
Fiducial Marker Detection Using FPGAs
Peter Samarin, Kenneth B. Kent, Rainer Herpers, and Timur Saitov

TR-13-227, September 18, 2013

Faculty of Computer Science
University of New Brunswick

Fredericton, NB, E3B5A3
Canada

Phone: (506) 453-4566
Fax: (506) 453-3566

fcs@unb.ca
http://www.cs.unb.ca

mailto:fcs@unb.ca
http://www.cs.unb.ca

A thesis submitted in partial fulfillment of the requirements for the de-
gree of Master of Autonomous Systems

Copyright © 2013 by Peter Samarin

supervisors:
Rainer Herpers
Kenneth B. Kent
Timur Saitov

location:
Sankt Augustin

A B S T R A C T

This work presents an approach for computing camera pose from images
of fiducial markers. The processing is shared between an FPGA and a PC:
the FPGA converts grayscale camera images into binary format and trans-
fers them to the PC; and the PC detects fiducial markers in the received
binary camera images and computes the position and orientation of the
camera.

The approach is evaluated in terms of camera pose error and processing
time by using a 3D simulator and subsequently tested in our Immersion
Square environment. The 3D simulator has been developed in course of
this work in order to enable a thorough theoretical evaluation. It is used to
generate a large number of test images from different camera positions by
simulating a subset of the Immersion Square. Synthetic images generated
in this way undergo a set of transformations in order to make the evalua-
tion closer to images obtained from a real camera by using Gaussian blur
of different kernel sizes, and several types of noise.

The results of theoretical evaluation show that depending on the chosen
parameters, a relatively high frame rate of approximately 60 fps can be
achieved. Moreover, the parameters allow for a trade-off between speed,
accuracy, and precision.

The insights gained from the theoretical evaluation are used to develop
an optimized system that has been subsequently tested in the real Im-
mersion Square. The tests show that the optimized system runs with the
average of approximately 80 fps and is capable of achieving higher frame
rates of 100 fps. It displays better accuracy, and higher precision than
the unoptimized version. In addition, the real world tests show that the
system produces very stable crosshairs, such that it can be used for inter-
acting with the Immersion Square in applications where precise pointing
is required.

iii

C O N T E N T S

1 introduction 2

2 fiducial markers in computer vision 4
2.1 ARToolKit and ARToolKitPlus 5
2.2 ArTag 6
2.3 SVMS 7
2.4 TRIP 8
2.5 Fourier Tag 10
2.6 RUNE-Tag 11
2.7 Pi-Tag 12

3 methods 14
3.1 Marker Detection 14
3.2 Corner Refinement 16
3.3 Marker Analysis 17
3.4 Camera Pose Estimation 22

4 approach 25
4.1 Working Approach 25
4.2 Initial Approach 27

5 setup 37

6 evaluation 38
6.1 Performance Variables 38
6.2 Evaluation Environment 39
6.3 Dataset Generation 41

7 results 52
7.1 General Trends 52
7.2 Evaluation of Methods 56
7.3 Optimized Implementation 57

8 conclusions 61

bibliography 63

A appendix 67
A.1 Blurry Dataset 67
A.2 Dataset with Gaussian Noise 70

1

1

I N T R O D U C T I O N

One of the tasks in the MI6 project is to precisely estimate position and
orientation of a 6-DoF device that is used to interact with the Immersion
Square. In previous work a unique pattern of infrared light spots was pro-
jected from the back of the Immersion Square [27, 24]. The 6-DoF device
was equipped with a camera and an FPGA. The FPGA computed the coor-
dinates of light spots’ centers and transferred them to the PC, and the PC
matched the received coordinates with the known pattern of light spots
by using the Levenberg-Marquardt algorithm and estimated the pose of
the camera.

However, experimental results have shown that using the light spots
might not be the best way to accurately compute camera pose. There are
several problems with using light spots. First, all light spots look the same,
which requires computation-intensive pattern matching in order to find
the ID of each light spot before the camera pose can be computed. Second,
as discussed in [27], small errors in the calculated centers of light spots
resulted in significant errors during camera pose estimation. Third, the
Levenberg-Marquardt algorithm that was used to find the IDs of the light
spots has a high demand on processing power, which limits the amount
of devices that are able to operate in the Immersion Square at the same
time.

a) b) c)

Figure 1.1. a) structure of a fiducial marker, b) an example of a fiducial marker
with ID 647, c) a grid of 5x5 markers. The markers were generated by using the
ArUco library [19].

To address the problems that result from using light spots, in this project
the light spots are replaced by fiducial markers. A fiducial marker is repre-
sented by an image that provides enough information to calculate camera
pose from only one marker. All fiducial markers have their unique ID
numbers. The structure of a fiducial marker is shown in Fig. 1.1 a). The

2

introduction 3

marker is drawn on a black background and is comprised of a white edge,
inside of which a 5x5 binary pattern encodes the ID of the marker. For ex-
ample, the pattern of the marker in Fig. 1.1 b) corresponds to the number
641:

1 0 1 1 0

1 0 1 1 0

1 0 1 1 0

0 1 1 1 1

0 1 1 1 1

Fiducial markers have several advantages over simple light spots. 1)

Since each marker has a unique ID, seeing one marker is enough for cam-
era pose computation. 2) The pattern inside of each marker is constructed
in a way that allows error correction—even when the images are noisy,
it is possible to reconstruct an ID that was not found in the data base.
3) Using a grid of markers introduces additional points that can improve
the accuracy of camera pose computation. 4) Fiducial markers reduce the
amount of processing required, because there is no need for computation-
intensive pattern matching necessary to compute camera pose from light
spots. 5) In previous work [24, 4], camera pose estimation was done on the
PC, while only minor processing was done on the FPGA. This approach
has been adapted in this work to perform fiducial marker detection.

This thesis is organized as follows. The next section reviews the cur-
rent state of the art fiducial marker detection. It presents several marker
systems and discusses their advantages and disadvantages. Section 3 ex-
plores the algorithms that are used for detecting fiducial markers whose
shape is a square. Section 4 presents the approach that has been developed
in the course of this project. Section 5 discusses the evaluation strategy
that has been taken to measure the performance of the working system.
Section 6 presents the result results of evaluation. The last section—section
7, concludes this thesis and gives directions for future work.

2

F I D U C I A L M A R K E R S I N C O M P U T E R V I S I O N

Fiducial markers are artificial landmarks added to a scene to enable pre-
cise computation of position and orientation of some objects of interest.
In computer vision, fiducial markers are used in situations when precise
camera pose estimation is required, but no distinct features are present in
the environment that would enable its unambiguous computation. Such
situations often arise in human-made environments, where many similar-
looking objects present. Fiducial markers allow robust computer vision by
decreasing ambiguity that results from using natural features [11].

Fiducial markers are similar to barcodes, however, they are designed
with the purpose of providing spacial information. Barcodes are primar-
ily designed to provide information about the product. They do not pro-
vide enough information needed to calculate the exact position and ori-
entation of the observer. Another problem of barcodes is the relatively
dense amount of information that they contain, which can only be read
by being relatively close to the marker. The planar markers solve a dif-
ferent problem to the fiducial marker systems—to provide information
about the product at hand. However, several techniques from the design
of non-fiducial markers, such as checksum and error correction are used
in fiducial marker systems as well.

Many fiducial marker systems are available in the literature. The sys-
tems differ with each other in terms of the shape and the way how in-
formation is encoded in the data parts of the markers. Also, the marker
systems differ in terms of the computer vision algorithms that they use.
However, all systems are similar in the following:

1. Each marker uses a simple geometric shape as its distinguishing
feature that allows the marker to be easily detected amidst all the
other objects that might be present in the environment.

2. Each marker has a distinct id that is encoded somewhere in the
marker region.

The most often used shapes are circular and rectangular shapes, however,
other shapes are also used sometimes.

4

artoolkit and artoolkitplus 5

Figure 2.1. Examples of possible ARToolKit markers.

2.1 artoolkit and artoolkitplus

ARToolkit [15] is an open source marker system that uses a rectangular
shape as its distinguishing feature and user-defined code that consists of
an image. In order to decode it, correlation between a marker candidate
and all markers in the library is computed. The marker is considered as
detected if the correlation reaches a certain threshold. The marker code
has been extended by [20] that makes it possible to use Fourier encoding
[21].

As pointed out by [10], there is a problem of template markers that re-
sults from the fact that the information stored in the templates is highly
redundant. Thus, each marker has a high chance of being recognized as
another one. In addition, template matching is more computationally ex-
pensive than comparison of numbers and error correction.

ARToolKitPlus was developed by [33] to address some drawbacks of
the ARToolKit marker system. It extends it by improving the detection ap-
proach with an addition of adaptive thresholding and vignetting. It also
drops the use of correlation when checking the content of the marker.
Instead, it assigns digital IDs to each marker. This improvement was in-
spired by the approach taken in the ARTag marker system [10]. The re-
sulting marker system is very similar to ArTag. 4096 IDs are possible in
the system. The internal field of the marker is coded using forward error
correction (CRC).

ARToolKitPlus uses adaptive thresholding to detect marker boundaries.
After one marker has been detected, the threshold is updated by taking
the median of all extracted marker pixels and used as a threshold for
detecting further markers. If no marker is detected, a random threshold is
used.

artag 6

2.2 artag

Figure 2.2. Examples of possible ArTag markers.

ARTag is a bitonal marker system that consists of a square border and
a 6x6 interior code that stores the ID of the marker [10]. It was designed
to overcome the shortcomings of ARToolkit. The interior code allocates 10
bits for the sub-ID, 16 bits for a checksum, and 10 bits for error correcting
code, that allows correction of 2 falsely read bits. In this configuration,
the library has 1001 unique markers, or 2002 markers if inverted markers
are allowed—the 1001 unique markers can be drawn with white border
on black background as well with black border on white background,
which doubles the number of the markers in the library. The set of possible
markers was reduced from 1024 to 1001 by removing 23 markers that
greatly reduced the average Hamming distance of the marker set. Each
marker is distinct from another. It also includes the rotational uniqueness,
which means, that a rotated marker never has the same pattern as another
marker from the library.

ARTag was inspired by the ARToolkit in its use of quads as shape, and
by Datamatrix for its use of error correction [11]. First, the 10-bits code
XOR-ed with a fixed 10-bits mask. This is done in order to prevent gener-
ation of all-black and all-white markers. In this way, the markers can be
distinguished from random squares in the images. Next, a checksum is
computed from the masked bit string. Subsequently, error-correcting bits
are added to the bit string, altogether making a 36 bit code.

ARTag library comes with a description of an algorithm for robust
marker detection. Marker detection stage directly influences the false neg-
ative rate of the markers. In case the algorithm is not robust, valid markers
will be not recognized as such. The algorithm provided by ARTag is based
on edge detection. It was explicitly decided against using a threshold, be-
cause the threshold increases the sensitivity of the algorithm in different
lighting conditions and camera focal lengths. A global threshold might
miss regions of images with local lighting irregularities.

The creators of ARTag suggest that finding quad edges is better done
by finding connected line segments. The intersections of the lines are used
to find corners that provide the four points necessary to compute perspec-

svms 7

tive distortion. In this way, the marker can be rectified, which enables
accurate reading of the 6x6 interior bit pattern. After the analysis of the
ID of the marker, the rotation of the marker can be determined, and the
homography of the marker can be updated with this information.

The library is constructed with the goal of providing robust markers
that can be reliably used under different lighting conditions. Both stages—
the stage of marker recognition and identification / error-correction—
have well known properties. For example, the first 50 markers in the li-
brary have a hamming distance of 12, in order to reduce inter-marker
confusion rate. The minimum marker size is 13 pixels. The false positive
rate was estimated to be less than 0.0039% of the quadrilaterals found in
the image [12]. The processing time is reported to be in the range of 10-50
ms depending on the number of markers in the image.

In [11], the ARTag marker system is compared to the ARToolkit Plus
marker system. It turns out that the ARTag marker system is more robust
in both—the marker detection stage and the ID verification stage. When
detecting the marker, ARTag proposes to use edge detection algorithm to
find potential quad positions. It is more robust under varying lighting con-
ditions, especially when the light is spread over the image non uniformly.
During the phase of marker verification, the ARTag marker system is more
robust in terms of false-positive and inter marker confusion because it was
designed with the goal of maximizing the Hamming distance between the
markers. The average Hamming distance between the ARTag markers is
higher than that of the ARToolkit Plus, which improves these two criteria
in noisy images. The verification robustness of the two marker systems
has been evaluated under varying noise conditions.

2.3 svms

Figure 2.3. Examples of SVMS markers (left), and their application in space
program (right).

trip 8

SVMS is a fiducial marker system that was developed for aerospace op-
erations, where precise pose calculation is crucial for fail-safe operation
[5]. A typical application of the SVMS markers is during the docking of
two space ships. The markers can also be used as a help for a robot per-
forming repairs of a space ship.

