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Abstract

This thesis investigates the use of measured radio signal strength indicator
(RSSI) in wireless sensor networks (WSNs) to provide an estimated distance.
Estimated distances are arrived at using experimental calibration of a free
space model to find the best free space model exponent and transmission
power level over distances up to 7.78 m. We use these distances to esti-
mate the position of a moving wireless sensor node. A new application called
MobiPos for indoor distance determination using TelosB module has been
developed and tested. In our MobiPos application, the moving node collects
RSSI values from TestFtsp messages sent by up to eight stationary nodes.
The moving node, in turn, collects valid RSSI observations from the same
set, and formulates a special MULTI_RSSI message that is sent to a station-
ary gateway node. The gateway node collects and time stamps received
MULTI_RSSI messages for post processing using a least squares position esti-
mation process.

We experimentally verified our research on a 23.92 m long mobile wireless

sensor network testbed with up to six stationary nodes and one moving node.
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With an average velocity of 0.19 m/s, and 131 received MULTI_RSSI messages
over a test period of 127 seconds , we found that 64 observation sets (49%)
converged with reasonable position estimates compared to approximate true
positions. The average position difference for these 64 estimated positions

compared to their approximate true positions was 5.03 m.
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Chapter 1

Introduction

Determining the position of moving objects is of great interest in many fields,
including navigation, air traffic control, military operation and tracking of
purchased goods. Many companies have been working on indoor positioning
for years. Google, for example, released its indoor positioning application
“My Location” [40] for Google Maps in November, 2011. My Location can
be only used in some selected retail stores and airports, and is only supported
by Android systems. The tracking technology maps a user’s location based
on cell towers, Global Positioning System (GPS) and publicly broadcast Wi-
Fi signals [I1]. Besides Google, Microsoft and Nokia may launch the same
service sometime in 2012.

Compared with indoor positioning systems, outdoor positioning of moving
objects can be provided by satellite systems, such as the GPS, Global Navi-

gation Satellite System (GLONASS) or European Galileo System [I7]. Since



satellite signals are not strong enough to penetrate buildings, other systems
such as cell phone triangulation [I] must be used indoor. Radio-frequency
identification (RFID) [22] are wireless devices used to track object movement,
and are typically used in an inventory control system.

In this thesis we will investigate the use of measured radio signal strength
(RSS) in wireless sensor networks, to provide an estimate of distance. These
estimated distances will be used to estimate the position of a wireless sensor

node moving in a network of three or more stationary wireless sensor nodes.

1.1 Indoor Positioning Methods

Wireless indoor positioning systems have been widely investigated in recent
years and many positioning methods have been developed [38]. There are
two typical location estimation methods; line of sight (LOS) [22], and non
line of sight (NLOS) [22]. RSS-based methods fall into the category of a
NLOS methodology. The NLOS method calculates the signal path loss due
to propagation and then translates the difference between the transmitted
signal strength and the received signal strength into a range estimate, as
shown in Fig. 1 [22].

A wireless sensor network (WSN) consists of distributed autonomous sen-
sor nodes to monitor physical or environmental conditions. Localization of
moving nodes is a main function in WSNs and this function has been used

in several sensor network operations and applications [8], 21, 28| 30]. There
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Figure 1.1: Positioning based on RSS, where LSy,LS5,LS3 stand for the
measured path loss (from|[22]).

are several positioning methods proposed, for WSNs, including those given

in the following sections.

1.1.1 Signal Strength Difference of Arrival

Signal attenuation follows certain rules in wireless transmission, based on the
difference between transmitted signal strength and received signal strength.
In Papadakis and Traganitis’s research [28], an experiment was performed in
an IEEE 802.11-based infrastructure network. Using two stationary nodes
to measure the distance difference to a moving node, a hyperbolic model of
distance difference is arrived at. The intersection of two hyperbolae gives the
position of the moving node. The simulated result indicates a position error
below 2.4m for lower measurement noise, and below 4.2m for a case of high

measurement noise.



1.1.2 Angle of Arrival

In this method [37], an angle is formed by the propagation direction of an
incident wave and some reference directions. To measure the angle, an ex-
pensive and complicated antenna is needed at the stationary nodes. Wong
et al. [37] simulated the positioning method in a 30mx30m square, where
they placed 4 access points (AP) in the corners, a mobile node sent signals
to each AP and then the actual position of the mobile is computed. Based
on the result, they concluded that the AOA-based positioning’s accuracy is

better than 2 m, which is a good positioning method.

1.1.3 Time Difference of Arrival

In this method [8], the only parameter we need to identify is the time of
arrival of two or more signals at the base station. Special signal feature
division difference transmitters are used. In order to enhance the accuracy
of this method, clock synchronization is key. This method is widely used in
both outdoor and indoor distance estimation. For example, a GPS system is
a typical outdoor position estimate method, employing very precise atomic
clocks on moving satellites. For indoor use, a location system called Cricket
[29] also used time difference of arrival (TDoA). Cricket uses a combination
of RF and ultrasonic energy to determine distances and estimate positions.

It provides distance ranging and positioning accuracy between 1 and 3 cm.



1.1.4 Radio Signal Strength Indicator

The radio signal strength indicator (RSSI) does not require additional hard-
ware devices [16]. Due to the multiple paths of a radio frequency (RF) signal
and NLOS , the transmission of the signal is easily affected by the environ-
ment. Minghui and Huiging [27] report a distance estimate accuracy of 3
m (with Gaussian filtering) using RSSI over a distance of 30m. The RSSI
value for wireless transmission is readily available, so RSSI has been used in
several applications [0, 20, 25].

