

A Comparison of Fixed and Variable Block

Allocation in two Java Virtual Machines

by
Markus Goffart, Gerhard W. Dueck, and Rainer Herpers

TR 12-218, July 20, 2012

Faculty of Computer Science
University of New Brunswick

Fredericton, NB, E3B 5A3
Canada

Phone: (506) 453-4566
Fax: (506) 453-3566
Email: fcs@unb.ca

http://www.cs.unb.ca

1

Abstract

This paper compares the memory allocation of two Java virtual machines,
namely Oracle Java HotSpot VM 32-bit (OJVM) and Jamaica JamaicaVM
(JJVM). The basic difference of the architectures is that the JJVM uses fixed
size block allocation on the heap. This means that objects have to be split into
several connected blocks if they are bigger than the specified block-size. On the
other hand, for small objects a full block must be allocated. The paper contains
both theoretical analysis and experimental results on the memory-overhead.
The theoretical analysis is based on specifications of the two virtual machines.
The experimental analysis is done with a modified JVMTI Agent together with
the SPECjvm2008 Benchmark. The results are summarized in a diagram. From
this diagram, it can be seen which block size should be used for a given data
size.

Contents

1 Introduction 2

2 Methodology 4
2.1 Architecture of Objects in OJVM and JJVM 4
2.2 JVMTI-Tool . 7
2.3 Benchmarks . 7

3 Results of SPECjvm2008-Benchmarks 9

4 Optimal Parameter Setting 11
4.1 Comparison of Overhead Between all Block-Sizes 11
4.2 Block-Size n for Specific Standard Objects 12
4.3 Block-Size n for Specific Array Objects 14
4.4 Which Block-Size for a Specific Program? 14

5 Conclusion 16

6 Future Work 18

1

Chapter 1

Introduction

A very important part of Java virtual machines is the garbage collector. It is
responsible for the reorganization of the objects on the heap during the runtime
of the JVM.

Two of the most recent developed and standard garbage collectors (GC) (i.e.
Java virtual machines) that were developed for real-time applications, are the
JJVM of the company aicas [1] and the Concurrent Mark and Sweep Collector
(CMS) in the OJVM [13]. The JJVM tries to get short and bounded pause times
in the first step in the GC-process in hard real-time systems [8]. This means that
there are predictable execution times of stop-the-world phases. Whereas the
OJVM avoids long stop-the-world phases with a concurrent garbage collector.
This means that most of the garbage collection is done concurrently with the
execution of the program. Most GCs need four steps to clean and compact
the heap. These are the Root Scanning, Mark, Sweep, and Compaction. The
basic difference between the garbage collectors of OJVM and JJVM is that the
JJVM does not have a compaction phase. It becomes redundant due to the use
of fixed-size blocks for the allocation of new objects on the heap [5][6]. However,
the allocation of objects becomes more complex because the GC needs to track
the free space and also has to split bigger objects into several fixed-size parts
if an object is larger than the fixed-size block. Siebert measured the allocation
time and could show that the time-overhead is low (< 1 µs) [7].

Thus, the runtime of the JJVM seems to be quite good but what are the
disadvantages is this case? The new architecture of the JJVM causes some added
costs. First, there is wasted space due to the fact that the object may not fill
an exact multiple of the fixed-size blocks. Second, links must be kept for split
objects. These structures also affect the runtime because the GC may need to
scan several blocks for one object and keep track of the additional information
in chunks. Although Siebert conducted a first analysis on the JJVM, more
research on this topic is necessary. He mentioned that the benchmarks used do
not reflect real-time applications and this should be changed in future work.

This paper provides a detailed analysis of the JJVM memory allocation
scheme. For this purpose, a profiler tool was implemented with the Java Virtual

2

Machine Tool Interface (JVMTI) [3] to analyze and compare the heap of the
both virtual machines. This paper also describes how it is possible to find the
best block-size n in the JJVM for any object.