SVMS markers are white squares with a black internal part that is also
square. The ID of the marker is encoded in the outer part of the white
square. Each side can hold 11 bits, which makes it 44 bits to represent
the ID and provide some error correction capabilities. Error correction
code is used to ensure low inter-marker confusion rate. There is a tradeoff
between the total number of markers and marker redundancy. SVMS uses
the BCH encoding for error correction. In the version described in the
paper, 27 bits are used for error correction, which allows recovery from 5
wrong bits that can be caused by occlusion, noise, and bad illumination.
This leaves 17 bits, and after removing symmetrical patterns, 15 bits for
marker ID, which makes 215 = 32768 unique IDs.

Marker detection starts by performing edge detection and connecting
the edge points into chains. The chains are segmented into straight line
segments, which are then grouped into quadrilaterals using proximity of
their end points and segment lengths. The intersections of the lines of a
quadrilateral are used to compute a homography matrix that is used to
rectify the image and read the ID of the marker. Those points are the cor-
ners of the marker. In the next step, the corners of the marker are used to
compute perspective projection, which is used to rectify the marker. Sub-
sequently, data bits are obtained by sampling the intensity of the marker.
The data bits are decoded to compute the ID of the marker, or to reject
the marker with an invalid ID. Initially, marker pose is computed using
the four corners of the marker, its known size and the calibration matrix
of the camera. The pose is refined using the point in the center. One of
the drawbacks of the SVMS markers is that they are made from special
materials that reflect the light back to its source.

2.4 trip

TRIP (target recognition using image processing) is a circular bitonal marker
system that has a bull’s eye in its center [17]. In this marker system, the
information is encoded in two concentric rings that are divided into 16
sectors. The first sector, which is called the synchronization sector, is used
to simplify information extraction from the two data rings. This is the only
sector that has two lines that go from marker’s center to the outer borders

trip 9

1

2 0

sync sector

radius encoding sectors

even-parity sectors

x-axis ref point

Figure 2.4. Examples of a TRIPTAG marker.

of the second ring. The point defined by marker’s border and the first
such line is also used in positional computation.

The next two sectors (going counter-clock wise) stores the parity that
reduces the ratio of falsely-recognized markers. Subsequent four sectors
encode the radius of the bull’s eye in centimeters. The remaining 9 sec-
tors are used to encode the ID of the marker. All data is encoded using
ternary code—”0” corresponds to both rings of a sector being white, “1”
corresponds to black sector of the inner ring, and white sector of the outer
ring, “2” corresponds to a white sector of the inner ring, and a black sec-
tor of the outer ring. This configuration provides 39 − 1 = 19, 683 possible
markers. However, other configurations, are also possible.

Adaptive thresholding is used to binarize the image. Adaptive thresh-
olding is a robust way to do thresholding under various lighting condi-
tions. The edges of the binary image are extracted by using simplified
edge detection. Adjacent edge points are grouped together into chains. A
simple heuristic is used to drop chains that are not likely to be ellipses.
In the next step, least-squares ellipse fitting is performed in the remain-
ing chains. Concentric ellipses, that is, ellipses with the same center are
considered to belong to the same marker.

In the next step, the code of the marker is deciphered by sampling the
pixels of the binary image based on the parameters of the ellipses. For each
valid marker, the algorithm extracts the data stored in the marker—bull’s
eye radius and the ID of the marker. Bull’s-eye alone is not enough to
compute the pose of the marker. To compute the pose, the camera image
is rotated along two axes until the ellipse becomes a circle. Two possible
homographies result from the two rotations. In the next step, the outer
point in the synchronization sector is used to disambiguate the actual
camera pose.

fourier tag 10

2.5 fourier tag

Figure 2.5. Layout and two examples of FourierTag markers.

This marker system was developed due to unsatisfactory robustness of
ARTag under gloomy conditions that often arise underwater [25]. It has
been improved in [34] by increasing the amount of data that each marker
can hold, and by adding features that allow computation of camera pose
from a single marker.

Fourier tag has a thin black outer ring, and a white spot in the center.
A black and a white sector opposite of each other carry rotational infor-
mation. They are the so-called alignment sectors. The digital data of the
markers is encoded in the frequency domain by using sinusoidal patterns
to encode bits of information. High frequencies are used for the least sig-
nificant bits, and low frequencies for the most significant bits. In this way,
the amount of information gracefully diminishes with increasing distance
of the camera from the marker, because the information encoded in high-
frequencies carries low importance.

The marker is broken down into several sections. Every two opposing
sections encode the same data. During marker detection step, Sobel edge
detection generates the gradient magnitudes and their directions in a gray
scaled image. To detect the center of the marker, the gradients for each
pixel are traced across the whole image. The lines are weighted by their
corresponding gradient and collected in the “Hough accumulator map”.
The center of the marker is found by thresholding the obtained image
and finding the largest cluster. The coordinates of the center are refined
by searching the radial symmetry. The gradient image is binarized by us-
ing adaptive threshold. Edge elements whose gradients are aligned with
the approximately estimated center point of the marker, are selected for
the next stage. The border of the marker is obtained by searching for the
edge elements starting from the hypothetical center point towards several
angles by looking for the largest connected group. An ellipse fitting pro-

rune-tag 11

cedure is applied to the obtained edge elements. Fourier transform along
the line brings back the encoded number.

Multiple rays from the marker’s center are sent outwards at different
angles, looking for white only and black only sectors along them. Upon
finding the sectors, the intersection of the centers will be the actual center
of the marker. The displacement between the actual center and the dis-
placed center can be used to find the 3D position of the marker relative to
the camera if the radius of the marker is known as well.

The digital number that is stored in the marker is obtained by first
finding all the sectors of the marker. In the next step, each sector is sent
processed by the fast Fourier transform. Amplitude and phase of specific
frequencies are checked.

According to the results presented in the paper, the distance under
which the marker can be successfully recognized is much larger for Fourier
tag than for ARTag. However, it has worse performance when it comes to
inter-marker confusion. It is easier to confuse the Fourier tag markers with
each other than it is to confuse the ARTag markers.

2.6 rune-tag

Figure 2.6. Examples of RUNE-43 (left) and RUNE-129 (right) markers.

The RUNE-Tag marker system takes advantage of some properties of
projective transformation [2]. RUNE-Tag markers consists of a set of circu-
lar points arranged along rings that have the same center. Each marker can
have several rings like that. 43 non-touching points can be drawn along
each ring.

The authors present two different types of marker systems—RUNE-43
and RUNE-129. RUNE-43 uses a single ring of 43 points that provides 762
different markers with a minimum Hamming distance of 13 which allows
error corrections of up to 6 bits. In RUNE-129, each marker consists of
three concentric rings, each holding 43 bits of information. This marker
system provides 19152 markers with a minimum Hamming distance of
30, which allows 14 errors in the marker to be corrected.

pi-tag 12

In order to recognize the markers, the proposed algorithm first detects
all ellipses in the image. In the next step, the algorithm pairwise consid-
ers all ellipses and tries to transform them into circles. Under the same
transformation, the circles on the same ring should have the same radius.
Thus, ellipses with the same radius are considered to be on the same
ring of a marker. Usually, two potential rings can be drawn through two
points. The algorithm then searches for other ellipses along the two rings
and eliminates the ring where no other ellipses are found. The algorithm
iterates over the set of all ellipses and assigns them to their corresponding
markers.

After identifying all points that belong to a marker and decoding the
ID of the marker, the centers of the points are used to find the camera
pose. The authors solve this problem by using OpenCV’s solvePnP() pro-
cedure. The procedure takes a set of points in image coordinates, their
corresponding points in the world coordinates and the camera matrix that
holds camera focal length and produces the estimated camera pose. The
algorithm uses Levenberg-Marquardt optimization that minimized repro-
jection error.

The RUNE-Tag marker system performs better than the ARToolkit and
ARToolkit Plus marker systems in terms of accuracy. However, it needs
more processing power, because the time to recognize 10 RUNE-129 mark-
ers is around 150 ms. The system performs badly when the camera angle
with respect to the marker becomes far away from 90◦, and also when
markers are moderately far from the camera. This is due to the usage of
relatively small circles. In addition, the system has not been evaluated in
terms of inter-marker confusion rate.

2.7 pi-tag

Figure 2.7. Example of a Pi-Tag marker.

Pi-Tag is a fiducial marker system that uses circles arranged along an
edge of a square as markers [3]. It is based on four invariant properties
of projective geometry. In the first step, the image is thresholded by us-

pi-tag 13

ing a locally adaptive threshold, as described in [26]. Adaptive threshold
makes subsequent image processing more robust to varying lighting con-
ditions. In the next step, all ellipses are found in the binary image by
using OpenCV ellipse detector1. Ellipses that belong to the same marker
are grouped together by using the invariant property of lines in projec-
tive geometry—lines are preserved after perspective distortion. Thus, el-
lipses on the same edge of the marker will be on the same line in images
distorted by perspective projection. The algorithm searches for corner el-
lipses, which are ellipses on the same line that have exactly two other
ellipses between them. The search is done by considering all found el-
lipses two at a time with each other. This requires O(n2) comparisons for
n found ellipses.

After finding two corners, the search continues looking for the third
corner in the remaining set of ellipses. If the third corner is found, the
algorithm checks the cross ratio between the 4 collinear points of the two
sites found. If the cross ratio of both sides is equal to each other, then the
sides are identical. For two sides with different patterns, the cross-ratio is
equal to a known constant σ.

The system has been shown to be more accurate than ARToolkit and its
more recent version ARToolkit Plus. However, the time of processing the
full computer vision pipeline from start to finish is reported to be lower
than that of ARToolkit—between 10 ms (without false ellipses in the im-
age) to 150 ms with several false ellipses. The authors do not test evaluate
their system to find important properties of their system. For example,
it would be interesting to know how the system behaves when there are
many markers in the scene—how do slight inaccuracies in recognition of
ellipse centers influence the inter-marker confusion rate? The authors do
not mention how big is the library size of their fiducial marker system.

The authors mention that the system suffers from low detection rate
when the markers are not close to the camera (no distance is given), which
makes the ellipses very small, so that the proposed algorithm is unable to
detect them. Another problem arises when the angle between the camera
and the marker plane far away from 90◦.

1 There are several off the shelf OpenCV procedures that can detect ellipses (e.g.,
cv::HoughCircles, cv::fitEllipse) , however, the authors do not tell which procedure
they use.

3

M E T H O D S

This section describes algorithms for detection of ArUco markers and sub-
sequent camera pose estimation in a bottom-up manner. First, methods for
local image analysis are introduced. These methods consider individual
pixels. The subsequent batch of methods describes how the individual pix-
els can be grouped together to potential marker candidates. Each potential
marker candidate is analyzed and the binary code of each proper marker
is extracted. In the next step, the markers are considered altogether in or-
der to estimate the camera pose. Several methods for controlling precision
of camera pose estimation are introduced in form of corner refinement
methods.

3.1 marker detection

An ArUco board with markers has three distinct features: 1) the board it-
self is black, 2) each marker is a square, 3) each square has a white border.
These features must be detected in order to extract fiducial information
from an image of a board with markers. The first step marker detection is
to binarize the image. Image binarization is an important step for identify-
ing image regions that might contain potential markers. There are several
ways to perform image binarization. Here we consider two of them—fixed
thresholding and Canny edge detection.

3.1.1 Image Binarization

During fixed thresholding, the intensity value of every pixel in the im-
age is compared to a fixed value—the threshold. Pixels that exceed that
fixed value are considered to be foreground pixels, otherwise, the pixel
is a background pixel. The resulting image contains zeroes and ones and
needs only two bits to represent pixel intensities. A fixed threshold per-
forms well under controlled environmental conditions, such as uniform
lighting, no noise or blur in the camera image. Canny edge detection di-
vides all pixels in an image into two classes—pixels that belong to an edge
or pixels that do not belong to an edge [7]. Canny is more robust to the
lighting conditions but is more computationally intensive.

14

marker detection 15

(a)

(b)

(c)

Figure 3.1. Binarization of a test image. Left column shows original images,
central column shows binarized image with threshold of 100, right column shows
application of Canny edge detection with first threshold equal to 100, and second
threshold equal to 255. (a) Undistorted test image. (b) A test image blurred by
a Gaussian kernel with a size of 19x19 pixels. (c) Test image with soft Gaussian
noise with standard deviation of 15, and mean centered around each processed
pixel.

3.1.2 Blob Detection

The foreground regions of the binary image are grouped together by find-
ing contours [31]. A contour is a list of points that represents a curve [6, p.
234]. Each contour consists of a set of points that follow the blobs along
the borders. In some situations, a hierarchy of contours can arise if there is
a region of foreground pixels that inside of an already found contour that
is decoupled from them by a region of background pixels. The exterior
contour follows the edge of the blob, whereas the interior contour follows
the holes along the interior border to the background pixels. White pixels
are the foreground pixels, whereas black pixels are the background pixels.

