
�����������	AB�C�DE��F�D�������	AB

��D�ED�E��DB�E����B�������C������B���

��

����������B���� ��C�B�����!��!�����"��#�����B

������������	ABCDBE�F�������

$D�A%����F�&���A�����������

'��(��B�����F�)���	�A�B����

$��E���������)	��*+	�,-+

&D�DED

�����.�/,012�3,+�3,11

$D4.�/,012�3,+�+,11

*�D�%.�F�B5A����D

����.66�����B�A����D

mailto:fcs@unb.ca
http://www.cs.unb.ca/

D
R
A
F
T

Abstract

Having multiple talkers on a bus system rises the bandwidth on

this bus. To monitor the communication on a bus, tools that con-

stantly read the bus are needed. This report shows an implementation

of a monitoring system for the CAN bus utilizing the Altera DE2 de-

velopment board. The Biomedical Institute of the University of New

Brunswick is currently developing together with different partners a

prosthetic limb device, the UNB hand. Communication in this device

is done via two CAN buses, which operate at a bit-rate of 1 Mbit/s.

The developed monitoring system has been completely designed in Ver-

ilog HDL. It monitors the CAN bus in real-time and allows monitoring

of different modules as well as of the overall load. The calculated data

is displayed on the built-in LCD and also transmitted via UART to a

PC. A sample receiver programmed in C is also given. The evaluation

of this system has been done by using the Microchip CAN Bus Ana-

lyzer Tool connected to the GPIO port of the development board that

simulates CAN communication.

ii

D
R
A
F
T

CONTENTS

Contents

1 Introduction and Motivation 1

2 Basics 3

2.1 FPGA . 3

2.2 HDL . 6

2.3 IP Cores . 8

2.4 CAN Bus . 9

2.5 Real-time . 15

2.6 Floating Point Numbers Representation 15

2.7 UART . 17

3 Related Work 19

3.1 Bus Monitoring . 19

3.2 Existing IP Cores . 20

3.3 Problem Formulation . 21

4 Design 23

4.1 Requirements . 23

4.2 Design Decisions . 24

4.2.1 Hardware . 24

4.2.2 Software . 26

5 Implementation 29

5.1 Usage of IP Cores . 29

5.2 Architecture . 33

5.2.1 Overview . 33

5.2.2 CAN Driver . 34

5.2.3 Load Calculation . 36

5.2.4 Output Conversion . 38

5.2.5 Display Module . 40

5.2.6 UART Module . 41

5.2.7 PC Client . 44

5.3 Interaction of the Modules . 45

iii

D
R
A
F
T

CONTENTS

6 Evaluation 49

6.1 Approach . 49

6.2 Output Module . 49

6.2.1 Verification of the LCD 49

6.2.2 Verification of the UART Module 50

6.2.3 Verification of the Floating Point Division 52

6.3 Monitor Module . 52

6.3.1 Verification of the CAN Driver 52

6.3.2 Verification of the Load Calculation Module 54

6.4 Results . 55

7 Conclusion and Outlook 59

A Appendix 62

A.1 Data Frames on the CAN Bus 62

A.2 Opening the UART Port in C++ 64

A.3 The Selftest Module . 65

A.4 Groups of Messages Used for the Evaluation 67

B Declaration of Authorship 72

iv

D
R
A
F
T

LIST OF FIGURES

List of Figures

1.1 The UNB Hand . 2

2.1 Programming Technologies for FPGAs and PLDs 4

2.2 Basic Layout of a Logic Block 5

2.3 The Interconnection of Logic Blocks in an FPGA 5

2.4 Different Layers of Abstraction in an HDL 6

2.5 Simple HDL-based FPGA Flow 7

2.6 Comparison of Verilog and VHDL with Advantages and Dis-

advantages . 8

2.7 Integration of IP into an FPGA Design 9

2.8 The Interconnection of the 7 Layers of the ISO OSI Reference

Model . 10

2.9 The Control Flow for the Transmission of a Frame on the

example of an Ethernet Connection 12

2.10 Bit Timing on the CAN Bus 16

2.11 Transmission of a Byte . 18

3.1 The Front Page of the IP Store in the Altera Quartus II PLD

Design Software . 20

4.1 The Altera DE2 Development and Education Board 24

4.2 The Microchip CAN BUS Analyzer Tool 25

4.3 The Wiring of the FTDI TTL-232R-3V3 Cable 26

4.4 A Snippet of the Microchip CAN BUS Analyzer Tool Software 27

5.1 The LCD Instance in the RTL Viewer 30

5.2 The UART Module Instance in the RTL Viewer 32

5.3 The Floating Point Division Module Instance in the RTL Viewer 32

5.4 The State Machine for the CAN Driver 35

5.5 The CAN Driver Instance in the RTL Viewer 36

5.6 The State Machine for the Load Calculation Algorithm . . . 38

5.7 The Conversion of an Integer Value into the IEEE754 Format 40

5.8 The Basic Layout of the PC Client 46

5.9 An UML-like Class Diagram for the Interaction of the Moni-

tor and Output Part . 46

v

D
R
A
F
T

LIST OF FIGURES

5.10 An UML-like class diagram for the Interaction Inside the

Monitor Part . 47

5.11 An UML-like Class Diagram for the Interaction Inside the

Output Part . 47

6.1 The Output on the LCD . 56

6.2 The Output on the PC . 57

A.1 A Standard Data Frame on the CAN Bus 62

A.2 An Extended Data Frame on the CAN Bus 63

vi

D
R
A
F
T

LIST OF TABLES

List of Tables

1 Comparison of Different Programming Technologies on FPGAs 4

2 The Truth Table for the Logical AND Operator 11

3 The First Group of CAN Messages Used for the Evaluation . 56

4 The Second Group of CAN Messages Used for the Evaluation 67

5 The Third Group of CAN Messages Used for the Evaluation . 67

6 The Fourth Group of CAN Messages Used for the Evaluation 68

vii

D
R
A
F
T

LIST OF ACRONYMS

List of Acronyms

ASIC Application-Specific Integrated Circuit

CAN Controller Area Network

CPLD Complex PLD

CRC Cyclic Redundancy Check

CSMA/CD Carrier Sense Multiple Access with Collision Detection

DSP Digital Signal Processing

EDA Electronic Design Automation

EEPROM Electrically Erasable Programmable ROM

FPGA Field Programmable Gate Array

FSM Finite State Machine

GPIO General Purpose Input/Output

HDL Hardware Description Language

IC Integrated Circuit

IEEE Institute of Electrical and Electronics Engineers

IP Intellectual Property

ISO International Organisation for Standardization

JTAG Joint Test Action Group

LCD Liquid Crystal Display

LED Light Emitting Diode

LUT Lookup Table

PLD Programmable Logic Device

viii

D
R
A
F
T

LIST OF ACRONYMS

RAM Random Access Memory

ROM Read-Only Memory

RTL Register Transfer Level

SPLD Simple PLD

SRAM Static RAM

UART Universal Asynchronous Receiver / Transmitter

VHDL VHSIC Hardware Description Language

VHSIC Very High Speed Integrated Circuit

ix

D
R
A
F
T

1 Introduction and Motivation

The UNB hand is an anthropomorphic prosthetic device developed by the

Institute of Biomedical Engineering and the Applied Nanotechnology Lab

at the University of New Brunswick, the thin film research group at the

University de Moncton and the Biomechatronics Development Lab at the

Rehabilitation Institute of Chicago. It is funded by the Atlantic Canada Op-

portunities Agency. The hand itself features a movable thumb and fingers.

It comes in different sizes for either a left hand or right hand configuration

and is capable of performing different grasp patterns and wrist motions.

Built up out of three components, the hand features a three-motor mechan-

ical hand and control system, the glove as a cover for the hand, which also

shields the interior, and the sensors that measure pressure, to make sure

that the hand does not put too much pressure on the object, e.g. on a glass

or an egg. An actual image of the hand can be seen in Figure 1.1.

The hand itself utilizes two CAN buses to pass messages along, one bus for

the sensors and one for the actuators. On top of the CAN bus the newly pro-

posed Prosthetic Device Communication Protocol (PDCP) has been placed,

which operates mainly on layer 3 in the ISO OSI reference model. As CAN

is the underlying communication system it has a maximum throughput of 1

Mbps. Logging and filtering of the messages is done with an FPGA. Debug-

ging and decoding is mostly done with CAN analyzer tools, but they lack

either the possibility to decode data captures in real-time or the possibility

to monitor load that each module puts on the bus. Furthermore both buses

are running almost at its limit of bandwidth.

To be able to detect what module puts how much load on the bus and

to be able to see the traffic in real-time a new tool is proposed. This tool

needs to be able to constantly monitor the bus without interfering commu-

nication on it while dynamically monitoring all the modules that are talking

on the bus. For every module the load that it puts on the bus will be cal-

culated and then displayed. Furthermore also the overall load is of interest;

the ability to see, when the bus is actually running near its limit.

1

D
R
A
F
T

This report is structured as follows: in Chapter 2 the fundamental knowl-

edge to understand this report is given. This includes an introduction to

FPGAs, HDLs, IP cores, the CAN bus, the term real-time, the digital repre-

sentation of floating point numbers, and UART. Chapter 3 deals with other

research that has been conducted on the field of bus monitoring, not only

limited to FPGAs. The design of the HDL model that has been created dur-

ing this work is introduced in Chapter 4 and starts with the requirements.

After that the specification of this solution is given, as well as the design

decisions that have been made during the development stage. The following

chapter, Chapter 5, describes the tools that have been used and explains

in detail what has been done in order to achieve the desired goal. As the

implementation has to be evaluated Chapter 6 shows how the whole HDL

model has been tested. This report ends with the conclusion and outlook

in Chapter 7 where also is explained what is left to do. Bigger Figures that

influence the reading flow, as well as bigger code excerpts, appear in the

appendix.

Figure 1.1: The UNB Hand [1].

2

D
R
A
F
T

2 Basics

2.1 FPGA

Maxfield describes in [2] a Field Programmable Gate Array (FPGA) as a

digital integrated circuit (IC) which “contains configurable (programmable)

blocks of logic along with configurable interconnects between these blocks”

(p. 1). Besides FPGAs there is a big variety of digital ICs, ranging from mi-

croprocessors to programmable logic devices (PLDs), to application-specific

integrated circuits (ASICs) and FPGAs. In the mid-1980s FPGAs have

been primarily used to implement glue logic, which is some small logic that

is used to connect two large logical blocks together [2]. Today FPGAs are

used for a variety of tasks, which include [2]:

• ASIC functionality

• Digital Signal Processing (DSP)

• Microcontroller functionality

• Physical layer communication

• Reconfigurable computing

Creating an ASIC has two big negative points, first the logic that has been

implemented cannot be changed after the creation and second ASICs are

very expensive, as ASIC vendors do not sell single ASICs but large amounts.

FPGAs can be used to implement the same designs that are running on an

ASIC. DSP has been done using dedicated microprocessors, so called digital

signal processors. But FPGAs can also contain embedded multipliers and

accumulators and with the parallelism of an FPGA it can outperform tradi-

tional DSP chips by a factor of 500 or more [2]. Due to the large capacity of

logic gates, FPGAs are also capable of running soft processor cores, which

is a processor that has been realized using logic gates. Thus also embedded

microcontroller applications are suitable for an FPGA. The ability of hard-

ware accelerating software algorithms with an FPGA leads to reconfigurable

computing, as e.g. it is possible with an FPGA to have hardware encryp-

tion.

