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Abstract

Object classification systems are becoming more pervasive with the wide

availability of low cost RGBD sensors. These sensors are making 3D infor-

mation available to a large audience, but do so at the cost of precision and

accuracy. In order to classify the information obtained from these sensors

these deficiencies need to be accounted for. Objects that are of most interest

to robotics are typically located in cluttered environments. They suffer from

occlusion caused by perspective or other objects being located between the

sensor and the target object. This project investigates reconstructing the

surface of the object that cannot be fully seen due to occlusion or sensor

deficiencies.
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Chapter 1

Introduction

In order for robotic systems to interact with the environment they operate in,

they need to be able to perceive and understand this environment. Initially

this was done using standard monocular, color RGB cameras. This class

of sensors provides a standard 2-Dimensional (2D) image, which computers

then try to process to determine what was in the environment.

Figure 1.1: Original 2D image no
modifications made.

Figure 1.2: 2D scene capture seg-
mented based on colour.
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The image segmentation technique is applied to a 2D image, in order to split

it into smaller, more meaningful portions (segments). Breaking the image

into smaller groupings one is better able to understand what the robot is

observing. The segmentation process can be done based on colour, shape,

size, or any number of criteria.

As can be seen from the segmentation in Figure 1.2, it is possible find the

yellow object as desired. However there are remaining questions about the

object that was found. Due to a lack of depth information there is no way

to tell from the raw data if the object is spherical or circular in nature.

Questions also remain about where the object is located, and about its size

This information could be obtained with more processing on the image and

making several assumptions. This information can be obtained without pro-

cessing by using a 3-Dimensional (3D) sensors.

In the last few years the advent of Red-Green-Blue-Depth (RGB-D) sensors1

has allowed robotics to move from low-cost 2D sensing to low-cost 3D sens-

ing. This allows robotic systems to explore their environments using more

detailed information. Instead of segmentation being performed based on 2D

shape, color, etc. . . the system can now operate using 3D information from

the environment.

1Some example sensors would be the Microsoft Kinect[3], ASUS Xtion Pro[4] and the
PrimeSense R© Carmine and Capri sensors [5]
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This information provides the system with the ability to not only precisely

know the size and shape of the object, but its location and orientation with

respect to the sensor. From this additional information, it makes previous

issues of occlusion more evident. In order to take advantage of the shape

information it must be corrected in order to allow for a more complete image

of what is being seen.

This project takes the raw input data from a RGB-D sensor and corrects it

so that it can be more reliable during the classification process. The system

will attempt to remove impurities in the surfaces such as noise or missing

information. This project will present a reconstruction process that by using

only the raw input data, is able to construct a representation that has filled

both occlusions and data impurities.

1.1 Occlusion

The Merriam-Webster dictionary describes occlusion as “to close up or block

off” [6]. For this project focus lies in the “blocking off” portion of this

definition is the most applicable to our task. The project will be looking at

scenes or scenarios where one object has blocked off another. Occlusions are

grouped into two categories:

1. Visual Occlusion.

3



2. Physical Occlusion.

1.1.1 Visual Occlusions

This is the simplest form of occlusion to deal with when working with mo-

bile robots. This type of occlusion is where one or more objects are visually

blocking the robot from being able to see another object. The key aspect to

visual occlusion is that the objects, which are occluding the target do not

have any physical interaction with the desired object.2

Figure 1.3: Side on view of a visual
occlusion.

Figure 1.4: Birds eye view of a vi-
sual occlusion.

The simplest way to deal with this class of occlusion is to simply move around

the subject until the system can fully view the target object. As can be seen

from Figure 1.4 the system could easily rotate the camera angle in Figure 1.3

counter clockwise to clear the occlusion. This is a relatively simple task for a

mobile robot and allows for the resolution of the visual occlusion. For more

2From now on the desired object will be referred to as the target object.
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information about motion planning from occlusion please see the following

resources [7, 8, 9]
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1.1.2 Physical Occlusions

This type of occlusion is what this project focuses on. Like visual occlusions

there is an object located between the camera and the target object. The

difference with this class of occlusion is that there is physical interaction be-

tween the target object and the occlusion causing object(s).

Figure 1.5: Side view of a physical
occlusion.

Figure 1.6: Birds eye view of a
physical occlusion.

