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Abstract

The abstraction from bus systems greatly enhances the flexibility

in designing modules for a network as different virtual channels can be

created for communication between modules. The Prosthetic Device

Communication Protocol (PDCP) is such a protocol. To be able to

evaluate the messages that are passed using the PDCP additional tools

are needed. This report shows the design, implementation, and testing

of an evaluation tool for the PDCP which is an open protocol and is

featured in the University of New Brunswick’s most recent prosthetic

limb research project, the UNB Hand System. This prosthetic device

utilizes the CAN bus hardware with the PDCP for passing command

and data messages between modules within the prosthetic limb system.

To be able to analyze communication in the CAN layers as well as in

the PDCP layer this report shows a solution utilizing an FPGA for

CAN bus bandwidth load monitoring and a microcontroller for PDCP

monitoring and analysis.
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1 Introduction and Motivation

The University of New Brunswick’s (UNB) Institute of Biomedical Engi-

neering (IBME) is developing together with UNB’s Applied Nanotechnol-

ogy Laboratory, the Rehabilitation Institute of Chicago’s BioMechatronics

Development Laboratory, the Université de Moncton’s Thin Films and Pho-

tonics Research Group, and Liberating Technologies Inc. a prosthetic hand

system, termed the UNB Hand System. For the design of the hand not only

the overall cost was relevant, but also the controllability and design modu-

larity. Thus the UNB Hand is capable of recognizing different patterns, with

an emphasis on the movements that are controllable by most amputees. As

every user has their own requirements the UNB Hand is also modular to fit

different sizes[1]. An image of the hand can be seen in Figure 1.1.

Figure 1.1: The UNB hand.

Inside the hand different sensors for measuring the pressure and motors for

moving the thumb and fingers are working. These modules are connected

via a CAN bus network (ISO OSI layer 1 and 2). On top of this bus system

the Prosthetic Device Communication Protocol (PDCP) has been built[2].

It allows an abstraction of the underlying bus system to give engineers more

flexibility when designing new components for the hand. The PDCP itself

acts on ISO OSI layer 3 and is used for information exchange. The PDCP

will be explained in Chapter 2.5. As both CAN buses are operating nearly

at their bandwidth limit tools are needed to monitor the CAN bus. In order
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to keep track of different nodes talking to each other high-level interpreta-

tion of these messages is needed as well.

During the implementation stage of additional modules for the UNB hand,

tools are needed to analyze the data on the bus to ensure that messages are

transmitted and received properly before these modules are used in a live

system. Furthermore, in a live system the engineers need to be able to gather

information on how the prosthetic device is used by different patients. Thus

a tool is needed which is able to monitor and analyze the communication on

the bus online and offline.

Chapter 2 introduces and explains the concepts of a microcontroller with

the Microchip dsPIC33E family, which will be used for this project. Fur-

thermore, this chapter introduces a daughterboard for this microcontroller

family, the Altera DE0-nano board as an FPGA board, and it briefly ex-

plains the CAN bus as well as the PDCP. Chapter 3 shows different ap-

proaches on monitoring a bus system and gives the problem formulation for

this project. The design of this project is explained in Chapter 4, with the

implementation details in Chapter 5. The project is evaluated in Chapter 6

and in Chapter 7 the project will be summarized and an outlook on future

work is given.

2
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2 Basics

This chapter splits the necessary background information in order to un-

derstand the remaining chapters of this report. It will start with hardware

basics in microcontrollers, then the Microchip Multimedia Expansion Board

as a daughterboard, and the Altera DE0-nano board as an FPGA board.

After that details about the CAN bus, the UART, and the PDCP are be

given.

2.1 Microcontroller

To be able to explain the concept of a microcontroller a short introduction

is given first. After that, the Microchip dsPIC33E family microcontrollers

are introduced. As every microcontroller has Special Function Registers,

interrupts, and timers, these concepts are explained as well.

2.1.1 Introduction

A microcontroller (MC) consists of a processor with different pins attached

to it. Each pin can be configured to have different functionality. This is

achieved by wiring each pin to other modules. These modules can include

a liquid crystal display (LCD), different bus systems, such as the Controller

Area Network (CAN) or Inter-integrated Circuit (I2C), or light emitting

diodes (LEDs). Each microcontroller has furthermore its own memory. Con-

trary to a system on a chip (SoC) MCs usually have less memory and are

single chip solutions. MCs can include digital signal processing (DSP) func-

tionality, pulse width modulation (PWM) modules, interrupts, and timers.

To be able to address these functions special function registers (SFRs) are

needed. The functionality of SFRs will be introduced in Subsection 2.1.3.

Interrupts and timers will be introduced in Subsection 2.1.4.

Microcontrollers are usually found in embedded systems. These systems

serve a specific purpose. The term embedded implies that it is part of a

bigger system, e.g. in a washing machine[3]. For academic and education

purposes embedded systems can also consist of different parts. The mi-

crocontroller is usually found on a motherboard, which most of the time

3
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2.1 Microcontroller

feature beside the MC either a JTAG interface or a USB connector for

programming the microcontroller. Furthermore these motherboards fea-

ture expansion connectors, so that it is possible to connect daughterboards

with extended functionality to it. Subsection 2.1.2 introduces the Microchip

dsPIC33E USB Starter kit as a motherboard and Section 2.2 introduces

the Microchip Multimedia Expansion Board as a daughterboard. These two

boards are also the boards that have been used during the development of

this project.

2.1.2 dsPIC33E USB Starter Kit

The Microchip dsPIC33E USB Starter Kit features the 16 bit Microchip

dsPIC33EP512MU810 microcontroller, which is capable of performing a

maximum of 60 million instructions per second (MIPS) and can operate

at a frequency of 120 MHz. The architecture of this CPU uses a 24 bit wide

program space and a 16 bit wide data space and is a modified Harvard archi-

tecture, which means that data can also be present in the program space[4].

The block diagram for this CPU can be seen in Figure 2.1. The CPU has a C

compiler optimized instruction set which allows writing of performant code

in the high level programming language C. Onboard are seven PWM gener-

ators and each generator can output two PWM signals, which for instance

can be used to drive motors. Furthermore the MC features two independent

analog to digital converter (ADC) modules, nine 16 bit timers/counters, a

hardware real-time clock, and a peripheral pin select. The latter one can be

used to remap ports to be used for different functionality. An image of the

dsPIC33E Starter kit can be seen in Figure 2.2.

2.1.3 Special Function Registers

A Special Function Register (SFR) is a register inside a microcontroller that

can have various purposes, which include ports, timers, and interrupts. SFRs

are mapped to different addresses inside a microcontroller and are usually

defined by the microcontroller vendor and are different for each manufacturer

and might also be different for different product lines. The vendor usually

4
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2.1 Microcontroller

Figure 2.1: The CPU block diagram for the dsPIC33EP512MU810[4].
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2.1 Microcontroller

Figure 2.2: The Microchip dsPIC33E USB Starter Kit[5].

provides the necessary include files for addressing these SFRs. When pro-

gramming in a high level language, e.g. in C, the developer needs to include

the corresponding header file for their project in order to address the SFRs.

SFRs can be either input ports (read only), output ports (write only), or

inout ports (read and write).

When addressing a port on the Microchip dsPIC33E family (e.g. the Mi-

crochip dsPIC33EP512MU810 which is used for this project) the developer

can address the port as shown in Figure 2.3. With the tristate switch TRIS

the data direction can be specified, with 1 being input and 0 being output,

PORT allows the reading and writing of the current port bit, the latch LAT

has in output configuration the same functionality as PORT but for input

configuration the bit in the latch will be read. Some ports also have an

open-drain control ODC for generating voltages higher than 5V on a 5V tol-

erant pin by using pull-up resistors and some can be set to receive analog

signals with ANSEL to be able to receive values between VOH and VOL. The

address mapping of the SFRs on the Microchip dsPIC33EP512MU810 MC

can be seen in Figure 2.4.

6
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2.1 Microcontroller

Figure 2.3: The shared port structure on the Microchip dsPIC33E family[4].

2.1.4 Interrupts and Timers

A microcontroller usually does not run an operating system. Thus the

only program that is running is the user’s program, starting from the main

method. To be able to catch external (e.g. flags from other hardware mod-

ules) or internal (e.g. timer) events the flow of the program needs to be

interrupted and the occured event needs to be handled. This is achieved us-

ing interrupts. The developer needs to declare every interrupt that needs to

be handled. Every interrupt has a so-called interrupt service routine (ISR)

which will be called when the interrupt occurs. After successfully handling

the ISR the main program will be resumed. Most microcontrollers use for

the interrupts special registers which hold the corresponding interrupt flags.

This list is also called the interrupt vector table (IVT). After handling the

ISR for a specific interrupt the flag needs to be unset to allow the interrupt

event to occur again. A compact overview of the IVT of the Microchip

dsPIC33EP512MU810 can be found in the Appendix A.2. The full IVT can

usually be found in the data sheet of the microcontroller.

7
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2.1 Microcontroller

Figure 2.4: The data memory mapping of the special function registers on the

Microchip dsPIC33EP512MU810[4].

8
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2.2 Multimedia Expansion Board

Timers are used for either waiting for a specific amount of time or to count

the occurences of a specific event, which can also be an external event. The

first purpose is actually called the timer, while the latter one is referred to

as a counter. Timers are bound to a clock and can either be driven by an

external clock input or also by the device internal clock[4]. When in timer

mode a specific amount of clock ticks is counted before the interrupt flag

will be raised. This results for a 16 bit timer in a maximum of 65,535 clock

ticks that can be counted. This would mean for a clock frequency of 120

MHz the timer would be toggled 1,831.05 times a second when counting to

65,535 clock ticks. Furthermore it is possible to have a prescaler for a timer.

