
Visualization Support for
FPGA Architecture Exploration

by
K. Nasartschuk, K. B. Kent and R. Herpers

TR 11-213, December 1, 2011

Faculty of Computer Science
University of New Brunswick

Fredericton, NB, E3B 5A3
Canada

Phone: (506) 453-4566
Fax: (506) 453-3566
Email: fcs@unb.ca

http://www.cs.unb.ca

mailto:fcs@unb.ca
http://www.cs.unb.ca/

Abstract

Nowadays Field Programmable Gate Arrays (FPGA) are used in many fields

of research, e.g. to create prototypes of hardware or in applications where

hardware functionality has to be changed more frequently. Boolean circuits,

which can be implemented by FPGAs are the compiled result of hardware

description languages such as Verilog or VHDL. Odin II is a tool, which

supports developers in the research of FPGA based applications and FPGA

architecture exploration by providing a framework for compilation and veri-

fication. In combination with the tools ABC, T-VPACK and VPR, Odin II is

part of a CAD flow, which compiles Verilog source code that targets specific

hardware resources. This paper describes the development of a graphical

user interface as part of Odin II. The goal is to visualize the results of these

tools in order to explore the changing structure during the compilation and

optimization processes, which can be helpful to research new FPGA archi-

tectures and improve the workflow.

ii

CONTENTS

Contents

1 Introduction 1

2 Basics 3

2.1 FPGA . 3

2.1.1 FPGA Introduction and History 3

2.1.2 FPGA Architecutre 5

2.1.3 FPGA Architecture Exploration 9

2.2 GUI Development . 10

2.2.1 General Information 10

2.2.2 QT . 11

3 Related Work 13

3.1 CAD workflow . 13

3.2 Odin II . 14

3.3 VPR5.0 . 15

4 Design 18

4.1 Problem Specification . 18

4.2 Use Cases . 19

4.3 Basic Design . 20

5 Implementation 23

5.1 Software Engineering . 23

5.1.1 Class Structure . 23

5.2 Circuit Explorer Implementation 23

5.2.1 Object Classes . 23

5.2.2 GUI Classes . 29

5.2.3 Functional Classes . 35

6 Evaluation 39

6.1 Use case based evaluation . 39

6.2 Usability Evaluation . 43

7 Conclusion 48

iii

CONTENTS

Bibliography 52

A Appendix 53

B Comparison between BLIF file and Visualization 53

iv

LIST OF FIGURES

List of Figures

2.1 A Conceptual FPGA . 4

2.2 Island-Style FPGA . 4

2.3 FPGA Architecture Exploration Empirical CAD Flow 6

2.4 Hierarchical Routing Based on Three Levels 8

2.5 GUI Application Flow and Classic Batch-processing Applica-

tion in Comparison . 10

3.1 A VPR 5.0 CAD flow . 13

3.2 The Processing Stages in Odin II 14

3.3 VPR Tasks in the CAD Flow 16

4.1 Basic Visualizer Workflow . 18

4.2 Design of Basic Modules in the Visualizer 21

5.1 Class Diagram of the Application 24

5.2 LogicUnit Class UML . 25

5.3 Different Shapes for Inputs and Other Logic Blocks 25

5.4 Wire Class UML . 27

5.5 Different Zoom Level of One Graph 32

5.6 ExplorerScene Class UML . 34

5.7 Container Class UML . 35

5.8 File Handling Work Flow . 36

5.9 The Graphical User Interface Showing a Sample Boolean Cir-

cuit. 38

6.1 Creation times of Logic Blocks during file processing. Each

dot shows the connection count and the creation count of one

of ten test circuits. 43

6.2 Creation times of Connections between Logic Blocks during

file processing. Each dot shows the connection count and the

creation count of one of ten test circuits. 45

B.1 Test case circuit with 10 nodes and 25 connections 54

v

LIST OF TABLES

List of Tables

1 Evaluation of File Processing and Visualization Times 42

2 Use Case Evaluation Summary 44

3 Results of the Think Aloud Tests 47

vi

1 Introduction

Field Programmable Gate Arrays became and become more and more im-

portant during the last decades in different fields of hardware research ar-

eas. Reprogrammable hardware is needed in fields, where requirements often

change and therefore adjustment in the circuits is needed. Usually hardware

functionality is fix after it was produced. FPGAs can be changed at any

point. Another field, where FPGAs are very useful is hardware prototyping.

The possibility to test, debug and evaluate hardware before much money

has to be spend on the production of hundreds or even thousands of devices

is more than useful.

Hardware description languages such as Verilog HDL[1] and VHDL[2] were

developed to describe hardware structures. Development of the languages

is still an ongoing process as the requirements change. FPGA devices need

to be described more in detail as they offer more functionality than original

devices. Programmable structures are fully connected gates, which can be

programmed according to desired functionalities.

So called netlist files are generated by compilers and used to represent the

structure of an FPGA device. These netlists are read by optimization tools

to increase the efficiency of a circuit. The resulting netlists are later used to

evaluate the optimization.

Finding errors and locating them is another difficulty which has to be faced

in the evaluation and development process. Though benchmarks and com-

pilers can provide some information, which is needed in this process, the

main complexity still has to be done by hand. For this, task simulations of

the netlist file on a virtual FPGA device and/or by visual exploration tools

are used.

Odin II is a tool, which supports developers in the research of FPGA based

applications and FPGA architecture exploration by providing a framework

for compilation and verification. In combination with the tools ABC, T-

1

VPACK and VPR, Odin II is part of a CAD flow, which compiles Verilog

source code that targets specific hardware resources.

This report describes the development of a graphical user interface(GUI)

for Odin II, which visualizes netlists, which are produced during the work-

flow Odin II is part of. The visualization aims to improve the productivity

of development, support the evaluation process, improve the work flow and

to help the research of new FPGA architectures.

The paper is divided into seven chapters. Chapter 2 introduces the fields of

FPGA researcg and GUI development to provide an idea of basic structures

and current developments in the fields. The tools, which are related to Odin

II and the workflow it is part of are presented in Chapter 3.

The basic design, the structure of the application and the use cases, which

should be fulfilled by the application are defined in Chapter 4. The im-

plementation of this design, a detailed description of classes and methods

can be found in Chapter 5. In Chapter 6 the current state of the GUI is

evaluated according to the use cases and using a think aloud test.

2

2 Basics

2.1 FPGA

2.1.1 FPGA Introduction and History

During the 1990s the development of hardware became more and more risky

as the production of chips ranged from $20,000 to $200,000[3]. Application

Specific Integrated Circuits(ASICs) needs a lot of time to be produced and

factories to produce a big amount of chips at the same time. The goal of

the hardware industry was to reduce the costs of hardware prototypes and

the time, which passes from programming to testing. A solution for this

problem was to use a technology which was introduced in 1986 by Xilinx

Inc. named ”Field Programmable Gate Arrays (FPGA)”[3][4].

There are two main advantages, which lead to the conclusion, that FPGA

technology is a very good solution for prototyping hardware. At first proto-

types can be produced in small quantities and ”no facility must be tooled to

begin production of a mask-programmed device which incurs a large over-

head cost”[3]. The second reason is that the programming process is finished

within minutes and can be tested, ”whereas mask-programmable devices

must be manufactured by a foundry over a period of weeks or months”[3].

