
 
 
 
 

Exact Template Matching using Graphs 
 

by 
 

Md. Mazder Rahman, Gerhard W. Dueck, and Joe Horton 

 

TR 13-224, April, 2013 

 

 
Faculty of Computer Science 
University of New Brunswick 

Fredericton, NB, E3B 5A3 
Canada 

 
 

Phone: (506) 453-4566 
Fax: (506) 453-3566 
Email: fcs@unb.ca 

http://www.cs.unb.ca 

 



Abstract. Reversible circuits can be represented as cascades of gener-
alized Toffoli gates. Template matching has been successfully used in the
optimization of such cascades. One of the difficulties in finding matchings
of templates in circuits is due to the mobility of the gates within the cir-
cuit. Thus far, template matching procedures have employed heuristics to
reduce the matching complexity. A graph structure with the correspond-
ing algorithms is presented for exact template matching. This facilitates
the discovery of new templates as well as exact minimization of circuits
under very strict conditions.

Keywords: Logic Synthesis, Reversible Logic, Reversible Circuit, Reversible
Template.

1 Introduction

The promise of exponential speed up in quantum computation and the reversibil-
ity of quantum computation motivates research in synthesizing reversible logic.
For the last decades, significant number of research in synthesis of reversible
logic in circuits and its optimization towards finding the minimal circuits have
been done. Most of the synthesis and post synthesis methods use heuristics and
exhaustive search technique. The Transformation Based Algorithm [1] is widely
used to find a circuit for a given reversible function. This algorithm is only prac-
tical for functions with at most 20 variables. Additionally, it seldom produces
optimal results. Therefore, there is still room to improve the results with post
synthesis methods. The post synthesis optimization termed template matching
for simplifying circuits originated in [1]. Later, the significance of templates at
quantum level [2] was recognized and reconfigurable templates were introduced.
An algorithm to find templates [3] as well as a new definition of template with its
properties [4] have been presented. However, due to the lack of exact matching,
no previous work has achieved optimal circuits.

In this paper, we describe the implementation of an exact template match-
ing algorithm in which both circuits and templates are represented as Hasse
Diagrams. The significance of this graph based matching is verified with circuits
obtained from the transformation based algorithm and from randomly generated
circuits.

In the remainder of the paper, the proposed approach and the significance of
template matching are described as the follows: Section 2 provides the basics of
synthesis of reversible logic and the post synthesis method known as template
matching. Section 3 discusses the fundamental issues in template matching. Sec-
tion 4 delineates the exact template matching algorithm based on Hasse Dia-
grams. In Section 5 the basic idea of generating templates from identity circuits
is outlined with a set of templates. In Section 6, the experiment shows that the
minimality of 3-input circuits can be achieved by template matching. Section 7
concludes the paper.



2 Preliminaries

A multiple-input and multiple-output logic function f : Bn → Bn is reversible
if there is a one-to-one and onto mapping between input and output vectors.
A reversible function can be realized by the cascades of reversible gates. Such
cascades do not have feedback nor fanout to preserve the property of reversibility.
A reversible gate over the inputs X = {x0, x1, · · · , xn−1} consists of a (possibly
empty) set C = {xi0 , xi1 , · · · , xik} of control lines C ⊂ X and a set T ⊂ X − C
of target lines. Reversible gates such as Toffoli [5], Peres [6] and Fredkin [7] are
widely used to synthesize reversible circuits.

In this paper we use generalized Multiple-Control Toffoli (MCT) gates,
denoted as TOFn(C, t), where n denotes the number of lines and t is a single
target. The target line t is inverted if all values on the control lines in C are equal
to 1 or if C = ∅. All remaining values are passed through unchanged. In the case
of C = ∅ and |C| = 1 the gates TOF0() and TOF1(t) are known as NOT and
CNOT respectively. A reversible circuit is referred to as a MCT circuit if it is
realized by MCT gates.