3

D
R
A
F
T

2.1 FPGA

Feature SRAM Antifuse EEPROM / FLASH

Technology node State-of-the-art One or more genera-

tions behind

One or more genera-

tions behind

Reprogrammable Yes (in system) No Yes (in system or of-

fline)

Reprogramming

speed

Fast — 3x slower than

SRAM

Good for prototyp-

ing

Yes (very good) No Yes (reasonable)

Power consumption Medium Low Medium

Table 1: Comparison of different programming technologies on FPGAs [2].

Figure 2.1: Programming technologies for FPGAs and PLDs [2].

There are different programming technologies available for FPGAs and PLDs,

as Figure 2.1 shows. PLDs can be divided into Simple PLDs (SPLDs) and

Complex PLDs (CPLDs). The difference between them is the amount of

logic gates available. For FPGAs either SRAM, anti-fuses, or EEPROM

/ FLASH is used, the advantages and disadvantages of them are shown in

Table 1.

Logic blocks are named differently by each vendor. The biggest two vendors

are Xilinx and Altera. Xilinx calls them Logic Cells (LCs), whereas Altera

calls them Logic Elements (LEs) [2]. Each logic block contains a lookup ta-

4

D
R
A
F
T

2.1 FPGA

ble (LUT), which is triggered by a different amount of inputs, a multiplexer

and a D-FlipFlop, as can be seen in Figure 2.2.

Figure 2.2: Basic layout of a logic block [2].

All logic blocks are arranged in a two-dimensional N ×M matrix. Each of

the logic blocks is connected with an interconnect to its four direct neigh-

bours, namely the one above, below, to the left, and to the right of it. The

interconnections can be disabled and enabled as wanted and interconnects

are interconnected to other interconnects. Thus it is possible for one logic

block to communicate with other logic blocks that are not its direct neigh-

bours. Figure 2.3 shows this.

Figure 2.3: The interconnection of logic blocks in an FPGA [2].

5

D
R
A
F
T

2.2 HDL

2.2 HDL

To be able to program an FPGA a hardware description language (HDL) is

needed. While there are numerous languages available VHDL and Verilog

are the most widely used ones. An HDL can be used to, as the name implies,

describe hardware. In an HDL the term hardware “refers only to the elec-

tronic portions (components and wires) of ICs and printed circuit boards”

[2]. In the beginning of electronics, most vendors who created electronic

design automation (EDA) tools also created their own HDLs, some of them

being analog HDLs, others digital [2].

Figure 2.4: Different layers of abstraction in an HDL [2].

In digital designs the functionality is represented in different layers of ab-

straction, as Figure 2.4 shows. As can be seen, the lowest layer, the struc-

tural layer, is made up of the gates and switches, which might also be ad-

dressed in an HDL. The middle layer, the functional layer, contains the

register transfer level (RTL) representations, as well as boolean logic. RTL

covers a “multitude of manifestations, [...] [the] concept is to consider a de-

sign formed from a collection of registers linked by combinational logic” [2].

The highest layer, the behavioural or algorithmic layer, consists of loops and

processes, which might be needed to describe a design. This also includes

algorithmic elements, like adders and multipliers.

6

D
R
A
F
T

2.2 HDL

The HDL-based FPGA flow from the RTL layer of abstraction to the finished

HDL model can be seen in Figure 2.5. The RTL representation is converted

to a gate-level netlist by the synthesis tool. Meanwhile the logic simulator

verifies the RTL functionality. The gate-level netlist is a functional verifica-

tion from the logic simulator and is mapped, packed, and placed-and-routed

to the final HDL model.

Figure 2.5: Simple HDL-based FPGA flow [2]

VHDL and Verilog are the most popular HDLs. Verilog was created in

the mid-1980s by Phil Moorby. In 1985 his company, Gateway Design Au-

tomation, released the language to the market as well as the logic simulator

Verilog-XL [2]. Verilog is able to work on all three layers of the layer of

abstraction model introduced before.

VHDL on the other hand was also released in 1985, as in 1980 “the US

Department of Defense launched the very high speed integrated circuit (VH-

SIC) program, whose primary objective was to advance the state of the art

in digital IC technology” [2]. Out of this program in 1981 the VHSIC HDL

(VHDL) project was established. VHDL is strong on the functional layer,

but rather weak in the structural layer [2]. Furthermore it also supports

7

D
R
A
F
T

2.3 IP Cores

some system-level design constructs. Figure 2.6 shows a comparison of Ver-

ilog and VHDL with some advantages and disadvantages.

Figure 2.6: Comparison of Verilog and VHDL with advantages and disadvantages [2].

2.3 IP Cores

As FPGA designs can be very big and complex it is impractical to always

start from scratch. Thus reusability of existing parts is needed. This can be

either done by integrating previous implementations into the current HDL

model or by using intellectual property (IP). There are three main sources

for IP:

• Previous designs

• FPGA vendors

• Third-party IP providers

IP can be distributed encrypted or unencrypted, depending on whether the

provider wants the FPGA designer to see the actual implementation. Figure

8

D
R
A
F
T

2.4 CAN Bus

2.7 shows how IP can be integrated into the FPGA design.

Figure 2.7: Integration of IP into an FPGA design, (a) unencrypted, (b) encrypted at

the unplaced-and-unrouted netlist level, and (c) encrypted at the placed-

and-routed netlist level [2].

If the vendor delivers the IP unencrypted the FPGA designer can directly

integrate the RTL into their code, as seen in Figure 2.7 (a). The most

common part for designers to purchase IP is at the encrypted and unplaced-

and-unrouted netlist level, they can be integrated into the FPGA design as

seen in Figure 2.7 (b) [2]. Sometimes only placed-and-routed netlist IPs are

available. They are integrated at the same part in the FPGA design as the

unplaced-and-unrouted netlists (Figure 2.7 (c)).

2.4 CAN Bus

The Controller Area Network (CAN) bus was an internal project from Bosch,

whose development started in 1983 and was officially introduced in 1986. In

9

D
R
A
F
T

2.4 CAN Bus

1987 the first CAN controller chips were released by Intel and Philips Semi-

conductors. Bosch released the updated specification 2.0 in 1991 [3].

The primary goal of the CAN project was to make automobiles “more re-

liable, safe and fuel-efficient, while decreasing wiring harness weight and

complexity” [4]. The first automotive manufacturer that adopted the CAN

bus technology has been Mercedes in the 1991 released S-class, other manu-

facturers were then following, including Volvo, Saab, BMW, and Volkswagen

[5]. By 2004 there were at least “50 different microprocessor families with

on-chip CAN capability” [5]. By 2007 almost every new car sold in Eu-

rope had at least one CAN bus onboard and by 2008 the US Environmental

Protection Agency mandated that every newly built car or truck has to be

equipped with a CAN bus for on-board diagnostics [5].

The ISO OSI Reference Model as proposed in [6] has a layered approach

for system implementation. The model itself is divided into seven layers:

Physical, Data Link, Network, Transport, Session, Presentation, and Ap-

plication. The interconnection of these layers can be seen in Figure 2.8.

The CAN bus implements most of the two bottom layers, namely the Phys-

Figure 2.8: The interconnection of the 7 layers of the ISO OSI Reference Model [6]

ical Layer and the Data Link Layer. The specification of the transmission

medium was left out on purpose to allow system designers to use their own

medium for transmission [4].

10

D
R
A
F
T

2.4 CAN Bus

AND 0 1

0 0 0

1 0 1

Table 2: The truth table for the logical AND operator.

As communication on a bus can always result in multiple nodes trying to

access and write on the bus at the same time and therefore cause a collision,

a protocol is needed to avoid this unwanted behaviour. Therefore the CAN

bus makes use of the Carrier Sense Multiple Access with Collision Detection

(CSMA/CD) protocol [4], as originally defined in the IEEE 802.3 standard,

which handles Ethernet communication as well as the CSMA/CD protocol

for collision detection [7]. The control flow for the transmission of a frame

on the example of an ethernet connection can be seen in Figure 2.9.

The transmission of bits on the bus is based on dominant and recessive bits

which are connected with the logical AND operator. A dominant bit is the

logical 0 and a recessive bit is the logical 1. Table 2 shows the truth table

for the logical AND operator, which shows why 0 is the dominant bit and

1 the recessive bit. When there is no communication on the bus a constant

stream of recessive bits is sent.

The CAN bus is a message-based protocol, which means that messages con-

tain an identifier, which also serves as the priority, as well as the data itself

[4]. All nodes connected to the CAN bus receive all messages and the nodes

themselves have to decide whether to keep the message for further process-

ing or not. There are four different types of messages defined in the CAN

protocol:

• Data Frame

• Remote Frame

• Error Frame

11

D
R
A
F
T

2.4 CAN Bus

Figure 2.9: The control flow for the transmission of a frame on the example of an ethernet

connection [7].

12

D
R
A
F
T

2.4 CAN Bus

• Overload Frame

Every frame starts with the “Start of Frame” bit, which is a dominant bit,

to signal the nodes that a new frame is being sent. The data frame is the

most important frame. After the “Start of Frame” field the “Arbitration

Field” is sent, which consists of 12 bits, where the first 11 bits are the

identifier in least significant bit (LSB) endianness and the last bit is the

“Remote Transmit Request” (RTR) bit, which is set if a node is requesting

another node to transmit. If this bit is set, the frame is a remote frame.

After the “Arbitration Field” the “Control Field” is sent. The first bit is

the “Identifier Extension Bit” (IDE), which is set to a recessive bit if the

node ID needs more than 11 bits. If the IDE is set, the RTR bit also has to

be set to the dominant bit and serves as the “Substitute Remote Request”

(SRR) bit. The RTR bit will follow then after the “Extended Identifier”.

The whole frame then will be an extended data frame. In the data frame the

bit after the IDE is a reserved bit (RB0) and has to be sent dominant, but

also recessive is accepted. The last 4 bits of the “Control Field” make up

the “Data Length Code” (DLC) in which is stored how many byte data will

be sent. Values of 0 to 8 describe the corresponding bytes of data and values

greater than 8 will result in 8 bytes of data. The next 0 to 64 bits then will

make up the “Data Field”. Depending on the DLC, 0 to 64 bits (or 8 bytes)

will be transmitted. After the “Data Field” 16 bits for the “CRC Field” are

following. The first 15 bits make up the Cyclic Redundancy Check (CRC)

bits, which are computed by the CRC-15-CAN algorithm after the following

polynomial:

(2.1) x15 + x14 + x10 + x8 + x7 + x4 + x3 + 1

With this polynomial it is possible to detect, not correct, up to 5 single bit

errors in the “Start of Frame”, “Arbitration Field”, “Control Field”, and

“Data Field”. After the CRC field a one bit delimiter is sent, which has to

be recessive. The next bit is sent dominant, but the receiver has to acknowl-

edge reception by setting it recessive. The following bit is a delimiter for

the acknowledge and has to be sent recessive. The last 7 bits of the CAN

message are the end of frame and have to be sent all recessive ([4], pp. 2 - 7).

13

D
R
A
F
T

2.4 CAN Bus

The extended data frame has between the IDE and the RTR bit 18 ad-

ditional bits for the ID. This makes up a total of 29 bits for the node ID.

After the RTR bit and before the DLC will then follow two reserved bits

(RB1 and RB0), which are dominant. In total an extended data frame can

contain 64 to 128 bits, depending on the DLC and the data that has to be

sent. For the standard data frame the total length is between 44 and 108 bits.

The error frame is used to tell other nodes that an error has occured in

either the CRC, a missing acknowledge, a form error, a bit error, or a stuff

error. The last frame, the overload frame, is used to tell other nodes that

the sending node is currently busy handling new frames [4].