Another example of using the RSSI method is the location engine [5]. Chip-
con released the CC2431 System on Chip solution with a built-in location
engine which uses the RSSI signal. The location engine was used to track soc-
cer players on a soccer pitch [25] but because of different types of “noise”, the
results indicated more than 20 meter distance errors in the worst case. This
was too imprecise for tracking soccer players’ movement, so the researchers
reverted to using GPS for position estimation. Chipcon has recently decided
to move the CC2431 location engine to NRND (not recommended for new

design) status.

1.1.5 Ultra Wide Band

Ultra wide band (UWB) is defined as an intentional radiator with an absolute
bandwidth greater than 500 MHz having a fractional bandwidth greater than

20% [15]. Compared with other wireless communication technologies, UWB



has many advantages including low power spectral density, high transfer rate,
large system capacity, robustness to interference and multipath, low power
consumption and low cost.

The Ubisense company uses UWB technology to build their own real-time
positioning system [19]. The UWB approach uses both TDoA and AoA,
along with special hardware to filter very short duration (<Ins) impulse

signals spread across a very wide bandwidth.

1.1.6 Time of Flight

The main idea of Time of Flight (ToF) is to measure the propagation time
(the time a radio signal travel from a transmitter to a receiver), and then
multiply by the speed of light ¢ to get the distance d, so the main problem is
to measure the propagation time as accurate as possible. In the Will et al.
paper [36], they used MSB-A2 nodes with a CC1101 transceiver to measure
the round trip time of flight (RTT), which is the back and forth ToF from
the transmitter to the receiver. A sync word is used to start and stop a timer
on the CC1101. When the time required for responding to a TOF packet is
subtracted, they obtained RTT. Will et al. also model the jitter in the signal
to estimate the actual RTT more accurately. As a result, this method gives

at worst 9m error within 30m distance, with an average of 3m error over 30m.

Table 1 summarizes several indoor position estimation methods.



Table 1.1: Accuracy of different methods for indoor position or distance
estimation.

‘ Method | Range of Use | Accuracy | Reference(s) |
20m below 2.4m for the lower noise
S5DoA (simulated) below 4.2m for the high noise 22
AoA S x SUm square better than 2m [37]
(simulated)

RSSI 30m distance error of 10% of range [27]
Cricket(TDoA) indoor area lem to 3em [8, 29]
My Location indoor area several meters [24]

2
Ubisense (UWB) 4.0 Omfor tens of centimeters [19]
4 stationary nodes
ToF 30m at worst 9m, 3m average [36]




Chapter 2

Mathematical Model for

Position Estimation

The least squares method [12] 26] 33, 35] finds the best fit that minimizes the
sum of squared residuals, a residual being the difference between an observed
value and the fitted value provided by a mathematical model.

A moving node receives radio signals from k stationary nodes, based on k
stationary nodes at positions (z1, y1, 21), (T2, Y2, 22), - (T, Yk, 2k). The
distances from a moving node to the stationary nodes are denoted di, ds,
..., di. The least squares process determines an estimate X = (24, Ja, 24) Of
the moving node a’s position, along with a (3, 3) covariance matrix Cg that
estimates the accuracy of the estimated position x.

The least squares method starts with a mathematical model F(x,£) = 0,

where x is the vector of patameters, £ is the vectors of observations, and



F(x,¢) = 0 is a nonlinear function relating x and €. For distance observa-

tions.

F(x,8) = /(2a — )2+ Wa —4:)> + (20 — 2)2 —d; =0 fori=1,2,... k
(2.0.1)

where d; is the observed distance, x = (24, Y4, 2z4) is the position of the moving

node, and p; = (24, y;, 2;) is the position of the stationary node 1.

For least squares estimation, we compute the partial derivatives of F(x,¥£),

with respect to the unknown parameters x, and evaluate them at the param-

eter estimates, i.e.:

OF(x,£)
= ! —| oF 8F  OF
An = ox x00 [ 0z’ a' Vza ] x0.0 (202)
where,
F 1 2 Aa 4 Aa — &y
0 =-— Ba—20) — Tl (90.3)
Org Ix0e 23/(G0 =22+ (o — 4> + Ga— )2 di
OF 1 2(Go — Us D — Vi
- Go—v) _ BV (904
aya x0,8 2 \/(a:a - xz)z + (ya - yi)2 + (Za 21)2 dz
r 1 2 A(l T~ Aa — %
0 =-— Gomm) 5 (205)
0z, | x08 2 \/(xa )2+ (G — 4i)? + (20 — 21)? d;




With X = (Z4, a, 24), We have the estimated distance d;

The partial derivative of F'(x,£) with respect to £ is

_ OF (x,£)

B
ol

=1
x,£

(2.0.6)

(2.0.7)

For the Euclidean distance model of eq. (2.0.6), the B matrix acts as the

identity matrix in the least squares solution.

The observation weight matrix P and closure vector w are defined as follows:

d, d,
R R d. d
Wi =f—f=d—e=| | -]
d,, d,,
and
(102 0 0 0
0 1/062 0 0
Pre=1] 0 0 1/03 0
0 0 0 1/0?