A prescaler divides the clock so that it is possible to count a multiple of the

available clock ticks. E.g. a 16 bit timer with a prescaler of 1:256 running

in a microcontroller with a clock frequency of 120 MHz would result in the

interrupt flag being toggled 7.15 times per second. Figure 2.5 shows the

block diagram for a timer in the Microchip dsPIC33E family.

Figure 2.5: The timer block diagram for the dsPIC33E family[4].

2.2 Multimedia Expansion Board

The Microchip Multimedia Expansion Board (MEB) is a daughterboard for

the Microchip PIC32, dsPIC33E, or PIC24E Starter Kits. It is powered by

9
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2.3 Altera DE0-nano Board

the motherboard and features besides a LCD with touchscreen capabilites

different LEDs, sound input and output jacks, a microSD card connector,

an accelerometer, and a WiFi module. An image of the MEB can be seen

in Figure 2.6.

Figure 2.6: The Microchip Multimedia Expansion Board[6].

To be able to address the LCD or the microSD card, communication with

the onboard Solomon SSD1926 graphics controller is required. The commu-

nication is done via either a 8 bit or 16 bit wide bus which is dependant

on the starter kit that is used. For the dsPIC33E Starter Kit only the 8

bit wide bus can be used. Before the microSD card can be accessed via

the Solomon SSD1926 it needs to be configured with the onboard CPLD.

The CPLD stores the information for wiring the different components. It

allows the usage of either a serial peripheral interface (SPI) bus[7], WiFi[8],

or ZigBee[9]. For using the microSD card the CPLD needs to be configured

to work on SPI.

2.3 Altera DE0-nano Board

The Altera DE0-nano board features a Cyclone IV EP4C22 FPGA with

22,320 logic gates. It operates at a clock frequency of 50 MHz and features

32 MB SDRAM, as well as 2 kB EEPROM[10]. Furthermore it has 2 general

10
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2.4 CAN Bus and UART

purpose input/output (GPIO) expansion headers, an eight channel 12 bit

resolution ADC and an 13 bit resolution accelerometer. An image of the

Altera DE0-nano board can be seen in Figure 2.7.

Figure 2.7: The Altera DE0-nano Board[10].

As with most Altera development boards the DE0-nano board can be pro-

grammed via a USB blaster interface. Via this USB connection the DE0-

nano board also receives its power. All of the input, output, and inout pins

can be configured to run at different voltages: 1.2V, 1.5V, 1.8V, 2.5V, 3.0V,

and 3.3V.

2.4 CAN Bus and UART

As mentioned in [11] the CAN bus is operating on layers 1 and 2 of the

ISO OSI Reference Model, as seen in Figure 2.8. The specification itself is

not limited to a specific physical medium, so the engineers can decide for

themselves what type of medium they want to use.

For collision detection the CAN bus utilizes the CSMA/CD protocol[13],

which is also used by the IEEE 802.3 standard[14]. The transmission of bits

on the bus is done by using dominant and recessive bits, where a logical 1 is

recessive and a logical 0 dominant. On an idle bus there is always a logical

11
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2.4 CAN Bus and UART

Figure 2.8: The ISO OSI Reference Model[12].

1. This is recessive because if a node tries to send it has to write a logical 0

on the bus. Looking at combining the idle logical 1 with the logical 0 that

has to be written the AND operation is used.

There are different frames possible to be sent over the CAN bus: data

frame, remote frame, error frame, and overload frame. For this project it

suffices to only look at the data frames. The full specification of this frame

can be found in [15] or in [13]. When creating a data frame the message

itself contains also an error checking method for the bits in the data field.

This method is called the CRC-15-CAN. The polynomial for calculating this

sum is:

(2.1) x15 + x14 + x10 + x8 + x7 + x4 + x3 + 1

In hexadecimal representation this polynomial is 0x4599. Bosch specified in

[15] the pseudocode for calculating this polynomial using shift registers:

1 CRC_RG = 0; // initialize shift register

2 REPEAT

3 CRCNXT = NXTBIT EXOR CRC_RG (14);

4 CRC_RG (14:1) = CRC_RG (13:0); // shift left by

5 CRC_RG (0) = 0; // 1 position

6 IF CRCNXT THEN

7 CRC_RG (14:0) = CRC_RG (14:0) EXOR (4599 hex);

8 ENDIF

9 UNTIL (CRC SEQUENCE starts or there is an ERROR condition)

12



D
RA
FT

2.5 PDCP

CRC_RG is the 15 bit shift register, CRCNXT a temporary variable, NXTBIT the

next bit of the data field of the CAN data frame, and EXOR the exclusive-OR

operation.

Chu described in [16] the Universal Asynchronous Receiver and Transmit-

ter (UART) as ”a circuit that sends parallel data through a serial line.

UARTs are frequently used in conjunction with the EIA (Electronic Indus-

tries Alliance) RS-232 standard, which specifies the electrical, mechanical,

functional, and procedural characteristics of two data communication equip-

ment”. There are different baud rates available for UART and the config-

uration of a UART can be set to using a parity bit, or to one or two stop

bits. Every UART message has 8 bits of data and as there is no clock on the

UART line both the receiver and the transmitter have to agree on a clock

before starting the communication. Figure 2.9 shows the transmission of a

byte via UART.

Figure 2.9: Transmission of a byte via UART.

2.5 PDCP

The Prosthetic Device Communication Protocol (PDCP) was developed by

UNB and is set on layer 3 of the ISO OSI Reference Model, which is shown in

Figure 2.8. Initially designed for abstraction of the lower 2 layers the PDCP

enables the design of a device not to be bound to its underlying system.

Thus, once configured, any device connected to the PDCP must be able to

store its configuration, so that reconfiguration of the device at a later point

in time is easier.

To be able to achieve this abstraction the PDCP uses a Bus Arbitrator

13
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(BA) to assign every connected node a node ID. The BA is also the first

device that needs to be connected to the bus, as all other nodes try to ask

the BA for a node ID during startup. To be able for the BA to assign a node

an ID each node needs to be uniquely identifiable. This is done using the

devices vendor ID, product ID, and serial number. During a bind request

the requesting node transmits those IDs and the BA then assigns this node

the next available node ID if the BA does not recognize the calling node, or

if recognized it transmits the previous assigned node ID to the node. Before

initialization the topology of the setup can be as shown in Figure 2.10. Once

configured the topology can be as shown in Figure 2.11.

Figure 2.10: The underlying architecture before initialization.

Figure 2.11 also shows that nodes can have multiple inputs and outputs.

Each node who wants to communicate with another node on this PDCP

can ask the BA for a so called data channel link to another node. Every

data channel link receives its own ID, making it easier for the sending and

receiving devices to communicate with each other. This means, that e.g. a

node with ID 0x02 and a node with ID 0x03 may have a data channel link

with the ID 0xA0. If node 0x02 wants to send data to 0x03 then it wraps

a CAN message with the ID 0xA0 to directly communicate with node 0x03.

This has the advantage that node 0x03 directly knows where the message is

coming from.

When wrapping the CAN message the 11 bit Standard Identifier field is seg-

14
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2.5 PDCP

Figure 2.11: A possible topology after initialization.

mented into three parts: the first two most significant bits for the message

priority, one bit for the message mode and eight bits for the node ID. Figure

2.12 shows this. The message priority is either set to 002 for high priority,

012 for normal priority, 102 for low priority or 112 for bind requests. The

message mode is always 12 for the BA and 02 for all other devices. The full

table of the available commands in PDCP can be found in the Appendix

A.1. The full specification of how these commands have to be used can be

found in [17].

Figure 2.12: The segmentation of the Arbitration Field in PDCP.

15
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3 Related Work

The field of this project is bus monitoring using hardware devices such as

FPGAs and microcontrollers. As there are other existing solutions avail-

able, these solutions need to be introduced as well. Furthermore, a problem

formulation is given in order to show why the existing solutions are not

sufficient.

3.1 Bus Monitoring

Much research has been conducted in the field of bus monitoring, and not

only limited to the CAN bus. Bochem et al showed in [18] an approach

for monitoring the CAN bus using an Altera DE2 development board with

two different CAN controllers connected to it. This design has been done in

Verilog using different IP cores.

Kashif et al showed in [19] an implementation of a CAN bus analyzer using

Verilog on Spartan 3E and Vertex 2 Pro FPGAs. They implemented an 8051

microcontroller with external RAM and two Philips SJA1000 standalone

CAN controllers. Furthermore they wanted to be able to inject further data

on the bus with their solution.

Li et al showed in [20] a design for monitoring the CAN bus as well. They

utilized for their solution two PCs and a ”USB-CAN smart card” [20]. This

embedded device interfaces with two nodes to the CAN bus. Incoming or

outgoing messages are processed by an onboard microcontroller and then

sent to the bus or to the PC, respectively.

Another FPGA based softcore processor implementation on monitoring the

CAN bus has been done by Mostafa et al in [21]. Their system could be

controlled and configured using a RS232 compatible UART block. Further-

more, they also provided the ability to inject errors onto the bus.