At the end of the transmission of each data or remote frame a so called

“Inter-Frame Space” has to be sent, which consist of three recessive inter-

mission (INT) bits and the recessive bus idle bits. A complete message can

look like this in the hexadecimal system:

00 21 00 20 40 60 80 A0 C0 E1 18 B3 2F F

This message is a data frame, sent from the node with the ID 2, it has a

DLC of 8 and the 8 bytes are: 1, 2, 3, 4, 5, 6, 7, 8. An overview of the data

frame and the extended data frame can be found in the appendix at Figure

A.1 and Figure A.2.

As communication on the bus has to be synchronized and because every

node can have a different clock, bit stuffing has been introduced. Bit stuff-

ing happens between the “Start of Frame” field until the first 15 bits of the

“CRC Field” [4]. After five consecutive bits with the same polarity (either

dominant or recessive) a stuff bit is sent, which is of opposite polarity. This

bit can be discarded for the message but has to be taken into consideration

for synchronisation. Synchronisation happens at every rising or falling edge

in the bit stream.

14

D
R
A
F
T

2.5 Real-time

2.5 Real-time

In [8] Liu and Layland describe a real-time system as a system which is

able to control or monitor equipment at the same time when a new event

occurs. “Each function to be performed has associated with it a set of one

or more tasks. Some of these tasks are executed in response to events in

the equipment controlled or monitored by the computer. The remainder are

executed in response to events in other tasks. None of the tasks may be

executed before the event which requests it occurs. Each of the tasks must

be completed before some fixed time has elapsed following the request for

it” [8]. They differentiate between hard real-time and soft real-time. Hard

real-time has to guarantee that an action is taken in this fixed time span,

whereas in soft real-time it is also possible to calculate with a belated answer.

Applied to the CAN bus introduced in Chapter 2.4 hard real-time has to

be guaranteed. Each bit that is transmitted on the bus has to be read and

interpreted at almost the same time it occurs. If a bit gets sampled too late

the following bit may already have arrived and be read instead. Sampling

too early could possibly result in sampling the non-stable state of the bit

(see Figure 2.10), where the signal is in the process of getting established.

Sampling in this phase is critical as there is a probability of sampling a

dominant bit and a probability of sampling a recessive bit.

Soft real-time does not work for a bus system as reading and interpreting

the bit has to be done exactly at the sample point. If out of a read bit-

stream one bit is interpreted at a later point than all other bits the resulting

bitstream might have switched bits in it.

2.6 Floating Point Numbers Representation

Digital numbers are a mapping of a voltage to the logical states of 1 and

0. The representation of integer numbers is a stream of 0s and 1s in the

binary system. For instance the number 42 in the decimal system is 101010

in the binary system. To show that a number is in the decimal system the

base 10 is added to the number. For the binary system the base 2 is added,

15

D
R
A
F
T

2.6 Floating Point Numbers Representation

Figure 2.10: Bit timing on the CAN bus [9].

hexadecimal usually has a 16 or a H as a base, and octal a 8. If no base for

a number is given then it is assumed that the number is a decimal number.

To be able to represent floating point numbers (such as e.g. 3.141) a differ-

ent approach is needed. Different forms of this representation are handled

in the IEEE 754 norm or in the IEEE 754r norm [10]. The first one handles

the representation of floating point numbers with single (32 bit) and double

(64 bit) precision. The latter one has representations for 16, 32, 64, and 128

bit.

In order to convert a floating point number the number has to be decom-

posed as follows:

(2.2) x = s ∗m ∗ be,

where s is the sign bit, m the mantissa, b the base, and e the exponent. The

first step is to determine the sign bit. If the number is a positive number the

sign bit is 0, else 1. After that the first part of the number up to the comma

is converted into binary, e.g. 510 is 1012. For the part after the comma the

first digit in binary represents 2−1, the second 2−2, etc. Thus a 0.375 in

decimal would be represented as a 011 (0 ∗ 2−1 + 1 ∗ 2−2 + 1 ∗ 2−3). Now

both parts have to be put together with the comma between both parts, e.g.

101,011. Then the comma has to be shifted that there is only one 1 in front

of the comma, in the previous case this would be 1,01011. The part right of

the comma forms up the mantissa, which is in single precision 23 bit. The

16

D
R
A
F
T

2.7 UART

remaining bits of the mantissa are filled up with 0’s (e.g. 0 1011 would be

010 1100 0000 0000 0000 0000). The shift of 2 positions then has to be added

to the exponent. The exponent also contains a bias, in single precision mode

it is a bias of 127. Thus in the previous example the exponent would be 127

+ 2 = 129. Shifting to the left results in addition and shifting to the right in

subtraction. The next step is to convert the exponent into the binary form,

e.g. 12910 is 100000012. The final step is to put everything together after

the following pattern:

(2.3) IEEE754 number = Signbit ◦ Exponent ◦ Mantissa,

where ◦ is the concatenation operation. Thus 5.37510 would be in IEEE754

single precision notation 0100 0000 1010 1100 0000 0000 0000 0000.

To convert a number from IEEE 754 notation into a floating point num-

ber again the following equation is needed:

(2.4) Float = (−1)Signbit∗(1+
22∑

i=0

(Mantissa[22-i]∗2−(i+1)))∗2Exponent - 127,

where Signbit is the first bit of the IEEE 754 number, Exponent the follow-

ing 8 bits, and Mantissa the remaining 23 bits. The IEEE 754 single preci-

sion number 0100 0000 1010 1100 0000 0000 0000 0000 is segmented as fol-

lows: Signbit = 0, Exponent = 1000 0001, Mantissa = 0101 1000 0000 0000

0000 000. Again, the 127 is the bias. This example would give after inserting

the numbers (−1)0 ∗ (1+ (1 ∗ 2−2)+ (1 ∗ 2−4)+ (1 ∗ 2−5)) ∗ 2129−127 = 5.375,

which is the original number.

2.7 UART

The universal asynchronous receiver and transmitter (UART) is “a circuit

that sends parallel data through a serial line. UARTs are frequently used in

conjunction with the EIA (Electronic Industries Alliance) RS-232 standard,

which specifies the electrical, mechanical, functional, and procedural char-

acteristics of two data communication equipment” [11]. A UART consists of

a transmitter and receiver. The transmitter is “a special shift register that

loads data in parallel and then shifts it out bit by bit at a specific rate” [11].

17

D
R
A
F
T

2.7 UART

The receiver works analogously to the transmitter by shifting data bit by bit

in. The transmission always starts with the start bit, a logical 0, followed by

the data bits and an optional parity bit and ends with stop bits, a sequence

of 1s. Six to eight bits can be sent in one message [11]. The transmission of

a byte can be seen in Figure 2.11.

Figure 2.11: “Transmission of a byte” [11].

In a UART transmission no clock signal is sent, thus receiver and transmitter

have to agree on some parameters in advance. These include:

• Baud rate (e.g. 115,200 bauds)

• Number of data bits

• Number of stop bits

• Whether to use the parity bit or not

A baud is the number of symbols that can be sent in a second. As only one

line is available and only two voltages are sent (either +5V or 0V) one baud

equals one bit. Consequently a baud rate of 115,200 baud equals 115,200

bit/s or 112,5 kBit/s.

18

D
R
A
F
T

3 Related Work

3.1 Bus Monitoring

There has been lots of research done in the field of bus monitoring, not

only limited to the CAN bus. Bochem et al showed in [12] an approach

of monitoring the CAN bus using an Altera DE2 development board and

two different CAN controllers that are connected to the development board.

The design has been done in Verilog using different IP cores.

Kashif et al showed in [13] an implementation of a CAN bus analyzer using

Verilog on Spartan 3E and Vertex 2 Pro FPGAs. They implemented an

8051 microcontroller with external RAM and two Philips SJA1000 stand-

alone CAN controllers. Furthermore they wanted to be able to inject further

data on the bus with their solution.

Li et al showed in [14] a design for monitoring the CAN bus as well. They

utilized for their solution two PCs and a “USB-CAN smart card” [14]. This

embedded device interfaces with two nodes to the CAN bus. Incoming or

outgoing messages are processed by an onboard microcontroller and then

sent to the bus or to the PC, respectively.

Another FPGA based softcore processor implementation on monitoring the

CAN bus has been done by Mostafa et al in [15]. Their system could be

controlled and configured using a RS232 compatible UART block. Further-

more they also provided the ability to inject errors onto the bus.

Using a CPLD to monitor the CAN bus Yang et al showed in [16] their

approach to monitor the CAN bus. The CPLD is used for logic control

and for the redundancy strategy, which interfaces to the CAN bus with two

transceivers. These formatted messages are then passed to an ARM mi-

crocontroller which does further processing of the data. As they are using

their approach on a space robot arm the whole embedded block is shielded

against electromagnetic waves and ions [16]. For their implementation they

used VHDL.

19

D
R
A
F
T

3.2 Existing IP Cores

Other approaches using an FPGA to monitor a system have been shown

by Mendoza-Jasso et al in [17] and by Zamantzas et al in [18] who were

monitoring the Large Hadron Collider’s (LHC) beam loss in CERN in real-

time.

3.2 Existing IP Cores

When designing software or HDL models reusability of existing algorithms

or functions play a big role, so that the engineer does not have to start

completely from scratch. Using HDLs such as Verilog or VHDL this is done

relatively easy, using IP cores, as introduced in Chapter 2.3. Altera provides

for their FPGAs a store with IP ranging from Altera provided IP to vendor

provided IP. Figure 3.1 shows the front page of this store with the topmost

categories in the Altera Quartus II PLD design software, where the user

can select between the different IP. In the IP MegaStore, vendor IP can be

purchased.

Figure 3.1: The front page of the IP store in the Altera Quartus II PLD design software

20

D
R
A
F
T

3.3 Problem Formulation

Relevant for this project were IP for the following devices:

• CAN bus

• Floating point division

• LCD

• UART

Igor Mohor developed his own CAN bus controller in Verilog, called “CAN

Protocol Controller”[19]. The controller utilizes 12,000 logic blocks. Bosch

and CAST, Inc., provide their CAN controllers in the IP MegaStore in Al-

tera Quartus II. This IP has to be licensed in order to use it in a project.

The Bosch CAN controller for instance has a licensing fee of 10,200 Euro

for the first 100,000 CAN products (further information are in [20]).

Most arithmetic operations are already provided by Altera free of charge.

Thus floating point division is also included and the IP is called ALTFP_DIV

[21]. When using this IP the engineer has to specify the precision for the

division, which can be 32 bits, 64 bits, or with single extended precision

ranging from 43 bits to 64 bits. As input it takes besides the clock, two

numbers which already have to be in the correct precision in floating point

notation. The output consequently is also a floating point number.

As the Altera DE2 board is not only a development board but also an

education board implementations for most on-board devices are also given.

This includes the LCD as well as the UART, for receiving and transmitting.

3.3 Problem Formulation

As shown in Chapter 3.1 there are already existing solutions for monitoring

the load on a CAN bus using an FPGA. But almost none of them used a

complete HDL written design but rather using a system on a chip (SoC)

solution with a softcore processor. This has the advantage over microcon-

trollers that everything is directly on the chip, consequently this design is

21

D
R
A
F
T

3.3 Problem Formulation

faster than an implementation on a microcontroller. But they are wasting

a lot of potential of the FPGA with this solution, as having a HDL model

is much faster than using a softcore processor.

It has also been shown that an implementation in Verilog without using

softcore processors exists, but this solution is using an external CAN con-

troller to read and write messages from and to the bus. Thus everything

that is CAN bus based is in the responsibilty of the external CAN controller.

The proposed solution features a HDL model implemented in Verilog that

directly connects to the CAN bus. Therefore it is completely responsible for

handling CAN messages.

