ⌈L/8⌉. If Li = 0, thenPi = 0 andBi is can be skipped in the packet. In

the current implementation, theD1, D2, andD3 dissemination packets were each capped

at 48 bytes. This means that, ifLi <= 8 for all acknowledgment vectorsBi, then at most

15 motes can be acknowledged in oneD1 packet, and7 motes can be acknowledged in one

D3 packet. The code for populating packets is discussed in further detain in Appendix A.7.

65

5.3 Base Station Data Structure Implementation

As discussed in chapter 4, the base station creates a MoteIndex object for each mote in

the sensor network to keep track of each mote’s status. The current implementation of

MoteIndex object uses four arrays of sizeF to implement theStorage structure (a circular

buffer) described in Section 4.1.1. As inStorage, each element of the array corresponds to

a possible value ofSN . These four arrays are defined as follows:

• ackvector: contains the ack vectorB stored at positions[(ASN +1) mod F .. LSN]
if ASN < LSN , or positions[(ASN + 1) mod F .. F − 1] and[0 .. LSN] if ASN
> LSN . All elements ofackvector outside of these ranges are set to0.

• droppedackvector: is used to count the number of dropped data samples. When a
data sample with the sequence numberSN is dropped, the base station sets
droppedackvector[SN] to 1. When the data sample becomes either recovered or lost
(see section 4.1.1), the base station setsdroppedackvector[SN] back to0.

• acktimevector: contains timestamps in binary ms since startup for each data sample.
acktimevector[SN] implements theStoreage[SN].T structure described in section
4.1.1. Newer timestamps overwrite older timestampes.

• ackcountvector: contains a count of the number of data samples received or lost
with a given sequence number. This is equivalent toStorage[SN].Count described
in section 4.1.1.

The MoteIndex object contains several functions to utilizethese arrays, and to perform

the necessary wrapping logic at the end of the array. The algorithms in Chapter 4 ignored

this aspect of the implementation. For instance, Algorithm6 contains the loop:

foreach S in MI.Storage

from MI.Storage[(ASN + 1) mod F]
to MI.Storage[LSN] do

...
end

The above loop presumes that the compiler knows that it may need to wrap around the

storage array while traversing fromASN to LSN . Since the Java compiler has no such

construct, to accomplish wrapping in Java, the following pattern is used:

66

if (LSN > ASN)
{ for (int i=ASN+1; i<=LSN; i++)

{ ...
}

}
else
{ for (int i=ASN+1; i<F; i++)

{ ...
}
for (int i=0; i<=LSN; i++)
{ ...
}

}

Variations of the above array wrapping pattern can be found in the source code for

the MoteIndex object in Appendix A.8. Functions implemented for MoteIndex involving

operations that wrap around the four arrays implementing the Storage Structure are:

• getAckLength(): returns the Length of the ACK vectorB as a calculation on the
values ofASN , LSN , andF .

• getAckString(): returns the ack vectorB as a String, to be printed for debugging
purposes.

• getAckByteArray(): returns the ack vectorB as a byte array to be used in aD1 or
D3 type dissemination message.

• getOutstanding(): returns the metricno, the number of outstanding data samples,
by counting the number of0 elements in the ACK vector.

• isInRange(int i): returnstrueonly if the elementi is between
(ASN + 1) mod F andLSN .

• cleanAckV ector(): sets all the elements in the ackvector array that are not currently
part of the ACK vectorB to 0.

• recordDroppedSamples(): counts data samples that have been dropped using the
droppedackvector.

• allclear(): returnstrueonly if each elementi is between
(ASN + 1) mod F andLSN in the ackvector array is set to1, indicating that every
data sample has been acknowledged.

• findASN(): returns the value forASN by analyzing theackcountvector array.

• giveup(): is called whenever a window overflow occurs. This function is responsible
for cleaning up all four ackvector arrays, and accounting for lost data samples.

67

5.4 Protocol Verification

Each metric described in Section 4.3 is counted in a fashion that avoids using other metrics

in the implementation. This method allows us to check for errors by making sure that

related metrics add up as expected, and gives us some assurance that the protocol is working

as expected. Two checks are used in the final implementation.The first check compares the

number of dropped data samplesnd to the sum of the number of recovered data samples

nr, lost data samplesnl, and outstanding data samplesno, i.e.

check1← nd− (nr + nl + no) (5.1)

If check1 is zero, the methods for counting samples agree. Ifcheck1 is not zero, the proto-

col is not behaving as expected. The second check compares the number of acknowledge-

able data samplesnA with the number of received data samplesnRC minus the number

of recovered data samplesnr (so that they are not double counted), plus the number of

dropped data samples, i.e.

check2← nA− ((nRC − nr) + nd) (5.2)

As with check1, check2 = 0 indicates that the metrics agree.

The number of dropped samplesnd is counted in the dissemination eventED by call-

ing therecordDroppedSamples() function described in section 5.3. The number of recov-

ered samplesnr is counted in the collection packet received eventEC by checking if the

ackdroppedvector contains a value of1 at elementSN . The number of lost data samples

nl is counted in thegiveup() function described in section 5.3. The number of outstanding

samplesno is counted by thegetOutstanding() function described in section 5.3.

The number of acknowledgable data samplesnA for each mote is calculated by the

68

function:

nA← ackcountvector[RSN] ∗ F + ackcountvector[RSN] (5.3)

where RSN is the sequence number of the data sample with the largest timestamp from the

mote. The number of collection packets resending data samples,nRC, is counted in the

collection packet received eventEC , by checking theSN of the incoming data samples

against the corresponding value in theackvector array. Since each of the metrics used in

check1 andcheck2 are counted using different methods, a nonzero value in either equation

(5.1) or (5.2) points to an error in the implementation of theDACK protocol. These checks

were used extensively to debug the DACK protocol. The implementation was considered

correct, when both equations reported zero for the entire run of a simulation or experiment.

69

Chapter 6

Simulation

Simulations of theSimpleNetworkapplication are made using the TinyOS Simulator [24]

with the TOSSIM-Live extension [31]. The TOSSIM-Live extension allows emulation of

serial communication between a simulated gateway mote and the base station application.

TOSSIM and TOSSIM-Live are discussed in more detail in chapter 3.

Simulations ofSimpleNetworkwere run to debug the DACK protocol, and test the

DACK protocol under various conditions. Many bugs in the implementation only emerged

under rare conditions and required long simulations to reproduce. The DACK protocol itself

appears to operate as it was designed, with two shortcomingsbeing the false positives and

false negatives discussed in Chapter 5. False positives andfalse negatives can be eliminated

using methods discussed in Sections 8.2.3 and 8.2.4, but they are still present in the results

of the current simulations and experiments.

6.1 Design

Sample storage was implemented by using an allocated segment of RAM. The limited

amount of memory on motes requires a small value forF . Using a small value used for

F andW causes both window overflow and storage overflow scenarios tooccur frequently

within the simulations, helping to accelerate the debugging.

70

To build our simulations, we used the link layer model discussed in [59] and provided

by TOSSIM in the TinyOS 2.1 distribution. Using this method,the wireless channel for

motes is modeled using the log-normal path loss model. The path loss model accepts four

parameters: a path loss exponent (decay rate of the signal),a reference distance, a signal

decay over the reference distance, and a standard deviationvalue for multi-path effects. For

simulations of theSimpleNetworkapplication, these parameters were set to to the football

field scenario detailed in the online TOSSIM network topology tutorial [58]. The link layer

model also models network topologies, link asymmetries, and noise floor. Simulations of

SimpleNetworkwere done using a grid topology of evenly spaced nodes with symmetric

links, and a noise floor of−105dB.

Two simulations are described in this chapter. Figures 6.1 and 6.2 show the grid topol-

ogy with8 meter spacing used for the two simulations. The gateway sensor node is always

mote0. All parameters were identical for both simulations, except for F andW . The aim

of these simulations is to determining whether a larger window sizeF could improve the

reliability of theDACK protocol. We simulated16 motes on a 4 by 4 grid topology, with

motes spaced 8 meters apart. Earlier simulations showed that using7 meters or less in the

simulation causes the collection protocol (CTP) to perform so reliably that too few data

samples were dropped to adequately test the DACK protocol. Spacing motes at9 meters,

on the other hand, caused the network to perform so poorly that no communications could

be established with most of the motes in the sensor network. With an 8 meter spacing,

connections between motes and the base station was good enough to establish a connec-

tion to each mote, and volatile enough to produce several storage overflows, and window

overflows, such that the full range of the protocol could be tested and verified.

Each mote in the simulations has a sample intervalIS of 10 minutes, and a report

intervalIR of 30 minutes. This value forIS is chosen to give the network enough time to

disseminate the dissemination messages to each mote. Dissemination is observed to occur

much slower in simulations using TOSSIM than in experimentsusing real motes. For ex-

71

periments, dissemination occurred much faster, allowing asample intervalIS of 10 seconds

and a report intervalIR of 30 seconds to be used. In experiments and the simulations, the

base station has a dissemination intervalID of 30 seconds. Simulations are run as fast as the

CPU can run them. It takes the approximately 30 seconds for simulator to run a simulation

of 16 motes running for30 minutes, conveniently corresponds to a factor of 60. This al-

lowed the base station code to use the same dissemination intervalID for both simulations

and experiments.

6.2 Measurement Process

The process for running a simulation is shown in Figure 5.2. First a simulation configura-

tion file is generated as specified by [58]. An example of a simulation configure file from

our simulations can be found in Appendix A.3. The simulationconfiguration file is then

fed into theLinkLayerModelprogram provided by TOSSIM. TheLinkLayerModelgener-

ates thelinkgain.outfile which lists the gain in decibels between each mote in the network.

Thesimulate.pyprogram configures the TOSSIM to run 16 instances of the SimpleNetwork

mote application, in which each mote has the gain to other motes defined in the linkgain.out

file. The simulated motes are able to communicate with the base station through the Serial-

Forwarder application using the TOSSIM-Live extension.

Both TOSSIM and the base station write status information tostdout. This information

is collected using thescriptapplication. After the simulation is run, theses files can beover a

hundred megabytes. A python program,tabbs.pywas developed to tabulate the information

after the simulations have completed.

72

6.3 Results

Dozens of simulations were run in the course of debugging theDACK protocol before the

checks described in Section 5.4 were satisfied. The final two simulations discussed here

ran for a simulated48 days, without errors being detected. The simulation was stopped

at 48 days, because this is when the mote’s32 bit binary millisecond timer overflows, and

handling for the timer overflow has not yet been implemented.

This section shows the results from two simulations with twodifferent values for for

F andW . All parameters in both simulations are identical to those described in Section 6.1

exceptF andW . The aim is to test if increasing the size ofW would increase the reliability

of the DACK protocol. The first simulation described in Section 6.3.1 usesF = 50 and

W = 24, and the second simulation in Section 6.3.2 usesF = 200 andW = 100. The

results show that the DACK protocol was able to recover approximately 4 times as many

lost samples with the larger values ofF andW ..

73

6.3.1 Simulation One

In this simulation,F is set to50 andW is set to24. The results are shown in two tables.

The metrics for each mote at the end of the simulation are shown in Table 6.1. A count of

dissemination messages and collection messages, as well asa count of detected errors is

recorded in Table 6.2. Figure 6.1 shows the topology used in both simulations. Simulation

one ran for a simulated timespan of48 days and3 hours. This took approximately 12 hours

in real time on a 3.00GHz Intel(R) Pentium(R) 4 CPU with 1 GB ofRAM.

Figure 6.1: The figure above shows the topology of the 16 node grid simulations described
in Section 6.3.1. The link gain value generated by the LinkLayerModel is shown between
adjacent motes. As shown in the legend, the shade of gray indicates the number of ac-
knowledgeable data samplesnA divided by the total number of data samples collected in
the experimentnS. Table 6.1 shows thenA/nS ratio for each mote.

As shown in Table 6.1, the DACK protocol recovered an averageof 28% acknowl-

edgeable dropped data samples. The benefit of1290 is small, as network connectivity in

this experiment is so poor that most of the data samples were not acknowledgeable.

The number of data samples sent,nS, is derived from the largest data sample times-

tamp. The discrepancies in thenS column reflect when each mote was last heard from. For

example, the value4609 for mote8, means that the most recent data sample received from

74

Table 6.1: Metrics from simulation results with F=50, W=24.

MID nS nA nA/nS nRX nd nr rr nl no B
0 6932 6930 1.00 6930 0 0 0.00 0 0 0
1 6932 6930 1.00 6930 1 1 1.00 0 0 1
2 6932 6930 1.00 6930 0 0 0.00 0 0 0
3 6932 6930 1.00 6921 47 38 0.81 9 0 37
4 6848 113 0.02 60 59 6 0.10 53 0 6
5 6577 660 0.10 129 558 27 0.05 531 0 27
6 6932 6930 1.00 6922 11 3 0.27 8 0 1
7 6815 3242 0.48 2045 1683 486 0.29 1197 0 471
8 4609 72 0.02 55 25 8 0.32 17 0 8
9 6697 103 0.02 55 54 6 0.11 47 1 6
10 5927 333 0.06 88 260 15 0.06 245 0 15
11 6677 2050 0.31 1267 1196 413 0.35 783 0 406
12 6467 72 0.01 71 37 36 0.97 1 0 31
13 5756 218 0.04 65 163 10 0.06 153 0 10
14 6803 328 0.05 123 260 55 0.23 184 21 55
15 6824 782 0.11 573 430 221 0.51 209 0 216
Totals: 104660 42623 0.41 391644784 1325 0.28 3437 22 1290

mote8 by the base station was the4609th data sample that mote8 sent.

The number of acknowledgeable data samples,nA, is the total number of data samples

the base station is made aware of through received collection packets. For motes that have

a solid connection to the base station,nA should be almost the same size asnS, since each

mote was booted after the base station started listening. The difference between thenS and

nA in motes with a solid connection to the base station is causedby the message connection

protocol, as discussed in section 4.2.1.

The number of acknowledgeable samples divided by the numberof known samples

sent,nA/nS, reflects the overall reliability of the connection betweenthe each mote and

the base station as maintained by the collection protocol. Connection quality varied consid-

erably, with most motes either gravitating towards very good quality, or very poor quality.

Figure 6.1 shows how the connection quality varied over the simulated topology as reflected

by nA/nS. The total number of received data samples,nRX, shows the number of data

samples that were received by the collection protocol alone, plus the data samples that were

recovered by the DACK protocol.

75

The recovery rationr/(nd − no) is calculated as the number of acknowledgeable

samples that were recovered,nr, divided by the number of data samples that were dropped

nd. This ratio also varied widely from mote to mote. Theno column shows the data

samples that the base station was trying to recover when the simulation was terminated.

The remainder of the data samples are lost, as indicated in thenl column. The benefitB of

using the DACK protocol, is equal to the number of recovered data samplesnr, minus the

number of false positives shownfp in Table 6.2.