The paper starts with some background information necessary to understand
the basic differences between the object-sizes in JJVM and OJVM. Then, a
short description of the modified JVMTI-profiler “hprof” that was used for the
analysis follows. The two benchmarks that were used in this work are presented.
After this, the results of the theoretical and experimental analysis are presented.
The paper ends with some concluding remarks.

3

Chapter 2

Methodology

2.1 Architecture of Objects in OJVM and JJVM

Figures 2.1 and 2.2 show the architecture of objects in the OJVM and JJVM
respectively. There is a difference between standard objects and array objects
in both machines. In the OJVM, the standard object has a two words-header
followed by the actual data, whereas the array-objects has a three words-header
followed by the data. While the first two fields in both structures contain
information such as hash-code, color-flag and a reference to the class of the
object, the third field of an array object contains the number of elements of the
array itself [4]. Together with the condition that the total size of the object
must be a multiple of 8 bytes the total size for java objects in the OJVM is as
follows:

ssoOJVM =
⌈
2·smp+sdata

8

⌉
· 8 [B] (standard object)

saoOJVM =
⌈
3·smp+nel·sdata

8

⌉
· 8 [B] (array object)

(2.1)

where smp represents the size of machine-pointer (also known as word), sdata
the size of the actual data, and nel denotes the number of elements in the array.
The result is given in bytes [B].

Figure 2.1: Architecture of a standard object and array object in the OJVM.

4

The storage of objects is different in JJVM and OJVM. In JJVM objects are
split into fixed-size blocks with a length of n words (Part A of Figure 2.2 shows
an empty example block). The size of the word is the same as for the OJVM –
the size of a machine pointer. If an object is larger than the block-size, the data
of the object has to be split into several blocks. Also, the JJVM stores standard
objects differently than array objects. Both structures do have a so called head-
block that contains additional information of the object itself and in case of an
array of the sub-structure. The head-block for standard-objects requires three
words for information such as color-flag of the object (used during the garbage
collection for marking visited objects), type of the object, and monitor of the
object (used for the monitoring-process that is available in the JJVM). Then,
the data follows and it can be split over successive blocks that are connected
by a pointer to the next block (see Part B of Figure 2.2). The head-block of
the array-object contains one more reserved word that has information about
the length and depth of the array-structure-tree. The data is separated in fields
that are located in blocks at the last level of the tree. Each block is connected
with link-fields up to the head block (see Part C of Figure 2.2). Only the size
of the actual data sdata of an object in the OJVM is the same as in an object in
JJVM. For standard object the total number of fields (including the head-block
information and link-fields) that are used, is as follows:

numOfFieldsTotal =

⌈
3 · smp + sdata

smp

⌉
(2.2)

The following equation calculates the number of total blocks (TB) that are
necessary to provide enough space for the number of fields of Equation (2.2):

TBso =

⌈
numOfFieldsTotal − 1

(n− 1)

⌉
(2.3)

where n is the number of fields that has been chosen for the block-size.
Then, the total size of a standard object on the heap of the JJVM (ssoJJVM)

is as follows:
ssoJJVM = (TBso · n · smp) [B] (2.4)

The memory allocation of array object in the JJVM is a little bit more
complex. To explain how the equations for the memory-allocation of an array-
object in the JJVM were derived, would go beyond the scope of this paper (for
details see [2]). First the depth of the tree is calculated regarding number of
fields that are used for the data sdata. The number of fields that is necessary
for sdata is calculated first:

numOfFieldsData =

⌈
sdata
smp

⌉
(2.5)

Since the number of necessary fields is known, the depth of the array-structure
can be calculated with the equation as follows:

depth =

⌈
log2(numOfFieldsData)− log2(n− 4)

log2(n)

⌉
(2.6)

5

with n = number of fields in one block and numOfFieldsData from Equa-
tion (2.5).