After finding contours, it might happen that a polygon has only a few
points. Such contours are unlikely to be markers and are deleted from
the set of potential marker candidates. There are several situations where
small contours can arise. Large numbers of small contours are usually de-
tected in noisy images. Some markers are assembled in such a way that
they contain small rectangles in their binary code. They will be detected
as contours inside of a contour, but are not markers. To increase process-

corner refinement 16

ing time, small contours, and inner contours are excluded from further
consideration.

The contours that are big enough are approximated to polygons with
a small number of edges by following the algorithm described in [22, 9].
The algorithm iteratively approximates the smaller polygon as follows:

1. First, the two most distant points in the contour are found and con-
nected by a straight line.

2. Another point that is the most distant from the line is added to the
polygon.

3. The algorithm goes back to 2. but now checks the distance of the
contour points to all lines in the approximated polygon.

The algorithm stops when the approximation is good enough, that is,
when the distance between any point the contour and the approximated
polygon is smaller than some fixed parameter that controls the precision
of approximation.

Before a polygon can be considered as a rectangle, it needs to pass some
conditions. One is that it should have exactly four points. If the contour
originates from a rectangle, the polygon approximation algorithm will
likely find only four points. But in some cases a marker is only partially
present in the camera image, and the approximated polygon will not have
exactly four points. In this case, the polygon is ignored. In addition, the
polygon must be convex, otherwise it is not a rectangle. In the next step,
the polygons are pairwise considered to find those that are too close to
each other. Upon finding two polygons that are too close, the polygon
with the smaller perimeter is discarded.

3.2 corner refinement

The four points computed by the contour approximation represent the
corners of the rectangles as integer values. However, precise camera pose
computation requires corner points in subpixel range. There are several
ways to achieve subpixel precision for the corner points.

One method to refine corners is to fit lines into the contour and to
find the intersections of the lines. At first, the four points from polygon
approximation are used to break the contours into four sets of points. For
each set of points a line equation is estimated that best fits the points, that
is, a line that minimizes the squared distance between all points and the
fitted line. This is done by using singular value decomposition that solves
over-determined set of equations.

marker analysis 17

Fig. 3.2 shows a set of points sampled from a line equation y = −x+ 90,
shown by the solid black line, that has been distorted by Gaussian noise
with standard deviation equal to 10. The line is fit by using linear least
squares. Line fitting results in equation y = −0.9566 · x+ 88.2597, which
is shown by the dashed gray line.

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

0 20 40 60 80 100

0
20

40
60

80
10

0

x

y

Figure 3.2. An example of using linear least squares to fit a line into a set of
points.

To obtain corner coordinates, the intersections of adjacent lines are com-
puted. Each intersection is a set of two linear equations with two un-
knowns. The contour cleaning steps described above ensure that the ob-
tained equation can be solved exactly.

3.3 marker analysis

During the marker analysis step, the id of the marker is obtained by read-
ing the binary code from the interior part of the marker. The next step
decides whether the id represents a valid marker by searching through a
database that contains all marker ids. Ids that are found in the database
are kept for further processing, and the other IDs are discarded. This sec-
tion describes the computational steps performed during marker analysis.

3.3.1 Marker Rectification

Each ArUco marker is a square that contains a white edge and a 5x5 bit
binary code represented by black and white rectangles. A naive approach
for reading the binary code could be to divide each line into seven equal
parts and to connect points in the opposing lines, as shown in Fig. 3.3.
This approach works well for images where the board with markers is

marker analysis 18

viewed from a distance and angles near to 90◦, as illustrated on the left.
However, in many situations the board is distorted by a perspective, such
that the application of the naive approach will result in a large portion of
ill-recognized markers.

Figure 3.3. A naive approach to marker identification. Each side of the marker
is divided into 7 equal parts. On the left, a marker is viewed from an angle close
to 90◦ and a moderate distance. On the right, a marker is viewed from a steep
angle and a short distance.

A more intelligent approach is to first undo the distortion caused by per-
spective and to read out the ids from rectified images. To rectify the image,
the coordinates of the corners of the markers obtained in the previous step
are used in combination with the knowledge that each marker is a square.
It is not necessary to know which marker it is in order to rectify it. Given
four corners of a marker candidate in pixels, we can map them to the ori-
gin of coordinates (0,0,1), (0,W-1,1), (W-1,W-1,1), and (W-1,0,1), where W
is the warp size—the size of the square after rectification. The last “1” in
the coordinates of each point is not the Z-coordinate, but instead an in-
dicator that we are using homogeneous coordinates in a projective space
1. Homogeneous coordinate system is a generalization of Euclidean space
that allows representation of points and lines at infinity. In what follows,
the material covered in [13, pp. 88–91] is explained.

Consider a set of points x ′i and the corresponding projections in the cam-
era image plane xi. Perspective transformation (also called homography)
from a 2D plane into another 2D plane is a nonlinear mapping x ′i ←→ xi,
which is achieved by multiplying all points in one plane by a 3× 3 matrix
H:

1 From [13, p. 2], we know that in the projective space, each point in a 2D Euclidean space
with coordinates (x, y) is extended to (x, y, 1). This new coordinate represents the same
point in the projective space. The same point can be represented by (2x, 2y, 2) or, in general,
by (kx, ky, k) for any non-zero k. Thus, the points are represented by equivalence classes of
coordinate triples where two coordinates are equivalent if they differ by a common multi-
ple. Such coordinates are called homogeneous coordinates. To obtain the original coordinates
of the Euclidean space from homogeneous coordinates (xk,yk,k), we need to divide the
homogeneous coordinates by the factor k.

marker analysis 19

x ′i = Hxi (3.1)

with H equal to

H =

h1 h2 h3

h4 h5 h6

h7 h8 h9

Since x ′i and xi are represented by homogeneous coordinates, we cannot

bring the right hand side of the equation to the left hand side and set it
equal to zero. Instead, we know that the points are on the same four line,
and their cross-product is zero:

x ′i ×Hxi = 0

where 0 is a 3x1 vector of zeroes.
The next steps work towards making the equation of the form Ah = 0

where h is a 9x1 vector reshaped from the 3x3 homography matrix H. The
first step is to rewrite the mapping Hxi, assuming that xi = (xi, yi, wi):

Hxi =

h1xi + h2yi + h3wi

h4xi + h5yi + h6wi

h7xi + h8yi + h9wi

 =

h1Txi

h2Txi

h3Txi

 (3.2)

where hjT for j=1,. . . ,3 are the rows of matrix H. Combining Eq. (3.1) and
Eq. (3.2), we rewrite the cross product as:

x ′i ×Hxi =

y ′h3Txi − w ′h2Txi

w ′h1Txi − x ′h3Txi

x ′h2Txi − y ′h1Txi

 (3.3)

marker analysis 20

where x ′i = (x ′i, y ′i, w ′i)
T . This follows from the definition of cross product—

consider two vectors u = (u1, u2, u3) and v = (v1, v2, v3). The crossproduct
between u and v is:∣∣∣∣∣∣∣∣∣

i j k

u1 u2 u3

v1 v2 v3

∣∣∣∣∣∣∣∣∣ = (u2v3 − u3v2)i − (u1v3 − u3v1)j + (u1v2 − u2v1)k

=

u2v3 − u3v2

u1v3 − u3v1

u1v2 − u2v1

where i, j and k are the standard basis vectors that are unit vectors directed
towards the X, Y, and Z axes, respectively.

Since hjTxi is the same as xTi hj for j = 1, ..., 3, the 3x1 vector from
Eq. (3.3) can be extended with zeroes and converted into a 3x9 matrix by
bringing all indices of H outside of the matrix:

x ′i ×Hxi =

y ′h3Txi − w ′h2Txi

w ′h1Txi − x ′h3Txi

x ′h2Txi − y ′h1Txi

 =

y ′xTi h3 − w ′xTi h2

w ′xTi h1 − x ′xTi h3

x ′xTi h2 − y ′xTi h1

 =

=

0− w ′xTi h2 + y ′xTi h3

w ′xTi h1 + 0− x ′xTi h3

−y ′xTi h1 + x ′xTi h2 + 0

 =

=

0T −w ′ix

T
i y ′ix

T
i

w ′ix
T
i 0T −x ′ix

T
i

−y ′ix
T
i x ′ix

T
i 0T

h1

h2

h3

where 0T is a 1x3 row vector containing zeroes and h is a 9x1 vector
that contains the elements of H: h = (h1, h2, h3, h4, h5, h6, h7, h8, h9)T . From
Eq. (3.1), we know that the cross product of the vectors on the same line
is equal to zero. Thus, the matrix above is equal to a 3x1 zero vector:

0T −w ′ix
T
i y ′ix

T
i

w ′ix
T
i 0T −x ′ix

T
i

−y ′ix
T
i x ′ix

T
i 0T

h1

h2

h3

 = 0

These equations have the desired form of Aih = 0, with Ai being a 9x3
matrix. The third equation is linearly dependent on the first two equa-

marker analysis 21

tions and will not contribute to the solution. Therefore, it is usually not
considered, and the above equation is reduced to:

 0T −w ′1xTi y ′ix
T
i

w ′ix
T
i 0T −x ′ix

T
i

h1

h2

h3

 = 0 (3.4)

Thus, each pair of points produces two equations. In order to solve for
all the parameters of H, eight equations are required.2 To solve for H, a
common approach is to use singular value decomposition. However, it is
also possible to solve for H by using Gaussian elimination by assuming
that one of the elements of H, e.g. h9, is equal to 1. The drawback of this
approach is that the results will be unstable when the true value of h9 is
close to zero or equal to zero. It is equal to zero when the point at infinity
is mapped to the origin of coordinates [13, p. 91]. Fig. 3.4 shows some
examples of marker rectification using the approach outlined above.

Projected Recti�ed Projected Recti�ed

Figure 3.4. Marker rectification.

3.3.2 Marker Code Extraction

After the effects of perspective distortion are removed and the marker
rectified, the id can be read out by following the naive approach described
earlier. The rectified image is divided into 49 equal squares, and read out
square by square. Each square represents one bit of data. A white square
represents a one, and a black square a zero. It is possible to only sample

2 Even though the matrix has 9 elements, the matrix can be fully determined by finding 8
scale values between the 9 elements.

camera pose estimation 22

one pixel from the center of each square and obtain correct ids. But this
approach is not very robust in images that were obtained from a noisy
camera sensor.

To make the process of id readout more robust, the intensities of each
square are added together and divided by the number of pixels in the
square. In case that the rectified marker images are in binary format
obtained from thresholding, counting the number of non-zero pixels is
enough to determine the bit that the square represents. If half or more
of the pixels are equal to 1, the square represents a one. Otherwise, the
square represents a zero. Since each ArUco marker contains a white bor-
der, it should be ensured before reading out the binary code that the
border is indeed white. By using this approach, each potential marker
candidate is binarized into an id.

3.3.3 Id Extraction

To get back the id from the binary code, a series of operations is performed
on the bitstream. Though it is possible to look up the id by using a hash
table, the approach taken by the ArUco library is to decode each id every
time anew.

3.4 camera pose estimation

The final step in the processing pipeline is to estimate camera pose given
the ids and the corners of detected markers. The approach is similar to the
approach for marker rectification. During the rectification, we were look-
ing for a homography that mapped the corners of a marker into a square
of fixed size at the origin of the coordinate frame. This time, however,
the markers are mapped to their actual coordinates in the world frame,
and not to the origin of the camera image coordinates. This section briefly
covers how a pinhole camera can be modeled in the projective space. Sub-
sequently, the computation of projective camera matrix and, finally, an
approach to camera pose computation are presented.

The goal is to first, find the camera perspective matrix, and second, to
extract the position and orientation of the camera from the camera matrix.

The starting point for computation of the camera projection matrix is
Eq. (3.4). This time, however, a 3x4 camera projection matrix P is used

camera pose estimation 23

instead of the 3x3 homography matrix H. The equation can be derived in
a similar manner [13, p. 179]:

 0T −w ′ix
T
i y ′ix

T
i

w ′ix
T
i 0T −x ′ix

T
i

p1

p2

p3

 = 0

where x ′i = (x ′i, y ′i, w ′i)
T are the homogeneous coordinates of points i in

the camera image, xTi = (xi, yi, zi, ki) are the homogeneous coordinates of
points i in the world coordinate frame, 0T and 0 are vectors containing
four zeros, and pj with j=1,..,3 are the transposed rows of the camera
projection matrix P

P =

p1 p2 p3 p4

p5 p6 p7 p8

p9 p10 p11 p12

 (3.5)

The equation above represents a general case of perspective transforma-
tion from 3D points into the 2D camera plane. In our case, however, the
transformation is between points of two planes. Without loss of generality,
we can assume that the board with markers in the XY-plane, so that the
Z-coordinates of all its points are equal to zero. Thus, we write

 0 0 0 0 −w ′ixi −w ′iyi −w ′izi −w ′iki y ′ixi y ′iyi y ′izi y ′iki

w ′ixi w ′iyi w ′izi w ′iki 0 0 0 0 −xixi −xiyi −xizi −xiki

p1

p2

p3

 = 0

In the next step, we set all Z coordinates of the points in the board to
zero. This affects 3rd, 7th, and 11th columns of the 2x12 matrix and the
elements of projection matrix P with the same indices:

 0 0 0 −w ′ixi −w ′iyi −w ′iki y ′ixi y ′iyi y ′iki

w ′ixi w ′iyi w ′iki 0 0 0 −xixi −xiyi −xiki

p1

p2

p4

p5

p6

p8

p9

p10

p12

= 0

camera pose estimation 24

It follows that the mapping from points xi in the plane and their image
x ′i is a planar homography x ′ = Hx [13, p. 196]. As a consequence, the esti-
mation of the homography can be carried out in the same manner as it is
done for marker rectification. For each detected marker in the image there
will be four point correspondences, which results in eight equations. If
more than one marker is detected, the matrix is over-determined, and an
approximate solution to the equation set will be found. To find the maxi-
mum likelihood estimate Ĥ that minimizes reprojection error by using an
iterative error minimization algorithm, such as Levenberg-Marquardg [13,
p. 114].