22

D
R
A
F
T

4 Design

4.1 Requirements

The requirements for this project are:

• Usage of an FPGA development board

• Design has to be implemented in an HDL

• No softcore processors should be used

• Data should be directly acquired from the CAN bus

• Data acquisition has to happen in real-time

• Load values have to be calculated depending on the maximum through-

put of the CAN bus

• Load values have to be displayed on the board itself

• Load values have to be transmitted to the PC via UART

As shown in Chapter 3.1 there are already existing solutions for monitoring

the CAN bus with an FPGA. Most of them use a softcore processor for their

approach. This project needs to implement an HDL model without using

a softcore processor, to make use of all the advantages of FPGAs over mi-

crocontrollers. Thus the design needs to be implemented in an HDL, which

either has to be Verilog or VHDL.

Furthermore the implementation has to acquire data directly from the CAN

bus without using a dedicated CAN controller. Thus the implementation

needs a driver for the CAN bus as well. As there is no clock on the CAN

bus the driver needs to be able to resynchronize itself. This is possible due

to the bit timing specified in the CAN protocol, as shown in Chapter 2.5.

To achieve this bit synchronization the implementation should be able to

operate in real-time.

After capturing the data from the CAN bus the design needs to interpret the

23

D
R
A
F
T

4.2 Design Decisions

messages in order to calculate the load for the modules as well as the overall

load. As all CAN data frames contain identifier bits the messages can be

interpreted by looking at the ID bits. The calculated load values then need

to be displayed directly on-board depending on the maximum throughput

of the bus. Furthermore the load values also have to be transmitted to the

PC via UART to be able to further process the information on a PC.

4.2 Design Decisions

4.2.1 Hardware

For the development platform the Altera DE2 development and education

board has been chosen. The board features an Altera Cyclone 2 FPGA with

approximately 35,000 logic elements. It can be directly programmed from a

PC via the USB blaster interface. For data display it features a two line 16

character LCD, as well as eight seven-segment LEDs. User input for choos-

ing the module that can be monitored on the built-in display can be either

done by the 18 on-board toggle switches or the four push-button switches.

Via two extension headers additional peripherals can be connected. A pic-

ture of the Altera DE2 development board can be seen in Figure 4.1.

Figure 4.1: The Altera DE2 development and education board [22].

The Microchip CAN BUS Analyzer Tool supports the CAN specification

24

D
R
A
F
T

4.2 Design Decisions

2.0b and can be used in a CAN network for development and debugging

[23]. To establish a network at least two nodes are needed. Furthermore

to be able to directly capture the data from the bus using the CAN BUS

analyzer wires can be directly connected to the device which forward the

CAN signals to an external device. The CAN BUS Analyzer by Microchip

can be seen in Figure 4.2.

Figure 4.2: The Microchip CAN BUS Analyzer Tool [23].

The last hardware device used is the FTDI TTL-232R-3V3 cable, which al-

lows the connection of a PC to an external device using the UART interface.

The one end of the cable is a USB type A plug, the other end features a six

pin header with wires for ground (GND), clear to send (CTS), VCC, trans-

mission (TXD), reception (RXD), and request to send (RTS). The wiring

can be seen in Figure 4.3.

25

D
R
A
F
T

4.2 Design Decisions

Figure 4.3: The wiring of the FTDI TTL-232R-3V3 cable [24]

4.2.2 Software

For the software side the Altera Quartus II design software has been chosen

as this is the best supported design software for Altera FPGAs. The versions

used were Altera Quartus II 10.1sp1 and Altera Quartus II 11, both operat-

ing on a Windows 7 machine with 64 bit. With Quartus II it is possible to

design in either Verilog or VHDL, as well as in other HDLs. In Chapter 2.2

the advantages of Verilog and VHDL is shown. Thus the project will be im-

plemented mostly in Verilog. To be able to send messages on the CAN bus

Microchip provided a tool which is able to command the Microchip CAN

bus analyzer to send and receive messages. The tool can be seen in Figure

4.4. For receiving data over the UART interface to the PC a PC running

Mac OS X 10.7 has been chosen, as it is capable of compiling and running

C programs written for Linux.

The complete architecture of this project will be shown in Chapter 5.2.

Everything was designed top-down, meaning the beginning problems were

divided into smaller problems and these smaller problems then were divided

for as long as they can be divided.

This lead to the project consisting of two big parts: the monitoring part

and the output part. The monitoring part reads the input from the CAN

bus, calculates the load values and stores everything for the output part.

Furthermore the monitor part also consists of the CAN driver. The output

26

D
R
A
F
T

4.2 Design Decisions

Figure 4.4: A snippet of the Microchip CAN Bus Analyzer Tool software.

part takes the calculated values, puts them into relation with the maximum

throughput of the bus and displays the values according to the user selected

module on the built-in LCD of the Altera DE2 board. It also disables the

eight seven-segment LEDs as by default they are set to always on. Fur-

thermore the output part is responsible for transmitting the load values via

UART. The protocol for this will be shown in Chapter 5.2.6.

For the project design decisions include that only the FPGA internal logic

blocks are used for storing the data, as saving data in the on-board SDRAM

would lead to a loss in speed due to the distance of the FPGA to the SDRAM

chip. Thus this project will include an implementation for 32 modules, which

fit in the FPGA internal logic blocks. In Chapter 6.4 it will be shown, that

more modules are also possible. In order to evaluate this project the load

values are sampled once a second. This improves the comparison of the

FPGA calculated values with the correct values, as well as the human read-

ability of the data on the LCD. Furthermore the UART interface will only

27

D
R
A
F
T

4.2 Design Decisions

be used in a one-way direction. This lowers the amount of logic needed for

the FPGA but requires a strict protocol that has to be used on both the

FPGA and PC side.

After the design stage the implementation had to be completed. This has

been achieved using the bottom-up approach, which means that all of the

problems that have been divided during the top-down design were imple-

mented and after their implementation have been connected together. The

next chapter will present IP that has been used and then explain what is

implemented in each module.

28

D
R
A
F
T

5 Implementation

5.1 Usage of IP Cores

For this project only IP from Altera has been used:

• LCD

• UART Transmitter

• Floating Point Division

The reason for using these IP is that they provided the cleanest implemen-

tations found for their corresponding purposes. For the LCD only minor

changes had to be made to make it function correctly. The provided LCD

Verilog code was not able to alter the output on the display once it was set.

It has been modified as follows:

1 always@(posedge iCLK or negedge iRST_N)

2 begin

3 if(! iRST_N)

4 begin

5 [...]

6 end

7 else

8 begin

9 if(LUT_INDEX < LUT_SIZE)

10 begin

11 case(mLCD_ST)

12 0: begin

13 [...]

14 end

15 1: begin

16 [...]

17 end

18 2: begin

19 [...]

20 end

21 3: begin

22 [...]

23 end

24 endcase

29

D
R
A
F
T

5.1 Usage of IP Cores

25 end

26 else

27 LUT_INDEX <= LCD_INTIAL +4;

28 end

29 end

The change that has been done occurs in line 27 of the above code, because

after having reached the end of the display command array there was no

possibility for the driver to go into a command state which accepts new

inputs. Thus the display is put into state LCD_INTIAL+4, which is the com-

mand 9′h080, after having written the last symbol on the display. This state

resets the display. Then the driver can write more text on the display. As

there is constant input from the output module to the LCD the display can

be reset after having written the text. The instance of this module in the

RTL viewer can be seen in Figure 5.1. The modified code takes two input

string with the size of 129 bit, whereas the first bit is only used internally

and does not need to be set. The remaining 128 bist represent each of the

16 symbols on one line of the display.

Figure 5.1: The LCD instance in the RTL viewer.

Altera provided also code for the transmission and reception via the UART

protocol. But only the transmitter has been used for this project. The

whole protocol for transmitting data to the PC is shown in Chapter 5.2.6.

The code contains a baud rate generator, a start bit, eight data bits, and

two stop bits. Following is the code for switching the states:

1 always @(posedge clk)

2 case(state)

3 4’b0000: if(TxD_start) state <= 4’b0100;

30

D
R
A
F
T

5.1 Usage of IP Cores

4 4’b0100: if(BaudTick) state <= 4’b1000; // start

5 4’b1000: if(BaudTick) state <= 4’b1001; // bit 0

6 4’b1001: if(BaudTick) state <= 4’b1010; // bit 1

7 4’b1010: if(BaudTick) state <= 4’b1011; // bit 2

8 4’b1011: if(BaudTick) state <= 4’b1100; // bit 3

9 4’b1100: if(BaudTick) state <= 4’b1101; // bit 4

10 4’b1101: if(BaudTick) state <= 4’b1110; // bit 5

11 4’b1110: if(BaudTick) state <= 4’b1111; // bit 6

12 4’b1111: if(BaudTick) state <= 4’b0001; // bit 7

13 4’b0001: if(BaudTick) state <= 4’b0010; // stop1

14 4’b0010: if(BaudTick) state <= 4’b0000; // stop2

15 default: if(BaudTick) state <= 4’b0000;

16 endcase

The data bits contain a preceding one, whereas the stop bits and the start

bit have a preceding zero. This is needed when wanting to send the data,

as the muxbit depends on the last three bits of the state:

1 reg muxbit;

2 always @(state [2:0] or TxD_data)

3 case(state [2:0])

4 0: muxbit <= TxD_data [0];

5 1: muxbit <= TxD_data [1];

6 2: muxbit <= TxD_data [2];

7 3: muxbit <= TxD_data [3];

8 4: muxbit <= TxD_data [4];

9 5: muxbit <= TxD_data [5];

10 6: muxbit <= TxD_data [6];

11 7: muxbit <= TxD_data [7];

12 endcase

To now be able to distinguish actual data, the muxbit and the fourth bit of

the state are combined by a logical AND operator and the result from this

gets combined by a logical OR with the expression state<4 which is one if

the state number is less than four, else it is zero:

1 always @(posedge clk) TxD <= (state <4) | (state [3] & muxbit);

This results in the start and stop bits to always be a logical one that is sent

on the bus and the data bits being the actual data that have to be sent.

The instance of this module can be seen in Figure 5.2

31

D
R
A
F
T

5.1 Usage of IP Cores

Figure 5.2: The UART module instance in the RTL viewer.

The last IP that has been used is the floating point division called ALTFP_DIV.

This is the only IP where no code was available. In Altera Quartus II a wiz-

ard tool is able to configure this module the way the user requires. This

module is capable of handling single precision, double precision and single

extended precision floating point division. For this project single precision

suffices the purposes of calculating load data. The module takes as the

first input, dataa, the integer load count converted to the IEEE754 single

precision format and as the second input, datab, the maximum load that

can occur on the bus in the given timespan in the IEEE754 single precision

format. For one second the value is 46 23 D7 0AH , as the bus has a bitrate

of 1 Mbit/s which is 220 bit/s. This number has to be divided by 100 to

put this in the percentage interval of [0, 100] and then has to be converted

into the IEEE754 single precision format. The instance of the floating point

division module can be seen in figure 5.3.

Figure 5.3: The floating point division module instance in the RTL viewer.

32

D
R
A
F
T

5.2 Architecture

5.2 Architecture

5.2.1 Overview

The complete project has been divided into two main parts: the monitor

part and the output part. The monitor part itself consists of the CAN bus

driver module and an algorithm for calculating the load data for 32 modules

and the overall load. The CAN driver itself is explained in Chapter 5.2.2,

the algorithm for calculating the load in Chapter 5.2.3.

The bigger part of this project is the output part. It consists of the con-

version of integers to IEEE754 numbers, the division of two floating point

numbers, the conversion of numbers to strings, the LCD driver, the UART

driver and the protocol for sending data over UART. The conversion and

division is discussed in Chapter 5.2.4, the LCD driver in Chapter 5.2.5, the

UART driver in Chapter 5.2.6 and the PC client for receiving data over

UART in Chapter 5.2.7. This chapter concludes with the interaction of all

modules in Chapter 5.3.