Now, the number of fields for an array (2.5) and the depth of the array-
structure (2.6) are known. With this information it is possible to calculate the
total number of total blocks (TB) that are used for head-block, linking blocks,
and the data blocks for an array-structure as follows:

TBao = getNumBlocks(depth, numOfFieldsData) (2.7)

where getNumBlocks(d, b) = gNB(d, b) is a recursive function as follows:

gNB(d, b) =

{
1 (if d = 0)
gNB

(
d− 1,

⌈
b
n

⌉)
+
⌈
b
n

⌉
(if d > 0)

(2.8)

Thus, the total size saoJJVM for one array-object on the heap in the JJVM
is then as follows:

saoJJVM = (TBao · n · smp) [B] (2.9)

This looks the same as for the standard object, but the derivation for the num-
ber of TotalBlocks is different (TBso 6= TBao). For each block on the heap,
the JJVM stores additional information in so called groups. This information
requires some space that belongs the the size of the object. Thus, if the num-
ber of TotalBlocks is known, the additional space used by the groups can be
calculated. The additional space is reserved for the reference-flag for each word
in the block (n · 1 bit), the color-flag (4 bit) and the grey-link that shows for 8
blocks the reference to the next group that has at least one grey-marked object.
The grey link is as big as one machine pointer and is divided by the number of
the blocks in one group (which is 8). So, the total amount of memory for an
object is:

TotalMemory = TB ·
(

(n · smp) +
smp + n+ 4

8

)
[B] (2.10)

with

TB =

{
TBso (for standard object)
TBao (for array object)

(2.11)

Compared to the object-size in the OJVM, it should be mentioned that there
is some memory-overhead in the JJVM that is produced by linking fields, re-
maining empty fields (because of the fixed-size blocks), and additional group
information. The memory-overhead is the TotalMemory minus the three (for
standard objects) or four fields (array objects) of header information, and minus
the data-size of the object itself. This leads to the following memory-overhead-
equations for standard objects (ohso) and array objects (ohao):

ohso = (TBso · n− 3− nOFD) · smp [B] + ohgen · TBso [B]
ohao = (TBao · n− 4− nOFD) · smp [B] + ohgen · TBao [B]

(2.12)

where ohgen is the general size of memory that is used for each block for the
group information as follows:

ohgen =

(
smp + n+ 4

8

)
[B]

6

2.2 JVMTI-Tool

The Java Virtual Machine Tool Interface (JVMTI) provides a library to create
so called agents to analyze the states of any program during the runtime of
the virtual machine. In this paper, the agent “hprof” given by the demos of
the JVMTI was modified. This agent only needs minor changes to cover the
necessaries for the analysis of the memory between the OJVM and the JJVM. In
this case is used the possibility to get information such as size and type of each
object that has been allocated by the profiled application. This information is
saved and later used for the recalculation of standard and array object-sizes to
the memory needs of the JJVM because the profiling takes place only during
the runtime with the OJVM. Since it was not possible to get a runnable JJVM,
the recalculation step was necessary to get a comparable base. This means that
the size of standard objects and array objects in the OJVM is recorded and then
recalculated to the memory-needs in the JJVM with the help of the theoretical
calculations in Section 2.1. With the help of the type of the object and the
known header information (2 fields for standard objects and 3 fields for array
objects) it is possible to separate the actual data-size sdata and use it for the
calculations of memory used and overhead in the JJVM.

2.3 Benchmarks

The objective of this paper is to check how the memory allocation for dif-
ferent block-sizes n looks like for real life applications and for specific cases
where it is possible to specify the general size of the allocated objects, because
Siebert did not test with real life benchmarks (as mentioned in the introduc-
tion). Two real life applications were found in the SciMark and Sunflow of the
SPECjvm2008 Benchmark [11, 12]. This is also the reason why only two of the
whole SPECjvm2008-Benchmark-set were used for this paper. The SciMark is
a performance test on the CPU and the Sunflow is a multi-threaded renderer to
test graphic visualization.

The memory usage for the two benchmarks (in both virtual machines) and
the memory-overhead for four different block-sizes (n = 8, n = 16, n = 32, and
n = 64) in the JJVM are calculated.

7

Figure 2.2: Architecture of a fixed-size block A), standard object B) and array
C) object in the JJVM.

