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Abstract. A spatio-temporal data structure to index objects moving
at constant velocity on a graph is presented. It is designed to efficiently
answer rectangle R plus time instance and time interval queries about
the past positions of moving objects. Such data structures are useful,
for example, when searching for vehicles moving on a road network in
specific areas at specific times. Unlike other data structures that use R-
trees to index bounding boxes of moving object trajectories, our data
structure represents moving objects as lines in a bounded space. For n
moving object instances (unique entries of moving objects) on a graph
with |E| edges, we show that O(log2 |E| + |L| · log2(n/|E|) + k) time is
required to answer a rectangle R plus time interval query, for |L| the
number of edges intersected by R and k the number of moving objects
in range. Space O(n + λ + |E|) is required to store n moving object
instances with λ intersections among them in |E| ordered polyline trees.
Space Ω(n+ |E|) is required to store the history of all n moving object
instances.

1 Introduction

Research on efficient storage and retrieval of moving objects has many practical
applications, such as tracking people in videos for security reasons, observing
moving clouds for weather forecasting, and searching for moving vehicles on a
road network for traffic planning, monitoring and simulation. Indexing a large
number of moving objects to improve the response time for query processing
becomes a significant challenge. Indexing can be done on either current and
future positions of moving objects, or historical positions of moving objects [16].
Our research addresses the latter category. Queries on historical data are likely
to be used in applications such as planning, event reconstruction and training.
Much previous work on indexing moving objects assumes free movement of the
objects in space (e.g., [2], [12], [14], [17], [18]). If movement is restricted to edges
of a graph, the index should be able to use less storage than would be required if
objects were free to move anywhere in space. We address the problem of indexing
moving objects on a graph defined by its edges and vertices. The graph can be
non-planar as it is when representing road networks [4].

Existing work on indexing objects moving on a graph include the MON-tree
[3], PPFI [5], FNR-tree [6], and [13]. The common point of these data structures
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Fig. 1. (a) Table of 14 moving objects from (b) on edge connecting two vertices v1 and
v2. Each directed polyline represents a position interval of an object with a direction.
The two numbers in parentheses represent time intervals of corresponding objects. (c)
rectangle query R, where R intersects the edge at the position interval [r1, r2]=[0.62,
0.75] and the time interval query is [t1, t2]=[23, 25].

is to combine several R-trees to index moving objects on a fixed network. A
network is indexed by an R-tree [15] [9] while moving objects are indexed on
a forest of R-trees, whose roots are linked to leaf nodes of the network tree. A
moving object is represented as a (space × time) rectangle whose one side is a
time interval and whose other side is a position interval of that moving object.
The disadvantage of these data structures is that the number of retrieved objects
for a query can be much more than the exact result. When a moving object
rectangle intersects a (space × time) query rectangle, we still do not know for
certain whether this moving object is in range or not. The time complexity of this
approach is controlled by the number of (space × time) moving object rectangles
intersecting the (space × time) query. Fig. 1 show an example of 14 moving
objects on an edge, and Fig. 1 (c) shows a query rectangleR=([23,25],[0.62,0.75]),
respectively. There are 6 moving objects having their begin or end positions
falling inside the edge. Eight moving objects o6, o8, ..., o14 move across the entire
edge. A diagonal line segment also represents the direction of moving objects at a
constant velocity. Diagonal line segments from upper left to lower right represent
objects moving from the right (r = 1) to left (r = 0) direction. When rectangles
are used to index these moving objects, five rectangles representing five moving
objects o5, o7, o9, o11 and o13 intersect with the shaded query rectangle R as
shown in Fig. 2. However, only two moving objects o5 and o7, whose rectangle’s
diagonal line segments intersect with R, are actually in range. Nine other moving
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Fig. 2. Five [tj1, t
j
2], [rj

1, r
j
2] rectangles represent five moving objects o5, o7, o9, o11, and

o13 from Fig. 1(a). The solid line segments illustrate diagonal line segments of rectangles
(shown by dashed lines). The shaded rectangle is a query rectangle.

objects o1, .., o4, o6, o8, o10, o12, and o14 are not shown in Fig. 2 because their
rectangles do not intersect with R. In the worst case, all moving object rectangles
on an edge intersect the query rectangle R, but none of them is in range.