10

(2.0.8)

(2.0.9)



where o7 is the variance of the observation /;.
The calculated correction vector Ax is computed iteratively using least squares

estimation as follows:
Ax = (ATPA) 'ATPw (2.0.10)

We compute the least squares solution as follows:

% =%+ Ax (2.0.11)

When |Ax| < ¢, the iteration stops, and the estimated position of the moving
node is %/.
The least squares estimation process also provides a covariance matrix Cx of

the estimated parameters. Cy is computed as follows [26]:

Ciy =62(ATPA)! (2.0.12)

where 67 is the estimated reference variance of the observations £ computed

as
., tTP#
Og =
df

for df = degree of freedom, and t is the estimated vector of residuals defined

(2.0.13)

as

r=AAx+w (2.0.14)

11



In our experiment, we have four estimated distances, i.e.:

F(x,0) = /(24

Az =

Ta—x1 Ya—Y1 Za—21
di1 dp d1
Ta—x2  Ya—Y2 Za—22
do do do
La—X3 ila*?JS Za—Z3
ds ds ds
Ta—x4 Ya—Y4 Za—24
dy dy dy

— )2+ (Yo — )2+ (20 — 2)2—d; =0 fori=1,2,3and4

(2.0.15)

(2.0.16)

The closure vector w and weight marix P are computed using equations (4.8)

and (4.9), as follows:

W471:@—£:

0

1/03

0
0

12

0
0
1/o3

0

0

1/o}

(2.0.17)

(2.0.18)



Algorithm 1 summarizes the least squares position estimation process for a
moving node with coordinates x, and distances from x to stationary nodes

d17d27'“ adk'

Algorithm 1: Compute the least squares position estimation X of a
moving node.

Input:
Distances between the moving node to the stationary nodes
di, i =1,2,--- , k, along with their variances o?;

The initinal position estimate of the moving node %XY;

Size of correction vector limit € to stop iteration;

Positions of the stationary nodes, P;, i=1,2,---  k;
Output:

X at iteration j: X/;

Covariance matrix of the estimated parameters Cj;

The estimated vector of residuals 1;

The estimated reference variance 62 of the observations £;

1: Use equation to compute P;

2: repeat

3:  Compute CZZ 1 =1,2,---,k using equation ;

4:  Compute w using equation ([2.0.8]);

5:  Compute A using equation (2.0.2)), which in turn, uses equations
(2.0.3)), (2.0.4) and (2.0.5);

6: J<+<J+1;

7. Compute Ax using equation (2.0.10)), and %X’ using equation (2.0.11));

8: until |Ax| <¢;

9: Compute C; and 62 using equations and ;

13



Chapter 3

Distance from Signal Strength

3.1 Distance Measurement Model

3.1.1 Free Space Propagation Model

In our experiment, we use the free space propagation model as follows to
determine the distance from the RSSI values [9] [18]. A free-space model is
applicable to the following occasions:

1) the transmission distance is much larger than the antenna size and the
carrier wavelength A;

2) there are no obstacles between the transmitters and the receivers. Suppose
the transmission power of wireless signal is P;. The power of received signals

of nodes located of a distance of d can be determined by the following formula:
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p-Xa- L gp (3.1.1)
" 4r T pdn T o

where P, is the received power in watts, A is the carrier wave length in
meters, GG, is the gain of the receiver antenna, G; is the gain of transmitter
antenna, P; is the transmitter power in watts, d is the distance between
transmitter and receiver in meters and n is the path loss exponent (based

on the propagation environment), whose value is in the range of two to four.

The distance can now be determined as

| N2G,.G P
=\ —— 1.2
4 1672 P, (3-1.2)

The value of path loss exponent n is affected by the attenuation, reflection,
multipath and other interference occurring during a radio signal transmission
in the air. If the interference is smaller, then the value of n is smaller.

RSSI values are reported in dBm, which cannot be used in the equation
above, so we convert to watts with equation (3.1.3), where RSST stands for
the measured RSSI value (in dBm) at the node. Equation is from
[18].

RSSI _g

P.=10"10" (3.1.3)

In [41], we measured distance errors of -4m over 10m, -2m over 6m, and +1m
over bm. These observations were obtained using a free space propagation

model, with n = 2.7 and 3.0.
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3.1.2 Log-Normal Shadowing Model

Distance errors in the free space propagation model are sometimes too large
for accurate position estimation. We plan to investigate the log-normal shad-
owing model (LNSM) [I8]. This model suits both indoor and outdoor situa-

tions and is defined as follows:
S d
PL(d) = PL(dy) 4+ 10nlog,, (d_> + X, (3.1.4)
0

where PL is the path loss in dB, d; is the near-earth reference distance
in m, n is a path loss exponent depending on the surroundings, and X, is
zero-mean Gaussian random variable in dB. The distance estimated can be
computed as:

PL(d)—PL(dg)—Xo

d=10"" 10 “dy (3.1.5)

Besides the LNSM, the LNSM with dynamic variance (LNSM-DV) model
[39] holds promise as an improved RSSI-based distance measurement ap-
proach. LNSM-DV has a better self-adaptability to different experimental

environments, and could give more accurate distances estimates.

3.2 Experimental Design

The experiment was done in ITB214 (see Figure B.3). The development
computer runs CentOS version 6.0 and has TinyOS [4] development stack

installed. The development computer is also used as the base station, where

16



it can display RSSI values received from the stationary node. We used two
Crossbow’s TelosB sensor nodes (CC2420) as the sending node and the sta-
tionary node. The sending node communicates with the stationary node
through the Wireless Sensor Network while the stationary node connects

with the base station directly through USB connector.

3.2.1 CC2420

CC2420 [10] has a much higher rate than older radios which operates in 2.4
GHz ISM band with an effective data rate of 256 kbps. In the 2.4 GHz
band, it has 16 channels in total from No. 11 to No. 26. Every channel
occupying a 3 MHz bandwidth with a center frequency separation of 5 MHz
for adjacent channels. CC2420 uses an encoding scheme that encodes 32
chips for a symbol of 4 bits.