8

Chapter 3

Results of
SPECjvm2008-Benchmarks

Figure 3.1 shows the results for the Sunflow- and the SciMark-benchmark. Each
figure shows a diagram with the size of the used memory for the OJVM and for
each defined block-size (n = 8, n = 16, n = 32, and n = 64 fields) in the JJVM.
The diagram also shows how much of the used memory is overhead that was
created by the JJVM (grey bar charts).

There is a small difference of the used data-size together with header-information
(black part of the bar charts) between the OJVM and the JJVM because both
types of objects in the JJVM (standard object or array object) use one more
word than in the OJVM. In summary, the difference between both machines
becomes significant. It can also be seen that the memory-overhead increases
with the size of the blocks. A closer look into the distribution of the size of
the objects shows that there are much more small object allocations than big
objects allocations (around 50% of objects are lower than 25 bytes; the rest
is located in higher ranges up to 20 kilobyte). The logical result is that there
is less memory-overhead for smaller block-sizes than for larger block-sizes. It
should be noted that the memory-overhead for the block-sizes n = 8 and n = 16
is mostly the same in the SciMark-benchmark. The reason for this is explained
in the next Section 4.

9

Figure 3.1: Used memory and memory-overhead of Sunflow and SciMark bench-
mark for different block-sizes (n = 8, n = 16, n = 32, and n = 64 fields) and
for both virtual machines. For both cases, the best block-size is n = 8 but in
case of the SciMark benchmark it is also possible to use the block-size of n = 16
because there are only minor differences in the memory-overhead.

10

Chapter 4

Optimal Parameter Setting

In previous chapter, some results of the memory-overhead investigation accord-
ing to specific programs that the agent analyzed during the runtime were pre-
sented. Now, the objective is to find the best block-size for any given program
so that the memory-overhead stays as small as possible. Thus, this chapter ex-
plains how to get the best block-size for a given program. Section 4.1 presents
some further analysis on the memory-overhead for the first four successive block-
sizes with n = 8, n = 16, n = 32, and n = 64. It shows that there are some
ranges that have the same memory-overhead for two or more block-sizes at spe-
cific data-sizes. This means that it does not matter which block-size is chosen
because the memory-overhead would be the same for some data-sizes. This fact
makes the exact calculation for the correct block-size a little more challenging.
Sections 4.2 and 4.3 show how to get the block-size for a specific data-size for
each type of data structures in the JJVM. Finally, the overview for the first
four block-sizes is presented and the experimental results are compared to this
diagram.

4.1 Comparison of Overhead Between all Block-
Sizes

The Figures 4.1 and 4.2 show the memory-overhead for both types of data
structures in the JJVM. It can be seen in both cases that in most cases the
memory-overhead varies according to the different block-sizes for one specific
data-size but there are also some ranges, where the memory-overhead does not
change for all four tested block-sizes. For example in the range between 416 and
440 bytes the memory-overhead for all block-sizes of the standard objects has
mostly the same size for the first four block-sizes (n = 8, n = 16, n = 32, and
n = 64 fields). A synthetic test-program that creates objects with the data-size
of 424 bytes (this data-size lays in the previous mentioned range) showed that
the overhead indeed became the same size for all four block-sizes.

There are also some data-sizes where the memory-overhead gets smaller for

11

Figure 4.1: Comparison of overhead in standard objects between different block-
sizes (n = 8, n = 16, n = 32, and n = 64 fields) and the same data-size. It shows
that it makes no sense to use smaller block-sizes for bigger data-sizes in general
because the memory-overhead becomes bigger than for bigger block-sizes (e.g.,
an object with the data-size around 3000 bytes creates an memory-overhead of
around 650 bytes for the block-size of n = 8 and only around 400 bytes for
n = 64).

one block-size than for another one, but for the next few data-sizes the size of the
memory-overhead for the same block-sizes switches their order. For example,
for the data-size of 496 bytes, the memory-overhead for the blocksize n = 32
is around 158 bytes and for the block-size n = 64 around 2 bytes, but for the
data-size of 500 bytes, the memory-overhead for the block-size n = 32 is almost
constant and the memory-overhead of n = 64 increases up to around 283 bytes.
Thus, in the first case the block-size n = 64 would have been chosen, whereas
in the second case the block-size of n = 32 would have been chosen because of
the lower memory-overhead in both cases.