The most notable characteristic of this class of occlusion is that the system

cannot remove the occlusion by orbiting the target object in any direction.

The occlusion could be described as a “part” of the target object itself. The

technique for solving this class of occlusion is primarily inspired by the way

human beings attempt to deal with occlusions.
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1.2 Detailed Paper Outline

The second chapter of this paper discusses relevant work to the desired direc-

tion of this paper. Chapter three discusses the relevant scenarios that define

this work, as well as a broad overview of the proposed pipeline. Chapters

four and five discuss the processing steps in the pipeline in detail. Chapter

six discusses the overall evaluation of the pipeline along with final discussions

as well as future directions that this work could follow.
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Chapter 2

Related Work

This chapter presents work that is related to the goal of this project (filling

in visual occlusion). It presents an assessment of the viability of a variety of

techniques to guide the decision making process. There are two main types

of related work that this project focused on: point cloud based methods

and mesh based methods. This chapter examines various methods from

both categories and presents the argument for working with a mesh based

approach.

2.1 Point Cloud Methods

Point clouds are a data type containing x, y, z information that is stored

in a coordinate system. The points are normally placed in the coordinate

system in relation to the position of the sensor. Most of the structure a

8



person sees when looking at a point cloud is being inferred by them without

them knowing. Most industrial applications requiring 3D information if it is

initially collected as a point cloud, it will be converted to a mesh for further

processing.

2.1.1 Inpainting Methods

Image Inpainting [10] is a well studied problem in the field of computer vi-

sion. It commonly refers to the process of identifying missing data in an

RGB image and using the information around it to hypothesize about what

colors should fit in the missing data. While using this process with RGB

information is common, doing so with the newer RGB-D information is not.

In a paper by Sharf et al. [11] a method was proposed that focused on hole

filling. This method works from a coarse grain to a fine grain method in

which they would fill in the rough surface geometry and then detailed in-

formation about the infilled area would be copied from another part of the

object. Their final processing step is to “wrap” the generated data so that it

would match the surrounding area. One of the biggest problems this paper

faced was the difficulty of defining the boundary of a hole in point cloud data

and they where using dense data samples. To fit the requirements of run time

on robotics, the running time needs to be kept low. This leads to less densely

populated point clouds making the hole identification problem more difficult.

9



Doria et al. [12] build from the previously mentioned work to combine both

infilling for the RGB information as well as using depth gradients to cor-

rect for missing depth information. While their results are impressive they

are relying on information that is present in the scene in order to fill in the

missing data. While this is not a major drawback for their methods as they

have large point clouds and their processes are not time sensitive they can

afford to keep large amounts of data. Robotics application would require

significantly smaller data sizes. This leads to objects or working areas of

1000 − 10000pts. Given that with a hole size of 14000pts they had a run-

ning time of around 23s [12] the running times increase almost exponentially

from there with their most tested being 45000pts with a running time of

2m19s [12]. While the results are for the most part highly accurate the run-

ning times and requirement for a large amount of input data means that this

method is not applicable to this project.

2.2 Mesh Based Methods

As mentioned in section 2.1.1 point clouds are normally post processed into

a mesh based data structure for future processing. The reason for this is

that a mesh has more structure to it. They typically consist of nodes (the

points from the point cloud) and edges (links between the nodes) and finally

faces/polygons (links between various edges). These three components are

10



combined to create a surface which is a closed form representation of the item

scanned. There are many different ways to represent the faces / polygons

but in the end it is a solid (closed) mesh that represents the object being

searched for. Thanks to the solid nature of the mesh there is a great deal

more information about the object and the holes it contains.

Peter Liepa [13] presented a method for filling unstructured triangular meshes.

This method worked by identifying the hole that was present in the mesh.

Then triangulating [14] the detected hole(s). Refining the mesh to better

represent the object or portion of the object that is being dealt with, and

Finally fairing (smoothing) [15] the mesh (minimizing the fairness function).

The biggest problem with this approach is the O(n3) running time on the

triangulation of the hole(s). In general though their algorithm tends to run

in terms of seconds instead of minutes as long as the number of edges that

make up the occlusion (hole) is below 100.