Table 6.2: Simulation messaging and error results fro F=50,W=24

MID nD nD1 nD2 nD3 nC nRC nso nwo fn fp
0 2118 0 2069 49 4620 0 0 0 0 0
2 2079 0 2027 52 4620 0 0 0 0 0
3 1665 7 1289 369 4654 34 0 7 0 1
5 1105 14 4 1087 5049 781 169 17 0 0
6 2079 21 2002 56 4645 25 0 3 0 2
7 1234 141 146 947 5903 1413 116 48 0 15
8 1087 5 4 1078 3914 953 169 0 0 0
9 1091 4 6 1081 4993 596 135 1 0 0
10 1096 15 6 1075 4577 702 6 6 0 0
11 1165 114 64 987 6999 2636 149 29 0 7
12 1091 7 1 1083 4277 89 176 0 0 5
13 1093 3 7 1083 3790 142 241 3 0 0
14 1102 19 5 1078 4791 436 41 13 0 0
15 1123 62 19 1042 4864 425 175 14 0 5
Totals: 4863 272 2103 2488 76927 8501 1417 142 0 35

Table 6.2 shows the number of dissemination packets, collection packets, and observed

errors during the simulation. ThenD, nD1, nD2, andnD3 columns show the count of

dissemination packets sent containing acknowledgment messages for each mote. The total

number of packets sent to all motes (bottom row), is much smaller than the sum of each

mote’s count, as multiple dissemination messages are sent per packet as described in section

5.2. Motes that had very poor connectivity mostly requiredD3 type packets, and motes

with a solid connection mostly requiredD2 type packets.D1 packets were used far less

frequently thanD3 packets. This suggests that dissemination packets were notgetting

acknowledged in time, forcing the base station to fall back on D3 type packets to stay in

76

sync. The number ofD3s could be reduced significantly if the base station performed an

exponential backoff. In the current implementation the base station continues to send aD3

packet every other dissemination regardless of whether it hears from the mote again or not.

The number of collection packetsnC includes the numbernRC of collection packets

resending samples shown in the adjacent column. In this simulation,11% of all collection

packets were used for resending samples.

The final four columns of Table 6.2 show the number of storage overflowsnso, win-

dow overflowsnwo, false negativesfn, and false positivesfp. The high number of storage

overflowsnso reflects the long periods of disconnectivity with motes. Thenumber of win-

dow overflows, as well as the number ofD1 packets, indicate that connectivity was lossy

even when some communication could be established. There were no false negativesfn

detected, and few false positivesfp.

6.3.2 Simulation Two

In this simulation,F is set to200 andW is set to100. As with the previous simulation, the

results are shown in two tables. The metrics for each mote at the end of the simulation are

shown in Table 6.3, and a count of messages and errors is shownin Table 6.4. Figure 6.2

shows the topology and the ratio of acknowledgeable samplesnA/nS for the simulation.

Simulation two ran for a simulated timespan of47 days and22 hours.

As shown in Table 6.3, the DACK protocol recovered approximately 23% of acknowl-

edgeable dropped data samples. This is a poorer recovery ratio than in simulation one. The

benefit, on the other hand, seemed to increase significantly from 1290 in simulation one,

to 4218 in simulation two. The larger window size appears to have increased the num-

ber of acknowledgeable data samples marginally, while significantly boosting the number

droppednd and the number recoverednr proportionally.

Table 6.4 shows that the cost of recovering4 times as many packets lead to an11 fold

increase in the collection costnCR, and a13% increase in the dissemination cost. The

77

Figure 6.2: The figure above shows the topology of the 16 node grid for simulation 2. Note
that thenA/nS ratio has changed significantly from Figure 6.1. The link gain values are
the same as those in Figure 6.1. The actual results can be seenin Table 6.3.

Table 6.3: Metrics from simulation results with F=200, W=100

MID nS nA nA/nS nRX nd nr rr nl no B
0 6896 6894 1.00 6894 0 0 0.00 0 0 0
1 6896 6894 1.00 6894 4 4 1.00 0 0 4
2 6896 6894 1.00 6894 5 5 1.00 0 0 5
3 6839 6835 1.00 6266 2888 2319 0.80 569 0 2305
4 5972 2164 0.36 219 2073 128 0.06 1945 0 128
5 6584 2386 0.36 309 2302 225 0.10 2077 0 223
6 6896 6894 1.00 6894 15 15 1.00 0 0 13
7 6835 5055 0.74 1185 4666 796 0.17 3869 1 782
8 6530 1657 0.25 188 1611 142 0.09 1469 0 142
9 6746 999 0.15 140 964 105 0.11 859 0 105
10 6569 219 0.03 146 187 114 0.61 73 0 114
11 6689 1597 0.24 295 1433 131 0.09 1292 10 129
12 6182 620 0.10 105 592 77 0.13 515 0 77
13 6503 259 0.04 36 238 15 0.06 223 0 15
14 5614 147 0.03 41 127 21 0.17 106 0 21
15 6689 1400 0.21 315 1240 155 0.12 1085 0 155
Totals: 105336 50914 0.48 3682118345 4252 0.23 14082 11 4218

sharp increase in the collection costnCR is caused by the mote repeatedly trying to resend

samples until an acknowledgment is received or a window overflow occurs.

78

Table 6.4: Simulation messaging and error results for F=200, W=100

MID nD nD1 nD2 nD3 nC nRC nso nwo fn fp
0 2114 0 2109 5 4596 0 0 0 0 0
2 2067 3 2054 10 4599 3 0 0 0 0
3 1337 94 652 591 11068 6510 1 10 0 14
5 1082 65 2 1015 20109 15751 49 14 0 2
6 2065 9 2046 10 4606 10 0 0 0 2
7 1135 110 30 995 24650 20114 28 78 0 14
8 1090 26 2 1062 17058 12766 79 45 0 0
9 1117 30 2 1085 12453 7973 87 90 0 0
10 1071 22 1 1048 6824 2492 64 0 0 0
11 1190 36 11 1143 11728 7417 78 230 0 2
12 1066 9 0 1057 6087 2003 52 4 2 0
13 1065 10 1 1054 4826 550 86 2 0 0
14 1067 9 2 1056 6174 2481 76 0 0 0
15 1084 30 10 1044 9179 4658 82 18 0 0
Totals: 5473 353 2112 3008 166552 96779 730 615 2 34

6.3.3 Comparing Simulation Results

Table 6.5 shows the network totals for both simulations sideby side. Increasing the stor-

age and window size by a factor of4 resulted in a proportional increase in the number of

known dropped samplesnd and the number of recovered data samplesnr. nd increased

slightly more thannr, resulting in a lower overall effectiveness. The cost of recovering

more dropped data samples was mainly an11 fold increase in the number of collection

packets resending data samples.

The larger window size reduced the number of storage overflows from1417 in simula-

tion one to730 in simulation two, and increased the number of window overflows from142

in simulation one to615 in simulation two. An increased number ofD3 packets from2488

to 3008 is also a consequence of the larger window size, as larger window sizes require

longer acknowledgment vectors. The number of false positives and false negatives in both

simulations is observed to be very small, accounting for less than0.1% of the acknowledge-

able data samples.

79

Table 6.5: Comparing results from both simulations.

F=50 F=200
nS 104660 105336
nA 42623 50914
nA/nS 0.41 0.48
nRX 39164 36821
nd 4784 18345
nr 1325 4252
rr 0.28 0.23
nl 3437 14082
no 22 11
B 1290 4218
E 0.28 0.23
nD 4863 5473
nD1 272 353
nD2 2103 2112
nD3 2488 3008
nC 76427 166552
nRC 8501 96779
nso 1417 730
nwo 142 615
fn 0 2
fp 35 34

80

Chapter 7

Experiment

7.1 Design

The SimpleNetworkapplication was tested on a network of14 TelosB motes. TelosB

motes are discussed in Section 3.1. Figure 7.1 illustrates the approximate arrangement

of motes in the ceiling panels of the Information TechnologyCenter on the University of

New Brunswick campus. Gateway mote0 is connected to a PC acting as a base station

in the data communications lab. All other motes were placed above ceiling panels in the

hallways. Mote7 was placed in the hallway outside of the door to the lab. Motes3, 15, and

8 were placed at the end of the hall near the stair case to help with communication between

floors. Motes11, 6, and10, were placed at the opposite end of the hall near the indoor

balcony, also helping with communication between floors.

Figure 7.1 also shows the routing paths followed by collection packets. These routing

paths were generated using theMViz application povided in the TinyOS 2.x toolchain, and

setting the RF power of each mote in the network to5. According to the CC2420 data sheet

[7], this corresponds to a−20 dBm signal strength and a9.2 mA current consumption.MViz

is a simple network visualization tool that is included withthe TinyOS 2.x distribution. By

default,MViz uses the same collection protocol library that is used by theSimpleNetwork

81

Figure 7.1: Deployment of TelosB motes for an experiment done in the Information Tech-
nology Centre on the University of New Brunswick campus. Fourteen motes were de-
ployed, spread out over 3 floors as shown in the above diagram.Floors are vertically sepa-
rated by 4.07 m. Arrows indicate routing paths traveled by collection packets, as negotiated
by the Collection Tree Protocol.

application. This collection protocol is the Collection Tree Protocol (CTP) discussed in

Section 3.4.1. In Figure 7.1 there are two arrows exiting mote 9, one pointed at mote 8,

and one pointed at mote 5. This indicates that whileMVizwas running on the base station,

it received collection packets that arrived after traveling via both routes. The routing paths

also seem to indicate that the motes are not able to communicate very well through the floor

at this power level.

We tried using both the DIP dissemination protocol and the Drip dissemination proto-

col. In the simulations, both the DIP and the Drip protocols worked fine. We were unable to

get the DIP protocol to function in theSimpleNetworkapplication using the TelosB motes.

82

The Drip protocol, on the other hand, worked very effectively, disseminating messages out

to each mote within seconds. For this reason, the Drip protocol was used for all experi-

ments, as well as simulations.

The Collection Tree Protocol was also observed to work very effectively on the net-

work. In a lab experiment we tested the effectiveness of the collection tree protocol using

one mote and one base station at very low RF power levels. The results were similar to

what we found in the Simulation. The Collection Tree Protocol works very well so long

as a solid connection can be maintained. Varying energy levels and distances, the CTP

achieves high reliability until the reception becomes so poor that the base station can not

communicate with the mote at all. For example, in our experiments we tested effective-

ness of the DACK protocol in our deployment at power levels9, 7, 6 and5 (estimated

to be−12dBm, −15dBm −17.5dBm, and−20dBm respectivly.). At power level6, the

network was able to maintain a solid connection throughout the lifetime provided by two

double a batteries powering each mote. At5, estimated to be−20dBm the connection be-

came very poor after a day of operations in one attempt, and inour second attempt, we were

unable to estable a connection at all at power level5. At power level4, no communications

could be established.

As both the Drip and CTP protocol worked very effectively, wechose short intervals

for sampling, reporting, and dissemination. In each experiment we set the sample interval

IS to be10 seconds, and the report intervalIR and dissemination intervalID both to be30

seconds.

7.2 Measurement Process

As in the simulation, theSimpleNetworkbase station application writes a log of all incom-

ing collection messages, outgoing DACK messages, and the contents of its internal data

structures. At the end of the experiment, the final results are tabulated using thetabbs.py

83

script. Results were verified using the tests described in Section 5.4.

In the simulations, sensor readings all returned the hexadecimal value0xBEEF . For

the experiment, the TelosB motes sample their internal battery voltage. This allowed us to

monitor the energy level of the motes for the lifetime of the experiments.

7.3 Results

This chapter shows the results from4 experiments. The first experiment, discussed in Sec-

tion 7.3.1 was done using an older version of the source code that contained several bugs.

For this reason only the sample reception rate is discussed.The other three experiments

discussed in Sections 7.3.2, 7.3.3, and 7.3.4 were run usingthe same updated version of the

source code that was used in the simulations discussed in Chapter 6.

7.3.1 Experiment One: Power Level 5

In early experiments, we tested the network at various powerlevels to find out the lowest

common power level we could use such that every mote in the network could still communi-

cate with the base station. Initially we observed this powerlevel to be5, which according to

theCC2420 datasheet [7] corresponds to a−20dBm and current consumption of9.2mA.

Our first experiment with power level 5 was done with an early version of the source

code. The final results from this experiment have been omitted due to the observation of

several errors that were detected by applying the checks described in Section 5.4. How-

ever, it is still interesting to note the connectivity of thenetwork at this power level in this

experiment.

Figure 7.2 shows the sample reception for each mote. Every mote reported fine for

the first day. After the first day reception became very poor, with several motes loosing

communication entirely, except for a few small spurts of activity.

We tried to run the experiment at RF level5 again, after the source code was improved

84

Figure 7.2: Sample reception observed with mote IDs on the y-axis, and day of operation
on the x-axis. Motes are at power level 5 (−20dBm and9.2mA). Blank spaces indicate no
data was received by the base station for this mote.

and debugged. However, we were unable to get the network to communicate at all. This

forced us to increase the power level to 6 and try again. The results of the 6 RF experiment

are shown in Section 7.3.4.

7.3.2 Experiment Two: Power Level 9

This experiment began on Monday December 7th, 2009. Unfortunately, due to a human

error, logging did not begin until Thursday December 10th. The motes continued running

until Monday December 14th, when the batteries had drained below the TelosB minimum

voltage requirement. According to the CC2420 datasheet, anRF power level of9 corre-

sponds to−12dBm and a current draw of10.5mA.

Figure 7.3 shows the battery energy reading on the motes for the last three days of the

experiment. Each mote reached the end of it’s battery life after 6 days, and lost communi-

cation with the base station around the same time.

The results of the experiment are shown in Table 7.1. ThenA/nS ratio reflects that

85

Figure 7.3:Energy Readingvs Day of Operationof a 14 mote sensor network experiment
running the DACK protocol at RF power level9: −12dBm and10.5mA.

the base station did not begin acknowledging samples until halfway through the networks

lifetime. The number of data samples that were recovered154 is very small (0.04%) com-

pared to the total number of samples collected367514. The perfect recovery ratiorr shows

that the DACK protocol managed to recover every data sample that was lostnl while the

base station was listening. Though no samples were lost, there were several outstandingno

packets. This indicates that communication became very poor towards the tail end of the

mote battery life.

Table 7.2 shows the cost of using the DACK protocol in this experiment. It took

479 extra collection packets (nRC) and9519 dissemination packets to maintain end to end

communications and recover the154 dropped samples shown in Table 7.1. No window

overflowsnwo, storage overflowsnso, or false negatives occurredfn. There were only 6

false positivesfp.

86

Table 7.1: Metrics from simulation results with RF=9.

MID nS nA nA/nS nRX nd nr rr nl no B
0 53002 26827 0.51 26827 3 3 1.00 0 0 3
2 53003 26830 0.51 26830 7 7 1.00 0 0 7
3 52738 26565 0.50 26542 32 9 1.00 0 23 8
5 52607 26434 0.50 26434 23 23 1.00 0 0 22
6 52606 26433 0.50 26433 11 11 1.00 0 0 9
7 52517 26344 0.50 26344 3 3 1.00 0 0 3
8 52654 26481 0.50 26436 58 13 1.00 0 45 12
9 50663 24490 0.48 24490 7 7 1.00 0 0 7
10 51832 25660 0.50 25659 11 10 1.00 0 1 10
11 51890 25718 0.50 25718 3 3 1.00 0 0 3
12 52604 26438 0.50 26438 7 7 1.00 0 0 7
13 52561 26395 0.50 26377 44 26 1.00 0 18 26
14 52580 26413 0.50 26413 14 14 1.00 0 0 14
15 52658 26486 0.50 26441 63 18 1.00 0 45 17
Totals: 733913 367514 0.50 367382286 154 1.00 0 132 148

Table 7.2: Experiment messaging and error results for RF=9.