In CC2420, RSSI is the estimate of the signal power and is calculated over
8 symbol periods and stored in the RSST_V AL register. Chipcon specifies

the following formula to compute the received signal power (P) in dBm:

P = RSSI.VAL + RSSI.OFFSET (3.2.1)

where RSSI_OFFSET is about -45 dBm. The RSSI value can be used to

determine the radio frequency (RF) signal power with reasonable accuracy.
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3.2.2 RssiDemo

During the distance from RSSI experiment, we used the application RssiDemo
[2] to collect data. Two TelosB (see Figure [3.7b) nodes with a CC2420
transceiver were used for this application; one is used as a gateway node and
the other one is used as a sending node. The gateway node is connected to
the development (base station) computer via a USB connector for both the
application installation process and the entire experiment execution time.
The sending node is a wireless sensor node. The sending node is connected
to the development computer via a USB connector only during its applica-
tion installation process. After installing the application, the sending node
communicates with the gateway node through the wireless sensor network
by sending TOS messages of 20 bytes every 100 ms. Figure [3.1| shows the
architecture of the RssiDemo application and Figure [3.2] shows the wiring of
the RssiDemo application. In Figure|3.2] a single box is a module, a double
box is a configuration and a dashed border line denotes that a component is
generic [32].

In our experiment, we set the sending mote’s power to 0dBm, and send a
packet every 100 ms. The stationary node receives the packet and then shows
the RSSI value on the screen of the base station. We recorded the RSSI at 11
different locations from 1 meter to 20 meters as illustrated in Figure|3.3] The
sending node was placed on the floor while the stationary node was about
80 centimeters high above the floor. We used the pythagorean theorem to

measure the approximate straight path between the sending node and the

18



Base Station

RssiDemo.java

7 USB serial

\\\ Gateway Node

RssiBaseC.nc

Sending Node

SendingMoteC.nc

Figure 3.1: Experimental design architecture of the RssiDemo application.

stationary node. In each location, we recorded 50 RSSI values in 5 seconds,
and converted these RSSI values to distance using equation ((3.1.2)).

The parameters we used in the experiment are shown in Figure

3.3 Results

We conducted initial distance from RSSI experiments with CC2420 radio
nodes to collect over 50 RSSI measurements for model parameter estima-
tion. Then we choose 50 consecutive measurements from relatively stable
measurements.

Our experimental results are shown in Tables and [3.2] In the two tables,
d is the actual measured distance, T ggs; is the average (N=>50) RSSI received
from the sending node, Sgsss is the standard deviation RSSI values, d is the

estimate of distance and S; is the standard deviation of estimated distance.
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SendingMoteC

Boot / Timer<TMilliz\AMSend

lm === === === == ===
Il TimerMilliC 'y 3 AMSenderC
MainC ActiveM C
an ': (SendTimer) o (RssiMsgSender) |: chiveXYessage
______ 1 b - e =
(a)
RssiBaseC

CC2420Packet tercept

CC2420ActiveMessageC BaseStationC

(b)
Figure 3.2: Wiring of the RssiDemo application (from [2]).
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Figure 3.3: Sketch of Sending Mote Locations in ITB214.
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Model Parameters

Category Parameter value
Number 11
Observation Points Maximum Distance d 20m
Placement indoor
Transmit Power 0 dBm (maximum)
Frequency 2.048 GHz
TelosB Mote (CC2420) )
Antenna Gain 1
Sending speed 250ms
A 1
Path Loss Mode! = EG' 4rd" Oik:
Exponent n 2.7 and 3.0

Figure 3.4: Parameters of the experiment.

We can see from the tables that the standard deviation of estimated distance
and estimated RSSI values have a distinct change at the distance of bm,
6m and 20m. This means in the ITB214 lab, the signal strength is affected
strongly by the environment.

Figure shows the two groups of difference between d (estimated distance)
and d (actual measured distance) when we chose different propagation expo-
nents. It is clear that from 1 to 5 meters when n = 3.0 the estimated distance
is closer to the real distance than when n = 2.7, but from 6 to 10 meters
there is a quite opposite situation, and n = 2.7 is a more suitable path loss
exponent in this area.

Figure shows the estimated distance when n = 3.0, and the blue line
represents the actual measured distances. The points which are far from the

line are the less accurate ones. We can tell from Figure [3.5] that, when the
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Table 3.1: Distance concerned for the RSSI measurement using free space

model.

d(m) Z)AERSS[(dBm) Z%RSSI(W) SRSSI d(n = 27) d(n = 30) Sd‘(HZB)
1 -39.56 1.11E-7 0.50 1.08 1.07 0.041
2 -52.92 5.11E-9 0.40 3.37 2.98 0.084
3 -55.36 2.91E-9 0.56 | 4.15 3.60 0.16
4 -07.76 1.67E-9 0.48 5.09 4.32 0.16
5 -62.12 6.14E-10 | 0.85 7.39 6.05 0.39
6 -54.22 3.78E-9 1.11 3.77 3.30 0.29
7 -53.90 4.07E-9 0.61 | 3.66 3.22 0.15
8 -58.04 1.57E-9 0.20 5.21 4.41 0.069
9 -60.18 9.59E-10 | 0.39 6.25 5.20 0.16
10 -59.70 1.07E-9 0.46 6.00 5.02 0.18
20 -83.66 4.31E-12 | 1.29 46.55 31.69 3.24

Table 3.2: Distance concerned for the RSSI measurement using Log-normal
shadow model.