An FPGA is basically a collection of logic blocks on a hardware device, which

can be programmed and connected. There are many different architectures,

which place the logic blocks and possible interconnections. As can be seen

in Figure 2.1 the basic design of an FPGA consists of logic units, intercon-

nection ressources and I/O-cells, which are arranged as a two-dimensional

array. The FPGA design is always ”a trade off in the complexity and flex-

ibility of both the logic blocks and the interconnection resources[3]”. The

most common design is called island-style and consists of evenly distributed

I/O-cells surrounding a basic structure of logic blocks. The main advantage

of this structure is the flexibility, which makes possible, that a single ap-

plication, which is programmed in such a ”design can be used in multiple

products all with different capacity, pin count, package etc[5]”. The struc-

3

2.1 FPGA

ture can also be used in other applications by embedding the design with all

its logic blocks and their interconnections[5]. Figure 2.2 shows an example

for an island-style designed FPGA, which looks very much the same as the

conceptual FPGA in Figure 2.1.

Figure 2.1: A Conceptual FPGA[6]

Figure 2.2: ”Island-Style”[4]

There is a variety of manufacturers which produce FPGAs. The architec-

ture and design differs very much. Logic units on an FPGA differ and can

represent different levels of granularity. Predefined logic blocks are often

embedded on FPGA devices. A more granular logic block is more effective

4

2.1 FPGA

in speed, but less flexible compared to a block with smaller granularity[7].

The first FPGA, which was presented by Xilinx contained ”64 logic block

and 58 inputs and outputs [6]”. Nowadays the size of FPGAs grows every

year and in the year 2007 it contained ”approximately 330,000 equivalent

logic blocks and around 1100 inputs and outputs [6]”. This leads to different

problems. One of the problems is addressed in the next Chapter, which is

the architecture of such a device. Other challenges are the programming

and understanding of processes that happen on such a device.

2.1.2 FPGA Architecutre

There are two main categories of architecture problems in the development

of a FPGA, in which challenges for research in this field can be grouped.

The main groups are Logic Block Architecture and Routing Architecture.

Both contain trade offs which are responsible for results that are achieved

by FPGA devices.

Logic block architecture

Programming of a FPGA, which is mostly done by a program considers

different aspects, which influence the location of different logic blocks. The

main structure of a work flow in this area is shown in Figure 2.3. Benchmark

circuits and the FPGA architecture are used to create a circuit implemen-

tation, which can be measured by the benchmarks itself but also by such

factors as area consumption, speed and power consumption. This is a prac-

tical approach, which is mostly used for logic block architecture purposes.

It can also be done theoretically, but that is more useful and common in

researching routing architectures[6].

Area-efficiency is an important metric on a FPGA as the size of a FPGA is

not only a matter of costs[6], but also gives the maximal distance between

two logic blocks, which could be connected to each other. This has to be

5

2.1 FPGA

Figure 2.3: FPGA ”Architecture Exploration Empirical CAD Flow[6]”

considered when a clock period is determined. Speed is an trade-off on an

FPGA as the amount of higher logic blocks increases as the interconnection

count is lower and functionalities are optimally located[6][3]. The price,

which has to be paid for blocks with higher logic is the flexibility of a device

as all parts remain on a FPGA device even if it is not used. Instead, it

could be a logic block, which could be flexibly programmed. Another issue

in integrating blocks with higher logic is the fact, that delays of blocks are

not unified. A block, which contains a more complex logical structure needs

more time to establish a stable output[6].

The last and most vague trade-off is the power consumption in FPGAs.

Power consumption on a device in general can be divided into ”dynamic

power and static power [6]”. Static power is the power consumption of the

device even if no signals are processed whereas dynamic consumption also

contains the signals during computation.

Routing Architecture

Routing Architecture on a FPGA not only determines the speed of the

user circuit, but also the variety of circuits, which can be implemented on

6

2.1 FPGA

this device. As the trade offs for logic blocks and the amount of intercon-

nections is increasing the costs of the device, it also minimizes the routing

minimization afford.

The main factors, which are determined by the manufacturers in global

routing are the amount of wires, which are placed between the logic blocks

and the amount of switches, which can be programmed to route the inter-

connections[6].

There are different global routing architectures used on devices. Two of

them are hierarchical routing architectures and island style architectures.

Hierarchical routing architecture groups logic blocks, which can be con-

nected to each other at a very low level. Connections between groups are

accomplished on a higher level. Such an architecture is shown in Figure 2.4,

where a hierarchy based on three levels is demonstrated.

Island-Style routing architecture as shown in Figure 2.2 creates a two-dimensional

mesh between logic blocks with switches on the intersections of wires. These

switches can be used to create interconnections between logic blocks. ”Cur-

rently, most commercial SRAM-based FPGA architectures use island-style

architectures[6]”. There are also effords to create an extended island-style

architecture by adding an additional dimension to the wire mesh. This would

allow more connections and decrease the area complexity of an FPGA, but

according to Schmit ”commercial three-dimensional fabrication techniques,

where the transistors are present in multiple planes, do not exist[5].”

7

2.1 FPGA

Figure 2.4: Hierarchical Routing Based on Three Levels[6]

8

2.1 FPGA

2.1.3 FPGA Architecture Exploration

Exploration of FPGA architectures can be done in different ways. There

are methods to explore an architecture based on benchmarks. Those can

be used to assist during the development process. An example for such a

framework is created in [8].

There are also theoretical analysis tools, which explore the architecture to

assist developers as e.g. in [9] in order to find the ”best multiprocessor on

the FPGA for a target application and optimally map the application tasks

and communication links to this micro-architecture”

During the path from a design description in a hardware description lan-

guage such as Verilog to the logic circuit on the FPGA device different tools

perform optimizations and changes, which cannot all be explained in regard-

ing the results. To do so it is useful to see the results of processes between

the computation steps and track their origin. This helps to understand the

functionalities and to find room for improvement. Visual exploration sup-

port has the goal to provide such a tool, which can be used by human users

to navigate in the logical structure, which is also a goal of this project.

There is a variety of exploration tools, which are available on the mar-

ket created by the manufacturers of the devices. Those are for example

Altera[10] or Xilinx[11] for FPGA. Those tools offer benchmarks and visual

exploration tools, which are optimized on the devices. The main problem is,

that they are only for commercial use with the devices they are made for.

Also Open source tools are available, which can be used to simulate and

therefore explore digital designs. Some of them are: Icarus[12], Veriwell[13]

and FreeHDL[14], ”which mainly concentrate on simulation and analysis of

digital designs[15].”

9

2.2 GUI Development

2.2 GUI Development

2.2.1 General Information

Computer applications perform actions or computations, which the user has

ordered them to do. Most of the applications are very specific and users are

capable of using them by entering commands on a command console. The

basic flow of such an application can be seen in Figure 2.5a. It just receives

the input parameters and terminates after results are delivered.

The advantages of such an application is, that no resources are needed

Figure 2.5: GUI Application Flow and Classic Batch-processing Application in

Comparison[16]

in addition to the actual computation, that computations can be performed

automated on servers etc. The disadvantages of classical batch-processing

application is the interaction with a human user. The user has to learn

how to address the program and how to interact with it. To simplify this

process programs with high human contact are offering graphical user inter-

faces(GUI), which encapsulate the complexity of the program into a intuitive

interface.

The structure of such an application differs from a batch application(Figure

10

2.2 GUI Development

2.5) as it adds an event loop, which awaits user commands and passes this

command to the actual program. Such graphical user interfaces can be im-

plemented using different languages and pre-compiled libraries. Some of

them, which were considered in the development of this project are shortly

introduced in this Chapter.

2.2.2 QT

The first public version of Qt(pronounced cute) was published in May 1995[17].