For this project the wiring has been done in the assignment editor for the

following pins:

• 18 toggle switches: SW[0] to SW[17]

• 8 seven-segment LEDs: HEXn[0] to HEXn[6], with 0 ≤ n ≤ 7, n ∈ N

• The FPGA clock generator for 50 MHz: CLOCK 50

• The LCD command and data pins: LCD RW, LCD EN, LCD RS,

LCD ON, LCD BLON, LCD DATA[0] to LCD DATA[7]

• The CAN bus wire on GPIO 1: CANbusWire

• The UART TxD Wire on GPIO 0: TxDWire

The ports have been declared as follows:

1 input CLOCK_50;

2 input [17:0] SW;

3 output [6:0] HEX0;

33

D
R
A
F
T

5.2 Architecture

4 output [6:0] HEX1;

5 output [6:0] HEX2;

6 output [6:0] HEX3;

7 output [6:0] HEX4;

8 output [6:0] HEX5;

9 output [6:0] HEX6;

10 output [6:0] HEX7;

11 inout [7:0] LCD_DATA;

12 output LCD_ON;

13 output LCD_BLON;

14 output LCD_RW;

15 output LCD_EN;

16 output LCD_RS;

17 output TxDWire;

18 input CANbusWire;

5.2.2 CAN Driver

The CAN driver has been implemented as a state machine. Every 48 clock

ticks it takes a sample from the bus and after every edge it resynchronizes

itself. The value is 48 because the FPGA clock divided by the bus bitrate is

about 47.68, which, rounded, is 48. The algorithm for calibrating the FPGA

clock to the CAN clock is as follows in pseudocode:

1 if (oldbit != newbit)

2 wait 31 FPGA clock ticks

3 to be between phase 1 and 2

4 reset sample rate and take a sample

As shown in Chapter 2.5 sampling has to occur between phase 1 and 2

which occurs after 31 FPGA clock ticks. The state machine has four states:

interframespace, idle, message transfer and end of message. In the beginning

the state machine starts in the idle state as there might be a transmission in

progress. Thus the first message received might be a wrong message as there

is no possibility to check if the received bits belong to the interframe space,

the message or the bus idle. The state machine is illustrated in Figure 5.4.

As long as the bus is idle it sends logical ones. If a logical zero is received it

sets the first bit of the CAN message accordingly, resets all other variables,

34

D
R
A
F
T

5.2 Architecture

Figure 5.4: The state machine for the CAN driver

and does a state transition from idle to message transfer. In this state the

data is stored for as long as there is no stuff bit or the end of message

detected. The stuff bit gets detected as follows:

1 if (stuffBit != actual read bit && stuffBitCounter > 0)

2 reset stuffBitCounter

3 stuffBit = actual read bit

4 stuffBitCounter ++

5 if (stuffBitCounter == 5 && read bit belongs to

6 bit stuffing area)

7 next bit is a stuff bit and has to be discarded

The bit stuffing area can be determined after the DLC is read. This can

be done after having received 40 bits, because if the message is an extended

data frame the DLC is at a different position than in the standard data

frame. The bit stuffing area can then be calculated like this:

1 if (extended)

2 bit stuffing area = 128 - (39 + DLC * 8 + 15)

3 else

4 bit stuffing area = 128 - (19 + DLC * 8 + 15)

As the message gets filled from bit 127 to bit 0 the 128 has to be subtracted.

The end of message can be determined by a similar algorithm:

1 if (extended)

2 end of message = 64 - (DLC * 8)

3 else

4 end of message = 84 - (DLC * 8)

35

D
R
A
F
T

5.2 Architecture

This calculation is already factored out. Until the end of message is reached

every bit is stored unless it is a stuff bit. If the end of message is reached a

transition from the message transfer state to the end of message state is done.

In this state the output variables are set to the message, as well as the

length of the message. Furthermore a flag signalling that a complete mes-

sage has been received is sent to the main module. Then a transition from

the end of message state to the interframe space state is done. This allows

the main module enough time to capture the message and do the needed

calculation. In the interframe space state the flag for having received a com-

plete message is set to false and three successive logical ones are awaited.

After that the transition to the bus idle state is done. Figure 5.5 shows the

in- and outputs of the CAN driver module.

Figure 5.5: The CAN driver instance in the RTL viewer.

5.2.3 Load Calculation

After capturing messages from the CAN bus they need to be interpreted for

calculating the load values. This is done in a state machine, as there are

four possible situations that can occur when looking at if a new message is

ready and if we have hit the sample rate. Thus there are four situations

that occur and they can be classified as follows:

1. No new message, sample rate not hit

2. No new message, sample rate hit

3. New message, sample rate not hit

4. New message, sample rate hit

36

D
R
A
F
T

5.2 Architecture

The first state is also called the idle state as in this state the program does

not have to do anything, because no new data has arrived and the sample

rate has not been hit. The second state is called the sample state, as no

new data has arrived but the sample rate has been hit. In this state the

program has to generate a freeze of the current values for the module load

and the overall load, as well as to signal that new data is ready to send and

display. Furthermore the program has to reset the working variables. The

freeze and reset is done as follows:

1 // generate a freeze of the current variables

2 overallFreeze = overallLoad;

3 moduleFreeze = load[moduleNumber];

4 for (i = 0; i < 32; i = i + 1)

5 loadFreeze[i] = load[i];

6

7 // reset the variables

8 for (i = 0; i < 32; i = i + 1)

9 load[i] = 32’b0;

10 overallLoad = 32’b0;

The third state occurs when the CAN driver signals that a new message has

been received and if the sample rate has not been hit. This state is called

the update state. In this state the length of the CAN message gets added

to the overall load:

1 overallLoad = overallLoad + messageLength;

Furthermore for being able to add the length of the message to the corre-

sponding module it needs to be checked if an extended data frame has been

received and then the identification pointer needs to be set accordingly:

1 if (extended)

2 loadID = the 29 bits of the ID

3 else

4 loadID = the 11 bits of the ID

After that the value of the module load variable can be set accordingly:

37

D
R
A
F
T

5.2 Architecture

1 load[loadID] += messageLength

The last state occurs if the sample rate has been hit and a new message has

been received by the CAN driver. This state is called the sample and update

state and is a mixture of the second and third state. First the update is

done as described in state three and then the sampling is done as described

in state two. Figure 5.6 shows the complete state machine.

Figure 5.6: The state machine for the load calculation algorithm.

5.2.4 Output Conversion

As stated in the requirements in Chapter 4.1 the solution has to be able to

display its results on both the built-in LCD, as well as on an external PC

screen. As described in Chapter 5.2.3 the HDL model has direct access to

the stored load values, which datatype is similar to that of an integer, with

the exception that only 29 bits are reserved to store the value.

In order to divide this value based on the maximum load a floating point

representation is needed, as not only integer values are the result of a divi-

sion. Before the load values can be passed to this core the values have to be

converted. The following Verilog code shows how this is done:

1 if (inputInteger < 0)

2 outputIEEE754 [31] = 1;

38

D
R
A
F
T

5.2 Architecture

3 else

4 outputIEEE754 [31] = 0;

5 position = 0;

6 for (i = 0; i < 22; i = i + 1)

7 if (inputInteger[i])

8 position = i;

9 exponent = 127 + position;

10 outputIEEE754 [30:23] = exponent;

11 for (i = 0; i < 22; i = i + 1)

12 if (i < position)

13 outputIEEE754 [23 - position + i] =

14 inputInteger[i];

This code directly follows the formula from Equation 2.2 introduced in Chap-

ter 2.6. In line 1 to 4 the sign bit is determined. Lines 5 to 9 determine the

exponent by iterating through the binary representation of the load value

searching for the leftmost 1. This is only possible when converting integer

values. If a floating point number has to be converted the part after the

decimal comma has to be considered, too. The exponent then is the bias

plus the determined position of the leftmost 1. A subtraction of 1 for this

position is not necessary, as the iteration through the number stops right

at the current location of the leftmost 1 and the counting starts from 0.

For instance, the binary number 0011 01002 has its leftmost 1 at position 5

considering the counting from right starting from 0. But it is the 6th number.

The 23 bit mantissa can be determined by using the bits right from the

leftmost 1, e.g. in the above example 0011 01002 would result in the man-

tissa 1010 0000 0000 0000 0000 0002. Lines 11 to 14 show how to iterate

through this selection and copy bitwise these bits into the mantissa.

The floating point division core needs two IEEE754 numbers in input, de-

pending on the configuration in either single precision or double precision

configuration, and delivers as a result another IEEE754 number with the

same precision. As the sampling rate of this HDL model is currently 1 Hz

the denominator d is calculated as follows:

(5.1) d = 1 ∗ 1024 ∗ 1024/1/100.

39

D
R
A
F
T

5.2 Architecture

The first part up to the first division is the conversion of the upper cap of

the CAN bus from Megabit into bit, the 1 is the sampling rate, and the 100

is because the result should be in percent. The whole process can be seen

in Figure 5.7.

Figure 5.7: The conversion of an integer value into the IEEE754 format with the division

of this number with the maximum load in that sampling period.

5.2.5 Display Module

The Altera DE2 board features two different kinds of display options: num-

bers can either be displayed on the eight seven-segment LEDs or on the

LCD, which features two lines with 16 characters each. As the requirement

is to use the LCD, the LEDs have to be turned off first. This is done with

the following Verilog code:

1 oSEG0 = 7’b1111111;

This line is wired to the first seven segment digit and disables it. The

remaining seven digits can be disabled analogously. The LCD driver has

been explained in detail in Chapter 5.1. As an input it expects two 16 byte

strings, which represent the two lines on the display.

For the output on the display this module displays the following base layout,

which gets filled by the conversion module:

1 Overall: , %

2 Mod : , %

The numbers get passed to the conversion module as integer numbers and

get parsed character wise and put into a string. To be able to look at each

digit of the number itself usage of the integer division is made and looking

40

D
R
A
F
T

5.2 Architecture

at the remainder gives the number at that particular position. Following is

the equation for looking digit wise at a number:

(5.2) dp = n/10(p−1)%10,

where d is the digit at position p, n is the integer number that needs to get

passed, and % is the modulo operation. For instance the number 123 would

get parsed into d1 = 123/10(1−1)%10 = 3, which would be the first digit,

d2 = 123/10(2−1)%10 = 2, and the third digit d3 = 123/10(3−1)%10 = 1.

After having found the digit as an integer number from a lookup table the

corresponding string value is selected:

1 case(digit)

2 0: character = "0";

3 1: character = "1";

4 2: character = "2";

5 3: character = "3";

6 4: character = "4";

7 5: character = "5";

8 6: character = "6";

9 7: character = "7";

10 8: character = "8";

11 9: character = "9";

12 endcase;

Preceding zeros of the number are truncated after the conversion. After

conversion the number is displayed on the display with the following code:

1 displayLineString1 [63:8] <= overallString;

2 displayLineString2 [63:8] <= moduleString;

where displayLineStringn (n ∈ {1, 2}) represents the corresponding line

on the display and overallString and moduleString the relative bus load

of the overall load and the module load, respectively.

5.2.6 UART Module

The UART module has been implemented in a one way direction from the

Altera DE2 board to the PC. For sending data the following protocol is

used:

41

D
R
A
F
T

5.2 Architecture

1. Wait for data to ready

2. Send start signal

3. Send the module id number

4. Send the corresponding load

5. Repeat 3 and 4 for all 32 modules

6. Signal that we are sending the overall load

7. Send overall load

8. Set the data ready variable to false

9. Go to 1

To be able to follow this protocol the limitations of the UART core by Altera

has to be taken into consideration. This core is able to only send one byte

at once. The load values as well as the start signal are longer than one byte

and thus have to be split accordingly.