Using a CPLD to monitor the CAN bus Yang et al showed in [22] their

approach to monitor the CAN bus. The CPLD is used for logic control
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and for the redundancy strategy, which interfaces to the CAN bus with two

transceivers. These formatted messages are then passed to an ARM mi-

crocontroller which does further processing of the data. As they are using

their approach on a space robot arm the whole embedded block is shielded

against electromagnetic waves and ions[22]. For their implementation they

used VHDL.

Other approaches using an FPGA to monitor a system have been shown

by Mendoza-Jasso et al in [23] and by Zamantzas et al in [24] who were

monitoring the Large Hadron Collider’s (LHC) beam loss in CERN in real-

time. As the PDCP is currently only being used in the UNB hand there is

no related work on monitoring this protocol.

The main difference between this project’s solution and the shown solu-

tions is that this approach is able to monitor the bus load on the CAN bus

in real-time with the ability to monitor different modules simultaneously,

creating only bus load statistics for these nodes. Furthermore, this solution

is able to interpret the messages according to a protocol that is built atop

the CAN bus and is also able to configure different parameters depending

on the devices that are on the bus.

3.2 Problem Formulation

There are already existing solutions to monitor the CAN bus using a mi-

crocontroller as shown in Chapter 3.1. In [25] a solution has been shown

to monitor the CAN bus using a FPGA. All of the solutions are only mon-

itoring the first two layers of the ISO OSI reference model. The PDCP as

introduced in Section 2.11 sets atop of the CAN layer and needs its own

monitoring as it provides transparency for the underlying bus system. As it

is possible to create data and channel links a solution is needed that moni-

tors these specific channels. Thus it is needed to start listening on the bus

before other nodes register, so that the solution can identify the modules

with their corresponding links.
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The PDCP furthermore specifies different functions which also need to be

logged and analyzed. Therefore an implementation of the full PDCP is

needed as well. The proposed solution will feature a microcontroller that is

connected to the CAN bus with the ability to receive CAN messages and

interpret these messages according to the PDCP. Furthermore the MC will

receive the bus load data from a FPGA that is connected via UART to the

MC. With the PDCP messages and the bus load data the MC will create

usage statistics of the system. The solution will also be capable of reading a

user-specified configuration from a microSD card. All output data files will

be stored in a human-readable way on the microSD card as well.

18



D
RA
FT

4 Design

To be able to specify the design for this project at first the requirements

need to be formulated. With these requirements it is then possible to make

decisions for the hardware design. After that it is possible to decide on the

software to use.

4.1 Requirements

For this project the requirements are as follows:

• Usage of a microcontroller and an FPGA board.

• The microcontroller code has to be programmed in C.

• The code from the previous project needs to be ported to a smaller

FPGA board.

• The FPGA board should send the CAN bus load data to the micro-

controller via UART.

• The microcontroller should be able to read and write on the CAN bus.

• The PDCP should be implemented in the microcontroller.

• Output files should be generated for the analysis of the PDCP and

CAN bus.

In the previous project[11] the CAN bus monitor has been developed on the

Altera DE2 Development and Education Board[26]. As this board is too

large for everyday use, it has too many unused functionality on the board

itself, the project needs to be ported to a smaller FPGA board. For the

analysis of the PDCP and CAN bus data a microcontroller needs to be used

and it should be programmed in C. This has the advantage that C is a high

level language and can be more easily extended than other microcontroller

languages, such as Assembler.

The FPGA board itself should send the bus load data according to the

protocol specified in [11] to the microcontroller. Thus the microcontroller
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needs to follow the same protocol. Furthermore it should be able to read and

write to the CAN bus. When being connected to the PDCP setup the mi-

crocontroller needs to register itself with the BA. Therefore a write method

for the CAN bus is also needed. The PDCP itself needs to be implemented,

so that it is possible for the microcontroller to interpret the messages ac-

cordingly. Finally, output files need to be generated, so that it is possible

for a user to view the activity on the bus on a PC in a human-readable way.

4.2 Design Decisions

With the requirements shown in Section 4.1 the hardware to use can be

narrowed down. As hardware limits the range of software which can be

used the software decisions can only be made after the hardware is decided.

4.2.1 Hardware

As this project consists of two different parts, which have been separated

by the hardware itself, design decisions needed to be made individually. For

the FPGA part the Altera DE0-nano[27] board will be used, which has been

briefly introduced in Section 2.3. In comparison to the Altera DE2 board

the DE0-nano board features a Cyclone IV FPGA with 22,320 logic gates.

These are less gates than the FPGA on the DE2 board, but the project only

utilizes about 16,000 logic gates, so it can easily be fitted into the FPGA of

the DE0-nano board. Furthermore this board lacks most of the hardware

functionality that the DE2 board has, thus an external LCD will be con-

nected to one of the GPIO ports to be able to display the output messages.

The second part of this project is done on a microcontroller. It will be done

on the Microchip dsPIC33E USB Starter Kit which has been introduced in

Section 2.1.2. The dsPIC33E board will be connected to the Microchip Mul-

timedia Expansion Board that was introduced in Section 2.2. For debugging

purposes the onboard LCD screen of the MEB will be used. The MEB itself

has a microSD card slot which will be used for storing the analyzed data

and for reading the user configuration.
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Figure 4.1: The bus arbitrator and the data monitor.

To be able to evaluate the working of the CAN and PDCP code external

hardware will be used. This hardware setup has been created by the Insti-

tute of Biomedical Engineering (IBME) at the University of New Brunswick

and it contains the BA, a data monitor, and two electrodes. The BA and

the data monitor can be seen in Figure 4.1. The electrodes contain a module

which wraps the read values in a PDCP message and sends them over the

CAN bus. An example of the electrode board can bee seen in Figure 4.2.

All of the modules are connected via one CAN bus. The CAN RX and TX

wire, as well as the GND wire, will be connected to the expansion header

of the MEB. Furthermore the hardware setup provides two additional wires

for UART TX and GND for the FPGA board. These two wires will also

be connected to the MEB. As the pins on the expansion header are used

for different functionality than in their specification, these pins need to be

reconfigured before addressing them in the code.

4.2.2 Software

For the FPGA part the Altera Quartus II[28] IDE will be used as this is

the best supported IDE for programming Altera FPGAs. The version used

for this project is Altera Quartus II 11.1 on a Ubuntu 11.10 64-bit machine.

Quartus supports the most common HDLs Verilog and VHDL, as well as the

Altera-proprietary AHDL. Thus, only the code from the Altera DE2 board

programmed in Altera Quartus II 11.0 has to be ported to the DE0-nano

board with pin and voltage modification.
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Figure 4.2: Electrodes that operate using the PDCP.

The microcontroller can be programmed by using the Microchip MPLAB

C30 compiler[29], which is a compiler toolchain for the Microchip PIC24,

dsPIC30F and dsPIC33F families. On top of this the Microchip MPLAB X

IDE v1.0[30] will be used. The programming of the microcontroller will be

done on a Ubuntu 11.10 64-bit machine as well as on a Mac OS X 10.7.2

64-bit machine. Figure 4.3 shows a screenshot of the MPLAB X IDE.

Figure 4.3: Basic layout of the MPLAB X IDE.
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The architecture of this project will be shown in Subsection 5.3.1. The

project has been designed top-down, meaning that every problem has been

split into smaller problems as often as possible. Afterwards the implementa-

tion has been done bottom-up, which means that starting from the smallest

problem the implementation has been done in a hierarchical way to the top-

most problem. But before actually being able to debug the code a driver for

the LCD needed to be implemented. With this driver and simple display

printing routines the debugging of the solution of the problems can be sim-

plified. The next chapter will explain what code has been reused, as well as

how the porting of the code to another FPGA board has been achieved, and

finally give implementation details about the different problems and how

these modules interact with each other.
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The first thing to do when implementing a bigger project is to look for code

which can be reused, so that not every part of the code needs to be written

from scratch. This applies to the microcontroller part as well as to the

FPGA part. After that the porting of the code from the Altera DE2 board

as shown in [11] to the Altera DE0-nano board is shown. Following this the

architecture and the details of the microcontroller implementation is given

as well as the interaction of the modules inside the microcontroller.

5.1 Usage of Existing Code

Microchip provided demo code for programming the MEB using the dsPIC33E

USB Starter Kit. This includes a demo for the onboard LCD as well as for

the accelerometer and the SD card. The LCD code has been modified to fit

this project’s purpose of debugging the code quicker than with the built-in

debugging tools. With this modified code it is possible to display messages

on the LCD which reflect what happens when the code is running. Figure

5.1 shows the debug output for the config file. The SD card demo code is

not working out-of-the-box with the dsPIC33E board, as it has been writ-

ten for the Microchip Memory Disk Drive File System (MDDFS) which is

not compatible with the dsPIC33E board[31]. Thus the accelerometer demo

code has been used and modified to work with the SD card demo code for

the MDDFS. For this to work the CPLD onboard the MEB needed to be

configured first:

1 CPLDInitialize ();

2 CPLDSetGraphicsConfiguration(GRAPHICS_HW_CONFIG);

3 CPLDSetSPIFlashConfiguration(SPI_FLASH_CHANNEL);

The first command initializes the CPLD by setting the corresponding pins

for the MEB to allow the configuration of the CPLD. In order to write

to the LCD the second line is needed, which tells the onboard Solomon

SSD1926 controller to allow writing to the LCD. The last line tells the

Solomon SSD1926 controller to use SPI for addressing the microSD card.

