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Abstract

Consequence-based reasoners, which are applicable for classifying ontologies in less
expressive DL languages such asALCH , are typically significantly faster than tableau-
based reasoners. For more expressive DL languages likeALCHO, consequence-based
reasoners are not applicable, but tableau-based reasoners can sometimes require an u-
nacceptably long time for large and complex ontologies. In this paper, we present a
weakening and strengthening approach for classification of ALCHO ontologies, us-
ing a hybrid of consequence- and tableau-based reasoning, with the intention of giving
most of the work to the faster consequence-based reasoner. In our approach, given an
ALCHO ontology Oin, we first weaken it to an ALCH ontology Owk by removing
nominal axioms. We then approximate the effect of the removed axioms to retain clas-
sification completeness by adding some ALCH axioms, which we call strengthening
axioms, creating the Ostr ontology, also in ALCH . In the classification process, we
first use a consequence based main reasoner to classify Owk, which produces a sound
but possibly incomplete subset of classification for Oin. We then use the same conse-
quence based reasoner to classify Ostr, which generates a complete but possibly not
sound classification of Oin. Unsound subsumptions from the second-round classifica-
tion are filtered out by a tableau-based assistant reasoner.

WSClassifier often takes less time than tableau-based reasoners for large and com-
plex ontologies, but when it does not, it quickly provides an indication of the time it
will require, allowing the tableau-reasoner to take over.



1 Introduction
Ontology classification is a fundamental reasoning service used in the developmen-
t and application of OWL ontologies [7]. The target of classification is to calculate
all the subsumption relationships between atomic concepts implied by the input on-
tology. (Hyper)Tableau-based and consequence-based reasoners are two of the main-
stream reasoners for ontology classification. (Hyper)Tableau-based reasoners [10, 14]
build models to test the satisfiability of concepts of the form A u ¬B in order to see
whether A v B holds. Current (hyper)tableau-based reasoners such as HermiT [14],
FaCT++ [22], Pellet [19] and RacerPro [9], are able to classify ontologies in very
expressive DLs. However, despite various optimizations having been applied, classi-
fying certain existing large and complex ontologies is still a challenge for these rea-
soners, such as various versions of Galen and FMA ontologies. We regard an ontol-
ogy complex if it is highly cyclic. In contrast to the (hyper)tableau-based reasoners,
consequence-based reasoners classify ontologies by computing the saturation from the
specifically designed inference rules that produce implied subsumptions [11, 12, 18].
They are variations of so-called completion-based approaches proposed for the OWL
EL family [3, 5]. They are typically very fast but support less expressive DLs. So far
the most expressive languages that are supported by consequence-based reasoners are
Horn-SHIQ [11] andALCH [18].

In this paper we introduce a hybrid reasoning approach for classification of ontol-
ogoes in the DL L, using a consequence-based main reasoner MR and a tableau-based
assistant reasoner AR. MR provides sound and complete classification over the DL Lb

which is less expressive than L, while AR provides sound and complete classification
over L. Suppose MR reasoning is much faster than AR. We try to classify an ontol-
ogy Oin using MR to do the major work, and AR to do auxiliary work. We produce
a weakened version Owk by removing from Oin the axioms that are beyond Lb, and a
strengthened version Ostr by adding to Owk a set of strengthening axioms O+

N in Lb that
compensate for the removed axioms. Ostr to Owk are in Lb and are classified by MR
producing Hwk and Hstr, respectively. Subsumptions in Hwk are sound but may not
be complete w.r.t , whereas subsumptions in Hstr are complete but may not be sound.
Unsound subsumptions in Hstr\ Hwk are detected by AR and filtered out. Those that
remain are added toHwk resulting in the sound and complete classification of Oin. We
call this approach weakening and strengthening (WS); it is based on theory approxima-
tion [16]. We have implemented a prototype reasoner WSClassifier for L = ALCHO

and Lb = ALCH . Our empirical results of applying the WS approach to ALCHOI
were reported previously [20].

We first introduce preliminaries in Section 2, then give an overview of our hy-
brid classification procedure for ALCHO ontologies and prove its completeness in
Section 3. In Section 4, we introduce a polynomial time search to compute a set of
strengthening axioms efficiently. In Section 5 we show experimental results and report
the amount of extra work to do this verification. In Section 6 we introduce the related
work. Finally, in Section 7, we give the concluding remarks.
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2 Preliminaries
The syntax of ALCHO uses sets of atomic concepts, atomic roles and individuals.
We use A, B, E, F for atomic concepts, C,D for concepts, R, S for roles and a, b for
individuals. Complex concepts are either {a} or recursively defined using constructors
¬,u,t,∃,∀. An ontology is a finite set of axioms in the form of concept subsumptions
C v D or role subsumptions R v S . A concept equivalence C ≡ D is a shortcut of
two subsumptions. Given an ontology O, v∗

O
is the smallest reflexive transitive binary

relation over roles such that R v S ∈ O implies R v∗
O

S . 1

The semantics of ALCHO is defined using interpretations. An interpretation is a
pair I = (4I, ·I) where 4I is a non-empty set called the domain of the interpretation
and ·I is the interpretation function, which assigns to each atomic concept A a set
AI ⊆ 4I, to each atomic role R a relation RI ⊆ 4I × 4I, and to each individual a
an element aI ∈ 4I. The interpretation of all the constructors are defined in Table 1.
An interpretation I satisfies an axiom α (written as I |= α) if the respective semantic
definition of the axiom in Table 1 holds. I is a model of an ontology O (written I |= O)
if I satisfies each axiom in O. An axiom α is implied by an ontology O(written as
O |= α) if all models of O satisfy α. We say an interpretation I satisfies a concept C if
CI , ∅.

The use of nominals provides sufficient expressivity for other common axioms, e.g.
concept assertions C(a) can be written as {a} v C, role assertions R(a, b) can be written
as {a} v ∃R.{b}, and individual equivalence a ≡ b can be written as {a} ≡ {b}.

The notations
dn

i=1 Ci and
⊔n

i=1 Ci denotes finite n-ary conjunctions and disjunc-
tions with usual semantics. Ranges are omitted when irrelevant. We use letters H,K
for conjunctions of atomic concepts, and M,N,M′,N′ for disjunctions. Conjunctions
or disjunctions with different orders or multiplicity of elements are not distinguished,
so we treat them as sets and use set-theoretic operators ∈,⊆,∩ on them. Empty con-
junction and disjunction are identified as > and ⊥, respectively.