d(m) [iRSS[(dBm) Zi'RSS](W> SRSSI d(n = 27) d(n = 30) SCZ(H:3)
1 -39.56 1.11E-7 0.50 | 0.99 0.99 0.090
2 -52.92 5.11E-9 0.40 | 3.21 2.812 0.20
3 -55.36 2.91E-9 0.56 | 3.84 3.30 0.28
4 -57.76 1.67E-9 0.48 | 4.73 4.01 0.35
3 -62.12 6.14E-10 | 0.85 | 6.97 5.69 0.55
6 -04.22 3.78E-9 1.11 3.50 3.06 0.38
7 -53.90 4.07E-9 0.61 3.42 3.03 0.38
8 -58.04 1.57E-9 0.20 | 4.85 4.24 0.34
9 -60.18 9.60E-10 | 0.39 | 5.86 4.94 0.43
10 -59.70 1.072E-9 | 0.46 5.66 4.68 0.44
20 -83.66 4.31E-12 | 1.29 44.64 30.02 3.79
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actual distance d (m)

En=3.0 En=2.7

d: actual measured distance
d: estimated distance using Free Space Model

Figure 3.5: Difference between d and d when n = 3.0 and n = 2.7.
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distance is over 5 meters, the accuracy decreases significantly. Based on this
phenomenon we can assume that the model we used is probably only suitable

in the range less than 5 meters.

12

[
o

estimated distance d(m)
[=)]

0 2 4 6 8 10 12

actual measured distance d (m)

—— actual measured distance

Figure 3.6: Estimated distance vs. actual measured distance.

3.4 Power Level Experiment

The transmission power of CC2420 is programmable. Table [3.3| shows the
connection between different programmable settings and their corresponding
output power. The default PA_LEVEL is 31, which is approximately 0

dBm. The experimental results in the previous section were all carried out
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with this default power level.

Table 3.3: Programable CC2420 output power settings and typical current
consumption at 2.45GHz (from [10]).

PA_LEVEL | Output Power [dBm] | Current Consumption [mA]
31 0 17.4
27 -1 16.5
23 -3 15.2
19 -5 13.9
15 -7 12.5
11 -10 11.2
7 -15 9.9
3 -25 8.5

3.4.1 Short Distance Testing

This section used the RssiDemo application to determine how different out-
put power levels affect the received RSSI value. We also compared the per-
formance of the TelosB and MicaZ nodes. Figure |3.7a] shows the locations
of the sending node and gateway node for this power level experiment; the
distance between the sending and gateway nodes is 0.79m. For this power
level experiment, we used equation for the free space (FS) model,
and for the log normal shadowing model (LNSM). Once average RSSI
values are determined, power levels in dBm are computed using equation
(3.2.1]).

In Tables and we calculated the standard deviation (in parentheses)
of 50 observed RSSI values, as well as the difference between real distance

and estimated distances. Table[3.4]shows that the MicaZ node has very large
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gateway node

sending node

(a) Location of two nodes.

TelosB

antenna

i O

(b) TelosB node and MicaZ node.

Figure 3.7: Power level experiment setup with two types of CC2420 sensor

nodes.
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Table 3.4: Distances and distance differences from the sending node (MicaZ)
to the gateway node (TelosB) using the RssiDemo application. Here, FS =
free space model, LNSM = log normal shadowing model, n is the propagation
exponent and distances are in m. The real distance is 0.79m, and number of
observations N = 50.

Node distance (standard deviation) | distance difference
PA_LEVEL 3 31 3 31
average
RSST value -75.68 (0.76) | -58.40 (0.81)
LNSM (n = 3.0) | 15.88 (15.09) | 4.27 (3.48) | 15.09 | 348
LNSM (n = 2.7) | 21.38 (20.59) | 4.7 (4.18) |20.59 |  4.18
FS (n=2.7) | 23.48 (22.60) | 5.38 (4.59) |22.60 | 4.5
FS (n = 3.0) | 17.13 (16.34) | 4.54 (3.75) | 16.34| 3.5

Table 3.5: Distances and distance differences from the sending node (TelosB)
to the gateway node (TelosB) using the RssiDemo application. Here, FS =
free space model, LNSM = log normal shadowing model, n is the propagation
exponent and distances are in m. The real distance is 0.79m, and N = 50.

Node distance (standard deviation) | distance difference
PA_LEVEL 3 31 3 31
average

RSST value -67.90 (0.30) | -37.76 (0.48)

LNSM (n = 3.0) | 8.88 (8.09) | 0.86 (0.07) | 8.09 0.07
LNSM (n = 2.7) | 11.23 (10.44) | 0.87 (0.08) | 10.44| 0.08
FS (n =2.7) | 12.07 (11.28) | 0.92 (0.14) | 11.28 0.13
FS (n=3.0) | 941 (862) | 093 (0.15) | 8.62 0.14
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errors using the highest and lowest transmission power. For the maximum
power level 31 (around 0 dBm), the error is about five times smaller com-
pared to the lowest power level 3 (around -25 dBm). This is the expected
behavior as a large RSSI value implies a shorter distance. Note that the Mi-
caZ antenna has a gain of 0 dBi (standard deviation of 0.8 dB) [7] compared
to the embedded TelosB antenna (see Figure (3.7b))) for which the gain is not
known. For the TelosB node, when we use the highest transmission power at
0 dBm, the estimated distances are reasonable, with the difference between
the real distance and the estimated distance always less than 0.15m. The low
power level distance estimate is significantly worse, i.e. giving between 61
and 130 times larger distance difference. In addition, the maximum power
level gives a more accurate distance estimate and is heavily dependent on
the hardware configuration. This experimental result shows that the free
space and log normal shadowing model give approximately the same result

for short estimated distances.