It was developed at the Norwegian Institute of Techonlogy in Trondheim

by two students, Haavard Nord and Eirik Chambe-Eng. The development

began in the late 90s, but was published after the students founded the

company Quasa Technologies, which later became Troll Tech and is known

today as Trolltech[17]. Trolltech is a subsidiary of Nokia.Graphical inter-

faces developed using Qt are ”KDE, the web browser Opera, Google Earth,

Skype, Qtopia and OPIE”[18].

The library consists of modules, which functionality is clear structured and

separated to be able to use only modules, which are needed for a specific

application. Dialogue based and also window based applications are possi-

ble[19].

The library is written in C++ and heavily utilizes on object oriented stan-

dards. Parts of the application implement classes, which already exist in

the library started by the main class QObject and becoming more and more

specific. Some exemplary classes are for example QLine or QPolygon.

Qt consists of 22 modules, which are used for different purposes. The QtGui

module consists of classes, which are used to create graphical user interfaces,

QtCore is a collection of core non-graphical classes, which are used by other

models.

Xml, WevKit, OpenGL, Svg can also be handled using modules, which are

provided by Qt. A full list of modules and an API can be found on the

11

2.2 GUI Development

website of Qt[20].

Development in Qt in the basic version only allows C++, but many projects

created bindings of the library. The reason was mostly to be able to use the

functionalities of Qt in different programming languages. Qt bindings for

more than 15 languages are available. Examples include PyQt(Python),

QtRuby(Ruby) and QtLua(Lua).

12

3 Related Work

3.1 CAD workflow

Figure 3.1: ”A VPR5.0 CAD flow[6]”

Developers create FPGA applications using hardware description languages

such as Verilog HDL[1] or VHDL[2]. This hardware description code is used

to create an (in the best case) optimized digital circuit for a specific FPGA

architecture.

Basically the goal of the CAD flow is to combine different tools in order

to perform the basic steps(Figure 3.1):

• Front End Synthesis

• Optimization

• Placing

• Routing

The front end synthesis and compiling is done using Odin II, which is in-

troduced in Chapter 3.2. Optimization and sub procedure mapping is part

13

3.2 Odin II

of the ABC tool, which ”can optimize/map/retime industrial gate-level de-

signs with 100K gates and 10K sequential elements for optimal delay and

heuristically minimized area in about one minute of CPU time on a modern

computer[21]”. Placing and routing on the FPGA device is performed by

the VPR 5.0 toolset. The structure and basic functionality of VPR 5.0 is

part of Section 3.3.

3.2 Odin II

Odin II was introduced in [15]. It is ”a framework for Verilog Hardware

Description Language(HDL) synthesis”, which is an improved version of

Odin[22].

The main purpose of ODIN and ODIN II is ”the front-end conversion of

a HDL design into a netlist of basic gates and more complex logic func-

tions[22]”

In order to convert a Verilog HDL design to the according netlist Odin

Figure 3.2: ”The Processing Stages in Odin II[15]”

II performs steps, which are shown in Figure 3.2. Two inputs are needed

during the procedure. The first one is the Verilog HDL design, which is

parsed to create an ”abstract syntax tree[15]. The second is the FPGA ar-

chitecture description. As the architecture is changed, the infrastructure of

14

3.3 VPR5.0

the design is changed, which allows one to apply changes very easily[15]. In

comparison to other CAD flows, the internal data structure of Odin II is

not focused on saving memory but on speeding up possible changes. This

means in particular, that wires are stored as objects and not embedded in

the rest of the infrastructure. This allows to change interconnections with-

out unnecessary changing of many lines in the netlist.

The grey highlighted section in Figure 3.2 shows the partial mapping step

of Odin II, which needs the second input file. This hardware resources de-

scription file contains for example the amount of basic logic blocks, their

interconnections and other resources. An example which is also mentioned

by Jamieson et. al[15] is a 8x8 multipler, which is used in the design. The

tool has to find the 8x8 multiplier in the circuit description and map them

onto each other. This task ”is even more challenging when there are a

restricted number of hard circuits available on the target FPGA[15].”

3.3 VPR5.0

VPR([23]) is a toolset, which was developed at the University of Toronto

in the late 1990s and is widely ”used to perform FPGA architecture and

CAD research[24].” The main purpose of VPR is to place logic structures

on FPGA devices and to perform an optimized routing based on experimen-

tal results.

As major development on the VPR toolset stopped in the year 2000, different

developers changed and modified VPR for their purposes. Those results are

mostly not available as they have not been contributed to the project([24],

p1). In [24], VPR 5.0 was introduced and includes the following key fea-

tures:

• Single Driver Routing Architectures

• Heterogeneous Logic Blocks

15

3.3 VPR5.0

• Optimized Circuit Design in released Architecture Files

• Robustness

Each of these features lead to different enhancements in the toolset, which

also result in better benchmark performance. VPR 5.0 is used in combina-

tion with other tools as described in Section 3.1. In Figure 3.3 the position

of VPR in the CAD flow is shown once more and the tasks, which have to

be accomplished are demonstrated.

Figure 3.3: VPR Tasks in the CAD Flow[6]

After tools such as ABC or T-Vpack completed the mapping process, the

BLIF structure file is passed over to VPR, which performs the placement

and routing tasks. The placement and routing processes on the device are

influenced by the critical path delay, which is used to measure the quality

of an actual implementation circuit[24]. Each architecture, which is created

during the computation process is tested by the Timing Analyser in order

16

3.3 VPR5.0

to find the best solution. The placement algorithm is very computation

intensive, as it has to fulfil many different constraints.

17

4 Design

4.1 Problem Specification

The contribution of this project is a visual exploration support software,

which can be used in the development and evaluation process of Odin II

and its cooperating tools. The main functionality of this application is to

visualize a boolean circuit, which is processed in the CAD flow.

The file structure, which is used to create a representation of the boolean

circuit is the Berkeley Logic Interchange Format(BLIF[25]), which is used

to pass results between Odin II, VPR 5.0 and ABC. This file structure de-

scribes modules and logic blocks, their inputs, outputs, interconnections and

functionalities. The functionality of logic units is not important for the vi-

sual representation as no simulation has to be done by the software.

Figure 4.1: Basic visualizer workflow

The circuit visualizer is created to find information, which is stored in the

BLIF file, to create objects according to it and visualize them on the screen.

The useful information, includes the modules, their inputs, the name of the

output and the interconnections between them. The user should be able to

recognize those on the screen represented by nodes of a connected graph.

This R&D report describes the implementation and design, which was needed

to create the basic structure of the software, its classes, factory-classes and

communication process. Another aspect is to create the graphical user in-

terface as intuitive as possible to offer a front end for the CAD work flow,

which allows the user to become familiar with the results and sub results

quick and easy.

18

4.2 Use Cases

The actual situation in the CAD flow is that developers use Verilog HDL

designs and architectures to synthesize, optimize, place and route the mod-

ules on the device. The results of each step are given as a BLIF, which

can grow very large. The file structure itself is not created to be human

readable. The visualizer provides a tool, which supports the understanding

of processes and can be used for debugging purposes.

4.2 Use Cases

The evaluation of the project follows a systematic evaluation of use cases.

These use cases are defined to be able to show, which functionalities the

software provides and which are not available at this time.

The list of use cases is structured in two main regions: GUI usability, which

describes the functions, menus and functionalities of the graphical user in-

terface. The main task of those use cases is to make sure, that the software

is as user friendly as possible and can provide the needed functions intuitive.

Visualization Functionality describes use cases, which describe the usage of

the background functions of the GUI. This includes as well the file handling

as also the visualization of modules, connections etc.

• GUI usability

– Open a BLIF file per button.

– Open a BLIF file in context menu.

– Rearrange menus as needed.