4

A P P R O A C H

This section is divided into two parts: the first part presents a working ap-
proach that has been successfully implemented and evaluated; the second
part describes the approach that has been initially considered, but has not
been realized due to its complexity and the lack of time.

4.1 working approach

This section describes the approach that has been successfully realized
and evaluated in the course of this project. The system design is illustrated
in Fig. 4.1. On the FPGA, grayscale images captured by the on-board cam-
era are converted into binary images by using a threshold. The resulting
binary image is divided into a fixed number of packets, which are trans-
ferred to a PC one by one. The PC captures the data and converts it back
into a binary image. In the next step, the camera pose estimation methods
are applied onto the binary image, and the camera pose is estimated.

FPGA

PC

Input stream

Data transfer
FIFO

threshold >

Data
transfer

Data
packing

Data
unpacking

Square
detection

Corner
re�nement

Marker
analysis

Camera pose
estimation

Binary
image

Binary
image

Data
capture

Thread 1 Thread 2

Figure 4.1. System design of the working approach.

4.1.1 Thresholding on FPGA

Thresholding is performed by comparing the intensities of all pixels in the
camera image to a fixed threshold. Thresholding can be done on the fly
without the need for a frame buffer.

25

working approach 26

4.1.2 Data Packing

The amount of data to be sent to the PC is known beforehand, so that
it can be divided into a fixed number of parts. A 640x480 binary camera
consists of 640 · 480 = 307200 bits and is divided into 75 equal intervals of
4096 bits each. The intervals are numbered from 0 to 74, and this number
is sent together with the image bits to the PC. Numbering the packets in
this way has the advantage that if the PC stops capturing data for a while,
and the packets are not numbered, then there is no way to reconstruct
the binary image once the capturing process has been started again. The
number is converted into image coordinates, so that the place of every
received bit is identified uniquely.

The bits of the binary image are grouped together into words of 16
bits and written into a FIFO that is used for data transfer by the Ethernet
controller. Before packing 4096 bits of an interval together, the interval
number is written into the data transfer FIFO. 16 bits are allocated for
sending the interval number.

4.1.3 Data Transfer

Data is transferred from the FPGA to the PC by using the Ethernet pro-
tocol. First, the 6× 8 bits MAC address of the sender is written, then the
MAC address of the receiver. Subsequently, image data and the interval
numbers are transferred. Thus each Ethernet packet consists of 2 · 6 · 8 bits
allocated for the MAC addresses, 16 bits for sending the interval number,
and 4096 bits for sending the binary image data. Some additional data
is added by the hardware, such as the 8 bytes preamble, and 4 bytes of
checksum to detect errors in the Ethernet frame. Altogether, each packet
is 2 · 6 · 8+ 16+ 4096+ 8 · 8+ 4 · 8 = 4304 bits or 538 bytes. Assuming that
the camera captures images at 100 frames per second, the expected traffic
of this approach is 4304 · 75 · 100 = 32, 280, 000 bits per second, or ≈ 32

Mbits/s.

4.1.4 Data Capture on PC

On the PC side, the images are captured by using the Berkeley packet filter,
which allows low-level access to the network interface. To detect packets
sent from the FPGA, the sender and receiver MAC addresses of all packets
are inspected. Packets with the right addresses are considered for further
processing. The data is unpacked by extracting the interval number and

initial approach 27

the 4096 image data bits. Obtaining the address of the interval in image
coordinates is done as follows:

1 int x = (interval * 4096) % 640;
2 int y = (internal * 4096) / 640;

x and y are used for saving the 4096 bits of image data in an image buffer.

4.1.5 Camera Pose Estimation on PC

To allow the utilization of multicore processors, data capture process and
the camera pose estimation run in different POSIX threads 1. To communi-
cate between the threads, shared data guarded by a mutex is used. Upon
reception of a complete binary image, a shared status variable is set to
high, so that the camera pose estimation thread can copy the binary image
into its own memory space and start the process of camera pose estima-
tion. The image processing pipeline for detecting ArUco markers on the
PC is provided by the ArUco library that is written in C++ on top of the
OpenCV library.

4.2 initial approach

This section describes the approach that was developed initially, before
falling back to a simpler solution due to the time constraints. Fig. 4.2 illus-
trates the processing pipeline of this approach. First, camera images are
thresholded and at the same time, saved in a frame buffer. Most FPGAs
do not have enough memory to hold an image of 640x480 grayscale val-
ues, therefore, an external memory module is required. In the next step,
binarized images are run through a blob detecting circuit and a corner de-
tecting circuit. Blob detection allows the individual pixels to be grouped
into potential marker candidates, while corner detection provides infor-
mation about the shape of the blobs. Blob labels and their corresponding
corners are temporarily saved in a buffer.

The number of corners is reduced by a polygon approximation tech-
nique in order to find the squares in the image. If only four corners re-
main, the blob is divided into 7x7 approximately equal parts by following
the naive approach described previously. The resulting blob regions are
reduced to binary numbers, and the 5x5 internal code is obtained.

1 Though it would have been posible to use more portable and more generic multicore
library, such as Intel’s threading building blocks, or OpenMP library, the priority of this
work was to show the proof of concept.

initial approach 28

FPGA

Frame
bu�er

Marker code
lookup

Data
transferthreshold >

FAST corner
detection

Polygon approximation
Douglas-Peucker

Marker image
partitioning

<Blob 1, corners ...>

<Blob 2, corners ...>

...

Blob data

Connected
component labeling

Input stream

Id
computation PC

Data
capture

Camera pose
estimation

Figure 4.2. System design initially planned. The FPGA is used to extract corners
and ids of the markers. The PC is used to compute the camera pose.

The code and its four rotated versions are decoded by computing their
Hamming distance to a fixed 4x5 generator word. Hamming distance
equal to zero means that a valid id has been detected. The id of the marker
is computed in the next step. Subsequently, the id and the four corners are
transferred to the PC. On the PC side, received ids and corners are used
for camera pose computation by applying singular value decomposition
and iterative reprojection error minimization achieved by the Levenberg-
Marquardt minimization technique.

4.2.1 Blob Detection

Before detecting blobs, camera images are binarized by using a threshold.
If the intensity of a pixel exceeds this value, it is reduced to a binary
digit ‘1’, otherwise it is a ‘0’. The results of binarization are used by a blob
detecting circuit on the fly. The first approach mentioned in this work uses
contours to accomplish blob detection. However, contour detection can
result in a large number of points in images that are taken from a short
distance to the ArUco board, which are considered sequentially during the
polygon approximation phase. Either the number of points in the contour
should be reduced before further processing, or another blob detection
algorithm should be used. In this case, connected component labeling is
used.

Connected component labeling (CCL) labels all pixels in an image based
on their connectivity. If any two foreground pixels are neighbors (either
by considering the 4-pixel neighborhood, or the 8-pixel neighborhood),
they are assigned the same label. Similarly, if two background pixels are

initial approach 29

neighbors, they will have the same label, and since we are usually only
interested in the foreground pixels, all background pixels are given the
label 0.

Connected component labeling is based on the union-find algorithm,
that, in essence, unifies labels representing the same object. Three union-
find algorithms are reviewed in what follows next2. Objects are repre-
sented by an array of labels, where the i-th object in the array points to
the object stored at that index. Consider the following array where each
object is only connected to itself:

i 0 1 2 3 4 5 6 7 8 9

label[i] 0 1 2 3 4 5 6 7 8 9

In the next example, there are three sets of objects: {0,1,2,3,4}, {5}, and
{6,7,8,9}, represented by labels 0, 5, and 6, respectively:

i 0 1 2 3 4 5 6 7 8 9

label[i] 0 0 0 0 0 5 6 6 6 6

The algorithm has two basic procedures: find and union. Find returns
the label of the object, given it’s index. For example, the label of object 4
above is equal to 0. Union of two labels unifies them, so that when a find

is issued on either of them, the same label is returned. The two proce-
dures can be implemented in several ways. We consider three of them to
give an idea about the complexity of the algorithm in terms of the num-
ber of required memory accesses. In the first implementation, called the
quick-find, find simply returns the label of the object by looking it up in
the array. Union uses the find operation in order to obtain the labels of
the requested objects. In case the found labels are equal, the objects are al-
ready connected. If they differ, all occurrences of the first label in the array
are replaced by the second label. This implementation of the union-find
algorithm has the worst case computation cost of ~N2. On the FPGA, the
naive implementation requires a lot of memory for storing the pixel labels
and a large number of memory accesses in the worst case.

Our second implementation of the union-find algorithm, called the quick-
union algorithm, reduces the number of computations required to perform
the union operation at the expense of the number of computations during
find. In contrast to the previous version, this implementation interprets
the content of the label array as a tree. Each entry in the array is consid-

2 More details about the union-find algorithm can be found in [28, pp. 216–234].

initial approach 30

ered as a link from child to parent. Labels represent the same object if they
have the same root node. Consider the array below:

i 0 1 2 3 4 5 6 7 8 9

label[i] 0 0 0 2 0 5 6 6 6 6

It represents three trees with root nodes 0, 5, and 6, as shown in Fig. 4.3.
Now, in order to find whether a label is connected to another label, the

5

3

1 2 4

0 6

7 8 9

Figure 4.3. Tree interpretation of the quick-union approach. The nodes of a tree
are all equivalent and represent the same object.

roots of the corresponding trees are searched. Thus, the new find algo-
rithm is extended to traverse the tree recursively, as long as the parent
node is not equal to itself. And the quick-union procedure for two labels
searches for the root nodes of the queried labels. If they are equal, the
labels are connected, otherwise, the root node of the first node is assigned
to the root node of the second label. If we want to perform a union or
a find operation N times, the quick-union algorithm requires ~N2 array
accesses in the worst case.

The quick-union algorithm can be improved by adding a weight param-
eter to each node. The weight parameter stores the number of children of
a node. The weights indicate which node is a better candidate to become
the new root node when two unconnected labels are unified. This minor
tweak changes the number of computations required in the worst case to
~logN. If the tree is kept flat at all times, however, the runtime require-
ments of the algorithm can be brought down to a constant time by using
path-compression, which links all nodes visited during the find operation
to the root node.

The union-find algorithm can be used to detect connected components
in a binary image by labeling each pixel in the image. Assuming that
the pixel arrive on the FPGA in a raster-scan order each pixel has four
neighbors whose labels are known: up-left, up, up-right, and left. If the
neighbors are all background pixels, the pixel will be labeled by a zero. If
any neighbor has a non-zero label, a union operation will be performed
on the pixel and the non-zero label.

initial approach 31

Fig. 4.4 shows an example of how the union-find algorithm can be ap-
plied onto a binary image and extract connected components. The test
image is shown at the top of the image. In this approach, each pixel starts
as a root node pointing at itself. Thus, each pixel starts with a unique
label. After processing the first row, pixels 2 and 4 are found to be the
background pixels and are connected to the root node 0, which is the
equivalence class of the background pixels. Furthermore, pixels 1, 3, and
5 were found to be foreground pixels. However, they are only connected
to themselves, so that their labeling does not change. After the second row,
pixels 6, 8, and 9 are added to the background. Pixel 1 is unified with 7,
and subsequently, 7 is unified with 3. This is the case when a pixel is uni-
fied two times. The unification continues until all rows are processed. At
the end, the algorithm finds one object that contains all foreground pixels,
and all the background pixels are grouped together as well.

1 2 3 4 5
6 7 8 9 10

11 12 13 14 15
16 17 18 19 20

Test image

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

1

3 7

5

102 4

0

8 96

11 12 13 14 15 16 17 18 19 20

1

3 7 11

5

10 14

0

12 13 152 4 8 96

16 17 18 19 20

1

10 14

53 7 11 17 18

0

12 13 152 4 8 96 16 19 20

Initialization

2 4

0 6 7 8 9 10 11 12 13 14 15 16 17 18 19 201 53Row 1

Row 2

Row 3

Row 4

Figure 4.4. Application of weighted union-find algorithm on to a test image.