3 Hybrid Classification of Ontologies
Algorithm 1 describes our hybrid procedure for classifying Oin. It consists of three
stages: (1) a normalization stage (line 1) during which the ontology is rewritten to
simplify the forms of axioms in it; (2) a main classification stage (lines 2 to 8) in which
Owk and Ostr are generated and classified using the MR; and (3) a verification stage
(lines 9 to 17) in which the subsumptions arising from just the Ostr are verified using
AR. The notation C denotes the set of atomic concepts in Oin before normalization, and
C>,⊥ = C ∪ {>,⊥}. Hwk, Hin and Hstr are classification results of Owk, Oin and Ostr

expressed as a set of subsumptions A v B, where A, B ∈ C>,⊥.
In the normalization stage, the ALCHO ontology Oin is rewritten to contain only

axioms of forms
d

Ai v
⊔

B j, A v ∃R.B, ∃R.A v B, A v ∀R.B, R v S , or Na ≡

{a}. We assume all the ontologies are normalized in the remaining of the paper. This

1v∗
O

may not be a complete hierarchy of roles in an ALCHO ontology O, but it does not affect the
completeness of our approach
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Table 1: Syntax and semantics ofALCHO

Constructor Syntax Semantics
Concepts:
atomic concept A AI

top > 4I

bottom ⊥ ∅

negation ¬C 4I \CI

conjunction C u D CI ∩ DI

disjunction C t D CI ∪ DI

existential restriction ∃R.C {x | RI(x) ∩CI , ∅}
universal restriction ∀R.C {x | RI(x) ⊆ CI}
nominal {a} {aI}
Roles:
atomic role R RI

Individuals:
individual name a aI

Axioms:
concept inclusion C v D CI ⊆ DI

role inclusion R v S RI ⊆ S I
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Algorithm 1: HybridClassify(Oin)
Input: AnALCHO ontology Oin

Output: The classification result of Oin

1 normalize Oin;
2 Owk ← Oin with nominal axioms Na = {a} removed; /* Weakening */

3 Hwk ← MR.classify(Owk); /* Classify the weakened ontology */

4 O+
N ← getNominalStrAx(Oin,C

>,⊥ ∪ NP); /* Compute strengthening

axioms */

5 remove all E v F fromHwk where 〈E, F〉 < C>,⊥ × C>,⊥;
6 if O+

N ← ∅ then returnHwk;
7 Ostr ← Owk ∪ O

+
N ;

8 Hstr←MR.classify(Ostr); /* Classify the strengthened ontology */
9 if Na v ⊥ ∈ Hstr for some Na ∈ NP then return AR.classify(Oin);

10 remove all E v F fromHstr where 〈E, F〉 < C>,⊥ × C>,⊥;
11 if ‖ Hstr \ Hwk ‖ / ‖ C ‖> d then return AR.classify(Oin);
12 Hin ← Hwk;
13 foreach E v ⊥ ∈ Hstr \ Hwk do
14 if AR.isSatisfiable(Oin, E) then return AR.classify(Oin);
15 else add E v ⊥ intoHin;
16 foreach E v F ∈ Hstr \ Hwk where F , ⊥ do
17 if not AR.isSatisfiable(Oin, E u ¬F) then add E v F intoHin;
18 returnHin

transformation preserves subsumptions in Oin (see [21]). We call Na ≡ {a} an nominal
axiom in the following text, and write NP for the set {Na | Na ≡ {a}} in Oin.

In the verification stage, there are some cases we hand over the classification work
to AR: (1) Na v ⊥ ∈ Hstr; (2) Ostr has a unsatisfiable concept A but Oin 6|= A v ⊥, so
that A v B ∈ Hstr for all B ∈ C>,⊥, and most of them are not in Hwk and need to be
checked; (3) the fraction ‖ Hstr \ Hwk ‖ / ‖ C ‖ is greater than a threshold d. In the
latter two cases, the estimated work for the stage is more than using AR to classify Oin.
For (3) we set d = 1.5 in our implementation based on the experiments in [8].

In the main classification stage, the major work is to generate the ALCH ontolo-
gies Owk and Ostr. Owk is produced by simply removing all the nominal axioms of the
form Na ≡ {a} from Oin. Since Owk ⊆ Oin, Oin |= Owk and so Hwk ⊆ Hin, i.e. the
classification result of Owk is sound w.r.t. Oin.
Ostr is obtained from Owk by adding O+

N , which is a set of strengthening axioms.
Every model I of Ostr satisfies all axioms in Oin except possibly the nominal axioms,
which require the interpretation of each Na ∈ NP to have exactly one instance, whereas
for an arbitrary model I of Ostr, NIa could have zero or multiple instances. However, if
for each Na, NIa , ∅ and all the instances in NIa are “identical”, i.e., they have the same
label sets, these instances can be replaced by a single instance. Such a replacement is
called a condensation – it condenses all of the differnt instances into one instance, and
thus it transforms I into a model that satisfies the nominal axiom for Na. If such a
condensation can be done for all nominal axioms, then we can create a model for Oin.
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The strengthening axioms are designed to make these condensations possible. They
have the form Na v X and Na u X v ⊥ computed by algorithms 2 and 3, and thus they
force X to be a label of the nominal instance Na, or not to be one, respectively. By
“manipulating” labels of nominal instances through these strengthening axioms, we
can force them all to be identical, so that the condensations can occur.

We use a variant of canonical model construction approach for ALCH ontolo-
gies [18], which will be explained in the following subsection. Given a pair E, F ∈ C>,⊥

suppose a model of Ostr exists in which E u¬F. We shall show that a canonical model
of Ostr also exists that satifies E u ¬F and that this canonical model can be condensed
to a model of Oin satisfying E u ¬F. Stating the contrapositive: if Oin |= E v F
then Ostr |= E v F. Thus we know reasoning in Ostr is complete, once we create
the canonical models, done in Section 3.1, and show they can be condensed, done in
Section 3.2.

3.1 Canonical Model Construction
Here we introduce the construction of canonical models. Given E, F ∈ C>,⊥ such that
Ostr 6|= E v F, a canonical model I(E, F) of Ostr is constructed by first computing a
saturation S (E) of Ostr and then defining a model based on it. S (E) contains axioms
of the forms init(H), H v M t A and H v M t ∃R.K derived using the inference rules.

(1) Computation of saturation

Given E ∈ C> and Ostr, the saturation S (E) is initialized as

{init(E)} ∪ {init(Na) | Na ∈ NP}

Then S (E) is expanded by iteratively applying the inference rules in Table 2 and
adding the conclusions into S (E) until reaching a fixpoint. Existing axioms in
S (E) are used as premises and axioms in Ostr are used as side conditions. We
write Ostr `E α for every α in S (E) derived from Ostr. The inference process is
obviously sound, i.e. if Ostr `E α then Ostr |= α.

(2) Definition of I(E, F)

If E v F or E v ⊥ occurs in S (E), then Ostr |= E v F and the model satisfying
Eu¬F does not exist. Otherwise we define a total order ≺F over all the concepts
in Ostr such that F has the least order. If F is ⊥, the order can be an arbitrary
order. We define the domain 4I of I(E, F) as

4I := {xH | init(H) ∈ S (E) and H v ⊥ < S (E)}

where xH is an instance introduced for H. 4I is nonempty because init(E) ∈ S (E)
and E v ⊥ < S (E), and so xE exists.