The start signal is 10 0001H , which is (220 + 1), a value which can never be

reached by the calculation part, as the maximum throughput of the CAN

bus is 1 Mbit/s, which is 220 bit/s. The start signal is split into three parts,

making 3 bytes, the first byte sent is 01H , the second 00H and the last byte

is 10H . To split sending values a state machine is used, the following Verilog

code illustrates this:

1 assign sendUART = (state == WRITE) ? 1’b1 : 1’b0;

2 assign transmissionDone = (state == IDLE) ? 1’b1 : 1’b0;

3

4 always@(posedge clock)

5 begin

6 case(state)

7 IDLE:

8 if (dataReady)

9 begin

10 dataStore = dataIn;

11 bytePosition = 0;

42

D
R
A
F
T

5.2 Architecture

12 state = WAIT;

13 end

14

15 WAIT:

16 begin

17 if (! TxDBusy)

18 begin

19 case (bytePosition)

20 0: dataOut = dataStore [31:24];

21 1: dataOut = dataStore [23:16];

22 2: dataOut = dataStore [15:8];

23 3: dataOut = dataStore [7:0];

24 4: state = IDLE;

25 endcase

26 if (bytePosition != 4)

27 state = WRITE;

28 end

29 end

30

31 WRITE:

32 begin

33 bytePosition = bytePosition + 1;

34 state = WAIT;

35 end

36 endcase

37 end

The first assign handles the transmission over UART and is set to a logi-

cal 1 if the state machine is in the write state. When the transmission is

done the state machine goes into the idle state where it waits for new data.

While in the idle state a flag is set to a logical 1 telling the output part

that the UART module is waiting for new input. When sending data the

protocol is to iterate through the four bytes of the data from left to right,

thus sending the bits 32 to 25 at first, then bits 24 to 17, and the remaining

two bytes analogously.

After the start signal has been sent the IDs and the values for the mod-

ules is transmitted. The data is packed as follows:

1 dataToSend = {id , three stuff bits (0), load[id]};

43

D
R
A
F
T

5.2 Architecture

After all 32 module IDs and load values have been sent the overall load is

sent. As the project is capable of sending 32 modules, ranging from 0 to 31,

the ID for the overall load is 32, which has to be read and interpreted by

the PC client to be the value for the overall load. After this has been done

the communication channel is held by setting the data ready flag to false.

The full communication protocol in pseudocode is as follows:

1 always at a rising edge on the FPGA clock

2 if (sample rate is hit)

3 reset all variables needed for communication

4 go to state WAIT

5

6 send -stateMachine:

7 WAIT:

8 protocol -stateMachine:

9 0: data = 00 10 00 01

10 1-32: data = {id , three stuff bits (0), load[id]}

11 33: data = {32, three stuff bits (0), overallLoad}

12 34: set state to IDLE

13 if (protocol is not 34 and communication channel is free)

14 set state to SEND

15

16 SEND:

17 set the protocol -stateMachine to the next stae

18 set the send -stateMachine to WAIT

If all data has been sent there is no communication on the UART channel

until the sample rate has been hit the next time, thus the state is changed

to idle which is an empty state.

5.2.7 PC Client

As a requirement of this project is to be able to receive the load values

on the PC a client that receives values has also been developed. This has

been achieved using C++ and is natively running under Linux and Mac OS.

Windows support is also possible, but Cygwin[25] has to be installed and

configured to make this program run. Furthermore the ncurses library is

used in this program and is needed to make this program run. It can be

installed via the packet manager, which is in Ubuntu Linux aptitude, under

44

D
R
A
F
T

5.3 Interaction of the Modules

Mac OS macports, and under Windows Cygwin.

First the communication port has to be opened. The full code for this

is shown in the appendix in Section A.2. A file descriptor is needed as in an

UNIX environment devices are declared as special files. Under Linux the file

that has to be opened is by default /dev/ttyS0. Mac OS maps the device by

default to /dev/tty.usbserial-FTELTQ86. After the file has been opened

the port has to be configured. The baudrate that has been used is 115,200

Baud/s, the port has been set to read/write with non-blocking communi-

cation, no parity bit, but two stop bits, as defined by the Altera UART core.

The ncurses library has been used as it makes console programming more

comfortable. Thus a layout can be printed to the screen and refreshed with-

out needing to clear the console by hand. Reading from the port can be

done as follows:

1 read(fd , value , 4);

where value has been declared as an unsigned char[4], which has in C++

a length of four bytes [26]. After having read from the communication chan-

nel the same protocol as introduced in Chapter 5.2.6 has to be implemented.

This is done as follows in pseudocode:

1 do forever

2 read four bytes from the UART interface

3 if receivedNumber is (2^20 + 1)

4 startFlagReceived = true

5 if startFlagReceived

6 value[id of receivedNumber] = receivedNumber

7 if 33 4-byte tuples have been received

8 startFlagReceived = false

9 update console with the received values and 33 being

10 the overall load value

The layout of the PC client can be seen in Figure 5.8.

5.3 Interaction of the Modules

The UML-like class diagram in Figure 5.9 shows the interaction of the out-

put and module part. The monitor is fed by the CAN bus wire and the

45

D
R
A
F
T

5.3 Interaction of the Modules

Figure 5.8: The basic layout of the PC client that is able to receive data from the Altera

DE2 board. Only the first six modules are shown for illustration purposes.

Figure 5.9: An UML-like class diagram for the interaction of the output and the monitor

part.

FPGA clock. Both inputs generate a constant bit stream. Internally the

monitor acts as shown in Figure 5.10.

The FPGA clock is handled by the sample rate generator, which generates

a clock of 1 Hz. This sample rate is then passed over to the load calculation

part and to the output part. The CAN driver operates at 50 MHz due to

resynchronization and bit timing. It takes as input besides the FPGA clock

the CAN bus wire. The output is used for the load calculation, which calcu-

lates the overall and module load values. These values are then passed over

to the output part as well.

The output part is illustrated in Figure 5.11. The UART send protocol

needs the calculated load from the monitor part as well as the sample rate

bit, to be able to start its transmission whenever the sample rate has been

46

D
R
A
F
T

5.3 Interaction of the Modules

Figure 5.10: An UML-like class diagram for the interaction of the modules inside the

monitor part.

hit. As an output it delivers data in one byte length which is sent by the

UART core over the UART TxD wire to an external device.

Figure 5.11: An UML-like class diagram for the interaction of the modules inside the

output part.

The calculated load is also used for displaying the values on-board. For

that the calculated load is passed over to the integer to IEEE754 conversion

module which generates a floating point number that is passed over to the

floating point division core. As an additional input the floating point divi-

sion core needs the FPGA clock. The output of this core is then parsed into

a string in the string conversion module. It is then displayed via the LCD

core on the built-in LCD. The seven segment LED driver is only responsible

47

D
R
A
F
T

5.3 Interaction of the Modules

for switching off the built-in seven segment LEDs.

48

D
R
A
F
T

6 Evaluation

6.1 Approach

To be able to evaluate this project each of the subparts have to be evaluated

individually to ensure that they are working correctly. After all of them have

been evaluated the whole project itself can be evaluated.

The first part to be evaluated is the output part as the output is neces-

sary in order to evaluate the internal parts, such as the CAN driver and

the load calculation. Thus the evaluation will start with the LCD and the

UART module. After this the floating point division will be evaluated. This

will also conclude the evaluation of the output part.

The monitor part consists of the CAN driver and the load calculation mod-

ule. Thus at first the CAN driver is evaluated and then the load calculation.

This chapter concludes with an overall evaluation in Chapter 6.4.

6.2 Output Module

6.2.1 Verification of the LCD

As the LCD implementation was made by Altera it has been tested to display

a message at first. The display has been initialized in the project by:

1 display LCDisplay(CLOCK_50 , DLY_RST , displayLineString1 ,

2 displayLineString2 , LCD_DATA , LCD_RW , LCD_EN , LCD_RS);

The displayLineStringn (n ∈ {1, 2}) have been set to a predefined mes-

sage that have been displayed correctly. When wanting to change the mes-

sage after a predefined amount of time the text on the display had not

changed. Thus a modification has been done in Altera’s implementation

to allow the display driver to change the text on the display. This has

been tested by showing a default message which is changed after one sec-

ond. A small implementation, called selftest, has been implemented which

changes messages after one second according to a protocol. The selftest

implementation can be found in the appendix in Chapter A.3. It displays

some information on the LCD and then displays the numbers from zero to

49

D
R
A
F
T

6.2 Output Module

nine. This output can be activated by setting SW17 to on.

The next thing to be evaluated is to display the basic layout on the LCD

with the numbers on it. Thus the numbers needed to be parsed from in-

teger values to string-type values. In order to achieve the correct outputs

different numbers have been hard-coded into the program that needed to

be displayed. This has been achieved in the conversion.v file. After the

output for an integer number was working correctly the module for con-

verting IEEE754 numbers to a string had to be implemented. A couple of

predefined floating point numbers have been calculated according to the al-

gorithm defined in Chapter 2.2 and were hard-coded into the conversion.v

as well.

The conversion from these IEEE754 numbers to strings have altered pre-

cision, as for displaying the numbers on the LCD only two post-decimal

digits are used. Thus only the first ten bits of the mantissa have been taken

into consideration as from that point on the remaining bits of the mantissa

do not influence the result of the conversion significantly. This precision

alteration lead to an error of approximately 0.002%, which can result in the

second post-decimal place to differ by one from the true number.

6.2.2 Verification of the UART Module

The UART module has been evaluated with a similar approach. At first the

UART module has been instantiated:

1 async_transmitter SendDataViaUART(clock , sendUART , dataOut ,

2 TxDWire , TxDBusy);

The sendUART variable is set to one if the data in the variable dataOut has

to be sent over the UART TXD wire TxDWire. When the TXD wire is busy

the variable TxDBusy will read a one, which means that no data can be sent

right now over the wire. Keeping this in mind the first thing to do was

to send static data to the PC. Thus a predefined number has been set for

dataOut and every second sendUART was set to one with the next FPGA

clock edge disabling sendUART again. This lead to the FPGA sending once

50

D
R
A
F
T

6.2 Output Module

a second this predefined number. The PC client was always listening on the

UART interface and waiting for new data. Every second it received the byte

from the FPGA and displayed its number on the PC screen. In the begin-

ning there were issues with the reception as sporadically the number was

shifted a couple of bits resulting in a constant stream of the wrong number,

as the PC client was not configured correctly. After this has been fixed the

correct number is always received.

The next step was to display changing numbers. Therefore the sending

part was configured to increment the number every second and then send

it to the PC. Thus a numerical sequence was received by the PC. Now the

protocol needed to be tested. Before that can be achieved it was needed

to make sure that a four byte packet was received correctly. Therefore the

data packet was increased to four bytes with a predefined 32 bit message.

This packet has been sent to the PC once a second. The PC client needed

to make sure that it always reads four bytes. Different predefined four byte

packages have been tested to make sure that this was also working.

Finally, the whole UART packaging and sending part could be tested and

evaluated in whole. For this, the whole protocol has been activated, but

the messages that have to be received by the PC were predefined. This was

the overall load as well as the different load values. They have been set to

a constant number to make the comparison of the received number to the

hard-coded number possible. After this the hard-coded numbers have been

removed and the calculated numbers from the calculation part have been

used.

As the LCD was working correctly the received numbers have been com-

pared with the ones displayed on the LCD to make sure that this part was

working as well. The sending currently faces one issue: when sending the

load for the 0th module occasionally the wrong number is received. This is

due to the fact that at least 11 consecutive zeroes are sent, leading to a loss

of synchronisation on either the PC or the FPGA side.