Definition 1. The size of a circuit c is defined as the number of its gates and
denoted by |c|. The realization of a function f , by circuit c is said to be minimal
if no realization with fewer gates exists.

Gates in a reversible circuit can often be reordered without affecting the
function of the circuit. The mobility of gates is determined by the moving rule
that relies on the following property [1].

Property 1. Two adjacent gates g1 and g2 with controls C1 and C2 and targets
t1 and t2 in a circuit can be interchanged if C1 ∩ t2 = ∅ and C2 ∩ t1 = ∅.

If two identical self-inverse gates in a circuit can moved such that they are
adjacent, then that pair of gates realizes the identity function and both can be
deleted. This is known as the gate deletion rule.

It has been shown that circuits realizing the identity function can be used to
reduce the cost of circuits [8]. Such identity circuits are called templates since
they allow the replacement of part of a circuit with a sequence of gates that has
lower cost. The formal template definition from [4] is given below.

Definition 2. A template T is a circuit that realizes the identity function such
that there is a sequence of gates with size |T |/2 + 1 in T is not reducible by any
other template.

If a sequence of gates in a circuit matches a sequence of gates s in template
T , then the matched sequence of gates in the circuit can be replaced with the
inverse of the remaining sequence in T . This process is known as template
matching. Template matching results in circuits with fewer gates if |s| > |T |/2.
The gate sequences of templates can be matched in circuits in both in forward
and backward directions [8, 9].



3 Issues in Template Matching

Some gates in reversible circuits may be moved significant distances. This mo-
bility of gates makes the matching process challenging. The sequence of gates to
be matched in a template may not even appear in the same order in the circuit.
This problem is illustrated in the following example.

Example 1. The circuit c is to be optimized with template T (both are shown in
Fig. 1). The sequences of gates in the template are considered in circular as well
as forward and backward directions. The gates sequence {1, 2, 3, 4} of template
T matches with the gates sequence {1, 2, 3, 5} in circuit c. However, for gate 5 in
template T , no match is found. Therefore, template matching stops at this point.
Since the size of matched sequence 5 < |T |/2 + 1 the template is not applied.
However, it is clear that all gates in circuit can be matched with the gates in
template if the sequence of gates in template appears in different ordered such
as gate 5 moves to the position 7.

1 2 3 4 5 6

(a) Circuit c.

1 2 3 4 5 6 7 8 9 10 11

(b) Template T .

Fig. 1. Reversible circuits.

The complexity in exact template matching result from two sources. First,
due to mobility of the gates in the template many subsequences must be checked.
Second, once a potential sequence in the template has been identified, the match-
ing gates in the circuit may not be adjacent – in fact they may appear in different
order. To reduce the matching time, heuristics are employed in most proposed
optimization procedures. For the first problem gates are only taken in the order
in which they appear in the template (templates are also reversed and viewed
as circular [8]). For the second problem, gates are only processed in the order in
which they appear in the circuit and the search is limited to a certain distance
from the current match [9]. This is justified by the fact that the likelihood of
find a matching gate that is at a considerable distance from the current match
is small.

The first attempt to systematically find all possible sequences was done
in [10], where the partial order of gates in the circuit are captured in a Hasse
Diagram. The Hasse Diagram representation of the circuit c in Fig. 1(a) is shown
in Fig. 2(a). Not all possible sequences of the template, however, are considered
in [10]. Here we propose to represent both the template as well as the circuit
with Hasse diagrams, together with a set of algorithms for efficient matching.
The Hasse Diagram for template T in Fig. 1(b) is shown in Fig. 2(b).



(a) H1 (b) H2

Fig. 2. Hasse Diagram representations of circuits: 2(a) H1 for c and 2(b) H2 for T in
Fig. 1.

4 Exact Template Matching

In this section we will describe an algorithm that given a template T and a
circuit C will find the largest sequence of gates in T that match a sequence of
gates in C. If the matched sequence is larger than |T |/2 than the sequence will
be replaced as indicated before.