We propose a new data structure that allows us to exactly retrieve moving
objects for a query. Instead of using R-trees to index bounding boxes of moving
objects, we index oriented and bounded lines representing positions of moving
objects at different times. With this new data structure, we can answer a rect-
angle R plus time interval query in O(log2 |E|+ |L| log2(n/|L|) + k) time, where
n is the number of moving object instances (unique entries of moving objects)
on a graph with |E| edges, |L| is the number of edges intersected by R and k
is the number of lines containing moving object instances in range. This data
structure improves the search time complexity of our previous result [7].

None of the previous research reports worst case query time, but they all
depend on R-tree indexing for spatial search of the graph which requires Ω(|E| 12 )
time. Moreover, objects moving on edges of the graph are indexed using 2-d R-
trees which requires O(n

1
2 +k

′
) time for searching in-range objects in each R-tree,

for k
′

is the number of rectangles representing moving objects intersecting the
(time interval × position interval) query on an edge. If |L| edges of the graph
intersect the spatial query, the total worst case time to search all rectangles
representing moving objects intersecting the query on |L| edges is O(|E| 12 +

(n
1
2
1 +k

′

1) + (n
1
2
2 +k
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2) + ..+ (n
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|L|)) =O(|E| 12 + |L|n 1
2 + k

′
). Here, k

′
=

∑|L|
i=1 k

′

i is the total number
of rectangles representing moving object instances intersecting the query. This
algorithm does not apply to the FNR-tree which uses B-trees (1D R-trees) for
temporal search. In the worst case, the FNR-tree requires O(|E| 12 + (log2 n1 +
log2 n2 + .. + log2 n|L|) + (k

′

1 + k
′

2 + .. + k
′

|L|))=O(|E| 12 + |L| log2(n/|L|) + k
′
)

search time. Note that k
′

is significantly larger than k as previous techniques
can falsely report intersections with R (see Fig. 2).
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2 Proposed Approach

We support two types of queries: time instant queries defined as Q1 = (R, tq) to
find the k moving objects intersecting rectangle R at time tq, and time interval
queries defined as Q2 = (R, [t1, t2]) to find the k moving objects intersecting
rectangle R at any time during time interval [t1, t2]. Both query types can be
counting queries (report only k) or reporting queries (report the identity of the k
moving objects satisfying the query). A spatio-temporal query Q2 = (R, [t1, t2])
is transformed to a query rectangles Q3 = [t1, t2] × [r1, r2] by finding positions
r1, r2 that span the query rectangle R on an edge. In Fig. 3 (a) and (b), a query
Q2 on an edge is transformed to two query rectangles Q3.

r=0

r=10.65

0.1

0.45
0.8

0.1

0.45

1
r

t

0.65
0.8

(a) (b)

10 400

A B

CD

(c)

Fig. 3. (a) A spatio-temporal query Q2 = (R, [10, 40]) is transformed into (b) two
query rectangles Q3: [10,40]×[0.1, 0.45] and [10,40]×[0.65, 0.8]. (c) Query rectangle Q3

with four vertices A, B, C, and D. Lines intersect the rectangle Q3 if and only if they
intersect line segments AD or DC of the rectangle.

Assume that objects move at a constant velocity on an edge. Each moving
object is represented by a diagonal line segment of the (time interval) × (position
interval) rectangle. Each point on this line segment corresponds to a position of a
moving object at a specific time. If a line segment intersects a query rectangle, its
corresponding moving object is in range. For example, because the two diagonal
line segments of two rectangles of o5 and o7 intersect the shaded rectangle query
(Fig. 2), only objects o5 and o7 are in range. A challenge is how to index line
segments efficiently to achieve an efficient search on moving objects. A recent
work [10] indexes line segments by two B+-trees, one to store x−coordinates and
the other to store y−coordinates of end points of all line segments. However, a
rectangular search on two B+-trees independently may result in inefficient search
time if all nodes in one tree are in range while none of the nodes in the other
tree is in range. In other words, all nodes of one B+-tree are visited even though
none of them is in range.