3.4.2 Longer Distance Testing

The purpose of this experiment is to test the performance of TelosB and
MicaZ nodes for longer distances i.e. > 5 m. We placed the TelosB node
and MicaZ node separately on the floor as sending nodes. A TelosB node
connected via a USB cable acts as a gateway node to read the received RSSI
value. The MicaZ mote signal was not received by the gateway node when

placed as far away as the TelosB mote, so we moved the MicaZ mote 1.52m
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closer to the gateway node. Tables [3.6]and [3.7]show the experimental results.

Table 3.6: Distances and distance differences from the sending node (MicaZ)
to the gateway node (TelosB) using the RssiDemo application. Here, FS =
free space model, LNSM = log normal shadowing model, n is the propagation
exponent and distances are in m. The real distance is 6.26 m, and N = 50.

Node distance (st. deviation, N = 50) | distance difference
PA_LEVEL 3 31 3 31
average
RSSI value ( ) -54.98 (0.14)
LNSM (n = 3.0) | 24.73 (2.20) | 3.26 (0.25) | 18.47 3
LNSM (n = 2.7) | 33.04 (3.14) | 3.71 (0.36) | 27.68 | -2.55
LNSM (n = 2.0) | 118.46 (15.18) | 5.93 (0.75) | 112.2| -0.33
(
(

-81.2 (0.61

FS (n=3.0) | 26.14 (1.23) | 3.49 (0.037) |19.88| -2.77
FS (n=27) | 37.56 (1.97) | 4.01 (0.046) | 31.3 2.25
FS (n=21) | 105.90 (7.15) | 5.96 (0.088) |99.64 | -0.3

We note that the estimated distances are less than the real distance with
maximum transmission power. Changing to a lower value exponent n would
reduce the distance difference. The extra rows with n = 2.0 and 2.1 (see
Tables and show the effect of this change. We note that the best
estimate is obtained for high power setting in all four cases. The best distance
estimate for longer distance (> 1m) is obtained for n = 2.1 for the free space

(FS) model, and n = 2.0 for the log normal shadowing model (LNSM).
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Table 3.7: Distances and distance differences from the sending node (TelosB)
to the gateway node (TelosB) using the RssiDemo application. Here, FS =
free space model, LNSM = log normal shadowing model, n is the propagation
exponent and distances are in m. The real distance is 7.78 m, and N = 50.

Node distance (st. deviation, N = 50) | distance difference
PA_LEVEL 3 31 3 31
average
RSST value -80.86 (0.57) -57.86 (1.36)
LNSM (n = 3.0) | 23.84 (1.79) 104 (054) | 16.06 | -3.74
LNSM (n = 2.7) | 34.44 (354) | 4.83 (0.70) | 26.66 | -2.95
LNSM (n = 2.0) | 119.96 (14.98) | 8.33 (1.48) | 112.18| 0.55
FS (n = 3.0) | 25.46 (L12) 437 (042) | 17.68 | -3.14
FS (n =2.7) | 36.48 (1.78) 5.16 (0.55) 987 | -2.62
FS (n = 2.1) | 102.00 (6.40) | 826 (1.11) | 9422 | 0.48
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Chapter 4

Static Testing

To test the least squares algorithm, we connected the moving node to the
base station, so that it was stationary, then used the least squares method

in Algorithm 1 to estimate the position of the stationary “moving node”.

4.1 Accurate Distance Observations

We first estimated (using Algorithm 1) the position of the moving node with
accurately measured distances. These measured distances are computed from

the positions of the stationary nodes and known position of the moving node,

using equation (4.1.1)), as follows:

dig=/(2:i — 22+ (i —Ya)? + (2 — 20)%, i =1,2,3,4 (4.1.1)

)
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4.1.1 Static Test Architecture

As shown in Figure .1, we chose the northwest floor corner in the lab as

the origin. Using a metal tape measure, we obtained the positions of the

four stationary nodes and the moving node a (which is actually stationary

in this case). The tape measure we used has an accuracy of around 1mm for

measuring the distance along a Cartesian axis.

z

1

| 2

(6.4,6.1,229) | |

(6.3, 643.4,[203)
a
A@G5.1,173.4,91)
4 3
] |
(440.4, 6, 224) (441, 643.2, 224)
0(0,0,0) y

l: Stationary node
@: Moving node
A : Beacon node

Figure 4.1: TelosB modules deployment for static testing in ITB214. Posi-
tions of nodes are shown in cm with respect to the origin.

Figure 4.2 shows the architecture of software used for static testing. As de-

scribed in more detail in Section 5.3, the beacon node is a separate node run-
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ning a program to transmit Flooding Time Synchronization Protocol (FTSP)
packets. All static testing are performed using Tinyos-2.1.1 and two sensor
nodes, the TelosB [I3] and MicaZ [I4]. Both TelosB and MicaZ use the
CC2420 radio chip as shown in Figure

Beacon Node

RadioCountTolLedsC.nc

~— _
~_~ RadioCountMsg

\\//

N
Stationary Node 1 e Stationary Node 4

SendingMoteC.nc SendingMoteC.nc
= N\
stFtspMsg

Moving Node

MultiRssiC.nc

SN
MultiRssiMsg ~ ~~—"

~—__

Gateway Node USB serial Base Station

RssiBaseC.nc \/\ RssiDemo.java

Figure 4.2: Experimental Design Architecture.

We noticed that when test program RssiDemo is initiated, the RSSI values
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changed significantly (e.g. +10), but settle down to steady values after 2
to 3 seconds. RSSI values are also very sensitive to objects moving in the
lab. For example, when I move my hand within 5 cm of the gateway node,
the RSSI values changed by e.g. -5. The 50 readings used to compute the
average RSSI values in Table and Table were obtained after the RSSI
values have settled down.