4.1 Graph Algorithms

Given any MCT circuit, the Hasse Diagram can be found with the algorithm
shown in Fig. 3. As indicated before, a template may contain many valid se-
quences of gates that can potentially be matched. For example, the template
shown in Fig. 1(b) has many sequences of size 6 that must be checked. The first
few sequences are {123456, 123457, 123467, 123546, . . .}. However, if 123456 has
been checked, then 123546 does not need to be considered. Due to the mobility
of gates this sequence will be checked in the circuit automatically when 123456
is considered. Our algorithm works incrementally. That is, if no match for a
sequence is found, then the sequence is not extended. For example, given the
template in the example above, if sequence 123 is not found, then no sequence
with this subsequence needs to be checked.



(1) Graph ConstructGraph(C)
(2) // C is an array of gates
(3) // let n be the number of gates in C
(4) // let used be a bit array of length n
(5) // let G be a graph with n nodes
(6) for i = 2 to n
(7) set the first i− 1 bits of used to false
(8) for j = i− 1 down to 1
(9) if !used[j]

(10) if C[i] is blocked by C[j]
(11) addEdge(G, i, j)
(12) MarkPred(G, used, j)
(13) return G

Fig. 3. Algorithm to construct the graph for a circuit.

(1) Match FindBestMatch(T, C)
(2) G = ConstructGraph(C)
(3) B = null // the best match
(4) s = ∅ // sequence to be matched
(5) initialize M , invalid and in degree
(6) while s can be extended
(7) extend s by one gate
(8) while CheckMatch(G,T,M, s, invalid, in degree)
(9) if better match than B is found

(10) set B
(11) extend s
(12) return B

Fig. 4. Algorithm to find the best match of template T in circuit C.

(1) bool CheckMatch(G, T, M, s, invalid, in degree)
(2) // Check if the match can be extended
(3) // G — graph of the circuit under consideration
(4) // T — the template
(5) // M — the set of matches M = {M1,M2, . . .M|s|}
(6) // where Mi contains the matches with the first i gates in s
(7) // invalid — bitstring for invalid nodes
(8) // in degree — number of in edges for each node
(9) for each m ∈M‖S|−1

(10) if m can be extended to s
(11) let v be the node corresponding to the matched gate
(12) MarkNodeMatched(G, invalid, in degree, v)
(13) M‖S| = M‖S| ∪ v
(14) return |M‖S|| > 0

Fig. 5. Algorithm to check if sequence s can be matched.

Example 2. According to the proposed algorithm, the template is mapped into
the circuit as shown in Fig. 9(c). The resulting optimized circuit would be the
inverse sequence of gates {5, 8, 9, 10, 11}.



(1) MarkNodeMatched(G, invalid, in degree, v)
(2) // update the graph G after matching node v
(3) // invalid — bitstring for invalid nodes
(4) // in degree — number of in edges for each node
(5)
(6) invalid[v] = true
(7) MarkPred(G, invalid, v)
(8) for each v1 ∈ {succ(G, v)}
(9) in degree[v1] = in degree[v1]− 1)

(10) if in degree[v1] = 0
(11) invalid[v1] = false
(12) for each v2 ∈ {succ(G, v1)}
(13) MarkSucc(G, invalid, v)

Fig. 6. Algorithm to update the graph G after matching node v.

(1) MarkSucc(G, invalid, v)
(2) if !invalid[v]
(3) invalid[v] = true
(4) for each v1 ∈ {succ(G, v)}
(5) MarkSucc(G, invalid, v1)

Fig. 7. Algorithm to mark successors of node v as invalid.

(1) MarkPred(G, invalid, v)
(2) if !invalid[v]
(3) invalid[v] = true
(4) for each v1 ∈ {pred(G, v)}
(5) MarkPred(G, invalid, v1)

Fig. 8. Algorithm to mark predecessors of node v as invalid.