To define the interpretation for atomic concepts, we first construct the label set
LS (xH ,I) for each instance xH . For simplicity, we write LS H for LS (xH ,I). Let
Ai be the concept with the ith order from the smallest to the largest according to
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Table 2: Complete Inference Rules for NormalizedALCH ontologies

R+
A

init(H)
H v A

: A ∈ H R−A
H v N t A

H v N
: ¬A ∈ H Rinit

H v M t ∃R.K
init(K)

Rn
u

{H v Ni t Ai}
n
i=1

H v
⊔n

i=1 Ni t M
:
dn

i=1 Ai v M ∈ Ostr R+
∃

H v N t A
H v N t ∃R.B

: A v ∃R.B ∈ Ostr

R−
∃

H v M t ∃R.K K v N t A
H v M t B t ∃R.(K u ¬A)

:
∃S .A v B ∈ Ostr

R v∗
O

S
R⊥
∃

H v M t ∃R.K K v ⊥
H v M

R∀
H v M t ∃R.K H v N t A

H v M t N t ∃R.(K u B)
:

A v ∀S .B ∈ Ostr

R v∗
O

S

≺F . For convenience we write M ≺F Ai if for each disjunct A in M, A ≺F Ai.
Let LS i

H be a sequence where LS 0
H := ∅, and LS i

H is defined as

LS i
H :=


LS i

H ∪ {Ai} if there exists M ≺F Ai such that
Ostr ` H v M t Ai and M ∩ LS i−1

H = ∅

LS i−1
H otherwise

The last element of the sequence is defined as LS H . With the LS H defined, the
interpretation of an atomic concept A is defined as

AI := {xH | A ∈ LS H}

The roles are interpreted to satisfy the axioms H v M t ∃R.K. For each role R
and each H such that xH ∈ 4

I, define

LS R
H := {K | ∃M : Ostr ` H v M t ∃R.K,M ∩ LS H = ∅}

A conjunction K is said to be maximal in LS R
H if there is no K′ ∈ LS R

H with a
superset of conjuncts of K. Since H v ⊥ < S , by R⊥

∃
rule we have K v ⊥ < S .

And by Rinit rule we have init(K) ∈ S . So xK is well-defined. The interpretation
of roles is defined as

RI :=
⋃

R′vOstr R

{(xH , xK) | K is maximal in LS R′
H }

The inference rules in Table 2 is modified from Table 3 in [18] by using R+
A and

Rinit to initialize contexts only when necessary. The change affects only the validity
of xK in the construction for RI which has been explained above, and the proof that I
satisfies each type of axiom can be kept unchanged from previous work [18]. So I is a
model of theALCH ontology Ostr.
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3.2 Condensing Labels and Completeness
Definition 1 Given an interpretation I = (4I, ·I), an atomic concept A is called a
label of an instance x if x ∈ AI. The set of all the labels of x is named the label set of
x in I, denoted by LS (x,I).

Definition 2 In an interpretation I = (4I, ·I), an atomic concept L is called a con-
densing label if (1) LI , ∅ and (2) for any x, y ∈ LI, LS (x,I) = LS (y,I).

If a label applied to some instance is a condensing label then every instance to which
it applies has the same label set. This means the label sets of all such instances are
identical and can be condensed into one instance.

Definition 3 Given a model I of an ALCHO ontology O, a concept L in O and an
individual name xL, we define a condensation function condense(L, xL,I) that trans-
forms I into an interpretation I′ = (4I

′

, ·I
′

) as follows:

1. Let n be an fresh instance which is not in 4I, and r be a replacement function

r(x) =

 n x ∈ LI

x otherwise

2. 4I
′

= {r(x) | x ∈ 4I}

3. For each concept A, role R and individual o in O,

AI
′

= {r(x) | x ∈ AI},RI
′

= {(r(x), r(y)) | (x, y) ∈ RI}, oI
′

= r(oI), xI
′

L = n

We say that each x ∈ LI is condensed into n. We also say I is condensed to I′.

Definition 4 If there is a concept E ∈ C> such that H v M t Na ∈ S (E), then H is an
occurring context of Na. We write HNa for all occurring contexts of Na.

Definition 5 A concept X is called a major coexisting label of a concept Y in Ostr if
either X or ¬X is a conjunct of an occurring context H of Y in Ostr. We denote the set
of all major coexisting labels of Y as MC(Y).

X is called an atom of H if X or ¬X is a conjunct of H. An instance’s label set does
not include the atom of any negative literal it is interpreted to belong to. However a
concept’s MC label may include the atom of a negative literal.

Lemma 6 If for each X ∈ MCNa
, either Na u X v ⊥ or Na v X holds, then for each

occurring context H of Na, either Na u H v ⊥ or Na v H holds.

Proof. Assume H = un
i Xi. (1) If Na v Xi for each Xi, 1 ≤ i ≤ n, then Na v u

n
i Xi v H.

(2) If there exists some Xi, 1 ≤ i ≤ n s.t. Na u Xi v ⊥, then Na u H v Na u Xi v ⊥. �

Lemma 7 Given the ontology Ostr, E ∈ C> and Na ∈ NP, if (1) Na is satisfiable and
(2) for each H s.t. H v M t Na ∈ S (E), either Ostr |= Na v H or Ostr |= Na u H v ⊥
holds, then for any F ∈ C>,⊥ such that Ostr 6|= E v F, Na is a condensing label in
I(E, F).
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Proof. Since Na is satisfiable, and init(Na) ∈ S (E), so xNa exists, and according to the
model construction xNa ∈ NIa . So we need to prove that for each xH ∈ NIa , LS H = LS Na

in any model I(E, F). Since xH ∈ NIa , we know Ostr 6|= Na u H v ⊥ so that the choice
from (2) is Ostr |= Na v H, and xNa ∈ HI.

We first prove LS Na
⊆ LS H by contradiction. Assume LS Na

\ LS H , ∅, let X be the
concept in LS Na

\ LS H with the smallest order. Since X ∈ LS Na
, there exists N ≺F X

such that Ostr ` Na v N t X and N ∩ LS Na
= ∅.

∵ Ostr ` Na v N t X ∴ Ostr |= Na v N t X

∵ xH ∈ NIa ∧ xH < XI ∴ xH ∈ NI ∴ LS H ∩ N , ∅

In the above proof, if N v ⊥, a contradiction arises with xH ∈ NI. Otherwise, let
Y ∈ LS H ∩ N, there must exist N′ ≺F Y s.t. Ostr ` H v N′ t Y and LS H ∩ N′ = ∅.

∵ Ostr ` H v N′ t Y and xNa ∈ HI ∴ xNa ∈ (N′ t Y)I

∵ N′ ≺F Y and Y ∈ N and N ≺F X ∴ N′ ≺F X

Since X is the smallest in LS Na
\LS H , N′ ≺F X and LS H∩N′ = ∅, we have LS Na

∩N′ =

∅ (it is trivially true if N′ v ⊥), and xNa < N′I. Given xNa ∈ (N′tY)I, we have xNa ∈ YI

and Y ∈ LS Na
, this contradicts with N∩LS Na

= ∅. So we conclude that LS Na
\LS H = ∅

and LS Na
⊆ LS H .