We present a new method to index bounded lines representing moving objects
on an edge. When objects move across an edge from r = 0 to r = 1, their
corresponding path on that edge is considered as a line in a bounded plane
formed by (time × r), where 0 ≤ time ≤ T , 0 ≤ r ≤ 1. For simplicity, we use



Graph Strip Tree for Efficient Search of Objects Moving on a Graph 5

the terminology bounded lines or lines in this paper to imply lines representing
moving objects in the bounded plane.

Assume that we have a set of lines having slopes m ∈ (0,∞] in a bounded
plane as in Fig. 3(c). If we want to find lines that intersect a query rectangle Q3

with four vertices A, B, C, and D, we only need to find lines intersecting line
segments AD and DC of Q3. From this idea, we divide the set of bounded lines
into two subsets L1 and L2. Each subset contains lines of objects moving in the
same direction on the edge. L1 is the subset moving from r = 0 to r = 1, and
L2 is the subset moving from r = 1 to r = 0. In the following discussion of the
paper, we will focus only on L1. This assumption provides the basis for our data
structure. For objects in L2 (e.g., o5, o11, o13 in Fig. 2), the ordered polylines
would divide the (t, r) space in a monotonic decreasing fashion. Algorithms and
analysis for L1 are similarly applied to L2.

We use the notion t-level(i) to refer to set of lines intersecting line x = i
ordered top-to-bottom. Similarly, r-level(i) refers to a set of lines intersecting line
y = i ordered left-to-right. Fig. 4 shows an example of two t-levels: t-level(9.2)
and t-level(10.4), and two r-levels: r-level(0.35) and r-level(0.62). The order of
lines is potentially different for different values of i.

0 x

y
1

T

t-level(9.2)

r-level(0.35)

t-level(10.4)

r-level(0.62)

o1

o2 o4 o7

o5o3

o6

o8

A B

C
D

Fig. 4. Example of a query rectangle Q3, with points A=(10,0.72), B=(13,0.72),
C=(13,0.37), and D=(10,0.37), on a set 8 bounded lines. Dashed lines shows t-levels
and r-levels near two line segments AD and DC of Q3. Since lines o3 and o6 intersect
AD, and line o7 intersects DC, these three lines are in range.

Consider a set of lines and a query rectangle Q3 in Fig. 4, we only need
to search for lines intersecting AD on t-level(9.2) and DC on r-level(0.35). We
build a data structure for efficient search based on this idea.

Given a set of intersection points, we present a method to organize them
efficiently. When lines intersect each other, they form ordered polylines. An
ordered polyline pi is created by connecting parts of lines at intersections (with
each other and with the r = 0, and r = 1 boundaries). For example, the first
four ordered polylines in Fig. 5 are p1 = {o1.1, o2.2}, p2 = {o2.1, o1.2}, p3 =
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Fig. 5. Lines represent 8 moving objects traveling at a constant velocity over an edge
in direction from r = 0 to r = 1. oj.i belongs to the line representing moving object oj .

{o3.1, o4.2, o5.3}, and p4 = {o4.1, o3.2, o5.2, o4.3}, ordered from left to right; they
do not intersect each other. Points in an ordered polyline are monotonically
increasing in both t and r. We connect points in an ordered polyline together
into a list of entries, and arrange ordered polylines in a balanced search tree. An
entry of an ordered polyline points to entries, having the same or near values, of
its left, right and next polylines. Section 3 shows the details of the data structure.

o1 o2 o3 o4 o6 o7 o8
0 t

r
1

.5

o5

o9

o10 o11

Fig. 6. Lines represent all situations of moving objects. Objects o9, o10, and o11 are
extended, and induce new ordered polylines that account for intersections with ordered
polylines spanning the entire edge (i.e. with r ∈ [0, 1]).