For writing to the LCD the provided libraries from Microchip have been
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Figure 5.1: Debug messages displayed during startup.

used and extra functionality has been added. This includes the writing of

strings in different output formats: NORMAL, DEBUG, INFO, WARNING, and

ERROR. The output formats NORMAL, INFO, and WARNING display the output

on the LCD and then continue with the program. Their only difference is

in the colour that is used for displaying messages. The format DEBUG only

prints the text if the debug switch has been set in the configuration file.

ERROR displays the error that occurred and halts the program. This is used

if needed functionality cannot be provided and the program has no option to

continue, e.g. if the SD card is missing. During the evaluation of this project

the LCD will be referenced more often, as it sometimes has been crucial to

see what was happening without having to look at the internal registers

and memory in the debugger view. Furthermore the LCD methods were

enhanced to halt the program flow temporarily when too many messages

were displayed, so that the user has to touch the screen to continue with the

program.

5.2 Porting the Code from the DE2 to the DE0-nano Board

The FPGA code as shown in [11] has been developed for the Altera DE2

Development and Education board. As the Altera DE0-nano board uses a

different FPGA changes in the code needed to be made. This also includes
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Node Name Old Pin Assignment New Pin Assignment Voltage

CLOCK_50 PIN_N2 PIN_R8 2.5V

LCD_DATA[7] PIN_H3 PIN_E7 2.5V

LCD_DATA[6] PIN_H4 PIN_D8 2.5V

LCD_DATA[5] PIN_J3 PIN_C8 2.5V

LCD_DATA[4] PIN_J4 PIN_E6 2.5V

LCD_DATA[3] PIN_H2 PIN_A7 2.5V

LCD_DATA[2] PIN_H1 PIN_C6 2.5V

LCD_DATA[1] PIN_J2 PIN_B7 2.5V

LCD_DATA[0] PIN_J1 PIN_D6 2.5V

LCD_EN PIN_K3 PIN_B6 2.5V

LCD_POWER N/A PIN_F13 3.3V

LCD_RS PIN_K1 PIN_A5 2.5V

LCD_RW PIN_K4 PIN_A6 2.5V

TxDWire PIN_E25 PIN_T11 2.5V

Table 1: The pin assignment and the voltages for the Altera DE0-nano board.

changes in the pin assignment, as the DE0-nano board does not feature a

LCD and an external LCD had to be connected via one of the GPIO boards.

The pin assignment as well as their corresponding voltages can be seen in

Table 1. All of the pins except the LCD_POWER pin run at a voltage of 2.5V.

The LCD_POWER pin needs to run at 3.3V in order for the data pins to work

at 2.5V[32]. The LCD itself features the same controller as the LCD on the

Altera DE2 board, thus the existing code can be reused without modifica-

tion. The LCD on the DE2 board does not need a power connection as it

automatically receives power from the board.

Furthermore the implementation for the seven segment LEDs is not needed,

as the DE0-nano board does not feature any seven segment LEDs. In order

to be able to select the module that has to be displayed two of the push

buttons on board of the DE0-nano board have been used. Their wiring is

as shown in Table 2.

To now be able to select a module the push buttons have been implemented

26



D
RA
FT

5.2 Porting the Code from the DE2 to the DE0-nano Board

Node Name Pin Assignment Voltage

KEY[1] PIN_E1 2.5V

KEY[0] PIN_J15 2.5V

Table 2: The pin assignment and the voltages for the push buttons.

so that pressing button KEY[1] increments the module counter and KEY[0]

decrements the module counter. This has been realized using a state ma-

chine:

1 always@(posedge clock)

2 begin

3 case(inputButtons)

4 2’b10: // key 1 pressed

5 begin

6 if (! buttonPressed)

7 begin

8 outputNumber = outputNumber - 1;

9 if (outputNumber > 32)

10 outputNumber = 32;

11 buttonPressed = 1’b1;

12 end

13 end

14

15 2’b01: // key 0 pressed

16 begin

17 if (! buttonPressed)

18 begin

19 outputNumber = outputNumber + 1;

20 if (outputNumber > 32)

21 outputNumber = 0;

22 buttonPressed = 1’b1;

23 end

24 end

25

26 2’b00: // no button pressed

27 buttonPressed = 1’b0;

28

29 // this implementation ignores the case when both buttons

are pressed
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30 endcase

31 end

The advantage of using a state machine is that each of the four possible

cases can be handled individually: button 1 is pressed, button 0 is pressed,

no button is pressed, both buttons are pressed. Furthermore a register is

used which only increments or decrements the value once as long as a button

is being pressed. If no button is pressed this flag is cleared and pressing

another button will then do its corresponding function.

5.3 Architecture

The architecture itself is first explained in an overview. Succeeding, the low

level and high level functions are explained.

5.3.1 Overview

The project has been divided into several parts. Thus it contains different

modules according to their functionality. For the software part the GRASP

pattern of high cohesion and low coupling according to [33] has been used.

This results in different modules with every module being responsible for

their own part of functionality. These modules are:

1. SD Card Module

2. CAN Bus Module

3. UART Module

4. PDCP Module

5. Statistics Module

The first three modules contain the low level drivers in order to access the

SD card for (1), accessing the CAN bus for (2), and interfacing via UART

for (3). Furthermore it has been decided to include the high level part of

the software also in these modules, so that each module is closed for their

functionality. Thus it is easier to access the different functionality, as well as

to add more functionality, e.g. new hardware or software methods. As this
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project has been realized using the MEB the advantage of having a LCD

has been used as well. Thus the high level LCD methods are also included

in the statistics module.

The implementation details of the SD card module are discussed in Sub-

section 5.3.2, the CAN module is discussed in Subsection 5.3.3, the UART

module in Subsection 5.3.4, the PDCP module in Subsection 5.3.5, and fi-

nally the statistics module as well as the LCD methods in Subsection 5.3.6.

After explaining the implementation details of every module the interaction

of every module will be shown in Section 5.4.

5.3.2 SD Card Driver

As shown in Section 5.1 the CPLD needs to be initialized before being able

to address the microSD card on the MEB. After this has been done the

low level functions provided by Microchip in their MDDFS example can be

used. These functions include opening and closing a file, changing, creating,

and removing a directory, reading, writing, and seeking in a file, as well as

flushing the data that is still in the buffers.

High level functions have been put atop of these, which are:

1 void doFileSystemInit ();

2 int getCounter ();

3 char *getConfigItem(char *item , char *config);

4 void readConfig(FSFILE *pointer);

5 void writeFile(FSFILE *pointer , const char *text);

6 void saveToStatistics(const char *data);

7 void saveToLog(const char *data);

8 void saveMessage(BYTE_BITS message [16]);

The only methods that need to be called by other modules are doFileSystem

Init(), saveToStatistics(...), saveToLog(...), and saveMessage(...).

The first method initializes the filesystem by reading the config files from

the microSD card. For this two different files need to be present on the

microSD card: config.txt and counter.txt. A possible config.txt can

look like this:
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1 debug=1

2 dataDump =1

3 maxModules =3

4 module0 =1

5 module1 =2

6 module2 =3

7 moduleDump0 =0

8 moduleDump1 =1

9 moduleDump2 =0

10 pid =66

11 vid =4919

12 sn=35

13 nodeid =7

The first item toggles debug messages on and off. With the option dataDump

it can be toggled that every CAN message that arrives will be saved in the

log file. maxModules specifies how many modules will be monitored. After

that for the amount of modules specified two options are expected to be

present: modulex (0 ≤ x < maxModules) expects the node ID of the module

that needs to be monitored and moduleDumpx (0 ≤ x < maxModules) speci-

fies if every message with this node ID needs to be logged. The options pid,

vid, and sn specify the devices product ID, vendor ID, and serial number,

respectively. Furthermore it is also possible to assign a node ID to this de-

vice with the option nodeid, but this node ID might be changed by the BA

during runtime.

The second configuration file that is needed is counter.txt, which only

needs to include a positive integer variable, in order for the program to

create independent logging and statistics files for every time this device is

used. These files are log_x.txt and stat_x.txt, with x being the value

from counter.txt.

With the methods saveToStatistics(...) and saveToLog(...) a string

can be written to the statistics and logging file, respectively. In order to

save a message to the logging file the method saveMessage(...) is utilized,

which takes BYTE_BITS[16] as an input and converts these 128 bits to a

hexadecimal number and puts it into a string.
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The method getCounter() reads from the file counter.txt and returns

the read integer. readConfig(...) reads the configuration from the spec-

ified parameter. In order to look for specific options in a configuration file

the method getConfigItem(...) searches in the variable config for the

item item and returns its value.

Finally, the method writeFile(...) writes text to the specified file pointer

which needs to be opened before calling this method. The methods saveTo

Log(...) and saveToStatistics(...) make use of this method.

