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Abstract

This thesis presents a novel method to improve the religlmfidata collection in wireless
sensor networks. The Disseminated ACKnowledgment pro{@aCK) builds on collec-
tion and dissemination protocols to provide end-to-endhaekedgement of data samples.
A DACK protocol implementation was tested using simulasiand experiments on TelosB
motes running TinyOS 2.1. Experiments were carried out ceetfoors of a building, with
14 motes transmitting data samples continuously untileibatexhaustion. Results show
that the DACK protocol recovers all data samples that woaldehbeen lost using a col-
lection protocol only. The benefit of increased data cailbecteliability comes at the cost
of increased communication. In one experiment with 14 moi@9 data samples were
dropped from a total of 749,904 data samples sent over s @ythese dropped samples
were recovered using the DACK protocol. This same experimeguired an additional
720 collection packets to resend the dropped samples (iti@utb the original 467,778

collection packets) plus 18,733 DACK packets.
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Chapter 1

Introduction

By the end of the 20th century, the continued miniaturizatiod mass production of micro-
processors, micro-sensors, and radio-frequency inegyi@tcuits (RFIC) invited earnest
research into the problems and potential of building Wsel8ensor Networks (WSNSs).
A WSN is composed of autonomous computing nodes, or "motEsith mote typically
contains a microprocessor, an RFIC, non-volatile storagenergy supply, and either inte-
grated sensors or an expansion port for an external datas#tcmuboard (DAQ). In 2003,
the potential applications of WSNs lead the MIT Technologyiew to rate WSN as one of
the top ten emerging technologies that will change the wddl

Since then, WSN research has been rapidly expanding irdamasinstitutions around
the world, with several hardware platforms [40, 16], RFI6sT], operating systems [23,
11], programing languages [13], and standards [18, 25] gimgito better accommodate
research and development. Applications that researcheestieen working on include (but
are not limited to): environmental monitoring (e.g. habj&, 52], geological [54], indus-
trial [44], structural [21], etc.,); health [2]; object thking [43]; surveillance [3]; hazard
detection [47]; and distributed control systems (e.g.cdpural [1, 15], industrial [53]).



1.1 Communication in Wireless Sensor Networks

Communication in WSNs posed many new challenges for relseexcThe limited energy,
processing speed, storage, packet space, and memory & cootdined with bursty asym-
metric radio links, proved to be a hostile environment fargdested network protocols like
TCP/IP. Researchers typically aimed to make their WSN comaation stacks follow the
OSI model, however optimizing for the limited resources &aadsh environment forced
many teams to tightly couple the layers in their networkiterk. This lead to a wealth
of novel communication schemes (see [28]), but it also chasfair bit of splintering in
the research community. An brief overview of these techesqean be found in chapter 2.
Recently, research efforts have been focused on buildingdufar architecture to facilitate
the most popular communication patterns [48].

Research into networking protocols and modular networkitactures has evolved to
the point where WSN developers can download and combinerdift networking proto-
cols into there applications. This paper explores buildingpvel transport layer acknowl-
edgment protocol on top of two commonly used network layetqaols: collection and

dissemination.

1.2 Data Collection and Dissemination in Wireless Sensor
Networks

Collection protocols manage the task of delivering dataaioed within each node in the
network to a base station. There are mote-centric, and ggteentric methods for col-
lecting data. In a gateway-centric method, the logic foestthg multihop communication
paths is entirely on the gateway. The mote-centric methoggdly involves building a

routing tree between all nodes in a WSN to one or more gatewdgs) and then making a

best effort to deliver packets from each node to a base staftwe Collection Tree Protocol



(CTP) [12] currently available in TinyOS 2.x makes a besbrfto collect sampled data.
Though it does not guarantee 100% delivery, it achie¥&d efficiency in harsh network
environments [14].

Another common technique is dissemination. Dissemingtrotocols reliably and ef-
ficiently deliver a common data set to every node in a WSN.d@rsgration is typically used
for sending configuration parameters [30], or for sendimgdainary images for wireless
in-network reprogramming [17]. Unlike collection, disseation protocols aim to guaran-

tee reliability to all connected motes.

1.3 Motivation and Contribution

The reliability of data dissemination creates an oppotyunireliably acknowledge packets
delivered by a collection protocol. To our knowledge, nolmited work currently investi-
gates this opportunity. We anticipate that the end-to-eatd celiability will improve with
an investment in extra dissemination messages.

To achieve this result we have implemented and tested treeBigated end-to-end
ACKnowledgment (DACK) Protocol. By “end-to-end” we mearatlior each data obser-
vation sent in a collection packet by a mote, the mote reseameacknowledgment that the
base station has received the data observation, and thethtise receives an acknowledg-

ment that the motes have received the data sample acknawedg

1.4 Thesis Structure

This thesis is broken up into 8 chapters. Chapter 2 givestamdactory overview of com-
munications in wireless sensor networks, and provides ¢iméegt within which the this
thesis makes a contribution. Chapter 3 describes the vatanls and libraries used to
implement the experiments and simulations discussed srthigisis. Chapter 4 details the

Disseminated end-to-end ACKnowledgment (DACK) Protonalétail. Chapter 4 includes

3



discussions about the algorithms used by the DACK protaaad, illustrates the various
communication scenarios using time-lines, and providesri@s of metrics which can be
used to measure the effectiveness and cost of the protolapt€r 5 goes into greater detail
of how the DACK protocol was implemented for the simulatiansl experiment, including
descriptions of the source code and packet structures.t@tajplso presents tests that we
use to verify that the DACK protocol is functioning properGhapter 6 analyses the results
of two simulations, and Chapter 7 analyses the results ofégperiments. Conclusions
are presented in Chapter 8, along with a discussion of mettwinprove the DACK pro-
tocol in future work. Appendices are also provided, contajrihe source code used in the

simulations and experiment, and a more detailed discusgitire implementation.



Chapter 2

Communication in Wireless Sensor

Networks

This chapter provids the context to which the DACK protosahiaking a contribution. The
aim of this chapter is to introduce the challenges of wielgsmmunications in WSN, as

well as the techniques that have been developed to addesss th

2.1 Challenges

2.1.1 Energy Conservation

The principal constraint in outdoor WSNSs is energy condema The consequences of
minimizing energy use cascades into all aspects of WSN dpuent. In the hardware,
memory size, processing speed, and radio strength aremaledl in order to minimize
overall energy consumption. Wireless data transmissitypisally the most energy con-
suming task a mote will have to perform. Wireless receptisa ereates an energy drain as
it requires the mote to power its RFIC and CPU. Energy effita@mmunication protocols
need to minimize the number of transmissions, and the anadfuimhe spent listening for

new messages to keep the hardware in a low power state, dé aperating within the



limited buffer and configuration memory space provided key/rtiote. The “duty cycle” of
a mote, is the ratio of time the mote spends in a powered statetloe time it spends in a

sleep state.

2.1.2 Hardware Constraints

As of 2010, there are a wide variety of motes on the market.eMatrdware is designed
with energy consideration in mind. The main circuit boandganote will typically include

a micro processor and integrated circuits for radio, st®ragd sensing. CPU’s range from
8-bit Atmel Atmiga [8] in the Mica2 and MicaZ [19] motes, toel82-bit ARM920T [29]
in the SunSPOT [45]. The common requirement for all mote GPig’to be able to go into
low power sleep states below 50 uA, when not being used. Tier attegrated circuits
can be toggled on or off by the CPU to reduce energy consumpkor example, energy
conservation requires applications to keep their radiogcked of as much as possible.
Motes usually have from 4KB to 10KB of RAM, 48KB to 128KB of gam memory, and

512KB to 1MB of non-volatile memory [22] for storage.

2.1.3 Harsh Wireless Environment

Analysis done in [14] shows that links in WSN are asymmetaing that signal strength
could oscillate between periods of very good and very pocgpBon for each link. These
conditions can lead to inaccurate link estimations, anddueate link estimations can lead
to inaccurate neighbor and routing tables in multihop neka/oMultinop protocols need to

be able to adapt to dynamic wireless conditions in order totag robust communications.

2.1.4 Implementations of Traditional Networking Models are Too Heavy

The above constraints make WSN unsuitable for establishecklatively resource heavy

networking protocols such as TCP/IP. The 7-layer Open Systieterconnection (OSI)



Reference Model for a layered communication protocol [20)] the the 4-layer TCP/IP
Model [5], shown in Figure 2.1, demand a decoupling of laybet has proved difficult
to do in WSN applications [38]. The 20-byte IPv4 header (@ 400-byte IPv6 header),
plus the 20 byte TCP header, were not designed for early nestbnare like the Mica2
in which the default packet size is itself only 38 bytes. kafenerations of Motes using
IEEE 802.15.4 compatible protocols (see section 2.2.1¢ kerger maximum packet sizes
that are limited to 123 bytes [18]. The TCP/IP header stithgaes a significant amount of
packet overhead. Further routing protocols like Open ®sboRath First (OSPF), the Bor-
der Gateway Protocol (BGP), and the Routing Informationtétal (RIP), require large
routing tables that are not suitable for memory constrametes. Recently progress has
been made in migrating TCP/IP to WSN using compressed he 2r But the challenges
to porting classical routing protocols to large networksesource constrained motes re-

mains.

2.1.5 Modularity

Because of the difficulty in using traditional networkingofwcols, developers of early
WSNs often had to implement the entire communication stemk fscratch. As new ideas
were being developed at various research institutionsroperability between the various
protocols was as challenging as it was desirable.

Figure 2.1 contrasts a typical WSN stack scenario with thé &8 TCP/IP model
stacks. The TCP/IP model defines protocols for layers 2 (Diatg through 4 (Transport)
of the OSI model. The key feature of TCP/IP model is the IrgefProtocol (IP) layer
which is common to all TCP/IP applications. The IP is a nelwaddressing protocol
which assigns a unique IP address to for ug¥ohosts (using IPv4) o2'?® hosts (using
IPv6) on a network. Below the IP layer, multiple Data Link éayprotocols route data
between hosts that are directly connected via a shared mediuch as the air, a wire, or

Local Area Network (LAN). Above the IP layer transport prodts are used to facilitate



oSl TCP/IP WSN

Application

Presentation A?p Aﬁ P AIFI)Ip App App
Session ! I
Tl\rlaer;;z(r);t TCPIP ubpP Network a/b| ¢
Data Link Data Link DataLink 1| 2
Physical Physical

Figure 2.1: A "messy: WSN communication stack on the rigbsitle the more standard-
ized 4 layer TCP/IP model in the middle, and the 7-layer Opgste3ns Interconnection
(OSI) reference model on the left. In the TCP/IP stack, thmroon IP layer decouples
transmission protocols from data link protocols. In the W&Bbck on the right, there is
no common networking layer. Transport and networking fiometlity are frequently com-

bined, and may or may not be dependent on a specific data lek faotocol. The gap

between the edge of the stack and the network and data linkqmis is used to illustrate
the interaction many WSN applications have with the lowgeta.

the transport of packets from one host to any other host witlPaaddress, whether it is
directly connected to it, or ten routers away and physiaatiythe other side of the planet.
The Transport Control Protocol (TCP) implements a reliarid to end link, in which all
lost data is recovered, whereas the User Datagram Proto@P) simply makes a best
effort to deliver packets. It is up to applications to decwdieich transport protocols to
use. Also in the transmission layer, protocols like the Boi@dateway Protocol (BGP) and
Routing Information Protocol (RIP) route IP packets achdde Area Networks (WANS).
On the right hand side of Figure 2.1 we see the messier WSIK.sSEaere is no com-
mon network addressing layer. Instead there are multipd@orking protocols in which
some use addressing schemes, whereas others are addsqsedesections 3.4.1 and 3.4.2
for examples of common WSN address-less networking prédhc8ome network proto-
cols may require a specific data link layer protocol be used,iamay be impossible for
two networking protocols and/or two data link protocols kiseon the same mote. The
Dozer application [4] requires a time synchronization afithae Division Multiple Access

(TDMA) scheme (see section) to function, whereas the Catled ree Protocol, was tested

8



to work with and without TDMA [14].

Application developers may want tighter control of the lowetworking layers. If an
application needs to conserve power, it may want to chargygrtting of the power cycling
of the radio. In a dense and noisy network, the applicatiog want to reduce its radio
strength, or change the radio channel. A jam in one netwgniintocol, may provoke it to
send data via another. A more exhaustive discussion of @léeciges to modularity can be
found in [38].

Recently the situation has improved. Many data link layetgeols and networking
protocols have become popular and standardized, helpiiogtis the effort on modularity.
Though many parallel efforts still exist, thanks to conitibns by the TinyOS and other
research communities, it is now possible to download andrparate popular networking
protocols into a single application. However, many non-patiible protocol stacks are still
evolving, and a true modular architecture for sensornétseshains an evolving challenge

[49].

2.2 Protocols

This section describes some of the more significant proteetlopments at each layer in

the WSN stack.

2.2.1 Physical Layer

Physical layer communication hardware in WSNs currentlyegabetween hardware ven-
dors. The original mica [16] used an RFM TR1000 radio, thatumn-off keying (OOK) or
amplitude shift keying (ASK). The mica2 radio supports 38Baud radio interface using
frequency shift keying (FSK) modulation in the 868/916 MHZda433 Mhz ISM bands.
Manchester encoding is used at the bit level. Typical trassion range is between 10 and

100 meters. Other hardware platforms are also available.



In WSNs there is a significant trade-off with respect to whteeboundary between
hardware and software controlled communications is platecteasing the boundary on
the hardware side can lead to increased transmission sues, but also reduces fine
grained control over power management and link level comoations [28]. For exam-
ple, the original mica’s RFM TR1000 radio [42], had an inded allowing quick toggling
of the radio. The mica2’s CC1000, by comparison, has moraramhd communication
functions in hardware. This provided more robust commuruog, but also increased the
radio toggling time by an order of magnitude. [40]

In 2003, the IEEE published the 802.15.4 standard for WaselRersonal Area Net-
works (WPAN) [18]. This standard described a physical andioma access control (MAC)
layer specification that can be used in WSNs. Fourth gewoeratiotes, including the Mi-
caz [19], and the TelosB [40] are ZigBee compliant using thgg€n CC2420 [7] radio.
802.15.4 specifies usage in the unlicensed 868 MHz, 915 Mhtt 2a4 GHz ISM bands.
The transmission rate in the 2.4 GHz band is up to 250 Kbitschannel using Direct
Sequence Spread Spectrum (DSSS) and Offset Quaternarg-BhdisKeying (0-QPSK)
modulation. The ZigBee standard has strong industrial sippnd will likely become a
standard for future sensor networks. The 802.15.4 starsmides, including the CC2420,
also includes hardware implemented schemes for encrytighentication, link layer ac-

knowledgments, and CRC checking of each packet.

2.2.2 Link Layer

Link layer communications in wireless networks must codtiem access to a shared medium.
There are many medium access control (MAC) protocols foeless communications. Fre-
guency Devision Multiple Access (FDMA) allows differentkis to share the same airspace
by using different frequencies. 802.15.4 defines 16 5Mz ks however, most WSN ap-
plications developed in the 916 Mhz band have been desigriektrate in a single channel.

One method for sharing a channel is Time Division MultiplecAss (TDMA), in
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which different motes are assigned different time slotsnfi@ssage transmission. TDMA
does not scale very easily, and has difficulty adapting tongba in network topology.
Wired Ethernet uses a MAC protocol called CSMA/CD (Carrien§e Multiple Access
with Collision Detection), which enabled scalable plug atay networking. In this scheme
each connected device decides whether or not to transmérsirg if the communication
channel is currently being used. If the channel is free, #nacg will send a message,
otherwise, the device will back off and then try again. Gidin detection worked on wired
Ethernet, because every message is designed to reach edsyon the shared medium.
This is not the case in wireless networks. It is possible thattransmission ranges of
devices in a wireless network do not overlap. There is no wayftransmitting device to
sense if other devices are transmitting within the rangd®itessage destination. This is
known as the hidden node problem. One common solution, kre@x@ollision Avoidance,
involves having transmitting nodes send Request-To-SBA&) packets, and receiving
nodes send Clear-To-Send (CTS) packets to clear the airswareommunications. This

system is employed by 802.11, as well as several sensor riebh&C protocols.

2.2.2.1 Link Layer Acknowledgments

Link Layer Acknowledgments can be used to detect the sutddssnsmission of pack-
ets between two motes. However, due to the small size of theémuan transmission unit
(MTU, the maximum size of a datagram packet), acknowledgsean constitute signif-
icant communication overhead. The lossy nature of the @sseeimedium, and the low
transmission power of the radios involved, forces the MTUéosmall in comparison to
wired, or high powered wireless networks. 802.15.4 radid$/Ns 128 bytes, and 916 Mhz
based radios have an MTU of less than 50 bytes. A stop and ekaibav/ledgment protocol

can result in a 40% overhead. [55]
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2.2.2.2 Adaptive Rate Control

MAC protocols in sensor networks need to cooperate to iser¢lae energy efficiency of
the entire network. In [55], Woo and Culler investigatede@as schemes to minimize en-
ergy consumption in a WSN. Woo and Culler used a test cas@isapsvork, in which
every mote is both a data source and a data router, and alhdetbe sent to a single
sink node. The topology of this test network can be visudliae a tree in which the sink
is the root mote. Woo and Culler’'s analysis assumed the maded listen for transmis-
sions at all times. In addition to energy efficiency, Culled&Voo designed there solution
such that bandwidth was allocated fairly to all motes. Tottleese two design goals, Woo
and Culler proposed an adaptive rate control scheme. Irstihisme, each mote linearly
increases the rate in which they transmit messages towaedsrik after every successful
transmission, and multiplicatively decreases the raterathwmessages are sent for every
failed (unacknowledged) transmission. Fairness was eetliby forwarding packets of
child motes towards parent motes on a cyclical basis. Fuyntiessages originating locally
from a mote were given priority over messages originatirgnfrchild motes. Woo and
Culler investigated various CSMA schemes for this test netwThe one they found that
worked best was employing a random delay before every trissgmm, and phase shifting
transmission times. In phase shifting, when a mote findsith&tansmission period over-
laps with the transmission period of another mote, it wilftsks period in the future, such
that the transmission times no longer overlap. The methadriteed has limited energy
efficiency because the motes are required to listen at afisjraxcept when backing off to

avoid collisions.

2.2.2.3 Time Sloted MAC

Slotted protocols rely on synchronizing the wake up andpsteéees of each node in a
sensor network. Examples of slotted protocols include SNIAT]) and the IEEE 802.15.4

standard. An illustration of the power consumption of a rekof 4 nodes using a slotted
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protocol can be seen in Figure 2.2.

Ny — — — — —
N3 — — — — —
N5 — — — — —
N4 — — — — —

Figure 2.2: lllustration of a slotted protocol.

A low power MAC protocol called sensor-MAC (S-MAC) was praeal by Ye, Hei-
demann, and Estrich in [57]. The S-MAC protocol achieves pmwer consumption by
periodically turning the radio off. For example, togglifgetradio at regular intervals can
reduce the duty cycle t80%. During the period that the radio is on, communication uses
CSMAJ/CA. Further energy efficiency is achieved by tuning tadio off during back off
periods. S-MAC requires that neighboring motes synchmothieir sleeping schedule with
each other. S-MAC has many limitations. The sleep windoweiases latency at each hop
on the sensor network, and, like TDMA, the scheduling scheasedifficulty scaling and

adapting to changes in network topology.

2.2.2.4 Low Power Listening

Low Power Listening (LPL) is another MAC protocol technigtiiat tries to minimize
radio energy consumption. In LPL, the mote is generally @eglmode. The mote will
periodically wake up at a set interval and briefly check fatioaactivity. If activity is
discovered, the mote will wake up and listen for a full packatherwise, the mote will go
back to sleep. Before sending data to a sleeping destinatatas, the transmitting mote
must first transmit a long preamble. The transmission tintaisfpreamble must be at least
as long as the sleep interval of the target motes in the n&tvagure 2.3 illustrates motes
using a LPL MAC protocol.

In [39] Polastre, Hill and Culler, proposed a MAC protocolled Berkley-MAC (B-
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Figure 2.3: Illustration of a sampling protocol.

MAC) that can decrease the duty cycle of motes to 1% using lowep listening (LPL)
and an adaptive preamble sampling scheme. B-MAC is designprbvide a core mini-
mum MAC functionality. More complicated MAC protocols, inding S-MAC, could be
built on top of B-MAC. B-MAC provides a methods for CSMA/CAdaptable link level ac-
knowledgments, packet back-off, and LPL. For carrier senB-MAC uses a clear channel
assessment (CCA) algorithm. CCA involves estimating theenfboor to create a reference
for carrier sensing. B-MAC parameters can be configuresgitenilayers to increase the
efficiency of any given application. For example, link lay&knowledgments can be en-
abled or disabled on a per packet basis, and the sampliagibte period for low power
listening can be set at the application layer at any timee IGISMA, B-MAC scales very

well because there no scheduling is involved.

2.2.2.5 Link Quality Estimation

Good link quality estimations are required by higher layetpcols to adapt to changes
in network topology. In [56] Woo, Tong, and Culler investiga the reliability of various
link discovery and link estimation techniques. Due to thghhrariability of link quality in
WSNs, signal strength has been found to be a poor estima@prPLie to the memory and
processing constraints on motes, complex link qualityrestiion techniques such as linear
regression and Kalman filters are unpractical [56]. The l@sestimator that Woo, Tong,

and Culler found in there investigation was the window meih exponentially weighted
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moving average (WMEWMA). Woo et al. found that this estinmatquired as many as
100 packets to stabilize a link estimation with a 10% noisegmna This limits the rate of

mobility in a sensor network.

2.2.3 Network Layer

As discussed in section 2.1.5, transport layer and netway&rlfunctionality are often
mixed together in WSNs. One paper may refer to a protocol exg e the network layer,
wheras another paper may refer to the same protocol as bethg transport layer. This
is because the logic for transporting packets through theaork, is often mixed with the
logic for determining which mote to send the next packet the Wealth of networking
and transport layer protocols for WSN is too long to list hekemore exhaustive list can
be found in [36]. The remainder of this section will focus e tmore recent networking
protocols, and the protocols that are most relevant to tiesis: dissemination and col-
lection. These protocols are considered mature becaueg:htive been in development
for many years; they have been successfully tested in sirontaand used in real world
WSN deployments; and finally they have published source tloaiehas been embraced
and extended by the broader research community.

Network protocols in WSN can be divided into two planes: tbetmol plane and the
data plane. The control plane refers to messages and faadto managing the protocol
parameters and network topology. The data plane refersttolasng transported by the
protocol. The "overhead” of a network protocol is the ratfa@ontrol packet traffic to data

packet traffic.
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2.2.3.1 Dissemination

Dissemination protocols are designed to reliably deliaado every node in a WSN. Dis-
semination protocols are “address-less” in that packetsiar routed through the network
based on a destination address. Instead, dathgt motes wish to update via dissemination
are assigned a unique kéyand a version number Message propagation is accomplished
by having every mote periodically make sure it has the sariog & as other motes in the
network.
For dissemination to work, every mote in the network musiehidne same: for the

samed. Motes periodically broadcast theik,{’) information to check if they are up to

date. To send a message reliably through the network, the of@nges the value for

A £\

{k,v,m}
A ot
k v,m
D{k Vv, m D{k,v,m}
%@ ik v
Base
Station

Figure 2.4: An illustration of the dissemination protocbhe base station sends a message
m, with a keyk, and a version number. For dissemination to work, each mote must have
a common key tied to a variable, or array. When motes detextdres from other motes
advertising a newer version number fgrthey request the newer version. Using the trickle
algorithm [26] to control the beacon rate, messages prapdgaall nodes in a network
within seconds.

16



d and increments. If a mote receives a broadcast from a neighbor containingl@er
version number, the mote rebroadcasts updated value. Toiegs continues until the
entire network has the highest known version number. Dorsedantrolled fashion, this
can lead to timely and reliable dissemination through theenetwork.

The most popular algorithm, Trickle [26], uses a policy oblife gossip” to control
the rate at which dissemination packets are sent. Moteslbasa more frequently when
they overhear old version numbers, and less frequentiyheagrithe same version number,
exponentially backing off to a maximum beacon interval urstable network conditions.
In practice the trickle algorithm is able to scale disseriametime and energy consumption
logarithmically with network size.

Protocols like Drip [51] and DIP [30], are designed to diss&ate a lot of small values
(typically control parameters) efficiently. Other protésecbke Deluge [17] and Mate [27]

use dissemination to transfer large multi-packet datdsetaote reprogramming.
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2.2.3.2 Mote Centric Collection

In WSN, collection protocols are designed to reliably delimessages from multiple sources
(motes) to a common sink (a gateway). In mote centric catlagbrotocols, the logic for
the deciding the next hop address for a packet is locatedeomtites. Gateway centric col-
lection, in which the logic for determining the next hop ispessed entirely on the gateway
or base station, is discussed in the next section.