Next we prove LS H ⊆ LS Na
. For each X ∈ LS H , there exists N ≺F X such that

Ostr ` H v N t X and N ∩ LS H = ∅.

∵ LS Na
⊆ LS H ∴ N ∩ LS Na

= ∅ ∴ xNa < NI

∵ xNa ∈ HI ∧ xNa < NI ∴ xNa ∈ XI

Thus we conclude X ∈ LS Na
. �

Theorem 8 LetI be a model of anALCHO ontologyO satisfying Eu¬F, E, F ∈ C>,⊥,
where L is a condensing label in I. Then I′ = condense(L, xL,I) is a model of
O ∪ {L = {xL}} satisfying E u ¬ F.

Proof. By the definition of condensing label, we have: (1) LI , ∅; (2) for all x ∈ LI,
LS (x,I) are the same. By (1) and the definition of tr, we have LI

′

= {xI
′

L }, so the
axiom {L = {xL}} is satisfied. By (2), we can further prove LS (x,I) = LS (r(x),I′)
holds for all x ∈ 4I. Next we need to prove I′ |= α from I |= α for any axiom α in O.
We analyze all possible form of α case by case:

• α =
d

Ai v
⊔

B j Assume x′ ∈ (
d

Ai)I
′

, there exists x ∈ 4I s.t. x′ = r(x). Since
LS (x,I) = LS (x′,I′), we have x ∈ ∩iAIi , so x ∈ ∪ jBIj . Hence x′ ∈ (

⊔
B j)I

′

.

• α = A v ∃R.B Assume x′ ∈ AI
′

, there exists x such that x′ = r(x) and x ∈ AI.
Since I |= α, there exists y ∈ 4I s.t. (x, y) ∈ RI and y ∈ BI. So (x′, r(y)) ∈ RI

′

and r(y) ∈ BI
′

. Hence x′ ∈ (∃R.B)I
′

.
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• α = ∃R.A v B Assume x′ ∈ (∃R.A)I
′

, there exists y′ such that (x′, y′) ∈ RI
′

and
y′ ∈ AI

′

. So there exists (x, y) ∈ RI s.t. x′ = r(x) and y′ = r(y). Since r(y) ∈ AI
′

,
y ∈ AI. Because I |= α, x ∈ BI and thus x′ ∈ BI

′

.

• α = A v ∀R.B Assume x′, y′ ∈ 4I
′

s.t. (x′, y′) ∈ RI
′

and x′ ∈ AI
′

, there exists
x, y ∈ 4I s.t. x′ = r(x), y′ = r(y) and (x, y) ∈ RI. Since LS (x,I) = LS (x′,I′),
we have x ∈ AI. Because I |= α, y ∈ BI, hence y′ ∈ BI

′

.

• α = Na ≡ {a} By I |= α we have NIa = {aI}. According to the definition of the
function condense() we have NI

′

a = {r(aI)} = {aI
′

}.

• α = R v S If (x′, y′) ∈ RI
′

, there exists x, y ∈ 4I s.t. x′ = r(x), y′ = r(y) and
(x, y) ∈ RI. Since I |= α, (x, y) ∈ S I and so (x′, y′) ∈ S I

′

.

So I′ |= O ∪ {L = {xL}} holds. Assume x ∈ (E u ¬F)I, since LS (x,I) = LS (r(x),I′)
we know r(x) ∈ (E u ¬F)I

′

, so (E u ¬F)I
′

, ∅. �

Definition 9 (Strengthening Axioms O+
N and Strengthened Ontology Ostr) Let OMCNa

be an arbitrarily chosen set of atoms which is a superset of MCNa
. O+

N contains all such
axioms as: ∀Na ∈ NP,∀X ∈ OMCNa

, Na v X or Na u X v ⊥. Ostr = Owk ∪ O
+
N .

Theorem 10 If I is a model ofOstr for Eu¬F, E, F ∈ C>,⊥, and allNP are condensing
label in I, then there exists a model of Oin for E u ¬F.

Proof. Let the set of nominal axioms in Oin be {Li ≡ {xLi }}
n
i=1. We prove I(E, F) can

be transformed to a model In of On
str = Ostr ∪ {Li ≡ {xLi }}

n
i=1 such that (E u ¬F)In , ∅

by induction on n.
By assumption for n = 0, I0 = I(E, F). We need to show a model Ik of Ok

str
satisfying E u¬F can be transformed to a model Ik+1 of Ok+1

str satisfying E u¬F. This
step is proved by applying Theorem 8 where I = Ik, O = Ok

str, L = Lk and xL = xLk .
Then we have transformed a model I(E, F) of Ostr to a model In of On

str satisfying
E u ¬F where ‖NP‖ = n. Since On

str ⊇ Oin, In |= Oin and (E u ¬F)In , ∅. �

Theorem 11 Let Oin be anALCHO ontology. Suppose there is a set of atoms OMCNa

such that OMCNa
⊇ MCNa

, ∀Na ∈ NP. Then classification by Ostr is complete w.r.t.
Oin.

Proof. Because OMCNa
⊇ MCNa

, ∀Na ∈ NP, by Lemma 6, 7, we know that for each
occurring context H of each Na, either Na u H v ⊥ or Na v H holds. Let E, F ∈ C>,⊥

and Ostr 6|= E v F, by Lemma 7, all Na ∈ NP are condensing labels in the canonical
model I(E, F). By Theorem 10, the model can be condensed to a model I′ of Oin for
Eu¬F, proving Oin 6|= E v F. So the classification result of Ostr is complete w.r.t. Oin.
�

Thus, our next task is to compute OMCNa
, and ensure OMCNa

is a superset of MCNa
,

and then calculate strengthening axioms O+
N and obtain Ostr.

9



4 Computing the Strengthened Ontology
The primary task in strengthening is to calculate the set OMCNa

. Since strengthening
axioms participate in the saturation procedure, they may influence the canonical model
construction of Ostr and consequently MCNa

. In order to ensure MCNa
⊆ OMCNa

for
Ostr, our algorithm is divided into two stages. In the first stage, we find the atoms of H
where the derivation of axioms H v M t Na does not rely on the strengthening axioms
O+

N . In the second phase, we enlarge the set computed from the first stage to address
the influences of O+

N to each MCNa
.

Algorithm 2 gives the details of the first stage. The input of the algorithm is a
concept X for which we want to find the set OMCX such that for each H v M t X ∈
S (E), the atoms of H are in OMCX. To achieve this goal, we need to take a closer
look at how H v M t X is derived in the saturation process. We divide the derivation
process into two parts: (1) the initialization of H, i.e. how init(H) is derived, and (2)
the derivation of H v M t X starting from init(H). We start with (2) and will address
(1) later.