When we consider historical positions of vehicles on a road network, most
vehicles move from the start to the end of the edge representing a road. Others
may start to move or stop in the middle of the road. We consider all positions of
moving objects in our data structures. Ordered polylines also work for objects
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Fig. 7. Example of 8 polylines representing 8 moving object instances o1, ..., o8 in the
worst case, where each object instance intersects 7 others in time.
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left

right
next next

left

right

left

right

next
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next

next

first entry

second entry

third entry

Fig. 8. Structure of a node containing three entries in an ordered polyline tree.

moving on a road, stopping for a period of time, then moving again. For objects
not moving over the entire edge (e.g., o9, o10, and o11 in Fig. 6), we add one (or
two) line segment(s) to their line segments’ endpoint(s) so that the connected
parts from these original line segments reach the r = 0 and r = 1 boundaries.
The extending line segment starts from one endpoint, whose r-coordinate is not
0 or 1, to a point having r-coordinate=0 or r-coordinate=1, and t-coordinate
falling half-way between the end points of the two adjacent bounded lines. Fig.
6 shows an example of three extended line segments for objects o9, o10, and o11.

In the worst case, every line representing a moving object instance intersects
the lines representing all other moving object instances on the same edge (see
Fig. 7). There are O(g2

i ) lines for gi moving object instances on edge i. Each
ordered polyline requires O(gi) lines. The number of ordered polylines is still
precisely gi.

3 The Primary Data Structure

3.1 Indexing moving objects on an edge

Ordered polylines are arranged as a balanced binary search tree, called ordered
polyline tree, based on each pi dividing the space. Each ordered polyline con-
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Fig. 9. Ordered polyline tree indexes 8 bounded lines in Fig. 5 at r-level(0). A three-
row rectangle represents an ordered polyline, where each column is a point represented
as an entry. A dashed line represents a pointer of an entry to its next adjacent entry.
The cross symbol in the lower-right corner of each rectangle means that there is no
objectID in the last entry of each ordered polyline.

tains a list of entries. Each entry contains a point (t, r), a moving object ID
corresponding to the line connecting to the point, three t-pointers, and one r-
pointer (Fig. 8). Three left, right, and next t-pointers point to the left, right, and
next adjacent entries (belong to the left, right, next adjacent ordered polylines),
respectively on t-levels. One next r-pointer points to the next adjacent entry
belonging to the next adjacent ordered polyline on r-levels.

For a polyline pi with t-entry tj , the (left, right, next) pointers point to the
largest t-entry in pi’s (left, right, next) node ≤ tj , respectively. If no t-entries in
pi’s (left, right, next) nodes are ≤ tj , the (left, right, next) pointers point to the
smallest t-entry > tj . In this way, we record all line segments in the arrangement
of bounded lines such that a traversal of the tree from root to leaf serves to find
the polyline immediately to the left of a query point A. Following next pointers
of t-entries finds segments of ordered polylines in downward order for a vertical
query segment AD. Following next pointers of y-entries finds segments of ordered
polylines in left-to-right order for a horizontal query segment DC. Fig. 9 show
an example of an ordered polyline tree on t-level(0). Ordered polyline trees can
be made dynamic as presented in [8].

3.2 Indexing edges of a graph

An edge on a fixed graph G = (V,E) is considered as a polyline. We index
each edge by a strip tree [1]. Strip trees created are merged bottom up in pairs
to construct a graph strip tree. Fig. 11 shows an example of strip trees created
from a fixed graph in Fig. 10, and Fig. 12 a graph strip tree from the strip trees
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Fig. 10. Example graph G with 4 edges e1, ..., e4 and 4 vertices v1, ..., v4.
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e2

e4

e3
M1 M2

M3

C1

C2
C3

C4

v1
v2

v3

v4

(a)Fig. 11. Edges of graph G (Fig. 10) are represented as strip trees, with C1, ..., C4

representing the root bounding boxes for each strip tree. The strip trees are merged
bottom up in pairs to construct a graph strip tree.

merged. Leaf nodes Ci point to strip tree Si spatially indexing ei and to ordered
polyline tree Ti indexing lines representing moving objects on ei.