Figure 2.5 illustrates a mote centric collection algoritivtote centric collection pro-
tocols form tree-like topologies, passing packets frontidchodes to parent nodes, until
packets arive at the root node. Mote centric collection dao be ‘address-less’. For ex-
ample in the Collection Tree Protocol (CTP), motes decidanixt hop destination using a
routing metric called the Expected number of Transmiss{gi¥). ETX is an approxima-
tion of the expected number of times a packet will have to degmitted before it reaches

the gateway. A mote that is one hop away from the gateway, éhl signal strength,

{sa},C{sp},C{sc} C{sg},C{st}

Cise} C{sa},C{sp},C{sc},
C{se},C{s},C{sg}

Base
Station

Figure 2.5: As its name implies, collection protocols trzors packets from motes to a base
station.
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and little interference, may have a ETX of 1. Another motehvetnoisier connection to
the gateway may have an ETX of 1.5 or worse. A mote with no cometo a gateway
will search for a neighbor that has the smallest ETX. It thalculates its own ETX as the
expected number of transmission required to reach the bergplus the neighbors ETX.

Collection routing was one of the first routing problems tadkoy WSN researchers.
The first major mote centric collection algorithm was MintR®[56]. MintRoute uses the
WMEWMA link quality estimator, discussed in section 2.3,2and a minimum transmis-
sion routing metric similar to ETX. Link quality estimateseacalculated using received
signal strength indicator (RSSI) readings from the motelware. The MultiHopLQI pro-
tocol adapted the MintRoute protocol to use the link quafitficator on the CC2420 radio
to improve link estimations. However, the protocol strieggto deliver packets reliably.
MintRoute was tested (in conjunction with other protocatsa large scale environmental
sensor networks in the Great Duck Island experiment [4&] jaa Redwood tree in Berke-
ley [52]. In both of these experiments, more than half of thetes failed to deliver any
data, and many other motes had poor reception rates.

The Collection Tree Protocol (CTP) is built off of the resgaof the MintRoute algo-
rithm, and as of 2009 has demonstrated high reliability ipegdments and simulations. In
[14] the CTP achieved 99% reliability in 4 test beds. CTP ioved on MintRoute in three
significant ways. First, the hardware link estimators useMntRoute and MultihopLQI
suffered from “sampling bias”: they measure the qualitylef teceived packets, but they
do not take into account packets that were lost altogethiee. bias is significant because
low power wireless links tend oscillate between a strongéakvsignal. CTP improved on
this by adding sequence numbers to routing beacons, aljpmintes to take lost packets
into consideration when estimated link quality. Second,ttitkle algorithm (discussed in
section 2.2.3.1) was applied to the timing of routing beadorminimize the control packet
overhead. Third CTP snoops on data traffic to detect routingd and inefficiencies in

network topology.
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CTP was designed, and has been tested, to work on top of sdiméwlayer protocols.
Using BMAC (described in section 2.2.2.4) for low powerdising, CTP is theorized to
achieve long battery life times. In [14] Gnawali et al, cdétad that a mote using AA
batteries that measures a sample and sends a collectioat [made every 6 minutes could
last for 400 days.

Another low power mote centric collection protocol that laabieved success is the
Dozer protocol [4]. Dozer achieved high reliability on a 4@ten network using a 0.2%
duty cycle. Unlike CTP, Dozer is not portable to multiplekilayer protocols, instead it
contains a customized stack developed to meet the goal aiftriaglow duty cycle. Dozer
uses a TDMA scheme coordinate communications. Dozer daesave a network wide
time synchronization. Instead, time synchronization lesmggocally between child nodes
and parent nodes on the routing tree.

Mote centric collection protocols do not provide end-t@tetknowledgments, and
focus on making a best effort to deliver packets to the sinkliaRility is improved by

establishing reliable links and paths, collision avoidgrand hop by hop acknowledgments.

2.2.3.3 Gateway Centric Collection

In gateway centric collection protocols, all routing loggchandled at the gateway or base
station. Motes collect data at a regular interval, but dotrastsmit the data until instructed
to do so by the gateway (or base station). When the gatewaady/rto receive new data
from a specific mote, it generates one or more reliable pattigat mote. It then uses source
routing, embedding the path to the destination into the gacduch that it can be relayed
by intermediate motes. The mote then sends all archivedddata the reliable path. The
one mote at a time methodology make it easier to establisiedleelink to motes, but as a
consequence data is retrieved in a less timely fashion tharote centric routing.
In [50] Stathopoulos et al. introduced the gateway centitection protocol Cen-

tRoute. In their tests, CentRoute was able to achieve 95%edglof all data sent by
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motes, and used 60% less overhead than MintRoute. In [33hMusE et al. introduce
the Koala protocol. Koala improves on the ideas of CentRoutmay ways, including:
adding optional end-to-end acknowledgments for data eediv down the reliable path;
implementing channel switching on 802.14.5 based radiog;implementing a new link
layer technique called Low Power Probing (LPP). LPP is aquuitto proactive wake up
an entire network. Using this technique Koala was able teezehhigh reliability and very

low duty cycles.
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Chapter 3

Implementation Context

This chapter describes the various components used in thlenmentation of the DACK

protocol.

3.1 Motes

Development and testing was done with TelosB [40] motesosSEeimotes have 10 Kbytes
of RAM and 1 Mbyte of storage. The TelosB motes use the CC24R@afdio, which is
compatible with th IEEE 802.15.4 specifiation.

3.2 TinyOS and nesC

TinyOS is a free and open source Operating System for tinyeelodd devices published
under the BSD license. TinyOS was designed to have to longgrfeotprint. Threads

and dynamic memory allocation were not included in the casgh, because they could
quickly overwhelm the limited stack space in a motes RAMyDO® uses component ori-
ented architecture, in which programs are sets of Compettleat interact with each other
through Interfaces. Components use a static amount of sfaate, allowing the program-

mer to precisely control the RAM usage of their program. Qorency is handled through
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a Task scheduler. ATask is run to completion and then the stack is freed, before the
Scheduler posts the neXusk. It's up to the application developer to place code serssitiv
to concurrency errors insidelausk, and then post th€ask to the scheduler.

Components allow the hardware software boundary in Tiny®é&ty from platform
to platform. An encryption component may be implementedodisvare on one platform,
and as hardware on another platform. This fine grained clamtes hardware gives TinyOS
fine grained control over the energy consumption on the motasyOS knows to only
supply power to the hardware that requires it to processtaindunction, and then turn it
off after the process completes.

Interacting with hardware components in TinyOS usuallyurezs split phase opera-
tions. Software components can have split phase operasn®ll. Split phase operation
are operations that have an initialization method to stetdperation, and a completion
method that is triggered when the operation has finishedekample, to write a message
to storage in TinyOS, you call@rite() operation. After thevrite() operation completes,
it will trigger a write Done() event. Split phase operations can split up the flow of logic in
a TinyOS program, and requires attention to synchroninasisues. For example, only one
message can be written to storage at a time. To avoid caifsiiting to storage, you can
set astorage — busy flag totrue before calling thevrite operation, and setorage — busy
to false in thewrite Done event.

TinyOS 2.x was used for the implementation described inttresis. TinyOS 2.x is
a mature operting system for sensor network research, andsbundled with a number
of libraries, tools, and demo applications. There is alsaa@ive research community that
contributes to the TinyOS source code repository on Soargef as well as in discussion

forums, and working groups.
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3.3 TOSSIM-Live

TOSSIM [24] is a TinyOS SIMulator that simulates entire Tofy applications. TOSSIM
for TinyOS 2.x currently simulates the hardware of the MIOApte hardware platform,
such that code written for the MICAz can be recompiled to ruthe simulator instead. At
the time this research was conducted, TOSSIM for TinyOS adkdshort coming in that
both serial communications and non-volatile storage etimmavere not yet implemented.
A recent masters thesis [31] has contributed a fork of TOS&NMed TOSSIM-Live,
that includes serial communications, as well as a thrgttimechanism to slow down simu-
lation times. TOSSIM-Live was used for the simulations & PACK protocol discussed

in chapter 6.

3.4 Libraries

As discussed in the introduction, the DACK protocol is baiittop of a collection protocol
and a dissemination protocol. This section describes thgO$ implementations of these

protocols that were used for the simulation and experimestiibed in chapters 5 and 6.

3.4.1 Collection Tree Protocol (CTP)

An implementation of the Collection Tree Protocol (CTP)][@léscribed in section 2.2.3.2

is available as a core network library for TinyOS 2.

3.4.2 Dlssemination Protocol (DIP)

DIP [30], is also available as a core network library in Tirgy@. DIP is a dissemination pro-
tocol (described in section 2.2.3.1) designed for dissating numerous small values, such
as control parameters. For example, it could be used to ensargpling intervals or switch

digital I/0O channels. In previous dissemination protocolgerhead scaled linearly with
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the number of data items being disseminated. In DIP, overhsacale® (log(log(T))),

whereT' is he number of data items.

3.4.3 Drip

The Drip [51] is an alternative dissemination protocolttten be found in the TinyOS 2.x
libraries. Though we were able to use DIP in our simulatioveswere unable to get it to
work in our experiment. For this reason the Drip protocol wsed for both the experiment

and the simulation.

3.5 Sensor Web Language (SWL)

The Sensor Web Language (SWL) is a programing language wstt af compilers and
code templates that can be used to simplify the developnfieejdoyable WSNs [34]. The
DACK protocol is designed to be compatible with SWL, such thean be used on WSNs
built with SWL.
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Chapter 4

Disseminated end-to-end

ACKnowledgment (DACK) Protocol

This chapter describes the Disseminated end-to-end ACKmmgment (DACK) protocol,
a method for improving the reliability of data collectionwireless Sensor Networks. This
method is designed to sit on top of a best effort data cotlegtrotocol as described in sec-
tion section 3.4.1, and a reliable data dissemination pobts described in section 3.4.2. If
the collection protocol can deliver most packets from theseenetwork to the base station,
and the dissemination protocol can reliably disseminat&gta from the base station to ev-
ery mote in the sensor network, then the DACK protocol candesluo deliver end-to-end
acknowledgments, for the purpose of retrieving data loghbkycollection protocol. Figure
4.1 shows how the DACK protocol is built on top of a collectimmtocol as described in
Figure 2.5 and a dissemination protocol as described inr&igut.

Conceptually, each mote in the network tags all data sampliisa contiguous se-
guence number before sending them to the base station. fe slaenples are collected at
the base station, the base station evaluates the sequanbtensuo determine if there are
any dropped data samples. The base station then perigdicedites a list of all the unre-

ceived sequence numbers from every mote in the network.lihis then compressed and
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Figure 4.1: A network overview of the DACK protocol. In thecade example, solid lines
represent the path of a collection packet from the mote td#se station. Dashed lines
represent dissemination packets being disseminated fierbdse station to each mote in
the network. Mote: is a gateway mote connected to duse station. In this snapshot,
collection packet containing sampig, from moted is lost on the path to the gateway.
At the beginning of the next dissemination interva)), the base station disseminates a
negative acknowledgment for recent dropped samples irgtveonk in aD1 packet, as well
as a positive acknowledgment for the samples that have leeeived from the network in
a D1 and D2 type packet. Once the dissemination packets are receivatbbg«d, moted
notes that it needs to resend the data samplat the beginning of the next report interval
IR.

disseminated out to the entire network, letting each motawkwhich data was received
and which was not. Dissemination is reliable, but expenseecompression is vital to
the efficiency of the method. Figure 4.2 illustrates theaasitime epochs considered for
the dissemination process. The sample interyalseport intervallz, and dissemination

interval I, trigger the sample evetits, report eventtz, and dissemination eveit, re-

spectively, as shown in Figure 4.3. In the present impleatent, the network operator
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Figure 4.2: An example of the timing intervals required on@erusing the DACK proto-
col. I; and/; indicate two sampling time intervals tied to two separatesees on a single
mote. [ indicates the mote’s report interval, ahglthe interval at which disseminated data
should be received on the mote from the base station. Sagnplervals can be changed at
any time to achieve the data frequency the network operegqrsre.

must tunelg, Iz, andp to match the scale of there network. Potential methods to-aut
matically adapt , to minimize the number of disseminations required to prewshetwork

with acknowledgments is discussed in Section 8.2.1.

4.1 Overview

The DACK protocol negotiates end-to-end acknowledgemieetiseen a base statidns,

and a wireless network/ of n motes in acontinuous near-realtime data collection net-
work. In adata collection networkn motes collect samples at preprogrammed intervals,
and then periodically relay this information through théwegk to a common base station.
A network iscontinuousf it prioritizes collecting and relaying new data, over geeving

old data. Anoncontinusousetwork will stop collecting new data from a mote if old data
readings have not been acknowledgBdncontinuou®peration is more common when a
network is designed to log a transient event, rather thatiraoously monitor an environ-
ment over a long period of time. A network mgar-realtimewhen motes report readings
frequently relative to sampling time. For example, if a mailects one sample per minute,

and relays the sample in a report every five minutes iiteigr-realtime If the same mote
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Figure 4.3: Sequence diagram of a mote and a base statiog th&rDACK protocol to
acknowledge a data sample. AMStack indicates the TinyOi8eastessage radio stack
[35]. The eventds, Er, and Ep are shown. Sending and writing to storage in TinyOS
is a split phase operation (see section 3.2). Percentages igi the send commands over
the multihop link indicate an example probability of sucfesend-to-end delivery of the
message.

\J

instead reported its readings once every 24 hours, theretidrk readings would be much
farther from realtime.

Collection protocols have recently achieved very highatality using best effort
mechanisms [14]. The Collection Tree Protocol (CTP) disedsn 3.4.1 provides a very
reliable protocol for buildingcontinuous near-realtime data collection netwarksTP is
able to achieve greater tha@a% reliable delivery of packets in many network configura-

tions.
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The DACK protocol uses dissemination to add an end-to-ekdaeledgment mech-
anism to help recover the data samples lost by CTP. The DAG@Kkopol, as described
below, acknowledges samples, and not messages. This fobégeK on acknowledging
a continuous stream of data samples, rather than insurenddhivery of a specific mes-
sage. The DACK protocol does not guarantee reliability,bakes a best effort to recover
dropped data samples before they get too old. The DACK pobtas a maximum window
sizelV that limits how old a dropped data sample can be before thegybgives up trying

to recover the sample.

4.1.1 Collection Process

Each moteM,,;p in network N has a unique ID numbe¥/ID, andv sensors. Each
sensoVs;p on moteM,,;p is identified by a unique sensor IBID. Mote M, ;p will
trigger a sampling evenkt's;, for the sensois;, at the end of intervals;, for each
connected sensor. Each mat&,;p also triggers a report evelit; at the end of every
report intervall . In the report evenk’r, moteM,,;p will send all data samples collected
in the preceding report intervd. If the mote is inaggressive mode, the mote will also
send all unacknowledged data samples. If the mote isi3ive mode, the mote will
also send all negatively acknowledged data samples. Thaitaw@fifor passive mode and

aggressive mode can be summarized as:

e aggressive mode: always resend data samples until a positive ackngwiedt of
successful receipt by the base station is received by the.mot

e passive mode: resend data samples only when a negative acknowleddonehe

samples from the base station is received by the mote.

In each sample eveits;,, moteM,,;p collects one new sample readifgR, SID,
SN, TS) from Vsrp. R refers stores the data reading on the seri88ris a timestamp of

the time that the sample was taken, & is a sequence number that is incremented in
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each sample event. Each sampling event must run atomidddly.causes some sampling
events to be delayed while waiting for other sampling evemtsomplete, but insures that
each samplé is given a contiguous'N.

Each motel/,,;p allocates enough storage spdtterage to storeF’ samples. Sam-
plesS(R, SID, SN, TS) are stored inStorage[SN] relative to their sequence number
SN. To keep track of which samples have been sent, and whichlearhpve been ac-
knowledged, the mote keeps an indeX,,;, containing the values:F, SN, ASN, LSN,
DSN, B, L, W, SO), which are defined as follows:

F': the total number of samples that can be stored on the mote.
e SN: the sequence numbsrV of the newest data sample in storage.

e ASN: the SN of last consecutively acknowledged data sample. A data leaisip
consecutively acknowledged if all data samples with anrdideestamp have been
either acknowledged or lost.

e LSN:theSN of the last data sample that maté,,;», sent in a report event.

e DSN: the sequence number of the last acknowledgment messagjeeecD SN
also doubles as a status flag that the mote can write to irdécaindow overflow or
a storage overflow.

e B: an L-bit vector referred to as the acknowledgment vector. Bit8 icorrespond
to the data samples with a sequence nuntb€rbetweenAS N andLSN. For each
bit b at position: in B, a value of0 indicatesSN «— (ASN + i) mod F requires
a negative acknowledgment, and andicatesSN «— (ASN + i) mod F requires
a positive acknowledgmentB is generated by the base station, and is received in
acknowledgment messages.

e [: the number of bits irB.

e IIV: the maximum size of the acknowledgment vediyrcalled the acknowledgment
window. WhenB grows larger thal’, it causes an acknowledgment window over-
flow error.

e SO: the number of storage overflows that have occurred on the.mAtstorage
overflow occurs whenever a mote has to overwrite a data sdvefidee it is acknowl-
edged.

Algorithm 1 shows the values that the parameters in the molexi\/ I are initialized
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to when the mote boots up. The values foandV are not shown. These can vary at the

discretion of the network operator, and the storage capatihe motes being used.

Trigger: Ep invoked when the mote boots up
Data: Global Motelndex M

Result Initialize the mote’s index.

MI.DSN «+ 250;

MI.SN «+ 0;

MI.ASN +— —1,

MI.LSN «— —1;

MI.L + 0;

MI.S50 « 0;

Algorithm 1: Mote Boot EventFz

Algorithm 2 shows a procedure for handling a sample evgntEach incoming data
sample is tagged with a contiguotigV. The sequence numbgrV is calculated as' N «—
(SN + 1) mod F, such that, if necessary, the newest sample always ovesnthie oldest
sample in storage. The sampling event also catches stovagiow errors when th&' N
overwrites the oldest data sampl&' NV that is still waiting to be acknowledged. If a storage

overflow occurs, the mote resets the values in the mote index.

Trigger: Eg invoked by a clock interrupt everkg
Data: DataReading R, SensorID SID

Result Insert new sample into storage.
MI.SN «— (MI.SN + 1) mod MI.F,

if (MI.SN = MI.ASN)or (MI.ASN = —1)and (MI.SN =0)) then
MI.DSN « STORAGEOVERFLOW;

MI.SO +— MI.SO+1MI.L « 0;
MI.SN « 0;
MI.ASN «— —1;
MI.LSN «— —1;
end

S <« new DataSample;
S.SN «— MI.SN; S.8ID « SID; S.R — R; S.T «— NOW();
Storage[MI1.SN] «— S;

Algorithm 2 : Mote Sampling Event/g

Algorithm 3 shows a procedure for handling a report evEpt The mote loops
through the data samples in storage, frdiiN to SN, and packs all new data samples

and negatively acknowledged data samples into collectawkgtsC(MID, DSN, SO,
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ASN, LSN, S|s]), and sends the packets to the base station via the collgutiiocol.
M 1D identifies the sender of the messa@ei N reports the ID of the lasiC' K received,
SO reports the number of storage overflows the mote experierdced and ASN report
the mote’s current sampling and acknowledgment statusS&nds an array ok samples.
If the mote is inpassive mode, then negatively acknowledged samples and new saarples
appended t@” for delivery. If the mote is imggressive mode, then all unacknowledged

samples are also appended to collection packets for dgliver

Trigger: Eg invoked by a clock interrupt ever
Data: Global Motelndex MI, Global Storage S
Result Send all new and unacknowledged messages to the basa statio
C «— new CollectionPacket;
b« 0;
MI.LSN «— MI.SN;,
foreach S'in Storage betweenStorage[M1.ASN] and Storage[M1.SN] do
if  MODE = PASSIV E) then
if ((S.T > Storage[MI.LSN].T) or ((b < L) and (bit b of B = 0))) then
| appendStoC'; [/ append negative acked samples and new samples
end
nd
(MODE = AGGRESSIV E) then
if (b > L)or ((b < L)and(bit bof B=0)))then
| appendStoC; [/ append all unacked samples
end

= @

end

b—0b+1;

if (Cisfull)or (S.SN = MI.SN)) then
CMID «— MI.MID; C.DSN «— MI.DSN,
C.ASN «— MI.ASN; C.LSN «— MI.LSN;,
C.S0O «— M1I.50; collectionsend(C);

C «— newCollectionPacket;
end

end

Algorithm 3: Mote Reporting Event/y

To process incoming collection messages, the base staBates a local mote index
objectM I for each mote in the network. Eadid/ object is stored in the mote tabM T,
in which motes are referenced By/D. On the base station eadli/ object contains the

following values:
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MID: The mote ID of the mote this Motelndex object is keepingkrac

ASN: The last consecutive acknowledged data sanflé received from mote
MMID-

LSN: The last known data sampl&V that was sent in a report interval from mote
M 1p, but not necessarily received.

RSN: The last data sample/N actually received from mot&/,;;p.
RSNT: The timestamp of the last data sample with sequence numBbaf.

DSN: The sequence number of the last dissemination packet saidining an
acknowledgment for/,,;p.

ASNmismatch: Set toT RU E when theM otelIndex object and incoming collec-
tion packets from the corresponding mote disagree on the\alAS N .

B: the most receni-bit acknowledgment vector sent to matél D.

L: the size of the vectoB.

F: The max number of samples that can be stored on mGiep.

W: is the maximum size of the acknowledgment vedsor

SO: the number of storage overflows that have occurred on mat®.

WindowQwer flow: Set toT RUE for mote M I D when theDSN value inside an
incoming collection packet from mot&/,,;p is set to255. This indicates that the
mote has detected an Acknowledgment Window Overflow Errat, ia alerting the
base station.

ackwaiting: An integer value indicating how many more disseminaticernvals

Ip the base station will wait before it sends a new ack messagenwte. If a
mote includes thé& SN of the previous dissemination message in a collection gacke
beforeackwaiting = 0 then the base station will setkwaiting < 0 and send an
ack message to motat the nexttp.

Storagel[]: This is a mirror of the Storage on the maté,;;, that is used for refer-
ence. It storeg” data samples of the fori$i( R, SID, SN, T'S, Dropped, Count).
R, SID, SN, andT reflect the most recently received values from the nmidig; .
Dropped is a flag that is used to indicate whether the base statioeveslithe data
sampleSN was sent by moté/,,;p but not received. Count is the number of
samples that have been received with the same sequence méiibéut different
timestamps.

dropped: The number of data samples that have been dropped andeéqagative
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acknowledgments.
e [ost: The number of data samples that have been permanently lost.
e recetved: number of data samples received.

e recovered. number of data samples that were marked as dropped, butuelign
recovered.

When collection messages are received on the base stat@bate station triggers
the collection message received evént, and the message is added to a queue called
messagequeue. Themessagequeue iS processed at the beginning of the dissemination
eventEp. Algorithm 5 shows where the message queue is processed thabemination
event. Algorithm 4 shows the procedure for processing alsingessage in the queue.
For each message, the base station checkd/th® to find out whichM I object in the
MoteTable to update. If the message contains a neiD not found in theM T, then a
new M I object is created for it. Otherwise, the appropriafé object is selected. The
base station then checks to see if the mote is reporting aggaverflow error, by checking
if the storage overflow value in the collection packéSO against the storage overflow
value in the mote index/7.50. The current reaction to a storage overflow error is to treat
MID as a new mote and resume sample collection ffgfV. After this, the base station
loops through every sample contained in the packet. For saoiple, the base station
checks if the sample is new by comparing the timestaifipof the data samplg&, with the
timestamp of the previous sample storedatrage[S.SN|. TheStorage[S.SN|.Dropped
flag is checked to see if the database was waiting for an adkdgwent of this sample.

If this sample contains the most recent timestamp that tlse btation has ever seen for
mote M 1D, thenRSN and RSNT are all updated to the values of the sample, A5adV

is updated to the value contained in the collection packet.
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Trigger: Invoked in the queue processing section of the dissemimatientF
Data: DACKCollectionPacket C, MoteTable MT
Result Update MoteTable
if (MT.containsKey(C.MID)) then
| MI «— MT.get(MID);,
else
| MI «— new Motelndex;
end
if (C.SO > M1.50) then
| MI.resetCounters(); ASNmismatch «— TRUE; ASN «— LSN,
end
if (C.DSN = MI.DSN)then
M1 .ackwaiting < 0;
if =(MI.ASNmismatch)then MI.ASN «— C.ASN ;
if (MI.DSNtype = D3)then
| MI.ASNmismatch < FALSE;
end
end
foreach Sin C do
if =(M1I.Storage[S.SN|.T < S.T) then
M1I.Storage[S.SN]| «— S; MI.received++;
M1I.Storage[S.SN].Count++;

if (M1.Storage[S.SN|.Dropped) then
M1 .recovered++;

M1.Storage[S.SN].Dropped <— FALSE;
end

end

if (5.7 > MI.RSNT) then
| MI.RSNT « C.T; MI.RSN « C.SN; MI.LSN « C.LSN;

end

end

MI.DSNmote «+— C.DSN;

MT.put(MI.MID, MI);
Algorithm 4: Base station processMessage() function for processingjlection
packet

4.1.2 Dissemination Process

As discussed in section 2.2.3.1, there are many possible teagisseminate acknowledg-
ments in a wireless sensor network. The method describedisésilored to make use of
either the DIP or Drip dissemination protocols discusse®dantions 3.4.2 and 3.4.3, which
were designed to disseminate single packets.