Algorithm 2: getPartialOMC
Input: NormalizedALCHO ontology Oin and a concept X ∈ C, a set of atomic

classes U
Output: Major coexisting label set OMCX, CsetX

1 ToProcess← {X}; CsetX ← ∅; existsX ← ∅;
2 repeat
3 take out a label W from ToProcess;
4 if W < CsetX then
5 add W to CsetX;
6 if > v M

⊔
W ∈ Oin then return and hand over the classification work

to AR;
7 foreach

d
Ai v M

⊔
W ∈ Oin do select one Ai and add it into

ToProcess;
8 foreach ∃S .Y v W ∈ Oin and R v∗

O
S and B v ∃R.Z ∈ Oin do

9 add B into ToProcess;
10 until ToProcess is empty;
11 foreach W ∈ CsetX do
12 if W ∈ U or W ∈ NP then add W to OMCX;
13 foreach Y v ∀S .W ∈ Oin and R v∗

O
S and B v ∃R.Z do add ∃R.Z to existsX;

14 foreach B v ∃R.W ∈ Oin do add ∃R.W to existsX;
15 foreach ∃R.W ∈ existsX and R v∗

O
S do

16 add W to OMCX;
17 foreach Y v ∀S .Z ∈ Oin do add Z to OMCX;
18 foreach ∃S .Z v Y ∈ Oin do add Z to OMCX;
19 return 〈OMCX,CsetX〉

To explain the algorithm, we first introduce some terminologies and notations.

10



Definition 12 An inference step IS in a saturation process is one application of the
inference rule. Each IS associates with an inference rule IS.rule, a set of premises
IS.prem, a set of conclusions IS.conc and a set of side conditions IS.sc. The conjunc-
tion H that occurs in IS.prem, shown in Table 2, is called the context of IS. We write
ISH if the inference step is in the context H.

Definition 13 In a saturation S (E), the derivation path of a conclusion α of the form
H v M or H v N t ∃R.K is the sequence of all the inference steps IS1

H, . . . , IS
m
H in the

context H, where: (1) α ∈ ISm
H .conc, and (2) for any n < m, ISn

H occurs before ISn+1
H in

the saturation process.

A derivation path contains all the key inference steps for deriving a conclusion from
init(H). Note that init(H) can only be used as premises for R+

A rule, and its conclusion
is of the form H v A. Hence any conclusion in context H is derived from one or more
such axioms. In Algorithm 2, we first conduct a search in the converse direction of a
derivation path of H v M t X to find one concept A where H v A is one of the axioms
from which H v MtX is derived. We maintain a set ToProcess in which each concept
W corresponds to some potential intermediate conclusion H v M′tW in the derivation
path of H v M t X. In an inference step ISH of the derivation path, if W is a new
disjunct in the right hand side of the conclusion axiom, then ISH.rule can only be Rn

u

or R−
∃
. Line 7 deals with the case where ISH.rule = Rn

u and
d

Ai v M tW ∈ ISH.sc.
The premises for this rule are all of the form H v N t Ai. These are intermediate
conclusions prior to H v M′tW, and we select and add one Ai into ToProcess. Lines 8
and 9 deal with the case where ISH.rule = R−

∃
and ISH.sc = {∃S .Y v W,R v∗

O
S }.

The premise is H v M′ t R.K, and there is another inference step IS
′

H in which R
is new to the conclusion. There must be IS

′

H.rule = R+
∃
, B v R.Z ∈ IS

′

H.sc, and
IS
′

H.prem = {H v M′′ t B}, and so we add B into ToProcess. We initialize ToProcess
with {X}, and keep adding into it all the possible labels that the processed label “comes
from”. This process covers all the potential derivation paths of H v M t X for all
possible Hs. For each potential path, there are two possibilities that end the search:

(2.a) a conclusion H v B derived by R+
A is reached,

(2.b) a conclusion H v M t B is derived using a strengthening axiom Nb v B.

In case (2.a), B is a positive conjunct of H. Case (2.b) will be dealt with in Algorithm 3.
According to the discussion above, for those occurring contexts H which are in

case (2.a), at least one of its positive conjuncts B is processed and added into CsetX .
We return to the question of how init(H) was derived, and how to find all the con-

juncts of H from B. There are two cases for init(H) to be derived:

(1.a) init(H) is introduced at the initialization of the saturation process;

(1.b) init(H) is derived using Rinit rule. Let H =
dn

i=1 Ci
H . In such case the premise is

of the form H∗ v M t ∃R.H. Here is part of its derivation path:

H∗ v M1tA
R+
∃

−−−−−−−→
Av∃R.C1

H

H∗ v M1 t ∃R.C1
H ···

R∀/R−∃
−−−−−−−−−−−−−−−−→
Rv∗
O

S Yv∀S .Z/∃S .ZvY
H∗ v Mn t ∃R.(

nl

i=1

Ci
H)
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We can see the first conjunct C1
H is added by R+

∃
rule while the others are added

either by R∀ or R−
∃
. R∀ adds only positive conjuncts, and R−

∃
adds negative ones.

In lines 11 to 14, we check whether each concept W can be a potential conjunct of
some occurring context H of the input X. For case (1.a), W is the only conjunct of H
and is added to OMCX in line 12. For case (1.b), ∃R.C1

H is first added into existsX in
lines 13 and 14, and then all the conjuncts are added in the loop from lines 15 to 18.

Algorithm 3: getNominalStrAx (Calculate strengthening axioms for nominals)
Input: NormalizedALCHO ontology Oin

Output: Strengthening axioms O+
N

1 foreach Na ∈ NP do
2 〈OMCNa

,CsetNa〉 ← getPartialOMC(Na);
3 create a group g with g.nominals = {Na}, g.omc = OMCNa

, g.cset = CsetNa ;
4 add g into groups;
5 repeat
6 if there exists gi, g j ∈ groups such that gi.omc ∩ g j.cset , ∅ then
7 merge gi, g j into one group g, whose properties are unions of

corresponding properties of gi and g j;
8 remove gi, g j from groups and add g;
9 until no such gi, g j exists;

10 foreach g ∈ groups, Na ∈ g.nominals and X ∈ g.omc do
11 add Na v X or Na u X v ⊥ to O+

N ;
12 return O+

N

For the any occurring context H of Na in case (2.b), the search ends at some infer-
ence step where Nb v B is the side condition, and B ∈ CsetNa . Since Nb v B ∈ Ostr,
we have B ∈ OMCNb , and so B ∈ CsetNa ∩ OMCNb . So in lines 5 to 9 of Algorithm 3,
we merge OMCNa

and OMCNb if CsetNa ∩OMCNb is not empty. Once merged, OMCNa

and OMCNb are equal, which ensures that for each context H which H v M t Na is
derived from H v N t Nb, the atoms of H are added into OMCNa

.
Algorithms 2 and 3 are polynomial in the size of ontology, which we measure by the

number of axioms nax and the number of concepts nc in the normalized ontologyOin. In
Algorithm 2, the size of CsetX and existsX are bounded by the nc and nax, respectively.
Line 2 to 10 takes O(nc · nax) time, since each concept in CsetX is processed once
in the outer loop, and each foreach-loop inside takes at most O(nax) time. Similarly,
lines 11 to 14 also takes O(nc ·nax) time, and lines 17 to 18 is O(n2

ax). So Algorithm 2 is
O(n2

ax + nc · nax). In Algorithm 3, Algorithm 2 is invoked O(nc) time, and the merging
process takes at most n2

c if all the nominals are merged into one group. So the whole
procedure is polynomial.