MID nD nD1 nD2 nD3 nC nRC nso nwo fn fp
0 8794 3 8790 1 35336 4 0 0 0 0
2 8792 5 8785 2 32861 7 0 0 0 0
3 8689 6 8623 60 32749 10 0 0 0 1
5 8229 11 8147 71 32970 295 0 0 0 1
6 8241 8 8164 69 32694 13 0 0 0 2
7 8713 1 8632 80 32605 3 0 0 0 0
8 8226 7 8147 72 32661 20 0 0 0 1
9 7901 4 7512 385 31289 13 0 0 0 0
10 8021 6 7809 206 32246 16 0 0 0 0
11 8147 0 7958 189 32197 8 0 0 0 0
12 8341 4 8268 69 32560 9 0 0 0 0
13 8299 6 8210 83 32666 48 0 0 0 0
14 8308 7 8227 74 32554 13 0 0 0 0
15 8336 10 8256 70 32690 20 0 0 0 1
Totals: 9519 68 8794 657 458078 479 0 0 0 6

7.3.3 Experiment Three: Power Level 7

The experiment begun on Monday December 14, 2009 was interrupted by a power outage

in the lab on Friday December 18, 2009. According to the CC2420 datasheet, an RF power

level of 7 corresponds to−15dBm and a current draw of9.9mA.

Figure 7.4 shows the battery energy readings recorded for this experiment. The results

87

Figure 7.4:Energy Readingvs Day of Operationof a 14 mote sensor network experiment
running the DACK protocol at RF power level7: −15dBm and9.9mA.

for the experiment are shown in Table 7.3. ThenA/nS ratio is very close to one this time,

because the base station was listening from the moment the motes became operational.

With the exception of mote11, the results for this experiment are very similar to the results

for the experiment at power level9 described in Sections 7.3.2 and power level6 described

in 7.3.4. Very few samples were lost, and all those that were lost were recovered by the

DACK protocol.

The samples lost on mote11 were lost due to the effect of a malformed data sample

that broke the functioning of theDACK protocol. The data sample was malformed such

that it had a very large timestamp, larger than the lifetime of the entire experiment. The

error can be found on line 1269991 of the base station log file explog-dec-14-200F-7RF.

The large timestamp caused the base station to ignore incoming data samples with a lower

timestamp, until finally a storage overflow occurred. After the storage overflow, communi-

cation with mote11 resumed.

88

Table 7.3: Metrics from simulation results with RF=7

MID nS nA nA/nS nRX nd nr rr nl no B
0 33658 33657 1.00 33657 10 10 1.00 0 0 10
2 33661 33658 1.00 33658 35 35 1.00 0 0 34
3 33659 33658 1.00 33658 10 10 1.00 0 0 9
5 33658 33657 1.00 33657 30 30 1.00 0 0 30
6 33658 33657 1.00 33657 19 19 1.00 0 0 19
7 33658 33657 1.00 33657 3 3 1.00 0 0 3
8 33659 33658 1.00 33658 35 35 1.00 0 0 34
9 33658 33657 1.00 33657 15 15 1.00 0 0 15
10 33658 33657 1.00 33657 26 26 1.00 0 0 26
11 33659 33625 1.00 33629 223 36 0.16 163 0 34
12 33659 33658 1.00 33658 10 10 1.00 0 0 10
13 33659 33658 1.00 33658 21 21 1.00 0 0 19
14 33662 33658 1.00 33658 11 11 1.00 0 0 11
15 33662 33658 1.00 33658 16 16 1.00 0 0 16
Totals: 471226 471173 1.00 471177464 277 0.60 163 0 270

Table 7.4 shows the cost of running the DACK protocol in this experiment. It took

247 extra collection packets (nRC) and11412 dissemination packets (nD) to maintain end

to end communications and recover the270 dropped samples shown in 7.3. The storage

overflow that occurred on Mote 11 is shown in thenso column. There were very few false

positives. The7 window overflows and1072 false negatives on mote11 were also the result

of the malformed data sample discussed previously.

7.3.4 Experiment Four: Power Level 6

This experiment began on Monday December 21st, and concluded on Monday December

28th. We were able to log the output of the entire lifetime of the batteries with no interrup-

tions. Figure 7.4 shows the battery energy readings recorded for this experiment. According

to the CC2420 datasheet, RF power level6 corresponds to−17dBm and a current draw of

9.5mA. At this power level, the network was able to maintain a solidconnection with the

base station using the collection tree protocol. As described in Section 7.3.1, setting the

power level to 5 resulted in very poor to no connectivity.

The results for the experiment are shown in Table 7.5. The small difference between

89

Table 7.4: Experiment messaging and error results for RF=7

MID nD nD1 nD2 nD3 nC nRC nso nwo fn fp
0 11035 6 11027 2 22444 7 0 0 0 0
2 10133 24 10050 59 20833 28 0 0 0 1
3 10114 7 10023 84 20928 13 0 0 0 1
5 9748 16 9670 62 20900 32 0 0 0 0
6 9824 13 9749 62 20934 15 0 0 0 0
7 11031 3 11025 3 20929 3 0 0 0 0
8 9807 18 9711 78 20917 33 0 0 0 1
9 9843 10 9776 57 20833 12 0 0 0 0
10 9778 14 9701 63 20948 24 0 0 0 0
11 9980 17 9901 62 20954 27 1 7 1072 2
12 10082 6 10026 50 20788 9 0 0 0 0
13 9948 14 9880 54 20994 18 0 0 0 2
14 9943 9 9879 55 20868 10 0 0 0 0
15 10041 12 9975 54 20927 16 0 0 0 0
Totals: 11412 160 11034 218 294197 247 1 7 1072 7

Figure 7.5:Energy Readingvs Day of Operationof a 14 mote sensor network experiment
running the DACK protocol at RF power level6: −17dBm and9.5mA.

nS andnA reflect that the base station did not start until a few minutesafter the motes had

been booted. In this experiment the DACK protocol was able toachieve a perfect recovery

ratiorr and recover719 data samples.

90

Table 7.5: Metrics from simulation results with RF=6.

MID nS nA nA/nS nRX nd nr rr nl no B
0 53737 53671 1.00 53671 13 13 1.00 0 0 13
2 53612 53546 1.00 53546 20 20 1.00 0 0 20
3 53612 53546 1.00 53536 54 44 1.00 0 10 43
5 53612 53546 1.00 53546 69 69 1.00 0 0 67
6 53612 53543 1.00 53543 21 21 1.00 0 0 21
7 53741 53672 1.00 53672 6 6 1.00 0 0 6
8 53615 53545 1.00 53545 117 117 1.00 0 0 116
9 53615 53545 1.00 53545 120 120 1.00 0 0 114
10 53612 53546 1.00 53546 31 31 1.00 0 0 30
11 53612 53545 1.00 53545 21 21 1.00 0 0 19
12 53612 53546 1.00 53546 106 106 1.00 0 0 103
13 53611 53544 1.00 53544 14 14 1.00 0 0 14
14 53612 53546 1.00 53546 74 74 1.00 0 0 71
15 53615 53563 1.00 53563 63 63 1.00 0 0 62
Totals: 750828 749904 1.00 749894729 719 1.00 0 10 699

Table 7.6 shows the cost of running the DACK protocol in this experiment. It took720

extra collection packets (nRC) and18733 dissemination packets (nD) to maintain end-to-

end communication and recover the719 dropped samples shown in 7.5.

Table 7.6: Experiment messaging and error results for RF=6

MID nD nD1 nD2 nD3 nC nRC nso nwo fn fp
0 17581 10 17569 2 35833 10 0 0 0 0
2 16454 12 16352 90 33313 17 0 0 0 0
3 15330 27 14911 392 33102 61 0 0 0 1
5 15411 37 15213 161 33254 65 0 0 0 2
6 16024 15 15900 109 33351 17 0 0 0 0
7 17579 6 17571 2 33384 20 0 0 0 0
8 15255 59 14964 232 33348 91 0 0 0 1
9 15451 56 15239 156 33215 104 0 0 0 6
10 15589 21 15423 145 33302 58 0 0 0 1
11 16303 17 16184 102 33306 18 0 0 0 2
12 15721 62 15510 149 33213 82 0 0 0 3
13 16158 11 16043 104 33239 14 0 0 0 0
14 15827 40 15638 149 33255 55 0 0 0 3
15 15836 29 15642 165 33383 108 0 0 0 1
Totals: 18733 389 17583 761 468498 720 0 0 0 20

91

Chapter 8

Conclusions and Future Work

8.1 Conclusions

An end-to-end dissemination acknowledgment protocol (DACK) for wireless sensor net-

works was presented. The protocol works well when underlying network collection and

dissemination protocols (e.g. CTP and Drip) are operating reliably. Our six-day experi-

ment with 14 motes sending 749,904 acknowledgeable data samples showed a 100% re-

covery of the 719 data samples dropped if sent via the collection (CTP) protocol only. This

increasing reliability comes at a cost of resending 720 collection packets plus 18,733 dis-

semination packets. This cost is reasonable if data reliability is an important consideration

in the domain where the sensor network is deployed.

8.2 Future Work

The current implementation is a proof-of-concept. Severalpossible improvements could be

implemented to reduce the energy cost of using the protocol,make it more robust, and to

make it more practical for integration with other applications.

92

8.2.1 Rate Control

The DACK protocol could be improved by using various techniques to limit the rate of

disseminations on the base station and sample resending on the motes. In the current im-

plementation, if the base station receives a few messages from motei and then never hears

from motei again, the base station will continue to disseminate messages to motei every

second dissemination interval until the base station program is terminated. Similarly, if a

mote receives a request to resend an old sample and then neverhears from the base station

again, the mote will resend the sample until a window overflowoccurs. In both cases, an

exponential backoff for repeated disseminations and data samples may significantly reduce

the overall cost without significantly effecting overall reliability.

In the current implementation the dissemination interval is controlled by the network

operator. In reality, it would be better to expect the network operator only to have to set

the sample and report intervals on motes. The disseminationinterval could be dynamically

optimized on the base station to minimize cost while meetingthe needs of a potentially

changing network. One method would be to have the base station set a different dissemi-

nation interval for each mote that was equal to motes report interval. Combined with the

exponential backoff described above, these two rules couldprovide adaptive rate control

for many wireless sensor network scenarios.

8.2.2 Alternative dissemination methods

The dissemination method described here involved putting DACK messages D1Ack, D2Ack,

and D3Ack into D1, D2, and D3 type packets (respectively) fordissemination. This method

is dangerous as there is no guarantee that the previousD1 message is disseminated to the

entire network when the base station next decides to send a differentD1 message. On large

enough time scales, this should be okay. In our experiments using Drip, disseminating a

single packet to 14 motes worked reliably in a few seconds.

One alternative would be to take advantage of theDIP protocols method for dissem-

93

inating small messages. Instead of sending large48 byte packets, we could disseminate

shorter messages, such that there is one small buffer for each mote in the network. This

way one mote’s dissemination path will not interfere with another motes dissemination

path. The downside of this method is it would require each mote in the network to allocate

space for every other mote in the network, which would have difficulty scaling to large

networks.

8.2.3 Resolving False Positives

False positives can occur as described in Section 4.2.7.1. Results from the simulations in

Chapter 6 and the experiments in Chapter 7 show that false positives occur infrequently

relative to the number of recovered data samples. The numberof false positives could be

reduced by having the base station only respond to data samples that are older than the

length of the mote’s report interval. This will have consequences to the timeliness of the

protocol, and may result in larger B vectors, requiring moredissemination space. It may be

possible to incorporate some predictive rules to help reduce false positives without suffering

the same cost to timeliness.

8.2.4 Resolving False Negatives

False negatives can occur as described in Section 4.2.7.1. False negatives can be resolved

by decoupling the DACK protocol from the base station samplestorage program. If an

incoming data sample is ignored by the DACK protocol, the DACK protocol can still relay

the message to the storage layer, and the storage layer coulddetermine that if data sample

is new, and store it in the proper location.

94

8.2.5 Modularising DACK

How difficult would it be to decouple the DACK protocol from the prototype application,

such that other network administrators could plug it in to their wireless collection net-

works? The DACK protocol describes end-to-end acknowledgments for data samples, and

not packets. The current implementation relies on the data samples to have consecutive

sequence numbers and timestamps. This means that a modularized version of the DACK

protocol would have to interface with both the communication stack, and the storage stack.

If there is sufficient space on the mote, a modularized version of the DACK protocol

could buffer arbitrary messages as data samples in a storagespace specifically allocated

for the DACK protocol. The prototype application of the DACKprotocol presented in this

thesis shows that the DACK protocol is functional using a small storage space that requires

less than a few kilobytes of RAM. This is significant, as many motes have only 4 to 16

kilobytes of RAM total, but it is small enough to fit on many modern mote platforms.

8.2.6 Scalability Analysis

The scalability of the current implementation of the DACK protocol is unknown. An analy-

sis of the scalability of the DACK protocol could be achievedthough a series of simulations

and experiments. It would also be useful to model the DACK protocol mathematically to

predict how much storage space on motes would be required fornetworks of a given size

with a set of given sample intervals and report intervals.

95

References

[1] R. Beckwith, D. Teibel, and P. Bowen. Unwired wine: sensor networks in vineyards.
Sensors, 2004. Proceedings of IEEE, pages 561–564 vol.2, Oct. 2004.

[2] P.O. Bobbie, C. Deosthale, and W. Thain. Telemedicine: Amote-based data acquisi-
tion system for real time health monitoring. InTelehealth 2006. ACTA Press, 2006.

[3] T. Bokareva, W. Hu, S. Kanhere, B. Ristic, N. Gordon, T. Bessell, M. Rutten, and
S. Jha. Wireless sensor networks for battlefield surveillance. 2006.

[4] Nicolas Burri, Pascal von Rickenbach, and Roger Wattenhofer. Dozer: ultra-low
power data gathering in sensor networks. InIPSN ’07: Proceedings of the 6th inter-
national conference on Information processing in sensor networks, pages 450–459,
New York, NY, USA, 2007. ACM.

[5] V. Cerf, Y. Dalal, and C. Sunshine. Specification of Internet Transmission Control
Program. RFC 675, December 1974.

[6] Chipcon. cc1000 Single Chip Very Low Power RF Transeiver. Chipcon, April 2004.
50 pages.

[7] Chipcon.cc2420: 2.4 GHz IEEE 802.15.4 / ZigBee-ready RF Tranceiver, June 2004.
Priliminary Datasheet (rev 1.2).

[8] Atmel Corporation. Atmel atmega 128 microcontroller datasheet. available from:
<http://www.atmel.com/atmel/acrobat/doc2467.pdf>.

[9] David Gay Cory Sharp, Martin Turon. Tep 102: Timers, 2007.

[10] D. D. Couto, D. Aguayo, B. Chambers, and R. Morris. Performance of multihop
wirless. InFirst Workshop on Hot Topics in Networks), 2002.

[11] Adam Dunkels, Björn Grönvall, and Thiemo Voigt. Contiki - a lightweight and flexible
operating system for tiny networked sensors. InProceedings of the First IEEE Work-
shop on Embedded Networked Sensors (Emnets-I), Tampa, Florida, USA, November
2004.

[12] Rodrigo Fonseca, Omprakash Gnawali, Kyle Jamieson, Sukun Kim, Philip Levis, and
Alec Woo. Tep 123: The collection tree protocol (ctp), 2006.