5.3.3 CAN Driver

The CAN RX and TX wire have been connected to the C2OUT/AN9 port

for CAN RX and to the RA10 port for CAN TX of the MEB according to

[34]. These pins map to RPI41 for CAN RX and RA10 of the Microchip

dsPIC33EP512MU810 microcontroller. Before being able to reprogram the

pins all reprogrammable pins need to be unlocked with the following state-

ment:

1 __builtin_write_OSCCONL(OSCCON & ~(1 << 6));

This is an internal function that unlocks the reprogrammable pins according

to [4]. The reprogramming of the CAN RX pin can then be done as follows:

1 RPINR26bits.C1RXR = 0x2900;

This maps the C1RX pin of the on-board ECAN module to pin RPI41. After

the necessary pins have been reprogrammed the reprogrammable pins need

to be locked again:

1 __builtin_write_OSCCONL(OSCCON | (1 << 6));

The CAN Module itself contains the driver for the CAN bus as two in-

terrupts, one for RX and one for TX. Furthermore it contains high level

methods for generating statistics, wrapping of data into CAN messages,

calculating CRC, interpreting CAN messages, as well as the initialization:

1 void doCANInit ();

2 void BARegister ();
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3 void generateCANStatistics(unsigned short msgId , unsigned short

length);

4 void calculateCRC(BYTE_BITS message [8], BYTE_BITS dlc);

5 void createCANMessage(BYTE_BITS message [8], BYTE_BITS dlc ,

BYTE_BITS priorityAndMode);

6 void sendMessage(BYTE_BITS message [8], BYTE_BITS dlc , BYTE_BITS

priorityAndMode);

7 void interpretCANMessage ();

8 void __T1_ISR _T1Interrupt(void);

9 void __T5_ISR _T5Interrupt(void);

10 void fakeCANMessage ();

The methods doCANInit(), BARegister(), and sendMessage(...) are the

only methods that need to be accessed from other modules. All other meth-

ods are internal methods. doCANInit() resets the variables for this module,

sets the mode for PDCP to be unregistered with the BA, and reconfigures

the CAN RX pin. The activation of the interrupts for CAN RX and CAN

TX could have been done in there, but it has been decided to put them in

the basic system device initialization. In there all of the different interrupts

are initialized at once. This method can be found in interrupts.c and is

called initializeTimers().

To be able to register this device with the BA in a PDCP system the

method BARegister() needs to be triggered by the main loop. It acts

as a state machine depending on the current state the registration process

is in: BIND_REQUEST, RETRY_BIND_REQUEST, ACK, WAIT_FOR_RESPONSE,

and SUCCESS. The first two states have the same behaviour, as in there a

Bind Device Request message for the BA will be created according to the de-

vice’s vendor ID, product ID, and serial number. At first a predefined node

ID will be used to send this message. If the BA gave the device a different

node ID this ID will be used for retrying the Bind Device Request. After

sending the message the state changes to WAIT_FOR_RESPONSE. If the BA has

responded with a node ID for this device, the PDCP interpretation module

changes the state of this state machine either to RETRY_BIND_REQUEST or

ACK depending on the outcome of the message. If the state ACK has been

reached an internal flag is toggled to signal the microcontroller that it is
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successfully bound to the BA and the state changes to SUCCESS. This is an

empty state which cannot be left.

When a new CAN message has arrived the method interpretCANMessage

is triggered. In there the message is split into message mode, message pri-

ority, and message ID. After that it is checked if this module needs to be

monitored. If the module needs to be monitored or if a data dump happens,

the length of the message is then added to the corresponding module load

variable by the method generateCANStatistics(...). Furthermore this

CAN message is passed on to the PDCP interpretation module, which is

explained in Subsection 5.3.5. For instance, if the following CAN message

is received:

00 70 e0 22 66 e0 08 40 04 60 00 2f f,

the interpretation of this message would only lead to message is from ID 7,

it has a DLC of 7, and the data is 01 13 37 00 42 00 23. Any interpreta-

tion of what this actually means is done in the PDCP interpretation module.

During debugging and evaluation of this project an additional method has

been used: fakeCANMessage(). This method emulates the reception of a

predefined CAN message. The result of this is that the main loop then

thinks a new CAN message has arrived and interprets this message.

5.3.4 UART Driver

For this project it was only necessary to be able to receive messages via

UART. Thus only the following methods were implemented:

1 void doUARTInit ();

2 void __T2_ISR _T2Interrupt(void);

3 void fakeUARTMessage ();

As explained in Subsection 5.3.3 all interrupts are activated in interrupts.c.

This also applies to the UART RX interrupt. The method doUARTInit()

resets the variables needed for this module and reprograms the pin for the

internal UART module. The UART RX wire has been connected to pin

SDI1A on the expansion header of the MEB. This pin maps to RP98 on the
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dsPIC33EP512MU810 microcontroller. The following code shows how to

reprogram the U1RX to this pin:

1 RPINR18bits.U1RXR = 0x6200;

This remapping also requires the pins to be unlocked before reprogramming

and locking them again after being done.

The ISR for UART RX waits for a 0 at the beginning, as a 0 signalizes

that a new UART frame is coming. After that it saves the next eight bits.

In [11] the UART has been configured to operate at a bit rate of 115,200

kbps with two stop bits and no parity bits. Thus this ISR is triggered ev-

ery 1042 microcontroller clock ticks. When a full UART frame has been

received the ISR signals the main loop that a new message is waiting. It has

been decided that the interpretation of this message has been put into the

statistics generation module, as all UART messages are already interpreted

by the FPGA and can be directly used for updating the statistics.

The UART module, as well as the CAN bus module, includes a method

for emulating the reception of a predefined UART message. This has been

used in order to easily debug and evaluate the working of this module.

5.3.5 PDCP Interpreter

After the CAN module as shown in Subsection 5.3.3 has interpreted the

basic layout of the CAN message it passes the message over to the PDCP

interpreter, which segments the message according to the PDCP. For this

it uses a state machine according to the first byte of the data field of the

message. The full list of implemented functions is shown in Table A.2. The

PDCP function table in the Appendix shows all functions that are specified.

Some of them are not used anymore.

Depending on the function code zero to seven bytes of additional data have

to be interpreted. As the implemented project needs to be able to con-

nect and register itself with the BA the function for Bind Device Request

Response have to check if the device itself is meant:

34



D
RA
FT

5.3 Architecture

1 if (checkIfBytesAreEqual(data[2], vendorID [1]) &&

2 checkIfBytesAreEqual(data[3], vendorID [0]) &&

3 checkIfBytesAreEqual(data[4], productID [1]) &&

4 checkIfBytesAreEqual(data[5], productID [0]) &&

5 checkIfBytesAreEqual(data[6], serialNumber [1]) &&

6 checkIfBytesAreEqual(data[7], serialNumber [0]) &&

7 !successfullyBound) {

8 if (checkIfBytesAreEqual(data[1], nodeID))

9 BARegisterState = ACK;

10 else {

11 nodeID.Val = data [1]. Val;

12 BARegisterState = RETRY_BIND_REQUEST;

13 }

14 }

PDCP Function Code Description

0x01 Bind Device Request

0x03 Get Device Parameter

0x04 Set Device Parameter

0x08 Suspend Device

0x09 Release Device

0x0A Device Beacon

0x0B Reset Device

0x0C Configure Get Bulk Data Transfer

0x0D Configure Set Bulk Data Transfer

0x0E Bulk Data Transfer

0x0F Update Data Channel

0x81 Bind Device Request Response

0x83 Get Device Parameter Response

0x84 Set Device Parameter Response

0x88 Suspend Device Response

0x89 Release Device Response

0x8B Reset Device Response

0x8C Configure Get Bulk Data Transfer Response

0x8D Configure Set Bulk Data Transfer Response

0x8E Bulk Data Transfer Response

0x8F Update Data Channel Response

Table 3: The implemented PDCP functions.
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As the Bind Device Request Response includes the vendor ID, as well as the

product ID and serial number, during interpretation it needs to be checked

if they are the device’s IDs. The method checkIfBytesAreEqual(...)

takes two BYTE_BITS, which are 8 bits wide, as an input and compares them

against each other as there is no method implemented to compare them by

e.g. if (byte1 == byte2):

1 short checkIfBytesAreEqual(BYTE_BITS byte1 , BYTE_BITS byte2) {

2 if (byte1.bits.b0 == byte2.bits.b0 &&

3 byte1.bits.b1 == byte2.bits.b1 &&

4 byte1.bits.b2 == byte2.bits.b2 &&

5 byte1.bits.b3 == byte2.bits.b3 &&

6 byte1.bits.b4 == byte2.bits.b4 &&

7 byte1.bits.b5 == byte2.bits.b5 &&

8 byte1.bits.b6 == byte2.bits.b6 &&

9 byte1.bits.b7 == byte2.bits.b7)

10 return 1;

11

12 return 0;

13 }

If for instance the message 00 70 e0 22 66 e0 08 40 04 60 00 2f f is

received the PDCP interpreter will recognize the node ID as 7, with the

message having a priority of 0 and being sent in mode 0 with the message

to be a Bind Device Request by a node with vendor ID 0x1337, prod-

uct ID 0x0042, and serial number 0x0023. After interpreting the mes-

sage the PDCP module generates output messages that then will be saved

to the logging and statistics file. If the device is known to the program

the output message will be changed accordingly to the known devices, e.g.

can bus analyzer: bind device request instead of 0x23: bind device

request.