Even though the algorithm produces correct result, it requires a large
amount of memory, because each pixel in the image has a unique label.
For an image with 640x480 pixels, 307200 labels each represented by 19
bits. The overall memory requirement is 307200 · 19bits. Thus, a direct ap-
plication of the union-find algorithm to connected component labeling is
inefficient. However, memory requirements can be drastically reduced by
introducing new labels only when a foreground pixel is detected that is
not yet connected to any other foreground pixel. We can make another ob-
servation by taking a look at the stricture of the images—it is not possible

initial approach 32

to have more active pixels than the half-width of the image. If the width
of the image is 640 pixels, only 320 blobs can be active in any line.

One issue that has been left out so far is the situation when a foreground
pixel is connected to several already labeled pixels at the same time, in
which case several updates to the tree are necessary. If the tree is stored
in block RAM of the FPGA, there are several ways how the tree can be
updated without loosing data: 1) the clock frequency of the block RAM
can be run with a frequency twice as fast, 2) camera image can be stored
in a sufficiently large FIFO, and 3) the tree can be updated during the
horizontal and vertical blanking periods. The third approach is taken by
[1, 18], however, its disadvantage is the large amount of exceptions that
have to be considered during the implementation of the algorithm, and
the overall high implementation complexity of the algorithm that involves
a high degree of manual memory management. In this project, it was
intended to develop a combination of 1) and 2) however, due to the timing
constraints it has not been fully developed.

4.2.2 Corner Detection

In parallel to blob detection, the corners are extracted. In this work we
use an approach for FAST (features from accelerated segment test) corner
detection first presented in [23] and implemented on an FPGA by [14].
The basic idea of a FAST corner detector is to compute a corner score for
every pixel in the image. The corner score is computed by comparing the
intensity of a pixel Ip to the intensities of 16 pixels along the Bresentham
circle, as shown in Fig. 4.5.

p

1 2

4

5

6

7

810

12

14

16

3

9

11

13

15

Figure 4.5. Bresentham circle used for computing the corner score of pixel p.

initial approach 33

Each pixel along the Bresentham circle is classified as either a bright
pixel or a dark pixel. Pixels whose intensities Ix are brighter than Ip + t,
where Ip is the intensity of pixel p, are considered as bright pixels, and
pixels with Ix < Ip − t are considered as dark pixels. Formally, the corner
score of a pixel is defined as:

V = max

 ∑
x∈Sbright

|Ix − Ip|− t,
∑

s∈Sdark

|Ip − Ix|− t

where Sbright are bright pixels, and Sdark are dark pixels. Only consecu-
tive pixels are considered as candidates for corner score computation. For
example, if there are exactly 9 consecutive bright pixels on the circle, their
corner score is computed. The same holds for 9 contiguous dark pixels.

If such a combination is found, the result is stored in a buffer. After-
wards, a non-maximum suppression window of 5x5 pixels is applied onto
that buffer. It means that if the corner score is not a part of local maximum,
it will be discarded. In this way, only the corners with the highest local
score are retained.

4.2.3 Polygon Approximation

Connected component labeling and corner detection result in a list of
blobs with corners. During polygon approximation, corner points are con-
sidered sequentially. First, the two most distant points are connected by
a line. Next, a point that is the most farthest from the line is found by
searching through all remaining points. Euclidean distance between two
2D points is defined as:

d(x1, x2) =
√
(x1 − x2)2 + (y1 − y2)2

However, we are not interested in the actual distance between points. The
Euclidean distance is only used to define an ordering of all the points. The
square root function does not change the ordering or the underlying sum
of squares because it is monotonic when applied to positive arguments.
Thus, we can safely leave out the computation of square roots, so that
only two multipliers are needed to implement this procedure.

4.2.4 Naive Marker Partitioning

The marker is split up into 49 parts by subdividing the outer borders
into seven equal line segments and by connecting the segments of the op-

initial approach 34

posing borders to each other. This approach has been criticized earlier in
this thesis because a perspective projection is a nonlinear transformation
that, depending on camera pose, can result in highly distorted marker
images that might cause in a large number of false positives. However,
the approach presented here is easier to implement and requires fewer
resources.

Assume that we have two 2D points Pa = (xa,ya) and Pb = (xb,yb)
that represent the line that we want to divide into seven equal line seg-
ments. The end point of the first line segment can be computed as follows:

P1 =

(
xa +

xb − xb
7

,yb +
yb − ya
7

)
The second point:

P2 =

(
xa +

(xb − xa) · 2
7

,ya +
(yb − ya) · 2

7

)
In general, each point with i=1,. . . ,6 can be computed as follows:

Pi =

(
xa +

(xb − xa) · i
7

,ya +
(yb − ya) · i

7

)
(4.1)

Computation of the six points for each line requires 6 · 2 · 4 = 48 float-
ing point divisions and 5 · 2 · 4 floating point multiplications. The floating
point division is the more expensive than floating point multiplication in
terms of clock cycles. However, the number of divisions can be reduced
by precomputing the division twice for every line—once for the x and y
coordinates, respectively. Thus the number of floating point divisions is
reduced to 2 · 4 = 8.

4.2.5 Marker Code Extraction

In order to extract the code from a marker, the partitioned grid is sampled
in the middle of each region. Fig. 4.6 shows the basic idea of this approach.

Computing the central points of grid region is the same as dividing
each size of the marker into 14 equal parts. Eq. (4.1) can be modified to
compute starting points for marker code sampling as follows:

Pi =

(
xa +

(xb − xa) · i
14

,ya +
(yb − ya) · i

14

)
for i = 1, 3, ..., 13. In the next step, the marker is sampled by reading
small regions around the sample points in order to obtain the 5x5 marker

initial approach 35

Figure 4.6. Marker sampling. Each grid region is sampled in its middle by using
a window of a fixed size.

code. If the majority of pixels of a region are foreground pixels, the bit is
assumed to be a 1, otherwise it will be set to zero.

4.2.6 Id Analysis

To determine whether the code belongs to a valid marker, the Hamming
distance of the code is compared to the generator matrix of the ArUco
marker in all four possible orientations. The generator matrix and its pos-
sible rotations are stored in the registers of the FPGA. To find the Ham-
ming distance, the marker code and the generator matrix are compared to
each other row-wise. The Hamming distance is the number of times when
a bit of the generator matrix is not equal to the same bit in the code of
the potential marker. However, since no error correction is performed, the
id analysis phase can be reduced to an equality operation. If the numbers
are not equal, the marker candidate is simply discarded.

4.2.7 Id Computation

To compute the marker id, only the second and the fourth rows of the
marker code are required. The following excerpt from the ArUco library
shows how the id of a marker can be computed from the marker code
stored in the 5x5 array bits:

1 int id = 0;
2 for (int y = 0; y < 5; y++) {
3 id <<= 1;
4 if (bits.at<uchar>(y,1)) id |=1;
5 id <<= 1;

initial approach 36

6 if (bits.at<uchar>(y,3)) id |=1;
7 }

Only shifting and inclusive OR operators are used during id computation.

5

S E T U P

The approach developed in this project has been implemented by using
VHDL on Altera’s DE2-70 board developed by Terasic [32]. The core of
the board is a Cyclone II 2C70 FPGA device with 68,416 logic elements
and 250 M4K RAM blocks. The FPGA is connected to several interfaces
that are used for communication with the PC, such as a serial port and a
100 Mbit/s Ethernet port.

A mvBlueCOUGAR-X 100 camera [16] is mounted on one of two general-
purpose expansion headers (GPIO) of the board. The camera has a CMOS
sensor that delivers 10- bit grayscale images with resolution of up to
752x480 pixels and allows frame rates of up to 117 frames per second.
The camera has an on-board FPGA and can be configured from a PC over
a 1 Gbit/s Ethernet connection.

The computer used during evaluation has a 2.4 GHz Intel Core i5 pro-
cessor with two cores. The system has 8GB DDR3 RAM running at 1333
MHz. The operating system is Mac OSX, version 10.7.5.

37

6

E VA L U AT I O N

Several methods have been presented here. Depending on the utilized
method, the accuracy and precision of marker detection will change. Eval-
uating the system under different conditions will help us to choose the
proper method for each condition. However, which parameters can be
used to assess the performance of the system? The ultimate goal of the
marker detecting system is to provide an interface between the Immersion
Square and the user. The user can feel whether the system is good or not
by interacting with it. If the user points the interface onto a specific part
of the canvas, but the system responds with pointing the virtual interface
at another place, then the system will be perceived as not very accurate.
If there is a long delay between user action and system reaction, then the
system will be difficult to work with. These two variables—camera pose
error and time—will be used to assess the performance of the system.

6.1 performance variables

The simplest way to compute the camera pose error is to measure the dis-
tance between the estimated camera pose and the ground truth. However,
it is difficult to compare the errors with each other, because even a large
error in camera pose might result in no “perceived” error by the user if the
central lines of the ground truth camera and the estimated camera meet
the canvas in the same point. The central lines of the two cameras with
slightly different poses meet in the same point on the canvas.

To bring our error measurement closer to the perception of the user,
another approach would be to compute the distances between the two
central points of the ground truth camera and the computed camera. How-
ever, this method would unfairly penalize the performance when there is
a large distance between camera and canvas, since the error in camera
pose tends to be higher the farther away the camera is from the canvas.
A user who is far away from the canvas might not even notice any differ-
ence in the position of the central point of the camera (crosshairs). Also
if the camera is close to the canvas and looks at it under a steep angle,
even a small error in camera pose might result in high errors that the user,
however, does not notice.

38

evaluation environment 39

Thus, a better way to measure the perceived error of the interface is to
compute the angle between the estimated central line of the camera and
the ground truth. Angular error has the advantage of being an absolute
measure that is independent of the equipment used. The original camera
pose error is meaningless without knowing the size of the canvas and its
distance from the camera. The crosshairs position error is also perceived
differently based on the distance to the canvas. However, an angular error
of, e.g., 5◦ is perceived as the same by the user who is 1 m away from the
canvas and the user who is only 30 cm away from the canvas. In this work
we use all three error measures and show the difference between them.

One of the concerns for the hybrid approach presented in this work
is that it might not be able process all the data fast enough. To ensure
that the system does not drop frames, it is necessary that all processing
is completed by the time a new frame is received by the PC. A delay in
processing might result in dropped frames. For a camera running at 100
frames per second, the time window for marker detection is 10 millisec-
onds (1000ms

100 = 10ms). Thus, another performance measure that will be
used to evaluate the system is the computation time.

6.2 evaluation environment

The approach presented in this thesis has been evaluated on a set of syn-
thetic images generated in a simulation environment that has been written
in the course of this project. Synthetic images have several advantages over
real-world images. The ground truth data can be generated with nearly
infinite precision, whereas in real systems, the ground truth is never error-
free. A large amount of data can be generated and evaluated in a short
amount of time. However, the disadvantages are that the system might
behave differently under real conditions.

The evaluation environment consists of a board with a pattern of 16x16
ArUco markers and a camera that can be placed anywhere in the simu-
lated space. The markers have been randomly placed onto the board in a
way that their IDs are unique and do not repeat 1. The board has the unit
size of 1m x 1m and is placed at the origin of the coordinates at (0,0,0).
The camera is modeled as a pinhole camera with the same parameters of
the real MV camera. Fig. 6.1 depicts the simulation environment.

The board of N markers is drawn in a 3D environment using OpenGL.
The center of the board is placed at (0; 0; 0). Each marker is drawn by
using black and white rectangles.

1 The board has been generated by Timur Saitov and burned into a special-purpose infra-
red projector.

evaluation environment 40

rotation

2x2 m grid of 16x16 markers
central
camera
point

position

angle of
incidence:

5° - 85°

distance to the grid:
20 cm - 2 m

Figure 6.1. Generation of synthetic test images containing fiducial markers.

The environment has been implemented by using OpenGL. To model
the camera, the specification of the real MatrixVision camera have been
used to set the OpenGL perspective projection matrix. The pixel size of the
MV camera is 6 · 10−6 x 6 · 10−6 meters and the focal distance is 6 · 10−3

meters. The resolution of the camera is 752 x 480 pixels, however, during
the evaluation a more common resolution of 640 x 480 pixels is used. To
set the perspective projection matrix, the following OpenGL procedure
has been used:

1 void gluPerspective(fovy, aspect, zNear, zFar)

fovy is the vertical field of view that can be computed by knowing the
vertical resolution of the camera, its focal distance and the pixel size:

fovy = 2 ·atan
(
H · pSize
2f

)
= 2 ·atan

(
480 · 6 · 10−6

2 · 6 · 10−3

)
≈ 0.471 rad = 26.99◦

aspect is the aspect ratio of the image, which can be computed by dividing
the width of the image by its height; zNear and zFar are the distances
between the camera and the clipping planes. Only the objects between

dataset generation 41

the clipping planes are visible to the camera. Fig. 6.2 shows the interplay
between the arguments of the gluPerspective procedure.

near
far

Aspect =

w

h

w
h

fovy

Figure 6.2. Perspective projection modeling in OpenGL.(Taken from [30]).