4 Space Complexity

4.1 Storage space for an ordered polyline tree

Assume there is a set of gi lines representing gi objects moving in the direction
from r = 0 to r = 1 in edge ei with λi intersections among them.

Theorem 1 An ordered polyline tree uses O(gi + λi) space to index a set of gi

lines with λi intersections among the lines.

Proof. The number of entries in an ordered polyline is the number of intersection
points forming the ordered polyline, plus two end points of the ordered polyline.
There are gi ordered polylines formed from the intersection of the gi lines. Each
intersection point (between two lines) belongs to two ordered polylines. If λi

is the number of intersections among gi lines, the number of entries in all the
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ordered polylines is 2gi + 2λi, or 2(gi + λi). Assume each element of an entry of
a node has size 1 (e.g., 1 for an coordinate t or r, a object ID, or a pointer).
The size of an entry of an ordered polyline tree is 7. Therefore, the size of the
tree is 7× 2(gi + λi) = 14(gi + λi), or O(gi + λi).�

Note that if c lines intersect at a point, where c > 2 and c is a constant
number, we insert c entries to the tree for all c even; we insert c − 1 entries
to the tree for all c odd because the middle line does not change its order
at the intersection point. If c is the maximum number of lines involved in an
intersection, at most cλ entries are inserted for λ intersections because at most
c entries are inserted at one intersection. The space required for the tree is
O(7(2gi + cλi)) = O(n+λ). Theorem 1 still holds. In a special case when c = gi

and λi = 1 (i.e., gi lines intersect at one point), those gi lines change their order
after the intersection point. Therefore gi (or gi − 1) new entries are inserted to
the tree at once. The total entries of the tree in this case is O(2gi + gi)=O(gi).
Theorem 1 still holds with λi = 1.

We see that the space for an ordered polyline tree in the best case is O(gi)
when there are at most αgi intersections (i.e.,O(gi + αgi)=O(gi), for α ≥ 0 a
constant). In the worst case where the number of intersections is λ=O(g2

i ), the
space required is O(gi + g2

i )=O(g2
i ).

4.2 Storage space for the entire graph strip tree

We store the |E| edges of a graph in a graph strip tree (see Figures 10, 11 and
12) requiring O(1) space for each edge. This is a reasonable assumption based
on actual road network statistics. For example, the number of edges in the entire
road network of Canada [19] is |E| = 1,869,898, with an average of 7.32 segments
per edge. If we assume that a merged strip tree is built from |E| = 2,000,000,
and each strip tree requires 1,000 bytes (a generous allocation), a main memory
size of 2 GB will suffice to hold the merged strip tree.

Theorem 2 A graph strip tree with |E| edges uses O(|E|+n+λ) space to index
a set of n moving object instances with λ intersections among lines representing
moving objects.

M3

M1 M2

C1

S1

C2

S2

C3

S3

C4

S4T1 T2 T3 T4
(b)Fig. 12. The graph strip tree corresponding to the graph in Fig. 11. Each leaf Ci

points to strip tree Si representing edge ei, and ordered polyline tree Ti indexing
moving objects on ei.
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Proof. |E| edges of the graph indexed by a graph strip tree require O(|E|) space.
Each ordered polyline tree with gi moving objects and λi intersections requires
O(gi +λi) space (Theorem 1). The graph strip tree containing |E| ordered poly-
line trees requires O(Σ|E|

i=1(gi + λi)) = O(Σ|E|
i=1(gi) +Σ

|E|
i=1(λi))=O(n+ λ) space.

Therefore, the graph strip tree requires O(|E|+ n+ λ) space. �

5 Search Complexity

5.1 Searching on an ordered polyline tree

Given query rectangle Q3 with four vertices A, B, C, D with D = (x, y) in
the clockwise direction, searching finds lines in t-level(x) intersecting AD and
lines in r-level(y) intersecting DC. The main steps of the search algorithm are
as follows:

(1) Starting from the root node, choose the entry b with largest t-value ≤ x. If
x < smallest t-value, choose the smallest entry.