– Mark visualized modules.

– Mark interconnections between modules.

– Highlight modules or connections.

– Rearrange modules using the mouse.

– Zoom in/out of the graph.

– Close the application properly.

– Interconnections can be added and deleted.

19

4.3 Basic Design

– Text can be added in the graph.

– Items can be added to the graph.

– Items can be deleted from the graph.

– A new graph can be opened after another one was explored.

• Visualization Functionality

– Class structure can be extended by new module types and shapes.

– Receive error, if BLIF file is corrupt or not found.

– Recognize the modules correctly.

– Final State machine of file parser does not have dead ends.

– Recognize the interconnections correctly.

– Modules arranged without overlapping.

– Reading in a description file has to be performed in a reasonable

time.

4.3 Basic Design

The application mainly consists of two main modules. The first one includes

everything, that is needed to visualize. That includes the GUI, the visual-

ization graphic with all modules and functionalities. This module embeds

the functionality of the actual computation part of the application, which is

responsible for all inputs, which are needed by the application.

As shown in Figure 4.2, each of the modules include functionalities. The

File-Parser is responsible for every interaction with the file structure. A File-

Container is the storage of each module and each interconnection, which

were found in the description. Communication between each is accomplished

by the Visualization Advisor and the Module Creator.

Modules are placed in the graph according to their interconnections in the

Module Arranger and drawn on the GUI Graphics Module, which is part

20

4.3 Basic Design

Figure 4.2: Design of Basic Modules in the Visualizer

21

4.3 Basic Design

of the Visualizer. This basic structure is the idea of the final application,

whose implementation is described in Chapter 5.

22

5 Implementation

5.1 Software Engineering

5.1.1 Class Structure

The circuit visualizer is a collection of 6 classes, which combined provide the

functionalities which are needed to fulfil the use cases defined in Chapter 4.2.

In the next chapters the implementation, functionality and most important

parts of the source code are described and explained to provide an idea of

the development process, its challenges and functions, which are available

at the current development stage.

The classes in Figure 5.1 can be divided into graphical and functional classes.

Graphical classes represent objects, which can be seen by the user, whereas

functional classes only perform tasks, which are used in the background of

the application. The only pure functional class is Container, which con-

sists of file-operations, module creation and arrangement computations. A

detailed explanation of all classes is provided in Chapter 5.2.

5.2 Circuit Explorer Implementation

5.2.1 Object Classes

A boolean circuit consists of logic blocks, which are connected in order to

combine their functionality to compute a result. In order to perform visu-

alization support logic units and connections, which are found in the BLIF

file have to be presented to a user. Object oriented principles, which are

defined to provide methods of effective software development are used to

maximize reuse of code passages and design a code structure, which can

be changed without major code refactoring. The structure contains classes,

which are created to represent objects. These objects are created accord-

ing to the BLIF file. There is a direct connection between each object

class and the BLIF file structure. Those classes are: LogicUnit, Wire and

DiagramTextItem.

23

5.2 Circuit Explorer Implementation

Figure 5.1: Class Diagram of the Application

24

5.2 Circuit Explorer Implementation

Figure 5.2: LogicUnit Class UML

An instance of LogicUnit, stores information, which either is of interest

for the user or is needed to visualize a logic block. The name and the input

count are needed to identify the block, which was found in the BLIF file.

The shape of an input object differs to other logic blocks in the circuit by its

shape as shown in Figure 5.3. New shapes for different types of logic blocks

can be added easily.

The basic shape, which is implemented to represent a logic block is a

Figure 5.3: Different Shapes for Inputs and Other Logic Blocks

simple rectangle, which has specific dimensions. This is not a restriction, as

each type of LogicUnit is able to define its own Polygon, which dimensions

25

5.2 Circuit Explorer Implementation

and shape can vary. Inputs for example can look different than outputs do.

Each LogicUnit object includes a container, with all connections, which

are bounded to it. As in Qt only the object, which is actually changed (po-

sition, attributes) is being notified and all other objects stay in the original

setting. This causes problems as the ends of connections have to be con-

nected to the actual LogicUnits, where they start or end. If a LogicUnit

was moved, the connection will not adjust.

This fact requires the LogicUnit to notify all instances of Wire in its con-

tainer about a change of position, which causes them to be repainted. This

procedure reduces the time which is needed to adjust to a position change.

Another strategy is not to store any references to connections, but just it-

erate through all of them and check, if the ending points are still where

they are expected to be. This would be more memory cost effective, but the

computation time could grow in the worst case to O(n2) with respect to the

block count, whereas the container strategy computation time only grows in

O(n). Another procedure, which favours use of a container is when an item

is deleted, as all connections have to be erased, which is explained in more

detail in Section 5.2.2.

Other functions, which are of interest are image(), paint() and boundingRect().

image() creates a bitmap presentation of the polygon of the actual LogicUnit

type, which is later used to show the shape of it on a button in the graphical

user interface. The size of the bitmap is always 250 × 250. Polygons, which

are bigger may not be represented properly.

paint() and boundingRect() are methods, which are part of every in-

stance and implementation of QGraphicsItem. Their function is to describe

the behaviour and visual representation of each object. Both methods are

closely related. The method paint() describes the shape of an object. This

can be a polygon of any shape. Also complex Figures can be created using a

combination of different shapes, colors, texts etc. In case of a LogicUnit the

Figure is a rectangle, which has a solid surrounding and which filling color

26

5.2 Circuit Explorer Implementation

can be changed. The name of the object is displayed inside the rectangle.

boundingRect() returns a rectangle, which surrounds the whole figure. This

is very important as this is the area, which is renewed when the object is

changed, added or removed. The bounding rectangle is usually kept as small

as possible, as the refreshing process takes time. At the same time it needs

to be big enough to surround all parts of the object to prevent artifacts and

to ensure that the whole object is visible.

The class Wire represents interconnections between LogicUnits. There

Figure 5.4: Wire Class UML

are different reasons, which led to the implementation of this class. There

are two reasonable methods to create the data structure of a connection

between two logic blocks. One method is to store references of LogicUnits

in instances of LogicUnits. This is very easy and fast to implement and

would not need much memory to store this information. The problem in

such an implementation is the fact, that also all attributes, which can be

seen by a user would have to be stored in LogicUnits. These attributes are

for example the color of a connection, its width etc. One of the principles

of object oriented programming is separation, which means, all object have

to be created for only one purpose. A LogicUnit is only a representation

of logic blocks. If interconnections are more than only references, they have

to be extracted.

27

5.2 Circuit Explorer Implementation

Also methods, which are needed for an interconnection would be less read-

able and functional using this method. A bounding rectangle of a LogicUnit,

which has many interconnections would have to find the longest and create

an area surrounding the whole figure. This would cause the application to

refresh a very big area, which is not needed and may cause trouble during

the development and extension process.

These arguments nullify the main argument to use references stored in

LogicUnits and lead to the implementation of the class Wire. Two param-

eters are needed to create such a Wire: a starting and an ending LogicUnit

which have to be connected. The advantages of such a data structure are

beside the implementations of a small bounding rectangle also the informa-

tion that can be stored in this object. Not only the color and width of the

connection, but also the custom shape, input number of the wire in the end-

ing point etc. can be stored and used to represent the connection. Another

extension, which can be added later is the exact line in the BLIF file, which

caused the creation of the connection to give the user additional exploration

possibilities.

The shape of the wire is created to be rectangular. This is mostly used

in representations of boolean circuits as wires that cross are rectangular and

it is easier to determine which wire follows which path. An important piece

of information for a connection is the number of inputs which lead into its

ending point and the number, which is assigned to the input itself. Using

this information it is possible to align all inputs of the LogicUnit equidis-

tant to be visible. This allows to see how many inputs a logic block contains.