51

D
R
A
F
T

6.3 Monitor Module

6.2.3 Verification of the Floating Point Division

The conversion of numbers into the IEEE754 format has been evaluated in

Chapter 6.2.1. Now the division of these numbers with another IEEE754

number had to be evaluated as well. This has been done using the ALTFP_DIV

core with hard-coded numbers at first. Different IEEE754 representations

have been chosen for the dividend and divisor. The quotient then has been

displayed on the LCD and transmitted via UART to make sure that the

division is working correctly.

After the successful testing of the division of two hard-coded numbers the

divisor has been set to the value needed for the project. This value is

220/100 as the monitor samples the bus once every second. Represented in

the IEEE754 format this number is 0100 0110 0010 0011 1101 0111 0000

10102 or 46 23 D7 0AH . Again hard-coded values have been used for the

dividend to make sure that the quotient is correct. Lastly the module is

given the values calculated from the calculation module.

6.3 Monitor Module

6.3.1 Verification of the CAN Driver

The evaluation of the CAN driver has been the most difficult part, as the

CAN bus features different kinds of messages, as well as different message

lengths, a synchronisation algorithm, and parts with bit stuffing in order

to not lose synchronisation. At first the reception of single bits has been

tested. This was done by constantly reading the input from the CAN bus

wire. After this has been successfully completed the next step was to only

read bits when the Microchip CAN Bus Analyzer Tool puts a new bit on

the bus.

Therefore a sample rate generator has been implemented. To test this gen-

erator a method has been designed to read a continuous stream of 128 bits.

The code for reading a stream of 128 bits in Verilog is as follows:

1 always@(posedge nextBit)

2 begin

52

D
R
A
F
T

6.3 Monitor Module

3 data[counter] = CANMessageBit;

4 if (counter == 128)

5 begin

6 done = 1’b1;

7 counter = 0;

8 end

9 else

10 begin

11 done = 1’b0;

12 counter = counter + 1;

13 end

14 end

Every time a new bit is available on the bus (signalized by nextBit) this

method is triggered. At the next available position it saves the current read

bit CANMessageBit. If 128 bits have been read it signals the monitor part

that a complete message has been received. The monitor then can use this

stream for further processing, which in this evaluation case is to display the

message in hexadecimal on the LCD. Furthermore for this case, messages

consisting only of ones were discarded and the capturing only started when

the start bit was received. This was to make sure that mostly real messages

were captured. The CAN Bus Analyzer Tool was configured to only send

one predefined message to allow the comparison with the message displayed

on the LCD. Furthermore it needed to be taken into consideration for the

comparison that the received messages included the bit stuffing bits. Dif-

ferent messages have been compared to make sure that the implementation

was working correctly. These messages included standard and extended data

frames, various DLC and data bits.

As the evaluation of reading messages from the bus was done the next thing

to evaluate is bit stuffing. The evaluation has been done the same as with-

out bit stuffing. After the implementation of the bit stuffing protocol the

received messages again were displayed on the LCD and compared to the

original sent messages. Again, different messages have been chosen to make

sure that the implementation was capable of receiving different messages

correctly.

53

D
R
A
F
T

6.3 Monitor Module

At last the synchronisation algorithm needed to be evaluated. This was

done in comparison to the implementation without synchronization. With-

out synchronization approximately 20 out of 100 messages were received

incorrectly. This is due to the facts that the FGPA clocks at a much higher

rate than the CAN bus and that the FPGA clock is not a multiple of the

CAN bus clock. This has a result that a resynchronisation needs to be done

at every signal edge on the CAN bus wire. The implemented synchronization

algorithm is not an optimal implementation as it still has messages received

incorrectly. The implemented synchronization lead to approximately 3 out

of 200 messages to be received incorrectly.

6.3.2 Verification of the Load Calculation Module

The calculation of the load has also been evaluated partially. At first an

algorithm that counts the message lengths over time has been implemented:

1 always@(posedge sampleFlag or posedge done)

2 begin

3 if (sampleFlag)

4 begin

5 overallFreeze = overallLoad;

6 overallLoad = 0;

7 end

8

9 if (done)

10 overallLoad = overallLoad + messageLength;

11 end

This implementation counted the length of the messages in the variable

overallLoad whenever a new message is ready. When the sample rate has

been hit it generates a freeze of the current value of the overallLoad in

the variable overallFreeze which is used by the output part to display the

load on the display. For this purpose the CAN Bus Analyzer Tool has been

set to repeatedly send a message over the CAN bus. According to the times

this message has been sent in a second, the length of the message, and the

maximum bits that can be received in a second the relative load could be

calculated by hand and then compared against the value on the LCD.

54

D
R
A
F
T

6.4 Results

The next thing that needed to be evaluated was the calculation of different

module IDs. For this purpose the CAN Bus Analyzer Tool was configured

to send messages with low IDs repeatedly in order to monitor its output on

the LCD. Then the values for the different module IDs have been compared

against the values calculated by hand.

6.4 Results

The last part was to put all evaluated parts together and verify the working

of the HDL model. This has also been done partially at first. The monitor

part has been completely evaluated with the verification of the load calcu-

lation module. For the output part different hard-coded values have been

used for the load values and the overall load value. Then the output module

had to correctly calculate the corresponding relative load, display it on the

LCD and send the raw values via UART to a PC, which had to display the

values correctly.

After this has been achieved the system had been put through an overall

test. The CAN Bus Analyzer Tool has been configured to display different

sets of messages, Tables 3 to 6 show the four different configurations that

have been used for evaluation, with Dn (0 ≤ n ≤ 7, n ∈ N) being the n-th

data byte in the message and an x in the ID field specifies whether it is an ex-

tended ID or not. Tables 4 to 6 can be found in the appendix in Section A.4.

Each of these four message group configurations consist of eleven mes-

sages with either shortest or longest length:

• Standard data frame with zero bytes data, a total of 44 bits

• Standard data frame with eight bytes data, a total of 108 bits

• Extended data frame with zero bytes data, a total of 64 bits

• Extended data frame with eight bytes data, a total of 128 bits

These four different configurations have been chosen to verify the working of

extended identifiers, because the module ID 0x in an extended data frame is

55

D
R
A
F
T

6.4 Results

ID DLC D0 D1 D2 D3 D4 D5 D6 D7 T∆

0x 8 1 2 3 4 5 6 7 8 50

1x 8 9 10 11 12 13 14 15 16 50

2x 8 17 18 19 20 21 22 23 24 50

3x 8 25 26 27 28 29 30 31 32 50

4x 8 33 34 35 36 37 38 39 40 50

5x 8 41 42 43 44 45 46 47 48 50

6x 8 49 50 51 52 53 54 55 56 50

7x 8 57 58 59 60 61 62 63 64 50

8x 8 65 66 67 68 69 70 71 72 50

9x 8 73 74 75 76 77 78 79 80 50

10x 8 81 82 83 84 85 86 87 88 50

Table 3: The first group of CAN messages used for the evaluation. Each message has a

length of 128 bits.

the same as the module id 0 in a standard data frame. Furthermore different

message lengths needed to be verified as well.

To verify that the LCD with the FPGA floating point division and the UART

output with the floating point division on the PC side is working correctly

different messages have been sent and checked for correctness. Figure 6.1

and 6.2 show the same output when sending a constant stream of standard

data frames with the ID 13 and eight bytes of data 50 times a second. The

difference of 0.01% is as discussed in Chapter 6.2.1 due to the rounding in

the IEEE754 conversion part of the output part.

Figure 6.1: The output on the LCD when sending 50 standard data frames a second

with the message ID 13 and eight bytes of data.

56

D
R
A
F
T

6.4 Results

Figure 6.2: The output on the PC console when sending 50 standard data frames a

second with the message ID 13 and eight bytes of data.

The whole project needs about 16,037 logic elements with the ability to

monitor 32 modules simultaneously. Each additional module needs approx-

imately 88 logic elements. Thus a design with the ability to monitor 200

modules needs about 30,821 logic elements, which is compared to the max-

imum amount of available logic elements on the Altera DE2 board 92.79%.

If more modules need to be monitored a different implementation needs to

be chosen that stores the load values in the on-board SDRAM. The SDRAM

57

D
R
A
F
T

6.4 Results

on the Altera DE2 board has a width of eight megabytes. As each additional

module has a width of 21 bits all 219 modules would need 11,010,048 bits of

space, which is 10.5 MB and more than the available space in the SDRAM.

In the SDRAM would fit approximately 399,457 out of the 524,288 modules.

58

D
R
A
F
T

7 Conclusion and Outlook

This report has shown an implementation of a CAN bus monitor on the Al-

tera DE2 platform. It has been completely realized in the Altera Quartus II

design software in Verilog HDL with the use of IP cores for the floating point

division and the transmission of data over UART. The project has been split

into two parts for abstraction, the monitoring part and the output part. The

monitoring part handles the CAN driver and the load calculation, whereas

the output part handles the display driver for the LCD with the conversion

of numbers into strings and into the IEEE754 format, the UART driver and

the transmission protocol for the data to a PC.

The HDL model was designed to monitor 32 modules and stores the data di-

rectly in the FPGA without using the on-board SDRAM, which has mainly

been chosen because of speed issues. It is extensible for up to 200 modules,

that will directly fit into the registers. Any number of modules above 200

need an alternative implementation using the SDRAM, but due to the eight

MB limitation of the SDRAM only 399,457 out of the 524,288 possible mod-

ules can be stored.

Some aspects of this project can be improved by taking a closer look at the

implementation of the synchronization algorithm of the CAN bus driver,

the rounding error on displaying the numbers on the built-in LCD, and the

transmission of the module with the ID zero via UART to a PC. The syn-

chronization algorithm has been implemented with the calculation of the

ticks needed of the FPGA clock to be between phase one and phase two of

the bit timing on the CAN bus. As this project uses only the calculated

number approximately 3 out of 200 messages are received incorrectly. This

number can be tweaked by trying different tick settings for the bit timing

to get a more stable result.

As discussed before only the ten first bits of the mantissa are used for the

conversion of an IEEE754 number into a string. This can be furthermore

tweaked by taking more numbers into consideration for the calculation. The

59

D
R
A
F
T

error as of now is about 0.002%, but the error can be removed with higher

precision. The last part that can be improved is that sometimes due to

the loss of synchronization the transmission via UART of the load value for

the module with the ID zero is erroneous. This can be remedied by either

introducing stuff bits as well or by setting the three bits between the ID and

the load value to a value other than three zeroes.

The developed HDL model has been evaluated using two Microchip CAN

Bus Analyzer Tools, which are capable of sending CAN messages. The ad-

vantage of using these tools is that they have a deterministic behaviour.

This HDL model will be used by the University of New Brunswick for mon-

itoring the communication in their developed prosthetic hand.

The usage of this implementation is not only limited to monitoring the

CAN bus system of the UNB hand, but can also be used on other devices

that utilize a CAN bus. As this project only focus on the raw CAN bus

data it constantly reads CAN messages and only interprets the message IDs

and allocates the load date to the corresponding IDs in the project. This

results in a tool which can be used for monitoring CAN buses no matter

in what application they are used, e.g. in monitoring the bus system in a

car. Furthermore only the receive (RX) wire of the CAN bus is connected

to the FPGA, so that this implementation does not have a big influence on

the working of the CAN bus.

This project can be used for many different applications that use a CAN

bus as the underlying bus system. It can be used for instance in research

when the engineers try to find out what module is causing how much load

on the bus in order to implement further techniques for reducing the bus

load. If a module puts a higher load on the bus than it is supposed to it

might be an indication that this specific module has not been implemented

correctly. Furthermore it can also be used in the industry, e.g. in the auto-

motive industry, to actually look at the bus load during normal operation.