4.1 Proof of MCNa
⊆ OMCNa

Lemma 14 Let α be an axiom of the form H v M t A or H v M t A t ∃R.K in S (E),
and IS1

H, . . . , IS
m
H is the derivation path of α, then there exists B ∈ CsetA and n ≤ m

12



such that (1) IS1
H, . . . , IS

n
H is a derivation path of some H v N t B ∈ S (E); (2) either

ISn
H.rule = R+

A or ISn
H.sc contains a strengthening axiom of the form Nb v B.

Proof. According to line 1 of Algorithm 2, A ∈ CsetA. We prove the lemma by
induction over m.

If m = 1, then IS1
H.rule is R+

A, and the lemma holds when B = A and n = 1. Next
we show the lemma holds when m = k, if it holds for all m < k. Since α ∈ S (E), there
must exist some step ISp

H such that A is a disjunct of the axiom in the conclusion but
not in the premise. In this case, ISp

H.rule can only be R+
A, Rn

u or R−
∃
, so we can perform

a case analysis as follows.

Case 1 ISp
H.rule=R+

A In this case we can choose B = A and n = p to prove the
lemma.

Case 2 ISp
H.rule=Rn

u In this case ISp
H.sc has a single axiom α of the form

d
Ai v⊔

B j. Note that by our assumption, A appears as a disjunct in the right hand
side of a derived axiom for the first time in the conclusion, so there must be
some B j which is A, and so α cannot be of the form

d
Ai v ⊥. Hence if α

is a strengthening axiom, then it can only be of the form Na v A, and we can
choose B = A and n = p to make the lemma hold. Otherwise, by line 7 there
exists some Ai ∈ CsetA. Since H v Ni t Ai ∈ ISp

H.prem, its derivation path
IS1

H, . . . , IS
p′

H must satisfy p′ < p ≤ k. By applying the inductive hypothesis to
m = p′ and H v Ni t Ai, there exists B ∈ CsetAi and n ≤ p′ such that conditions
(1) and (2) hold. Since Ai ∈ CsetA, according to the algorithm, we can see that
CsetAi ⊆ CsetA. So B ∈ CsetA, and the lemma is proved.

Case 3 ISp
H.rule=R−

∃
In this case ISp

H.sc has axioms of the forms R v∗
O

S and ∃S .Y v
A, and one of the premises ISp

H.prem is of the form H v M′ t ∃R.K′. The
derivation process of H v M′ t ∃R.K′ is the same as (*), where H∗ and H in (*)
are replaced by H and K′, respectively. The first inference step in (*) has a side
condition of the form A′ v ∃R.C1

K′ and a premise of the form H v M1 t A′. By
line 8 to 9, A′ is added to CsetA where W = A and Z = C1

K′ . Let IS1
H, . . . , IS

p′

H
be the derivation path of H v M1 t A′. We can see p′ < k since H v M1 t A′

must be derived before the kth step. By the inductive hypothesis, there exists
B ∈ CsetA′ and n ≤ p′ such that conditions (1) and (2) hold. Since A′ ∈ CsetA,
CsetA′ ⊆ CsetA. So B ∈ CsetA, and the lemma is proved. �

Lemma 15 Given H v M t A ∈ S (E), if a conjunct B of H is in CsetA, then all atoms
in H belongs to OMCA.

Proof. Since all the conjuncts of H are added in the derivation of init(H), we discuss
the two cases how init(H) is derived and H’s conjuncts are added in each case:

• If init(H) is introduced at initialization stage, then B is the only conjunct in H
belonging to C>,⊥ or NP, and it is added to OMCA in line 12 where W = B and
U = C>,⊥.
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• If init(H) is introduced by Rinit rule, the derivation process is (*). The side con-
dition of the first step is A v ∃R.C1

H . We first prove ∃R.C1
H ∈ existsA. If B is

C1
H , then ∃R.C1

H is added to existsA in line 14 where W = B. If B is a conjunct
of H other than C1

H , then B becomes a conjunct after an application of R∀ rule,
in such case the side condition is R v∗

O
S and Y v ∀S .B, so ∃R.C1

H is added to
existsA in line 13 where W = B.

Next we show the lemma holds for all three types of conjuncts C of H:

1. If C is added to the conjuncts of H by R+
∃

rule, then C = C1
H and is added

to OMCA in line 16.

2. If C is added to the conjuncts of H by R∀ rule, then C is added to OMCA in
line 17.

3. If C is added to the conjuncts of H by R−
∃

rule, then C is of the form ¬Z,
and Z is added to OMCA in line 18.

Hence the lemma is proved. �

Lemma 16 In Ostr, for each Na ∈ NP, MCNa
⊆ OMCNa

.

Proof. We prove the following equivalent statement:

For each H and Na ∈ NP such that H v M t Na ∈ S (E),
if X or ¬X is a conjunct of H, then X ∈ OMCNa

. (**)

Let the derivation path of H v MtNa be IS1
H, . . . , IS

m
H . We prove by induction over

the m.
If m = 1, there must be ISm

H .rule = R+
A. Since Na is a conjunct of H, by lemma 15

all atoms of H are in OMCNa
.

Next we prove statement (**) holds when m = k if it holds for all Na when m < k.
By apply Lemma 14 where A = Na and m = k, there exists B ∈ CsetNa and n ≤ k

such that (1) IS1
H, . . . , IS

n
H is a derivation path of some H v N t B ∈ S (E); (2) either

ISn
H.rule = R+

A or ISn
H.sc contains a strengthening axiom of the form Nb v B. Next we

discuss the two cases.

Case (a) If ISn
H.rule = R+

A, B is a conjunct of H, by lemma 15 all atoms of H are in
OMCNa

.

Case (b) If ISn
H.sc contains a strengthening axiom of the form Nb v B, then ISn

H.prem
is of the form H v M′tNb. Since the length of the derivation path of H v M′tNb

is less than k, by the inductive hypothesis we know all atoms of H are in OMCNb .
Since B ∈ OMCNb ∩ CsetNa , by lines 5 to 9 we have OMCNb = OMCNa

. So all
atoms are in OMCNa

.