5 Generation of Templates

From the properties of templates [4] we have the following. Given a template
T = s1s2 where |s1| >= |T |/2 + 1 and s1 can not reduced any other template,
then the remaining sequence s2 where |s2| < |T |/2 is minimal. Based on minimal
circuits for the function f , denoted by Sf = {C1

n, C
2
n, . . . , C

m
n } where n is the size

of the circuits, a systematic method to find identities from the sets Sf and Sf−1

was proposed in [3]. Template matching is used to determine if a given identity
is a template. The number of potential identities and generated templates are
shown in column II and III in Table 1. It can noticed that the number of identities
of size from 13 to 17 are very large. Each identity must be tested via template
matching. Currently we tested only the identities of size up to 12. With some
fine tuning of the screening process and with the help of a super computer, we
expect to complete the tests for all 3-input identities in the near future.

Traditionally, a single template has represented many re-writing rules. For
example, the template with 5 gates presented in [8] and shown in Fig. 10(e)
actually represents several identities. Any line that has no targets may appear
once, not at all, or multiple times. In our prototype implementation we did
not use this encoding. Therefore, we have four templates of of size five (shown



a b c d e f

(a) (b) (c)

Fig. 9. Template Matching: 9(a) circuit; 9(b) Graph of 9(a), 9(c) Mapping the gates
of template into circuit.

in Fig. 10). The encoding of the templates has two advantages. First, fewer
templates need to be stored and checked. Second, the matching process should be
faster, since fewer templates must be checked. On the other hand, the matching
process is more complicated – for this reason it was not used in our prototype.
The tradeoffs will be analyzed with further experiments.

(a) (b) (c) (d) (e)

Fig. 10. Encoding of templates.



Size #PID #Templates #Used(T ) #Applications(T )

0 0 0 0 0

1 0 0 0 0

2 12 3 0 0

3 0 0 0 0

4 0 0 0 0

5 144 4 4 35,530

6 111 12 11 4,818

7 1,740 5 5 11,601

8 2,874 31 14 4,997

9 24,048 140 125 17,875

10 39,462 221 53 2,291

11 294,864 1061 636 13,476

12 408,891 1196 131 624

13 2,932,674 U 1640 6,716

14 2,328,768 U 109 176

15 15,316,914 U 1126 1,713

16 3,322,881 U 4 4

17 8,902,932 U 6 6

Total 33,576,316 U 3862 99,827
Table 1. Generation of 3-line MCT Templates.

Size: Number of gates in circuits
#PID: Number of potential identities to be tested.
#Templates: Number of Templates.
U: Unknown.
#Used(T): Number of templates applied successfully during optimization.
#Applications(T): Number of times templates are applied in optimization.

6 Experimental Results

To evaluate the proposed algorithms, 3-input circuits obtained from transforma-
tion based algorithm [1] are optimized. The average size of the circuits used as
inputs is shown in row III in Table 2. In the optimization process, the templates
are applied in order of increasing size and the average reductions are shown in
Table 2. By applying all templates of size up to 12 we have achieved significant
reductions, in particular all minimal circuits of size up to 4 were found. However,
at this point it it can be observed that the optimized circuits are very compact
(most of them are only one gate away from the minimal circuits) and requires
larger templates. Some templates can be strategically generated by using non-
minimal and minimal circuits. The significance of such identities of size 13 to 17
as shown in column IV in Table 2 are detected in optimization. The column IV
in Table 1 also shows that there are some templates have no significance on this
particular benchmarks. The templates of odd size are used more frequently as
shown in column V in Table 1.

Additionally, 20 random circuits of size 100 were generated and by applying
templates of size up to 12, we achieved 14 minimal circuits with size 5 and 6.