Taking a different approach Zhao et al. [16] applies the Advancing Front

Method (AFM) [17]. This method instead of trying to connect multiple

points often on opposite ends of the hole (triangulating) works its way from

an initial edge across the hole. Once they have this initial mesh they refine

it using the Poisson equation to refine the initial mesh and ensure that it

fits in the hole it was meant to fill. While this method also suffers from the

requirement of needing the hole to be a part of a closed mesh, the running

11



times are much more acceptable. For generating 578 new vertices it takes a

total of 174ms1, and for 181 new vertices it takes 18ms. These run times

are still outside of our desired range of <= 33ms but much more acceptable

than a runtime in the range of seconds to minutes.

The running times and the robustness to noise and missing data make the

second presented approach the desired methodology. For more information

about the various methods currently available please consult the following

articles: [18]

1The runnings times are broken into two processing parts: time spent solving harmonic
equations and time spent solving Poisson equations
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Chapter 3

System Design

3.1 Overview

This chapter presents and discusses the operating scenarios that drove the

development of the occlusion repair system. The system requirements that

where derived from these scenarios are presented as well as any assumptions

that were made. Finally a high level overview of the occlusion repair system

will be presented.
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3.2 Scenario Descriptions

The proposed system is implemented with use in the RoboCup(@Home &

@Work) competitions. The main systems come from the b-it-bots teams [19].

This system focuses on a deployment using either the Care-O-bot 3 R© [20] or

the KUKA R© youBot robotics platform [21]. The PrimeSense R© device will be

placed at 1.30m (@Home) or 0.70m (@Work) in the vertical axis, depending

on the competition the system is being used in. The placement of the sensors

on the robotics platforms is meant to allow for the maximum effective use of

the sensor, based on the system common operating environment.

The major difference between the two competitions from the view of this

research is size and location of the target objects. The differences in setting

and object attributes leads to a wide variety of scenarios that the system

must be able to perform in. The specific requirements for each competition

will be presented in the following sections.

3.2.1 RoboCup@Home

The RoboCup@Home competition takes place in a home or apartment based

environment [22]. With the objects being fairly large1 it is easier to get more

reliable data on the overall object shape as the object size will often be out-

side of the PrimeSense R© devices error range[5]. The “rough” object shape is

1See Figure 3.1 from the RoboCup@Home rulebook [22]
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easier to obtain, allowing the system to focus on the smaller, more difficult

to recreate details.

Unlike the @Work competitions the tasks facing the robot require the robot

to not only be able to recognize an object but to detect detailed object

features. These features allow the system to determine the best manner to

interact with the object being recognized.

3.2.2 RoboCup@Work

At a high level the @Work competitions present a simpler problem at the

moment: simply having to recognize “what” an object is so that it is possible

to grasp (manipulate) the object at a later time. Unlike the @Home com-

petition however the RoboCup@Work competitions brings an added level of

complexity to the data gathering and processing problem.

The majority of the objects are much smaller than those that would be

found in the RoboCup@Home league, with a minimum size of 2cm3 [23].

This presents an added challenge as the resolution of the current generation

of RGB-D sensors have error ranges that with our set up would produce

errors of up to 5mm (in the x,y orz direction) or up to 25% deviation from

its true position.

15



3.2.3 Assumptions

Several assumptions about the placement and attributes of the objects where

made in order to simplify the operations being performed.

1. Object sizes will be at least 2cm3 [23].

2. All objects will be located on planar surfaces such as a table or a

RoboCup@Work service area.

3. All objects will be non-transparent, as transparent objects return cor-

rupted data when using PrimeSense R© based sensors [24].

4. All objects will have closed surfaces. They will be closed either through

interaction with a surface plane or through the natural shape of the

object.

5. All objects will have a matte surface finish. This is done to reduce the

amount of corrupt data due to the pattern being reflected elsewhere in

the visible scene.

6. To get the best results from the PrimeSense R© devices target objects

will be located between 0.80m and 1.3m from the sensor.

16



3.3 System Overview

The occlusion repair system is broken down into three. The system is de-

signed to take in information from low cost RGB-D sensors and then to

correct for errors that the sensor introduced as well as any occlusions present

in the scene. The repair process for occlusion is broken down into 3 distinct

phases. Each phase is associated with the software library that is being used

for the processing.