The DACK protocol consists of three types of acknowledgnmessages, and corre-
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sponding packet types for bundling sets of acknowledgmesssages. The three DACK

message types are defined as follows:

e D1Ack: A D1Ack message contains the valyéd /D, L, B) to acknowledge mote
M rp with ackvectorB of size L, and indicates that mot&/,,;» needs to resend
the samples referenced by tBevector.

e D2Ack: A D2Ack message is a blanket acknowledgement indicating thatrajb ks
have been received. B2 Ack can either be a single/ I D, ortwo M I Ds M 1D, and
M 1D, indicating a range of contiguou® / Ds identified by the smallest\(1 D)
and largest{/1D,) M 1D in the range.

e D3Ack: A D3Ack message contains the valugg /D, ASN, L, B) to acknowl-
edge moteVl,,;p with ackvectorB of size L starting from the data sample after the
sequence number of the last consecutively acknowledgedsdatpled SN .

A D1 packet consists of a list dD1Ack messages, &2 packet consists of a list of
D2Ack messages, andia3 packet consists of a list a?3 Ack messages. The1, D2, and
D3 packets required to acknowledge samples collected fromy evete in the network are
generated and sent in each dissemination egnfrhe base sation triggers a dissemination
eventE at the end of every dissemination interval

Algorithm 5 shows a procedure for handling a disseminati@meF . First, the base
station processes all queued colelction messages using-thessMessage() function
described in Algorithm 4. Next the following five functiongmare and send the dissemina-
tion packetsupdate MoteStatus() is defined in algorithm 6generate D1() is defined in
algorithm 7;generate D2() is defined in algorithm 9; angenerate D3() is defined in algo-
rithm 11.disseminate() involves disseminating all the packets generated by theegiag
functions in the network. An implementation of the disseméfunction can be found in

Appendix A.7.
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Data: MoteTable MT
Result Prepare and then disseminate acknowledgments into theriket
while (messagequeue is not empty)
| processMessage(messagequeue.pop());
end
update M oteStatus();
generateD1();
generateD2();
generateD3();
disseminate();

Algorithm 5: Dissemination event’,

Before disseminating acknowledgments into the netwokkbtse station loops through
every M I object to check each mote’s status, set the appropriate #agsyenerate the lat-
est ack vectoB. Algorithm 6 shows the mote status update process. The basendfirst
checks to see if the value fotSN that was most recently reported by the mote matches
the ASN value in storage. The functiofind AS N is not defined here, but an implemen-
tation is in appendix A.8. If the values fotSN do not match, then the base station sets
the M I.AS Nmismatch flag, indicating that the mote require€8 Ack type acknowledg-
ment. Next the base station generates the ack véttior each mote. The ack vector is
created by checking each sample in reverse from the sample/ét(the sequence number
of the last known data sample collected on the mote) to thepleaafter ASN. In this
way the oldest sample becomes the least significant bit oatkevector. If every sam-
ple is acknowledged3 and L are both set t@), indicating that the mote needs/2 Ack
type acknowledgment. RS Nmismatch is false, but one or more samples are dropped,
a D1Ack is sent. Next the base station checks for windows overfloargrrif there is a
window overflow error the3 and L are set td), ASN is set toLSN and AS Nmismatch
is set to true. This forces the the mote to stop resendinglesmofder than,.SN. This can
create some false negatives (samples assumed to be lost,imwfaet they are not) if the

samples do arrive later.
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Trigger: invoked byEp

Data: MoteTable MT

Result Decide which type of ACK is required for each mote

foreach (M1 in MT)do

M1 .ackwaiting <« M I.ackwaiting — 1;

if (MI.ASN # MI.findASN()) then
MI.ASN «— MI.findASN();
MI.ASNmismatch «+— TRUE;

end

MI.B «—0;: MI.L «+ 0: allclear +— TRUFE:

foreach Sin M1I.Storage

from M1.Storage[(ASN + 1) mod F]
to M1.Storage|LSN] do

MI.B— MI.B << 1; L++;

if (S.Count < MI.Storage[RSN].Count) then
S.Dropped «— T RUFE; allclear «— FALSE;
MI.B«— MI.B& 0;

else

| MI.B+— MI.B& 1,
end

end
if (allclear) then MI.B «— 0; MI.L < 0;

for b —1to L do

if bit bin B =0then
S «— M1I.Storage[(ASN + b+ 1) mod FJ;
S.Dropped «+— FALSE; MI.dropped++;
S.Count <« M1 .Storage[RSN].Count;

ST «— MI.RSNT:,
end

end
MI.B«+ 0, MI.L +— 0; ASN «— LSN; RSN « LSN;
MI.ackwaiting «— 0; MI.ASNmismatch +— TRUF,

end

end

if (MI.L > MI.W)then /* wi ndow overfl ow error

Algorithm 6 : Generate B vectors and set flags for each mote at the basm stat

After generating the3 vectors and setting flags for each mote, the base station gen-
erates the three types of DACK dissemination packets. Algor7 shows the procedure

for generatingD1 type packetsDSN is incremented to give the packet a unique sequence

number.DSN is also used by the mote to indicate a storage overflow erreetilngD S N

to STORAGEOV ERFLOW . The enumerated value f&ff ORAGEOV ERFLOW is

greator thaml/ AX DSN. To complete thé 1 packet, the base station loops through every

39




mote in the mote table. IB indicates dropped data samples, there isAsaV Error, and
the base station is not currently waiting for a response t@a@us dissemination, then the

mote’'sM D, L, andB are appended to the packet.

Trigger: invoked byFEp
Data: MoteTable MT
Result Populate a D1 message
D1+ newDI1DACK M sg;
DSN «— (DSN++) mod MAXDSN;
D1.DSN «— DSN;
foreach (M1 in MT)do
if (MI.B #0)and(—MI.ASNmismatch)and (M I.ackwaiting < 0)) then
D1l.append(MI.MID,MI.L, MI.B),
MI.ackwaiting < 2;
end
end

Algorithm 7 : Generating a D1 packet on the base station.

Algorithm 8 shows the process for handling an incomingpacket on the mote. The
mote loops through th®1 looking for its M I D. If the mote finds its\/ I D, the local values
for DSN, L, andB, are updated. Next the mote loops through the bit8 starting from
the least significant bit. If the least significant bitBfis al, thenASN gets incremented,
B loses its least significant bit, ardis decremented to reflect the shrinking sizéfThe

loop terminates whenever the least significant biBdfecomes).

Trigger: D1 packet is received on mote I.D
Data: D1Packet D1

Result Update Ml

foreach (D1Ack in D1) do

if (D1Ack.MID = MI.MID) then
MI.DSN « D1Ack.DSN;

MI.L «+— D1Ack.L;
MI.B «— D1Ack.B;

while (MI.B & 1) do
MI.ASN++;

MI.B«— MI.B >>1;
end

end
end

Algorithm 8: Processing an incoming1 packet on a mote.
Algorithm 9 shows the procedure for generating type packets on the base station.
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The base station incremenisS N and creates an ordered array of all the objects in
the mote table\/T', sorting byM I D. This allows the base station to create a shiarti’
message for motes with contiguoli&/ Ds and no dropped data samples. Thgahead()
function looks ahead in the ordered arrayldf Ds, returning the largest/ 7 D it can find
from its current position that is fully acknowledged. A ra&nig generated as a sequence
of bytes in the form M ID1 250 M1D?2’. This creates the side effect that no mote in the

sensor network can have the valli® in the most significant byte of itd/ 7 D.

Data: MoteTable MT
Result Populate a D2 message
D2 —new D2DACK M sg;
DSN «— (DSN + +) mod MAXDSN;
D2.DSN < DSN;
MoteIndex[MT.numElements()] M1 < getSortedArray(MT);
nummotes «— M1I.size(); i < 0;
while (i < nummotes) do
if (M1I[i].B=0)and(—MI[i].ASNmismatch)and
(M1I[i].ackwaiting < 0)) then
D2.append(MI[i]);
M1I[i].ackwaiting < 2,
j < lookahead();
if (j —i>1)then
D2.append(250, M 1[j]);
for (k — ito j) do M I[k].ackwaiting «— 2;
14— J;
end

end
1+

end

Algorithm 9: Generating a D2 packet on the base station

Algorithm 10 shows the process for handling an incomip® packet on the mote.
The algorithm loops through the2 packet looking for an explicit reference to the mote’s
MID, or arange that includes an implicit reference to the maté/d). The bit structure

of a D2 packet is illustrated in Figure 5.7.
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Data: D2DACKPacket D2
Result Update Ml
ACK «— FALSE;
tMID,tMID1,tMID2 « 0;
mB « sizeInBytes(MID);,
dB « sizelnBytes(D2);
D2b — byte array of D2;
1« 0;
while (i + mB x2+1 < dB) do
if (D2b[i +mB] = 250) then
tMID1 < D2bji : i +mB — 1];
tMID1 « D2b[i + mB +1:i+42xmBj;
if (tMID1< MID <tMID2)then
ACK «+— TRUE;

‘ break;
end
i1 +—1i+mBx*x2+1;
else
tMID «— D2b[i : i +mB — 1];
if ¢.MID = MID then

ACK «— TRUFE;

‘ break;
end
1 — 1+ mbB;

end
nd

(ACK) then
MI.ASN «— MI.LSN,

MI.L + 0;
MI.B «0;

= @

end

Algorithm 10: Processing an incoming D2 packet on the mote

Algorithm 11 shows the procedure for generating type packets on the base station.
Generating a3 type packet is much the same as generatiiglaype packet, except in

this case the value fot.S Nmismatch is T RU E, and the value fodS' N is included after

the MID.
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Data: MoteTable MT
Result Populate a D3 message
D3 «—new D3DACK Msg;
DSN «— (DSN++) mod MAXDSN;
D3.DSN «— DSN;
foreach (M1 in MT)do
if (MI.ASNmismatch)and (M I.ackwaiting < 0)) then
D3.append(MI.MID,MI.ASN,MI.L,MI.B);
MI.ackwaiting < 2;
end
end

Algorithm 11: Generating a D3 packet on the base station

Algorithm 12 shows the process for handling an incomirgypacket on the mote.

Data: D3DACKPacket D3
Result Update Ml
foreach (D3Ack in D3) do

if (D3Ack.MID = M3.MID) then
MI.DSN « D3Ack.DSN;

MI.ASN «— D3Ack.ASN,
MI.L «— D3Ack.L,
MI.B «— D3Ack.B;

while (MI.B & 1) do
MI.ASN++,

MI.B«— MI.B >>1;
end

end
end

Algorithm 12: Processing an incoming D3 packet on the mote
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4.2 End-to-End Messaging Scenarios and Timelines

This section discusses how the DACK protocol defined in theipus section operates
under a variety of communication conditions. Various emd timing scenarios for
the DACK protocol are illustrated in each section. In eachirig scenario, motes oper-
ate inpassive mode. Recovering dropped samples is discussed in SecRdh 4Send-
ing a blanket acknowledgment is discussed in Section 432e8tion 4.2.4 shows how an
ASNmismatch can be caused by message latency. For the DACK protocol ttidutiee
in recovering lost samples, it is necessary for the dissatiin protocol to be significantly
more reliable than the collection protocol. Poor dissemmareliability can lead to win-
dow errors as discussed in Section 4.2.5, and storage avex$ldiscussed in section 4.2.6.
There are two major messaging delays in the end-to-end opei@ the DACK pro-

tocol, each of which is described below, and illustratedgnrie 4.4:

e Dissemination DelayGp: the time it takes to disseminate a DACK Message from
the base station to the target mote.

e Collection DelayG¢: the time between when a report event is invoked on the mote,
and the time that the base station receives the first of aryeafdmples in the report.
(The first collection packet that is received may not be tts fiacket that was sent.)

The DACK protocol requires the network operator to fine turssemination interval
Ip to meet the needs of their network. If disseminations ar¢ teenfrequently, this can
lead to a significant energy drain on the network. If dissetioms are sent too infrequently,
then we increase the chance of permanently losing data sartipbugh acknowledgment
window overflow errors.

For the DACK protocol to function/, must be greater tha¥,, and Iz must be
greator tharG. The CTP protocol described in [14], is able to deliver paskem a mote
to the base station over multiple hops in milliseconds. Tdilection process is occasionally
subject to transient routing loops, which can cause noerdehistic delays. The main

bottleneck for the DACK protocol is the dissemination defay. DIP, the DIssemination
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Protocol, described in [30], was able to dissemirtdtdata items t@0 motes in86 seconds.
In experiments discussed in chapter 7, the Drip protocdl &l able to disseminate one
to three DACK packets to 14 motes in under 10 seconds. In thelations, dissemination
on a network of the same size could take as long as a few minutes

Due to limitations of the current implementation, it is nesary to tune the dissemi-
nation intervall, to be greater than or equal to the longest report intervahgfraote in
the network. In the experiments and simulations discugs#uki following chapters, every
mote in the network has the same report intefyaland the base station has a dissemination
interval I, equal to the report interval. In many cases setfing= Iz may be inefficient,

but it makes analysis of the operations of the protocol edsidustrate. Section 8.2.1 dis-

Mote i Base Station

Ex —|— C,
G, \
—E

v v

Figure 4.4: Mote triggers event report’ at the end of each report interv}, and sends
data samples in collection packétsto the base station. After a delay Gf, the message
arrives at the base station, and triggers the collectiomtekle. Later, the base station
triggers eventy, at the end of the dissemination interval, and sends an ack message to
mote:. After a delay ofGGp, the ack message arrives at the mote and triggers éyent
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cusses possible methods to have the base station autdigatajast /, to meet the needs

of the network.

4.2.1 Establishing a Connection

Mote i Base Station
LSN= 1
E.— | AsN= -1 —b
D3,(i,1,0,- —ASN= 1 | —E}
DSN= 1
v v

Figure 4.5: The above timeline illustrates how end to endhections are established in the
DACK protocol. At the first report evenfi; mote: sends collection packét; to the base
station containing samplésand1. Because this is the first time the base station heard from
motei, the base station responds at the next dissemination é&yemtith a D3 M sg with

an empty B vector, and th&S N set to 1.

When the base station receives a message from a new mote fiinstitime, the base
station will start acknowleging all data samples startirgrf the SV of the last data sam-
ple receivedRSN. All data samples befor&S N will be ignored. The protocol behaves
similarly when receiving a storage overflow message from gem(rhis scenario is de-
scribed in the scenario in Section 4.2.6.) Figure 4.5 shasusple scenario, in which mote
7 only sends one collection message containing two sampéeyg eeport event, and the first

collection packet sent by the mote is received by the basersta

4.2.2 Recovering Dropped Samples

Sometimes collection packet§ M 1D, DSN, ASN, LSN, S[s|) become lostin transmis-
sion from a mote to the base station. If at least one collegaxrket in a report successfully
makes it to the base station, then the base station will leetaloleduce how many data sam-

ples were lost from thé SN value. Figure 4.6 illustrates this sample recovery prackss
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s ——con
ASN= -1 —\0(23)\>
IR DSN= -1 LSN= 3
D1,(i,0011 [ ]ASN= -1 T
l DSN= 1
ey
C,4,5
LSN= 7 % ID
ASN= 4—%}
DSN= 1 | LsSN=7 | |
D2, (i | ASN=7
DSN= 2

v v

Figure 4.6: The above timeline illustrates wheh & packet is used in the DACK protocol.
Mote i sends sample® and1 in collection packet;, and sampleg and3 in collection
packetC;. Collection packef’; gets lost in transmission, and the base station only regieve
(5. Because the collection packet includes theN and theL SN for mote: inside each
collection packet, the base station is able to determirtesttraple$) and1 are dropped. The
base station then disseminatel Apacket containing adC K for sample< and3, as well

as a negative acknowledgment of samplesd1 at the beginning of the next dissemination
interval I,. The next report intervalp on motei begins afterD1; is received, so mote
resends samplésand1 in collection packet’; before sending new samples.

no packets in a report arrive at the base station, then theedtason will have no knowl-
edge of the dropped data samples unless or until a collepagket from a later report
arrives. If the range of dropped data sample sequence nenibais) does not exceed
the acknowledgement window siZ&, then the dropped data samples can be recovered
using either aD1Ack(M 1D, L, B) message, or &#3Ack(MI1D, ASN, L, B) message.
Figure 4.6 illustrates a scenario whera Ack is required to recover a lost data sample.
Sometimes messaging latency causesiamvmismatch, and aD3Ack is required. The

AS Nmismatch scenario is discussed further in section 4.2.4.
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4.2.3 Full Acknowledgements

If every data sample sent by a mote is received by the bagerstdien the base station
replies with a full acknowledgment. Full acknowledgmentsmade with theD2Ack. As
described in section 4.1.2, tHe2 Ack can take the form of a single mote IDV/ /D" or
range of mote IDS'M D1 250 M1D?2”. Figure 4.7 illustrates a scenario in which the bas
station send®2Ack message:” inside aD2 packet to acknowledge that all samples have
been received from mote The range format allows the AC' K protocol to run efficiently

in sensor networks that have little data loss. A sing2Ack message can acknowledge
every mote in a WSN with the message250 M 1D,,”, whereM I D,, is the largest numeric

mote ID in the network.

Mote i Base Station

 fing o —cen.

ASN= -1 —\0(2’3)\_
I DSN= -1 LSN= 3
R ‘//IZ)Z&)/_ASN: 3 T

LSN= 7 DSN= 1
Lo JAsNea—— G645

DSN= 1 C4(6,7) I I

_ LSN=7
D2 (i — | ASN=7 -
DSN=2

v v

Figure 4.7: The above timeline illustrates whied packets are used in the DACK protocol.
Mote i sends sampleg and1 in collection packetC;, and sample& and3 in collection
packetC,. Both samples are received by the base station. At the nese¢iination interval

Ip, the base station is able to deduce from fhe/N values contained in the collection
packet that all packets sent by matbave been received. The base station then sends a
blanket acknowledgement to moidoy including the mote’s ID number in the neki2
packet.

Sending aD2Msg at all may be considered wasteful in a network with very siiaté
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loss. It is possible to modify the protocol to only uB8 Ack messages to acknowledge
samples when they get lost. This would save us from disseémgany thing at all for suc-

cessfully received packets. This approach would not be dft@end messaging protocol,
because motes would have no way of knowing whether the messagye received by the

base station.

4.2.4 QOvercoming Message Latency

We definel'(ER), T(Ep), T(Ec), andT (E 4) as follows:

T(ER): the time a report everfi is invoked on the mote.

T

T(E¢): the time the first collection packet senthy, is received by the base station.

T(E,): the time that the DACK message sentdp arrives at the mote.

(Er):
(Ep): the time a dissemination eveht, is invoked on the base station.
(Ec):
(Ea):

Let X be a set of collection packets,, ..., C, sent in a report everitr wherez is
the number of collection packets in the set. If any or alleciion packets in' become
lost enroute to the base station, and if the base statiorsseh?)Msg to the mote be-
fore any of the messages i arrive at the base station, and if theMsg arrives at the
mote after the lost collection packets were transmittechibymiote, then the mote will erro-
neously assume that the2 Ack message is acknowledging the lost data samples, causing
an AS Nmismatch. Figure 4.8 shows the time range relative to a disseminatient~',
when anAS N Mismatch can occur.

When theD2Ack message is received by the mote, the mote assumes that #he bas
station is acknowledging all sent data samples, and erumheapdates itsASN value
to LSN. The base station does not learn of th& N Mismatch until the revisedAS N

is received in a subsequent collection packet. In the nesdediination evenk/,, after

the collection packet with the erroneodsS N arrives, the base station notices that the
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T(Ey)
R § “““ ; |

e TT(ED)
D2
G,

T(E')

ey

v v

Figure 4.8: In the above timeline the shaded area indicdtestime range when an
ASN Mismatch can occur. For amlSN Mismatch to occur, the report everffy must
occur afterl’'(Ep) — G¢ whereG( is the time it takes for the first packet in the report to be
received by the base station, one or more collection paslesisin £z must become lost,
and the lost collection packets must be sent befq€,) = T(Ep) + Gp.

ASN value in the collection packet is different than tA€ NV value in the mote’s index
object. The base station resolves th€ Nmismatch by sending ab3 Ack message to the
mote. Figure 4.9 illustrates a scenario in whichAa$iNmismatch occurs, and @3Ack
is required to acknowledge dropped data samples.

To avoid additionalAS Nmismatch scenarios, the base station should not send a new
ack message to a mote until the mote has had enough time twniksp the previous ack
message. Ifp > Ir + Gp + G, it will reduce the likelihood of aldlS N Mismatch. G¢
andGp can be highly variable because they depend on network ¢onsliand the routing
decisions of the underlying collection and disseminatimytgrol. If the network operator
chooses the minimurfy, = Iy, thenitis more likely thal, 2 I + Gp + G¢. To reduce
the likelihood of ASN Mismatch errors, the base station sends the next ack message at
twice the dissemination interval time; i.e. at tifiéE£ ) + 21. For example, lef/p; be a
dissemination event in which the base station sendg/Msg in packetD2,; with DSN = d

to motes. Let Ep, be the next dissemination eventiéttip,) = T(Ep;) + Ip. If the base
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IR
LSN= 14 , LSN= 11
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DSN=_ 1 DSN= 2
IR
LSN= 14 I
DSN= 2 C10(15,16)
C11(17,18)

 , LSN= 18
D25(i —|ASN=18 | —
DSN= 3

v v

Figure 4.9: The above timeline illustrates whePapacket is used in the DACK protocol.
Sampled) through3 are correctly received by the base station from collectiackptsC
andCs. At the next dissemination interval the base station send8,&) to acknowledge
that it has received all known samples. Due to routing defags(i) is not received by
mote: until after mote; sends collection packe€s; andCy. If both C; andC, are received
by the base station, then everything is fine. If either packeor C, are lost, then this
causes moteéto erroneously believe tha&t; andC, were acknowledged, andS NV is set
to 7 instead of3 in the next collection packet;. WhenCs is received, the base station
detects that thelSN value inC5 does not match the base statid§ N value in the mote
index object for moté. At the next dissemination event, the base station seis@acket
to correct the problem. When moteeceives theD3 packet, it corrects its value fotS N,
and resends the dropped samples.

station receives a collection packet from mot®ntaining aDSN = d, then receipt of the
D2, packet is acknowledged, and the base station knows it issaénd a new ack message
to mote: in packetD2,, ;. Otherwise, the base station skips sending an ack message to

motei at Fp,, and waits until the next dissemination eventldtF ;) = T(Eps) + Ip to
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send the next ack message to motAt this point the base station sends a new message to

motes regardless of whether or not a collection packet WitV = d was received.

4.2.5 Accounting for Lost Data on Noisy Channels

If the gap between the sequence number of the last sent dafdesaS N, and the se-
guence number of the last acknowledged data sampl& becomes greater tha# then
the DACK protocol will permanently lose all data sampledexkd before the most re-
cently collected sample. Ignoring old data samples previéie53 vector from growing to
the size ofF’ and avoids dissemination packets growing too large or tooanaus.

Figure 4.10 shows a scenario in which the DACK protocol iséorto drop samples
due to this so-called window overflow. Both the mote and theebstation can detect a
window overflow. If the mote detects a window overflow, the enséts itsDSN value
to theWO = WINDOWOV ERFLOW flag. When the base station detects a window
overflow, it setsASN to LSN and sends d&3Ack message to the mote to update the
mote’sAS N, preventing the mote from resending old samples. The baserstounts the

number of samples that are lost due to window overflows.
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4.2.6 Handling Long Delays
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LSN= 1
ASN= 1
DSN= 1
LSN= 1
ASN= 1
DSN= 1
LSN= 26
ASN= 26
DSN= 2

Figure 4.10: The above timeline shows how the DACK proto@idies an acknowledg-
ment window overflow witi?” = 20. In the above case, the combination of a sligmvith
respect tali, a small value fodl, and a noisy link cause several collection packets and
a dissemination packet to become lost. Later, when the basersdetects a gap between
LSN andASN thatis greater thai/, it gives up on all the lost samples by updatitg N

to LSN, and sends &3 Ack message to inform the mote.

A storage overflow occurs if the break in communication betwthe mote and the base
station continues long enough that the mote is forced tovavieran unacknowledged data

sample in storage. Figure 4.11 shows a timeline scenariohichva storage overflow




occurs. Only motes can detect a storage overflow. When a nogte detect a storage
overflow, it sets theDSN to the flagSO = STORAGEOV ERFLOW. This allows
the base station to learn about the storage overflow fronDihié/ value in the collection
packets sent by the mote. When the base station learns dimstdrage overflow, the
mote’s localASN is set to theLSN contained in the informing collection packet, and a
D3 Ack message is sent to the mote to synchronize it with the A8\W. Unlike handling
window overflows, when a storage overflow occurs, the basiesta unable to detect how
many data samples were lost. It would be possible to accourtifof these lost samples
by counting unacknowledged data samples on the mote, andhéiweng the mote relay this

information to the base station. This feature has beendefufure work.
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Figure 4.11: The above timeline shows how the DACK protoeoidies a storage overflow
error. In this case no message is successfully transmiéaelen moteé and the base sta-
tion until after the entire sample storage space on mhbte been written to. When mote
detects that it is overwriting the sample stored&tV, it setsDSN to STORAGEOVER-
FLOW. When the base station sees thiS N in a collection packet, it confirms the update
by settingAS N to DS N and then sending B3 Ack message to inform the mote of the new
ASN. TheDSN valuer varies depending on how many DACK packets were disseminated
in the interim.
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4.2.7 Accounting Errors

Experiments and simulations of the current implementatibthe DACK protocol show

that in certain cases it can produce false positives and fedgatives. False positives are
discussed in section Section 4.2.7.1, and false negatieediscussed in Section 4.2.7.1.
Potential methods to resolve false positives and falsetivegaare discussed in Sections

8.2.3 and 8.2.4 respectively.