Hence the lemma is proved. �
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4.2 Optimization
For each X ∈ OMCNa

, if Na v X or Na u X v ⊥ is implied by Owk, we do not
add any axiom for X into O+

N . Concretely, we run Algorithm 2 before the first round
classification, introduce a new axiom Xa v Na u X where Xa is a fresh concept. After
the first round classification, if Xa v ⊥ is found, then Na u X v ⊥ is implied. Na v X
can also be known fromHwk.

When choosing between Na v X and Na u X v ⊥, we use the heuristics that if X
corresponds to a union concept in the original ontology, and Na v X is not implied,
then we add Na u X v ⊥. For other cases, we add Na v X.

In Algorithm 3, lines 5 to 9 is to merge the OMCs of two nominal placeholders
under some condition. Such operation may greatly increase the labels of the nominal
placeholders. To reduce the number of labels, we can remove some labels from each
OMCNa

before executing lines 5 to 9. We call this operation optimization1. The
removed labels are from the positive labels X ∈ OMCNa

in line 2 of Algorithm 3, and
these Xs are those we choose to add NauX v ⊥ to O+

N(we add NauX v ⊥ to O+
N before

removing X from OMCNa
). It can be removed because if Na u X v ⊥ is chosen and X

is a disjunct of H, we can prove that in S (E), any conclusion H v M t Na becomes
redundant conclusions and can be removed.

Definition 17 (Redundant conclusion) An axiom α ∈ S (E) is called a redundant con-
clusion if there exists an axiom β ∈ S (E), α, β are of the form H v M or H v Mt∃R.K,
and all the disjuncts in the right hand side of β are disjuncts in the right hand side of
α. The set of redundant conclusions are denoted by RS (E).

Remark 18 According to section 5.5 of František et.al. [18], in the saturation proce-
dure, we can safely delete any conclusion immediately from the saturation once it is
found to be redundant, and the models constructed for the saturation will not change.

Lemma 19 In the strengthened ontology produced with optimization1, we have
MCNa

⊆ OMCNa
for each nominal placeholder Na.

Proof. To prove the conclusion, we need to prove the optimization operation does
not affect the completeness if we remove redundant conclusions during the saturation
procedure.

Note that the optimization operation only affects the execution result of lines 5
to 9 of Algorithm 3. This affects only the case (b) of Lemma 16, which requires
Nb v B ∈ ISn

H.sc. When Nb v B ∈ ISn
H.sc, ISn

H.rule=Rn
u and H v N t Nb ∈ ISn

H.prem
must hold.

Next we prove in the scenario such that: (i) H contains a positive conjunct X; (ii)
NbuX v ⊥ ∈ Ostr, case (b) will not happen. From (i) we know H v X is derived by R+

A
rule. If there is an axiom of the form H v N t Nb derived in the saturation process, we
will apply Rn

u rule to these two axioms with a side condition NbuX v ⊥, and H v N is
derived. After this step, H v NtNb becomes redundant and is deleted immediately, and
then it will not participate as a premise for other derivations in the saturation procedure.
That means it is impossible that ISn

H.rule=Rn
u and H v NtNb ∈ ISn

H.prem, and so case
(b) of Lemma 16 is impossible. That is to say, such Hs cannot get H v MtNa through
H v N t Nb, thus we do not need to add X into OMCNa

.
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Hence if (i) and (ii) hold, we remove X from OMCNb , and X will not be added into
OMCNa

in lines 5 to 9, and the conclusion of Lemma 16 still holds. �

5 Experiments and Evaluation
We have implemented our prototype hybrid reasoner WSClassifier in Java using OWL
API. The reasoner uses ConDOR r.12 as the mainALCH reasoner and HermiT 1.3.6
as the assistant reasoner for DL ALCHO. WSClassifier adopts a well-known prepro-
cessing step to eliminate transitive roles [11], hence supports DL SHO (ALCHO+

transitivity axioms). We compared the classification time of WSClassifier with tableau-
based reasoners HermiT 1.3.6, Fact++ 1.5.3 and Pellet 2.3.0, as well as another hybrid
reasoner MORe which combines ELK and HermiT. All the experiments were run on a
laptop with an Intel Core i7-2670QM 2.20GHz quad core CPU and 16GB RAM run-
ning Java 1.6 under Windows 7. We set the Java heap space to 12GB and the time limit
to 9 days for all reasoners except the recent release of MORe, for which we set the time
limit the same as classification time of HermiT for Galen and FMA ontologies.

We evaluated WSClassifier and other reasoners on all large and complex ontologies
available to us, on the ORE dataset and on some proposed variants. The only large and
complex ontologies included are FMA-constitutionalPartForNS(FMA-C)2 and modi-
fied versions of Galen in which some concepts starting with a lower case letter and
subsumed by SymbolicValueType are modeled as nominals. The ontologies containing
“EL” in the name are constructed based on Galen-EL3. Galen-EL-n1Y and Galen-
EL-n2Y were provided [13]. Galen-Heart-n1 and Galen-Heart-n2 are subontologies,
respectively, referring to the human heart. Galen-EL-n1YE and Galen-EL-n2YE have
some nominals removed and Galen-Union-n is made by adding disjunctions of nomi-
nals. We used two common smaller complex ontologies – Wine and DOLCE. We use
the ORE dataset,4 where 2 ontologies without axioms are removed. In all cases, we
reduce the language to SHO. The ontologies are available from our website.5.

The results are shown in Table 3. We found that the optimal configurations for
HermiT when running the large and complex ontologies were simple core blocking
and individual reuse. Excluding ORE, WSClassifier achieves better efficiency than
the tableau-based reasoners on 7 out of 10 ontologies. For Wine, Galen-EL-YN1 and
Galen-EL-YN2, WSClassifier, incurring a relatively small cost, detected that strength-
ening axioms made some concepts unsatisfiable in Ostr, and so failed over to HermiT.

We see a major speedup for WSClassifier on ORE’s FMA-lite. On the other 112
ORE ontologies, our average reasoning time is longer than other reasoners. Among
these ontologies, 51 have nominals, mostly coming from ABoxes, and only 9 of them
have strengthening axioms. Of the 9 ontologies, 8 did not produce any new subsump-
tions inHstr and only 1 introduced new unsatisfiable concepts and fails over to HermiT.
Thus the WS approach does not incur much additional work, and most of the addition-

2Foundational Model of Anatomy, http://sig.biostr.washington.edu/projects/fm/index.
html

3http://code.google.com/p/condor-reasoner/downloads/list
4http://www.cs.ox.ac.uk/isg/conferences/ORE2012/
5 http://isel.cs.unb.ca/˜wsong/WSClassifierExperimentOntologies.zip
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Table 3: Comparison of classification performance
Ontology Concepts Nominals (Hyper) tableau Hybrid

HermiT Pellet FaCT++ MORe WSClassifier
Wine 146 206 24.6 285.6 4.6 1.0 28.7

DOLCE 207 39 6.6 7.0 15.6 53.3 1.3
Galen-Heart-n1 3366 55 264.0 – – – 4.1
Galen-Heart-n2 3366 92 768.4 – – – 1.8
Galen-EL-n1Y 23136 739 701,822.0 – – – 700,985.0
Galen-EL-n2Y 23136 1113 407,427.0 – – – 408,188.0

Galen-EL-n1YE 23136 598 244,146.0 – – – 17.0
Galen-EL-n2YE 23136 712 289,637.0 – – – 25,630.0
Galen-Union-n 23136 598 469,274.3 – – – 21.1

FMA-C 41648 148 140,882.0 – – – 21.2
ORE-dataset (OWL DL & EL,113 ontologies) the following refers to average number

other 112 ontologies 4293 343 0.84 0.86 –∗ 0.24 2.10
FMA-lite 75,141 0 137,409.0 – – – 26.0

Note: The time is measured in seconds. “–” means out of time or memory
∗: Fact++ terminates unexpectedly while classifying some ontologies in the ORE-dataset

al time is taken on overheads: computing normalized and strengthening axioms, and
transmitting the ontology to and from ConDOR, which is necessary since ConDOR
cannot be accessed directly through OWL API and consumes about 60% of the time.