96

[13] D. Gay, P. Levis, R. Behren, M. Welsh, E. Brewer, and D. Culler. The nesc language:
A holistic approach to networked embedded systems. InProceedings of the ACM
SIGPLAN 2003 conference on Programming Language Design andImplementation
(PLD), San Diego, California, USA, pages 1–11, June 9-11, 2003.

[14] Omprakash Gnawali, Rodrigo Fonseca, Kyle Jamieson, and Philip Levis. Ctp: Robust
and efficient collection through control and data plane integration. Technical Report
SING-08-02, Stanford Information Networks Group, 2008.

[15] Luciano Gonda and Carlos Eduardo Cugnasca. A proposal of greenhouse control us-
ing wireless sensor networks. InComputers in Agriculture and Natural Resources,
Proceedings of the 4th World Congress Conference, Orlando, Florida, USA, July
2006.

[16] Jason L. Hill and David E. Culler. Mica: A wireless platform for deeply embedded
networks.IEEE Micro, 22(6):12–24, 2002.

[17] Jonathan W. Hui and David Culler. The dynamic behavior of a data dissemination
protocol for network programming at scale. InSenSys ’04: Proceedings of the 2nd
international conference on Embedded networked sensor systems, pages 81–94, New
York, NY, USA, 2004. ACM Press.

[18] IEEE. Wireless medium access control and physical layer specifications for low-rate
wireless personal area networks. IEEE Standard, 802.15.4-2003, May 2003.

[19] Crossbow Technology Inc. Micaz datasheet.

[20] ISO. Information technology – Open Systems Interconnection – Basic Reference
Model: The Basic Model. ISO, February 1995. ISO/IEC 7498-1:1994.

[21] Sukun Kim.Wireless Sensor Networks for High Fidelity Sampling. PhD thesis, EECS
Department, University of California, Berkeley, Jul 2007.

[22] Sukun Kim, Rodrigo Fonseca, Prabal Dutta, Arsalan Tavakoli, David Culler, Philip
Levis, Scott Shenker, and Ion Stoica. Flush: a reliable bulktransport protocol for
multihop wireless networks. InSenSys ’07: Proceedings of the 5th international
conference on Embedded networked sensor systems, pages 351–365, New York, NY,
USA, 2007. ACM.

[23] P. Levis, S. Madden, J. Polastre, R. Szewczyk, K. Whitehouse, A. Woo, D. Gay,
J. Hill, M. Welsh, E. Brewer, and D. Culler. Tinyos: An operating system for sensor
networks.Ambient Intelligence, pages 115–148, 2005.

[24] Phil Levis, Nelson Lee, Matt Welsh, and David Culler. TOSSIM: Accurate and Scal-
able Simulation of Entire TinyOS Applications. InACM SensSys 2003, November
2003.

[25] Philip Levis. Tep structure and keywords. Technical Report 1, TinyOS 2.0 Core
Working Group, 2006.

97

[26] Philip Levis, Eric Brewer, David Culler, David Gay, Samuel Madden, Neil Patel,
Joeseph Polastre, Scott Shenker, Robert Szewczyk, and AlecWoo. The emergence of
a networking primitive in wireless sensor networks.Commun. ACM, 51(7):99–106,
2008.

[27] Philip Levis and David Culler. Mate : a tiny virtual machine for sensor networks.
SIGOPS Oper. Syst. Rev., 36(5):85–95, December 2002.

[28] Philip Levis, Sam Madden, David Gay, Joseph Polastre, Robert Szewczyk, Alec Woo,
Eric Brewer, and David Culler. The emergence of networking abstractions and tech-
niques in tinyos. InProceedings of the First USENIX/ACM Symposium on Networked
Systems Design and Implementation (NSDI 2004), 2004.

[29] ARM Limited. System-on-chip platform os processor, 2000.

[30] Kaisen Lin and Philip Levis. Data discovery and dissemination with dip. InIPSN
’08: Proceedings of the 2008 International Conference on Information Processing in
Sensor Networks (ipsn 2008), pages 433–444, Washington, DC, USA, 2008. IEEE
Computer Society.

[31] Chad Stephen Metcalf. TOSSIM Live: Towards a Testbed in a
Thread. PhD thesis, Colorado School of Mines, 2007. available from:
<http://toilers.mines.edu/pub/Toilers/ChadMetcalf/cmetcalf-thesis.pdf>.

[32] Geoff Mulligan. The 6lowpan architecture. InEmNets ’07: Proceedings of the 4th
workshop on Embedded networked sensors, pages 78–82, New York, NY, USA, 2007.
ACM.

[33] Razvan Musaloiu-E., Chieh-Jan Mike Liang, and AndreasTerzis. Koala: Ultra-low
power data retrieval in wireless sensor networks. InIPSN ’08: Proceedings of the 7th
international conference on Information processing in sensor networks, pages 421–
432, Washington, DC, USA, 2008. IEEE Computer Society.

[34] Bradford G. Nickerson, Zhongwei Sun, and John-Paul Arp. A sensor web language
for mesh architectures. InCNSR, pages 269–274, 2005.

[35] J. Hill P. Buonadonna and D. Culler. Active message communication for tiny net-
worked sensors. InIn Proceedings of the 20th Annual Joint Conference of the IEEE
Computer and Communications Societies, Anchorage, Alaska, USA, 2001. IEEE.

[36] Paulo Rogrio Pereira, Antnio Manuel Raminhos CordeiroGrilo, Francisco Rocha,
Mrio Serafim Nunes, Augusto Casaca, Claude Chaudet, Peter Almstrom, and Mikael
Johansson. End-to-end reliability in wireless sensor networks: Survey and research
challenges. pages 67–74, December 2007.

[37] Joseph Polastre. Design and implementation of wireless sensor networks for habitat
monitoring. Master’s thesis, University of California, Berkeley, CA, May 23, 2003.
available from:<http://www.cs.berkeley.edu/ polastre/pubs.html>.

98

[38] Joseph Polastre. A Unifying Link Abstraction for Wireless Sensor Networks.
PhD thesis, University of California, Berkeley, CA, 2005. available from:
<http://www.cs.berkeley.edu/ polastre/pubs.html>.

[39] Joseph Polastre, Jason Hill, and David Culler. Versatile low power media access
for wireless sensor networks. InSenSys ’04: Proceedings of the 2nd international
conference on Embedded networked sensor systems, pages 95–107, New York, NY,
USA, 2004. ACM Press.

[40] Joseph Polastre, Robert Szewczyk, and David Culler. Telos: Enabling ultra-low power
wireless research. InThe Fourth International Conference on Information Processing
in Sensor Networks: Special track on Platform Tools and Design Methods for Network
Embedded Sensors (IPSN/SPOTS), pages 364–369, Los Angeles, California, April
2005.

[41] Technology Review. 10 emerging technologies that willchange the world.MIT Tech-
nology Review, 2003.

[42] Inc RF Monolithics.RFM TR1000 Datasheet. RF Monolithics, Inc, 1999. available
from: <http://www.rfm.com/products/data/tr1000.pdf>.

[43] Inderjit Singh. Real-time object tracking with wireless sensor networks. Master’s
thesis, Lule University of Technology, 2007. available from: http://epubl.ltu.se/1653-
0187/2007/059/index-en.html.

[44] J. Slipp, Changning Ma, N. Polu, J. Nicholson, M. Murillo, and S. Hussain. Winter:
Architecture and applications of a wireless industrial sensor network testbed for radio-
harsh environments.Communication Networks and Services Research Conference,
2008. CNSR 2008. 6th Annual, pages 422–431, May 2008.

[45] Inc. Sun Microsystems. Sun small programmable object technology (sun spot) theory
of operation, 2007.

[46] Robert Szewczyk, Alan Mainwaring, Joseph Polastre, John Anderson, and David
Culler. An analysis of a large scale habitat monitoring application. InSenSys ’04:
Proceedings of the 2nd international conference on Embedded networked sensor sys-
tems, pages 214–226, New York, NY, USA, 2004. ACM.

[47] Wei Tan, Qianping Wang, Hai Huang, Yongling Guo, and Guoxia Zhang. Mine fire
detection system based on wireless sensor network. InProceedings of the 2007 Inter-
national Conference on Information Acquisition, pages 148–151, 2007.

[48] Arsalan Tavakoli, Prabal Dutta, Jaein Jeong, Sukun Kim, Jorge Ortiz, David Culler,
Phillip Levis, and Scott Shenker. A modular sensornet architecture: past, present, and
future directions.SIGBED Rev., 4(3):49–54, 2007.

[49] Arsalan Tavakoli, Prabal Dutta, Jaein Jeong, Sukun Kim, Jorge Ortiz, David Culler,
Phillip Levis, and Scott Shenker. A modular sensornet architecture: past, present, and
future directions.SIGBED Rev., 4(3):49–54, 2007.

99

[50] John Heideman Deborah Estrin Karen Weeks Thanos Stathopoulos, Lewis Girod.
Centralized routing for resource-constrained wireless sensor networks (sys 5), 2006.

[51] Gilman Tolle and David Culler. Design of an application-cooperative management
system for wireless sensor networks.Second European Workshop on Wireless Sensor
Networks (EWSN), January 2005.

[52] Gilman Tolle, Joseph Polastre, Robert Szewczyk, Neil Turner, Kevin Tu, Phil Buon-
adonna, Stephen Burgess, David Gay, Wei Hong, Todd Dawson, and David Culler. A
macroscope in the redwoods.Third ACM Conference on Embedded Networked Sensor
Systems (SenSys), November 2005.

[53] J. Wall, G. Platt, G. James, and P. Valencia. Wireless sensor networks as agents for
intelligent control of distributed energy resources.Wireless Pervasive Computing,
2007. ISWPC ’07. 2nd International Symposium on, pages –, Feb. 2007.

[54] Geoffrey Werner-Allen, Konrad Lorincz, Matt Welsh, Omar Marcillo, Jeff Johnson,
Mario Ruiz, and Jonathan Lees. Deploying a wireless sensor network on an active
volcano.IEEE Internet Computing, 10(2):18–25, March 2006.

[55] Alec Woo and David E. Culler. A transmission control scheme for media access in
sensor networks. InMobile Computing and Networking, pages 221–235, 2001.

[56] Alec Woo, Terence Tong, and David Culler. Taming the underlying challenges of
reliable multihop routing in sensor networks. InSenSys ’03: Proceedings of the 1st
international conference on Embedded networked sensor systems, pages 14–27, New
York, NY, USA, 2003. ACM Press.

[57] W. Ye, J. Heidemann, and D. Estrin. An energy-efficient mac protocol for wireless
sensor networks. InProceedings of the 21st Int. Annual Joint Conf. of the IEEE
Computer and Communication Societies (INFOCOM), vol. 3, pages 1567–1576, New
York, NY, U.S.A., June 2002.

[58] Marco Zuniga. Building a network topology for tossim. available from:
<http://www.tinyos.net/tinyos-2.x/doc/html/tutorial/usc-topologies.html>.

[59] Marco Zuniga, Bhaskar Krishnamachari, and Rahul Urgaonkar. Realistic wireless
link quality model and generator v. 1.1. Technical report, December, 2005. available
from: <http://anrg.usc.edu/www/downloads/LinkModellingTutorial.pdf>.

100

Appendix A

Implementation Source Code and

Descriptions

A.1 Makefile

Listing A.1: Project Makefile
COMPONENT=SimpleNetworkAppC
CFLAGS += -I$(TOSDIR)/lib/net
#CFLAGS += -I$(TOSDIR)/lib/net/dip
#CFLAGS += -I$(TOSDIR)/lib/net/dip/interfaces
CFLAGS += -I$(TOSDIR)/lib/net/drip
CFLAGS += -I$(TOSDIR)/lib/net/4bitle
CFLAGS += -I$(TOSDIR)/lib/net/ctp #-DNO_DEBUG
CFLAGS += -DTOSH_DATA_LENGTH=92
BUILD_EXTRA_DEPS += DACKDiss1SerialMsg.class DACKCollMsg.class
DACKDiss1SerialMsg.class: DACKDiss1SerialMsg.java

javac DACKDiss1SerialMsg.java
DACKDiss1SerialMsg.java:

mig java -target=$(PLATFORM) -java-classname=DACKDiss1SerialMsg \
$(CFLAGS) SimpleNetwork.h DACKDiss1SerialMsg -o $@

DACKCollMsg.class: DACKCollMsg.java
javac DACKCollMsg.java

DACKCollMsg.java:
mig java -target=$(PLATFORM) -java-classname=DACKCollMsg \

$(CFLAGS) SimpleNetwork.h DACKCollMsg -o $@
include $(MAKERULES)

A.2 SimpleNetwork.h

Listing A.2: SimpleNetwork.h

101

#ifndef SIMPLE_NETWORK_H
#define SIMPLE_NETWORK_H

#include <AM.h>

#ifndef ACTIVE
#define ACTIVE 1
#endif

#ifndef PASSIVE
#define PASSIVE 0
#endif

#ifndef DACK_SETS
#define DACK_SETS 2
#endif

#ifndef DACK_DISS1_LENGTH
#define DACK_DISS1_LENGTH 48
#endif

#ifndef DACK_COLL_LENGTH
#define DACK_COLL_LENGTH 20
#endif

#ifndef DACK_SAMPLE_SIZE
#define DACK_SAMPLE_SIZE 10 // s = number of bytes for one sample.
#endif

#ifndef DACK_COLL_NUM_SAMPLES
#define DACK_COLL_NUM_SAMPLES (DACK_COLL_LENGTH/DACK_SAMPLE_SIZE)
#endif

#ifndef DACK_STORAGE_SIZE
#define DACK_STORAGE_SIZE 50 // F = maximum number of samples.
#endif

enum {
AM_DACKDISS1SERIALMSG = 0xD1,
AM_DACKCOLLMSG = 0xC0,
};

typedef nx_struct DACKDiss1Data {
nx_uint8_t data[DACK_DISS1_LENGTH];

} DACKDiss1Data;

typedef nx_struct DACKDiss1SerialMsg {
nx_uint8_t type; // dip_msgid_t
nx_uint16_t key;
nx_uint16_t version;
nx_uint8_t size;
nx_uint8_t data[DACK_DISS1_LENGTH];

} DACKDiss1SerialMsg;

typedef nx_struct DACKSample {
nx_uint16_t sn; // Sequence Number
nx_uint8_t sid; // Sensor ID
nx_uint16_t reading;
nx_uint32_t timestamp;

} DACKSample;

typedef nx_struct DACKCollMsg {
nx_uint32_t cn; // Collection Packet Sequence Number
nx_uint16_t mid; // Mote ID
nx_uint16_t lan; // Last Acknowledged Sequence Number

102

nx_uint16_t lsn; // Last Sequence Number Sent in a Collection report
nx_uint8_t dsn; // Sequence Number of the last processed dissemination packet
//nx_uint8_t rsn; // Sequence Number of current Report
DACKSample sample[DACK_COLL_NUM_SAMPLES]; // Data Samples

} DACKCollMsg;

#endif

A.3 simconfig.txt

Listing A.3: simconfig.txt
PATH_LOSS_EXPONENT = 4.7;
SHADOWING_STANDARD_DEVIATION = 3.2;
D0 = 1.0;
PL_D0 = 55.4;

NOISE_FLOOR = -105.0;
S11 = 0;
S22 = 0;
WHITE_GAUSSIAN_NOISE = 4;

TOPOLOGY = 1;
GRID_UNIT = 7.0;
NUMBER_OF_NODES = 64;

A.4 simulate.py

Listing A.4: test.py
from TOSSIM import *
from tinyos.tossim.TossimApp import *
from random import *
import sys
import random

t = Tossim([])
r = t.radio()

sf = SerialForwarder(9001)
throttle = Throttle(t, 100)

numnodes = 16

f = open("linkgain.out", "r")
lines = f.readlines()
for line in lines:
s = line.split()
if (len(s) > 0):
if s[0] == "gain":
r.add(int(s[1]), int(s[2]), float(s[3]))

print "1->0:",r.connected(1,0)
print "2->0:",r.connected(2,0)

103

noise = open("linkgain.out", "r")
lines = noise.readlines()
for line in lines:
s = line.split()
if (len(s) > 0):
if s[0] == "noise":
m = t.getNode(int(s[1]));
for i in range(0, 500):
m.addNoiseTraceReading(-105 + int(random.random()*float(s[3])));

for i in range(0, numnodes):
m = t.getNode(i);
m.createNoiseModel();
time = randint(t.ticksPerSecond(), numnodes * t.ticksPerSecond())
m.bootAtTime(time)
print "Booting ", i, " at time ", time

sf.process();
throttle.initialize();

print "Starting simulation."

t.addChannel("boot", sys.stdout)
t.addChannel("sending", sys.stdout)
t.addChannel("sendingprep", sys.stdout)
t.addChannel("resending", sys.stdout)
t.addChannel("resendingprep", sys.stdout)
#t.addChannel("reporting", sys.stdout)
#t.addChannel("sampling", sys.stdout)
#t.addChannel("problem", sys.stdout)
t.addChannel("changed", sys.stdout)
#t.addChannel("D1", sys.stdout)
#t.addChannel("D2", sys.stdout)
#t.addChannel("D3", sys.stdout)
#t.addChannel("messaging", sys.stdout)

while (1):
#throttle.checkThrottle();
t.runNextEvent();
sf.process();

A.5 SimpleNetworkAppC.nc

Listing A.5: SimpleNetworkAppC.nc
/**
* SimpleNetwork tests the dissemination of DACK packets using DIP.