1. Robot Operating System (ROS)

(a) Data Capture

2. Point Cloud Library (PCL)

(a) Scene pre-processing

(b) Object candidate Identification

(c) Object candidate processing

(d) Conversion from point cloud to mesh

3. Visualization Tool Kit (VTK)

(a) Identify occlusion

(b) “In-Fill” occlusion

(c) Smooth & Adjust in-fill

17



3.3.1 Data Capture

The system utilizes ROS in order to create a multipurpose input layer. This

part of the system is meant to be easily replaced by any program which

can output a PCL point cloud. For the purposes of the paper the Microsoft

Kinect[3] was used for development and testing purposes.

3.3.2 Point Cloud Processing

This segment of the systems processing refers to any work being done with

the point cloud data within PCL. This processing phase will look at the

following:

1. Removing outliers.

2. Smoothing the data.

3. Plane extraction.

4. Point clustering (for object candidate extraction).

5. Upsampling object candidates.

6. Conversion from point cloud to a mesh

These processes will be discussed in full detail in Chapter 4.

18



3.3.3 Mesh Processing

This processing phase will work with mesh data structures which are nodes

(much like the points in the point cloud) connected to each other through

edges in a triangular fashion. These meshes are created in the previous

processing phase in a method called triangulation [14]. Once the mesh is

obtained the goal is to determine if any occlusions exist. If any are detected

the system in-fills the occlusion and follows up with smoothing and adjusting

based on known object geometries.
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Chapter 4

Data Preparation

This chapter covers the process of capturing environment information and

the various steps that are performed during the initial processing steps.

4.1 Data Capture

The data collection process is defined by the following steps requiring a PCL

point cloud. This point cloud can be of any type supported by PCL as long

as it contains at a minimum position information (x, y, z).

The demo system was developed so that the data capture step lasted for a few

seconds. This allows for the collection of several point clouds which are then

integrated into a single point cloud through the process of registration [25].

This allows for the system to gather more information about the environment

20



through movement in order to address visual occlusion. For more about these

solution methods see the section on visual occlusion repair 1.1.1.

4.2 Downsampling

Working with the amount of data that is obtained from the data capture

process leads to long running times. The goal of this system is that it should

be usable during RoboCup competitions. With most competitions running

for a maximum of 5 minutes the shorter the processing time the more usable

the system is. This must be balanced with the amount of data that is used

to represent the information that was captured from the environment. Table

4.2 demonstrates the trade off between these two factors.

Voxel Size Points Removed Running times Processing FPS System FPS

0.001m 0 0.010s 80 3.2

0.002m 5250 0.013s 76 3.9

0.003m 38000 0.013s 76 5.9

0.005m 72000 0.009s 111 11.3

This project performs downsampling using the PCL voxel grid filter[26]. This

filter creates a Volumetric Pixel (VOXEL) that encloses all of the points in

that 3D space. The filter then determines the centroid of the points enclosed

by the voxel. This centroid is used as the representative point for everything
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enclosed by the voxel. This allows for the proper representation of the surface

that was obtained while reducing the overall number of points which increases

the running time of the system. See the highlighted region of Table 4.2 for

the voxel size that this project uses.

4.3 Noise Reduction

After downsampling the data set there are still outliers or noise present in

the data set. PrimeSense R© devices have error rates that range from 1mm at

0.80m up to 3cm at 2m [27], and this leads to a fair amount of information

that is wrong due to improper sensor measurements. PrimeSense R© devices

also can recognize the pattern it is emitting in places where it is not really

found. All of these factors together can result in point clouds which contain

a large amount of noise. In order to reduce this the PCL Statistical Outliers

Removal Filter[28] is used.

This filter measures the mean distance between points using the K-nearest

neighbors method. Once it has this distance it can determine what “should”

be present in the scene and what might not belong based on a points distance

to its k-nearest neighbors. If the point falls outside of 1 standard deviation1

of the mean for that region the point(s) will be removed. Table 4.3 show the

number of points removed by varying the mean and standard deviation. The

1The Statistical Outliers Removal Filter assumes that all points are distributed in a
Gaussian manner and this is used to determine the mean and standard deviation for the
data set.
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highlighted entry in this table represents the final values that where used

during testing for this project.