5.3.6 Statistics Generation

The statistics generation module is coupled with the LCD, as the LCD is only

being used for displaying statistics. Therefore this module includes the low-

level LCD driver, as well as high-level LCD functions. As shown in Section

5.1 a method named printText(...) has been implemented to put strings
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on the display. Furthermore, the methods putStatisticsOnDisplay() and

showIntro() belong to the LCD high-level functions. The second method

only shows some pre-defined strings at the startup of the program, which

can be freely changed in order to e.g. display a disclaimer. The first method

prints the outline of the main interface on the LCD:

1 SetColor(LIGHTGRAY);

2 SetFont ((void *) &GOLSmallFont);

3 while (! OutTextXY(0, 0, "CAN Bus Analyzer Tool"));

4 while (! OutTextXY(0, 12, identification));

5 while (! OutTextXY(0, 40, "Last CAN Message:"));

6 while (! OutTextXY(0, 80, "Last UART Message:"));

7 while (! OutTextXY(0, 120, "Bus Load:"));

8 while (! OutTextXY(0, 160, "Last Action:"));

9

10 SetColor(BLUE);

11 SetFont ((void *) &GOLSmallFont);

12 while (! OutTextXY(0, 228, "(c) 2011 -2012 UNB"));

The method OutTextXY(...) has been implemented by Microchip and al-

lows the printing of text onto the display on a position (x, y) that is given as

the first two parameters. The functions SetColor(...) and SetFont(...)

are responsible for changing the colour and the font, respectively. A colour

can be chosen by converting the tuple (R,G,B) with 0 ≤ R,G,B < 28 to

a colour value, with R being responsible for the red part of the colour, G

for green, and B for blue. The bit value can then be converted by using

the Microchip implemented macro RGB565CONVERT(...), e.g. the colour red

would be implemented as RGB565CONVERT(255, 0, 0). Microchip provided

different font types for the font used for displaying text. They also provided

a tool that allows the conversion of user-installed fonts from the host PC

into a format that is compatible with the Microchip dsPIC33E MC family.

If the sample period has passed an interrupt is called which raises a flag

for the statistics module in order to sample the current values and update

the output files. The method that is called is sampleAndUpdate(). The sam-

ple rate of this method has been set to one second, but it can be changed

by setting the prescaler and ticks for timer 3 to different values in the file
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interrupts.c:

1 PR2 = 5000;

2 T3CONbits.TCKPS = 3

The prescaler has been set to 256 with the ticks counter at 5000. The clock

frequency of this project is 32 MHz. This results in the timer 3 to toggle an

interrupt 32 ∗ 106/(256 ∗ 5000) = 25 times a second. In order to achieve a

sample rate of one second the sampleAndUpdate() method needs to become

active every 25 times the interrupt has been triggered. In order to achieve

this behaviour the ISR for timer 3 checks if the variable displayUpdateFlag

is set to 25 and then toggles the updateDisplay variable which signals the

statistics module to become active:

1 if (displayUpdateFlag ++ == 25) {

2 displayUpdateFlag = 0;

3 updateDisplay = 1;

4 }

The statistics module then updates the values on the display (see Appendix

Chapter A.3 for the corresponding code) and calculates the overall bus load

depending on the raw value received by the FPGA:

1 load = 1.0 * overallLoad / 1000;

2 loadPercent = 1.0 * overallLoad / MAXLOAD / SAMPLERATE;

As overallLoad is an integer an explicit type-cast has to be done in order to

receive floating point numbers for the division. MAXLOAD is set to 1000000,

which is the bitrate of the CAN bus and SAMPLERATE is set to 1, as the

method is triggered once a second.

As the PDCP interpreter already saved a string depending on the PDCP

message received the statistics module can directly use this string and write

to the output file. In the statistics output file at every sampling point the

overall bus load as well as the bus load of the monitored modules is written:

1 sprintf(text , "overall =%8l ", overallLoad);

2 saveToStatistics(text);

3 overallLoad = 0;

4 for (i = 0; i < maxModules; i++) {

5 sprintf(text , "%02x: load =%08d", moduleNumber[i], moduleLoad[

i]);
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6 saveToStatistics(text);

7 moduleLoad[i] = 0;

8 }

The received CAN message as well as its interpretation by the PDCP is

written to the logging file:

1 saveToLog(oldCANMessage);

2 saveToLog(action);

5.4 Interaction of the Modules

A diagram containing all the modules in the microcontroller can be seen in

Figure 5.2. This diagram also shows how the FPGA is connected to the

microcontroller and how it interacts with the CAN bus and the microcon-

troller. The full architecture of the FPGA is shown in [11].

Figure 5.2: The microcontroller architecture design.

The MC is directly connected to the CAN bus via the CAN Bus Driver

and is able to receive and transmit messages from and to the bus. The
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FPGA on the other hand only has receiving capabilities as it does not need

to be able to write anything on the bus. With the help of the ECAN module

inside the dsPIC33EP512MU810 MC most low-level features are already im-

plemented in hardware. The high-level part of the CAN Bus Driver receives

messages from the CAN bus and passes them on to the PDCP Interpreter.

The PDCP Interpreter only includes high-level functions and after it is done

with the calculation it sends the Statistics Generation module the inter-

preted message. Via the UART Driver the MC is capable of receiving mes-

sages via UART from the FPGA (see [11] for protocol details). The Statis-

tics Generation module takes the received values from the UART Driver and

the interpreted messages from the PDCP Interpreter and creates statistics,

which then are written by the SD Card Driver to the microSD card. The

SD Card Driver is also responsible for reading files from the microSD card.

Not shown in Figure 5.2 is the interrupts module which has been left out

of the diagram to increase the readability. This module is responsible for

configuring and activating the interrupts. It does not include the ISRs itself,

as these are being handled by their corresponding modules.
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The evaluation of this project is done by first explaining the approach. Then

the FPGA part and the microcontroller part are evaluated and finally the

results are explained.

6.1 Approach

To be able to evaluate this project the evaluation has been split according

to its functionality. After every part has been evaluated on its own the

whole project can be evaluated. For the evaluation of the low-level part of

the microcontroller as well as for the FPGA a digital oscilloscope and logic

analyzer will be used to analyze the signals received and transmitted. The

tool that is used is the USBee DX and can be seen in Figure 6.1.

Figure 6.1: The USBee DX oscilloscope and logic analyzer[35].

At first the FPGA part will be evaluated. The evaluation of the porting of

the design from the Altera DE2 to the Altera DE0-nano board is shown in

Section 6.2. This is done by looking at the CAN driver, the UART driver,

the LCD driver, and the load calculation.

After that it is possible to evaluate the microcontroller. As the micro-

controller architecture has been split into low-level drivers and high-level

functionality the evaluation will look at both aspects separately at first.
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The low-level drivers are evaluated in Subsection 6.3.1, the high-level func-

tions evaluation is shown in Subsection 6.3.2. This chapter concludes with

the evaluation of the whole project in Section 6.4.

6.2 The DE0-nano Code

The evaluation of the project on the Altera DE2 board has been shown in

[11]. Following this evaluation approach at first the LCD will be evaluated,

then the UART module, the CAN driver, and finally the load calculation

module.

The LCD connected to the Altera DE0-nano features a HD44780 compati-

ble controller[36], which is the same controller as on the Altera DE2 board.

In order to make sure that the LCD is running correctly the correct input

voltages have to be chosen. The datasheet for the LCD specifies that it can

be run at either +5V or +3.3V [36]. The Altera DE0-nano board features on

both GPIO ports pins with VCC SY S = +5V and VCC3P3 = +3.3V . Unfor-

tunately all of the data pins can only be driven with a maximum of +3.3V

which disallows the usage of the +5V operation mode, as the input high

voltage has to be at least +3.5V [36]. Thus the data pins have to be set to

be between +2.3V and +3.3V for high voltage and below +0.6V for low

voltage. The voltages have been set as shown in Table 1. After the voltages

have been set accordingly the LCD code can be evaluated. As the controller

of the LCD is fully compliant to the controller of the Altera DE2 board the

code was working directly with the same behaviour as on the Altera DE2

board.

In order to be able to evaluate the UART driver the USBee DX oscillo-

scope and logic analyzer has been connected to the UART TX pin of the

Altera DE0-nano board. As the board has to follow the same protocol as

shown in [11] it has to be made sure that it is configured at a baudrate of

115.200 kbps with two stop bits and no parity bit. The protocol for sending

the data is as follows[11]:

1. Wait for data to be ready
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2. Send start signal

3. Send the module id number

4. Send the corresponding load

5. Repeat 3 and 4 for all 32 modules

6. Signal that the overall load is sent

7. Send overall load

8. Set the data ready variable to false

9. Go to 1

The software for the USBee DX allows the configuration of the UART wires

with different settings, so it has been configured to run at these settings.

Figure 6.2 shows partially the received data stream on the UART RX wire of

the USBee DX. Two wires are shown in this Figure. The top one represents

the interpreted UART signals while the lower one shows the data stream.

As can be seen on this figure the FPGA sends the start signal, which is

00 10 00 01 followed by the package for module 0 which is 00 00 00 00

and the remaining packages for module 1 to 8. Module 9 to 31 and the

overall load has been cropped out of the image.

Figure 6.2: The UART data stream captured by the USBee DX.

For the CAN driver evaluation the same approach as for the evaluation of

the CAN driver on the Altera DE2 board has been used. The DE0-nano
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board has been configured to display every CAN message received on the

LCD and received CAN messages have been compared with the CAN mes-

sages that were sent on the bus. With this approach it can be verified that

the CAN driver is working correctly.

Finally, the load calculation module has to be evaluated. For this the Altera

DE0-nano board as well as the Altera DE2 board have been hooked up to

the CAN bus. Then the load values calculated by both boards have been

compared against each other to ensure that the calculation of the DE0-nano

board is working correctly.

6.3 Microcontroller Evaluation

In order to efficiently evaluate the microcontroller part at first the correct

functionality of the low-level methods of the project needs to be ensured, as

the high-level methods rely on these. Thus, the evaluation starts with the

low-level part and is then followed with the high-level part.