*
* See TEP118: Dissemination, TEP 119: Collection, and TEP 123: The

* Collection Tree Protocol for details.

*
* @author John-Paul Arp

*
* Based on EasyDissemination Tutorial

*/

#include "SimpleNetwork.h"

configuration SimpleNetworkAppC {}
implementation {
components MainC;

104

SimpleNetworkC.Boot -> MainC;

components LedsC;
SimpleNetworkC.Leds -> LedsC;

components SimpleNetworkC;

components SerialActiveMessageC;
SimpleNetworkC.SerialControl -> SerialActiveMessageC;

components ActiveMessageC;
SimpleNetworkC.RadioControl -> ActiveMessageC;

// Time Components
components new TimerMilliC() as SampleTimer;
components new TimerMilliC() as ReportTimer;
components new TimerMilliC() as DelayTimer;
components new TimerMilliC() as StaggeredStartTimer;
//BusyWaitMicroC
SimpleNetworkC.SampleTimer -> SampleTimer;
SimpleNetworkC.ReportTimer -> ReportTimer;
SimpleNetworkC.DelayTimer -> DelayTimer;
SimpleNetworkC.StaggeredStartTimer -> StaggeredStartTimer;

components LocalTimeMilliC;
SimpleNetworkC.LocalTime -> LocalTimeMilliC;

// Dissemination Components
components DisseminationC;
SimpleNetworkC.DisseminationControl -> DisseminationC;

components new DisseminatorC(DACKDiss1Data, 0xDE01) as DACKDiss1C;
SimpleNetworkC.ValueD1 -> DACKDiss1C;
SimpleNetworkC.UpdateD1 -> DACKDiss1C;
components new DisseminatorC(DACKDiss1Data, 0xDE02) as DACKDiss2C;
SimpleNetworkC.ValueD2 -> DACKDiss2C;
SimpleNetworkC.UpdateD2 -> DACKDiss2C;
components new DisseminatorC(DACKDiss1Data, 0xDE03) as DACKDiss3C;
SimpleNetworkC.ValueD3 -> DACKDiss3C;
SimpleNetworkC.UpdateD3 -> DACKDiss3C;

components new DisseminatorC(DACKDiss1Data, 0xDE04) as DACKDiss1BC;
SimpleNetworkC.ValueD1B -> DACKDiss1BC;
SimpleNetworkC.UpdateD1B -> DACKDiss1BC;
components new DisseminatorC(DACKDiss1Data, 0xDE05) as DACKDiss2BC;
SimpleNetworkC.ValueD2B -> DACKDiss2BC;
SimpleNetworkC.UpdateD2B -> DACKDiss2C;
components new DisseminatorC(DACKDiss1Data, 0xDE06) as DACKDiss3BC;
SimpleNetworkC.ValueD3B -> DACKDiss3BC;
SimpleNetworkC.UpdateD3B -> DACKDiss3BC;

components new SerialAMReceiverC(AM_DACKDISS1SERIALMSG) as DissSerialReceiver;
SimpleNetworkC.DissSerialReceive -> DissSerialReceiver;

// Collection Components
components CollectionC as Collector;
SimpleNetworkC.RootControl -> Collector;
SimpleNetworkC.RoutingControl -> Collector;
SimpleNetworkC.CollRadioReceive -> Collector.Receive[AM_DACKCOLLMSG];

components new CollectionSenderC(AM_DACKCOLLMSG);
SimpleNetworkC.CollRadioSend -> CollectionSenderC.Send;

components new SerialAMSenderC(AM_DACKCOLLMSG) as CollSerialSender;
SimpleNetworkC.CollSerialSend -> CollSerialSender;

components new PoolC(message_t, 5) as UARTMessagePoolP;

105

SimpleNetworkC.UARTMessagePool -> UARTMessagePoolP;

components new QueueC(message_t*, 5) as UARTQueueP;
SimpleNetworkC.UARTQueue -> UARTQueueP;

// Sensing Components
components new DemoSensorC() as Sensor;
SimpleNetworkC.Read -> Sensor;

}

A.6 SimpleNetworkC.nc

A.6.1 Processing Sample Events on a mote

Each mote has one report timer, and at least one sample timer.Whenever a sample timer

fires, the mote takes a reading from the appropriate sensor. The readingR is then written to

storage with the sensor ID numberSID, a timestampT , and a sequence numberSN . The

10 − byte structure of a data sample is shown in Figure 5.3. The timestamp is a4 − byte

value containing the number of binary milliseconds since the mote was first activated. Data

Samples are written sequentially to an allocated segment ofstorage of sizeF ∗ 10 bytes,

whereF is the maximum number of samples of size10 that can be stored in the allocated

segment. When the allocated segment of storage becomes full, the application loops back

to the beginning creating a circular buffer. The sample sequence numberSN also rolls

over when storage becomes full. This allows theSN to be used as a pointer to the memory

location of samples in storage.

The mote keeps an index in RAM to keep track of where samples are stored in flash.

This index contains the following values:

• F : the number of samples that can be stored in the mote’s storage (e.g. flash), and
the maximum value forSN .

• SN : the sequence number of the next data sampled to be sampled.

• LSN : the sequence number of the last data sample to be sent in a collection packet in
a report interval.LSN is included in all DACK collection packets (see Figure 5.4),
and is the same for every packet sent in a report interval.

106

• ASN : the sequence number of the last consecutively acknowledged data sample. For
example, if10 samples were sent withSNs from0 to 9, and later the samples0 to 5,
and7 to 9 were acknowledged, then theASN would be equal to5.

• DSN : the sequence number of the most recently received DACK dissemination
packet (DDP) that contained a local acknowledgment. Each DDP contains a sequence
of acknowledgments for various Motes in a WSN, and aDSN indicating the order in
which it was sent from the base station. DDPs are discused further in section A.7.2.

• B: an L-bit acknowledgment vector, stuffed into the rightmostL bits in a⌈L/8⌉)-
byte array. Bits inB correspond to the bits in betweenASN andSN , such that
for each bitb at positioni in B, a 0 indicatesSN ← (ASN + i) mod F is an
unacknowledged sample, and a1 indicatesSN ← (ASN + i) mod F is an ac-
knowledged sample. In the curent implementation a 64-bit unsigned integer is used
to holdB intead of a byte array on the mote.

• L: the number of bits inB

• W : the maximum size of the acknowledgment vector, called the Acknowledgment
Window. WhenB grows larger thanW , it causes an Acknowledgment Window
Overflow Error, orWindowError for short. BecauseB is contained in a 64-bit
unsigned integer, the current maximum possible size forW is 64.

Initially SN andL are set to0, andLSN andASN are set to−1. As samples are

collected, onlySN is incremented. Algorithm A.6 illustrates how Motes process sample

events using the above index values. Figure A.1 illustratesan example index composition

with 3 sample data readings.

Listing A.6: Process Sample Event on mote
/*! Trigger: Sample Event for sensor SID is signaled by the Sample

* Timer

* Input: the new sample reading ’data’

* Effect: updates SN, and writes the sample to storage at SN

*/
event void Sensor1Read.readDone(error_t result, uint16_t data)
{
DACKSample ds;

// Storage Overflow Error detected, Restart.
if ((SN+1)%DACK_STORAGE_SIZE == ASN)
{
dsn = 253;
dacklength = 0;
SN = 0;
ASN = -1;
LSN = -1;
resendcursor = 0;

}

ds.sn = SN;

107

ds.sid = 1;
ds.reading = data;
ds.timestamp = call LocalTime.get();
storage[SN] = ds;
SN=(SN+1)%DACK_STORAGE_SIZE;

}

Figure A.1: An example of what the mote index and storage would look like after 3 samples
have been collected.

A.6.2 Process Report Event on mote

Whenever the report timer fires, the mote sends a report of alldata samples recorded since

the last report interval, as well as all unacknowledged samples in the acknowledgment win-

dow. Before it sends any packets, the mote checks to see if theB vector has exceeded its

maximum sizeW . If it has, then all previously sent unacknowledged packetsare perma-

nently lost by settingASN ← LSN . Each DACK collection packet containsMID, the

id of the mote transmitting the message, theASN , theLSN , theDSN , and then a series

of data samples. Figure 5.4 shows the structure of a DACK collection packet containing

2 data samples. Algorithm A.7 illustrates the logic of processing report events on Motes.

Figure A.2 shows how the contents of flash, the mote index, anda DACK collection packet

may looks after the first report event.

DACK collection packets are sent to the base station using a best effort collection

protocol, such as the Collection Tree Protocol discussed insection 3.4.1. The number of

samples that can be stored in a single collection packet varies on different hardware and

108

different MAC protocols. In the current implementation, collection packets each have2

data samples, but platforms with a larger maximum packet size can hold more samples.

Figure A.2: An example of what the mote index and storage would look like after 14
samples have been collected, and the first Report Event completed from two sensors (one
with SID = 0 and the other withSID = 1) The corresponding last generated collection
packet is shown below. All values are in bytes, except the bitvector B.

Listing A.7: Report Timer Fired
event void ReportTimer.fired()
{ int i;
resendcursor = (ASN + 1)%DACK_STORAGE_SIZE;
tdackvector = dackvector;
tdacklength = dacklength;
if (dacklength < W)
{ resending = TRUE;
}
if ((dacklength >= W) && (dacklength < DACK_STORAGE_SIZE - 5))
{ dsn = 255; // Signal that we are going to stop trying to resend old samples
resending = FALSE;

}
post resendCollectionPacket();

}

Listing A.8: Resend Lost Samples
/*! Contains the logic for resending unacknowledged packets < LSN

*/
task void resendCollectionPacket()
{
DACKCollMsg *dcm;
DACKSample *s1;
DACKSample *s2;
int i = 0;

109

int numsent = 0;
if ((!collsendbusy) && (tdacklength > 0))
{ dcm = (DACKCollMsg *)call CollRadioSend.getPayload(&collsendbuf, sizeof(DACKCollMsg));
s1 = &(dcm->sample[0]);
s2 = &(dcm->sample[1]);
if (dcm == NULL)
{ fatal_problem();
return;

}
for (i = 1; i <= DACK_COLL_NUM_SAMPLES; i++)
{ while ((tdackvector | 0xFFFFFFFFFFFFFFFE) == 0xFFFFFFFFFFFFFFFF)
{ tdacklength--;
tdackvector=tdackvector>>1;
resendcursor=(resendcursor+1)%DACK_STORAGE_SIZE;

}
if (tdacklength > 0)
{ if (storage[SN].timestamp == 0) storage[SN].timestamp = 1;
memcpy(&(dcm->sample[i-1]), &storage[resendcursor], sizeof(DACKSample));
tdacklength--;
tdackvector=tdackvector>>1;
resendcursor=(resendcursor+1)%DACK_STORAGE_SIZE;

}
else
{ memcpy(&(dcm->sample[i-1]), "\0\0\0\0\0\0\0\0\0\0", sizeof(DACKSample));
}

}
dcm->mid = TOS_NODE_ID;
dcm->lan = ASN;
if (SN == 0)
{ dcm->lsn = DACK_STORAGE_SIZE - 1;
}
else
{ dcm->lsn = SN-1;
}
dcm->dsn = dsn;
if (call CollRadioSend.send(&collsendbuf, sizeof(localcollmsg)) == SUCCESS)
{ collsendbusy = TRUE;
}
else
{ report_problem();
}

}
else
{ post sendCollectionPacket();
}

}

Listing A.9: Send New Samples
/*! Contains the logic for resending unacknowledged packets > LSN

*/
task void sendCollectionPacket()
{ DACKCollMsg *dcm;
int i = 0;
int numsent = 0;
if ((!collsendbusy) && (SN != (LSN + 1)%DACK_STORAGE_SIZE))
{ dcm = (DACKCollMsg *)call CollRadioSend.getPayload(&collsendbuf, sizeof(DACKCollMsg));
if (dcm == NULL)
{ fatal_problem();
return;

}
for (i = 1; i <= DACK_COLL_NUM_SAMPLES; i++)
{ if (((LSN+i)%DACK_STORAGE_SIZE) != SN)
{ memcpy(&(dcm->sample[i-1]), &storage[(LSN+i)%DACK_STORAGE_SIZE],

sizeof(DACKSample));
numsent++;

110

}
else
{ memcpy(&(dcm->sample[i-1]), "\0\0\0\0\0\0\0\0\0\0", sizeof(DACKSample));
}

}
dcm->mid = TOS_NODE_ID;
dcm->lan = ASN;
if (SN == 0)
{ dcm->lsn = DACK_STORAGE_SIZE - 1;
}
else
{ dcm->lsn = SN-1;
}
dcm->dsn = dsn;
if (call CollRadioSend.send(&collsendbuf, sizeof(localcollmsg)) == SUCCESS)
{ LSN = (LSN + numsent)%DACK_STORAGE_SIZE;
collsendbusy = TRUE;

}
else
{ report_problem();
}

}
}

Listing A.10: sendDone Event
event void CollRadioSend.sendDone(message_t* msg, error_t error)
{ post task sendmore();
}

Listing A.11: sendmore
task void sendmore()
{ collsendbusy = FALSE;
if (tdacklength <= 0) resending = FALSE;

if (resending == FALSE)
{ post sendCollectionPacket();
}
else
{ post resendCollectionPacket();
}

}

A.6.3 Processing DACK Dissemination Packets on the mote

As Motes receive dissemination packets, they have to parse each packet to look for their

MID. If the mote’sMID is not present, the packet is ignored. For each of the three types

of dissemination packets, there is a corresponding packet processing function. Code listings

A.12, A.13, A.14 illustrates how the dissemination packetsare processed forD1, D2, and

D3 type packets.