6.3 dataset generation

The evaluation of the system has been carried out in three steps. First,
a set of test images has been generated by the simulation environment
with a camera at different positions and varying angles. In the next step,
the methods described in this thesis have been put to test under differ-
ent parameters, such as blur, noise, and marker detecting method. In the
last step, the performance measures—the pose errors, angular errors, and
other important parameters—have been computed and analyzed. The fol-
lowing subsections describe each step in detail and also discuss some
alternative ways to evaluate the system.

6.3.1 Generation of Test Images

The simulation environment has been used to generate 50,000 test images
from different camera angles and positions. The x and y positions are
uniformly distributed between -0.6 and 0.6. The z position is sampled
from a normal distribution with µ = 1.0 and σ2 = 0.7. This is done because
the user is more likely to be at a moderate distance from the board. Fig. 6.3
shows the histograms of x, y, and z.

After the position of the camera is fixed, the angles are randomly gener-
ated. Roll is sampled from a uniform distribution between −90◦ and 90◦.
Pitch and heading are sampled from a variable distribution that depends
on the position of the camera—the distribution is set in such a way that
the crosshairs point never leaves the board. This is done by computing the
angle between the camera looking along the Z-axis and the camera look-
ing towards the edges of the board to the left and to the right for heading,

dataset generation 42

F
re

qu
en

cy

−0.6 −0.2 0.2 0.6

0
10

00
20

00

(a) X

−0.6 −0.2 0.2 0.6

0
10

00

(b) Y

0.0 0.5 1.0 1.5 2.0

0
15

00

(c) Z

Figure 6.3. Histograms of individual coordinates of camera position.

and to the top and to the bottom edges of the board for pitch. Limiting the
angle distribution ensures that the camera is always looking at the board.
In the real world, a user that controls the Immersion Square by using an
interaction device has no incentive to point outside of the canvases.

A H B

c

Figure 6.4. Restricting the heading angle.

Consider Fig. 6.4 where it is assumed that the camera is at (x, y, z). The
angles to sample heading can be computed as follows:

HB = OB−OH;HA = OA−OH

tan(α) =
HB

CH
; tan(β) =

HA

CH

α = atan

(
OB−OH

CH

)
= atan

(
0.5− x
z

)
β = atan

(
OA−OH

CH

)
= atan

(
−0.5− x

z

)
AB is the size of the board and is equal to 1. OB is the half board size
equal to 0.5. α and β are used to generate the heading by sampling from
a uniform distribution between the two angles. Pitch can be computed in
the same manner by substituting x with y. Fig. 6.5 shows the histograms
of the angles in the dataset. Interestingly, the restriction applied to the
camera position result in a Gaussian-like distribution for heading and
pitch.

The camera is positioned in a way that at least one marker is always vis-
ible. This has the motivation to reduce the number of fully black images,
as well as the images in which each visible marker is seen only partially.
Each image that passes this condition is retained, and all other images

dataset generation 43

F
re

qu
en

cy

0
10

00
25

00

−90 0 90

(a) Roll

0
40

00

−90 0 90

(b) Pitch

0
40

00

−90 0 90

(c) Heading

Figure 6.5. Histograms for roll, pitch, and heading.

discarded. The situations in which a marker is only partially visible arise
when the camera is positioned at very close ranges to the board at angles
around 90◦. The marker detection algorithms are not able to recognize any
markers in such images and are only skewing the evaluation statistics.

In order to compute the number of visible markers in an image, the
corners of each marker on the board are projected onto the camera image
plane. Markers whose corners are all in the image plane are considered
as visible markers. Projection of coordinates from the world plane into
the image plane can be done by multiplying the world coordinates by the
camera projection matrix. The projection matrix can be constructed from
the camera pose and the intrinsic camera parameters as follows [13, p. 56]:

P = K[R|t]

where K is the camera calibration matrix, R is a 3x3 rotation matrix that
represents the rotation of the camera in the world coordinate frame, and t
is equal to −RC̃ with C̃ being the camera position in the world coordinate
frame. The camera calibration matrix can be computed as follows [13, p.
57]:

K =

f ·m x0

f ·m y0

1

where f is the camera’s focal distance, m is the number of pixels per unit
distance, which can be computed from the physical pixel size of the cam-
era that is equal to 6 · 10−6m, thus m is equal to 1

6·10−6 ; x0 and y0 are the
coordinates of the camera’s principal point in pixels and are equal to 320
and 240, respectively.

The rotation matrix can be obtained by performing three rotations one
after another. This can be accomplished by multiplying three rotation ma-
trices. The order of multiplication matters and different results are ob-
tained if the order differs. For example, rotating around the X axis first,
followed by rotations around the Y, and the Z axes results in a different

dataset generation 44

rotation than doing it otherwise. This is illustrated by multiplying some
example matrices. Let us assume that we want to rotate around the X-axis
by α = 30◦, around the Y-axis by angle β = 15◦, and around the Z-axis by
γ = 70◦. We can now construct three rotation matrices as follows:

Rx(α) =

1 0 0

0 cos(α) −sin(α)

0 sin(α) cos(α)

 =

1 0 0

0 0.8666 −0.5

0 0.5 0.8666

 ,

Ry(β) =

cos(β) 0 sin(β)

0 1 0

−sin(β) 0 cos(β)

 =

0.9659 0 0.2588

0 1 0

−0.2588 0 0.9659

 ,

Rz(γ) =

cos(γ) −sin(γ) 0

sin(γ) cos(γ) 0

0 0 1

 =

0.3420 −0.9397 0

0.9397 0.3420 0

0 0 1

Now we can show that applying rotation around the axes onto a test

vector in different order produces different results. Rotating the vector
v = (1 1 0)T in the XYZ order (first X, then Y, then Z) results in:

v̂xyz = RZ · RY · RX · v =

0.43082

1.86213

3.21666

Rotating in the ZYX order (first Z, then Y, then X) results in:

v̂zyx = RX · RY · RZ · v =

−0.70852

−0.24164

3.66601

Rotating in the YXZ order results in:

v̂yxz = RZ · RX · RY · v =

0.20824

1.77841

3.28541

dataset generation 45

In this work, we set the YXZ rotation order as the default. This rotation
order is known in flight dynamics, as roll, pitch, and heading. First, the
heading of the aircraft is specified—it is the rotation of the aircraft around
the vertical axis, which is the Y-axis in OpenGL. The heading moves the X
and the Z axes along with it. Second, the pitch of the aircraft is specified
as its rotation around the axis spanned by the two wings, which is the
rotated X-axis. The pitch moves the Z-axis again. Finally, the heading of
the aircraft is specified by giving the angle around the Z-axis, which is the
axis in which the aircraft is looking. We will use this convention to specify
the three camera angles.

Here is an example of a projection matrix for a camera at P(0, 0, 1) with
angles roll = 40◦, pitch = 30◦, and heading = 15◦. The camera calibration
matrix is:

K =

−1000 0 320

0 1000 240

0 0 1

Camera rotation matrix computed in heading-pitch-roll order is equal to:

R = RZ(40
◦) · RX(30◦) · RY(15◦) ≈

0.6568 −0.5567 0.5087

0.7200 0.6634 −0.2036

−0.2241 0.5 0.8365

The rotated camera position vector t = −RC̃ is equal to

t = −

0.6568 −0.5567 0.5087

0.7200 0.6634 −0.2036

−0.2241 0.5 0.8365

 ·

0

0

1

 =

−0.5087

0.2036

−0.8365

The resulting camera projection matrix is computed as follows:

P = K[R|t]

=

−1000 0 320

0 1000 240

0 0 1

 ·

0.6568 −0.5567 0.5087 −0.5087

0.7200 0.6634 −0.2036 0.2036

−0.2241 0.5 0.8365 −0.8365

=

−728.49 716.67 −241.02 241.02

666.22 783.41 −2.84 2.84

−0.22 0.5 0.84 −0.84

dataset generation 46

Projecting the homogeneous coordinates of the corner points of the 1x1
canvas C0 = (0.5, 0.5, 0, 1)T , C1 = (0.5,−0.5, 0, 1)T , C2 = (−0.5,−0.5, 0, 1)T ,
C3 = (−0.5, 0.5, 0, 1)T into the camera image results in following points:

P ·C0 =

235.11

727.66

−0.6986

 ,P ·C1 =

−481.55

−55.75

−1.20

 ,

P ·C2 =

246.93

−721.98

−0.97

 ,P ·C3 =

963.60

61.44

−0.47

To obtain the coordinates of the projected corner points of the canvas in
camera image coordinates, the homogeneous coordinates are normalized
by their respective third values:

P ·C0 =

−336.56

−1041.62

1.0

 ,P ·C1 =

401.77

46.52

1.0

 ,

P ·C2 =

−253.41

740.91

1.0

 ,P ·C3 =

−2031.01

−129.49

1.0

From the four corner points, only the lower-right corner C1 is visible in
the image. Fig. 6.6 shows the resulting projection of 1x1 board with ArUco
markers.

By using this approach, the number of visible markers in each image is
computed every time when a new camera pose is generated. This ensures
the presence of at least one marker in each generated image. In addition,
the number of markers in the image is a useful statistic that, combined
with the number of markers recognized by our system, constitutes a useful
performance that is helpful during evaluation of our system.

Alongside the test images, an accompanying dataset that contains use-
ful information about each image is generated as well. The dataset is saved
in a comma-separated values format and contains the following data: the
names of the images; camera poses represented by roll, pitch, heading, x,
y, and z; number of visible markers; and ids of visible markers.

dataset generation 47

Figure 6.6. Projection of the marker board into the camera image. The lower-
right corner of the board is projected to the point (401.77, 46.52) in pixel coordi-
nates whose origin (0, 0) is at the upper-left corner of the image.

6.3.2 Adding Blur and Noise

To test the methods under different environmental conditions, artificial
blur and noise are added to some images. In the real environment, the
camera might be out of focus, which will result in blurry images. To model
this situation, a set of test images will be artificially blurred by using
Gaussian filter. The level of blur is controlled by the kernel size [29, p.
167]. Fig. 6.7 shows the result of artificial blur of a test image with different
kernel sizes.

Figure 6.7. Gaussian blur with different kernel sizes.

To simulate systematic errors of the camera, random noise is added to
some portion of the test images. Each pixel has some fixed probability
of switching its intensity value to a random intensity between 0 and 256.
The noise level for each image is sampled from a uniform distribution
between 0 and 0.6. Fig. 6.8 shows some examples of images with different
noise levels.

In addition to hard random noise, another portion of the test images
is run through additive Gaussian noise. This type of noise is closer to

dataset generation 48

Figure 6.8. Noise with different probabilities for each pixel to switch to a ran-
dom value.

the conditions of the real world. Usually, if a camera is susceptible to
noise, the intensities of the pixels are very close to their actual values, but
for some pixels, the value is distributed around the true intensity value
altered by some variable number. It is likely that the noisy value is close
to the real value, and less likely to be far away from it. Such distribution
can be modeled by using Gaussian noise with the mean equal to the true
intensity value of the pixel, and a variable variance. Fig. 6.9 shows some
examples of images with different Gaussian distributions. The standard
deviation for the noise is sampled randomly from a uniform distribution
between [0; 255], inclusively.

Figure 6.9. Additive Gaussian noise with different standard deviation. The
mean of each distribution is different for each pixel and is equal to the pixel’s
intensity. Standard deviation σ controls the width of the Gaussian distribution.

Table 6.1 summarizes the image filters, their probability of occurrence,
and ranges of the parameters. Each filter type (as well as the absence of
filters) has equal probability of being applied on a test image.

Table 6.1. Parameters for image filters.

Filter Probability Range

None 0.25 —
Hard noise 0.25 p ∈ [0; 0.6]
Gaussian noise 0.25 σ ∈ [0, 255]
Gaussian blur 0.25 k ∈ [1, 3, ..., 19]

dataset generation 49

6.3.3 ArUco Board Detection Methods

After generating the test images, the next step is to perform board detec-
tion on every image. Two thresholding methods and four corner refine-
ment methods are used during evaluation. In addition to the image pro-
cessing methods, another parameter is varied during evaluation as well—
the marker warp size. It defines the scaling of potential marker for marker
analysis. A large marker warp size increases the robustness during marker
identification phase. It helps in keeping down the number of false posi-
tives and false negatives. However, large marker warp sizes will increase
the computation time. Including this parameter in evaluation might help
us find optimal marker warp size that is appropriate in different situa-
tions. The marker warp size will be sampled randomly for each image
from a discrete distribution from 7 to 70 by increments of 7. Table 6.2
summarizes the methods used during evaluation. From each column, one
value is sampled randomly for each image.

Table 6.2. Summary of methods used in evaluation.

Corner ref. method Thresholding method Marker warp size

None Fixed threshold 1 · 7
Harris Canny 2 · 7
Subpixel . . .
Lines 10 · 7

6.3.4 Final Dataset

Board detection returns the estimated camera pose, the number of mark-
ers detected in the test image, and the coordinates of the corners of each
detected marker. Some post-processing is applied on the results in order
to compute the three errors described earlier and to determine the number
of correctly detected markers in the image.