WSClassifier outperforms MORe on DOLCE and all the Galen ontologies. For
the Galen ontologies, MORe assigns all the classification work to a default configured
HermiT; fine-tuning may improve its times. However, MORe computes only subsump-
tions implied by the TBox, ignoring the ABox, thus its classification result is incom-
plete for some ontologies with ABoxes, such as Wine.

Table 4 shows some statistics of WSClassifier on different phases. For FMA-C,
there are no strengthening axiom added, and only one round of classification by MR
is needed. For DOLCE, Galen-Heart-n2, Galen-EL-n1YE and Galen-Union-n, there
are no new subsumptions derived from Ostr, and so the verification phase by AR is not
needed. For Galen-EL-n1Y, Galen-EL-n2Y and Wine, our strengthening produces in-
correct unsatisfiable concepts, so the classification fails over to HermiT. The number of
strengthening axioms for these ontologies is large which increases the risk of concepts
in NP and other atomic concepts A ∈ C becoming unstaisfiable. For Galen-EL-n1Y
and Galen-EL-n2Y, difficulty arises from axioms of the form A ≡ Bu∃R.C where B is
a general concept and R is a frequently occurring role. Two of the normalized axioms
coming from this are B u A∃R.C v A and ∃R.AC v A∃R.C . Once A is added to some
CsetNa in Algorithm 2, then either B or A∃R.C needs to be added to CsetNa in line 7. We
choose to add B to CsetNa in line 7, which causes a large number of its subconcepts to
be added to OMCNa

. In the merge process from lines 5 to 9 in Algorithm 3, this OMCNa

will create a large nominal group g creating many strengthening axioms. For the Wine
ontology and its variant food ontology in ORE-dataset, a large OMCNa

is caused by
roles occurred in line 15 of Algorithm 2 creating many labels in line 17 and 18.

WSClassifier seems most applicable when the ontologies are large and highly cyclic
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Table 4: Statistics of WSClassifier
Ontology unsatisfiable strengthening potential confirmed checking

concepts axioms added subsumptions subsumptions time(s)
Wine 166 982 / / /

Dolce 0 14 0 0 0
Galen-Heart-n1 0 2 2 2 1.1
Galen-Heart-n2 0 13 0 0 0
Galen-EL-n1Y 25,386 236,069 / / /

Galen-EL-n2Y 24,682 18,916 / / /

Galen-EL-n1YE 0 17 0 0 0
Galen-EL-n2YE 0 209 2,039 202 25,613
Galen-Union-n 0 2,624 0 0 0

FMA-C 0 0 0 0 0
ORE-dataset (OWL DL & EL,113 ontologies)

food (variant of Wine) 48 791 / / /

other 112 ontologies 0 102 (total) 0 0 0
Note: “/” entry means that WSClassifier fails over to HermiT and the number is not applicable

since then tableau reasoners construct large models and employ expensive blocking s-
trategies. On the other hand consequence-based reasoners do not encounter problems
on highly cyclic ontologies, and so can classify even cyclic Owk and Ostr quickly. If
there are no or just a few additional subsumptions derived by Ostr, AR does not need or
just do a little work on the highly cyclic Oin. This improvement is observed for FMA-C
which is the only real-world large and complex ontologies with nominals we have. Of
the 51 ORE ontologes with nominals, only one has additional subsumptions. This ev-
idence suggests nominals in real world ontologies seldom produce new subsumptions;
this suggests our approach is valuable.

6 Related Work
Optimization techniques for ontology classification have been extensively studied in
the literature [4, 17, 8, 13]. For tableau-based reasoners, Enhanced Traversal (ET) [4]
and KP [17, 8] are the most widely used techniques. Optimizations for consequence-
based classification of ELO ontologies were also studied [13], and the most effective
technique is overestimation. Firstly, the algorithm saturates the ontology using infer-
ence rules for EL and obtains sound subsumptions. Next, potential subsumptions are
obtained by continuing saturation with a new overestimation rule added. Finally, the
potential subsumptions are checked using a sound and complete but slower procedure
for ELO. Comparing with this procedure, we support a more expressive DLALCHO.

In the area of hybrid reasoning, Romero et al. [1, 2] proposed classification based
on modules given to a SROIQ reasoner R and an efficient L-reasoner RL supporting
a fragment L of SROIQ. Given Oin, they find a set of classes ΣL whose superclasses
in Oin can be computed by classifying a subsetML of Oin in DL L. The superclasses
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of remaining classes are computed using R. However, because of the restriction of
locality-based modular approach used for computing ΣL, nominal axioms Na ≡ {a}
cannot be moved out from ML [6]. Therefore, in order to guarantee completeness,
either RL supports nominals or all the work is assigned to R. In current implementation
of MORe, RL does not support non-safe [13] use of nominals in the Galen ontologies,
so R has to do all the work. In contrast, our approach supports a weaker language
ALCHO, combines the two reasoners differently, handles nominals, and improves on
its full reasoner more often for complex and highly cyclic ontologies.

Knowledge approximation [16] has been applied to encodeSROIQ ontologies into
EL++ with additional data structures, and classified by a tractable, sound but incom-
plete algorithm [15]. A strengthened approximation of SROIQ TBoxes with the OWL
2 RL profile [23] is used for query answering.

7 Concluding Remarks
We have presented a hybrid reasoning technique for sound and complete classifying
an ALCHO ontology based on a weakening and strengthening approach. The in-
put ontology is approximated by two ALCH ontologies, one weakened Owk and one
strengthened Ostr, which are classified by a fast consequence-based reasoner. The sub-
sumptions of Owk and Ostr are a subset and a superset of the subsumptions of the o-
riginal ontology, respectively. Subsumptions implied by Ostr but not by Owk are fur-
ther checked by a (slower) ALCHO reasoner. This general approach can be applied
to different language classes, each requiring different strengthening axioms. The im-
plementation can be improved with heuristics for selecting a tighter OMC and better
strengthening axioms.
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