111

A.6.3.1 Processing D1 type packets

If a D1 packet contains the mote’sMID, the next byte is checked forL. If L = 0 then,

ASN is set toLSN . If L > 0, thenA is parsed. If the first bit inA is a zero, then

ASN will remain unchanged. Otherwise,ASN is updated to reflect the last consecutive

1 in A, to reflect the new last consecutively acknowledged bit. Themote then updates

acknowledgment vectorB to start fromASN + 1 mod F , and fills in each bit entry with

the corresponding bits found inA. At the next report interval, the mote will then resend

Figure A.3: An example of what the mote index and storage would look like after 21
samples have been logged, 14 samples have been sent, and aD1 type disseminated ac-
knowledgment is received. In this exampleSNs 8, 9, and 10 were not received by the base
station.

all of the unacknowledged data samples, as well as any new samples that are collected.

Algorithm A.12 describes the logic of processing D1 type packets. Figure A.3 illustrates

how the flash and mote index might look on mote 5 after a disseminated acknowledgment

is received with 11 acknowledged samples and 3 unacknowledged samples.

112

Listing A.12: Process D1 Packet on the mote
/*! Trigger: D1 Packet Recieved

* Input: D1 Packet

* Effect: If D3 packet contains TOS_NODE_ID then

* the index is updated with the incoming ack vector

*/
task void processD1()
{ int ds = 0; int i=0; int j=0; int ac=0;
uint16_t cmid = 0; uint8_t length = 0; uint8_t bytelength = 0;
if (resending) return;
while (i+2 < sizeof(d1data[ds]))
{ cmid = d1data[ds][i];
cmid = (cmid<<8) | d1data[ds][i+1];
if (cmid == 0xFFFF) break;
length = d1data[ds][i+2];
bytelength = ceil(((float)length+1.0)/8.0);
if (length == 0) break;
i = i + 3;
if (bytelength+i < sizeof(d1data[ds]))
{ if (cmid == TOS_NODE_ID)
{ dsn = d1data[ds][sizeof(d1data[ds])-1];
dackvector = 0;
dacklength = length;
resending = TRUE;
for (j = 0; j < bytelength; j++)
{ dackvector = (dackvector << 8) | d1data[ds][i+j];
}
while ((dackvector | 0xFFFFFFFFFFFFFFFE) == 0xFFFFFFFFFFFFFFFF)
{ ASN=(ASN+1)%DACK_STORAGE_SIZE;
dackvector = dackvector >> 1;
dacklength--;

}
break;

}
i = i + bytelength;

} else { break; }
}
return;

}

A.6.3.2 Processing D2 type packets

If a D2 type packet contains a reference to the receiving mote’sMID, then all DACK data

samples have been acknowledged. The mote then clears theB vector, andASN is set to

LSN . Algorithm A.13 describes the logic of processingD2 type packets. Figure A.4 illus-

trates how the mote’s index values and storage might look on mote 5 after a disseminated

acknowledgment is received inside aD2 type packet.

113

Listing A.13: Process D2 Packet on the mote
/*! Trigger: D2 Packet Recieved

* Input: D2 Packet

* Effect: If D2 packet contains TOS_NODE_ID, then all data samples

* up to LSN is acknowledged

*/
task void processD2()
{ int acked = FALSE; int ds = 0; int i;
uint8_t inchar; int16_t cmid = -1; int16_t pmid = -1;
for (i = 0; i < sizeof(d2data[ds]); i=i+2)
{ inchar = d2data[ds][i];
if (inchar == ’-’)
{ if (pmid != -1)
{ i = i + 1;
inchar = d2data[ds][i];
cmid = inchar;
cmid = cmid << 8;
cmid = cmid | d2data[ds][i+1];
if ((cmid >= TOS_NODE_ID) && (pmid <= TOS_NODE_ID))
{ dsn = d2data[ds][sizeof(d2data[ds])-1];
ASN = LSN;
dackvector = 0;
dacklength = 0;
return;

}
} else { return; }

}
else
{ cmid = inchar;
cmid = cmid << 8;
cmid = cmid | d2data[ds][i+1];
pmid = cmid;
if (cmid == TOS_NODE_ID)
{ dsn = d2data[ds][sizeof(d2data[ds])-1];
ASN = LSN;
dackvector = 0;
dacklength = 0;
return;

}
}

}
return;

}

A.6.3.3 Processing D3 type packets

An acknowledgment in aD3 type will tell the mote to update itsASN , B, andn, directly.

Algorithm A.14 describes the logic of processingD3 type packets. Figure A.5 illustrates

how the flash and mote index might look on mote 5 in the scenariothat aD3 type packet is

received to correct anASNmismatch cause by theD2 packet in Figure A.4.

114

Listing A.14: Process D3 Packet on the mote
/*! Trigger: D3 Packet Recieved

* Input: D3 Packet

* Effect: If D3 packet contains TOS_NODE_ID

* index is updated with new ASN and ack vector

*/
task void processD3()
{ int ds = 0; int i=0; int j=0; int ac=0;
uint16_t cmid = 0; uint16_t fixedASN = 0;
uint8_t length = 0; uint8_t bytelength = 0;
if (resending) return;
while (i+2 < sizeof(d3data[ds]))
{ cmid = d3data[ds][i];
cmid = (cmid<<8) | d3data[ds][i+1];
if (cmid == 0xFFFF) break;
length = d3data[ds][i+2];
bytelength = ceil(((float)length+1.0)/8.0);
if (length == 0) break;
fixedASN = d3data[ds][i+3];
fixedASN = (fixedASN<<8) | d3data[ds][i+4];
i = i + 5;
if (bytelength+i < sizeof(d3data[ds]))
{ if (cmid == TOS_NODE_ID)
{ dsn = d3data[ds][sizeof(d3data[ds])-1];
ASN = fixedASN; resending = TRUE;
dackvector = 0; dacklength = length;
for (j = 0; j < bytelength; j++)
{ dackvector = (dackvector << 8) | d3data[ds][i+j];
}
while ((dackvector | 0xFFFFFFFFFFFFFFFE) == 0xFFFFFFFFFFFFFFFF)
{ ASN=(ASN+1)%DACK_STORAGE_SIZE;
dackvector = dackvector >> 1; dacklength--;

}
break;

}
i = i + bytelength;

} else { break; }
}
return;

}

Figure A.4: An example of what the mote index and storage would look likeon mote 5
after 21 samples have been logged, 14 samples have been sent,and aD2 type disseminated
acknowledgment is received. The dissemination packet contains full acknowledgments for
Motes withMIDs equal to 1, 3, 4, 5, 6, and 8.

115

Figure A.5: This Figure show a scenario in which aD3 packet is required. Suppose theD2
acknowledgment sent in Figure A.4 was received by mote5 after it had sent data samples
15 to 21, but before those samples were recieved by the base station.Suppose further that
the packet containing SN15 and16 were lost in transmission. The mote would assume
that the base station was acknowledging those samples as well, and set itsASN to 21, not
knowing thatSN 15 and16 were lost. The base station will detect the problem when the
mote sends the next report, because it will expect the incoming collection packets to have an
ASN = 14, but discover that they have anASN = 21 instead. The base station identifies
this as aASNmismatch, and responds by embedding an acknowledgment to mote5 inside
aD3 type packet.

A.7 SimpleNetworkBS.java

A.7.1 Processing Samples on the Base Station

As the base station receives collection packets, it stores the samples in a database, and

keeps a record of acknowledgment information for each mote.The base station creates a

MoteIndex object for each unique mote to keep track of incoming data samples.MoteIndex

objects are stored in a hashtable called theMoteTable, usingMID as the key. Each

MoteIndex object contains the following data items:

116

• MID: The mote ID of the mote this MoteIndex object is keeping track of.

• ASN : MID’s last consecutive acknowledged data sampleSN .

• LSN : The last data sampleSN sent in a report interval fromMID.

• DSN : The sequence number of the last dissemination packet sent containing an
acknowledgment forMID.

• numsent: The total number of unique data samples sent byMID.

• numdropped: The total number of unique data samples fromMID that the DACK
protocol detects as missing prior to generating any acknowledgements.

• numrecovered: The total number of data samples onMID that were recovered by
acknowledgments disseminated inD1 or D3 type packets. This is discussed further
in section 4.3.

• numlost: The total number of data samples onMID that were lost due to a Ac-
knowledgment Window Overflow Error.

• ASNmismatch: Set toTRUE when theMoteIndex object and incoming collec-
tion packets from the corresponding mote disagree on the value of ASN . This is
discussed further in sections A.7.2 and A.6.3.3.

• WindowError: Set toTRUE for MID when theDSN value inside an incoming
collection packet fromMID is set to255. This indicates that the mote has detected
an Acknowledgment Window Overflow Error, and is alerting thebase station.

• ackwaiting: A boolean value indicating whether or not a base station is waiting to
receive an acknowledgment of a disseminated acknowlegment. It is set toTRUE
before an acknowledgment with a uniqueDSN is disseminated toMID, and set to
FALSE when a DACK collection packet is received by the base stationcontaining
the sameDSN . This is used so that the base station will not send any new acknowl-
edgments, until the previous acknowledgments are themselves acknowledged.

• ackvector: An integer vector of sizeF , in which a value of1 at positioni indicates
the a data sample withSN = i has been received;0 indicates the data sample has not
been received. This vector only keeps track ofSNs between(ASN +1) mod F and
LSN . Elements in the vector outside of(ASN + 1) mod F andLSN are set to0.

• ackcountvector: A vector of sizeF , in which each element is initially set to0, and
each element at positioni is incremented whenever a data sample withSN = i is
received.

• acktimevector: A vector of sizeF , in which each positioni contains the latest times-
tamp from a data sample withSN = i

117

• lostackvector: a vector of sizeF , that acts as the inverse of theackvector.

• A: anL-bit acknowledgment vector, stuffed into the rightmostL bits in a⌈L/8⌉-byte
array. Bits inA correspond to the bits in betweenASN andLSN , such that for each
bit a at positioni in A, a0 indicatesSN = (ASN +i) mod F is an unacknowledged
sample, and a1 indicatesSN = (ASN + i) mod F is an acknowledged sample.A
is a compressed format for theackvector to be packed into communication packets.
A is the mirror of theB vector on the mote.

• L: the size of the vectorA.

In addition to the above data items, the MoteIndex also contains the following meth-

ods:

• getAckInBytes(): generates and returnsA.

• cleanAckV ector(): sets all bits in theackvector outsideASN andLSN to 0.

• countLostSamples(): updates thelostackvector, and incrementsnumlost for each
known missing data sample.

• giveup(): this method tells the base station to give up on requesting aretransmission
for any data samples before a givenSN . This method is called when the base station
recieves aWindowError flag in theDSN value of incoming collection packets.
This method incrementsnumlost for every data sample that will consequently never
be acknowledged.

• allclear(): this method returnsTRUE if and only if there are no unacknowledged
data samples in theackvector.

• checkASNmismatch(): this method returns true if theASN in the incoming DACK-
CollectionPacket is in disagreement with theMoteIndex object’s value forASN .

• findASN(): this searches theackcountvector to find the correct value forASN .

The DACK protocol uses three types of packets, with different levels of detail. By

using these three types of packets, the base station can reduce the number of bytes dissem-

inated per mote, by packaging it in the most appropriate dissemination packet. The three

types of dissemination packets are:

118

• TheD1 type packet (shown in Figure 5.6) contains a sequence of(MID, L, A), for
Motes for which some data samples were not received at the base station.

• TheD2 type packet (shown in Figure 5.7) contains a sequence of(MID), for Motes
that are not missing any data samples.MID for D2 are sorted byMID in ascending
order. If theMID values are contiguous, then only the first and last contiguousMID
are put into the packet with a ’-’ charachtor placed in between. D2 packets are the
most compressed dissemination packet type.

• TheD3 type packet (shown in Figure 5.8), contains a sequence of(MID, ASN, L, A),
for Motes for which some data samples were not received at thebase station, and for
wchich anASNmismatch was detected.

It is possible to build a functioning dissemination-based acknowledgment protocol

using onlyD3 packets, but it would be less efficient.D1 packets, andD2 packets by

themselves are not sufficient, because the transmission delay for both the collection and

dissemination protocols can cause DACK messages to be received out of sync. For ex-

ample, a mote may send a report just after the base station hasdisseminated aD2 type

acknowledgment for a previous report, but before that acknowledgment packet reaches the

mote. When the acknowledgment does reach the mote, the mote will believe it was for

both reports, and not just the previous one. One solution would be to include a report IDs

inside collection and dissemination packets. This would require additional byte for every

mote you want to acknowledge in a dissemination packet, severely reducing the compres-

sion of theD2 type packet.D3 packets present a more economical solution. After the mote

makes another report, the base station will be able to detectthat theASN on the incoming

collection packet does not match the local value for the mote’s ASN . This is called an

“ASNmismatch”. When the base station detects anASNmismatch, it will send a de-

tailedD3 type acknowledgment containing the correctedASN , L, andA vector required

to properly acknowledge the mote.

As shown in Figures 5.6, 5.7, and 5.8, each of the three types of dissemination packets

contain the 8-bit DSN as the last byte of the packet. The dissemination protocol limits the

number of acknowledgments that can fit in a packet.

Code listing A.15 illustrates processing incoming collection packets on the base sta-

119

tion. The base station first looks up theMID contained in the incoming DACK Col-

lection packetDCP in the MoteTable hashtable. If theMoteTable does not contain a

MoteIndex object forMID, then a newMoteIndex object is created and put into the

MoteTable using theMoteTable’s put() method. Otherwise, theMoteIndex is retrieved

from theMoteTable using theget() method. The base station then checks theDSN to see

if the mote is replying to the latest ACK disseminated to the mote. If theDSN = 255, then

a Acknowledgment Window Overflow Error has been detected andtheWindowError flag

is set toTRUE. Next, the base station checks to see if theASN contained in the collection

packet matches the value forASN in theMoteIndex. If not, anASNmismatch is de-

tected, then theASNmismatch flag is set toTRUE. The base station then checks to see

if the incoming data samples are known to be missing samples,and if so, it increments the

numrecovered value. Finally, the reading is stored in a database, and the localackvectors

are updated.