Because of the previously mentioned overlapping area and the switching of
the memory-overhead-sizes, it is not possible to predict exactly for which data-
size-range the best block-size should be taken. For one specific data size the
best block-size can be chosen but not for a whole range that is actually more
applicable for general programs because objects of different sizes are usually
allocated and not only from one specific size. Some more specific analysis on
the memory-overhead and the results for such ranges is explained in the next
Sections 4.2 and 4.3.

4.2 Block-Size n for Specific Standard Objects

To get the recommended blocksize n for any data-size sdata, there are several
steps necessary. First, to evaluate how big the differences between the neigh-
bouring block-sizes in the memory-overhead would be, the difference between
the memory-overhead of the current block-size n and the memory-overhead of

12

Figure 4.2: Comparison of overhead in array objects between different block-
sizes (8, 16, 32, and 64) and the same data-size. It shows that it makes no sense
to use smaller block-sizes for bigger data-sizes in general because the memory-
overhead becomes bigger than for bigger block-sizes (e.g., an object with the
data-size around 3000 bytes creates an memory-overhead of around 700 bytes
for the block-size of n = 8 and only around 300 bytes for n = 32

the next successive block-size (n · 2) is calculated. If the difference gets below
zero, the memory-overhead of the successive block-size is bigger than the cur-
rent one. With this information it can be seen at which data-size it is better to
switch from the smaller block-size n to the next block-size n · 2 to avoid high
memory-overhead. There are always two thresholds that define three operating
regions for block-size allocations:

• All data-sizes up to the first threshold:
For all data-sizes up to the first threshold, should definitely be taken the
smaller block-size because then the memory-overhead is also smaller for
the smaller block-size.

• All data-sizes bigger than the second threshold:
For this, the memory-overhead never becomes smaller than zero, which
means that the bigger block-size (n ·2) has a lower memory-overhead than
the smaller block-size n and should be taken.

• All data-sizes between the two thresholds:
The difference of the memory-overhead of the data-sizes between those two
thresholds varies from negative to positive values and vice versa. This
means, for this range, a general decision cannot be made if the smaller
or bigger block-size should be taken. Usually, implementations do not
allocate objects with exactly the same size, but might be located in a
specific range. For this, a more simplified representation of the data is
used. One simplified representation is found by the linear regression line
that shows the memory-overhead-difference between two block-sizes as
linear slope. The regression line intersects with the x-axis at one point.

13

This point is chosen as threshold for switching the block-size if the data-
size becomes bigger in this paper.

For example, in the analysis to this paper the linear regression of the memory-
overhead-difference between the block-sizes n = 8 and n = 16 for standard
objects shows an intersection with the x-axis at 16 bytes (0 = 0.098·x−15.914⇔
x = 15.914

0.098 = 163, 4). This is then the recommended maximum of the data-size
for the block-size n = 8.

4.3 Block-Size n for Specific Array Objects

The same steps as given for the calculation to get the threshold for standard
object apply for the threshold of array objects.

4.4 Which Block-Size for a Specific Program?

Figure 4.3: Recommended maximum block-size n for a specific data-size sdata.
For the known distribution of the data-size it can be looked up which block-size
is recommended regarding the ratio of standard- and array-objects.

Figure 4.3 shows the recommended block-size for a specific data-size for
standard and array objects for the first four block-sizes (n = 8 up to n = 64).
The numbers are the intersection points with the x-axis of the regression-lines
that are explained in previous two sections. For any object-size, the suggested
block-size can be read by following the slope to the next block-size of 2n (with
n ∈ N>2). For example, if there is an array object allocation of the size around
500 bytes, it is recommended to use the block-size of n = 32. In general,
it can be said that for array objects the recommended size of the block-size
increased faster than for standard objects. This is because of the different
architecture of both types of objects. Standard objects produce less memory-
overhead than array objects with the same data-size. To get the correct block-
size for a program, it is necessary to analyze first the object allocations of

14

the program. One option is to analyze the distribution of the object sizes for
standard and array objects (i.e., histogram). If the size of the typical allocation
of a standard and an array object is known, it can be looked up in the diagram
which block-size matches the best.