42.7.1 False Positives

As described in algorithm 4, the DACK protocol counts eveajadsample that is recovered
by a DiMsg or D3Msg. A false positiveoccurs when the base station assumes that a
data sample was recovered byld Msg or D3Msg, but in fact the data sample would
have arrived anyway. In the current implementation, falsgtives have been observed to
occur if data samples arrive during the time interval betwsben the base station updates
dissemination status in algorithm 6 line 28 (see Sectior2}dnd when the base station
forms the dissemination packets. In the simulations aneémx@nts discussed in Chapters

6 and 7, this interval could be as long as 800 millisecondsthénexperiment described

in Section 7.3.4, 20 of 719 samples that were recovered beetdurse of the experiment

were actually false positives.

4.2.7.2 False Negatives

A false negativeoccurs when the base station counts a data sample as petipdost)
when in fact the data sample does eventually arrive. Falgatives can occur after the
base station has already serdal/sg to resolve a window overflow as discussed in section
4.2.5, or to resolve a storage overflow as discussed in seétih6. If any data samples
arrive at the base station having a timestamp older thanrestamp of the data sample
with SN equal to theAS N sent in theD3Msg, then the base station will ignore the data

samples. These samples were recovered, but the base s@tiots them as lost, so they

56



are false negatives. In the simulations described in Chéad the experiments described

in Chapter 7, false negatives were very rare.

4.3 Metrics

The efficiency of the DACK protocol is relative to the efficagnof the dissemination and

collection protocols it is built on top of. The cost of the DR@rotocol is measured as the
number of packets disseminated, and the number of colfepaickets sent for the purpose
of resending lost data samples. The benefit of the DACK podtieaneasured as the num-
ber of data samples it recovers. The effectiveness of theKDg@tocol is measured as the
ratio of the number of data samples dropped to the numbertafsgenples recovered. The
following definitions define the metrics used to determiree IACK protocol benefit and

cost:

e nD - 'number of disseminations’: the total number of DACK disseation packets
disseminated by the base station during

e nC - ’number of collection packets sent’: the total number dfezion packets sent
by motes in the network during.

e nC'R - 'number of collection packets resent’: the total numbecaolfection pack-
ets sent by motes in the network durifigcontaining data samples that were sent
previously.

e nS - ’number of samples’: the total number of data samples sgatrote.

e nA - ’'number of acknowledgeable samples’: this is the numbesanfples the base
station becomes aware of through th& N and LS N values in collection packets.
This number may be smaller thay' if a mote experiences storage overflows.

e nRX -’number of received samples’: the total number of data dasweceived at
the base station.

e nd-’'number dropped’: the number of data samples sent by motietbase station,
but not received by the time the base station send$&sg or D3Msg to recover the
data sample. This can also be thought of as the number of datples dropped by
the collection protocol.
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e nr-’number recovered’: the number of data samples that weevezed by the base
station after sending B1Ack or D3 Ack message requesting a mote resend dropped
samples.

e nl-’number lost’: the total number of data samples that the Iséation gives up on
trying to acknowledge as described in Sections 4.2.5 an@.4.2

e no - 'number outstanding’: this is the number of samples theelsiation sent a
D1Msgor D3Msgfor that has not yet been recovered or lost.

e nso - 'number of storage overflows’: the number of storage ovedlthat occurred
during an experiment (see section 4.2.6).

e nwo - 'number of window overflows’: the number of window overflothst occurred
during an experiment (see section 4.2.5).

e fp - ’false positives’: the number of data samplesiinthat were counted as recov-
ered after &1Msgor D3Msg but would have been recovered anyway, as described
in section 4.2.7.1.

e fn - ’'false negatives’: the number of data samplesdithe DACK protocol counts
as dropped, but were actually received, as described iroaetR.7.2.

The dissemination cost of using the DACK protocohi®. The collection cost for
using the DACK protocol isiC'R. The benefit of the DACK protocol is the number of
recovered data samples minus the false positives;rite— fp. The recover ratior is
a measure of the effectiveness of the DACK protocol at recogedropped samples:r
is calculated by dividing recovered data samplesby the number of samples dropped

samplesid minus the samples still outstanding; i.e,

rr =nr/(nd — no) (4.1)
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Chapter 5

Implementation

The DACK protocol has been implemented into a prototypeiagtibn calledSimpleNet-
work. TheSimpleNetworkpplication was developed for TinyOS 2.1. Targeting foryOi$
allowed us to use the same source code for experiments uslagB motes, and simula-
tions using the TinyOS simulator TOSSIM. The DACK protocasmot yet been modular-
ized, such that it can be used as a library by other applicaitibhe current implementation
provides a prototype application as a proof of concept. i&e@&.2.5 discusses potential
methods to modularize the implementation for use in othplhegtions.

The SimpleNetworlapplication was first developed targeting TOSSIM, and later
grated to run on TelosB motes. The same code is used for betirtiulations in Chapter

6 and the experiments in Chapter 7.

5.1 Code Overview

TheSimpleNetworlapplication consists of a mote application written in nesBase station
application written in Java, simulation configuration fjlaad a make file. Additionally, a
Python script is used to parse tBeanpleNetworlapplications log file. Detailed listings of
the code can be found in appendices A.1 to A.8. The sourcerepdsitory is maintained

by the sensor web language group at UNB.
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Mote Code

SimpleNetworkAppC.nc

SimpleNetworkC.nc

SimpleNetwork.h

TinyOS 2.1 Libraries
(CTP, Drip, DIP,
etc.,)

Y

Makefile

TelosB Mote

SimpleNetwork
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DACKCollMsg java
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DACKDissSerialMsg.java

SimpleNetworkBS.java

Motelndex.java

TinyOS 2.1
Java Support
Libraries
_ _ SimpleNetwork
JEbEIER JE Base Station

Base Station
Log

Figure 5.1: Overview of the files in the DACK prototype apption SimpleNetworkised

to build a network on TolosB Mote hardware. Rectangles ssreprograms, torn pages
represent text or binary files, trapezoids represent cargyiind circles represent services.
Directional arrows represent input from files and outputfrmompilers and services. Bidi-
rectional arrows represent communication between sexviCecles marked! andB mark
the connection points to the files used to builSimpleNetworkimulation shown in figure

5.2.

Figure 5.1 shows the various files used in the implementatidhe SimpleNetwork

application, and how they relate

to each other. The motecgin for SimpleNetwork

was written in nesC for TinyOS 2.1, and consists of the folf@three files:
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Custom Third Party Auto Generated

simconfig.txt LinkLayerModel linkgain.out
\//
TOSSIM
Libraries
simo | simulate.py
python
Serial SimpleNetwork Slmtjcl)egmon
Forwarder Simulation

Figure 5.2: Overview of the files required for simulationloé DACK prototype application
SimpleNetworkCircles markedd and B mark the connection points to the files shown in
figure 5.1. Communication with TOSSIM by the SerialForwandjuires the TOSSIM-
Live extension discussed in chapter 3.

e SimpleNetwork.hThis is a header file containing packet structures and coraigpn
parameters for the mote application. A complete listinghaf source code can be
found in appendix A.2.

e SimpleNetworkC.ncThis is the core implementation component of BiepleNet-
work mote application, and contains implementations of the nsate algorithms
discussed in section 4.1. Excerpts from the source codeg alith detailed descrip-
tions, can be found in appendix A.6.
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e SimpleNetworkAppC.nd his is the top-level configuration file for the mote applica
tion. It links the implementation iSimpleNetworkC.nwith other components in the
TinyOS library. A complete listing of the source code candaend in appendix A.5.

The base station application f&@ mpleNetworkvas written in Java 1.5, and takes
advantage of the TinyOS 2.1 Java support libraries for comaoating with motes. To
coordinate message structures with the mote applicatien,TinyOS Message Interface
Generator (mig) is used to generate convenient Java obgdictitctbns for the messages
structures defined in the SimpleNetwork.h header il ACKDissSerialMsg.javés gen-
erated to define dissemination messages, RAGKColIMsg.javais generated to define

collection messages. The base station application codestsif the following files:

e SimpleNetworkBS.javarhis is the main base station application, and contains im-
plementations of the base station algorithms discussegtiios 4.1. Excerpts from
the source code, along with detailed descriptions can bedfouappendix A.6.

e Motelndex.java This is a definition of theMotelndexobject described in section
4.1.1. A complete listing of the source code can be found peagdix A.8.

The following two files were defined to run ti&mpleNetworlkapplication in the

TinyOS Simulator:

e simconfig.txt: This file is used to define a radio signal model for motes in the
wireless sensor network. Parameters can be set to reprasentocations and other
network conditions for use in the simulation. This file is ged by the program
LinkLayerModelin the TinyOS 2.1 Java support library to produoegain.out a
text file containing thé.inkLayerModek estimations for the link gain between each
mote in the network. An exampEmconfig.txused for one of the simulations can
be found in Appendix A.3.

e simulate.py: This is a Python script that controls the TOSSIM simulatidrhis
script parses thinkgain.outfile, and uses this info to boot and run emulated motes
in the simulation. An examplsimulate.pyused for one of the simulations can be
found in appendix A.4.

Finally, the following Pyhon script is used to parse the Iéesfproduced by the sim-

ulation and the experiment.
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e tabbs.py: This python script is used to compile the results of an ergimulation or
experiment. Because the results for each mote get reseedraie station after each
storage overflomtabbs.pysums the results of each instance of communication be-
tween the base station and the mote for the final tally. Aramst of communication
refers to the time interval between when the base statitialines theMotelndexor
a motes, and the time a storage overflow is detected on Mofée results are parsed
into tables used in the results in Chapters 6 and 7.

As shown in Figures 5.1 and 5.2 tMakefileinvokes the nesC compiler to compile
the SimpleNetworknote code for either the simulatiosiin.g, or an actual motengain.g.
main.ocan be installed on one or several motes, aiml.ocan be used by TOSSIM to
simulate one or several motes. Thikakefilealso invokeamig to generate the java object
definitions for message structures as described aboveSint@eNetworkase station code
is compiled withjavac, and then the&SimpleNetworlase station can be run as a service
using java. The base station communicates with an actua wiata USB cable, or with a

simulated gateway mote running inside TOSSIM with SezialForwarderapplication.

5.2 Packet Structures

In Chapter 4 packets were defined abstractly. This chapstisrtihe actual DACK packet
structures used in the implementation of 8ienpleNetworlapplication.

Figure 5.3 shows the byte data sample structure used for data samgp(esV, SID,
R, T). Sequence numbef&\V are2 bytes. The Sensor IDS( D) is only one byte, which
is sufficient to map a unique integer to the Telos8 ADC inputs,2 digital inputs, and
internal sensors. Sensor readiRgs 2 bytes as the TelosB ADC precisionl8 bits. The
timestampT is 4 bytes because it uses the TinyQ8calTimeMilliC component, which
returns &2 bit timestamp of the number of binary milliseconds the matg Ibeen running.
Note that there ar€024 binary milliseconds per second [9].

Figure 5.4 shows th25 byte packet structure for a basic DACK collection packetluse
in the SimpleNetworlapplication. Two bytes for the mote i I D reflects the 16-bit data

type used forM I Ds in TinyOS. The last consecutively acknowledged data samflv
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0 2 3 5 8
SN SID | Reading Time Stamp

Figure 5.3: Structure of a Data Sample with a sequence nus\Wersensor IDSID, a
readingR, and a timestamf'. The SID is a sensor identifier which maps the reading to
the sensor channel number, type, and data acquisition péeesr(see section 3.5).

and the last sent data sampl§ NV are both2 bytes, reflecting the size of sample sequence
numbersSNs described above. The dissemination sequence numBeér is one byte.
Thenso metric is2 bytes, allowing a maximum df5536 storage overflows to be counted.

These values are followed by two “slots” that can each hokldata sample.

0 2 4 6 7 9 1 12 14 18 27
Data Sample Slot 1 Data Sample Slot 2

SN ‘SID‘ R Time Stamp SN ‘SID‘ R ‘ Time Stamp

MID |ASN | LSN |DSN | nso

Figure 5.4: Structure of a DACK collection packet. This stwe is embedded in a CTP
(or other collection protocol) packet before being senhmltase station. Figures on top
are in bytes. Each data sample is placed in one of two “slots”.

To recover an accurate metric of the collection cost in @rpants using SimpleNet-
work, the DACK collection packet is supplemented with the vbyte metrics:C' and
nCR, as shown in Figure 5.5. These are not crucial to the funictgpaf the DACK pro-
tocol, but are included to recover accurate metrics in eRparts. It is not necessary to
include these values in simulations, as they can be reco¥eyen parsing the simulation

log file.

0 4 8 35
nC |nCR DACK collection packet

Figure 5.5: A DACK collection packet with the two additiorabyte metrics:C andn RC.

As shown in Figures 5.6, 5.7, and 5.8, each of the three tyfpdissemination packets
contain thes-bit DS N as the last byte of the packet. The length of the dissemimptagcket
limits the number of acknowledgment massages that can fitarpacket. In the current

implementation, dissemination length is setitobytes. DACK messages i1 and D3
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packets can vary in length depending on the lergtf the acknowledgment vectot. If
there are too many pendirigl, D2, or D3 messages to fitin &1, D2, or D3 packet in a
dissemination interval, then a secohd, D2, or D3 can be generated. Each dissemination
packet sent in parallel, requires a unique buffer on the sadteemory is limited on motes,
so the current application only buffers room for twd packets, twaD2 packets, and two

D3 packets.

24xx ) P,

i=

0 16 24 24+P1 40+P, 48+P, 48+P 1P,
MID1| L4 B+ MID2| L2 Bo MIDyx| Lx Bx DSN

Figure 5.6: Bit structure of @1 type DACK dissemination packet containimgacknowl-
edgments consisting of a sequence/dfl(D, L, B) triplets.

0 16 32 40 56 70
MID; | MID2 | - | MIDy |MIDy,q MIDy.1| MIDx | DSN

Figure 5.7: Bit structure of #2 type DACK dissemination packet containimgacknowl-
edgments consisting of a sorted sequenc&/éfDs and ’-’ characters. AIID; — MID,
pattern indicates all MIDs between and including D; and M I D, are acknowledged.

X
40x %) P,
0 16 24 40 40+P1 56, p, 64+P1 g, p, 80+P1+P2 i=0

MIDq| L1 |ASNq B MID2| Lo |ASNo| Ao MIDy| Lx [ASNy| By DSN

Figure 5.8: Bit structure of &3 type DACK dissemination packet containimgacknowl-
edgments consisting of a sequenceMfl(D, ASN, L, B) 4-tuples.

In D1, and D3 messages, the length 6fis expanded to the nearest byte boundary.
For example, if the lengtlh; of the ack vector3; is 6 bits, then a full byte of packet space
will be used to store3;. We definedP to be the number of bytes required to stéréits,
such thatP — [L/8]. If L; = 0, thenP;, = 0 and B; is can be skipped in the packet. In
the current implementation, thel, D2, and D3 dissemination packets were each capped
at48 bytes. This means that, If; <= 8 for all acknowledgment vectorB;, then at most
15 motes can be acknowledged in dné packet, and motes can be acknowledged in one

D3 packet. The code for populating packets is discussed ihdudetain in Appendix A.7.
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5.3 Base Station Data Structure Implementation

As discussed in chapter 4, the base station creates a Metebigect for each mote in
the sensor network to keep track of each mote’s status. Thertumplementation of
Motelndex object uses four arrays of sizego implement theStorage structure (a circular
buffer) described in Section 4.1.1. As$itorage, each element of the array corresponds to

a possible value of N. These four arrays are defined as follows:

e ackvector: contains the ack vectds stored at position§ ASN +1) mod F' .. LSN]|
if ASN < LSN, or positiong(ASN + 1) mod F' .. F — 1] and[0 .. LSN]if ASN
> LSN. All elements ofuckvector outside of these ranges are sebto

e droppedackuvector: is used to count the number of dropped data samples. When a
data sample with the sequence numbar is dropped, the base station sets
droppedackvector[SN]to 1. When the data sample becomes either recovered or lost
(see section 4.1.1), the base station getgpedackvector[SN| back to0.

e acktimevector: contains timestamps in binary ms since startup for eachsanhple.
acktimevector[SN| implements the&toreage[SN|.T structure described in section
4.1.1. Newer timestamps overwrite older timestampes.

e ackcountvector: contains a count of the number of data samples receivedsor lo
with a given sequence number. This is equivalerftarage[SN].Count described
in section 4.1.1.

The Motelndex object contains several functions to utiliEse arrays, and to perform
the necessary wrapping logic at the end of the array. Theitigus in Chapter 4 ignored

this aspect of the implementation. For instance, Algorithoontains the loop:

foreach Sin M1I.Storage
from MI.Storage[(ASN + 1) mod F]
to M I.Storage[LSN] do

end

The above loop presumes that the compiler knows that it megt tewrap around the
storage array while traversing frothS N to LSN. Since the Java compiler has no such

construct, to accomplish wrapping in Java, the followintigra is used:
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if (LSN> ASN

{ for (int i=ASNtl; i<=LSN i ++)
{ ...
}

el se

{ for (int i=ASN1; i<F; i++)
{...
}
for (int i=0; i<=LSN i++)
{ ...
}

Variations of the above array wrapping pattern can be fouanithé source code for
the Motelndex object in Appendix A.8. Functions implementer Motelndex involving

operations that wrap around the four arrays implementia@tiorage Structure are:

e getAckLength(): returns the Length of the ACK vectd? as a calculation on the
values ofASN, LSN, andF'.

e getAckString(): returns the ack vectaB as a String, to be printed for debugging
purposes.

e getAckByteArray(): returns the ack vectadB as a byte array to be used ifd or
D3 type dissemination message.

e getOutstanding(): returns the metrieo, the number of outstanding data samples,
by counting the number af elements in the ACK vector.

e isInRange(int i): returnstrue only if the element is between
(ASN + 1) mod F andLSN.

e cleanAckVector(): sets all the elements in the ackvector array that are notctly
part of the ACK vector3 to 0.

e recordDroppedSamples(): counts data samples that have been dropped using the
droppedackvector.

e allclear(): returnstrue only if each elementis between
(ASN + 1) mod F andLSN in the ackvector array is set 10 indicating that every
data sample has been acknowledged.

e findASN(): returns the value foASN by analyzing thewckcountvector array.

e giveup(): is called whenever a window overflow occurs. This funct®responsible
for cleaning up all four ackvector arrays, and accountinddst data samples.
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5.4 Protocol Verification

Each metric described in Section 4.3 is counted in a faslhianavoids using other metrics

in the implementation. This method allows us to check foomriby making sure that
related metrics add up as expected, and gives us some assthrahthe protocol is working

as expected. Two checks are used in the final implement&tlonfirst check compares the
number of dropped data sampleg to the sum of the number of recovered data samples

nr, lost data samples/, and outstanding data samptes i.e.

checkl «— nd — (nr + nl + no) (5.1)

If checkl1 is zero, the methods for counting samples agreehdék1 is not zero, the proto-
col is not behaving as expected. The second check comparesithber of acknowledge-
able data samplesA with the number of received data sampleRC' minus the number
of recovered data samples (so that they are not double counted), plus the number of

dropped data samples, i.e.

check2 — nA — (nRC — nr) + nd) (5.2)

As with check1, check2 = 0 indicates that the metrics agree.

The number of dropped samples is counted in the dissemination eveny by call-
ing therecord DroppedSamples() function described in section 5.3. The number of recov-
ered samplesar is counted in the collection packet received evEptby checking if the
ackdroppedvector contains a value of at elementS N. The number of lost data samples
nl is counted in thgiveup() function described in section 5.3. The number of outstamndin
sampleswo is counted by thgetOutstanding() function described in section 5.3.

The number of acknowledgable data sampidsfor each mote is calculated by the
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function:

nA «— ackcountvector[RSN] x F' + ackcountvector[RSN]| (5.3)

where RSN is the sequence number of the data sample withrtjestaimestamp from the
mote. The number of collection packets resending data ssnpRkC, is counted in the
collection packet received evehl, by checking theS N of the incoming data samples
against the corresponding value in th&vector array. Since each of the metrics used in
check1 andcheck?2 are counted using different methods, a nonzero value ieregtuation
(5.1) or (5.2) points to an error in the implementation of BRECK protocol. These checks
were used extensively to debug the DACK protocol. The imgletation was considered

correct, when both equations reported zero for the entit®fa simulation or experiment.
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Chapter 6

Simulation

Simulations of theSimpleNetworlapplication are made using the TinyOS Simulator [24]
with the TOSSIM-Live extension [31]. The TOSSIM-Live exgeon allows emulation of
serial communication between a simulated gateway motelentdse station application.
TOSSIM and TOSSIM-Live are discussed in more detail in cbiapt

Simulations ofSimpleNetworkvere run to debug the DACK protocol, and test the
DACK protocol under various conditions. Many bugs in the lempentation only emerged
under rare conditions and required long simulations toa@ypce. The DACK protocol itself
appears to operate as it was designed, with two shortcorbeigg the false positives and
false negatives discussed in Chapter 5. False positiveltethegatives can be eliminated
using methods discussed in Sections 8.2.3 and 8.2.4, huathestill present in the results

of the current simulations and experiments.

6.1 Design

Sample storage was implemented by using an allocated seégrh&AM. The limited
amount of memory on motes requires a small valueAorUsing a small value used for
F andWW causes both window overflow and storage overflow scenariosdor frequently

within the simulations, helping to accelerate the debuggin
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To build our simulations, we used the link layer model diseasin [59] and provided
by TOSSIM in the TinyOS 2.1 distribution. Using this methalde wireless channel for
motes is modeled using the log-normal path loss model. Ttrelpss model accepts four
parameters: a path loss exponent (decay rate of the signadjerence distance, a signal
decay over the reference distance, and a standard dewatiosfor multi-path effects. For
simulations of theSimpleNetworlapplication, these parameters were set to to the football
field scenario detailed in the online TOSSIM network topglagorial [58]. The link layer
model also models network topologies, link asymmetried, ravise floor. Simulations of
SimpleNetworkvere done using a grid topology of evenly spaced nodes witlnsstric
links, and a noise floor of 105dB.

Two simulations are described in this chapter. Figuresedléa?2 show the grid topol-
ogy with 8 meter spacing used for the two simulations. The gatewayosemsle is always
mote(. All parameters were identical for both simulations, exdep F' and}V. The aim
of these simulations is to determining whether a larger wimdize F' could improve the
reliability of the DAC' K protocol. We simulated6 motes on a 4 by 4 grid topology, with
motes spaced 8 meters apart. Earlier simulations showedshey7 meters or less in the
simulation causes the collection protoc6l(P) to perform so reliably that too few data
samples were dropped to adequately test the DACK protoquaciSg motes & meters,
on the other hand, caused the network to perform so poortynthaommunications could
be established with most of the motes in the sensor networkh & 8 meter spacing,
connections between motes and the base station was goodretmastablish a connec-
tion to each mote, and volatile enough to produce severedgtooverflows, and window
overflows, such that the full range of the protocol could lstete and verified.

Each mote in the simulations has a sample intefyabf 10 minutes, and a report
interval I of 30 minutes. This value fofs is chosen to give the network enough time to
disseminate the dissemination messages to each mote niisg®n is observed to occur

much slower in simulations using TOSSIM than in experimeisisag real motes. For ex-

71



periments, dissemination occurred much faster, allowisgraple interval s of 10 seconds

and a report intervaly of 30 seconds to be used. In experiments and the simulations, the
base station has a dissemination intefyabf 30 seconds. Simulations are run as fast as the
CPU can run them. It takes the approximately 30 secondsruarlator to run a simulation

of 16 motes running foBO minutes, conveniently corresponds to a factor of 60. This al
lowed the base station code to use the same disseminateuaht, for both simulations

and experiments.

6.2 Measurement Process

The process for running a simulation is shown in Figure 5igstf simulation configura-
tion file is generated as specified by [58]. An example of a &tran configure file from
our simulations can be found in Appendix A.3. The simulattomfiguration file is then
fed into theLinkLayerModelprogram provided by TOSSIM. ThenkLayerModelgener-
ates thdinkgain.outfile which lists the gain in decibels between each mote in gtevork.
Thesimulate.pyrogram configures the TOSSIM to run 16 instances of the Sikgtwork
mote application, in which each mote has the gain to otheeswfined in the linkgain.out
file. The simulated motes are able to communicate with the btadion through the Serial-
Forwarder application using the TOSSIM-Live extension.

Both TOSSIM and the base station write status informatia@tdout. This information
is collected using thscriptapplication. After the simulation is run, theses files canver a
hundred megabytes. A python prograahbs.pywas developed to tabulate the information

after the simulations have completed.
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6.3 Results

Dozens of simulations were run in the course of debuggind¥WeK protocol before the
checks described in Section 5.4 were satisfied. The final imalations discussed here
ran for a simulatedg& days, without errors being detected. The simulation wagpsto
at48 days, because this is when the mot&dit binary millisecond timer overflows, and
handling for the timer overflow has not yet been implemented.