120

Listing A.15: Process Collection Packet on the base station
// Trigger:Collection Packet Recieved Event
// Input: Collection Packet
// Effect: Samples are processed and the MoteIndex is updated
public void messageReceived(int to, Message message)
{ DACKCollMsg dcm = (DACKCollMsg)message;
MoteIndex mi;
if(motetable.containsKey(dcm.get_mid()))
{ mi = motetable.get(dcm.get_mid());
for (int i = 0; i < dcm.numDataSamples(); i++)
{ if (dcm.get_timestamp(i) > mi.RSNTimestamp)
{ mi.RSNTimestamp = dcm.get_timestamp(i);
mi.RSN = dcm.get_sn(i); mi.LSN = dcm.get_lsn();

} }
if (mi.DSN == dcm.get_dsn())
{ mi.ackwaiting = 0;
if (!mi.ASNerror)
{ mi.ASN = dcm.get_lan();
if (mi.ASN == 65535) mi.ASN = -1;

}
if (mi.DSNtype == 0xD3)
{ mi.ASNerror = false;

} } } else
{ int ASN = dcm.get_lan(); int LSN = dcm.get_lsn();
if (ASN == 65535) ASN = -1; if (LSN == 65535) LSN = -1;
mi = new MoteIndex(dcm.get_mid(), LSN, ASN);
for (int i = 0; i < dcm.numDataSamples(); i++)
{ if (dcm.get_timestamp(i) > mi.RSNTimestamp)
{ mi.RSNTimestamp = dcm.get_timestamp(i);
mi.RSN = dcm.get_sn(i);

} } }
if ((dcm.get_dsn() == 253) && (mi.DSNmote != 253))
{ int ASN = dcm.get_lan(); int LSN = dcm.get_lsn();
if (ASN == 65535) ASN = -1; if (LSN == 65535) LSN = -1;
mi = new MoteIndex(dcm.get_mid(), LSN, ASN);
for (int i = 0; i < dcm.numDataSamples(); i++)
{ if (dcm.get_timestamp(i) > mi.RSNTimestamp)
{ mi.RSNTimestamp = dcm.get_timestamp(i);
mi.RSN = dcm.get_sn(i);

} } }
mi.DSNmote = dcm.get_dsn();
for (int i = 0; i < dcm.numDataSamples(); i++)
{ if(!((dcm.get_sn(i)==0)&&(dcm.get_sid(i)==0)&&

(dcm.get_reading(i)==0)&&(dcm.get_timestamp(i)==0))&&
(mi.isInRange(dcm.get_sn(i))))

{ if (mi.lostackvector[dcm.get_sn(i)] == 1)
{ mi.lostackvector[dcm.get_sn(i)] = 0;
mi.numfixed++;

}
mi.ackvector[dcm.get_sn(i)] = 1;
if (mi.acktimevector[dcm.get_sn(i)] != dcm.get_timestamp(i))
{ mi.acktimevector[dcm.get_sn(i)] = dcm.get_timestamp(i);
(mi.ackcountvector[dcm.get_sn(i)])++;

} } }
motetable.put(mi.id, mi);

}

A.7.2 Disseminating Acknowledgments from the base station

To construct the dissemination packet, the base station uses the information contained in

each mote’sMoteIndex object.

121

The current implementation used for simulation and experiment uses the DIP protocol

(see section 3.4.2) with 48 byte dissemination packets. In DIP, data valuesd that are to

updated via dissemination each have a unique keyk and a version numberv. A message is

disseminated by having one mote change the value ford and then incrimentd. The message

disseminates as each mote in the WSN overhears a new versionv for data itemd with key

k is available. Because we might want to disseminate aD1 packet to acknowledge one

subset of Motes, and aD2 or D3 packet to acknowledge another subset of Motes, we will

need to be able to disseminateD1, D2, andD3 packets at the same time. To do this via

DIP, each dissemination type is given its own DIP key. To disseminate aD1 type packet

through the network, the base station sends the dissemination message to the gateway with

the appropriate value fork. When the gateway receives the message, it changes its internal

value forD1, and increments the version number, initializing the dissemination process.

Withen a matter of seconds, the dissemination process relays the message to the entire

network

122

Listing A.16: Checking for ASN-Mismatch and Ack-Window Overflow
Enumeration ea = motetable.keys();
while(ea.hasMoreElements())
{ Integer moteIDObj = (Integer)ea.nextElement();
int moteID = moteIDObj.intValue();
MoteIndex mi = (MoteIndex)motetable.get(moteIDObj);
mi.ackwaiting--;
if (mi.checkASNError())
{ mi.ASNerror = true;
int newASN = mi.findASN();
mi.ASN = newASN;

}
if (mi.checkWindowError() == true)
{ mi.giveup();
mi.ackwaiting = 0;
mi.ASNerror = true;

}
mi.cleanAckVector();
mi.recordLostSamples();

}

Listing A.17: Preparing D1 type packets
Enumeration e = motetable.keys();
while(e.hasMoreElements() && ((bytecursorD1[j] + 3) < dataD1[j].length))
{ Integer moteIDObj = (Integer)e.nextElement();
int moteID = moteIDObj.intValue();
MoteIndex mi = (MoteIndex)motetable.get(moteIDObj);
if (!mi.allclear() && !mi.ASNerror && (mi.ackwaiting<=0))
{ byte[] ackbytes = mi.getAckByteArray();
if (bytecursorD1[j] + ackbytes.length + 4 >= dataD1[j].length) break;
mi.ackwaiting = 2;
mi.DSN = D1Seqno[j];
mi.DSNtype = 0xD1;
dataD1[j][bytecursorD1[j]++] = (byte)(moteID >> 8 & 0xff);
dataD1[j][bytecursorD1[j]++] = (byte)(moteID & 0xff);
dataD1[j][bytecursorD1[j]++] = (byte)(mi.getAckLength());
for (int i = ackbytes.length-1; i >= 0; i--)
{ dataD1[j][bytecursorD1[j]++] = ackbytes[i];

} } }

123

Listing A.18: Preparing D2 type packets
// Trigger: Dissemination Timer
// Input: MoteTable
// Effect: Prepare D2 type packets for sending
Vector atv = new Vector(motetable.keySet());
Collections.sort(atv); int mti = 0;
while (mti < atv.size())
{ if (bytecursorD2[j] < dataD2[j].length)
{ Integer moteIDObj = (Integer)atv.get(mti);
int moteID = moteIDObj.intValue();
MoteIndex mi = (MoteIndex)motetable.get(moteIDObj);
if (mi.allclear() && !mi.ASNerror && (mi.ackwaiting<=0))
{ if (bytecursorD2[j] + 3 >= dataD2[j].length) break;
mi.ackwaiting = 2; mi.DSN = D2Seqno[j]; mi.DSNtype = 0xD2;
dataD2[j][bytecursorD2[j]++] = (byte)(moteID >> 8 & 0xff);
dataD2[j][bytecursorD2[j]++] = (byte)(moteID & 0xff);
if (bytecursorD2[j]+4 >= dataD2[j].length) break;
if (mti+2 < atv.size())
{ Integer moteIDObj2 = (Integer)atv.get(mti+1);
int moteID2 = moteIDObj2.intValue();
MoteIndex mi2 = (MoteIndex)motetable.get(moteIDObj2);
Integer moteIDObj3 = (Integer)atv.get(mti+2);
int moteID3 = moteIDObj3.intValue();
MoteIndex mi3 = (MoteIndex)motetable.get(moteIDObj3);
if (mi2.allclear() && !mi2.ASNerror && (mi2.ackwaiting<=0) &&

mi3.allclear() && !mi3.ASNerror && (mi3.ackwaiting<=0))
{ mi2.ackwaiting = 2; mi2.DSN = D2Seqno[j]; mi2.DSNtype = 0xD2;
mi3.ackwaiting = 2; mi3.DSN = D2Seqno[j]; mi3.DSNtype = 0xD2;
int l = 2; boolean donext = true;
while (donext)
{ l = l + 1;
if (mti+l<atv.size())
{ moteIDObj3 = (Integer)atv.get(mti+l);
mi3 = (MoteIndex)motetable.get(moteIDObj3);
if (mi3.allclear() && !mi3.ASNerror && (mi3.ackwaiting<=0))
{ moteID3 = moteIDObj3.intValue();
mi3.ackwaiting = 2; mi3.DSN = D2Seqno[j]; mi3.DSNtype = 0xD2;

} else { donext = false; }
} else { donext = false; }

}
dataD2[j][bytecursorD2[j]++] = ’-’;
dataD2[j][bytecursorD2[j]++] = (byte)(moteID3 >> 8 & 0xff);
dataD2[j][bytecursorD2[j]++] = (byte)(moteID3 & 0xff);
mti=mti+l;

} }
else if (mti+1 < atv.size())
{ Integer moteIDObj2 = (Integer)atv.get(mti+1);
int moteID2 = moteIDObj2.intValue();
MoteIndex mi2 = (MoteIndex)motetable.get(moteIDObj2);
if (mi2.allclear() && !mi2.ASNerror && (mi2.ackwaiting<=0))
{ mi2.ackwaiting = 2; mi2.DSN = D2Seqno[j]; mi2.DSNtype = 0xD2;
dataD2[j][bytecursorD2[j]++] = (byte)(moteID2 >> 8 & 0xff);
dataD2[j][bytecursorD2[j]++] = (byte)(moteID2 & 0xff);

} } } }
mti++;

}

Listing A.19: Preparing D3 type packets
Enumeration e3 = motetable.keys();
while(e3.hasMoreElements() && (bytecursorD3[j] < dataD3[j].length))
{ Integer moteIDObj = (Integer)e3.nextElement();
int moteID = moteIDObj.intValue();
MoteIndex mi = (MoteIndex)motetable.get(moteIDObj);
if (mi.ASNerror && (mi.ackwaiting<=0))
{ byte[] ackbytes = mi.getAckByteArray();

124

if (bytecursorD3[j] + ackbytes.length + 6 >= dataD3[j].length) break;
mi.ackwaiting = 2;
mi.DSN = D3Seqno[j];
mi.DSNtype = 0xD3;
dataD3[j][bytecursorD3[j]++] = (byte)(moteID >> 8 & 0xff);
dataD3[j][bytecursorD3[j]++] = (byte)(moteID & 0xff);
dataD3[j][bytecursorD3[j]++] = (byte)(mi.getAckLength());
dataD3[j][bytecursorD3[j]++] = (byte)(mi.ASN >> 8 & 0xff);
dataD3[j][bytecursorD3[j]++] = (byte)(mi.ASN & 0xff);
for (int i = ackbytes.length-1; i >= 0; i--)
{ dataD3[j][bytecursorD3[j]++] = ackbytes[i];

} } }

Listing A.20: Disseminating Messages
try
{ for (int j = 0; j < dacksets; j++)
{ dataD1[j][dataD1[j].length-1] = D1Seqno[j];
dataD2[j][dataD2[j].length-1] = D2Seqno[j];
dataD3[j][dataD3[j].length-1] = D3Seqno[j];
int dkey = -1;
if (dataD1[j][0] != -1)
{ d1sm[j].set_data(dataD1[j]);
dkey = 0xDE01 +(j*3);
d1sm[j].set_key(dkey);
moteIF.send(0, d1sm[j]);
Thread.sleep(350);

}
if (dataD2[j][0] != -1)
{ d2sm[j].set_data(dataD2[j]);
dkey = 0xDE02 +(j*3);
d2sm[j].set_key(dkey);
moteIF.send(0, d2sm[j]);
Thread.sleep(350);

}
if (dataD3[j][0] != -1)
{ d3sm[j].set_data(dataD3[j]);
dkey = 0xDE03 +(j*3);
d3sm[j].set_key(dkey);
moteIF.send(0, d3sm[j]);
Thread.sleep(350);

} } } catch (Exception exception) { exception.printStackTrace(); }

Listing A.21: Calculate Network Totals
while(e4.hasMoreElements())
{
Integer moteIDObj = (Integer)e4.nextElement();
int moteID = moteIDObj.intValue();
MoteIndex mi = (MoteIndex)motetable.get(moteIDObj);

mi.samplessent = mi.getSamplesSent();
mi.check1 = mi.samplessent - (mi.samplesreceived - mi.samplesrecovered + mi.samplesdropped);
mi.check2 = mi.samplesdropped - (mi.samplesrecovered + mi.sampleslost + mi.getOutstanding());
if ((mi.check1) != 0 || (mi.check2 != 0))
{ mi.msg = "Error";
}
else
{ mi.msg = "";
}
System.out.println("Mote "+mi.id+"\t\t\t"

+mi.samplessent+"\t"
+mi.samplesreceived+"\t\t"
+((int)(((double)mi.samplesreceived/Math.max((double)mi.samplessent,1.0))*100.0))+"%"+"\t|\t"

125

+mi.samplesdropped+"\t"
+mi.samplesrecovered+"\t\t"
+((int)(((double)mi.samplesrecovered/Math.max((double)mi.samplesdropped,1.0))*100))+"% \t"
+mi.sampleslost+"\t"
+mi.getOutstanding()+"\t|\t"
+mi.totDisseminations+"\t"
+mi.totD1+"\t"
+mi.totD2+"\t"
+mi.totD3+"\t|\t"
+(mi.CN-mi.initCN)+"\t"
+mi.CN+"\t|\t"
+mi.overflows+"\t"
+mi.resends+"\t|\t"
+mi.check1+"\t"
+mi.check2+"\t"
+mi.msg);

totalsent = totalsent + mi.samplessent;
totalreceived = totalreceived + mi.samplesreceived;
totaldropped = totaldropped + mi.samplesdropped;
totaloutstanding = totaloutstanding + mi.getOutstanding();
totalfixed = totalfixed + mi.samplesrecovered;
totallost = totallost + mi.sampleslost;
totalCN = totalCN + mi.CN - mi.initCN;
totalCN2 = totalCN2 + mi.CN;
totaloverflows = totaloverflows + mi.overflows;
totalresends = totalresends + mi.resends;

}

A.8 MoteIndex.java

Listing A.22: MoteIndex Class Discrition
import java.lang.*;

public class MoteIndex
{
public int samplecapacity = 200;
public long W = 100; // Window size for acknowledgments

public int id; // ID of the mote this object is describing
public int samplessent; // Number of samples known to be sent by this mote
public int samplesreceived=0; // Total number of samles recieved by the mote
public int samplesrecovered = 0;
public int sampleslost = 0;
public int samplesdropped = 0;
public int samplesignored = 0;
public int RSN; // Recieved SN
public long RSNTimestamp;
public int LSN;
public int ASN;
public long CN;
public long initCN; // Value for CN when the mote is first contacted
public int ackvector[];
public int ackcountvector[];

public long totDisseminations = 0;
public long totD1 = 0;
public long totD2 = 0;
public long totD3 = 0;

126

public long acktimevector[];
public long droppedackvector[];

public boolean ASNerror = false;
public int ackwaiting = 0;
public int backoff = 0;

public short DSN = 0;
public short DSNmote = 0;
public int DSNtype = 0xD3;
public boolean DSNacked = false;

public int overflows = 0;
public long resends = 0;

public long ignorebefore = 0;

public boolean initlock1 = true;
public boolean initlock2 = true;

public int check1 = 0;
public int check2 = 0;
public String msg = "";

public MoteIndex ()
{ id = 0;
RSNTimestamp = -1;
RSN = 0;
LSN = 0;
ASN = -1;

ackvector = new int[samplecapacity];
ackcountvector = new int[samplecapacity];
acktimevector = new long[samplecapacity];
droppedackvector = new long[samplecapacity];

for (int a = 0; a < ackvector.length; a++)
{ ackvector[a] = 0;
ackcountvector[a] = 0;
acktimevector[a] = 0;
droppedackvector[a] = 0;

}
}

public MoteIndex (int i, int csn, int asn)
{ id = i;
RSNTimestamp = -1;
RSN = 0;
LSN = csn;
ASN = asn;

ackvector = new int[samplecapacity];
ackcountvector = new int[samplecapacity];
acktimevector = new long[samplecapacity];
droppedackvector = new long[samplecapacity];

for (int a = 0; a < ackvector.length; a++)
{ ackvector[a] = 0;
ackcountvector[a] = 0;
acktimevector[a] = 0;
droppedackvector[a] = 0;