If the problem arises that the analysis for each object type would lead to two
different block-size recommendations, it should be weighted which block-size is
better regarding the memory-overhead for the other object type. For example, if
the data-size of standard objects would be 200 bytes but for array objects around
8000 bytes then the recommended block-size would be n = 8 for standard objects
and n = 64 for array objects. If the block-size of 64 is chosen, the memory-
overhead of standard objects is in general too high because there is always a high
number of unused fields in smaller object-allocations. Otherwise, if the block-
size of n = 8 is chosen, the memory-overhead for the array-list increases a lot
because of additional depths and linking fields that cause a memory-overhead.
If the tendency of the object allocations is known (e.g., 25% array objects and
75% standard objects or vice versa), it is possible to find the block-size by just
using the assisting lines (e.g., 75% for the previous mentioned case). The higher
the percentage of the distribution between array-object and standard-object
is, the higher is the number of standard object allocations. 50% means that
the number of allocations for standard and array objects is the same. If the
tendency is not known, it is recommended to use the 50% line which is a good
assumption, because this works well for all mentioned examples in this paper.

If larger block-sizes are chosen, the total runtime of the garbage collection
cycle decreases because there are less blocks that has to be marked. This is
actually an advantage for the purpose of the JJVM to have small and predictable
run-times in the GC. On the other hand, objects that are smaller than the size
of the block, create more memory-overhead. So, again, this remains at hands
of the programmer to choose a block-size and he has to decide if he wants less
memory needs or less total GC times.

In general, it can be said that the block-size of n = 8 is a good size because
in most applications, the size of the objects do not increase beyond 37 bytes
for standard objects or 163 bytes for array objects. These are maximum sizes
for the data that fits for the block-size n = 8 for standard and array objects,
respectively (compare Figure 4.3). This can also be seen in the two tested real
life applications SciMark and Sunflow. All test results show that the block-size
of n = 8 is the best because of the smallest memory-overhead. Only in special
cases, it is necessary to choose another block-size or it does not matter (e.g.,
the synthetic test program that allocates objects with the size of 424 bytes).

15

Chapter 5

Conclusion

The results presented in this paper lead to the conclusion that the block-size of
n = 8 works the best for the most programs because they usually have many
objects that are below the size of 163 bytes. This is the upper bound for standard
objects and the block-size n = 8 in the JJVM (see Figure 4.3). The upper bound
for the recommended block-size of standard objects is always higher than for the
array objects. This is because of the higher memory-overhead that array-objects
produce than for standard-objects for the same data-size.

If the tendency of the distribution between standard and array objects is
known, the programmer can use the assisting lines in Figure 4.3. Unfortunately,
objects are seldom uniform, but it turns out that all programs in this paper and
the results of them show that they are good matches for the 50%-line. More
experiments are required to confirm that the distribution of standard and array
objects is equal for the general case.

Although the JJVM provides a garbage collection for real-time systems with
critical time constrains, the costs for the necessary memory of the garbage col-
lection are higher than in the OJVM. There was a minimum average of 20%
increase in memory-use in the JJVM when it is compared with OJVM for all
programs and benchmarks used in this paper and when the block-size was chosen
that produces the smallest memory-overhead. This is definitely a disadvantage
of the JJVM.

For programs that have more larger size objects, larger block sizes are rec-
ommended, since the memory-overhead for accessing large blocks is small. This
might also be a problem because if there are two main distributions of objects
(e.g., one small and one big object-distribution) that actually causes two differ-
ent block-size recommendations, the programmer has to decide which block-size
he should use in his implementation.