Mean K Points Removed Running times Processing FPS System FPS

10 2200 0.09s 11 9.5

25 6000 0.175s 5.7 5.5

50 6000 0.32s 3.1 2.9

4.4 Object Candidate Extraction

At this point in the point cloud processing phase, a more efficient repre-

sentation of our data through both Downsampling and Noise Reduction has

been obtained. The next step is to obtain the object candidates for further

processing. One of the assumptions of this project is that all objects will be

located on planner surfaces (tables, shelves, work spaces, etc. . . ). Initially all

planar surfaces in the captured environment information must be identified.

This is done using the RANSAC[29] algorithm. The way that the data is cap-

tured the following assumptions can be made which allow the determination

of which plane is the “operating surface”:

1. The normal for the “operating surface” will be orthogonal to floor on

which the robot is standing. That is it should be to aligned to within

±5◦ of the z − axis of the scene.

2. There may be multiple planes which satisfy the initial assumption in
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the captured scene. To account for this the assumption is also made

that the “operating surface” will also be the largest plane in the envi-

ronment. This assumption can be safely made due to the competitions

setup. Before this system is used, the robot will attempt to best align

with the surface it wants to search for objects. This allows for the safe

assumption that the largest plane will be the “operating surface” and

all others most likely belong to objects in the scene.

Once the “operating surface” has been determined object candidates can be

identified. From the assumptions before it can be assumed that all objects

exist above the “operating surface”. Next the system will remove anything

from the scene that is not both above this surface and within the boundaries

of this surface. Once all of the extraneous information is removed the oper-

ating surface is also removed. What is left are points which could possibly

represent the desired objects.

Now the system will use the PCL Euclidean Cluster Extraction filter[30] to

determine if any of the remaining points in the scene represent objects. To

do this there are three parameters which can be set:

1. Cluster Tolerance - this value determines how far away from any

other point(s) a point within a cluster can be and still remain a part

of the cluster being created.

2. Min Cluster Size - the minimum number of points that must be
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present for that region to qualify as an object candidate.

3. Max Cluster Size - the maximum number of points that can be in

a cluster. Any more than this number and the system probably found

an environment element which is not an object but rather a larger

environment fixture.

4.5 Smoothing & Upscaling

This is the final point cloud processing phase before transformation from a

point cloud data type to a mesh data type. This process is designed to take

an object candidate and to smooth the points in the point cloud that are

representing the candidate object. This process is based around the PCL

tutorial on smoothing and normal estimation [31]. This allows for the cor-

rection of minor defects that occurred due to the registration in the data

capture section 4.1. This is accomplished using a PCL internal implementa-

tion of the Moving Least Squares algorithm[32]. The implementation of this

algorithm within PCL means that the previously downsampeled point cloud

will be upscaled, so that the points that are passed to the mesh creation

better represent the overall shape of the object (based on the information

which is present from the data capture process).
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4.6 Mesh Creation

Now that the system has a smoothed and upscaled version of the object

candidates it is able to covert them into a mesh data type. Initially the

Poisson method for creating a mesh was investigated. This method presented

various problems due to the amount of noise that can still be present in the

data. This resulted in “bubbles” being present in the constructed mesh.

The Poisson method also enforces the concept of a closed mesh so it would

always attempt to close any open areas that can be found between edges.

This tended to lead to results which did not resemble the initial object at

all.

Figure 4.1: Initial point cloud to
be converted.

Figure 4.2: Common output from
the Poisson mesh construction
method.

As can be seen from Figure 4.1 and 4.2 this representation of the initial point

cloud is not visually anything close to what is desired (a smooth plane(s)).
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The project turned to Grid Projection methods for the point cloud to mesh

conversion.

This is done using the PCL GridProjection system which is an implemen-

tation of “Polygonizing Extremal Surfaces with Manifold Guarantees” [33].

This method provides us with the following parameters:

1. Resolution - This sets the size of the grid cell telling the system how

big the cell should be in meters.

2. Padding Size - The amount of space around the current cell that is

being examined that should be included. This is so that if there are no

data points inside the cell it will still be processed. This will possibly

close holes in the mesh which are smaller than the passed in padding

size.

3. Nearest Neighbor Number - The number of nearest neighbors that the

system is looking for in relation to the current point.

4. Max Binary Search Level - The max depth the search function can

iterate to.
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Figure 4.3: Best meshing obtained from Kinect input.
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Chapter 5

Occlusion Repair

This chapter focuses on the methods used for performing the occlusion repair.