This section shows the results from two simulations with tiféerent values for for
FandWW. All parameters in both simulations are identical to thosgodibed in Section 6.1
exceptF' andWW. The aim is to test if increasing the sizeldéfwould increase the reliability
of the DACK protocol. The first simulation described in Sent6.3.1 useg’ = 50 and
W = 24, and the second simulation in Section 6.3.2 uses 200 andWW = 100. The
results show that the DACK protocol was able to recover agprately 4 times as many

lost samples with the larger valuesBfandiV ..
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6.3.1 Simulation One

In this simulation,F’ is set to50 and WV is set to24. The results are shown in two tables.
The metrics for each mote at the end of the simulation are shiowable 6.1. A count of
dissemination messages and collection messages, as veeli@amt of detected errors is
recorded in Table 6.2. Figure 6.1 shows the topology usedtim fimulations. Simulation
one ran for a simulated timespan4¥days and hours. This took approximately 12 hours

in real time on a 3.00GHz Intel(R) Pentium(R) 4 CPU with 1 GBR#M.

@ -96.05 @ -91.04 @ -98.07 @
-103.14 101.44 -96.38 -08.58
nA/nS

‘ -97.32 ‘ -98.88 @ -99.75 @ . 1 0.99<>1.00

[ ] 0.30<>0.50
-92.97 -95.99 -100.65 -97.33

W 0.05<>0.11
‘ -92.94 ‘ -98.00 ‘ -100.47 @ B 001<>005
-08.88 -97.71 -96.17 -97.87
‘ -99.31 ‘ -95.75 ‘ -99.15 ‘

Figure 6.1: The figure above shows the topology of the 16 nodesgnulations described

in Section 6.3.1. The link gain value generated by the LinjdrModel is shown between
adjacent motes. As shown in the legend, the shade of gragaitedi the number of ac-
knowledgeable data samplesl divided by the total number of data samples collected in
the experiment.S. Table 6.1 shows theA/nS ratio for each mote.

As shown in Table 6.1, the DACK protocol recovered an aversge% acknowl-
edgeable dropped data samples. The benefi29d is small, as network connectivity in
this experiment is so poor that most of the data samples vgracknowledgeable.

The number of data samples sem$,, is derived from the largest data sample times-
tamp. The discrepancies in thé column reflect when each mote was last heard from. For

example, the valué609 for mote8, means that the most recent data sample received from
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Table 6.1: Metrics from simulation results with F=50, W=24.

MID nS nA nA/nS nRX nd nr rr nl no B
0 6932 6930 1.00 693( 0 0 0.00 0 O 0
1 6932 6930 1.00 693( 1 1 1.00 0 O 1
2 6932 6930 1.00 693( 0 0 0.00 0 O 0
3 6932 6930 1.00 6921 47 38 0.81 9 0 37
4 6848 113 0.02 60 59 6 0.10 53 0 6
5 6577 660 0.10 129 558 27 005 531 (@ 27
6 6932 6930 1.00 6922 11 3 0.27 8 O 1
7 6815 3242 0.48 204% 1683 486 0.29 1197 (O 471
8 4609 72 0.02 55 25 8 0.32 17 0 8
9 6697 103 0.02 55 54 6 0.11 47 1 6
10 5927 333 0.06 88 260 15 006 245 (0 15
11 6677 2050 0.31 12671196 413 0.35 783 (0 406
12 6467 72 0.01 71 37 36 0.97 1 0 31
13 5756 218 0.04 65 163 10 0.06 153 Q0 10
14 6803 328 0.05 123 260 55 0.23 184 21 55
15 6824 782 0.11 573 430 221 051 209 Q 216
Totals: | 104660 42623 0.41 391644784 1325 0.28 3437 221290

mote8 by the base station was tHé09th data sample that mogesent.

The number of acknowledgeable data sampiéls,is the total number of data samples
the base station is made aware of through received colfeptickets. For motes that have
a solid connection to the base station should be almost the same size@s since each
mote was booted after the base station started listeningdifference between theS and
nA in motes with a solid connection to the base station is caligdide message connection
protocol, as discussed in section 4.2.1.

The number of acknowledgeable samples divided by the nuwidarown samples
sent,nA/nS, reflects the overall reliability of the connection betweka each mote and
the base station as maintained by the collection protoamhn€ction quality varied consid-
erably, with most motes either gravitating towards veryadygaality, or very poor quality.
Figure 6.1 shows how the connection quality varied overitnelated topology as reflected
by nA/nS. The total number of received data sampleB X, shows the number of data
samples that were received by the collection protocol alplus the data samples that were

recovered by the DACK protocol.
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The recovery ratiowr/(nd — no) is calculated as the number of acknowledgeable

samples that were recovered, divided by the number of data samples that were dropped

nd. This ratio also varied widely from mote to mote. The column shows the data

samples that the base station was trying to recover whenirtdagion was terminated.

The remainder of the data samples are lost, as indicatee@ il ttolumn. The benefiB of

using the DACK protocol, is equal to the number of recoverat damplesr, minus the

number of false positives showfp in Table 6.2.

Table 6.2: Simulation messaging and error results fro F¥#6€24

MID nD nDl1 nD2 nD3 nC nRC| nso nwo fn fp
0 2118 0 2069 49 4620 0 0 0O 0 O
2 2079 0 2027 52 4620 0 0 0 0 O
3 1665 7 1289 369 4654 34 0 7 0 1
5 1105 14 4 1087, 5049 781| 169 17 0 O
6 2079 21 2002 5¢ 4645 25 0 3 0 2
7 1234 141 146 947 5903 1413| 116 48 0 15
8 1087 5 4 1078 3914 953 169 0O 0 O
9 1091 4 6 1081 4993 596, 135 1 0 O
10 1096 15 6 1075 4577 702 6 6 0 O
11 1165 114 64 987 6999 2636, 149 29 0 7
12 1091 7 1 1083 4277 89| 176 0O 0 5
13 1093 3 7 1083 3790 142 241 3 0 O
14 1102 19 5 1078 4791 436| 41 13 0 O
15 1123 62 19 1042 4864  425| 175 14 0 5
Totals: | 4863 272 2103 2488 76927 8501 1417 142 0 35

Table 6.2 shows the number of dissemination packets, timiegackets, and observed

errors during the simulation. TheD, nD1, nD2, andnD3 columns show the count of

dissemination packets sent containing acknowledgmensages for each mote. The total

number of packets sent to all motes (bottom row), is much lem#édan the sum of each

mote’s count, as multiple dissemination messages are sepapket as described in section

5.2. Motes that had very poor connectivity mostly requifeg type packets, and motes

with a solid connection mostly required?2 type packets.D1 packets were used far less

frequently thanD3 packets. This suggests that dissemination packets wergatiig

acknowledged in time, forcing the base station to fall back 3 type packets to stay in
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sync. The number aD3s could be reduced significantly if the base station perfdrare
exponential backoff. In the current implementation thesbgtation continues to send 2
packet every other dissemination regardless of whetheaitdifrom the mote again or not.

The number of collection packets” includes the numbetRC' of collection packets
resending samples shown in the adjacent column. In thislation, 11% of all collection
packets were used for resending samples.

The final four columns of Table 6.2 show the number of storageflowsnso, win-
dow overflowshwo, false negativegn, and false positivegp. The high number of storage
overflowsnso reflects the long periods of disconnectivity with motes. Thenber of win-
dow overflows, as well as the number Bfi packets, indicate that connectivity was lossy
even when some communication could be established. There nweefalse negativesn

detected, and few false positivés.

6.3.2 Simulation Two

In this simulation /" is set t0200 andV is set to100. As with the previous simulation, the
results are shown in two tables. The metrics for each moteeagnnd of the simulation are
shown in Table 6.3, and a count of messages and errors is sholable 6.4. Figure 6.2
shows the topology and the ratio of acknowledgeable samplga.S for the simulation.
Simulation two ran for a simulated timespand@fdays and2 hours.

As shown in Table 6.3, the DACK protocol recovered approxetye23% of acknowl-
edgeable dropped data samples. This is a poorer recoverytrah in simulation one. The
benefit, on the other hand, seemed to increase significaotty £290 in simulation one,
to 4218 in simulation two. The larger window size appears to haveeased the num-
ber of acknowledgeable data samples marginally, whileifsegmtly boosting the number
droppednd and the number recoverea proportionally.

Table 6.4 shows that the cost of recoveringmes as many packets lead to Enfold

increase in the collection costC R, and al3% increase in the dissemination cost. The
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Figure 6.2: The figure above shows the topology of the 16 naddg simulation 2. Note
that thenA/nS ratio has changed significantly from Figure 6.1. The linkngaalues are
the same as those in Figure 6.1. The actual results can béns&ainle 6.3.

Table 6.3: Metrics from simulation results with F=200, W10

MID nS nA nA/nS nRX nd nr rr nl no B
0 6896 6894 1.00 6894 0 0 0.00 0O O 0
1 6896 6894 1.00 6894 4 4 1.00 0O O 4
2 6896 6894 1.00 6894 5 5 1.00 0O O 5
3 6839 6835 1.00 6266 2888 2319 0.80 569 (0 2305
4 5972 2164 0.36 219 2073 128 0.06 1945 (O 128
5 6584 2386 0.36 309 2302 225 0.10 2077 O 223
6 6896 6894 1.00 6894 15 15 1.00 0O O 13
7 6835 5055 0.74 118% 4666 796 0.17 3869 1 782
8 6530 1657 0.25 188 1611 142 0.09 1469 (O 142
9 6746 999 0.15 149 964 105 0.11 859 (Q 105
10 6569 219 0.03 14 187 114 0.61 73 Q0 114
11 6689 1597 0.24 295 1433 131 0.09 1292 10 129
12 6182 620 0.10 10§ 592 77 0.13 515 Q@ 77
13 6503 259 0.04 36 238 15 0.06 223 Q 15
14 5614 147 0.03 41 127 21 0.17 1006 Q 21
15 6689 1400 0.21 31% 1240 155 0.12 1085 (O 155
Totals: | 105336 50914 0.48 3682(118345 4252 0.23 14082 114218

sharp increase in the collection cast R is caused by the mote repeatedly trying to resend

samples until an acknowledgment is received or a windowflmveoccurs.
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Table 6.4: Simulation messaging and error results for F=20€100

MID nD nD1 nD2 nD3 nC NRC| nso nwo fn fp
0 2114 0 2109 5 4596 0 0 0O 0 O
2 2067 3 2054 10 4599 3 0 0O 0 O
3 1337 94 652 591 11068 6510/ 1 100 0 14
5 1082 65 2 1015 20109 15751 49 14 0 2
6 2065 9 2046 10 4606 10 0 0O 0 2
7 1135 110 30 995 24650 20114 28 78 0 14
8 1090 26 2 1062 17058 12766/ 79 45 0 O
9 1117 30 2 1085 12453 7973| 87 90 0 O
10 1071 22 1 1048 6824 2492| 64 0O 0 O
11 1190 36 11 1143 11728 7417 78 230 0 2
12 1066 9 0 1057, 6087 2003| 52 4 2 0
13 1065 10 1 1054 4826 550| 86 2 0 O
14 1067 9 2 1056/ 6174 2481 76 0O 0 O
15 1084 30 10 1044 9179 4658| 82 18 0 O
Totals: | 5473 353 2112 3008 166552 96779 730 615 2 34

6.3.3 Comparing Simulation Results

Table 6.5 shows the network totals for both simulations biglside. Increasing the stor-
age and window size by a factor éfresulted in a proportional increase in the number of
known dropped samples/ and the number of recovered data samples nd increased
slightly more thannr, resulting in a lower overall effectiveness. The cost obkering
more dropped data samples was mainlylarfold increase in the number of collection
packets resending data samples.

The larger window size reduced the number of storage ovesflamm 1417 in simula-
tion one to730 in simulation two, and increased the number of window oveuglrom 142
in simulation one t@15 in simulation two. An increased number b packets fron2488
to 3008 is also a consequence of the larger window size, as largetomirsizes require
longer acknowledgment vectors. The number of false pesitand false negatives in both
simulations is observed to be very small, accounting fartean0.1% of the acknowledge-

able data samples.

79



Table 6.5: Comparing results from both simulations.

F=50| F=200
nS 104660| 105336
nA 42623 | 50914
nA/nS 0.41 0.48
nRX 39164 | 36821
nd 4784 | 18345
nr 1325 4252
rr 0.28 0.23
nl 3437 | 14082
no 22 11
B 1290 4218
E 0.28 0.23
nD 4863 5473
nD1 272 353
nD2 2103 2112
nD3 2488 3008
nC 76427 | 166552
nRC 8501 | 96779
nso 1417 730
nwo 142 615
fn 0 2
fp 35 34
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Chapter 7

Experiment

7.1 Design

The SimpleNetworkapplication was tested on a network bf TelosB motes. TelosB
motes are discussed in Section 3.1. Figure 7.1 illustrétesapproximate arrangement
of motes in the ceiling panels of the Information Technol@spnter on the University of
New Brunswick campus. Gateway matdas connected to a PC acting as a base station
in the data communications lab. All other motes were plade/a ceiling panels in the
hallways. Mote7 was placed in the hallway outside of the door to the lab. Mdtés, and

8 were placed at the end of the hall near the stair case to héhpcasmmunication between
floors. Motesl1, 6, and10, were placed at the opposite end of the hall near the indoor
balcony, also helping with communication between floors.

Figure 7.1 also shows the routing paths followed by coltetpackets. These routing
paths were generated using &z application povided in the TinyOS 2.x toolchain, and
setting the RF power of each mote in the network.té.ccording to the CC2420 data sheet
[7], this corresponds to-a20 dBm signal strength and®2 mA current consumptiorMViz
is a simple network visualization tool that is included wiitle TinyOS 2.x distribution. By

default,MViz uses the same collection protocol library that is used bySihgleNetwork
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Figure 7.1: Deployment of TelosB motes for an experimenedarthe Information Tech-
nology Centre on the University of New Brunswick campus. r@en motes were de-
ployed, spread out over 3 floors as shown in the above diadgfkours are vertically sepa-
rated by 4.07 m. Arrows indicate routing paths traveled bdiection packets, as negotiated
by the Collection Tree Protocol.

application. This collection protocol is the Collectione&rProtocol (CTP) discussed in
Section 3.4.1. In Figure 7.1 there are two arrows exitinge®otone pointed at mote 8,
and one pointed at mote 5. This indicates that whiMiz was running on the base station,
it received collection packets that arrived after travghma both routes. The routing paths
also seem to indicate that the motes are not able to commnamiery well through the floor
at this power level.

We tried using both the DIP dissemination protocol and thip Bissemination proto-
col. In the simulations, both the DIP and the Drip protocotsked fine. We were unable to

get the DIP protocol to function in tHfeimpleNetworlapplication using the TelosB motes.
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The Drip protocol, on the other hand, worked very effectiydlsseminating messages out
to each mote within seconds. For this reason, the Drip pobtwas used for all experi-
ments, as well as simulations.

The Collection Tree Protocol was also observed to work véfgcevely on the net-
work. In a lab experiment we tested the effectiveness of tileation tree protocol using
one mote and one base station at very low RF power levels. @hdts were similar to
what we found in the Simulation. The Collection Tree Protagorks very well so long
as a solid connection can be maintained. Varying energydeaed distances, the CTP
achieves high reliability until the reception becomes sorgbat the base station can not
communicate with the mote at all. For example, in our experits we tested effective-
ness of the DACK protocol in our deployment at power levgl§, 6 and5 ( estimated
to be—12dBm, —15dBm —17.5d Bm, and—20dBm respectivly.). At power leveb, the
network was able to maintain a solid connection throughloetiifetime provided by two
double a batteries powering each mote 5A¢stimated to be-20d Bm the connection be-
came very poor after a day of operations in one attempt, aodrisecond attempt, we were
unable to estable a connection at all at power I6véit power leveld, no communications
could be established.

As both the Drip and CTP protocol worked very effectively, eimse short intervals
for sampling, reporting, and dissemination. In each expent we set the sample interval
Is to bel0 seconds, and the report interval and dissemination intervd), both to be30

seconds.

7.2 Measurement Process

As in the simulation, th&impleNetworkase station application writes a log of all incom-
ing collection messages, outgoing DACK messages, and thiems of its internal data

structures. At the end of the experiment, the final resuktst@oulated using thebbs.py
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script. Results were verified using the tests describedati@e5.4.
In the simulations, sensor readings all returned the hexawdé valueOx BEEF. For
the experiment, the TelosB motes sample their internaébatioltage. This allowed us to

monitor the energy level of the motes for the lifetime of tkperiments.

7.3 Results

This chapter shows the results franexperiments. The first experiment, discussed in Sec-
tion 7.3.1 was done using an older version of the source duatecbntained several bugs.
For this reason only the sample reception rate is discusBlkd.other three experiments
discussed in Sections 7.3.2, 7.3.3, and 7.3.4 were run tisgngame updated version of the

source code that was used in the simulations discussed €&

7.3.1 Experiment One: Power Level 5

In early experiments, we tested the network at various pdsweis to find out the lowest
common power level we could use such that every mote in thveamkeicould still communi-
cate with the base station. Initially we observed this pdel to beb, which according to
the C'C2420 datasheet [7] corresponds te-20d Bm and current consumption 6f2mA.

Our first experiment with power level 5 was done with an eadysion of the source
code. The final results from this experiment have been othdtes to the observation of
several errors that were detected by applying the checksided in Section 5.4. How-
ever, it is still interesting to note the connectivity of thetwork at this power level in this
experiment.

Figure 7.2 shows the sample reception for each mote. Evetg neported fine for
the first day. After the first day reception became very podth weveral motes loosing
communication entirely, except for a few small spurts oivatgt

We tried to run the experiment at RF lewshgain, after the source code was improved
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Figure 7.2: Sample reception observed with mote IDs on thgig;- and day of operation
on the x-axis. Motes are at power level-520d Bm and9.2mA). Blank spaces indicate no
data was received by the base station for this mote.

and debugged. However, we were unable to get the networknioncmicate at all. This
forced us to increase the power level to 6 and try again. Tédtseof the 6 RF experiment

are shown in Section 7.3.4.

7.3.2 Experiment Two: Power Level 9

This experiment began on Monday December 7th, 2009. Unfatély, due to a human
error, logging did not begin until Thursday December 10the Thotes continued running
until Monday December 14th, when the batteries had draiedmibthe TelosB minimum
voltage requirement. According to the CC2420 datasheeRFapower level of corre-
sponds to-12d Bm and a current draw df0.5m A.

Figure 7.3 shows the battery energy reading on the motekddast three days of the
experiment. Each mote reached the end of it’s battery lter & days, and lost communi-
cation with the base station around the same time.

The results of the experiment are shown in Table 7.1. TAgnS ratio reflects that
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Figure 7.3:Energy Readings Day of Operatiorof a 14 mote sensor network experiment
running the DACK protocol at RF power leveél —12d Bm and10.5mA.

the base station did not begin acknowledging samples uafivay through the networks
lifetime. The number of data samples that were recovébdds very small (.04%) com-
pared to the total number of samples colleciéth14. The perfect recovery ratia- shows
that the DACK protocol managed to recover every data sanmalievtas lost./ while the
base station was listening. Though no samples were losg tirere several outstanding
packets. This indicates that communication became very foeaards the tail end of the
mote battery life.

Table 7.2 shows the cost of using the DACK protocol in thisezkpent. It took
479 extra collection packetsiC) and9519 dissemination packets to maintain end to end
communications and recover thé4 dropped samples shown in Table 7.1. No window
overflowsnwo, storage overflowsso, or false negatives occurrefth. There were only 6

false positivesp.
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Table 7.1: Metrics from simulation results with RF=9.

MID nsS nA nA/nS nRX| nd nr rrnl no B
0 53002 26827 0.51 2682 3 3 1.00 O 0 3
2 53003 26830 0.51 26830 7 7 100 O 0 7
3 52738 26565 0.50 2654P 32 9 100 0O 23 8
5 52607 26434 050 26434 23 23 1.00 O o 22
6 52606 26433 050 26433 11 11 100 O o 9
7 52517 26344 0.50 26344 3 3 100 O 0 3
8 52654 26481 0.50 26436 58 13 1.00 0 45 12
9 50663 24490 0.48 24490 7 7 100 O 0 7
10 51832 25660 050 25659 11 10 1.00 O 1| 10
11 51890 25718 0.50 25718 3 3 1.00 O 0 3
12 52604 26438 0.50 26438 7 7 100 O 0 7
13 52561 26395 0.50 2637f 44 26 100 O 18 26
14 52580 26413 0.50 26418 14 14 100 O 0 14
15 52658 26486 0.50 26440 63 18 1.00 0 45 17
Totals: | 733913 367514 0.50 367382286 154 1.00 O 137 148

Table 7.2: Experiment messaging and error results for RF=9.

MID nD nD1 nD2 nD3 nC nRC|nso nwo fn fp
0 8794 3 8790 1| 35336 41 0 0 0 O
2 8792 5 8785 2| 32861 7/ 0 0 0 O
3 8689 6 8623 60 32749 100 O 0 0 1
5 8229 11 8147 71 32970 295/ O 0 0 1
6 8241 8 8164 69 32694 13| O 0 0 2
7 8713 1 8632 80 32605 3] 0 0 0 O
8 8226 7 8147 72 32661 201 O 0 0 1
9 7901 4 7512 385 31289 13| O 0 0 O
10 8021 6 7809 20§ 32246 16| O 0 0 O
11 8147 0 7958 189 32197 8/ O 0 0 O
12 8341 4 8268 69 32560 9, 0 0 0 O
13 8299 6 8210 83 32666 48| 0 0 0 O
14 8308 7 8227 74 32554 13| 0 0 0 O
15 8336 10 8256 70 32690 200 O 0 0 1
Totals: | 9519 68 8794 657 458078 479 O 0 0 6

7.3.3 Experiment Three: Power Level 7

The experiment begun on Monday December 14, 2009 was iptediy a power outage
in the lab on Friday December 18, 2009. According to the COZ#Htasheet, an RF power
level of 7 corresponds te 15dBm and a current draw of. 9m A.

Figure 7.4 shows the battery energy readings recordeditoexiperiment. The results
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Figure 7.4:Energy Readings Day of Operatiorof a 14 mote sensor network experiment
running the DACK protocol at RF power level —15dBm and9.9mA.

for the experiment are shown in Table 7.3. Thé/nS ratio is very close to one this time,
because the base station was listening from the moment thesrbecame operational.
With the exception of motél, the results for this experiment are very similar to the tesu
for the experiment at power leveldescribed in Sections 7.3.2 and power levdkscribed
in 7.3.4. Very few samples were lost, and all those that weseWwere recovered by the
DACK protocol.

The samples lost on motd were lost due to the effect of a malformed data sample
that broke the functioning of th® AC' K protocol. The data sample was malformed such
that it had a very large timestamp, larger than the lifetirhéhe entire experiment. The
error can be found on line 1269991 of the base station log fidog-dec-14-200F-7RF.
The large timestamp caused the base station to ignore ingoaaita samples with a lower
timestamp, until finally a storage overflow occurred. Afteg storage overflow, communi-

cation with motel1 resumed.
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Table 7.3: Metrics from simulation results with RF=7

MID nS nA nA/nS nRX| nd nr rr nl o] B
0 33658 33657 1.00 3365f 10 10 1.00 0 0 10
2 33661 33658 1.00 33658 35 35 1.00 0O 0 34
3 33659 33658 1.00 33658 10 10 1.00 0O 0 9
5 33658 33657 1.00 3365f 30 30 1.00 0 0 30
6 33658 33657 1.00 3365 19 19 1.00 0 0 19
7 33658 33657 1.00 3365f 3 3 1.00 0 O 3
8 33659 33658 1.00 33658 35 35 1.00 0O 0 34
9 33658 33657 1.00 3365f 15 15 1.00 0 0 15
10 33658 33657 1.00 3365Ff 26 26 1.00 0O 0 26
11 33659 33625 1.00 33620223 36 0.16 163 Q 34
12 33659 33658 1.00 33658 10 10 1.00 0 0 10
13 33659 33658 1.00 33658 21 21 1.00 0 0 19
14 33662 33658 1.00 33658 11 11 1.00 0 0 11
15 33662 33658 1.00 33658 16 16 1.00 0 0 16
Totals: | 471226 471173 1.00 471177464 277 0.60 163 Q 270

Table 7.4 shows the cost of running the DACK protocol in thipeximent. It took
247 extra collection packetsiRC) and11412 dissemination packets (0) to maintain end
to end communications and recover th# dropped samples shown in 7.3. The storage
overflow that occurred on Mote 11 is shown in the column. There were very few false
positives. Th& window overflows and 072 false negatives on motd were also the result

of the malformed data sample discussed previously.

7.3.4 Experiment Four: Power Level 6

This experiment began on Monday December 21st, and corctlonlédonday December
28th. We were able to log the output of the entire lifetimehaf batteries with no interrup-
tions. Figure 7.4 shows the battery energy readings reddad¢his experiment. According
to the CC2420 datasheet, RF power lgvebrresponds te-17dBm and a current draw of
9.5mA. At this power level, the network was able to maintain a sobdnection with the

base station using the collection tree protocol. As desdrib Section 7.3.1, setting the

power level to 5 resulted in very poor to no connectivity.