Figures and shows the deployment of the four stationary nodes, the
beacon node and the moving node a.

Table [4.1shows the measured stationary nodes’ positions, and the accurately

determined distance from the moving node a to each stationary node.

Table 4.1: Accurate input data for static testing. All units are in cm.

Node X y Z di, | estimated o
ag 223 325 | 200 | N/A N/A
1 6.4 6.1 | 229 | 2214 0.1
2 6.3 | 643.4 | 203 | 485.2 0.1
3 441 | 643.2 | 224 | 624.9 0.1
4 440.4 6 224 | 444.2 0.1

After running the data in Table through Algorithm 1 with e = 0.1 cm,
we obtained the following results: x = [50.01,173.40,91.03] cm,
# = [0.003, —0.159,0.016, —0.015] cm.

Computing 63 using equation (2.13), with df = 1, we obtain 63 = 0.007 and
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Figure 4.3: Figure (top) is the TelosB nodes deployment for static testing
in ITB214 facing West and Figure (bottom) is the TelosB nodes deployment

for static testing in ITB214 facing East.
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Figure 4.4: TelosB nodes deployment for static testing in ITB214 facing
North.
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683E —4 —917E—5 —3.96E —4
Ci =G63(ATPA) ' =| _917E—-5 350E—4 16l1E—4 |(4.1.2)
_392E—4 16lE—4 0.0015

is computed using equation 2.12. Equation indicates that the error in
the z coordinate is v/0.0015 = 0.039 cm.
We use the coefficients of the covariance matrix C; to compute the error

ellipsoid, as follows:

Comis = \V/ Niyi = 1,23 (4.1.3)

where 0,,;5 is the length of the semi-axis (u,v,w) of a rotated coordinate
framework, and \; (i =1, 2, 3) are the three eigenvalue of C;. The orientation
of the axies (u,v,w) are given by the normalized eigenvectors of C;.

Using the Java Matrix Package (JAMA) we obtain the eigenvalue for each
axis as Ay = 0.00057, Ay = 0.0016, A3 = 0.00032, so we obtain:

o, = v/0.00057 = 0.24 cm (4.1.4)
o, = v/0.0016 = 0.04 cm (4.1.5)

o, =1/0.00032 = 0.018 cm (4.1.6)
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4.1.2 Statistical Test of the Reference Variance

We use the method from [34] to test the quadratic form of the residuals with

the following equation:

~2 ~2

14 Vo,

L <op <5 (4.1.7)
XZ/,% Xu,lf%

where v is degree of freedom which is equal to 1 in our case, and x2 4 is
72

the chi-square statistical value corresponding to v degrees of freedom and

confidence level . This tests the null hypothesis 65 = 3.

For a = 0.01, 1—% = 0.995, § = 0.005, so Xi% is equal to 7.87944 and ng—g

is equal to 0.00004, with these assumptions, equation (4.1.7]) becomes:

4.72 4.72
<1< 4.1.
7.87944 — T 0.00004 (4.1.8)
which is
0.60 <1 < 118000 (4.1.9)

Equation (4.1.9) is true, so we cannot reject the null hypothesis, and we can
assume that equation (4.1.2)) is a reasonable estimate (at the 99% confidence

level) of our position error.

39



4.2 Signal Strength Distance Observations

We measured the signal strength from each stationary node to the moving
node a. The 8-bit signal strength RSSI of RssiMsg (see section 5.1) is deter-
mined by the moving node RssiBase.nc program (see section 5.4). The static
test setting is as shown in Figure 4.1. Using the free space propagation model
(see section and the log normal shadowing model (see section[3.1.2)), we
obtained the distances in Table[4.2] and Table[4.3l The observed RSSI values
are translated using equation in Table and Table , and cim are
the accurate distances from Table . The distances d;, are the average of
N = 50 observations within 10 seconds, and the standard deviation (s) are
computed for this sample of size 50.

Table shows the estimated positions x for the moving node computed
using Algorithm 1, the distances from Table and the stationary node
positions in Table Table also shows the difference ¢ — cp, where
¢ is the accurate coordinate value and cp is the coordinate value estimated
using distances computed with the free space model. Similarly, the difference
¢—cy, is also shown, where ¢y, is the coordinate value estimated using distances

computed with the log normal shadowing model.

4.2.1 Statistical Test of the Reference Variance

Based on the input data in Tables[4.2]and [4.4] using the least squares method

of chapter 2 we obtain the results shown below:
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Table 4.2: TelosB distances from nodes 1, 2, 3, 4 to node a determined using
the RSSI measurement (N = 50) and two models. Here FS = free space
model, LNSM = log normal shadowing model, RSSI is the signal strength
average, with the sample standard deviation (s) in parentheses. The first
entry of two entries in each row is for n = 2.7, while the second entry is for

n = 3.0. Distances are in m.

From di,a RSSI di,a d@a - di,a d@a di,a - d@a
node (s) FS LNSM
1 | 2.21]-50.92(1.03) | 2.84(0.24) 0.63 | 2.66(0.34) | 0.45
2.56(0.20) 0.35 | 2.44(0.27) | 0.23
2 4.85 | -44.88(0.39) | 1.70(0.055) -3.15 1.56(0.10) -3.29
1.61(0.05) | -3.24 | 1.49(0.11) | -3.36
3 16.25 | -56.02(0.68) | 4.39(0.26) | -1.86 | 4.01(0.47) | -2.24
3.78(0.20) | -2.47 |3.55(0.32) | -2.7
4 [444 [-4838(0.97) | 229(0.19) | -2.15 |212(0.22) | -2.32
2.11(0.16) -2.33 1.94(0.18) -2.5
avg. -1.63 -1.85
-1.92 -2.08
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Table 4.3: MicaZ distances from nodes 1, 2, 3, 4 to node a determined using
the RSSI measurement (N = 50) and two models. Here FS = free space
model, LNSM = log normal shadowing model, RSSI is the signal strength
average, with the sample standard deviation (s) in parentheses. The first
entry of two entries in each row is for n = 2.7, while the second entry is for
n = 3.0. Distances are in m.