The first error measure introduced in the beginning of this section is
the camera pose error. It is computed by taking the euclidean distance be-
tween the ground truth camera pose vector with 6 elements—x, y, z, roll,
pitch, and heading. However, it is difficult to interpret the resulting num-
ber. For this purpose, the error is split into rotation error—the euclidean
distance between the roll, pitch, heading angles—and position error that

dataset generation 50

is computed by taking the Euclidean distance between the estimated posi-
tion and the actual position of the camera.

The second error is computed by finding the point where the principal
camera axis goes through the board and by comparing it with the ground
truth. The camera is at the point C(x,y,z). Initially, it is directed along
the Z-axis towards the board and meets it in the point H(x,y,0), since the
board is positioned at the origin of the coordinates along the XY-axis. After
turning along the Y-axis by the angle heading, the camera’s principal line
meets the board in the point Y. After turning along the X-axis by the angle
pitch, the camera’s principal line meets the board in the point P, which is
the crosshairs position that we are looking for. It can be computed step by
step as follows:

HY = CH · tan(heading) = z · tan(heading)

CY =
CH

cos(heading)
=

z

cos(heading)

PY = CY · tan(pitch) = z · tan(pitch)
cos(heading)

Thus, the coordinates of the crosshairs are:

(x+HY,y+ PY, 0)

Crosshairs position error is determined by taking the Euclidean distance
between the ground truth and the estimated crosshairs coordinates.√

(P̂x − Px)2 + (P̂y − Py)2

where Px and Py are the coordinates of ground truth crosshairs, and P̂x
and P̂y are the estimated coordinates of the crosshairs computed during
the board detection phase. The crosshairs rotation error is the difference
between estimated roll angle and the ground truth.

The third error is the angular difference between the two crosshairs
points computed in the previous step. In the triangle spanned by the vec-
tors CP and CP̃, all the sides are known from the previous step. Thus, the
angular error can be calculated by using the law of cosines:

PP̃2 = CP2 +CP̃2 − 2 ·CP ·CP̃ · cos(θ)

θ = acos

(
CP2 +CP̃2 − PP̃2

2 ·CP ·CP̃

)

dataset generation 51

To find whether the marker is recognized correctly or not, it is not
enough to confirm that the marker exists in the image by finding its id
in the list of ids for that image. It is necessary to ensure that the marker
is also in its right place, which can be done by computing its center and
checking whether it is within the marker’s bounding box. The center is
computed by finding the intersection between the diagonals of the marker.
Markers whose centers are not in the right place are considered false pos-
itives. Markers that are in the image, but are not recognized by the board
detecting algorithm, are considered false negatives.

7

R E S U LT S

7.1 general trends

This section discusses general dependencies between the five errors for-
mulated in the beginning of evaluation section. The data points are sum-
marized by using lowess [8, p. 94], which is a local iterative method that
uses weighted least squares in order to fit a smooth curve to a set of data
points. However, the data points themselves are also provided, since in
some cases, the lowess curve is not meaningful by itself.

7.1.1 Undistorted Data

This part considers the data set that is free of noise and blur. The five
errors—camera rotation error, camera position error, crosshairs rotation
error, crosshairs position error and angular error—are plotted against the
distance of the camera to the board, and the camera-board angle. Fig. 7.1
shows the trend of errors in camera translation. There is a strong depen-
dency between camera-board distance and the translation error of the
camera—the larger the distance from the camera, the higher is the error.
However, it is interesting to see that the camera position error decreases
the steeper the angle to the board. And when the angle is close to 90◦—
when the camera is directed along the z axis—the error is the largest. One
of possible reasons might be that the corner features become easier to
detect under steeper angles.

Figure 7.1. Camera position error.

52

general trends 53

Fig. 7.2 shows the behavior of the rotation error. Here we can see the
opposite trend—the larger the distance from the board, the lower is the
rotation error. Also, the more the camera-board angle approaches 90◦, the
lower is the camera rotation error. This can be explained with the fact that
it is difficult to make an error in rotation when the camera-board distance
is large, as long as at least one marker is recognized correctly. And steep
angles between the camera and the board result in highly distorted images
of rectangles to which the rotation is highly sensitive.

Figure 7.2. Camera rotation error.

In the next step, we consider the effects of distance and angle on the
crosshairs position (CP) and crosshairs rotation (CR) error. CP error is the
distance between the point the user is pointing to and the point that the
system has computed. From Fig. 7.3, we can observe that the CP error gets
higher as the camera-board distance increases, and lower as the camera-
board angle approaches 90◦.

Figure 7.3. Crosshairs position error.

The CR error follows the opposite trend, as shown in Fig. 7.4. The longer
the distance of the camera from the board, the lower is the rotation error.
Therefore, if the user wants to perform some rotational command, it is
better to do this from afar. Conversely, when the accuracy of pointing has

general trends 54

to be higher, the camera should be closer to the board. However, in both
cases, the error is lower at angles close to 90 degrees.

Figure 7.4. Crosshairs rotation error.

The angular error shown in Fig. 7.5 is the most interesting, as it does not
depend on the camera-board distance. This is indicated by the uniform-
like distribution of points.

Figure 7.5. Angular error.

7.1.2 Blurry and Noisy Data

The trends for blurry data with respect to camera-board distance and the
camera-board angle are similar to those of a clean dataset. However, the
errors are higher on average. The corresponding figures can be found in
the appendix. Here, we consider the effects of the size of the blur kernel.
Fig. 7.6 shows how the camera pose error depends on the blur level. In
general, all the errors increase, with increasing kernel size of the Gaussian
blur. Similar effect is observed when the noise level is increased. The rest
of the figures can be found in the appendix.

general trends 55

Figure 7.6. Camera position and rotation errors dependent on the size of the
Gaussian blur kernel.

7.1.3 Computation Time

The computation time is an important criterion for our system, because it
is used in real time. Computation time depends on the number of blobs in
the image and on the warp size used during image rectification. Fig. 7.7
shows the computation time plotted against the number of markers in
the image for clean images. And Fig. 7.8 depicts the computation time for
blurry images.

Figure 7.7. Computation time.

Figure 7.8. Computation time.

evaluation of methods 56

7.2 evaluation of methods

This section shows the impact of using different corner refinement meth-
ods and thresholding methods on the error and computation time. Fig. 7.9
shows the crosshairs position error for each method. The combination of
Canny edge detection and the lines method for corner computation has a
lower error than all the other methods.

Fixed Canny (all)

0.00

0.02

0.04

0.06

0.00

0.02

0.04

0.06

0.00

0.02

0.04

0.06

0.00

0.02

0.04

0.06

0.00

0.02

0.04

0.06

N
one

H
arris

S
ubpixel

Lines
(all)

0 25 50 75 0 25 50 75 0 25 50 75
Camera−board angle

C
ro

ss
ha

irs
 p

os
iti

on
 e

rr
or

Figure 7.9. Crosshairs position error using fixed thresholding.

Fig. 7.10 shows the computation time based for each method dependent
on the marker warp size. The usage of Canny edge detection requires
more computation. No corner refinement requires slightly less time, how-
ever, all corner refinement methods use approximately the same amount
of time.

optimized implementation 57

Figure 7.10. Computation time of different methods dependent on the marker
warp size.

7.3 optimized implementation

The results of evaluation have been used to optimize the original imple-
mentation, to evaluate it using synthetic data, and to test the resulting sys-
tem in the real world. The results show that Canny is better than the other
evaluated methods for thresholding in terms of accuracy and precision,
and the best method to detect the corners of the quads is the line approx-
imation method. However, Canny also requires a much larger amount of
time than all the other evaluated methods. Thus, the optimized implemen-
tation uses a fixed threshold and the lines approximation method as the
basis.

optimized implementation 58

In addition, a set of improvements over the original ArUco library have
been incorporated in the optimized version:

1. All the marker candidates at the edges of the images are discarded
because the markers are only partially visible, but still might be rec-
ognized as such. In this cases, the markers increase the evaluated
errors by a large amount.

2. The results of evaluation have shown that the warp size decreases
the camera pose errors by trading it off against a substantial increase
of the processing time. However, at certain size, the decrease of cam-
era pose error is not as large as the increase in the computation time,
so that the marker warp size has been set to a fixed size of 49× 49
pixels.

3. The error of polygon approximation method is set lower, so that
the shape of the polygons has to more closely resemble a quad. The
threshold in the original ArUco implementation is set to a high value
so that even shapes that are not quads can be recognized as such. It
has the intention of analyzing as many potential markers as possi-
ble. However, shapes that are not quads but recognized as such will
always increase all errors by a large amount.

4. In addition to the improvements that are base on the insights gained
during evaluation, the code of the ArUco implementation has been
optimized and refactored.

7.3.1 Evaluation Using Synthetic Data

The optimized system shows several improvements compared to the orig-
inal ArUco implementation, as shown in Table 7.1. Camera pose error and
the crosshairs position error are almost halved when compared to the sec-
ond best result of Canny and line approximation methods, whereas the
rotation errors stay roughly the same. The computation time is substan-
tially reduced.

Fig. 7.11 shows the average computation time of three different parts
of the optimized implementation: quads detection, marker identification
and camera pose estimation. The results of the tests for the undistorted
dataset show that the largest portion of computation time is spent iden-
tifying markers, which involves the costly image warping operation. The
computation time increases linearly with the tested numbers of markers.
The number of markers is the number of markers in the image, and not
the number of markers recognized by the system. This explains why the

optimized implementation 59

Table 7.1. Comparison of original ArUco library with the optimized implemen-
tation by using the undistorted dataset. Bold font indicates the best value in each
column. Gray color denotes the best value for each thresholding method.

Th CA Method Cam Pos (m) Cam Rot (deg) CH Pos (m) CH Rot (deg) Ang (deg) Time (s)
Fi

xe
d None 6.83e-3 1.03e-1 3.19e-3 6.81e-4 1.26e-1 1.52e-2

Harris 8.16e-3 1.18e-1 4.86e-3 4.58e-4 1.80e-1 2.31e-2
Subpixel 7.60e-3 1.48e-1 5.42e-3 8.32e-4 1.86e-1 1.65e-2
Lines 6.19e-3 9.81e-2 2.97e-3 3.50e-4 1.18e-1 1.84e-2

C
an

ny

None 7.59e-3 1.13e-1 3.75e-3 7.52e-4 1.50e-1 2.43e-2
Harris 8.48e-3 1.13e-1 4.58e-3 4.17e-4 1.78e-1 3.25e-2
Subpixel 8.13e-3 1.20e-1 6.42e-3 9.08e-4 1.90e-1 2.52e-2
Lines 6.80e-3 6.05e-2 3.04e-3 2.79e-4 1.17e-1 2.82e-2

Optimized 1.25e-3 7.24e-2 1.50e-3 2.78e-4 5.42e-2 6.41e-3

computation time to perform camera pose estimation does not increase as
much as the time to perform marker identification.

In the dataset with soft Gaussian noise, the noise produces many po-
tential marker candidates that have to be analyzed because they might be
quads. Most of the time is devoted to detecting quads. In the dataset with
Gaussian blur, many neighboring markers are merged by the blur kernel,
which reduces the number of quads that the system is able to recognize.
This, in turn, reduces the overall number of computations. If only a small
number of markers is visible, which happens mostly because the camera
is close to the canvas, the markers are more likely to be recognized—this
explains why the system spends a larger amount of time to identify mark-
ers and to detect camera pose. In cases when many markers are visible to
the camera, the blur is more likely to make the neighboring quads merge
with each other.

0 50 100 150 200 250
Number of markers

0 50 100 150 200 250

Marker identi�cation
Quads detection
Camera pose estimation

Undistorted dataset Dataset with Gaussian noise Dataset with Gaussian blur

Co
m

pu
ta

tio
n

tim
e

(m
s)

0
5

10
15

20

0 50 100 150 200 250

Figure 7.11. Dependency between the visible number of markers in test images
and computation time of the optimized implementation for different datasets.
Each color designates different phases of the marker detection procedure.

The time to process all markers in the image and to compute camera
pose does not exceed 15 ms on average, which means that in the worst

optimized implementation 60

case, the frame rate is 66 fps. However, in most cases, the required pro-
cessing time is less than 15 ms, so that the system is able to process all
images received from the camera that runs at 100 fps.

7.3.2 Evaluation in the Immersion Square

In order to evaluate the optimized implementation in the real world, it
has been tested in the Immersion Square. The system runs on average
with 80 frames per second, and is able to achieve 100 fps. In addition,
the system was found to produce very stable crosshairs on the Immersion
Square. One of the reasons why the crosshairs are so stable whereas the
actual camera position is not is because of the way how camera pose is
calculated. The Levenberg-Marquardt algorithm is used to minimize the
backprojection error. If the backprojection error is high, than the corner
points of the markers will highly deviate from their actual positions in the
camera image. Minimization of backprojection error does not, however,
minimize camera pose error. It only minimizes the error between actual
data points and their backprojection.