6.3.1 Low-Level Part

As the low-level part of the microcontroller consists of the LCD driver, the

CAN driver, the UART driver, and the microSD card driver each driver will

be evaluated separately, starting with the LCD driver. As Microchip pro-

vided a fully functional library for using the LCD via the Solomon SSD1926

graphics chip on the Microchip MEB which is connected to the Microchip

dsPIC33E USB Starter Kit it only needs to be made sure that their methods

are working according to their specification. After that printing text on the

LCD and clearing the LCD screen could be evaluated. Figure 6.3 shows

sample output on the LCD. As can be seen on this image the program waits

for the user to touch the screen after it has been filled with messages.

For the evaluation of the CAN driver the USBee DX has been used. After

configuring the ECAN module in the MC, different pre-defined messages

have been sent over the CAN TX wire and the captured waveform has been

compared against the message that was sent. Figure 6.4 shows the wave-
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Figure 6.3: Messages displayed on the LCD.

form captured by the USBee DX when the MC sent a message with node

ID 0x05, a DLC of 1 with data 0x11.

Figure 6.4: CAN Message received by the USBee DX.

Once the evaluation of the transmission of messages using the ECAN mod-

ule was done the reception of messages can be evaluated. This has been

done by connecting different nodes to the CAN bus. At first only the BA

has been attached to the bus. As the BA sends a beacon every 500ms this

beacon also has to be captured by the MC every 500ms. The BA has the

node ID 0x01 and the beacon has a DLC of 1 with data 0x0A. This message

is captured by the ECAN module and with the help of the LCD the received

CAN messages can be displayed in order to compare them against the trans-

mitted message. After these messages were received correctly other modules

were connected to the bus and the correct reception of their messages have

been checked.

The UART driver has been evaluated by sending pre-defined messages via

UART to the UART RX pin of the MC. At first it had to be made sure that
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the UART RX wire was configured correctly. After that messages could be

received by the UART wire. This has been tested by sending different 8 bit

values from a PC over the UART interface to the MC. For this the program

used to test UART reception in [11] has been changed to send values. Then

the MC was connected via UART to the FPGA and it was checked if the

values received corresponded to the values transmitted by the FPGA. The

evaluation of the protocol will be shown in Subsection 6.3.2.

Microchip provided filesystem functions for using a SD card connected to

the dsPIC33E USB Starter Kit. But these functions were not compatible

with the MEB, as the Solomon SSD1926 graphics controller is responsi-

ble for handling file I/O operations. Thus, at first a connection with the

graphics controller needed to be established. As the accelerometer example

included the connection with the graphics controller this code has been used

for this project. After the connection was established at first read and write

operations were tested if they are working:

1 FSFILE *file;

2 char *testString = "test";

3 char *testString2;

4

5 // writing to a file

6 file = FSfopen("test.txt", "w");

7 FSfwrite(testString , sizeof (char), sizeof (testString), file);

8 FSfclose(file);

9

10 // reading from a file

11 file = FSfopen("test.txt", "r");

12 FSfread(testString2 , 4, 1, file);

13 FSfclose(file);

14 printText(DEBUG , testString2); // print text on the LCD

Lines 6-8 open a file on the microSD card for write access and write the

string test in the file test.txt. The write operation is then tested by

reading from the same file in lines 11-14 and displaying the read string

on the LCD. After successful reading and writing from the microSD card

high-level functions as reading and interpreting a configuration file could be

evaluated as will be shown in Subsection 6.3.2.
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6.3.2 High-Level Part

As the CAN driver, the UART driver, and the SD card driver also pro-

vide high-level functions these have to be evaluated as well as the PDCP

interpretation and statistics generation module. The CAN driver is capable

of interpreting received CAN messages. For the evaluation purpose of this

method the device beacons sent by the BA were used for testing this method

as well as the binding request of different nodes. Once a complete CAN mes-

sage is received a flag is toggled to signal the CAN module to interpret this

message. To make sure that the interpretation method is called a display

output has been generated when the method is called:

1 void interpretCANMessage () {

2 printText(DEBUG , "CAN message received");

3

4 ...

5 }

Whenever a new CAN message is received a new message appears on the

screen. Once this was working the segmentation of the CAN message into

the node ID, DLC, and data has been tested. For this an LCD output has

also been generated:

1 char debugMessage [80];

2 sprintf(debugMessage , "ID=%02x, DLC =%01x, DATA =%02x %02x %02x 

%02x %02x %02x %02x %02x", msgId , dlc , data[0], data[1],

data[2], data[3], data[4], data[5], data[6], data [7]);

This debugMessage then has been displayed on the LCD. After this was

working the filter of the CAN interpreter has been evaluated. Furthermore,

when no FPGA is present, the bus load calculation of the MC had to be

tested as well:

1 // check for dump

2 if (dataDump) {

3 saveMessage(newCANMessage);

4 interpretMessageFlag = 1;

5 }

6

7 // check if we have to dump this module , if we do a datadump

then this is obsolete
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8 if (! dataDump)

9 for (i = 0; i < maxModules; i++)

10 if (moduleNumber[i] == msgId && moduleDump[i]) {

11 saveMessage(newCANMessage);

12 interpretMessageFlag = 1;

13 }

14

15 // find id

16 for (i = 0; i < maxModules; i++)

17 if (moduleNumber[i] == msgId) {

18 found = i;

19 break;

20 }

21

22 // add can message to corresponding module

23 moduleLoad[found] += length;

Lines 2-13 show the code for checking if the message needs filtering or if a

data dump has to be created, while lines 16-23 show the load calculation.

For evaluation of this the values of the variables have been displayed on

the LCD. If the interpretMessageFlag has been raised the CAN message

needs interpretation by the PDCP interpreter module. This has also been

tested by displaying output on the LCD:

1 if (interpretMessageFlag) {

2 printText(DEBUG , "Calling PDCP interpreter");

3 interpretPDCP(data , msgPriority , msgMode , msgId , dlc);

4 generateCANStatistics(msgId , length);

5 }

The UART module has been evaluated in a similar way: as it only has to

capture four consecutive UART frames it is waiting for the start signal first.

If the start signal was received an output on the LCD has been generated.

After that 32 four byte tuples have been captured and after every four byte

tuple a flag for the statistics module has been raised:

1 if (UARTMessagePointer == 4) {

2 printText(DEBUG , "4 bytes received");

3 UARTMessagePointer = 0;

4 UARTMessageArrived = 1;

5 }
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As the SD card driver provides high-level functions for reading config files

these needed to be evaluated as well. The file config.txt contains an option

for setting the maximum amount of modules to be watched, maxModules,

its successful reading from the file has been tested as follows:

1 // check how many modules should be watched

2 maxModules = getConfigItemInt("maxmodules", text);

3 sprintf(debug , "maxmodules =%d", maxModules);

4 printText(DEBUG , debug);

The variable text contains the contents of the file config.txt, while the

method getConfigItemInt(...) calls the method getConfigItem(...)

and converts the returned string to an integer. The method getConfigItem

(...) can be seen in the Appendix A.4 and searches through an input string

for a given sequence.

Once the PDCP interpreter module is toggled by the CAN module it has

to segment the messages according to the PDCP. The first byte of the data

field is the corresponding PDCP function:

1 function = convertBitsToShort(data [0]);

To be able to evaluate this the function code has also been displayed on the

LCD, e.g. when the BA sends a device beacon the display should read 0A as

this is the PDCP function code for a device beacon. After this was working

the next step was to evaluate different messages: at first the Bind Device

Request was evaluated. For this function six bytes of data has been sent

along the function code. The first two bytes are the vendor ID, the second

two bytes the product ID, and the last two bytes the serial number:

1 switch (function) {

2 case 0x01: // Bind Device Request

3 // device vendor id

4 i1 = (int) convertBitsToShort(data [1]) << 8 | (int)

convertBitsToShort(data [2]);

5 // device product id

6 i2 = (int) convertBitsToShort(data [3]) << 8 | (int)

convertBitsToShort(data [4]);

7 // device serial number

8 i3 = (int) convertBitsToShort(data [5]) << 8 | (int)

convertBitsToShort(data [6]);

49



D
RA
FT

6.3 Microcontroller Evaluation

9

10 sprintf(action , "%s: Bind Device Request VID=%x, 

PID=%x, SN=%x", getDevice(msgId), i1 , i2 , i3);

11 break;

12

13 ...

14 }

In order to not waste too much memory only four integer variables have

been reserved for the interpretation of all PDCP functions. Therefore every

function code makes use of the same four variables i1, i2, i3, and i4. As

the vendor ID, product ID, and serial number are 16 bits wide the first byte

needs to be shifted eight bits to the left and the results need to be casted to

an integer, as a short is only eight bits wide. The method getDevice(...)

looks up the sender’s node ID in a table that has been created by the user

as well as the program if the node IDs are unknown and returns their name

as a string if the device is known. If the device is not known it returns its

node ID in hexadecimal format. The output of this interpretation is then

saved into the action string which is displayed by the statistics module on

the LCD. The remaining PDCP function codes were evaluated in similar

manner.

When the sample period is hit a flag is raised by the interrupt to signal

the statistics module to sample the data and create statistics as well as the

output. This has been tested by displaying a message on the LCD when-

ever the sample time has been hit. After that it formats the last CAN and

UART messages into a string for LCD output and calculates the overall bus

load during that sample period. After that it displays the last CAN and

UART message, as well as the overall bus load and the last PDCP action

that happened on the bus on the LCD. This behaviour has been used to

evaluate the correctness of the reception of CAN and UART messages, as

well as for the calculation of the overall load and the PDCP interpretation.