(2) Follow the b’s left or right pointer to the next entry b′ by comparing line
objectID of entry b to point A. If A is left of the line, follow the left pointer;
otherwise follow the right pointer.

(3) Compare the t-value of entry b′ to t-values of entries following b′. Choose the
largest entry b whose t-value ≤ x.

(4) Repeat (2) and (3) until the entry b at a leaf node is reached. If b’s line
objectID intersects AD, report it.

(5) Use the next t-pointer at b to go to the entry b′ on the adjacent polyline.
Compare the t-value of entry b′ to t-values of its neighboring entries a′ and
c′. Choose the entry b among a′, b′, c′ having the maximum t-value ≤ x. If
b’s line objectID intersects AD, report it.

(6) Repeat (5) until an entry having its line not intersecting AD is reached.
(7) At the current node, choose the entry b having a maximum r-value ≤ y.
(8) Report objectID of the entry b if its line intersects DC.
(9) Use the next r-pointer at b to go to the next adjacent entry, again called b′.

Compare the r-value of entry b′ to r-values of its neighboring entries a′ and
c′. Choose the entry b among a′, b′, c′ having the maximum r-value ≤ y. If
b’s line objectID intersects AD, report it.

(10) Repeat (9) until an entry having its line not intersecting DC is reached.

The algorithm stops if a right-most leaf node is reached at any step. Consider
performing the query rectangle Q3 in Fig. 4 on a set of 8 bounded lines. The algo-
rithm needs to search for lines at entries containing t-levels(10) and r-level(0.37)
intersecting AD and DC, respectively. We start from entry b=(8.5,0.72, o4) of
the root node p4 (Fig. 9). We do not report o4 in range because it does not
intersect AD. As A is on the right side of o4, we follow the right t-pointer of b
to entry b′=(5.5, 0, o6) of node p6. Since entry c′=(9.2,0.35, o3) next to b′ has
maximum t-value ≤ 10, we choose entry c′ to query. We report o3 because it
intersects AD. As A is on the left side of o3, we follow the left t-pointer of o3 to
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a new entry b′=(9.2, 0.35, o6) of node p5. We report o6 because it intersects AD.
Because p5 is a leaf node, we follow the next t-pointer of o6 to entry b′=(9.2,
0.35, o3) of node p6. We skip p6 because its entry o3 is already marked as a
reported node. We follow the next t-pointer of o3 to entry b′=(7.2, 0, o7) of node
p7. Since o7 does not intersect AD, we start to search for lines intersecting DC at
r-level(0.37). When comparing r-value=0 of b′ and r-value=0.63 of entry c′=(12,
0.63,o8), 0 is the maximum r-value ≤ 0.37, we still choose b′ to query. We report
o7 because it intersects DC. Finally, we follow the next r-pointer of o7 to entry
b′=(12.8,0, o8) of node p8. We stop the search since o8 does not intersects DC.
There are a total of three moving objects o3, o6, and o7 in range.

Theorem 3 For a single edge, and assuming objects move at a constant velocity,
the time to report moving objects intersecting a query rectangle Q3 on the ordered
polyline tree Ti is O(log2(gi)+ki), where gi is the number of moving objects stored
in Ti, and ki is the number of moving objects in range.

Proof. Let w be the number entries forming an ordered polyline. We consider
all objects moving on an edge to be unique. If the same moving object crosses
the same edge at different time intervals [t1, t2] and [t3, t4], we consider them as
different moving objects. These duplicated moving objects are defined as moving
object instances in Theorem 4. Consider the 10 steps of the searching algorithm
above. Step (1) requires O(log2w) time. Steps (2), (3) and (4) take O(log2 gi)
time to reach a leaf. Steps (5), (7), (8) and (9) take O(1) time, and report
the k lines intersecting Q3. If k′ lines intersect AD, steps (5) and (6) require
O(k′) time to report them. If k′′ lines intersect DC, steps (9) and (10) require
O(k′′) time to report them. Therefore, the total required time for searching is
O(log2(w) + log2 gi +k′+k′′)= O(log2(gi) +ki) since w ≤ gi, and k′+k′′ ≤ ki.�

5.2 Searching on a graph strip tree

We assume that there are n object instances moving on |E| edges of a graph
over a time domain [0, T ]. Combining these assumptions with Theorem 2 leads
to the following theorem:

Theorem 4 There exists a data structure indexing objects moving on a graph
that answers a Q2 query in time O(log2 |E|+ |L| log2( n

|L| )+k), for k the number
of moving object instances in range, and |L| the number of edges on the graph
intersecting Q2.