Regarding the two tested JVMs the conclusion is as follows: If an imple-
mentation does not need a virtual machine that fits the hard real-time goals,
it is recommended to use the standard OJVM. The JJVM should be taken in
the other case. The JJVM should also be taken if short and predictable GC
pauses are necessary, although more memory is used. Then, the programmer

16

just needs to provide a bigger memory for the heap.

17

Chapter 6

Future Work

Siebert [8] already gave an overview of the runtime-overhead of the GC in
the JJVM but also mentioned that the benchmarks that were used do not re-
flect the characteristic of real applications. The benchmarks that were used by
Siebert show that the GC of the OJVM runs in average 20% faster than the
JJVM [8]. Some future work should be the testing with real applications (or
benchmarks that reflects those ones) on the JJVM and compare the run-time
with the OJVM.

There should also be a more specific performance analysis regarding the
change of the the block-size. For example, it can happen that the programmer
chooses a small block-size that leads in case of big objects to many small blocks-
divisions that has to be checked during the GC. The bigger the objects are the
more connections hast to be checked. This leads to a more time-consuming fact
than it would be if the block-size would not have been chosen too small.

18

Bibliography

[1] aicas, JamaicaVM - Java Technology for Realtime, URL:
http://www.aicas.com/jamaica.html, Retrieved: 8 July 2011

[2] Markus Goffart Comparison of Memory Allocation in the Jamaica
and Oracle Java Virtual Machine, Master’s Thesis, University of New
Brunswick, Fredericton, January 2012

[3] Oracle, Java Virtual Machine Tool Interface - Version 1.2, URL:
http://download.oracle.com/javase/6/docs/platform/jvmti/jvmti.html, Re-
trieved: 8 July 2011

[4] Oracle, Whitepaper - The Java HotSpot Performance Engine Ar-
chitecture, URL: http://java.sun.com/products/hotspot/whitepaper.html,
Retrieved: 25 September 2011

[5] Siebert F., The Impact of Realtime Garbage Collection on Re-
altime Java Programming, Journal: Object-Oriented Real-Time Dis-
tributed Computing, 2004. Proceedings, Date: 14 May 2004, Page(s): 33
- 40, ISBN: 0-7695-2124-X, INSPEC Accession Number: 8302198

[6] Siebert F., Slides to: The Impact of Realtime Garbage Col-
lection on Realtime Java Programming, URL: http://www.cs.uni-
salzburg.at/announcements/Slides Siebert.pdf, Retrieved: 8 July 2011

[7] Siebert F., Concurrent, Parallel, Real-Time Garbage-Collection,
Journal: ISMM ’10 Proceedings of the 2010 International Symposium on
Memory Management, Year: 2010, ACM New York, ISBN: 978-1-4503-0054-
4

[8] Siebert F., Realtime Garbage Collection in the JamaicaVM 3.0,
JTRES’07 - The 5th International Workshop on Java Technologies for Real-
time and Embedded Systems - JTRES 2007, 26-28 September 2007, Vienna,
Austria

[9] Standard Performance Evaluation Corporation, Java Virtual Machine
Benchmark, URL: http://www.spec.org/jvm2008/, Retrieved: 8 July 2011

19

[10] Standard Performance Evaluation Corporation,
SPECjvm2008 User Guide; Version 1.0; Last modified: 16 April 2008,
URL: http://www.spec.org/jvm2008/docs/UserGuide.html, Retrieved: 2
November 2011

[11] Standard Performance Evaluation Corporation, Sunflow - Descrip-
tion, URL: http://www.spec.org/jvm2008/docs/benchmarks/sunflow.html,
Retrieved: 2 November 2011

[12] Standard Performance Evaluation Corporation, SciMark - Descrip-
tion, URL: http://www.spec.org/jvm2008/docs/benchmarks/scimark.html,
Retrieved: 2 November 2011

[13] Sun Microsystems, Memory Management in the
Java HotSpot(TM) Virtual Machine, Date: April
2006, URL: http://java.sun.com/j2se/reference/whitepapers/
memorymanagement whitepaper.pdf, Retrieved: 17 October 2011

20