The final step for the high-level interpretation is writing of the statistics. In

the file log_x.txt (with x being an integer number) the dump of the CAN
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messages and the PDCP interpretation is done and in the file stat_x.txt

(with x being an integer number) the bus load statistics with overall bus

load and individual module load are written. This has been checked for cor-

rectness by putting different modules on the bus and checking the output

files according to the modules.

6.4 Results

After every part has been evaluated separately the whole system can be

evaluated. For this purpose the FPGA was hooked up to the CAN bus with

the BA, a data monitor, and two electrodes connected. The board contain-

ing the BA and the data monitor can be seen in Figure 6.5. The board has

been designed to be directly hooked up to the expansion header of the MEB

as well as to hook up the FPGA via UART.

Figure 6.5: The Bus Arbitrator (left) and a data monitor (right) connected via a CAN

bus network.

During startup of the components every component registers itself with the

BA to receive its node ID. Thus these messages needed to be received by the

FPGA and the MC. Furthermore, every node sends a device beacon every

500ms which has to be captured as well. The FPGA had to calculate the

bus load data according to these messages and the MC has to interpret the

messages and write the corresponding statistics and receive messages via the

UART from the FPGA. To help verify the correctness of the calculations of

both the MC and the FPGA the USBee DX has been used.
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To ensure the correctness of the FPGA and the MC the USBee DX has

been set to capture the first second after startup by setting a trigger to

start capturing once the first signal fall occurs on the CAN bus. At the

same time the display output on both the FPGA and the MC has been

watched. After that the bus load has been manually calculated by checking

every message on USBee DX’s output and then compared against the output

on both LCDs.

Furthermore, different tests have been conducted in the middle of the run-

time. Every test captured one second, as this is the sample rate for the

FPGA and the MC. The results were then compared against the manually

calculated values as well. Finally, the log and statistics files had to be eval-

uated on a live system. For this purpose the above test scenarios were used

again. After every test the microSD card has been removed from the MC

and has been connected to a PC to review the written files. During manual

review of the files it has been checked that every message that has been

sent on the bus and that needed monitoring and interpretation was actually

written in the logging file and that every second the overall bus load and the

individual module’s bus load was written. An image of the running program

in normal execution mode can be seen in Figure 6.6.

Figure 6.6: The microcontroller program during normal execution.
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This report has shown the successful implementation of a MC that is ca-

pable of reading and writing on the CAN bus. This MC is also capable of

interpreting the PDCP, which is a high-level protocol. The CAN bus itself

operates on ISO OSI layer 1 and 2, while the PDCP can be set on any bus as

it operates on ISO OSI layer 3. For the MC the Microchip dsPIC33E USB

Starter Kit with the Microchip MEB attached to it has been used. The MC

design and implementation has been done completely in Microchip MPLAB

X. Furthermore, this report has shown the porting of the FPGA design from

the Altera DE2 board to the Altera DE0-nano board. The FPGA can be

used for monitoring the CAN bus and can be configured to monitor different

modules simultaneously.

As most bus analyzers are only capable of displaying raw message data

this project introduced an analyzer which can be configured depending on

the nodes that are connected to the system as well as on the messages that

are sent on this network. This analyzer displays messages during runtime

on a built-in LCD and saves the messages received in the network according

to pre-defined filters on a microSD card, so that the logged data can later

be viewed offline on a PC.

This project can be further extended in terms of configurability, so that

it is possible for the engineer to specify the CAN bus bitrate in the configu-

ration file, as well as to set the system clock differently, as using different bus

systems might require a system clock higher than 32 MHz. Furthermore,

also having an option to specify which bus system is used might be helpful,

so that the project does not need to be rebuilt every time a different bus

system is used.

As the PDCP has been designed to be an open protocol other applications

could also implement the PDCP as well. For instance in the automotive in-

dustry the PDCP could be used to make it easier for engineers to establish

communication between different nodes. Nodes could create communication
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channels with every node that they need to talk to and then communicate

only using these channel IDs. With this the receiving node directly knows

which node has sent the message. Using the tools shown in this report the

engineer can directly connect these devices to the CAN bus and specify the

configuration parameters as well as the list of the devices on the bus. The

engineer would then be able to see online what is happening on the bus

in real-time and if the devices are known also see which devices are com-

municating. Furthermore different messages can also be specified, so that

if a node sends a specific bit combination in the data field it is displayed

as e.g. proximity_sensor1 to braking_system: obstacle in 20m. As

every action can be logged it is also possible to have different runs either in

simulation or in real-life usage and then review the communication as CAN

messages as well as interpreted messages offline on a PC for tuning system

or node parameters.

The PDCP is not only limited to the CAN bus, but can be implemented

atop other bus systems as well, e.g. for I2C. The Microchip dsPIC33E fea-

tures a I2C controller, but at this time no driver is given for this bus. Thus,

if needed, a driver needs to be implemented first. If then a new I2C mes-

sage arrives it could directly be passed to the PDCP interpreter with no

further changes. Also other bus systems can be used, which do not neces-

sarily need to have a controller in the microcontroller. Then the input and

output pins need to be read and written by the software engineer according

to the underlying bus system. This can be achieved using interrupts on the

microcontroller.
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A Appendix

A.1 PDCP Commands

Figure A.1: An overview of all available PDCP commands[17].
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A.2 Overview of the IVT of the dsPIC33E Family

A.2 Overview of the IVT of the dsPIC33E Family

Figure A.2: Compact overview of the IVT of the dsPIC33E family[4].
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A.3 Code Excerpt for Updating the Values on the LCD

A.3 Code Excerpt for Updating the Values on the LCD

Code excerpt from LCD.c:

1 // remove old message

2 SetColor(BLACK);

3 SetFont ((void *) &GOLSmallFont);

4 while (! OutTextXY(0, 52, oldCANMessage));

5 while (! OutTextXY(0, 92, oldUARTMessage));

6 while (! OutTextXY(0, 132, busLoad));

7 while (! OutTextXY(0, 172, lastAction));

8

9 // display the messages as hex

10 sprintf(oldCANMessage , "%02x %02x %02x %02x %02x %02x %02x %02x

 %02x %02x %02x %02x %02x %02x %02x %02x",

11 convertBitsToShort(newCANMessage [0]),

12 convertBitsToShort(newCANMessage [1]),

13 convertBitsToShort(newCANMessage [2]),

14 convertBitsToShort(newCANMessage [3]),

15 convertBitsToShort(newCANMessage [4]),

16 convertBitsToShort(newCANMessage [5]),

17 convertBitsToShort(newCANMessage [6]),

18 convertBitsToShort(newCANMessage [7]),

19 convertBitsToShort(newCANMessage [8]),

20 convertBitsToShort(newCANMessage [9]),

21 convertBitsToShort(newCANMessage [10]) ,

22 convertBitsToShort(newCANMessage [11]) ,

23 convertBitsToShort(newCANMessage [12]) ,

24 convertBitsToShort(newCANMessage [13]) ,

25 convertBitsToShort(newCANMessage [14]) ,

26 convertBitsToShort(newCANMessage [15]));

27

28 sprintf(oldUARTMessage , "%02x %02x %02x %02x",

29 convertBitsToShort(newUARTMessage [0]),

30 convertBitsToShort(newUARTMessage [1]),

31 convertBitsToShort(newUARTMessage [2]),

32 convertBitsToShort(newUARTMessage [3]));

33

34 load = 1.0 * overallLoad / 1000;

35 loadPercent = 1.0 * overallLoad / MAXLOAD / SAMPLERATE;

36 sprintf(busLoad , "%04.2f kbit/s, %03.2f%%", load , loadPercent);

37 sprintf(lastAction , "%s", action);
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A.3 Code Excerpt for Updating the Values on the LCD

38

39 // put new message on the lcd

40 SetColor(RED);

41 SetFont ((void *) &GOLSmallFont);

42 while (! OutTextXY(0, 52, oldCANMessage));

43 while (! OutTextXY(0, 92, oldUARTMessage));

44 while (! OutTextXY(0, 132, busLoad));

45 while (! OutTextXY(0, 172, lastAction));

46

47 // display if we are registered with the ba

48 if (successfullyBound) {

49 SetColor(YELLOW);

50 SetFont ((void *) &GOLSmallFont);

51 while (! OutTextXY(0, 206, "Registered with BA"));

52 }
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A.4 Searching for a Substring in a String

A.4 Searching for a Substring in a String

Code excerpt from SDFSIO.c:

1 /*

2 * read the item from the config file

3 * the return value is the value of the item read

4 */

5 char *getConfigItem(char *item , char *config) {

6 int i, k, l, m = 0, n = 0;

7 int j = 0;

8 int size = 0;

9 static char search [255];

10 short found = 0;

11

12 // get size of item

13 for (i = 0; i < 255; i++)

14 if (item[i] == ’\0’) {

15 size = i;

16 break;

17 }

18

19 for (i = 0; i < 255; i++) {

20 // check for match

21 if (config[i] == item[j]) {

22 if (!j)

23 n = i;

24 j++;

25 } else

26 j = 0;

27

28 // if we have found the complete string

29 if (j == size && config[i + 1] == ’=’) {

30 found = 1;

31 break;

32 }

33 }

34

35 if (found) {

36 for (k = n + j; k < 255; k++) {

37 if (config[k] == ’\n’ || config[k] == ’\r’) {

38 for (l = n + j + 1; l < k; l++)

59



D
RA
FT

A.4 Searching for a Substring in a String

39 search[m++] = config[l];

40 search[m] = ’\0’;

41 return search;

42 }

43 }

44 }

45

46 return "NOT FOUND";

47 }
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