The last class, which represents an object is the class DiagramTextItem.

This class has a cosmetic purpose and was part of the Qt tutorials, which

were included in the development environment. This class allows the user to

create text passages in the visualization in order to add notes or comments,

which are helpful during the exploration process. Font, text size and color

can be adjusted using the text tools in the tool bar.

28

5.2 Circuit Explorer Implementation

5.2.2 GUI Classes

This section describes the functionality and tasks of all classes, which are

responsible for the graphical user interface, providing their functions, layout

and other interactions with the user. In particular the classes MainWindow

and ExplorerScene are introduced.

The presentation part of the graphical user interface consists of two main

parts, which are strictly divided into two classes. The class MainWindow as

the name already implies, is a description of the whole window including its

menus, buttons, layers etc. The structure of the application is required to

be as intuitive as possible.

The main window has four areas. The first is the menu area, where the

context menu and functional buttons are located, which offer the functions,

which can be used. Those are mainly the functions to change colors, fonts,

zoom level etc. The main function, which the program was developed for is

the open file dialogue, which initiates the whole procedure of parsing, visu-

alizing and leads to the ability to explore the architecture described by the

netlist file.

Four methods are responsible for the appearance of the application:

• createActions()

• createToolBox()

• createMenus()

• createToolbars()

Those methods are called during the creation of the MainWindow object.

Actions are Events, which are handled by the application. Each menu entry

or button starts an event, which performs an action. Such events in case

29

5.2 Circuit Explorer Implementation

of the architecture explorer are bring module to the front layer, open file,

or exit program. Qt offers a variety of parameters, which can be used for

actions. An example declaration of an action is:

openFileAction = new QAction(tr("&Open BLIF"), this);

openFileAction->setShortcut(tr("Ctrl+O"));

openFileAction->setToolTip("Opens and visualizes a file in the BLIF format");

connect(openFileAction, SIGNAL(triggered()),

this, SLOT(openFile()));

The last line defines, that the action openFileAction is bound to method

openFile() and if this action is triggered, openFile() is executed. This

structure allows the usage of existing methods for actions and also sharing

methods for different actions. This is used for example if there is a menu

entry to open a file and also a button which offers the same.

The toolbox in the application contains only two buttons at the moment

as there is only one type of logic block implemented. One button allows to

add a new instance of LogicUnit into the visualization, which name is per

default MouseAdd. The second button is used to add notes or other text

passages into the visualization. Some possible case to use this feature is to

name a connection by writing a name on top of it.

The menus and the tool bar are very similar as they contain the same func-

tions which can be used. The difference is, that menu items also provide

short cuts and are more structured, whereas buttons can be accessed very

fast and recognized by icons. This structure becomes very useful when the

application is extended by additional functions and the menus get big. Only

the main functions which are used very often have to be represented on the

tool bar to save the user time.

Using Qt and its libraries interactions with the application is easier as tool

bars can be dragged around if needed. Every button group can be rear-

ranged or even detached from the main window if needed.

30

5.2 Circuit Explorer Implementation

Another important function in MainWindow is deleteItem(). In the specific

structure of this application and its object, it is necessary to make sure that

all object are deleted correctly. It is not enough just to make them disappear

from the visualization part of the graphical representation.

In case the object, which has to be deleted is an instance of Wire it has

a starting and an ending object(LogicUnit). These objects are aware of

the connection and always try to notify them about positioning changes. If

such an object just disappears, it cannot be notified any more and would

lead to a crash of the application. That means, all references to a Wire ob-

ject have to be removed once a delete command is executed for a connection.

The same argument can be used in case a LogicUnit has to be deleted. If

there are Wires connected to it, they will still be there if the graphical rep-

resentation disappears. This means also the connections of the LogicUnit

have to be deleted. The order in which the objects are deleted is fixed, as

connections can only be deleted while the starting and ending points are

still existent.

To get a better overview of the graph, the zoom level of the scene can be

changed. This function is located in the button section of the GUI. There

are different zoom levels predefined, which can be chosen by the user. A

change of zoom level causes the method sceneScaleChanged() to adjust

the parameters.

QMatrix oldMatrix = view->matrix();

view->resetMatrix();

view->translate(oldMatrix.dx(), oldMatrix.dy());

view->scale(newScale, newScale)

Modules, connections and text items in the shown graph can be marked and

highlighted using different colors. The button menu contains drop down

menus, which are responsible for each of the objects. If a color is changed in

31

5.2 Circuit Explorer Implementation

Figure 5.5: Different Zoom Level of One Graph

32

5.2 Circuit Explorer Implementation

one of the menus and items are currently selected, the color of those items

is changed. The new color is set to the default color. New items, which are

inserted manually into the visualizer will use it, until it is changed again. A

function, which is created to change the name of a module can be accessed

using the right click context menu.

The method, which combines the graphical user interface with the func-

tional class is openFile(). It is connected to openFileAction. The BLIF

file which the user wants to be visualized is chosen using an open file dia-

logue which opens the home folder of the user logged in per default. It also

offers a navigation bar on the left side to be able to access other important

locations on the computer such as the root path. To increase usability the

file browser shows only supported file formats (*.blif at the moment). This

feature can be changed to show all files inside folders.

The functions that create and visualize LogicUnits are provided by the

class ExplorerScene, which inherits QGraphicsScene. QGraphicsScene is

used to manage 2 dimensional objects on the QGraphicsView in the applica-

tion. The actions, which change, move, create and delete any kind of items

in the visualization are passed to an instance of ExplorerScene.

All actions in the main window, which were described earlier are passed

to ExplorerScene to modify existing or to create new items. The sim-

ple functions setLineColor, setTextColor, setItemColor, setFont and

setUnitType are used if the events require so.

Mouse events are also handled in this class. Most of the interaction be-

tween the application and the user are done using the mouse. As the mouse

only provides two buttons and a position, a mouse click can mean different

things depending on the location of the cursor and the objects which are

located on this position.

There are three mouse handling methods which perform case sensitive ac-

33

5.2 Circuit Explorer Implementation

Figure 5.6: ExplorerScene Class UML

tions. If no case is fulfilled the events are passed on to perform their usual

functionalities. The first one is executed if the mouse is moved during a left

click. The method mouseMoveEvent() checks if the user intends to create a

manual connection between two LogicUnits. If this is the case, a solid line

is painted starting at the origin of the movement and ending at the actual

position of the mouse to show which items are to be connected.

The methods mousePressEvent and mouseReleaseEvent in combination

can perform three different actions. They can create a connection between

different LogicUnits, where the mousePressEvent saves the starting point

of the connection and mouseReleaseEvent finds the ending point. A mouse

click can also mean to create a LogicUnit or a TextItem on the actual po-

sition of the mouse cursor.

Those methods are useful only if the user is creating modules and connec-

tions manually. The usual case in the visualizer is to create those modules

automatically. To do so there are two methods, which can be used to cre-

ate, name and place items. The methods are used in the functional class

Container, which also processes the BLIF file. One method is developed to

34

5.2 Circuit Explorer Implementation

create LogicUnits of different types and another to connect them.

5.2.3 Functional Classes

Figure 5.7: Container Class UML

The only functional class is called Container. It is created to perform the

file parsing, arrangement of modules and other functions which imply deal-

ing with the structures outside of the application itself. The class can be

compared to a user who is creating a graph in the GUI by clicking buttons

and creating logic blocks, naming them, creating interconnections and ar-

ranging them to be able to explore the structure. The only difference is that

this virtual user works fast and automated.