}
}

public void initialize()
{

127

ASN = RSN;
LSN = RSN;

samplesignored = RSN+1;
initCN = CN;

for (int a = 0; a < ackvector.length; a++)
{ ackvector[a] = 0;
ackcountvector[a] = 0;
acktimevector[a] = 0;
droppedackvector[a] = 0;

}

for (int i = 0; i <= ASN; i++)
{ acktimevector[i] = RSNTimestamp;
ackcountvector[i] = 1;

}

ASNerror = true;
initlock1 = true;
initlock2 = true;
backoff = 0;

System.out.println("initializing");
}

public int getAckLength()
{
if (LSN == ASN) return 0;

if(LSN >= ASN)
{ return (LSN - ASN);
}
else
{ return ((samplecapacity-ASN)+LSN);
}

}

public int getSamplesSent()
{
if (LSN >= RSN)
{ return Math.max((ackcountvector[RSN]-1),0)*samplecapacity+LSN+1-samplesignored;
}
else
{ return Math.max((ackcountvector[RSN]),0)*samplecapacity+LSN+1-samplesignored;
}

}

public byte[] getAckByteArray()
{
byte[] bytes;

if (LSN == ASN)
{ bytes = new byte[0];
return bytes;

}

if (LSN > ASN)
{ bytes = new byte[(LSN - ASN)/8+1];
for (int i = 0; i < bytes.length; i++)
{ bytes[i]=0;
}
for (int i=LSN; i>ASN; i--)
{

// shift the bits in the byte array to the left by 1 bit
for (int b = bytes.length-1; b > 0; b--)
{ bytes[b] = (byte)(bytes[b] << 0x01);

128

byte checkbyte = (byte)(bytes[b-1] | 0x7F);

//if (checkbyte == 0xFF)
if (checkbyte == -1)
{ bytes[b] = (byte)(bytes[b] | 0x01);
}

}
bytes[0] = (byte)(bytes[0] << 0x01);

// Set the ack bit
if (ackvector[i]==1)
{ bytes[0] = (byte)(bytes[0] | 0x01);
}

}
}
else
{ bytes = new byte[((samplecapacity-ASN)+LSN)/8+1];
for (int i = 0; i < bytes.length; i++)
{ bytes[i]=0;
}
for (int i=LSN; i>=0; i--)
{
// shift the bits in the byte array to the left by 1 bit
for (int b = bytes.length-1; b > 0; b--)
{ bytes[b] = (byte)(bytes[b] << 0x01);

byte checkbyte = (byte)(bytes[b-1] | 0x7F);

//if (checkbyte == 0xFF)
if (checkbyte == -1)
{ bytes[b] = (byte)(bytes[b] | 0x01);
}

}
bytes[0] = (byte)(bytes[0] << 0x01);

// Set the ack bit
if (ackvector[i]==1)
{ bytes[0] = (byte)(bytes[0] | 0x01);
}

}
for (int i=samplecapacity-1; i>ASN; i--)
{
// shift the bits in the byte array to the left by 1 bit
for (int b = bytes.length-1; b > 0; b--)
{ bytes[b] = (byte)(bytes[b] << 0x01);

byte checkbyte = (byte)(bytes[b-1] | 0x7F);

//if (checkbyte == 0xFF)
if (checkbyte == -1)
{ bytes[b] = (byte)(bytes[b] | 0x01);
}

}
bytes[0] = (byte)(bytes[0] << 0x01);

// Set the ack bit
if (ackvector[i]==1)
{ bytes[0] = (byte)(bytes[0] | 0x01);
}

}
}
return bytes;

}

public void cleanAckVector()
{
if (LSN == ASN)

129

{ for (int i = 0; i < samplecapacity; i++)
{ ackvector[i] = 0;
}

}

if (LSN > ASN)
{ for (int i = 0; i < samplecapacity; i++)
{ if ((i > LSN) || (i <= ASN))
{ ackvector[i] = 0;
}

}
}
else
{ for (int i = 0; i < samplecapacity; i++)
{ if ((i > LSN) && (i <= ASN))
{ ackvector[i] = 0;
}

}
}

}

public void recordDroppedSamples()
{
if (LSN == ASN) return;

if (LSN > ASN)
{ for (int i=ASN+1; i<=LSN; i++)
{ if ((ackvector[i] == 0) && (droppedackvector[i] == 0))

{ droppedackvector[i] = 1;
samplesdropped++;

}
}

}
else
{
for (int i=ASN+1; i<samplecapacity; i++)
{ if ((ackvector[i] == 0) && (droppedackvector[i] == 0))

{ droppedackvector[i] = 1;
samplesdropped++;

}
}
for (int i=0; i<=LSN; i++)
{ if ((ackvector[i] == 0) && (droppedackvector[i] == 0))

{ droppedackvector[i] = 1;
samplesdropped++;

}
}

}
}

public String getAckString()
{
if (LSN == ASN) return "{}";

String result = "{";

if (LSN > ASN)
{ for (int i=ASN+1; i<=LSN; i++)
{ result = result + "" + ackvector[i];
}

}
else
{
for (int i=ASN+1; i<samplecapacity; i++)
{ result = result + "" + ackvector[i];
}

for (int i=0; i<=LSN; i++)

130

{ result = result + "" + ackvector[i];
}

}
result = result +"}";

return result;
}

public int getOutstanding()
{
int count = 0;

if (LSN == ASN) return count;

if (LSN > ASN)
{ for (int i=ASN+1; i<=LSN; i++)
{ if (ackvector[i] == 0) count++;
}

}
else
{
for (int i=ASN+1; i<samplecapacity; i++)
{ if (ackvector[i] == 0) count++;
}
for (int i=0; i<=LSN; i++)
{ if (ackvector[i] == 0) count++;
}

}

return count;
}

public String getSampleAckString()
{
String result = "{";
for (int i=0; i<samplecapacity; i++)
{ result = result + "," +ackvector[i];
}
result = result + "}";

return result;
}

public String getSampleLostString()
{
String result = "{";
for (int i=0; i<samplecapacity; i++)
{ result = result + "," +droppedackvector[i];
}
result = result + "}";

return result;
}

public String getSampleCountString()
{
String result = "{";
for (int i=0; i<samplecapacity; i++)
{ result = result + "," +ackcountvector[i];
}
result = result + "}";

return result;
}

public boolean isInRange(int i)

131

{
boolean result = false;

if ((i < 0) || (i > samplecapacity)) return false;

if (LSN == ASN) return false;

if (LSN > ASN)
{ if ((LSN >= i) && (i > ASN))
{ result = true;
}

}
else
{ if (((samplecapacity > i) && (i > ASN)) ||

((LSN >= i) && (i >= 0)))
{ result = true;
}

}

return result;
}

public boolean checkWindowError()
{
if (getAckLength() > W)
{ return true;
}
else
{ return false;
}

}

public void giveup()
{
int csampleslost = 0;
int acvcopy[] = new int[samplecapacity];

for (int i = 0; i < ackvector.length; i++)
{ acvcopy[i] = ackcountvector[i];
}

ignorebefore = RSNTimestamp;

System.out.println("mote " + id + ": " + "ASN = " + ASN + " RSN = "
+ RSN + " ignorebefore = " + ignorebefore);

System.out.println("mote " + id + ": " + getSampleCountString());
System.out.println("mote " + id + ": " + getSampleAckString());
System.out.println("mote " + id + ": " + getSampleLostString());

if (RSN > ASN)
{ for (int i=ASN+1; i<=RSN; i++)
{ if(acvcopy[i] < ackcountvector[RSN])
{ ackcountvector[i] = ackcountvector[i] + 1;
if (droppedackvector[i] == 0) samplesdropped++;
droppedackvector[i] = 0;
csampleslost++;
System.out.print(i + ", ");

}
}

}
else
{
for (int i=RSN; i>=0; i--)
{ if(acvcopy[i] < ackcountvector[RSN])

{ ackcountvector[i] = ackcountvector[i] + 1;
if (droppedackvector[i] == 0) samplesdropped++;
droppedackvector[i] = 0;
csampleslost++;

132

System.out.print(i + ", ");
}

}
for (int i=samplecapacity-1; i>LSN; i--)
{ if(acvcopy[i] < ackcountvector[RSN]-1)

{ ackcountvector[i] = ackcountvector[i] + 1;
if (droppedackvector[i] == 0) samplesdropped++;
droppedackvector[i] = 0;
csampleslost++;
System.out.print(i + ", ");
}

}
}
System.out.println();

if (RSN < LSN)
{ for (int i = RSN +1; i <= LSN; i++)
{ if (droppedackvector[i] == 0) samplesdropped++;
droppedackvector[i] = 1;

}
}
if (RSN > LSN)
{ for (int i = RSN +1; i < samplecapacity; i++)
{ if (droppedackvector[i] == 0) samplesdropped++;
droppedackvector[i] = 1;

}
for (int i = 0; i <= LSN; i++)
{ if (droppedackvector[i] == 0) samplesdropped++;
droppedackvector[i] = 1;

}
}

for (int i = 0; i < samplecapacity; i++)
{ if (acktimevector[i] < acktimevector[RSN])
{ ackvector[i] = 0;
}

}

System.out.println("mote " + id + ": " + getSampleCountString()
+ " " + csampleslost +" samples lost.");

System.out.println("mote " + id + ": " + getSampleAckString());
System.out.println("mote " + id + ": " + getSampleLostString());
sampleslost = sampleslost + csampleslost;

ASN = RSN;
}

// Returns true if every seqno has been acknowledged.
public boolean allclear()
{ boolean result = true;

if (LSN == ASN) return true;

if (LSN > ASN)
{ for (int i=ASN+1; i<=LSN; i++)
{ if(ackvector[i] == 0) result = false;
}

}
else
{
for (int i=LSN; i>=0; i--)
{ if(ackvector[i] == 0) result = false;
}
for (int i=samplecapacity-1; i>ASN; i--)
{ if(ackvector[i] == 0) result = false;
}

}
return result;

133

}

public boolean checkASNError()
{ if (ASN == findASN())
{ return false;
}
else
{ return true;
}

}

public int findASN2()
{ int result = ASN;
int min;
boolean found = false;

if (ASN == -1) return -1;

min = ackcountvector[0];
for (int i = 0; i < samplecapacity; i++)
{ if (ackcountvector[i] < min)

{ min = ackcountvector[i];
result = i;
found = true;

}
}

if (found == true)
{ if (result > 0)

{ return result - 1;
}
else
{ return samplecapacity - 1;
}

}
else
{ return ASN;
}

}

public int findASN()
{ int result = ASN;
int min;
boolean found = false;

if (ASN == -1) return -1;
if (ASN == LSN) return ASN;

if (ASN < LSN)
{ min = ackcountvector[RSN];
for (int i = ASN; i >= 0; i--)
{

if (ackcountvector[i] < min)
{ result = i; found = true;

System.out.println("a \t"+min +"\t"+ackcountvector[i]+"\t"+i);
}

}
min = ackcountvector[RSN]-1;
for (int i = samplecapacity-1; i > LSN; i--)
{ if (ackcountvector[i] < min)

{ result = i; found = true;
System.out.println("b \t"+min +"\t"+ackcountvector[i]+"\t"+i);

}
}

}
else
{ if (RSN < ASN)

134

{ min = ackcountvector[RSN] - 1;
}
else
{ min = ackcountvector[RSN];
}
for (int i = ASN; i > LSN; i--)
{ if (ackcountvector[i] < min)

{ result = i; found = true;
System.out.println("c \t"+min +"\t"+ackcountvector[i]+"\t"+i);

}
}

}

if (found == true)
{ if (result > 0)

{ return result - 1;
}
else
{ return samplecapacity - 1;
}

}
else
{ return ASN;
}

}

public boolean reasonablepacket(DACKCollMsg dcm)
{
if ((dcm.get_lan() < 0) ||

((dcm.get_lan() > samplecapacity) && (dcm.get_lan() != 65535)) ||
(dcm.get_lsn() < 0) || (dcm.get_lsn() > samplecapacity))

{ return false;
}

for (int i = 0; i < dcm.numElements_sample_sn(); i++)
{

if ((dcm.getElement_sample_sn(i) < 0) || (dcm.getElement_sample_sn(i) > samplecapacity))
{ return false;
}

}

return true;
}

public static String shortToHexString(short s){
int i = s & 0xFF;
return Integer.toHexString(i);

}

public static String byteToHexString(byte b){
int i = b & 0xFF;
return Integer.toHexString(i);

}

public static String byteToBinaryString(byte b){
int i = b & 0xFF;
return Integer.toBinaryString(i);

}
}

135

Vita

Candidate’s full name: John-Paul Arp
Place & date of birth: Fredericton, New Brunswick, September 11 1978

University attended:

September 2005 - January 2010
Faculty of Computer Science
University of New Brunswick
Fredericton, New Brunswick, Canada

Bachelor of Computer Science
September 2002 - May 2005
Faculty of Computer Science
University of New Brunswick
Fredericton, New Brunswick, Canada

Enrolled in Bachelor of Arts and Computer Science Program
September 1996 - May 2001
Faculty of Computer Science
University of New Brunswick
Fredericton, New Brunswick, Canada

Publications:
Arp, John-Paul and Nickerson, B.G. ”A User Friendly Toolkitfor Building Robust Environ-
mental Sensor Networks”, Proc. of the Communication Networks and Services Research
Conference, CNSR 2007, May 14-17, 2007, Fredericton, N.B.,Canada, pp. 76-81.

Nickerson, Bradford G., Sun, Zhongwei and Arp, John-Paul ”ASensor Web Language for
Mesh Architectures”, Communication Networks and ServicesResearch Conference, CNSR
2005, May 16-18, 2005, Halifax, Nova Scotia, Canada, pp. 269-274.

Posters:
Arp, John-Paul and Nickerson, Bradford G. ”The Disseminated ACKnowledgement (DACK)

Protocol for Data Collection in Wireless Sensor Networks”,Poster at the 11th Annual
GEOIDE Scientific Conference, Vancouver, B.C., May 27-29, 2009.

Arp, John-Paul and Nickerson, Bradford G. ”Water Level Monitoring by Image Observa-
tion of Bridge Piers”, Poster at the 10th Annual GEOIDE Scientific Conference, Niagara
Falls, Ontario, May 28-30, 2008, available at
http://www.cs.unb.ca/ bgn/talks-/geoide2008JPABGNposterV2.ppt

Arp, John-Paul and Nickerson, Bradford G. ”A User Friendly Toolkit for Building Robust
Environmental Sensor Networks”, Proceedings of the GEOIDE2007 Scientific Conference,
Halifax, N.S., June 7-8, 2007, poster presentation.

Arp, John-Paul and Nickerson, B.G. ”Reliable Low-Power Communications for Mobile
Ad Hoc Networks”, Communication Networks and Services Research Conference, CNSR
2006, May 23-25, 2006, Moncton, N.B., Canada, ”work in progress” poster presentation.

Other Documents:
Nickerson, Bradford G. and Arp, John-Paul ”Saint John RiverImage Based Water Level
Monitoring System Hardware and Software Guide”, UNB Faculty of Computer Science in-
ternal report for New Brunswick Emergency Measures Organization, June, 2009, 62 pages.

Nickerson, Bradford G. and Arp, John-Paul ”Bridge Sensor System Design Report Deci-
sion Support for Flood Event Prediction and Monitoring”, Version 2.0, UNB Faculty of
Computer Science internal report for New Brunswick Emergency Measures Organization,
March 31, 2008, 23 pages.

	TR10_198_coverpage
	UNBThesis2.pdf