Thus, small errors in the positions of marker corner points contribute
to the camera pose error to a high degree, which makes the camera pose
unstable. However, the same errors only change the position of crosshairs
by a small amount, because the backprojection image is very close to the
actual camera image. Since the crosshairs are always found in the center
of the camera image, their position will be close to their actual position.
Stable crosshairs are advantageous in a number of 3D applications where
a precise camera pose is of a lesser importance.

8

C O N C L U S I O N S

This work has presented a system that detects fiducial markers by splitting
the processing between FPGA and PC. The FPGA applies thresholding
onto camera images received in raster scan order, packages the binary
images into blocks, and sends them to the PC. The PC detects fiducial
markers in the binary images and computes the camera pose.

The approach is evaluated by using synthetic images generated by a
program that simulates a 3D space with a camera pointed at a virtual
board of 16x16 markers. The test images are taken by a camera from dif-
ferent positions and angles. To make the evaluation process more realistic,
a subset of test images is distorted by using Gaussian blur of different
degrees and two types of noise.

Several approaches to marker detection are evaluated. The approaches
differ with each other in terms of applied thresholding step, a corner re-
finement step and marker warp size. Four corner refinement methods
and two thresholding methods have been evaluated. The system has been
evaluated with respect to several error measurements: camera position
and rotation errors; crosshairs position and rotation errors; angular error
angle between two points.

The best corner refinement methods in terms of the camera pose errors
is the lines method that uses the points of a contour to approximate the
corners that can be found at the intersections of the lines. The best thresh-
olding method in terms of the errors was found to be Canny. It produces
results that are more precise and more accurate in terms of camera pose
error. However, the fixed thresholding method and the absence of corner
refinement needs the least amount of processing time.

The results of evaluation were used to implement an optimized system
that achieves a good balance between precision and processing time. The
optimized system is built upon a fixed threshold to binarize the images
and uses the lines approximation method to detect corners of the mark-
ers. In addition, the optimized system has a marker warp size of 49, and
introduces a set of improvements including code refactoring, which make
the system more efficient.

The optimized system outperforms the unoptimized implementations
by a large margin in terms of all errors measurements that were used
to evaluate the system. The results of evaluation show that the system is

61

conclusions 62

fast enough to process all camera images that it receives at 100 fps with
visualization thread turned off. If the visualization thread is active, the
system runs at an average of 80 fps.

Testing the system in the Immersion Square has produced an interest-
ing finding—the position of crosshairs is very stable while the position
and orientation of the camera is not. This can be explained the nature of
the camera pose estimation algorithm that uses the backprojection error
as a minimization criterion. Minimizing the backprojection error makes
the backprojected camera image very similar to the actual camera image.
Since the crosshairs are always in the center of the camera image, the
crosshairs computed from the estimated camera pose will also be very
close to the crosshairs in actual camera image.

The frame rate of the system can be improved by stopping the com-
putation after a certain number of markers has been detected. This will
decrease the number of equations for the SVD and Levenberg-Marquardt
that are used to estimate the camera pose. The computation time can be
tweaked by decreasing the marker warp size.

The main direction for future work is to implement ArUco marker de-
tection completely on the FPGA. The approach that was pursued in the
beginning of this project has turned out to be more difficult than initially
estimated. The approach relies heavily on the assumption that the rectifi-
cation of the potential marker candidates is not required. This assumption
must be evaluated before implementing the approach completely. In case
that it will result in diminished performance, image rectification will be
necessary.

B I B L I O G R A P H Y

[1] Bailey, D. and Johnston, C. (2007). Single pass connected components
analysis. In Proceedings of Image and Vision Computing New Zealand 2007,
pages 282–287. (cited on p. 32)

[2] Bergamasco, F., Albarelli, A., Rodola, E., and Torsello, A. (2011a).
Rune-tag: A high accuracy fiducial marker with strong occlusion re-
silience. In Computer Vision and Pattern Recognition (CVPR), 2011 IEEE
Conference on, pages 113–120. (cited on p. 11)

[3] Bergamasco, F., Albarelli, A., and Torsello, A. (2011b). Image-space
marker detection and recognition using projective invariants. In 3D
Imaging, Modeling, Processing, Visualization and Transmission (3DIMPVT),
2011 International Conference on, pages 381–388. (cited on p. 12)

[4] Bochem, A., Herpers, R., and Kent, K. (2010). Hardware acceleration
of blob detection for image processing. In Third Int. Conf. on Advances in
Circuits, Electronics and Micro-Electronics (CENICS), pages 28–33. (cited
on p. 3)

[5] Bondy, M., Krishnasamy, R., Crymble, D., and Jasiobedzki, P. (2007).
Space vision marker system (SVMS). In AIAA SPACE 2007 Conference &
Exposition. American Institute of Aeronautics and Astronautics. (cited
on p. 8)

[6] Bradski, G. and Kaehler, A. (2008). Learning OpenCV. O’Reilly Media,
Inc. (cited on p. 15)

[7] Canny, J. (1986). A computational approach to edge detection. Pattern
Analysis and Machine Intelligence, IEEE Transactions on, PAMI-8(6):679–
698. (cited on p. 14)

[8] Chambers, J. M., Cleveland, W. S., Kleiner, B., and Tukey, P. A. (1983).
Graphical methods for data analysis. Bell Laboratories. (cited on p. 52)

[9] Douglas, D. H. and Peucker, T. K. (1973). Algorithms for the reduction
of the number of points required to represent a digitized line or its car-
icature. Cartographica: The International Journal for Geographic Information
and Geovisualization, 10(2). (cited on p. 16)

[10] Fiala, M. (2005a). ARTag, a fiducial marker system using digital tech-
niques. In Computer Vision and Pattern Recognition, 2005. CVPR 2005.

63

bibliography 64

IEEE Computer Society Conference on, volume 2, pages 590 – 596 vol. 2.
(cited on pp. 5 and 6.)

[11] Fiala, M. (2005b). Comparing ARTag and ARToolkit Plus fiducial
marker systems. In Haptic Audio Visual Environments and their Applica-
tions, 2005. IEEE International Workshop on, pages 128–153. (cited on pp.
4, 6, and 7.)

[12] Fiala, M. (2010). Designing highly reliable fiducial markers. Pattern
Analysis and Machine Intelligence, IEEE Transactions on, 32(7):1317–1324.
(cited on p. 7)

[13] Hartley, R. I. and Zisserman, A. (2004). Multiple View Geometry in
Computer Vision. Cambridge University Press, ISBN: 0521540518, second
edition. (cited on pp. 18, 21, 23, 24, and 43.)

[14] Kraft, M., Schmidt, A., and Kasinski, A. (2008). High-speed image
feature detection using FPGA implementation of FAST algorithms. In
VISAPP 2008: Proceedings of the Third International Conference on Computer
Vision Theory and Applications, volume 1. INSTICC - Institute for Systems
and Technologies of Information, Control and Communication. (cited
on p. 32)

[15] Lamb, P. (2007). ARToolKit http://www.hitl.washington.edu/

artoolkit/. (cited on p. 5)

[16] Lansche, U. (2012). mvBlueCOUGAR-X documentation, V1.0b24. (cited
on p. 37)

[17] López de Ipiña, D., Mendonça, P. R. S., and Hopper, A. (2002). TRIP:
A low-cost vision-based location system for ubiquitous computing. Per-
sonal Ubiquitous Comput., 6(3):206–219. (cited on p. 8)

[18] Ma, N., Bailey, D., and Johnston, C. (2008). Optimised single pass
connected components analysis. In ICECE Technology, 2008. FPT 2008.
International Conference on, pages 185 –192. (cited on p. 32)

[19] Munoz-Salinas, R. (2012). ArUco: a minimal library for Augmented
Reality applications based on OpenCV. http://www.uco.es/investiga/
grupos/ava/node/26. (cited on p. 2)

[20] Owen, C., Xiao, F., and Middlin, P. (2002). What is the best fiducial?
In Augmented Reality Toolkit, The First IEEE International Workshop, page
8 pp. (cited on p. 5)

[21] Poupyrev, I., Kato, H., and Billinghurst., M. (2000). ARToolKit version
2.33: A software library for Augmented Reality Applications. (cited on p. 5)

http://www.hitl.washington.edu/artoolkit/
http://www.hitl.washington.edu/artoolkit/
http://www.uco.es/investiga/grupos/ava/node/26
http://www.uco.es/investiga/grupos/ava/node/26

bibliography 65

[22] Ramer, U. (1972). An iterative procedure for the polygonal approxi-
mation of plane curves. Computer Graphics and Image Processing, 1(3):244
– 256. (cited on p. 16)

[23] Rosten, E. and Drummond, T. (2005). Fusing points and lines for high
performance tracking. In Computer Vision, 2005. ICCV 2005. Tenth IEEE
International Conference on, volume 2, pages 1508–1515 Vol. 2. (cited on
p. 32)

[24] Samarin, P., Herpers, R., Kent, K. B., and Saitov, T. (2012). Evaluation
of data transfer from FPGA to PC: Increasing frame rate by blob detec-
tion. Technical report, Bonn-Rhine-Sieg University and University of
New Brunswick. (cited on pp. 2 and 3.)

[25] Sattar, J., Bourque, E., Giguere, P., and Dudek, G. (2007). Fourier
tags: Smoothly degradable fiducial markers for use in human-robot in-
teraction. In Computer and Robot Vision, 2007. CRV ’07. Fourth Canadian
Conference on, pages 165–174. (cited on p. 10)

[26] Sauvola, J. and Pietikäinen, M. (2000). Adaptive document image
binarization. Pattern Recognition, 33(2):225 – 236. (cited on p. 13)

[27] Scherfgen, D., Saitov, T., Herpers, R., and Dayangac, E. (2011). An
optical laser-based user interaction system for cave-type virtual reality
environments. In Proc. of the 4th Russian-German Workshop "Innovation
Information Technologies: Theory and Practice". (cited on p. 2)

[28] Sedgewick, R. and Wayne, K. (2011). Algorithms. Pearson Education,
Inc., fourth edition. (cited on p. 29)

[29] Shapiro, L. and Stockman, G. (2001). Computer Vision. Prentice Hall.
(cited on p. 47)

[30] Shreiner, D. (2010). OpenGL programming guide : the official guide to
learning OpenGL, versions 3.0 and 3.1. Pearson Education, Inc., 7th edi-
tion. (cited on p. 41)

[31] Suzuki, S. and Abe, K. (1985). Topological structural analysis of digi-
tized binary images by border following. Computer Vision, Graphics, and
Image Processing, 30(1):32 – 46. (cited on p. 15)

[32] Terasic (2009). De2-70 development and education board. [Onlne].
Available: http://www.altera.com. (cited on p. 37)

[33] Wagner, D. and Schmalstieg, D. (2007). ARToolKitPlus for pose track-
ing on mobile devices. In Computer Vision Winter Workshop 2007. (cited
on p. 5)

http://www.altera.com

bibliography 66

[34] Xu, A. and Dudek, G. (2011). Fourier tag: A smoothly degradable
fiducial marker system with configurable payload capacity. In Computer
and Robot Vision (CRV), 2011 Canadian Conference on, pages 40–47. (cited
on p. 10)

A

A P P E N D I X

a.1 blurry dataset

Figure A.1. Camera translation error.

Figure A.2. Camera rotation error.

67

bibliography 68

Figure A.3. Crosshairs position error.

Figure A.4. Crosshairs rotation error.

Figure A.5. Angular error.

bibliography 69

Figure A.6. Crosshairs position and rotation errors dependent on the size of the
Gaussian blur kernel.

Figure A.7. Crosshairs position and rotation errors dependent on the size of the
Gaussian blur kernel.

bibliography 70

a.2 dataset with gaussian noise

Figure A.8. Camera position and rotation errors dependent on the size of the
Gaussian noise kernel.

Figure A.9. Crosshairs position and rotation errors dependent on the size of the
Gaussian noise kernel.

Figure A.10. Crosshairs position and rotation errors dependent on the size of
the Gaussian noise kernel.

	Contents
	1 Introduction
	2 Fiducial Markers in Computer Vision
	2.1 ARToolKit and ARToolKitPlus
	2.2 ArTag
	2.3 SVMS
	2.4 TRIP
	2.5 Fourier Tag
	2.6 RUNE-Tag
	2.7 Pi-Tag

	3 Methods
	3.1 Marker Detection
	3.2 Corner Refinement
	3.3 Marker Analysis
	3.4 Camera Pose Estimation

	4 Approach
	4.1 Working Approach
	4.2 Initial Approach

	5 Setup
	6 Evaluation
	6.1 Performance Variables
	6.2 Evaluation Environment
	6.3 Dataset Generation

	7 Results
	7.1 General Trends
	7.2 Evaluation of Methods
	7.3 Optimized Implementation

	8 Conclusions
	Bibliography
	A Appendix
	A.1 Blurry Dataset
	A.2 Dataset with Gaussian Noise