Although all functions can be used as they are needed the usual structure

of functions is shown in Figure 5.8. After the user has chosen a file which

he wishes to explore, the parsing function of a Container processes the file.

It parses twice through the file searching for keywords. Those are in case of

*.blif files:

35

5.2 Circuit Explorer Implementation

Figure 5.8: File Handling Work Flow

• .inputs

• .names

• .subckt

• .model

During the first parse the file is processed to find the logic blocks and mod-

els(subcircuits), which are created and connected to each other. The reason

for it is that connections need to have existent logic blocks which they con-

nect, otherwise an error occurs and the connection is not created. The

second time the file is read is only to find all connections. This procedure

just searches for the keyword .names, which defines a logic block, its inputs

and its name using the following structure:

.names input1 input2 input3 ... "unit name"

To increase the speed of this process the application uses a hash table, which

combines the name of every logic block in the container to a reference to

36

5.2 Circuit Explorer Implementation

the actual object. This is useful as the the creation of a connection does not

require to search every LogicUnit for it’s name in order to find the starting

and ending point of the connection.

There are file structures, which are not recognized yet. A model is part of

the parameters of every LogicUnit but it does not influence the visualiza-

tion. Another part of the blif structure is the keyword .latch, which allos

to create a delay element in a model or to connect a logic block’s output

with its input. This functionality is also used to arrange the items as all of

them are created in the same position and have to be spread to provide an

overview on the graph.

The arrangement function of Container is a very simple one and needs

to be improved. The strategy is to find a straight forwarded structure to

make sure the connections always connect logic blocks in a flow from the

left to the right. Circles in a circuit influence each other in the positioning

process. To avoid an infinitely big graph the iteration count of the arrange-

ment algorithm is limited based on the interconnection and logic block count.

The procedure creates the layers of logic blocks, which are aligned from

the right to the left to create a flow, which symbolizes the flow of data. Af-

terwards each layer is iterated and the logic blocks in each layer are ordered

on a vertical line using a small drift which is created to decrease overlapping

of connections. The main goal of the current algorithm is to spread all logic

block and to show the user the main flow of signal within the circuit. Cross-

ing interconnections are not considered during this process in the current

state of the application.

The class also offers functions to delete logic blocks and to clear the whole

container if the user wishes to explore another BLIF file. The structure of

the class allows to change different steps without the need to change any

other passages in any other classes as long as the input parameters and the

class definition of LogicUnit and Wire remain the same.

37

5.2 Circuit Explorer Implementation

Figure 5.9: The Graphical User Interface Showing a Sample Boolean Circuit.

38

6 Evaluation

6.1 Use case based evaluation

This chapter covers the tests of the graphical user interface according to

the use cases which were introduced during the planning phase in Chapter

4.2. All of them are evaluated regarding the implementation and how well

they fit the requirements. The use case list also dictates the structure of

this chapter as they are explained and evaluated in detail to show which

parts are already sufficiently developed and where room for improvement

still exists. At the end of this chapter a table with all results is given to

provide an overview of the results. In Chapter 6.2 the usability of the GUI

is verified with the help of potential users.

Open BLIF file per button, Open BLIF file in context menu

There are implementations for three different ways to open a file, which

the user desires to explore. It is possible to click a button on the tool bar

labelled Open BLIF as well as use the context menu in order to perform

this action. The third possibility that is part of the context menu imple-

mentation is to use a hot key Ctrl+O at any time during the runtime of the

application. There is no further input necessary in order to see the graph as

the rest of the process happens fully automated. A possible improvement

which is connected to this use case is to implement the possibility to open

the file format, which is natively used in Odin II to be able to interact with

Odin II and to provide more exploration options.

Rearrange menus as needed

The Qt library creates all menus and tool bars that is used during im-

plementation. The buttons are grouped according to their functionalities in

five groups:

• Open file tools

• Edit tools

39

6.1 Use case based evaluation

• Font tools

• Colour tools

• Mouse tools

Each group can be dragged from the initial position and moved to another

location. It is possible to dock the tool bars on each side of the application.

There is a variety of possibilities to order and place the tool bars, even hav-

ing them docked off the application and outside of the application window

is possible.

Mark visualized items, interconnections between modules and high-

light modules or connections

Each module and interconnection can be marked using the mouse. There is

a predefined count of colors for interconnections and logic blocks. If more

colors are needed, they can be added to the context menu. A better solution

if many colors are needed would be to implement a color interface, which

allows to choose a color using the whole RGB spectrum.

Rearrange items using the mouse

All modules can be dragged and dropped using the mouse. The intercon-

nections which are attached to the logic block are adjusted to the actual

position during the movement process. This allows the user for example to

rearrange the graph to see the interactions he is interested in easier.

Interconnections, text and logic blocks can be added and deleted

If needed, logic blocks, text and interconnections can be added to the ex-

plorer. Logic blocks and text items are represented on the left side tool

bar. Logic units are named MouseAdd when added, but the name of every

item can be changed using the right click menu. To add interconnections,

the mouse tool tool bar on the top of the GUI provides a connection tool,

which allows the user to paint a line in order to connect two logic blocks.

40

6.1 Use case based evaluation

If the origin and the end of the line connect two different logic blocks the

interconnection is added to the graph.

Items can be deleted from the graph

Items in the graph can be deleted at any time. If a logic block is deleted,

also all incoming and outgoing connections are deleted. It is also possible

to delete multiple objects. Those can be selected one by one using the Ctrl

key or by selecting all using Ctrl+A and pressing the delete button. Class

structure can be extended by new module types, shapes etc.

Receive error, if BLIF file is corrupt or not found

Per default, the file choosing dialogue only shows folders and files with the

ending *.blif. To choose a file without this extension, the user has to use

the extension drop down menu. If the file which was chosen could not be

opened or no structures are found in the description file, a warning is dis-

played which informs the user and offers to open another file.

Final State machine of file parser does not have dead ends

At the current state of work the state machine has only two states:

1. searching for logic blocks

2. searching for interconnections

Both of those steps are straight forward and end if the end of the BLIF file

is reached. This means that no loops are possible and as long as the file can

be read correctly the process always finishes.

Items arranged without overlapping

The graphs are arranged according to their inputs/outputs. This way logic

blocks outgoing connections are always on the right side and incoming on the

left side of the block. The arrangement algorithm creates a mesh of modules

41

6.1 Use case based evaluation

Node count Node Time Conn. Count Conn. Time

885 0.01s 1137 0.02s

945 0.01 7709 0.12s

1195 0.03s 10204 0.17s

1565 0.02s 4864 0.08s

2379 0.03s 9270 0.1s

2893 0.04s 8329 0.14s

12563 0.14s 38469 1.78s

20610 0.24s 67588 6.8s

39387 0.47s 168179 20.14s

82779 1.14s 224862 148.83s

Table 1: Evaluation of File Processing and Visualization Times. Times are divided in

time, which is required for creation of logic blocks and time which is needed

for creation of connections. All evaluation circuits are part of the Odin II

benchmark set[26]

using this strategy. The problem with this alignment is that the intercon-

nections are passing modules on their way to the ending point. There is no

collision detection of interconnections and modules in the current state of

the application.

Reading in a description file has to be performed in a reason-

able time

The opening times that the application needs is divided into time which

is needed:

1. to find and create all logic block.

2. to create all interconnections.

The BLIF files which were used to measure the time are part of the evalua-

tion set of Odin II[26]. The machine, which was used during the evaluation

had an Inter Core i7 processor and 4GB of RAM.