Size 0 1 2 3 4 5 6 7 8

#Reals 1 12 102 625 2780 8921 17049 10253 577

Avg(TB) 0 1 2.44118 4.1824 6.00719 7.64724 9.01689 9.93924 10.7452

Optimization
Templates Average Size of Circuits by Applying Templates

T2 0 1 2.44118 4.1824 6.00719 7.64724 9.01689 9.93924 10.7452

T5 2.11765 3.5552 5.33022 6.99697 8.39035 9.32283 10.1127

T6 2.0 3.3312 5.0777 6.7822 8.18834 9.1383 9.93241

T7 3.2352 4.85432 6.50286 7.89436 8.85341 9.66898

T8 3.1216 4.61187 6.23338 7.63247 8.59368 9.37088

T9 3.0576 4.23813 5.67851 7.10435 8.1502 9.01733

T10 3.0192 4.10504 5.50364 6.94686 7.98469 8.85269

T11 3.0 4.00791 5.07791 6.35662 7.48347 8.37088

T12 4.0 5.01917 6.31016 7.46747 8.36395

T13 5.0 6.02059 7.17488 8.13172

T14 6.00317 7.16824 8.13172

T15 6.0 7.00078 8.0104

T16 7.0 8.0104

T17 8.0
Table 2. Optimization of reversible circuits of 3-qubit.

Size: Number of gates in the minimal circuits.
#Real: Number of realizations.
Avg(TB): Average number of gates in circuits obtained from Transformation Based Algorithm [1].

The significant reduction from size 100 to size 5 or 6 can be observed in the
snapshots as shown in Fig. 11.

7 Conclusion

We have presented exact template matching that will find all minimal circuits if
a complete set of templates is given. The significant reduction in random circuits
that were optimized with an incomplete set of templates (only up to size 12) is
promising. This prototype implementation for 3-line circuits can be extended
to templates as well as circuits with more lines. Empirical results have shown
that some templates are applied more often than others. A detailed study is
needed to find the set of the most useful templates. Depending on the level of
optimization that is required, different set may be applied. The applicability of a
given template may depend on the method by which the circuits were generated.
For example, circuits obtained by the transformation based synthesis will have
a different structure that those obtained from BDD based synthesis [11]. This
analysis with the corresponding recommendations will be done in the near future.



References

1. Miller, D.M., Maslov, D., Dueck, G.W.: A transformation based algorithm for
reversible logic synthesis. In: Design Automation Conference. (2003)

2. Rahman, M.M., Dueck, G.W., Banerjee, A.: Optimization of reversible circuits
using reconfigured templates. In: 3rd Workshop on Reversible Computation. (2011)
143–154

3. Rahman, M.M., Dueck, G.W.: An algorithm to find quantum templates. In: IEEE
Congress on Evolutionary Computation. (2012) 623–629

4. Rahman, M.M., Dueck, G.W.: Properties of quantum template. In: 4th Workshop
on Reversible Computation. (2012) 171–185

5. Toffoli, T.: Reversible computing. Tech memo MIT/LCS/TM-151, MIT Lab for
Comp. Sci (1980)

6. Peres, A.: Reversible logic and quantum computers. Phys. Rev. A 32 (1985)
3266–3276

7. Fredkin, E., Toffoli, T.: Conservative logic. International Journal of Theoretical
Physics 21 (1982) 219–253

8. Maslov, D., Dueck, G.W., Miller, D.M.: Toffoli network synthesis with templates.
Transactions on Computer Aided Design 24 (2005) 807–817

9. Maslov, D., Dueck, G.W., Miller, D.M.: Techniques for the synthesis of reversible
Toffoli networks. ACM Trans. Des. Autom. Electron. Syst. 12 (2007)

10. Scott, N., Dueck, G.W., Maslov, D.: Improving template matching for minimizing
reversible Toffoli cascades. In: 7th International Symposium on Representations
and Methodology of Future Computing Technologies. (2005) 4–9

11. Wille, R., Drechsler, R.: BDD-based Synthesis of Reversible Logic for Large Func-
tions. In: Design Automation Conference. (2009) 270–275



(a)

(b)

Fig. 11. Snapshot of random circuits optimized with templates.