The results for the experiment are shown in Table 7.5. Thél shfference between
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Table 7.4: Experiment messaging and error results for RF=7

MID nD nD1 nD2 nD3 nC nRC| nso nwo fn fp
0 11035 6 11027 2 22444 7 0 0 0 O
2 10133 24 10050 59 20833 28 0 0 0 1
3 10114 7 10023 84 20928 13 0 0 0 1
5 9748 16 9670 62 20900 32 0 0 0 O
6 9824 13 9749 62 20934 15 0 0 0 O
7 11031 3 11025 3 20929 3 0 0 0 O
8 9807 18 9711 78 20917 33 0 0 0 1
9 9843 10 9776 57 20833 12 0 0 0 O
10 9778 14 9701 63 20948 24 0 0 0 O
11 9980 17 9901 62 20954 27 1 7 1072 2
12 10082 6 10026 50 20788 9 0 0 0 O
13 9948 14 9880 54 20994 18 0 0 0o 2
14 9943 9 9879 55 20868 10 0 0 0 O
15 10041 12 9975 54 20927 16 0 0 0 O
Totals: | 11412 160 11034 218 294197 247 1 7 1072 7
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Figure 7.5:Energy Readings Day of Operatiorof a 14 mote sensor network experiment

Day of Operation

running the DACK protocol at RF power levé&l —17dBm and9.5mA.

nS andn A reflect that the base station did not start until a few minafess the motes had

been booted. In this experiment the DACK protocol was abbkctoeve a perfect recovery

ratiorr and recoverr19 data samples.
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Table 7.5: Metrics from simulation results with RF=6.

MID nS nA nA/nS nRX| nd nr rr nl no B
0 53737 53671 1.00 53671 13 13 1.00 O O 13
2 53612 53546 1.00 53546 20 20 1.00 O O 20
3 53612 53546 1.00 53536 54 44 100 O 10 43
5 53612 53546 1.00 53546 69 69 1.00 O O 67
6 53612 53543 1.00 53543 21 21 100 O O 21
7 53741 53672 1.00 53672 6 6 1.00 0 O 6
8 53615 53545 1.00 53545117 117 1.00 O 0O 116
9 53615 53545 1.00 53545120 120 1.00 O QO 114
10 53612 53546 1.00 53546 31 31 100 O O 30
11 53612 53545 1.00 53545 21 21 100 O O 19
12 53612 53546 1.00 53546106 106 1.00 O (O 103
13 53611 53544 1.00 53544 14 14 100 O O 14
14 53612 53546 1.00 53546 74 74 100 O O 71
15 53615 53563 1.00 53568 63 63 1.00 0O O 62
Totals: | 750828 749904 1.00 749894729 719 1.00 O 10 699

Table 7.6 shows the cost of running the DACK protocol in tixisexgiment. It tookr20
extra collection packets(zC') and18733 dissemination packets ) to maintain end-to-

end communication and recover the) dropped samples shown in 7.5.

Table 7.6: Experiment messaging and error results for RF=6

MID nD nD1 nD2 nD3 nC nRC|nso nwo fn fp
0 17581 10 17569 2 35833 100 O 0O 0 O
2 16454 12 16352 90 33313 17| 0 0O 0 O
3 15330 27 14911 392 33102 61 O 0O 0 1
5 15411 37 15213 161 33254 65| O 0 0 2
6 16024 15 15900 109 33351 17\ O 0O 0 O
7 17579 6 17571 2 33384 201 O 0O 0 O
8 15255 59 14964 232 33348 91| O 0O 0 1
9 15451 56 15239 156 33215 104, O 0O 0 6
10 15589 21 15423 14% 33302 58| O 0 0 1
11 16303 17 16184 102 33306 18| O 0 0 2
12 15721 62 15510 149 33213 82| O 0O 0 3
13 16158 11 16043 104 33239 14| 0 0O 0 O
14 15827 40 15638 149 33255 55| O 0O 0 3
15 15836 29 15642 16% 33383 108, O 0O 0 1
Totals: | 18733 389 17583 761468498 720] O 0 0 20
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Chapter 8

Conclusions and Future Work

8.1 Conclusions

An end-to-end dissemination acknowledgment protocol (BAr wireless sensor net-
works was presented. The protocol works well when undeglyiatwork collection and
dissemination protocols (e.g. CTP and Drip) are operatatigsly. Our six-day experi-
ment with 14 motes sending 749,904 acknowledgeable datplearshowed a 100% re-
covery of the 719 data samples dropped if sent via the cale¢CTP) protocol only. This
increasing reliability comes at a cost of resending 720ectibn packets plus 18,733 dis-
semination packets. This cost is reasonable if data rétials an important consideration

in the domain where the sensor network is deployed.

8.2 Future Work

The current implementation is a proof-of-concept. Seveoakible improvements could be
implemented to reduce the energy cost of using the prototake it more robust, and to

make it more practical for integration with other appliocats.
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8.2.1 Rate Control

The DACK protocol could be improved by using various tecliess to limit the rate of
disseminations on the base station and sample resendidgondtes. In the current im-
plementation, if the base station receives a few messag@srrotei and then never hears
from mote: again, the base station will continue to disseminate mess&gmote every
second dissemination interval until the base station jrogs terminated. Similarly, if a
mote receives a request to resend an old sample and thenhsarsrfrom the base station
again, the mote will resend the sample until a window overfbmgurs. In both cases, an
exponential backoff for repeated disseminations and datgkes may significantly reduce
the overall cost without significantly effecting overalliadbility.

In the current implementation the dissemination intersalantrolled by the network
operator. In reality, it would be better to expect the nekwaperator only to have to set
the sample and report intervals on motes. The disseminatierval could be dynamically
optimized on the base station to minimize cost while meetitegneeds of a potentially
changing network. One method would be to have the base rsteditoa different dissemi-
nation interval for each mote that was equal to motes reptetval. Combined with the
exponential backoff described above, these two rules corddide adaptive rate control

for many wireless sensor network scenarios.

8.2.2 Alternative dissemination methods

The dissemination method described here involved puttihg®Omessages D1Ack, D2Ack,
and D3Ack into D1, D2, and D3 type packets (respectivelyjiiessemination. This method
is dangerous as there is no guarantee that the previdusessage is disseminated to the
entire network when the base station next decides to serfteeetit D1 message. On large
enough time scales, this should be okay. In our experimesitgyWDrip, disseminating a
single packet to 14 motes worked reliably in a few seconds.

One alternative would be to take advantage offfthe” protocols method for dissem-
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inating small messages. Instead of sending lagybyte packets, we could disseminate
shorter messages, such that there is one small buffer for reate in the network. This
way one mote’s dissemination path will not interfere withotlrer motes dissemination
path. The downside of this method is it would require eachemmothe network to allocate
space for every other mote in the network, which would havkcdity scaling to large

networks.

8.2.3 Resolving False Positives

False positives can occur as described in Section 4.2.24uli® from the simulations in
Chapter 6 and the experiments in Chapter 7 show that falsévessoccur infrequently
relative to the number of recovered data samples. The nuafldalse positives could be
reduced by having the base station only respond to data eartipdt are older than the
length of the mote’s report interval. This will have consexces to the timeliness of the
protocol, and may result in larger B vectors, requiring naissemination space. It may be
possible to incorporate some predictive rules to help redise positives without suffering

the same cost to timeliness.

8.2.4 Resolving False Negatives

False negatives can occur as described in Section 4.2.dlde Regatives can be resolved
by decoupling the DACK protocol from the base station sangpbeage program. If an
incoming data sample is ignored by the DACK protocol, the BAgotocol can still relay
the message to the storage layer, and the storage layeraetgichine that if data sample

is new, and store it in the proper location.
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8.2.5 Modularising DACK

How difficult would it be to decouple the DACK protocol frometlprototype application,
such that other network administrators could plug it in teittwireless collection net-
works? The DACK protocol describes end-to-end acknowlezigmfor data samples, and
not packets. The current implementation relies on the datgkes to have consecutive
sequence numbers and timestamps. This means that a maddlaarsion of the DACK
protocol would have to interface with both the communigastack, and the storage stack.
If there is sufficient space on the mote, a modularized versfahe DACK protocol
could buffer arbitrary messages as data samples in a stepgge specifically allocated
for the DACK protocol. The prototype application of the DA@Kotocol presented in this
thesis shows that the DACK protocol is functional using alkstarage space that requires
less than a few kilobytes of RAM. This is significant, as manytes have only 4 to 16

kilobytes of RAM total, but it is small enough to fit on many newsd mote platforms.

8.2.6 Scalability Analysis

The scalability of the current implementation of the DACKtarcol is unknown. An analy-
sis of the scalability of the DACK protocol could be achieWiedugh a series of simulations
and experiments. It would also be useful to model the DACKqwol mathematically to
predict how much storage space on motes would be requiretetarorks of a given size

with a set of given sample intervals and report intervals.
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Appendix A

Implementation Source Code and

Descriptions

A.1 Makefile

Listing A.1: Project Makefile

COVPONENT=SI npl eNet wor kAppC
CFLAGS += -1 $(TCSDI R /1 b/ net
#COFLAGS += -1 $(TOSDI R /1i b/ net/ di p
#COFLAGS += -1 $(TCBDI R /1 i b/ net/di p/interfaces
CFLAGS += -1 $(TCBDI R /1i b/ net/drip
CFLAGS += -1 $(TCSDI R /1ib/net/ 4bitle
CFLAGS += -1 $(TCSDI R /1i b/ net/ ct p #- DNO DEBUG
CFLAGS += - DTOSH_DATA LENGTH=92
BU LD _EXTRA DEPS += DACKD sslSeri al Msg. cl ass DACKCol | Msg. ¢l ass
DACKD ssi1Seri al Msg. cl ass: DACKD sslSeri al Msg. j ava
javac DACKD ssl1Serial Msg.j ava
DACKD ssi1Seri al Msg. j ava:
m g java -target=$( PLATFORV) -j ava-cl assname=DACKD ss1Seri al Msg \
$(CFLAGS) Si npl eNet wor k. h DACKD ss1Serial Msg -0 $@
DACKCol | Msg. cl ass: DACKCol | Msg. j ava
j avac DACKCol | Msg. j ava
DACKCol | Msg. j ava:
m g java -target=$(PLATFCRV) -j ava-cl assname=DACKCol | Msg \
$(CFLAGS) Si npl eNet wor k. h DACKCol | Msg -0 $@
i ncl ude $( MAKERULES)

A.2 SimpleNetwork.h

Listing A.2: SimpleNetwork.h
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#i f ndef
#def i ne

S| MPLE_NETWCRK_H
S| MPLE_NETWCRK_H

#i ncl ude <AM h>

#i f ndef
#def i ne
#endi f

#i f ndef
#def i ne
#endi f

#i f ndef
#def i ne
#endi f

#i f ndef
#defi ne
#endi f

#i f ndef
#def i ne
#endi f

#i f ndef
#def i ne
#endi f

#i f ndef
#def i ne
#endi f

#i f ndef
#def i ne
#endi f

enum {

ACTI VE
ACTI VE 1

PASSI VE
PASSI VE 0

DACK_SETS
DACK_SETS 2

DACK_Di SS1_LENGTH
DACK_Di SS1_LENGTH 48

DACK_CCLL_LENGTH
DACK_CCLL_LENGTH 20

DACK_SAMPLE S ZE
DACK_SAMPLE SIZE 10 // s = nunber of bytes for one sanple.

DACK_COLL_NUM SAVPLES
DACK_CCLL_NUM SAMPLES ( DACK_OCLL_LENGTH DACK_SAMVPLE_SI ZB)

DACK_STCRACGE_SI ZE
DACK_STORAGE_SI ZE 50 // F = maxi mum nunber of sanpl es.

AM DACKDI SS1SERI ALMSG = 0x D1,

b

t ypedef

AM DACKCOLLMSG = 0xQ0,

nx_struct DACKD sslData {

nx_ui nt8_t data] DACK Dl SS1_LENGIH ;
} DACKD sslDat g

t ypedef

nx_struct DACKD sslSerial Msg {

nx_uint8_t type; // dip_nsgid_t

nx_uint16_t key;

nx_uint16_t version;

nx_uint8_t size;

nx_ui nt8_t data[ DACK DI SS1_LENGIH ;
} DACKD ssl1Serial Msg;

t ypedef

nx_struct DACKSanpl e {

nx_uintl6 t sn; // Sequence Nunber
nx_uint8_t sid; // Sensor ID
nx_uint16_t reading;
nx_ui nt32_t tinestanp;

} DACKSanpl €;

t ypedef

nx_struct DACKCol | Msg {

nx_uint32_t cn; // Collection Packet Sequence Nunber
nx_uintle t md;, // Mte ID
nx_uintl6 t lan; // Last Acknow edged Sequence Nunber
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nx_uintle_ t Isn; // Last Sequence Nunber Sent in a Collection report
nx_uint8_t dsn; // Sequence Number of the | ast processed di ssem nation packet
//nx_uint8_t rsn; // Sequence Nunber of current Report
DACKSanpl e sanpl e[ DACK_ COLL_NUM SAMPLE] ; // Data Sanpl es

} DACKCol | Msg;

#endi f

A.3 simconfig.txt

Listing A.3: simconfig.txt

PATH_LOSS EXPONENT = 4. 7;

SHADOW NG_STANDARD DEVI ATI ON = 3. 2;
D0 = 1.0;

PL_DO = 55. 4;

NO SE_FLOCR = - 105. 0;

Si1 = 0;

S22 = 0;

W TE_GAUSSI AN NO SE = 4;

TCPOLCGY = 1;
GRDWT=7.0;
NUVBER OF NCDES = 64;

A.4 simulate.py

Listing A.4: test.py

fromTCS8SI Minport *
fromtinyos.tossi mTossi mMpp i nport =
fromrandomi nport *

i nport sys

i nport random

t
r

Tossin{[])
t.radio()

sf = Seri al Forwar der(9001)
throttle = Throttle(t, 100)

numodes = 16
f = open("linkgain.out”, "r")

lines = f.readlines()
for linein lines:

s =line.split()
if (len(s) > 0):
if s[0] == "gain":

r.add(int(s[1]), int(s[2]), float(s[3]))

print "1->0:",r.connected(1, 0)
print "“2->0:",r.connected(2, 0)
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noi se = open("linkgain.out", "r")
l'ines = noi se.readlines()
for line in lines:

s =line.split()
if (len(s) > 0):
if s[0] == "noise":

m = t.get Node(int(s[1]));
for i in range(0, 500):
m addNoi seTr aceReadi ng( - 105 + i nt(random randon{) *fl oat (s[3])) );

for i in range(0, numodes):
m = t.get Node(i);
m cr eat eNoi seModel () ;
time = randint(t.ticksPerSecond(), nunnodes * t.ticksPerSecond())
m boot At Ti ne(ti me)
print "Booting ", i, " at tinme ", tinme

sf.process();
throttle.initialize();

print "Starting simlation "

.addChannel ("boot", sys. stdout)
.addChannel ("sendi ng", sys. stdout)
.addChannel ("sendi ngprep", sys. stdout)
.addChannel ("resendi ng", sys.stdout)
.addChannel ("resendi ngprep", sys. stdout)
#t . addChannel ("reporting", sys.stdout)

#t . addChannel ("sanpl i ng", sys. stdout)

#t . addChannel ("probl ent, sys. stdout)

t . addChannel ("changed", sys. stdout)

— - o+ o+ o+

#t . addChannel ("D1", sys. stdout)

#t . addChannel ("D2", sys.stdout)

#t . addChannel ("D3", sys. stdout)

#t . addChannel ("nmessagi ng", sys. stdout)
while (1):

#t hrottle. checkThrottle();
t.runNext Event();
sf.process();

A.5 SimpleNetworkAppC.nc

Listing A.5: SimpleNetworkAppC.nc

| x*
* Sinpl eNetwork tests the di ssemnation of DACK packets using D P.
*
See TEP118: D ssem nation, TEP 119: Col |l ection, and TEP 123: The
Col l ection Tree Protocol for details.

*
*
*
* @ut hor John-Paul Arp
*
* Based on EasyD ssem nation Tutorial
*/

#i ncl ude "S npl eNet wor k. h"

configuration S npl eNet wor kAppC {}
i npl emrent ati on {
conponents Mai nC
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Si npl eNet wor kC Boot -> Mai nC

conponent s LedsC
Si npl eNet wor kC Leds -> LedsGC

conponent s Si npl eNet wor kG

conponents Seri al ActiveMessageC
Si npl eNet wor kC Seri al Control -> Serial Acti veMessageGC

conponent s Acti veMessageGC
Si npl eNet wor kC Radi oControl -> ActiveMessageC

/1 Time Conponents

conponents new TimerMI1i Q) as Sanpl eTi ner;

conponents new TinerMI1i Q) as ReportTiner;

conponents new TinmerM | 1i Q) as Del ayTi ner;

conponents new TinerM|1i Q) as StaggeredStartTi ner;

/ / BusyVéi t M croC

Si npl eNet wor kC Sanpl eTi ner -> Sanpl eTi ner;

Si npl eNet wor kC Report Ti ner -> Report Ti ner;

Si nmpl eNet wor kC Del ayTi mer -> Del ayTi ner;

Si npl eNet wor kC St agger edStart Ti mer -> St agger edSt art Ti ner;

conponents Local TineMI1iC
Si npl eNet wor kC Local Time -> Local TimeM I 1i C

// Dissenination Conponents
conponent s Di ssem nati onG
Si npl eNet wor kC Di ssemi nati onControl -> D sseninati onC

conponent s new D ssem nat or Q DACKD ss1Data, OxDEO1) as DACKD ssi1C
Si npl eNet wor kC Val ueD1l -> DACKD ss1C

Si npl eNet wor kC Updat eD1 - > DACKD ss1C

conponent s new D ssem nat or Q DACKD sslData, OxDE02) as DACKD ss2CG
Si npl eNet wor kC Val ueD2 -> DACKD ss2C

Si nmpl eNet wor kC Updat eD2 -> DACKD ss2C

conponent s new D ssem nat or Q DACKD ss1lData, OxDEO03) as DACKD ss3CG
Si npl eNet wor kC Val ueD3 - > DACKD ss3C

Si npl eNet wor kC Updat eD3 - > DACKD ss3C

conponent s new D ssem nat or Q DACKD ss1Data, OxDEO4) as DACKD ss1BC
Si npl eNet wor kC Val ueD1B - > DACKD ss1BC

Si nmpl eNet wor kC Updat eD1B - > DACKD ss1BC

conponent s new D ssem nat or Q DACKD ss1Data, OxDEO5) as DACKD ss2BC
Si npl eNet wor kC Val ueD2B - > DACKD ss2BC

Si npl eNet wor kC Updat eD2B - > DACKD ss2CG

conponent s new D ssem nat or Q DACKD ss1Data, O0xDEO6) as DACKD ss3BC
Si npl eNet wor kC Val ueD3B - > DACKD ss3BC

Si npl eNet wor kC Updat eD3B - > DACKD ss3BC

conponent s new Seri al AMRecei ver G AM DACKDI SS1SER ALMSG as Di ssSeri al Recei ver;
Si npl eNet wor kC Di ssSeri al Recei ve -> Di ssSeri al Recei ver;

/1 Col |l ection Conmponent s

conponents Col | ecti onC as Col | ector;

Si nmpl eNet wor kC Root Control -> Col | ector;

Si npl eNet wor kC Rout i ngControl -> Col | ector;

Si nmpl eNet wor kC Col | Radi oRecei ve -> Col | ect or. Recei ve[ AM DACKCCLLNMNEG ;

conponent s new Col | ecti onSender G AM DACKCOLLNMSG ;
Si nmpl eNet wor kC Col | Radi 0Send -> Col | ecti onSender C Send;

conponent s new Seri al AVBender @ AM DACKCOLLMSG as Col | Seri al Sender;
Si nmpl eNet wor kC Col | Seri al Send -> Col | Seri al Sender;

conponent s new Pool Q(essage_t, 5) as UARTMessagePool P,
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Si npl eNet wor kKC UARTMessagePool - > UARTMessagePool P,

conponent s new QueueQ nessage_t*, 5) as UARTQueueP,
Si nmpl eNet wor kC UARTQueue - > UARTQueueP,

/1 Sensi ng Conponents
conponent s new DenoSensor ) as Sensor;
Si npl eNet wor kC Read - > Sensor;

A.6 SimpleNetworkC.nc

A.6.1 Processing Sample Events on a mote

Each mote has one report timer, and at least one sample tifeznever a sample timer
fires, the mote takes a reading from the appropriate senkerrégdingr is then written to
storage with the sensor ID numb&f D, a timestamg’, and a sequence numb&N. The
10 — byte structure of a data sample is shown in Figure 5.3. The timgsia a4 — byte
value containing the number of binary milliseconds sineerttote was first activated. Data
Samples are written sequentially to an allocated segmestbodige of size” x 10 bytes,
whereF' is the maximum number of samples of siZethat can be stored in the allocated
segment. When the allocated segment of storage becomgth&lipplication loops back
to the beginning creating a circular buffer. The sample saga numbeS N also rolls
over when storage becomes full. This allows e to be used as a pointer to the memory
location of samples in storage.

The mote keeps an index in RAM to keep track of where sampégestared in flash.

This index contains the following values:

e F: the number of samples that can be stored in the mote’s €@eag. flash), and
the maximum value fo6 V.

e SN: the sequence number of the next data sampled to be sampled.

e LSN: the sequence number of the last data sample to be sent ileatmni packet in
a report interval. LS N is included in all DACK collection packets (see Figure 5.4),
and is the same for every packet sent in a report interval.
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e ASN: the sequence number of the last consecutively acknowtedigia sample. For
example, ifl0 samples were sent with/V's from0 to 9, and later the samplésto 5,
and7 to 9 were acknowledged, then theS NV would be equal t6.

e DSN: the sequence number of the most recently received DACKerisgtion
packet (DDP) that contained a local acknowledgment. Each Bdhtains a sequence
of acknowledgments for various Motes in a WSN, and&/V indicating the order in
which it was sent from the base station. DDPs are discuséukiuin section A.7.2.

e B: an L-bit acknowledgment vector, stuffed into the rightmasbits in a[L/8])-
byte array. Bits inB correspond to the bits in betweehSN and SN, such that
for each bitb at position: in B, a0 indicatesSN «— (ASN + i) mod F'is an
unacknowledged sample, andl andicatesSN «— (ASN + i) mod F is an ac-
knowledged sample. In the curent implementation a 64-kstgmed integer is used
to hold B intead of a byte array on the mote.

e [: the number of bits i3

e 1I/: the maximum size of the acknowledgment vector, called thlenAwledgment
Window. WhenB grows larger thardV/, it causes an Acknowledgment Window
Overflow Error, orWindow Error for short. Becauseés is contained in a 64-bit
unsigned integer, the current maximum possible sizélfds 64.

Initially SN and L are set td), andLSN and ASN are set to—1. As samples are
collected, onlySN is incremented. Algorithm A.6 illustrates how Motes praceample
events using the above index values. Figure A.1 illustrateexample index composition

with 3 sample data readings.

Listing A.6: Process Sample Event on mote

/+! Trigger: Sanple Event for sensor SIDis signaled by the Sanpl e
* Ti mer
* | nput: the new sanpl e reading 'data’
» FEffect: updates SN and wites the sanple to storage at SN
*
/
event void Sensor 1Read.readDone(error_t result, uintl6_ t data)

{
DACKSanpl e ds;

I/l Storage Overflow Error detected, Restart.
if ((SN+1) 9DACK STORACGE S| ZE == ASN

dsn = 253;

dackl ength = 0;
SN = 0;

ASN = -1;

LSN = -1;
resendcursor = 0;

}
ds.sn = SN
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ds.sid = 1,

ds. readi ng = dat a;

ds.tinestanp = call Local Tine.get();
storage[ SN = ds;

SNE( SNHL) 9DACK_STCRAGE_SI ZE

Storage
Index 0
0 0 SID Reading Time Stamp
20 1 SID Reading Time Stamp
SN 2 2 SID Reading Time Stamp
CSN 0 30
ASN 0 40
DSN 0 .
B [000] .
n 3 *
F*S-S ‘ ‘ ‘

F*s

Figure A.1: An example of what the mote index and storage w/hmdk like after 3 samples
have been collected.

A.6.2 Process Report Event on mote

Whenever the report timer fires, the mote sends a report datdl samples recorded since
the last report interval, as well as all unacknowledged s$esnp the acknowledgment win-
dow. Before it sends any packets, the mote checks to see i Wector has exceeded its
maximum sizelV. If it has, then all previously sent unacknowledged packetsperma-
nently lost by settingdSN «— LSN. Each DACK collection packet containgd /D, the
id of the mote transmitting the message, th€N, the LSN, the DSN, and then a series
of data samples. Figure 5.4 shows the structure of a DACKectitin packet containing
2 data samples. Algorithm A.7 illustrates the logic of pisgiag report events on Motes.
Figure A.2 shows how the contents of flash, the mote indexadDdCK collection packet
may looks after the first report event.

DACK collection packets are sent to the base station usingsa &ffort collection
protocol, such as the Collection Tree Protocol discussesation 3.4.1. The number of

samples that can be stored in a single collection packe¢vam different hardware and
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different MAC protocols. In the current implementation]lection packets each ha

data samples, but platforms with a larger maximum packetcn hold more samples.