Each section presents and discusses the following processing steps:

1. Occlusion Identification

2. Occlusion Repair

3. Smoothing

5.1 Occlusion Identification

Before the information from the previous steps can be used, occlusions must

be detected so they can be repaired. An occlusion often the leaves target

candidate object with a “hole” or area of missing information. The first step

to repairing the occlusion is to identify the area with the missing information.
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5.1.1 PCL 3D Edge Detection

During the 2012 Google Summer of Code, Changhyun Choi investigated

identifying 3D edges from RGB-D data sets. This work allows for the user to

detect the following types of edges: boundary, occluding, occluded, and high

curvature edges. The two that are of the most interest to this project are

the occluding and occluded edges. The occluding edges are edges that are

causing information to be missing elsewhere in the image due to the position

of the recording device. The occluded edges are the ones that surround the

“shadow” that the occluding object is casting onto other surfaces.

Figure 5.1: Occluding Edges in Green and Occluded Edges in Red [1].

As can be seen from Figure 5.1 in order for this method to work it cannot be

feed the candidate object that is being worked with at but rather it requires
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the full scene. The other problem is that there is no way to tell if these

occlusions extend to another object. If the boundary of an object is found,

and the full scene is observed it could be determined that it is “occluded”.

If the object is examined without the environment, the same edge cause by

the occlusion would be seen as a boundary edge rather than an edge with

information missing due to occlusion.

It is very difficult to determine if an edge is actually a part of the object

candidate or if the object candidate information is missing due to occlusion.

No libraries where available and the implementation of such a method was

outside of the scope of the project due to time restrictions.

5.1.2 VTK Hole Detection

The VTK library provides a FeatureEdge [34] function which takes in a VTK

mesh and searches it for holes in the mesh structure. It starts by looking for

an edge of a cell in a the mesh. Then by following the boundary in order to

“close” the edges it has been following to obtain a loop it can determine as

a “hole” that needs to be filled.

This functionality was available in a library, which allowed for the integration

into the system. It also functioned well when being used with test set meshes

such as the “Stanford bunny”[35] when information is removed from the test

set meshes. This function however was only able to determine when there

where holes that were not against the “outside” of an object. That means it
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was only able to identify holes that where surrounded by other information

making it impossible to detect occlusions along the edge of the object as well.

The project encountered a problem when trying to use this method with the

project produced meshes. This came from the fact that the meshes where not

smooth in nature. They contained a great deal of variance as well as jagged

edges protruding from almost all parts of the object. This caused either to

many “holes” to be detected or none at all as it could never find a “complete”

area of the mesh to investigate. It also suffered from the previously mentioned

drawback that this filter (nor any other in the VTK library) did not have

the ability to determine if an edge was the proper “object edge” or if it was

missing information due to occlusion.

5.1.3 Further Discussion

This portion of the project proved to be the most difficult and the sticking

point for the project. Given the state of the information the system was

being provided with and the requirements of the system there was no reliable

way to detect occlusions. This is due to the fact that it requires almost all

scene information to determine if an object has an edge which is caused

by the natural contours of the object. The alternative is that the edge of

the object being examined is caused due to the shadow of another object

which is occluding our view of the object in question. As will be discussed

in Section 6.4 there are some interesting approaches that if the investigation
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of the possibilities without time restraints to determine if this problem can

be solved with current generation RGB-D sensors.

5.2 Occlusion Repair

This section covers methods, that are available in order to close the hole in

the mesh that where obtained in the previous processing step. Due to the

fact that the project was unable to identify a point cloud based method the

remaining methodologies will focus around working with mesh data struc-

tures.

5.2.1 Mesh “Shrink Wrapping”

This method of closing the hole doesn’t deal directly with the hole that was

found but rather the whole object. This method assumes that the object

candidate was reduced to at least the boundaries of the object. This method

then produces a sphere that is larger than the object that should be wrapped.

Then a VTK filter which takes the sphere and “shrink wraps” it to create a

surface around the initial points that make up the objects.

The problem with this method is that it does not preserve fine details of the

object candidate. It also does not repair just the hole but it creates a water

tight mesh around the cloud which can obscure the initial shape depending

on the state of the object candidate passed in.
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Figure 5.2: Sphere being wrapped around example points [2].