42

6.2 Usability Evaluation

Table 1 shows that most of the time, which the user has to wait is needed to

create the interconnections. The reason for this behaviour is that all logic

blocks have to be existent in order to create a connection. The hash table of

LogicUnit references makes sure, that the speed of find the ending points

is high.

A circuit with 82,779 nodes and 224,862 connections is being processed for

148.83 seconds until the user is able to see something. This is a long time,

but considered the count of object it is still acceptable. A graph, which

shows the growth of both processes can be seen in figures 6.1 and 6.2.

Figure 6.1: Creation times of Logic Blocks during file processing. Each dot shows the

connection count and the creation count of one of ten test circuits.

6.2 Usability Evaluation

To verify the usability of the application, five computer science students

have been asked to participate in a so called ”think aloud test”[27]. These

students have never used the application before and were not involved in the

development of this application. The goal of this evaluation is to make sure

that all parts of the layout, all functionalities and the look and feel of the

43

6.2 Usability Evaluation

Use Case Implemented Comments

Open BLIF file per button Yes

Open BLIF file in context menu Yes

Rearrange menus as needed Yes

Mark visualized modules Yes

Mark interconnections between modules Yes

Highlight modules or connections Yes Only single item at once

Rearrange modules using the mouse Yes Only single item at once

Zoom in/out the graph Yes

Close the application properly Yes

Interconnections can be added and deleted Yes

Text can be added in the graph Yes

Items can be added to the graph Yes

Items can be deleted from the graph Yes

A new graph can be opened if after an-

other one was explored

Yes

Class structure can be extended by new

module types, shapes etc.

Yes

Receive error, if BLIF file is corrupt or not

found

Yes

Recognize the modules correctly

Final State machine of file parser does not

have dead ends

Yes

Recognize the interconnections correctly Yes

Modules arranged without overlapping Yes

Reading in a description file has to be per-

formed in a reasonable time

Yes

Table 2: Use Case Evaluation Summary

44

6.2 Usability Evaluation

Figure 6.2: Creation times of Connections between Logic Blocks during file processing.

Each dot shows the connection count and the creation count of one of ten

test circuits.

GUI is intuitive enough to start using it without the need of any instruction.

The structure of the test requires every user to complete a predefined list of

tasks. While the user is solving the tasks, he is advised to say everything

he/she thinks. All thoughts which are connected to the application, it’s

functions etc. had to be communicated loudly. The list of tasks was the

following:

1. Open application

2. Open specific BLIF file

3. Adjust zoom level to see the whole graph

4. Reorganize items as desired

5. Highlight one connection

45

6.2 Usability Evaluation

6. Highlight the logic blocks which are connected by the highlighted con-

nection

7. Open second BLIF file

8. Add a logic block manually

9. Rename the new logic block

10. Add the new logic block to the circuit by connecting it

11. Add a note to the new logic block saying it is a manually added node

12. Close the application

The result of the think aloud test shows that the main structure and layout

of the application can be used very intuitively. The opening and exploring

process could be performed by the users without bigger problems. Two out

of four persons wished the zoom level could be adjusted not using prede-

fined zoom levels but by typing in the desired percentage into a field. One

person also tried to adjust the level using the combination of holding Ctrl

and using the mouse wheel.

Item movement and handling was performed by all users without any miss-

ing points except for renaming a logic block. The renaming function can be

found in the right click context menu or in the application menu in the Item

section, where items also can be deleted and their layer can be adjusted. As

no other task lead the user to these menus, two of them needed about 40 sec-

onds to find it and one did not find the function and went on with the next

task. Highlighting items was a task, which also was confusing in some cases

as users tried to mark multiple logic blocks and to change the color. The ap-

plication only changes the last of the items, which can be improved in future.

Another request by the users was to save the graph as an image or in any

kind of format to be able to see the exploration results and the notes, which

were added into the graph for later use. One of the users also asked if it

46

6.2 Usability Evaluation

Task Completed Avg Time

in sec

Open application 5 1

Open specific BLIF file 5 1.4

Adjust zoom level to see the whole graph 5 3

Reorganize items as desired 5 2

Highlight one Connection 5 5.2

Highlight the logic blocks, which are connected

by the highlighted connection

5 10

Open second BLIF file 5 1

Add a logic block manually 5 5.8

Rename the new logic block 4 12

Add the new logic block to graph by connecting

it

5 5.4

Add a note to the new logic block saying it is a

manual added node

5 3

Close the application 5 1

Table 3: Results of the Think Aloud Tests

is possible to see the circuit simulate, which is not part of the application

functionality at the moment. A summary of the 5 think aloud tests can be

seen in Table 3.

Since the usability evaluation is completed the visualization software is used

by developers in the Odin II project. According to their feedback the soft-

ware was useful in order to improve the functionality of Odin II as the

structure can be explored. The most useful part of the visualizer is the

ability to see which nodes are connected. This allows to find missing con-

nections, which were created, but got lost during the export process as well

as for finding parts of the circuits, which are not used, as they represent

subcircuits, which are not connected to the main circuit.

47

7 Conclusion

This report presented the development of a graphical user interface which

is part of Odin II in order to support the exploration of netlist files, which

describe the hardware architecture and the boolean circuit which was cre-

ated for a FPGA device.

The report provided an introduction into the field of research in FPGA

and development of GUIs as well as presented the tools of the workflow it is

part of and their functionality. Improvement of the workflow as well as the

development of the GUI, which is described in this report is still an ongoing

process. The evaluation shows, that the basic structures and functionalities

exist, but there is still work to do in order to provide a tool which can be

used by developers for exploration and verification purposes.

The future development of the application will improve comfort functions

of the applications as well as direct the missing points, which were found

during the evaluation. A goal, which should become more importatnt is a

closer linking of the visualization to Odin II. One of the advantages of it is

the ability of Odin II to simulate a circuit. This simulater could interact

with the visualization to provide input/output states, which could be visu-

alized. That way also the functionality of a circuit could be explored and

verified.

Different types of logic block in the circuit can be highlighted using dif-

ferent shapes to provide new functionalities. At the moment inputs are

highlighted using a different shape than other logic blocks. This feature

could be extended to highlight different kinds of logic blocks or hard blocks

to structure visualization.

Unstructured BLIF files, which does not contain any placement and routing

informations can be visualized in the moment. The main focus of this report

was to visualize the BLIF files which are created of Odin II. Odin II is the

first step in the workflow. In future also the outputs of the next stages in

48

the workflow could be visualized to show the changing structure of a circuit.

Also the visualization of structured BLIF files wich contain placement and

routing information could be used to create a virtual representation of the

whole FPGA device could be implemented.

Another yet missing function is a save operation, which creates a BLIF

file of the actual graph which is shown by the application.

49

REFERENCES

References

[1] D. Thomas and P. Moorby, The Verilog hardware description language.

Springer Netherlands, 2002.

[2] P. Ashenden, The designer’s guide to VHDL. Morgan Kaufmann, 2008.

[3] S. D. Brown, Field programmable gate arrays. Kluwer Academic, 1997.

[4] P. Chow, J. Rose, K. Chung, G. Paez-Monzon, and I. Rahardja, “The

design of an SRAM-based field-programmable gate array. I. Architec-

ture,” IEEE Transactions on Very Large Scale Integration (VLSI) Sys-

tems, vol. 7, pp. 191–197, June 1999.

[5] H. Schmit, “Extra-dimensional island-style FPGAs,” New Algorithms,

Architectures and Applications for Reconfigurable Computing, pp. 3–13,

2005.