In the automotive industry as well as in other areas it is crucial to not utilize

the whole bandwidth of the bus in order for some high priority messages to

60

D
R
A
F
T

be sent that are time-critical, e.g. the opening signal for the airbag, which

is not allowed to arrive late. Thus the engineers can optimize their system

using this implementation.

61

D
R
A
F
T

A Appendix

A.1 Data Frames on the CAN Bus

Figure A.1: A standard data frame on the CAN bus [4].

62

D
R
A
F
T

A.1 Data Frames on the CAN Bus

Figure A.2: An extended data frame on the CAN bus [4].

63

D
R
A
F
T

A.2 Opening the UART Port in C++

A.2 Opening the UART Port in C++

1 // open the serial port and set to B115200 , no parity bits ,

2 // and 2 stop bits

3 void open_port(char *port){

4 fd = open(port , O_RDWR | O_NOCTTY | O_NONBLOCK);

5

6 // if open is unsucessful

7 if(fd == -1)

8 {

9 printw("ERROR! unable to open %s", port);

10 endwin ();

11 exit(EXIT_FAILURE);

12 }

13 fcntl(fd , F_SETFL , O_ASYNC);

14

15 // structure to store the port settings in

16 struct termios port_settings;

17 tcgetattr(fd , &port_settings);

18

19 // set baud rates

20 cfsetispeed (& port_settings , BAUDRATE);

21 cfsetospeed (& port_settings , BAUDRATE);

22

23 port_settings.c_cflag |= (CLOCAL | CREAD);

24 // set not parity , 2 stop bits , data bits

25 port_settings.c_cflag &= ~PARENB;

26 port_settings.c_cflag |= CSTOPB;

27 port_settings.c_cflag &= ~CSIZE;

28 port_settings.c_cflag |= CS8;

29 port_settings.c_cflag &= ~CRTSCTS;

30 port_settings.c_lflag &= ~(ICANON | ECHO | ISIG);

31 cfmakeraw (& port_settings);

32 // apply the settings to the port

33 tcsetattr(fd , TCSANOW , &port_settings);

34 }

64

D
R
A
F
T

A.3 The Selftest Module

A.3 The Selftest Module

1 always@(posedge sampleRateHit)

2 begin

3 case(state)

4 0, 1, 2, 3:

5 begin

6 testLine1 = "CAN Bus Monitor ";

7 testLine2 = " (c) UNB 2011 ";

8 end

9 4, 5, 6, 7:

10 begin

11 testLine1 = "Connect CAN wire";

12 testLine2 = "to GPIO1_2 blue ";

13 end

14 8, 9, 10, 11:

15 begin

16 testLine1 = "GPIO1_12 black ";

17 testLine2 = "Init selftest ";

18 end

19 12, 13, 14, 15:

20 begin

21 testLine1 = "GPIO0_2 -12(even)";

22 testLine2 = "the UART plug ";

23 end

24 16:

25 begin

26 testLine1 = "0000000000000000";

27 testLine2 = "0000000000000000";

28 end

29 17:

30 begin

31 testLine1 = "1111111111111111";

32 testLine2 = "1111111111111111";

33 end

34 18:

35 begin

36 testLine1 = "2222222222222222";

37 testLine2 = "2222222222222222";

38 end

39 19:

40 begin

65

D
R
A
F
T

A.3 The Selftest Module

41 testLine1 = "3333333333333333";

42 testLine2 = "3333333333333333";

43 end

44 20:

45 begin

46 testLine1 = "4444444444444444";

47 testLine2 = "4444444444444444";

48 end

49 21:

50 begin

51 testLine1 = "5555555555555555";

52 testLine2 = "5555555555555555";

53 end

54 22:

55 begin

56 testLine1 = "6666666666666666";

57 testLine2 = "6666666666666666";

58 end

59 23:

60 begin

61 testLine1 = "7777777777777777";

62 testLine2 = "7777777777777777";

63 end

64 24:

65 begin

66 testLine1 = "8888888888888888";

67 testLine2 = "8888888888888888";

68 end

69 25:

70 begin

71 testLine1 = "9999999999999999";

72 testLine2 = "9999999999999999";

73 end

74 endcase

75 state = state + 1;

76 if (state > 25)

77 finished = 1;

78 end

66

D
R
A
F
T

A.4 Groups of Messages Used for the Evaluation

A.4 Groups of Messages Used for the Evaluation

ID DLC D0 D1 D2 D3 D4 D5 D6 D7 T∆

0x 0 50

1x 0 50

2x 0 50

3x 0 50

4x 0 50

5x 0 50

6x 0 50

7x 0 50

8x 0 50

9x 0 50

10x 0 50

Table 4: The second group of CAN messages used for the evaluation. Each message has

a length of 64 bits.

ID DLC D0 D1 D2 D3 D4 D5 D6 D7 T∆

0 8 1 1 1 1 1 1 1 1 50

1 8 1 1 1 1 1 1 1 1 50

2 8 1 1 1 1 1 1 1 1 50

3 8 1 1 1 1 1 1 1 1 50

4 8 1 1 1 1 1 1 1 1 50

5 8 1 1 1 1 1 1 1 1 50

6 8 1 1 1 1 1 1 1 1 50

7 8 1 1 1 1 1 1 1 1 50

8 8 1 1 1 1 1 1 1 1 50

9 8 1 1 1 1 1 1 1 1 50

10 8 1 1 1 1 1 1 1 1 50

Table 5: The third group of CAN messages used for the evaluation. Each message has a

length of 108 bits.

67

D
R
A
F
T

A.4 Groups of Messages Used for the Evaluation

ID DLC D0 D1 D2 D3 D4 D5 D6 D7 T∆

0 0 50

1 0 50

2 0 50

3 0 50

4 0 50

5 0 50

6 0 50

7 0 50

8 0 50

9 0 50

10 0 50

Table 6: The fourth group of CAN messages used for the evaluation. Each message has

a length of 44 bits.

68

D
R
A
F
T

REFERENCES

References

[1] “http://www.smpp.northwestern.edu/research/biomechatronics/news.html,”

2011.

[2] C. Maxfield, The Design warrior’s guide to FPGAs: Devices, tools and

flows, vol. 1. Elsevier, 2004.

[3] “http://www.can-cia.de/index.php?id=161,” 2011.

[4] K. Pazul, “Controller Area Network (CAN) Basics,” Microchip Tech-

nology Inc. Preliminary DS00713A-page, vol. 1, 1999.

[5] R. I. Davis, A. Burns, R. J. Bril, and J. J. Lukkien, “Controller

Area Network (CAN) schedulability analysis: Refuted, revisited and

revised,” Real-Time Systems, vol. 35, pp. 239–272, Jan. 2007.

[6] H. Zimmermann, “OSI reference modelThe ISO model of architecture

for open systems interconnection,” Communications, IEEE Transac-

tions on, vol. 28, no. 4, pp. 425–432, 1980.

[7] “http://standards.ieee.org/about/get/802/802.3.html,” 2011.

[8] J. W. Liu, C.L.; Layland, “Scheduling Algorithms for Multiprogram-

ming in a Hard- Real-Time Environment Scheduling Algorithms for

Multiprogramming,” Computing, no. 1, pp. 46–61, 1973.

[9] F. Hartwich and A. Bassemir, “The configuration of the CAN Bit Tim-

ing,” in 6th International CAN Conference, pp. 1–10, 1999.

[10] “754-2008 IEEE Standard for Floating-Point Arithmetic,” pp. 1–58,

2011.

[11] P. Chu, “FPGA prototyping by Verilog examples: Xilinx Spartan-3

version,” Interface, pp. 215–234, 2008.

[12] A. Bochem, J. Deschenes, J. Williams, K. B. Kent, and Y. Losier,

“FPGA Design for Monitoring CANbus Traffic in a Prosthetic Limb

Sensor Network,” RSP paper, 2011.

69

D
R
A
F
T

REFERENCES

[13] H. Kashif, G. Bahig, and S. Hammad, “CAN bus analyzer and emu-

lator,” in Design and Test Workshop (IDT), 2009 4th International,

pp. 1–4, IEEE, 2009.

[14] R. Li and C. Liu, “A design for automotive CAN bus monitoring sys-

tem,” Vehicle Power and Propulsion Conference, pp. 1–5, Sept. 2008.

[15] M. Mostafa, M. Shalan, and S. Hammad, “FPGA-Based Low-level CAN

Protocol Testing,” in System-on-Chip for Real-Time Applications, The

6th International Workshop on, pp. 185–188, IEEE, 2006.

[16] J. Yang, T. Zhang, J. Song, H. Sun, G. Shi, and Y. Chen, “Re-

dundant design of A CAN BUS Testing and Communication System

for space robot arm,” in Control, Automation, Robotics and Vision,

2008. ICARCV 2008. 10th International Conference on, no. December,

pp. 1894–1898, IEEE, 2008.

[17] J. Mendozajasso, G. Ornelasvargas, R. Castanedamiranda, E. Ventu-

raramos, a. Zepedagarrido, and G. Herreraruiz, “FPGA-based real-time

remote monitoring system,” Computers and Electronics in Agriculture,

vol. 49, pp. 272–285, Nov. 2005.

[18] C. Zamantzas, B. Dehning, E. Effinger, J. Emery, and G. Ferioli, “An

FPGA Based Implementation for Real-Time Processing of the LHC

Beam Loss Monitoring System’s Data,” 2006 IEEE Nuclear Science

Symposium Conference Record, pp. 950–954, Oct. 2006.

[19] “http://opencores.org/project,can,” 2011.

[20] Bosch, “Automotive Electronics License Conditions - CAN Protocol

License - CAN IP modules for use in FPGAs,” pp. 2–4.

[21] Altera, “Floating-Point Megafunctions User Guide,” Design, no. May,

2011.

[22] “http://www.altera.com/education/univ/materials/boards/de2/unv-

de2-board.html,” 2011.

70

D
R
A
F
T

REFERENCES

[23] “http://www.microchip.com/stellent/idcplg?IdcService=SS GET PAGE&

nodeId=1406&dDocName=en546534,” 2011.

[24] F. T. D. I. Limited, “TTL to USB Serial Converter Range of Cables

Datasheet,” Technology, 2010.

[25] “http://www.cygwin.com/,” 2011.

[26] P. Prinz and T. Crawford, C in a Nutshell. O’Reilly Media, Inc., 2005.

71

D
R
A
F
T

B Declaration of Authorship

I hereby certify that the work presented here is, to the best of my knowl-

edge and belief, original and the result of my own investigations, except as

acknowledged, and has not been submitted, either in part or whole, at this

or any other University.

City, Date, Signature Marcel Dombrowski

72

	Introduction and Motivation
	Basics
	FPGA
	HDL
	IP Cores
	CAN Bus
	Real-time
	Floating Point Numbers Representation
	UART

	Related Work
	Bus Monitoring
	Existing IP Cores
	Problem Formulation

	Design
	Requirements
	Design Decisions
	Hardware
	Software

	Implementation
	Usage of IP Cores
	Architecture
	Overview
	CAN Driver
	Load Calculation
	Output Conversion
	Display Module
	UART Module
	PC Client

	Interaction of the Modules

	Evaluation
	Approach
	Output Module
	Verification of the LCD
	Verification of the UART Module
	Verification of the Floating Point Division

	Monitor Module
	Verification of the CAN Driver
	Verification of the Load Calculation Module

	Results

	Conclusion and Outlook
	Appendix
	Data Frames on the CAN Bus
	Opening the UART Port in C++
	The Selftest Module
	Groups of Messages Used for the Evaluation

	Declaration of Authorship