Proof. Searching for moving objects intersecting a query rectangle Q2 and a
time interval [t1, t2] starts from the root of the strip tree, and returns a list L of
edges intersecting Q2. This searching requires O(log2 |E|) time since we assume
a constant number of segments defining an edge, thus, a single strip tree needs
O(1) storage space and O(1) time for searching.

As we assume a constant number of segments define an edge, a query Q2 on
an edge is transformed to a constant number of Q3 queries on the same edge.
Performing a Q2 query or a constant number of queries Q3 on each of the |L|
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ordered polyline trees requires O(log2(gi) + ki) time (Theorem 3), where ki is
the number of lines representing moving object instances in range in Ti.

The search time of |L| edges in the Ti trees isO(
∑|L|

i=1(log2(gi)+ki) =O(log2(g1)+
log2(g2)+...+log2(g|L|))+k) =O(log2(g1×g2×...×g|L|)+k), where k=

∑L
i=1(ki)

is the total number of moving object instances in range.
According to the AM-GM inequality rule [11], |L|

√
g1 × g2 × ...× g|L| ≤

g1+g2+...+g|L|
|L| ≤ g1+g2+...+g|E|

|L| = n
|L| , where |L| ≤ |E|, or (g1×g2×...×g|L|) ≤

( n
|L| )

|L|. Therefore, log2(g1×g2× ...×g|L|) ≤ log2(( n
|L| )

|L|) = |L| log2( n
|L| ). Thus,

the search time of |L| edges is O(|L| log2( n
|L| ) + k). Combining with the time to

search the strip trees O(log2 |E| + |L|), the time to search the graph strip tree
is O(log2 |E|+ |L|+ |L| log2( n

|L| ) + k), or O(log2 |E|+ |L| log2( n
|L| ) + k). �

If the number of moving object instances is much greater than the number
of edges on the graph (i.e., n� |E|), we expect the search time to be dominated
by the time O(|L| log2( n

|L| ) + k) to search |L| ordered polyline trees. Note that
in the worst case, n moving object instances fall on a single graph edge ei,
and the spatial query intersects ei. If these n moving objects happen to be
uniformly distributed among the |E| edges, the query time becomes O(log2 |E|+
|L| log2( n

|E| ) + k).

6 Conclusion

We present a new data structure for efficient search of objects moving on a graph.
The underlying graph can be non-planar. Our data structure is a combination of
strip trees and ordered polyline trees. Strip trees are used for spatial indexing of
the graph edges. Each strip tree at leaf level represents a polyline corresponding
to a road or road segment in a road network. Ordered polyline trees are used to
index the trajectories of moving objects on one of the graph edges.

Unlike previous data structures using rectangles to represent moving objects,
we use bounded lines. The main advantage of our data structure is that it can
answer a rectangle R plus time interval [t1, t2] query in an output sensitive fash-
ion in expected time logarithmic in n. There are some other advantages for our
data structure. First, the strip trees index the graph geometry, and the ordered
polyline trees index bounded lines representing moving objects are independent.
One can update the ordered polyline trees without changing the strip tree, or
update a strip tree when an edge geometry changes, without affecting other edge
strip trees. Second, since moving objects on a graph edge belong to a strip tree,
we can easily answer queries which count moving objects on a single edge. For
example, we can count how many vehicles move on a specific road at a specific
time or during a specific time interval.

An open problem is how to efficiently index moving object instances to
achieve an I/O-efficient worst case optimal search complexity.
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