Figure 5.3: Typical Shrink Wrapping Results.
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5.2.2 VTK HoleFillerFilter

The VTK library provides a Hole Filling filter [36]. This filter takes the out-

put from the hole detecting filter and will apply the AFM method discussed

in Section 2.2. As discussed in Section 5.1.2 the results from the previous

processing steps do not provide a solid mesh with regular or smooth surfaces.

This method was found to work well and repair holes that where found in

meshes that where in the test data set. When applied to the meshes that

this project produced the filter was unable to function.

A specific reasoning for this was not able to be directly determined. This

was due to not being able to fully investigate the VTK filter. The working

assumption was that, much like the Hole Detection Filter (Section 5.1.2),

this filter requires a regular mesh. As such it is not able to work with the

hole that it should obtain from the Occlusion Detection step. Without this

information it is unable to close a hole which cannot be found.

There where a few occasions where a hole was detected and patched but

when this happened the irregularity of the surround information cause for

the “repaired” hole to be filled with “garbage” information which only made

the mesh look more irregular. See Figure 5.4 for an example.
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Figure 5.4: Mesh with incorrectly repaired occlusions.
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5.3 Surface Smoothing

The final processes step when it comes to the occlusion repair is surface

smoothing. It was designed to take the infilled patch and to smooth it and

to better match the surface around the outside of the newly patched portion

of the object candidate. This method, much like in the two previous sections,

works well when applied to test data sets. It again failed when working with

the meshes that where output by the occlusion repair system.
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Chapter 6

Results, Conclusions & Future

Work

In the previous chapter the methods and output obtained from each step in

the process were presented. This chapter discusses the output in more detail

as well as discussing results that could have been obtained.

6.1 Overall Results

The goal of this project was to investigate an occlusion repair system for

incoming RGB-D information. As the project progressed and as can be seen

in Chapter 2, the methods to perform this task are not yet present with the

current generation of RGB-D sensors. This project based its approach on

the mesh based methods presented in Sections 5.1.2, 5.2.1.
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The end result of this project was that using currently available sensors

and libraries, reliable results where not able to be obtained from the tested

methods.

6.1.1 Object Candidate Creation

Object candidate creation create the most difficulties. These methods did

function but that they did not provide precise results. the first problem began

with the sensors being used. The Microsoft Kinect, comes in its accuracy

that does not allow for smooth surfaces in the first place. While all of the

point cloud processing methods work well with this data. Faults can be seen

once the point cloud information is converted to the mesh data structure

that is where the faults with the point clouds can be seen.

6.1.1.1 RoboCup Constraints

One of the major contributors to the issues that the project faced. The use

case for this project called for the software being usable for RoboCup com-

petitions. This means that it would need to be processed fast enough that

it would allow for the system to be able to use the results, while still being

able to accomplish the rest of the task specification. As presented in Section

3.2 this means that the system would need to run between 3 − 5 seconds.

This allows the system enough time to perform the rest of its tasks and to

still remain competitive time wise.
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The problem this presented is that the normal PCL filters can take a few

seconds to run on a full sized point cloud ( 370, 000 points for the Kinect).

To compensate for this the point cloud is down-sampled in order to allow for

faster processing later on. This lowers the number of points and generalizes

their positions for later processing. As mentioned in Chapter 2 there are

promising methods for working with point clouds but they require both very

dense and accurate point clouds.

6.1.2 Occlusion Detection

The primary problem with detecting occlusions comes in that they are rarely

surrounded on all sides by information. In the context of the project they are

often edges or chunks of the object which become missing. This caused an

unsurmountable amount of trouble for this project. While “holes” or patches

of missing information in the object candidates are able to be identified. No

reliable methods for determining if an edge was a true edge of the object or

an occlusion where found. The identification of missing information inside

the object was able to be obtained only if the holes were large enough for

them to show up when the mesh was created.

6.1.2.1 NaN Clustering & Repair

Though a discussion with members working directly on the PCL library a

possible solution to this problem was conceived but to late in the project to
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be implemented and tested. The following is an outline of a new possible

solution to the occlusion identification problem.