Storage
Index 0 : -
10 0 0 Reading Time Stamp
20 Reading Time Stamp
L]
SN 14 .
GSN 14 130 . .
ASN 0 140 13 0 ‘ Reading Time Stamp
DSN 0 o 18 1 |Reading| Time Stamp
B [00000 00000 0000] .
n 14 .
F*S-S
|

Last Generated Collection Packet

0 2 4 6 7 9 11 13 17 27
Data Sample Slot 1 Data Sample Slot 2

13 0 R Time Stamp 14 1 R Time Stamp

Figure A.2: An example of what the mote index and storage Wadobk like after 14
samples have been collected, and the first Report Event ebedpirom two sensors (one
with SID = 0 and the other withb7 D = 1) The corresponding last generated collection
packet is shown below. All values are in bytes, except thedutor B.

Listing A.7: Report Timer Fired

event void ReportTinmer.fired()
{int i;
resendcursor = (ASN + 1) 9%ACK STCRACE SI ZE
t dackvect or = dackvector;
t dackl engt h = dackl engt h;
if (dacklength < W
{ resendi ng = TRUE

}

if ((dacklength >= W && (dackl ength < DACK STCRAGE_SI ZE - 5))

{ dsn = 255; // Signal that we are going to stop trying to resend ol d sanpl es
resendi ng = FALSE

}

post resendCol | ecti onPacket();

Listing A.8: Resend Lost Samples

/+! Contains the logic for resendi ng unacknow edged packets < LSN
*/
task void resendCol | ecti onPacket()

DACKCol | Msg *dcm
DACKSanpl e *s1;
DACKSanpl e *s2;
int i =0;
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int nunsent = O;
if ((!'collsendbusy) &% (tdacklength > 0))
{ dcm = (DACKCol | Msg *)cal | Col | Radi 0Send. get Payl oad( &ol | sendbuf, si zeof (DACKCol | Msg) ) ;
sl = & dcm >sanpl €[ 0] );
s2 = & dcm >sanpl e[ 1] ) ;
if (dem== NULL)
{ fatal _problent);
return;
}

for (i =1; i <= DACK OOLL_NUM SAVPLES i ++)
{ while ((tdackvector | OxFFFFFFFFFFFFFFFE) == OxFFFFFFFFFFFFFFFF)
{ tdackl ength--;
t dackvect or =t dackvect or>>1;
resendcur sor=(r esendcur sor+1) ¥DACK_STCRACE_SI ZE

}
i f (tdacklength > 0)
{ if (storage[SN .tinestanp == 0) storage[SN .timestanp = 1;
nencpy( & dcm >sanpl e[i-1]), &storage[resendcursor], sizeof(DACKSanple));
t dackl engt h- - ;
t dackvect or =t dackvect or>>1;
resendcur sor=(r esendcur sor+1) ¥DACK_STCRACE_SI ZE
}
el se
{ mentpy(&dcm>sanple[i-1]), "\O\0\O\O\0\O\0\0\0\ 0", sizeof (DACKSanpl €));

}

decm>md = TOS NCDE | D

dcm >l an = ASN

if (SN==0)

{ dcm>lsn = DACK STORAGE SI ZE - 1;
}

el se

{ dcm>lsn = SN1,;

}

dcm >dsn = dsn;

if (call Coll Radi 0Send. send( &ol | sendbuf, sizeof (local collnsg)) == SUCCESS)
{ coll sendbusy = TRUE

}
el se
{ report_probleng);
}
}
el se
{ post sendCol | ecti onPacket();
}

}

Listing A.9: Send New Samples

/+! Contains the logic for resendi ng unacknow edged packets > LSN
*/
task voi d sendCol | ecti onPacket()
{ DACKCol | Msg *dcm
int i =0;
int nunsent = O;
if (('collsendbusy) & (SN != (LSN + 1) %DACK STORACGE SI ZE))
{ dcm = (DACKCol | Msg *)cal | Col | Radi 0Send. get Payl oad( &ol | sendbuf, si zeof (DACKCol | Msg) ) ;
if (decm== NULL)
{ fatal _problent);
return;
}
for (i =1; i <= DACK_OOLL_NUM SAMPLES i ++)
{ if ( ((LSNH )9ACK STCRACE_SIZB != SN
{ nencpy(& dcm>sanpl e[i-1]), &storage[ (LSN+H ) ¥DACK STCRACGE SI 78,
si zeof (DACKSanpl €) ) ;
nunsent ++;
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}

el se
{ mentpy(&dcm>sanple[i-1]), "\0\0\O\O\0\O\0\0\0\ 0", sizeof (DACKSanpl €));
}

}

decm>md = TOS NCDE | D

dcm >l an = ASN

if (SN==0)

{ dcm>lsn = DACK STORAGE SI ZE - 1;
}

el se

{ dcm>lsn = SN1,;

dcm >dsn = dsn;
if (call CollRadi 0Send. send( &ol | sendbuf, sizeof (local collnsg)) == SUCCESS)
{ LSN = (LSN + nunsent) YDACK_STORACE_SI ZE
col | sendbusy = TRUE
}
el se
{ report_probleng);

Listing A.10: sendDone Event

event void Col | Radi oSend. sendDone(nmessage _t* nsg, error_t error)
{ post task sendrore();

}

Listing A.11: sendmore

task voi d sendnore()
{ col | sendbusy = FALSE
if (tdacklength <= 0) resendi ng = FALSE

if (resending == FALSE)

{ post sendCol | ectionPacket();

}

el se

{ post resendCol | ecti onPacket();

}

}

A.6.3 Processing DACK Dissemination Packets on the mote

As Motes receive dissemination packets, they have to pade gacket to look for their
MID. If the mote’sM 1D is not present, the packet is ignored. For each of the thpasty
of dissemination packets, there is a corresponding packeepsing function. Code listings
A.12, A.13, A.14 illustrates how the dissemination packetsprocessed fab1, D2, and

D3 type packets.
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A.6.3.1 Processing D1 type packets

If a D1 packet contains the moted /D, the next byte is checked fdr. If L = 0 then,
ASN is set toLSN. If L > 0, thenA is parsed. If the first bit ind is a zero, then
ASN will remain unchanged. Otherwisd,SN is updated to reflect the last consecutive
1 in A, to reflect the new last consecutively acknowledged bit. fiode then updates
acknowledgment vectaB to start fromASN + 1 mod F, and fills in each bit entry with

the corresponding bits found iA. At the next report interval, the mote will then resend

Storage
Index 0 - :
0 0 SID Reading Time Stamp
20 1 SID Reading Time Stamp

SN 21 .

CSN 14 :

ASN 6 200 - .

DSN 1 10 20 SID ‘ Reading Time Stamp
B [00011111] vo 21 SID | Reading| Time Stamp
n 8 .

F'S-S *
s |

Example Received D1 Acknowledgment
Mote L A DSN
5 14 111111100011111 1

Figure A.3: An example of what the mote index and storage Wdobk like after 21
samples have been logged, 14 samples have been sent, ahdype disseminated ac-
knowledgment is received. In this examplé’s 8, 9, and 10 were not received by the base
station.

all of the unacknowledged data samples, as well as any newlsarthat are collected.
Algorithm A.12 describes the logic of processing D1 typekeds. Figure A.3 illustrates
how the flash and mote index might look on mote 5 after a dissat®d acknowledgment

is received with 11 acknowledged samples and 3 unacknoetesgmples.
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Listing A.12: Process D1 Packet on the mote

/+! Trigger: Dl Packet Recieved
* | nput: D1 Packet
* FEffect: |f D3 packet contains TGS NCDE | D then
* the index is updated with the i ncom ng ack vector
*/
task void processD1()
{int ds =0; int i=0; int j=0; int ac=0;
uintl6_t cmd = 0; uint8t length = 0; uint8_t bytelength = 0;
if (resending) return;
while (i+2 < sizeof(dldata[ds]))
{ cmd = dldata[ds][i];
cmd = (cmd<<8) | dldata[ds][i+1];
if (cmd == OxFFFF) break;
I ength = dldata[ds][i+2];
bytel ength = ceil (((float)l ength+1.0)/8.0);
if (length == 0) break;
i =i+ 3
if (bytelength+i < sizeof(dldata[ds]))
{ if (cmd == TC5_NCDE_|ID
{ dsn = dldat a[ ds] [ si zeof (d1ldat a[ ds] ) - 1] ;
dackvect or ;
dackl ength = | engt h;
resendi ng = TRUE
for (j =0; j <bytelength; j++)
{ dackvector = (dackvector << 8) | dldata[ds][i+];
}
whi | e ((dackvector | OxFFFFFFFFFFFFFFFE) == OxFFFFFFFFFFFFFFFR)
{ ASN=( ASNF1) 9DACK STCRACGE_SI ZE
dackvector = dackvector >> 1;
dackl engt h- - ;
}
br eak;
}
i =i + bytel ength;
} else { break; }

}

return;

}

A.6.3.2 Processing D2 type packets

If a D2 type packet contains a reference to the receiving mate’'s), then all DACK data
samples have been acknowledged. The mote then clears veetor, andASN is set to
LSN. Algorithm A.13 describes the logic of processibng type packets. Figure A.4 illus-
trates how the mote’s index values and storage might look ote b after a disseminated

acknowledgment is received insidd type packet.
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Listing A.13: Process D2 Packet on the mote

/+! Trigger: D2 Packet Recieved
* | nput: D2 Packet
» FEffect: |If D2 packet contains TGS NCDE ID then all data sanpl es
* up to LSN is acknow edged
*/
task void processD2()
{ int acked = FALSE, int ds = 0; int i;
uint8_t inchar; intl6 t cnmd =-1; intl6 t pmd = -1;
for (i =0; i < sizeof(d2data[ds]); i=i+2)
{ inchar = d2data[ds][i];
if (inchar =="-")
{if (pmd!=-1)
{i=i+1;
inchar = d2data[ds][i];
cmd = inchar;
cmd =cmd << 8;
cmd =cmd | d2data[ds][i+1];
if ((cnid>= TS NODE ID && (pnmid <= TOS NCDE I D)
{ dsn = d2dat a[ ds] [ si zeof (d2dat a[ ds] ) - 1] ;
ASN = LSN
dackvector = 0;
dackl ength = 0;

return;
}
} else { return; }
}
el se
{ cmd = inchar;
cmd =cmd << §;
cmd =cmd | d2data[ds][i+1];
pnmid = cmd;

if (cmd == TC5 NDE ID
{ dsn = d2dat a[ ds] [ si zeof (d2dat a[ ds] ) - 1] ;

ASN = LSN
dackvector = 0;
dackl ength = 0;
return;
}
}
}
return;

}

A.6.3.3 Processing D3 type packets

An acknowledgment in &3 type will tell the mote to update itd SN, B, andn, directly.
Algorithm A.14 describes the logic of processihg type packets. Figure A.5 illustrates
how the flash and mote index might look on mote 5 in the scenlagibaD3 type packet is

received to correct ad.S Nmismatch cause by thé2 packet in Figure A.4.
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Listing A.14: Process D3 Packet on the mote

/+! Trigger: D3 Packet Recieved
* | nput: D3 Packet
* FEffect: |f D3 packet contains TGS NCDE | D
* index is updated with new ASN and ack vect or
*/
task void processD3()
{int ds =0; int i=0; int j=0; int ac=0;
uintl6_t cmd = 0; uint16_t fixedASN = O;
uint8_t length = 0; uint8_t bytelength = 0;
if (resending) return;
while (i+2 < sizeof(d3data[ds]))
{ cmd = d3data[ds][i];
cmd = (cmd<<8) | d3data[ds][i+1];
if (cmd == OxFFFF) break;
I ength = d3data[ds] [i+2];
bytel ength = ceil (((float)l ength+1.0)/8.0);
if (length == 0) break;
fixedASN = d3data[ds] [i+3];
fixedASN = (fixedASNk<8) | d3data[ds][i+4];
i =i +5;
if (bytelength+i < sizeof(d3data[ds]))
{ if (cmd == TGS _NCDE |ID
{ dsn = d3dat a[ ds] [ si zeof (d3dat a[ ds] ) - 1] ;
ASN = fixedASN resending = TRUE
dackvector = 0; dacklength = | ength;
for (j =0; j <bytelength; j++)
{ dackvector = (dackvector << 8) | d3data[ds][i+];
}
whi |l e ((dackvector | OxFFFFFFFFFFFFFFFE) == OxFFFFFFFFFFFFFFFR)
{ ASN=( ASNF1) 9DACK STCRACGE_SI ZE
dackvector = dackvector >> 1; dackl ength--;
}
br eak;
}
i =i + bytelength;
} else { break; }

}

return;

}

Storage
Index 0 - -
0 0 SID Reading Time Stamp
20 1 SID Reading Time Stamp
SN 21 .
CSN 14 :
ASN 14 200 : :
DSN P 210 200 SID ‘ Reading Time Stamp
B M 210 SID | Reading| Time Stamp
220
n 0 .
[ ]
F*S-S :
F*S ‘

Example Received D2 Acknowledgment
MID MID MID MID DSN
13| -1|]6 8 2

Figure A.4: An example of what the mg)?esindex and storage Widabk likeon mote 5
after 21 samples have been logged, 14 samples have beearskal)?2 type disseminated
acknowledgment is received. The dissemination packetamhfull acknowledgments for
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Figure A.5: This Figure show a scenario in whiclva packet is required. Suppose the
acknowledgment sent in Figure A.4 was received by maéter it had sent data samples
15 to 21, but before those samples were recieved by the base st&mpose further that
the packet containing SN5 and 16 were lost in transmission. The mote would assume
that the base station was acknowledging those samples hsaneket itsASN to 21, not
knowing thatSN 15 and 16 were lost. The base station will detect the problem when the
mote sends the next report, because it will expect the inogeollection packets to have an
ASN = 14, but discover that they have al N = 21 instead. The base station identifies
this as aAS Nmismatch, and responds by embedding an acknowledgment to fnotede

a D3 type packet.

A.7 SimpleNetworkBS.java

A.7.1 Processing Samples on the Base Station

As the base station receives collection packets, it stdressamples in a database, and
keeps a record of acknowledgment information for each moke base station creates a
MotelIndex object for each unique mote to keep track of incoming datgsesn\/ oteIndex
objects are stored in a hashtable called MeteTable, using MID as the key. Each

Motelndex object contains the following data items:
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MID: The mote ID of the mote this Motelndex object is keepingkrac
ASN: MID’s last consecutive acknowledged data san$fle
LSN: The last data sampl€/NV sent in a report interval from/1D.

DSN: The sequence number of the last dissemination packet saidining an
acknowledgment foM I D.

numsent: The total number of unique data samples sentvbyD.

numdropped: The total number of unique data samples fréfd D that the DACK
protocol detects as missing prior to generating any ackedgéments.

numrecovered: The total number of data samples A/ D that were recovered by
acknowledgments disseminated/in or D3 type packets. This is discussed further
in section 4.3.

numlost: The total number of data samples &ah/ D that were lost due to a Ac-
knowledgment Window Overflow Error.

ASNmismatch: Set toT RU E when theM otelIndex object and incoming collec-
tion packets from the corresponding mote disagree on theeval ASN. This is
discussed further in sections A.7.2 and A.6.3.3.

WindowError: Set toT RUE for M 1D when theDSN value inside an incoming
collection packet fromV/ I D is set to255. This indicates that the mote has detected
an Acknowledgment Window Overflow Error, and is alerting liase station.

ackwaiting: A boolean value indicating whether or not a base stationaging to

receive an acknowledgment of a disseminated acknowlegniers set to7T RUE

before an acknowledgment with a unig N is disseminated t@/7 D, and set to
FALSE when a DACK collection packet is received by the base stat@maining
the same)SN. This is used so that the base station will not send any nenaadk
edgments, until the previous acknowledgments are theesakknowledged.

ackvector: An integer vector of sizé’, in which a value ofl at position: indicates
the a data sample with/NV = i has been received;indicates the data sample has not
been received. This vector only keeps trackofs betweef ASN + 1) mod F and
LSN. Elements in the vector outside @SN + 1) mod F andLSN are set td).

ackcountvector: A vector of sizef’, in which each element is initially set tg and
each element at positianis incremented whenever a data sample viithi = i is
received.

acktimevector: A vector of sizeF’, in which each positioncontains the latest times-
tamp from a data sample withV = ¢
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e l[ostackvector: a vector of sizd, that acts as the inverse of thekvector.

e A: anL-bit acknowledgment vector, stuffed into the rightmobdiits in a| L/8|-byte
array. Bits inA correspond to the bits in betweel NV and LS N, such that for each
bit a at position: in A, a0 indicatesSN = (ASN +i) mod F is an unacknowledged
sample, and & indicatesSN = (ASN + ¢) mod F is an acknowledged samplé.
is a compressed format for thekvector to be packed into communication packets.
A is the mirror of theB vector on the mote.

e [: the size of the vectoA.

In addition to the above data items, the Motelndex also ¢costhe following meth-

ods:

e getAckInBytes(): generates and returns
o cleanAckVector(): sets all bits in theickvector outsideASN and LS N to 0.

e countLostSamples(): updates théostackvector, and incrementsumlost for each
known missing data sample.

e giveup(): this method tells the base station to give up on requestiegransmission
for any data samples before a givev. This method is called when the base station
recieves aVindowError flag in the DSN value of incoming collection packets.
This method incrementsumlost for every data sample that will consequently never
be acknowledged.

e allclear(): this method return§’ RU E if and only if there are no unacknowledged
data samples in theckvector.

o checkAS Nmismatch(): this method returns true if théS NV in the incoming DACK-
CollectionPacket is in disagreement with theteIndex object’s value forASN.

e findASN(): this searches theckcountvector to find the correct value fadSN.

The DACK protocol uses three types of packets, with diffetexels of detail. By
using these three types of packets, the base station caterédtRinumber of bytes dissem-
inated per mote, by packaging it in the most appropriateedigsation packet. The three

types of dissemination packets are:
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e The D1 type packet (shown in Figure 5.6) contains a sequenc¢@/afD, L, A), for
Motes for which some data samples were not received at tleedbason.

e The D2 type packet (shown in Figure 5.7) contains a sequen¢&/diD), for Motes
that are not missing any data sampl&sl D for D2 are sorted by/ 1D in ascending
order. If theM I D values are contiguous, then only the first and last contigéiD
are put into the packet with a ’-’ charachtor placed in betweR2 packets are the
most compressed dissemination packet type.

e TheD3type packet (shownin Figure 5.8), contains a sequenck/dfD, ASN, L, A),
for Motes for which some data samples were not received didke station, and for
wchich anAS Nmismatch was detected.

It is possible to build a functioning dissemination-baseln@mwledgment protocol
using only D3 packets, but it would be less efficienf)1 packets, and)2 packets by
themselves are not sufficient, because the transmissiawy €&l both the collection and
dissemination protocols can cause DACK messages to beveglceut of sync. For ex-
ample, a mote may send a report just after the base statiodissmminated a2 type
acknowledgment for a previous report, but before that askedgment packet reaches the
mote. When the acknowledgment does reach the mote, the nilbteelieve it was for
both reports, and not just the previous one. One solutioridvoe to include a report IDs
inside collection and dissemination packets. This woutplie additional byte for every
mote you want to acknowledge in a dissemination packetrebveeducing the compres-
sion of theD2 type packet.D3 packets present a more economical solution. After the mote
makes another report, the base station will be able to détattheAS N on the incoming
collection packet does not match the local value for the imot&' V. This is called an
“ASNmismatch”. When the base station detects A8 Nmismatch, it will send a de-
tailed D3 type acknowledgment containing the correcte8lN, L, and A vector required
to properly acknowledge the mote.

As shown in Figures 5.6, 5.7, and 5.8, each of the three tyjpdissemination packets
contain the 8-bit DSN as the last byte of the packet. The dissa&ion protocol limits the
number of acknowledgments that can fit in a packet.

Code listing A.15 illustrates processing incoming collectpackets on the base sta-
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tion. The base station first looks up tldé/ D contained in the incoming DACK Col-
lection packetDC'P in the MoteT able hashtable. If thel\loteT able does not contain a
Motelndex object for M 1D, then a newM otelndex object is created and put into the
MoteTable using theM oteT able’s put() method. Otherwise, th&lotelndex is retrieved
from the MoteT able using theget() method. The base station then checks/iteV to see

if the mote is replying to the latest ACK disseminated to thaen|f the DSN = 255, then

a Acknowledgment Window Overflow Error has been detectedtaed indow Error flag

is set tol' RU E. Next, the base station checks to see if #f&V contained in the collection
packet matches the value fdiSN in the Motelndez. If not, an AS Nmismatch is de-
tected, then thelS Nmismatch flag is set toI' RU E. The base station then checks to see
if the incoming data samples are known to be missing samateksif so, it increments the
numrecovered value. Finally, the reading is stored in a database, andt#&dckvectors

are updated.
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Listing A.15: Process Collection Packet on the base station

/] Trigger:Collection Packet Recieved Event
/1l Input: Collection Packet
/] Effect: Sanples are processed and the Mt el ndex i s updat ed
publ i ¢ voi d nmessageRecei ved(i nt to, Message nessage)
{ DACKCol | Msg dcm = (DACKCol | Msg) nessage;
Mot el ndex m ;
i f( notetabl e.contai nskey( dcmget_nmid() ) )
{ m = notetable.get( decmget_md() );
for (int i =0; i < dcmnunbDataSanpl es(); i++)
{ if (dcmget_tinmestanp(i) > m .RSNTi nest anp)
{ m .RSNTi nestanp = dcmget _tinmestanp(i);
m . RSN = decmget_sn(i); nm.LSN = dcmget_Isn();
P}

if ( m.DSN==dcmget_dsn() )
{ m.ackwaiting = 0;
if (!m.ASNerror)
{ m.ASN = dcmget | an();
if (m.ASN == 65535) m.ASN = -1,

}
if (m.DSNype == 0xD3)
{ m.ASNerror = fal se;
1} } else
{ int ASN = dcmget_lan(); int LSN = dcmget_|sn();
if (ASN == 65535) ASN = -1; if (LSN == 65535) LSN = -1;
m = new Mt el ndex(dcmget_md(), LSN ASN;
for (int i =0; i < dcmnunbDataSanpl es(); i++)
{ if (dcmget_tinestanp(i) > m .RSNTi nestanp)
{ m .RSNTi nestanp = dcmaget _timestanp(i);
m . RSN = dcmaget _sn(i);
P
if ((decmget_dsn() == 253) && (m .DSNmte ! = 253))
{ int ASN = dcmget_lan(); int LSN = dcmget_|sn();
if (ASN == 65535) ASN = -1; if (LSN == 65535) LSN = -1;
m = new Mt el ndex(dcmget_md(), LSN ASN;
for (int i =0; i < dcmnunbDataSanpl es(); i++)
{ if (dcmget_tinmestanp(i) > m .RSNTi nest anp)
{ m .RSNTi nestanp = dcmaget _timestanp(i);
m . RSN = dcmget _sn(i);

P}
m . DSNhote = demget _dsn() ;
for (int i =0; i < dcmnunDataSanples(); i++)

{ if( I'((decmget _sn(i)==0) &&(dcmget _si d(i)==0) &&
(dcmget _readi ng(i)==0) &&(dcmget _ti nestanp(i)==0)) &&
( m.islnRange( dcmget_sn(i) ) ) )
{ if (m.lostackvector[dcmget_sn(i)] == 1)
{ m.lostackvector[dcmget_sn(i)] = 0O;
m . nunfi xed++;

m . ackvector[dcmget _sn(i)] = 1;

if (m.acktinmevector[dcmget_sn(i)] != dcmget_tinestanp(i))

{ m.acktinevector[dcmget_sn(i)] = dcmget_timestanp(i);
(m . ackcountvector[dcmget _sn(i)])++;

P}

notetable.put(ni.id, m);

A.7.2 Disseminating Acknowledgments from the base station

To construct the dissemination packet, the base statiantheeinformation contained in

each mote’s\/ oteIndex object.
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The current implementation used for simulation and expeninuses the DIP protocol
(see section 3.4.2) with 48 byte dissemination packets. I @ata valuegl that are to
updated via dissemination each have a uniquetkayd a version number. A message is
disseminated by having one mote change the valué &od then incrimen{. The message
disseminates as each mote in the WSN overhears a new verBounlata itemd with key
k is available. Because we might want to disseminafelapacket to acknowledge one
subset of Motes, and A2 or D3 packet to acknowledge another subset of Motes, we will
need to be able to disseminatd, D2, and D3 packets at the same time. To do this via
DIP, each dissemination type is given its own DIP key. Toehsi®iate aD1 type packet
through the network, the base station sends the dissemimagssage to the gateway with
the appropriate value fdr. When the gateway receives the message, it changes itsahter
value for D1, and increments the version number, initializing the digsation process.
Withen a matter of seconds, the dissemination processsréley message to the entire

network
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Listing A.16: Checking for ASN-Mismatch and Ack-Window Qtflew

Enunerati on ea = not et abl e. keys();
whi | e( ea. hasMor eEl enment s() )
{ I'nteger motel Dbj = (Integer)ea. next E ement();
int notel D = notel DObj.intVal ue();
Mot el ndex m = (Mot el ndex) not et abl e. get (not el Dj ) ;
m . ackwai ti ng--;
if (m.checkASNError())
{ m.ASNerror = true;
int newASN = m . fi ndASN) ;
m . ASN = newASN