[6] I. Kuon, R. Tessier, and J. Rose, “FPGA Architecture: Survey and

Challenges,” Foundations and Trends in Electronic Design Automation,

vol. 2, no. 2, pp. 135–253, 2007.

[7] P. Leong, W. Luk, and S. Wilton, “Floating-Point FPGA: Architecture

and Modeling,” IEEE Transactions on Very Large Scale Integration

(VLSI) Systems, vol. 17, pp. 1709–1718, Dec. 2009.

[8] J. Babb, M. Frank, V. Lee, E. Waingold, R. Barua, M. Taylor, J. Kim,

S. Devabhaktuni, and A. Agarwal, “The RAW Benchmark Suite : Com-

putation Structures for General Purpose Computing,” Components,

p. 134, 1997.

[9] Y. Jin, N. Satish, K. Ravindran, and K. Keutzer, “An automated

exploration framework for FPGA-based soft multiprocessor systems,”

Proceedings of the 3rd IEEE/ACM/IFIP international conference on

Hardware/software codesign and system synthesis - CODES+ISSS ’05,

p. 273, 2005.

[10] Altera Corporation, “FPGA, CPLD and ASIC from Altera.” http:

//www.altera.com/, Aug. 2011.

50

http://www.altera.com/
http://www.altera.com/

REFERENCES

[11] I. Xilinx, “FPGA, CPLD, and EPP Solutions from Xilinx, Inc.” http:

//www.xilinx.com/, Aug. 2011.

[12] S. Williams, “Icarus Verilog.” http://iverilog.icarus.com/, Aug.

2011.

[13] I. Geeknet, “VeriWell Verilog Simulator.” http://sourceforge.net/

projects/veriwell/, Aug. 2011.

[14] F. P. Group, “The FreeHDL Project.” http://freehdl.seul.org/,

Aug. 2011.

[15] P. Jamieson, K. B. Kent, F. Gharibian, and L. Shannon, “Odin II -

An Open-Source Verilog HDL Synthesis Tool for CAD Research,” 2010

18th IEEE Annual International Symposium on Field-Programmable

Custom Computing Machines, pp. 149–156, 2010.

[16] M. Summerfield, “Rapid GUI programming with Python and Qt: the

definitive guide to PyQt programming,” October, 2008.

[17] J. Blanchette and M. Summerfield, C++ GUI programming with Qt 4.

Prentice Hall PTR, 2006.

[18] T. Sommer, “Physics for a 3D Driving Simulator Torsten Sommer Bach-

elor Thesis,” Physics.

[19] A. Sharma, “White Paper Merits of QT for developing Imaging Appli-

cations UI,” System, pp. 1–8, 2008.

[20] Nokia Corporation, “Qt Reference Documentation.” http://doc.qt.

nokia.com/4.7-snapshot/index.html, Aug. 2011.

[21] A. Mishchenko, “ABC: A System for Sequential Synthesis and Verifi-

cation.” http://www.eecs.berkeley.edu/~alanmi/abc/, 2011.

[22] P. Jamieson and J. Rose, “A verilog RTL synthesis tool for heteroge-

neous FPGAs,” in Field Programmable Logic and Applications, 2005.

International Conference on, pp. 305–310, IEEE, 2005.

51

http://www.xilinx.com/
http://www.xilinx.com/
http://iverilog.icarus.com/
http://sourceforge.net/projects/veriwell/
http://sourceforge.net/projects/veriwell/
http://freehdl.seul.org/
http://doc.qt.nokia.com/4.7-snapshot/index.html
http://doc.qt.nokia.com/4.7-snapshot/index.html
http://www.eecs.berkeley.edu/~alanmi/abc/

REFERENCES

[23] V. Betz and J. Rose, “VPR : A New Packing , Placement and Routing

Tool for,” Technology, pp. 1–10, 1997.

[24] J. Luu, I. Kuon, P. Jamieson, T. Campbell, A. Ye, and W. M. Fang,

“VPR 5 . 0 : FPGA CAD and Architecture Exploration Tools with

Single-Driver Routing , Heterogeneity and Process Scaling,” Computer

Engineering, pp. 133–142, 2009.

[25] U. Berkeley, “Berkeley logic interchange format,” tech. rep., Techni-

cal report, Technical report, University of California at Berkeley, Aug.

1998.

[26] J. Luu, O. Densmore, R. Rubin, C. W. Yu, K. B. Kent, P. Jamieson,

A. J., and R. J., “The VTR Project: Architecture and CAD for FPGAs

from Verilog to Routing,” Accepted for ACM International Symposium

on Field Programmable Gate Arrays (FPGA) 2012, Monterey, USA,

February 21-23, 2012.

[27] D. M. Turner-Bowker, R. N. Saris-Baglama, K. J. Smith, M. a. DeRosa,

C. a. Paulsen, and S. J. Hogue, “Heuristic evaluation of user interfaces,”

Telemedicine journal and e-health : the official journal of the American

Telemedicine Association, vol. 17, no. 1, pp. 40–5, 1990.

[28] A. Mishchenko, S. Chatterjee, and R. K. Brayton, “Improvements to

Technology Mapping for LUT-Based FPGAs,” IEEE Transactions on

Computer-Aided Design of Integrated Circuits and Systems, vol. 26,

pp. 240–253, Feb. 2007.

52

A Appendix

B Comparison between BLIF file and Visualiza-

tion

This example shows a Circuit with 10 nodes and 25 connections. It is

supposed to give an idea how hard it can be to understand the structure of

a BLIF file even if a limited amount of nodes is described. BLIF files in the

Odin II evaluation set have up to 451,788 nodes.

1 .model testcase5

2 .inputs top^a top^b

3

4 .names top^a top^b top^BITWISE_XOR ~0^ LOGICAL_XOR ~8

5 00 1

6 11 0

7 01 1

8 10 0

9

10 .names top^a top^b top^BITWISE_XOR ~0^ LOGICAL_XOR ~8 top^AND_OR_5

11 -0- 1

12 0-- 0

13 0-1 1

14

15 .names top^BITWISE_XOR ~0^ LOGICAL_XOR ~8 top^AND_OR_5 top^XOR_7

16 -1 1

17

18 .names top^BITWISE_XOR ~0^ LOGICAL_XOR ~8 top^AND_OR_5 top^XOR_7 top^OR_3

19 0-1 0

20 01- 1

21

22 .names top^a top^AND_OR_5 top^XOR_7 top^OR_3 top^RES_0

23 000 0

24 001 1

25 010 1

26 011 0

27 101 0

28 110 0

29 111 1

30

53

31 .names top^b top^AND_OR_5 top^XOR_7 top^OR_3 top^RES_1

32 1-1- 0

33 -1-1 1

34

35 .names top^a top^b top^RES_1 top^BITWISE_XOR ~0^ LOGICAL_XOR ~8 top^RES_2

36 0-1- 0

37 -1-0 1

38

39 .names top^RES_0 top^RES_1 top^RES_2 top^RES_3

40 1-1 0

41 -1- 1

42 .end

Figure B.1: Test case circuit with 10 nodes and 25 connections

54

	Introduction
	Basics
	FPGA
	FPGA Introduction and History
	FPGA Architecutre
	FPGA Architecture Exploration

	GUI Development
	General Information
	QT

	Related Work
	CAD workflow
	Odin II
	VPR5.0

	Design
	Problem Specification
	Use Cases
	Basic Design

	Implementation
	Software Engineering
	Class Structure

	Circuit Explorer Implementation
	Object Classes
	GUI Classes
	Functional Classes

	Evaluation
	Use case based evaluation
	Usability Evaluation

	Conclusion
	Bibliography
	Appendix
	Comparison between BLIF file and Visualization