The PCL point cloud is a data structure that contains both position infor-

mation < x, y, z > and color < r, g, b > information about the point which is

being stored at the < x, y, z > coordinate. When there is nothing (missing

information) but an RGB value, the PCL library refers to “Not A Number

(NaN)” values. These values are still part of the point cloud but are values

where there is nothing but RGB information.

Figure 6.1: Typical object candidate data capture with desired areas for NaN
Clustering highlighted in Red.

This provides the possibility to perform clustering based on NaN values.

Once the clusters are found, they could use region growing to slowly close
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the boundaries of the hole. This would allow for the repair of holes that very

commonly show up in point cloud data. An example image of the type of

holes and the regions that could be closed is provided in Figure 6.1.

The final step would be a smoothing process which would take the newly

repaired surface and attempt to smooth the surface of the object to provide

more reliable results for object identification. This would also be a desired

filter or processing step in the PCL library as was discovered in the later

portion this research project.

In order to ensure that a process such as this would be reliable the sensor

would require similar sized RGB and depth sensors. This would ensure that

each point in the depth image is mapped to only one point in the RGB image

making this processing more reliable.

6.2 Occlusion Repair

Due to the obtained results when converting from point clouds to a mesh,

data structure this section was unable to be throughly tested. The previous

step (occlusion detection) is crucial so that the system knows what it needs

to repair. A new method for performing this task was presented in Sec-

tion 6.1.2.1, which could allow for the robust detection of occluded portions

present in the objects. From that point the porting of either the high fidelity

42



methods or possibly using region growing segmentation to fill the holes.
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6.3 Conclusions

The initial starting point of the project, investigated the use of a Growing

Neural Gas Library[37]. The state of the library and how integrated it was

to other software, made it not feasible for use with this project. The amount

of time this investigation took limited the amount of time that remained to

complete the project.

The project was unable to focus on the implementation of new methods but

rather the integration of existing methods due to time constraints. As noted

in Section 5.1 there are no currently available methods for working with point

clouds. This limited the scope of the work to investigating using mesh based

methodologies.

Most of the research performed in this area was funded by companies like

Siemens Co or the Chinese Government. When contacting the authors for

possible implementation details or available binaries, the project was in-

formed that they where held as protected material and could not be shared.

As such this limited the project to using the freely available libraries such as

the VTK library [38].

As discussed in Section 6.2 there is no reliable way to repair the occlusions

that were found during earlier processing steps. The objects that were re-

turned bore little resemblance to the input objects. They also tended to ob-
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scure any fine details that classifiers normally use in order to identify objects.

The created test system was able to function from the beginning to the end

of the pipeline taken in raw data from a Microsoft Kinect and processing it

to remove any occlusions that where present. It was not able to do this in a

reliable manner which output objects that more closely resembled the object

than the initial point cloud. It did however introduce a variety of methods

that could be used to solve this problem and a very intriguing future topics

that follow from this research.
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6.4 Future Work

This section presents two possible future directions for this work. One ex-

amines taking existing methods for more complex and reliable sensors and

porting it the more widely available RGB-D sensors. The other direction,

looks at creating a new processing filter within PCL that leverages the merg-

ing of depth and color information to identify and repair occluded holes in

data.

6.4.1 Porting High Fidelity Methods

This project, while showing that currently existing libraries are unable to

perform the desired task showed a very interesting and in demand problem:

The smoothing and repair of low fidelity point cloud data sets.

As discussed in Section 2.1 there are methods, that can perform the task

of occlusion repair but they have some caveats. Normally they operate on

full point clouds and those point clouds are made using sensors such as the

Velodyne High Definition LiDAR [39], creating very dense point clouds (1.3

million points vs 370 thousand for the Kinect). They also have a much higher

accuracy rate of 1.3cm under perfect conditions [40] when used with a range

up to 25m). This increased amount of data and accuracy allows for better

mapping of the environment and more data to work with. These conditions

are required for the methods in the previous sections to work properly.
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This leaves the question of how do you port these model to low accuracy and

low density point clouds such as those obtained from the current generation

of RGB-D sensors.

6.4.1.1 NaN Clustering & Region Growing

In Section 6.1.2.1 the concept for a new PCL filter is presented. This could be

combined with furthering the PCL 3D Edge Detection functions to estimate

possibly occluded edges. Combining these two methods it may be possible

to provide a solution to the occlusion problem using the current generation

of RGB-D sensors.
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