}
if (m.checkWndowError() == true)
{ m.giveup();

m . ackwaiting = 0O;

m.ASNerror = true;

m . cl eanAckVect or() ;
m . recor dLost Sanpl es() ;

}

Listing A.17: Preparing D1 type packets

Enuneration e = not et abl e. keys() ;
whi | e( e. hasMoreH enents() & ((bytecursorDi[j] + 3) < dataDi[j].length) )
{ I'nteger motel Dbj = (Integer)e.nextE ement();
int notel D = notel DObj.intVal ue();
Mot el ndex m = (Mot el ndex) not et abl e. get (not el Dj ) ;
if (!m.allclear() & !'m.ASNerror && (m.ackwaiting<=0))
{ byte[] ackbytes = m.get AckByteArray();
if (bytecursorDl[j] + ackbytes.length + 4 >= dataDl[j].|ength) break;
m.ackwaiting = 2;
m . DSN = D1Seqno[j];
m . DSNtype = OxD1;
dataDl[j][bytecursorDl[j]++] = (byte)(notelD >> 8 & Oxff);
dataDl[j][bytecursorDi[j]++] = (byte)(notel D & Oxff);
dataDl[j][bytecursorDi[j]++] = (byte)(m.get AckLength());

for (int i = ackbytes.length-1; i >=10; i--)
{ dataDl[j][bytecursorDi[j]++] = ackbytes[i];
P}
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Listing A.18: Preparing D2 type packets

[/ Trigger: D ssemnation Tiner
I/ Input: MteTable
I/ Effect: Prepare D2 type packets for sending
Vector atv = new Vect or (not et abl e. keySet());
Col l ections.sort(atv); int mi = 0;
while (nmi < atv.size())
{ if (bytecursorD2[j] < dataD2[j].length)
{ Integer notel Dbj = (Integer)atv.get(nti);

int motel D= notel DMj . intVal ue();

Mot el ndex m = (Mot el ndex) not et abl e. get (not el Db ) ;

if (m.allclear() & !'m.ASNerror & (m.ackwaiting<=0))

{ if (bytecursorD2[j] + 3 >= dataD2[j].length) break;
m.ackwaiting = 2; m.DSN = D2Seqno[j]; m .DSNtype = O0xD2;
dataD2[j][bytecursorD2[j]++] = (byte)(notel D >> 8 & Oxff);
dataD2[j][bytecursorD2[j]++] = (byte)(notel D & Oxff);
if (bytecursorD2[j]+4 >= dataD2[j].|ength) break;
if (mi+2 < atv.size())

{ Integer notel Dbj 2 = (Integer)atv.get(nti+1);
int motel D2 = notel Dbj 2.1 nt Val ue() ;
Mot el ndex m 2 = (Mot el ndex) not et abl e. get (ot el Dbj 2) ;
Integer notel Dbj 3 = (Integer)atv.get(nti+2);
int motel D3 = notel Dbj 3.int Val ue() ;
Mot el ndex m 3 = (Mot el ndex) not et abl e. get (ot el Dbj 3) ;
if (m2allclear() & !'m 2. ASNerror && (m 2. ackwai ting<=0) &&
m3.allclear() & !'m 3. ASNerror && (m 3.ackwai ti ng<=0))
{ m2 ackwaiting = 2; m 2.DSN = D2Seqno[j]; mi 2. DSNtype = 0xD2;
m 3. ackwai ting = 2; m 3.DSN = D2Seqno[j]; m 3. DSNtype = 0xD2;

int | = 2; bool ean donext = true;
whi | e (donext)
{1 =1+1

if (nmi+l<atv.size())
{ nmotel Dbj 3 = (Integer)atv.get(nti+);
m 3 = (Mt el ndex) not et abl e. get (not el Dbj 3) ;
if (m3.allclear() & !m 3. ASNerror && (m 3. ackwai ti ng<=0))
{ notel D3 = notel Dbj 3.i nt Val ue() ;
m 3.ackwaiting = 2; m 3.DSN = D2Seqno[j]; m 3. DSNtype = OxD2;
} else { donext = false; }
} else { donext = false; }
}
dat aD2[j ] [ byt ecursorD2[j ] ++] -
dat aD2[j ] [bytecursorD2[ ] ++] (byte)(notel D3 >> 8 & Oxff);
dataD2[j][bytecursorD2[j]++] = (byte)(notel D3 & Oxff);
nti=nti+l;
P}
else if (mi+l < atv.size())
{ Integer notel Dbj 2 = (Integer)atv.get(nti+1);
int motel D2 = notel Dbj 2.1 nt Val ue() ;
Mot el ndex m 2 = (Mot el ndex) not et abl e. get (ot el Dbj 2) ;
if (m2allclear() & !'m 2. ASNerror && (ni 2. ackwaiti ng<=0))
{ m2 ackwaiting = 2; m 2.DSN = D2Seqno[j]; m 2. DSNtype = 0xD2;
dataD2[j][bytecursorD2[j]++] = (byte)(notelD2 >> 8 & Oxff);
dataD2[j][bytecursorD2[j]++] = (byte)(notel D2 & Oxff);

Listing A.19: Preparing D3 type packets

Enunerati on e3 = not et abl e. keys();
whi | e( e3. hasMor el enent s() & (bytecursorD3[j] < dataD3[j].length) )
{ Integer notel Dbj = (Integer)e3.nextHE enment();

int notel D = notel DObj . intVal ue();

Mot el ndex m = (Mot el ndex) not et abl e. get (not el DOj ) ;

if (m.ASNerror &% (m.ackwaiting<=0))

{ byte[] ackbytes = m.get AckByteArray();
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if (bytecursorD3[j] + ackbytes.length + 6 >= dataD3[j].length) break;
m.ackwaiting = 2;

m . DSN = D3Seqno[j];

m . DSNtype = 0xD3;

dat aD3[ j ] [ byt ecur sor D3[ j ] ++]
dat aD3[ j ] [ byt ecur sor D[ j ] ++]
dat aD3[ j ] [ byt ecur sor D[ j ] ++]

(byte)(nmotel D >> 8 & Oxff);
(byte)(notel D & Oxff);
(byte)(m.get AckLength());

dataD3[j][bytecursorD3[j]++] = (byte)(nm.ASN>> 8 & Oxff );
dataD3[j][bytecursorD3[j]++] = (byte)(m.ASN & Oxff );

for (int i = ackbytes.length-1; i >=0; i--)

{ dataD3[j][bytecursorDg[j]++] = ackbytes[i];

P}

Listing A.20: Disseminating Messages

try
{ for (int j =0; j < dacksets; j++)

{

dataDl[j][dataDl[j].l ength 1] = DlSeqno[j];
dataD2[j][dataD2[j] .l ength 1] = D2Seqno[j];
dataD3[j][dataD3[j] .l ength 1] = D3Seqno[j];
int dkey = -1;

if (dataDl[j][0] !'=-1)

{ disnij].set_data(dataDi[j]);
dkey = OxDEO1 +(j*3);
disnjj].set_key(dkey);
mot el F. send(0, disnij]);

Thr ead. sl eep(350) ;

}

if (dataD2[j][0] !'=-1)

{ d2snjj].set_data(dataD2[j]);
dkey = OxDEO2 +(j*3);
d2snjj].set_key(dkey);
notel F. send(0, d2snjj]);

Thr ead. sl eep(350) ;

}
if (dataD3[j][0] !'=-1)
{ d3snjj].set_data(dataD3[j]);
dkey = OxDEO3 +(j*3);
d3snjj].set_key(dkey);
notel F. send(0, d3snij]);
Thr ead. sl eep(350) ;
} } } catch (Exception exception) { exception.printStackTrace(); }

Listing A.21: Calculate Network Totals

{

whi | e( e4. hasMor eEl enent s())

I nteger notel Dbj = (Integer)e4d. next Bl ement();
int notel D = notel DObj.intVal ue();
Mot el ndex m = (Mot el ndex) not et abl e. get (not el Dj ) ;

3.3 3

—

(D —

.sanpl essent = ni . get Sanpl esSent();
.checkl = m.sanpl essent - (m.sanpl esreceived - m.sanpl esrecovered + m.sanpl esdropped);
.check2 = m . sanpl esdropped - (m.sanpl esrecovered + ni.sanpl esl ost + m.getQutstanding());

((m.checkl) '=0 || (m.check2 !'=0))
m.nsg = "Error";

se

m.msg = ""

Systemout.println("Mte "+m.id+"\t\t\t"

+m . sanpl essent+"\t"
+ni . sanpl esrecei ved+"\t\t"
+( (i nt) (((doubl e)n . sanpl esrecei ved/ Mat h. max( (doubl €) m . sanpl essent, 1. 0)) *100. 0) ) +" %6 +"\ t | \t"
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+ni . sanpl esdr opped+"\t"
+m . sanpl esrecovered+"\t\t"

+( (i nt) (((doubl e)n . sanpl esrecover ed/ Mat h. max( (doubl e) m . sanpl esdr opped, 1. 0) ) *100) ) +'%\t"

+m . sanpl esl ost+"\t"

+m . get Qut standing() +"'\t]\t"
+m . tot D ssem nations+"\t"
+m . tot DI+"\t"

+m . tot D2+"\ t"
+m.tot D3+ \t|\t"

+H(m . ONmiLini tON '\t
+m . N\t

+m . overfl ows+"\t"

+m .resends+"\t|\t"

+m . check1l+"\t"

+m . check2+"\t"

+Ni . msg) ;

total sent = total sent + m.sanpl essent;

total recei ved = total recei ved + ni.sanpl esrecei ved,

total dropped = total dropped + m . sanpl esdr opped;

total out standi ng = total outstandi ng + m . get Qut standi ng() ;
total fixed = total fixed + m . sanpl esrecover ed,

totallost = totallost + m.sanpleslost;
totalCON=totalCN+ m.CN- m.initQO\

total N2 = total ON2 + m . O\

total overfl ows = total overflows + nm.overfl ows;
totalresends = total resends + m.resends;

A.8 Motelndex.java

Listing A.22: Motelndex Class Discrition

inport java.lang. *;

public class Mt el ndex
{
public int sanpl ecapacity = 200;
public long W= 100; // Wndow si ze for acknow edgment s

public int id; // IDof the mote this object is describing
public int sanpl essent; /1 Nunber of sanples known to be sent by this note
public int sanpl esrecei ved=0; // Total nunber of sanies recieved by the note

i
i
i
public int sanpl esrecovered = O;
i
i
i

public int sanpl eslost = O;
public int sanpl esdropped = O;
public int sanplesignored = 0;

public int RSN /1 Recieved SN

public | ong RSNTi nest anp;

public int LSN

public int ASN

public long O\

public long initCN /1 Value for CNwhen the note is first contacted
public int ackvector[];

public int ackcountvector[];

public long totD ssem nations = 0;

public long totDL = O;
public long totD2 = O;
public long totD3 = O;
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public long acktinevector[];
public | ong droppedackvector|[];

publ i c bool ean ASNerror = fal se;
public int ackwaiting = 0;
public int backoff = 0;

public short DSN = 0;

public short DSNmote = 0;

public int DSNt ype = O0xD3;
public bool ean DSNacked = fal se;

public int overflows = 0;
public long resends = 0O;

public long ignorebefore = 0;
publ i c bool ean initlockl = true;

publ i c bool ean initlock2 = true;

0;
0;

public int checkl
public int check2
public String nsg

publ i c Mtelndex ()
{id=0;
RSNTi mest anp = - 1;
RSN = 0;
LSN = 0;
ASN = -1,

ackvector = new i nt[sanpl ecapacity];
ackcount vector = new i nt[sanpl ecapacity];
ackti nevector = new | ong[ sanpl ecapacity];

dr oppedackvect or = new | ong[ sanpl ecapacity];

for (int a =0; a < ackvector.length; a++)
{ ackvector[a] = 0;
ackcountvector[a] = 0;
acktinevector[a] = O;
droppedackvector[a] = 0;

}
}
public Mtelndex (int i, int csn, int asn)
{id=1i;

RSNTi mest anp = - 1;

RSN = 0;

LSN = csn;

ASN = asn;

ackvector = new i nt[sanpl ecapacity];
ackcount vect or = new i nt[sanpl ecapacity];
ackti nevector = new | ong[ sanpl ecapacity];

dr oppedackvect or = new | ong[ sanpl ecapaci ty];

for (int a =0; a < ackvector.length; a++)
{ ackvector[a] = 0;
ackcountvector[a] = 0O;
acktinevector[a] = 0;
droppedackvector[a] = 0;
}
}

public void initialize()

{
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ASN = RSN
LSN = RSN

sanpl esi gnored = RSN+1;
initON = CN

for (int a =0; a < ackvector.length; a++)
{ ackvector[a] = 0;
ackcountvector[a] = 0;
acktinevector[a] = 0;
droppedackvector[a] = 0;

}

for (int i =0; i <= ASN i++)
{ acktinevector[i] = RSNTi nestanp;
ackcountvector[i] = 1;

}

ASNerror = true;
initlockl = true;
initlock2 = true;
backoff = 0;

Systemout. println("initializing");

}

public int getAckLength()

if (LSN==ASN return 0;

i f(LSN >= ASN
{ return (LSN- ASN;
}
el se
{ return ((sanpl ecapacity-ASN +LSN) ;
}
}
public int getSanpl esSent()
if (LSN>= RSN
{ return Math. max((ackcountvector[ RSN - 1), 0) *sanpl ecapaci t y+LSN+1- sanpl esi gnor ed;
}
el se

{ return Math. max((ackcountvector[ RSN ), 0) *sanpl ecapaci t y+LSNt+1- sanpl esi gnor ed;

}
}

public byte[] getAckByteArray()
byte[] bytes;
if (LSN == ASN

{ bytes = new byte[0];
return bytes;

}

if (LSN > ASN

{ bytes = new byte[ (LSN - ASN/8+1];
for (int i =0; i < bytes.length; i++)
{ bytes[i]=0;

for (int i=LSN i>ASN i--)
{

I/ shift the bits in the byte array to the left by 1 bit
for (int b = bytes.length-1; b > 0; b--)
{ bytes[b] = (byte)(bytes[b] << 0x01);
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byt e checkbyte = (byte) (bytes[b-1] | Ox7F);
/1if (checkbyte == OxFF)
i f (checkbyte == -1)
{ bytes[b] = (byte)(bytes[b] | 0x01);
}
bytes[0] = (byte)(bytes[0] << 0x01);

I/ Set the ack bit

if (ackvector[i]==1)

{ bytes[0] = (byte)(bytes[0] | 0x01);

}

}
}
el se
{ bytes = new byt e[ ((sanpl ecapaci ty-ASN) +LSN) / 8+1] ;
for (int i =0; i < bytes.length; i++)
{ bytes[i]=0;
}
for (int i=LSN i>=0; i--)
{

// shift the bits in the byte array to the left by 1 bit

for (int b = bytes.length-1; b > 0; b--)

{ bytes[b] = (byte)(bytes[b] << 0x01);
byte checkbyte = (byte)(bytes[b-1] | Ox7F);
/1if (checkbyte == OxFF)

i f (checkbyte == -1)
{ bytes[b] = (byte)(bytes[b] | 0x01);
}

}

bytes[0] = (byte)(bytes[0] << 0x01);

/] Set the ack bit

if (ackvector[i]==1)

{ bytes[0] = (byte)(bytes[0] | 0x01);

}

}
for (int i=sanplecapacity-1; i>ASN i--)
{

// shift the bits in the byte array to the left by 1 bit

for (int b = bytes.length-1; b > 0; b--)

{ bytes[b] = (byte)(bytes[b] << 0x01);
byt e checkbyte = (byte)(bytes[b-1] | Ox7F);
/1if (checkbyte == OxFF)

i f (checkbyte == -1)
{ bytes[b] = (byte)(bytes[b] | 0x01);
}

}

bytes[ 0] = (byte)(bytes[0] << 0x01);

/1 Set the ack bit

if (ackvector[i]==1)

{ bytes[0] = (byte)(bytes[0] | 0x01);

}

}
return bytes;

}

public void cl eanAckVector()

if (LSN == ASN)

129



{ for (int i =0; i < sanplecapacity; i++)
{ ackvector[i] = 0;
}
}
if (LSN> ASN
{ for (int i =0; i < sanplecapacity; i++)
{if ((0 >LSN || (i <= ASN)
{ ackvector[i] = 0;
}
}
}
el se
{ for (int i =0; i < sanplecapacity; i++)

{if ((i >LSN && (i <= ASN)
{ ackvector[i] = 0;
}
}
}
}

publ i c voi d recordDroppedSanpl es()
if (LSN == ASN return;

if (LSN > ASN
{ for (int i=ASN+1; i<=LSN i++)
{ if ((ackvector[i] == 0) && (droppedackvector[i] == 0))
{ droppedackvector[i] = 1;
sanpl esdr opped++;

}
}
}
el se
{
for (int i=ASN+1; i<sanpl ecapacity; i++)
{ if ((ackvector[i] == 0) && (droppedackvector[i] == 0))
{ dr oppedackvector[i] = 1;
sanpl esdr opped++;
}
}
for (int i=0; i<=LSN i++)
{ if ((ackvector[i] == 0) && (droppedackvector[i] == 0))
{ dr oppedackvector[i] = 1;
sanpl esdr opped++;
}
}
}
}
public String get AckString()
{

if (LSN==ASN return "{}";
String result = "{";

if (LSN> ASN

{ for (int i=ASN+1; i<=LSN i++)
{ result =result +"" + ackvector[i];
}

}

el se

{
for (int i=ASN+1; i<sanpl ecapacity; i++)
{ result =result +"" + ackvector[i];

}
for (int i=0; i<=LSN i++)
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{ result =result +"" + ackvector[i];

}
}

result =result +"'}";

return result;

}
public int getQutstanding()
{
int count = O;
if (LSN == ASN return count;
if (LSN> ASN
{ for (int i=ASN+1; i<=LSN i++)
{ if (ackvector[i] == 0) count++;
}
}
el se
{
for (int i=ASN+1; i<sanpl ecapacity; i++)
{ if (ackvector[i] == 0) count++;
}
for (int i=0; i<=LSN i++)
{ if (ackvector[i] == 0) count++;
}
}
return count;
}
public String get Sanpl eAckString()
{

String result = "{";
for (int i=0; i<sanplecapacity; i++)
{ result =result +"," +ackvector[i];

}

result =result + "}";

return result;

}

public String get Sanpl eLost String()

{
String result = "{";
for (int i=0; i<sanplecapacity; i++)
{ result =result +"," +droppedackvector[i];

}

result =result + "}";

return result;

}

public String get Sanpl eCount String()

{
String result = "{";
for (int i=0; i<sanplecapacity; i++)
{ result =result +"," +ackcountvector[i];

}

result =result + "}";

return result;

}

publ i c bool ean i sl nRange(int i)
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bool ean result = fal se;
if ((i <0) || (i > sanplecapacity)) return false;
if (LSN== ASN return fal se;

if (LSN> ASN

{ if ((LSN>=1i) & (i > ASN)
{ result =true;
}

}

el se
{ if ( ((sanplecapacity > i) & (i > ASN) ||
((LSN>=i) && (i >=0)) )
{ result =true;
}
}

return result;

}

publ i ¢ bool ean checkW ndowEr ror ()

{
if (getAckLength() > W
{ return true;

}

el se

{ return false;

}
}
public void giveup()
{

int csanpl esl ost = 0;
int acvcopy[] = new i nt[sanpl ecapacity];

for (int i =0; i < ackvector.length; i++)
{ acvcopy[i] = ackcountvector[i];

i gnor ebef or e = RSNTi nest anp;

Systemout.println("note " +id +": " + "ASN=" + ASN+ " RSN="

+ RSN + " ignorebefore =" + ignorebefore);
Systemout.println("note " +id + ": " + getSanpl eCount String());
Systemout.println("note " +id + ": " + get Sanpl eAckString());
Systemout.printin("note " +id + ": " + getSanpl eLostString());

if (RSN > ASN
{ for (int i=ASN+1; i<=RSN i++)
{ i f(acvcopy[i] < ackcountvector[ RSN )
{ ackcountvector[i] = ackcountvector[i] + 1;

i f (droppedackvector[i] == 0) sanpl esdropped++;
droppedackvector[i] = 0;
csanpl esl ost ++;
Systemout.print(i +", ");

el se

for (int i=RSN i>=0; i--)
{ i f(acvcopy[i] < ackcountvector[ RSN )
{ ackcountvector[i] = ackcountvector[i] + 1;
i f (droppedackvector[i] == 0) sanpl esdropped++;
droppedackvector[i] = 0;
csanpl esl ost ++;
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Systemout.print(i +", ");
}

for (int i=sanplecapacity-1; i>LSN i--)
i f(acvcopy[i] < ackcountvector[ RSN -1)
{ ackcountvector[i] = ackcountvector[i] + 1;
i f (droppedackvector[i] == 0) sanpl esdr opped++;
droppedackvector[i] = 0;
csanpl esl ost ++;

Systemout.print(i +", ");
}
}
}
Systemout. println();
if (RSN < LSN
{ for (int i =RSN+1; i <= LSN i++)

{ if (droppedackvector[i] == 0) sanpl esdropped++;
dr oppedackvector[i] = 1;

}
if (RSN > LSN
{ for (int i =RSN+1l; i < sanplecapacity; i++)
{ i f (droppedackvector[i] == 0) sanpl esdropped++;
dr oppedackvector[i] = 1;
}
for (int i =0; i <= LSN i ++)
{ if (droppedackvector[i] == 0) sanpl esdropped++;
dr oppedackvector[i] = 1;
}
}

for (int i =0; i < sanplecapacity; i++)
{ if (acktinevector[i] < acktinevector[ RSN)
{ ackvector[i] = 0;

}

Systemout. println("note " id+": " + getSanpl eCount String()
Systemout. println("note " id+": " + getSanpl eAckString());
Systemout. println("note " id+": " + getSanpl eLostString());
sanpl esl ost = sanpl esl ost + csanpl esl ost;

+
+ "o
+
+

ASN = RSN
}
// Returns true if every segno has been acknow edged.
publ i c bool ean all clear()
{ boolean result = true;

if (LSN==ASN return true;

if (LSN> ASN

{ for (int i=ASNrl; i<=LSN i++)
{ if(ackvector[i] == 0) result = fal se;
}

}

el se

for (int i=LSN i>=0; i--)

{ if(ackvector[i] == 0) result = fal se;
}

for (int i=sanplecapacity-1; i>ASN i--)
{ if(ackvector[i] == 0) result = fal se;
}

}

return result;
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}

publ i ¢ bool ean checkASNError()
{ if (ASN == findASN))

{ return false;

}

el se

{ return true;
}

}

public int findASN2()
{ int result = ASN
int mn;
bool ean found = fal se;

if (ASN==-1) return -1,

m n = ackcountvector[ 0] ;
for (int i =0; i < sanplecapacity; i++)
{ if (ackcountvector[i] < mn)
{ m n = ackcountvector[i];
result =i;
found = true;

}

if (found == true)
{ if (result > 0)
{ return result - 1;

}
el se
{ return sanpl ecapacity - 1,
}
}
el se
{ return ASN
}

}

public int findASN)
{ int result = ASN
int mn;
bool ean found = fal se;

if (ASN==-1) return -1;
if (ASN == LSN return ASN

if (ASN < LSN
{ mn = ackcount vect or[ RSN ;
for (int i =ASN i >=0; i--)

if (ackcountvector[i] < mn)
{ result =i; found = true;
Systemout.printin("a \t"+m n +"\t"+ackcountvector[i]+"\t"+i);

}
}
m n = ackcountvector[ RSN - 1;
for (int i = sanplecapacity-1; i >LSN i--)
{ if (ackcountvector[i] < mn)
{ result =i; found = true;
Systemout.printin("b \t"+m n +"\t"+ackcountvector[i]+"\t"+i);
}
}
}
el se

{ if (RSN < ASN)
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{ mn = ackcountvector[RSN - 1;

}

el se

{ mn = ackcountvector[ RSN ;
}

for (int i =ASN i >LSN i--)

{ if (ackcountvector[i] < mn)

{ result =i; found = true;
Systemout.printin(“c \t"+mn +"\t"+ackcountvector[i]+"\t"+i);

}
}

if (found == true)
{ if (result > 0)
{ return result - 1;

}
el se
{ return sanpl ecapacity - 1;
}
}
el se
{ return ASN
}
}
publ i ¢ bool ean reasonabl epacket ( DACKCol | Msg dcm)
{

if ( (demget_lan() <0) ||
((dcmget _lan() > sanpl ecapacity) &% (dcmget_lan() != 65535)) ||
(dcmget _Isn() <0) || (dcmget_|lsn() > sanpl ecapacity) )

{ return fal se;

}
for (int i =0; i < dcmnuniE enents_sanpl e_sn(); i++)
if ((dcmgetE enent_sanmple_sn(i) < 0) || (dcmget B enent_sanpl e_sn(i) > sanpl ecapacity))
{ return fal se;
}
}
return true;
}
public static String short ToHexString(short s){
int i =s & OxFF
return Integer.toHexString(i);
}
public static String byteToHexString(byte b){
int i =b & OxFF,
return Integer.toHexString(i);
}
public static String byteToBi naryString(byte b){
int i =b & OxFF,
return Integer.toBinaryString(i);
}

}
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