From | d; .(s) RSSI dig dig —dig diq dig—dig
node (s) FS LNSM
1 2.21 | -62.58(1.37) | 7.71(0.94) 5.5 7.22(1.05) 5.01
6.29(0.69) 4.08 5.97(0.90) 3.76
2 4.85 | -65.48(1.68) | 9.92(1.51) 5.07 9.21(1.91) 4.36
7.88(1.07) 3.03 7.35(1.26) 2.5
3 6.25 | -55.16(0.71) | 4.07(0.24) -2.18 3.79(0.38) -2.455
3.54(0.19) -2.71 3.32(0.30) -2.93
4 4.44 | -63.72(2.41) | 8.66(2.45) 4.22 8.11(2.28) 3.67
6.96(1.71) 2.52 6.53(1.80) 2.09
avg. 3.15 2.65
1.73 1.36
Table 4.4: Table of estimated static position.
Coordinate | Accurate Position ¢ cr cp—C cr, cr, — C
X 50.62 273.21 | 222.59 | 260.11 | 209.49
y 173.07 280.24 | 107.17 | 291.36 | 118.29
Z 90.72 251.67 | 160.95 | 354.36 | 263.64
length 201.86 465.31 | 294.85 | 527.37 | 356.91
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With the free space propagation model, we obtained

x = [273.21,280.24,251.67] cm, T = [—259.80, —227.27, —240.38, —302.19]
cm, 67 = 18.74,
and

522318.56  58912.02 —341336.47
C,=| 58012.02 14994042 —16435.82 | cm? (4.2.1)
—341336.47 —16435.82  430012.38

We use equation (4.1.3)) to compute the error ellipsoid, and find the eigenvalue
for each axis is Ay = 815966.78, Ay = 16933.02 and A3 = 169371.56 so we

obtain:
o, = VA1 = 903.31 cm (4.2.2)
oy = VA2 =130.13 cm (4.2.3)
0, = /A3 =411.55 cm (4.2.4)

We use the same method as in equation (4.1.1) to test the quadratic form of

the residuals with equation (4.2.5)), i.e.

(4.2.5)
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where v is degree of freedom which is equal to 1 in our case. For o = 0.01,

1 -5 =0.995, ¢ = 0.005, so XZ,% is equal to 7.87944 and XE’P% is equal to

0.00004, and equation (4.2.5) becomes:

18.74 18.74
<1<
7.87944 — — 0.00004

which is

2.38 <1 <468500

(4.2.6)

(4.2.7)

Equation (4.2.7)) failed due to inaccurate estimation of o?. As long as we

obtain accurate estimates for o2, then 62 will be close to 1, so that equation

(4.2.5) will be true. The same situation happened when we used the log

normal shadowing model.

Using the log normal shadowing model, we obtain:

x = [260.11,291.36,354.36] cm, r = [—194.96, —167.84, —201.24, —207.16]

cm, 65 = 9.91 |

and

229154.96 18224.62 302115.36
Cx =] 18224.62 80640.34 88677.80 | cm
302115.36 88677.80 746412.78
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Then we use the same equation (4.1.3)) to compute the error ellipsoid: Where

the eigenvalue for each axis is A; = 58081.55, Ay = 103093.38 and A3

895033.15 so we obtain:
(4.2.8)

o1 =V A = 241.00 cm
(4.2.9)

09 = /Ay = 321.08 cm
(4.2.10)

0, = v/ A3 = 946.06 cm

We use the same method in equation (4.1.3) to test the quadratic form of

the residuals with equation (4.2.11)).
~2 ~2
Y <oi< 2 (4.2.11)
Xl/,l—g

where v is degree of freedom which is equal to 1 in our case. For a = 0.01,
= 0.995, § = 0.005, so XE’% is equal to 7.87944 and Xil_% is equal to

1-5 :
0.00004, we obtain equation (4.2.12)) as follows:
9.91 9.91
<1< (4.2.12)
0.00004

7.87944

which is
(4.2.13)

1.26 > 1 < 247750
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Cy is the covariance matrix, it represents the estimate of errors in (z, y, 2).
For the free space model, the estimated errors in (z, y, z) are (722.7, 387.2,
655.75) cm, and for the log normal shadowing model, the estimated errors in
(x, y, z) are (478.70, 283.97, 863.95) cm.

The large errors occurred because of the inaccuracy of distances determined
from RSSI values based on the propagation models we used.

In the next chapter, we investigate computing the position of a moving node.

4.3 Two Points Testing

In this test, the moving node is placed twice on a line parallel to the y-axis.
The first position is x; = (71, 173.4, 76.2) cm, and the second position is x3
= (71, 295.3, 76.2) cm. Figure shows the architecture of our two points
test.

Table 4.5: Table of single RSSI values received at x; and x5, along with their
estimated distances using the FSPM with n = 2.1.

x1 (cm) Xy (cm)
node | RSSI value | distances | node | RSSI value | distances
1 -2 203 1 -3 221
2 -10 402 2 -8 339
3 -10 402 3 -6 286
4 -12 476 4 -11 438

After processing using Algorithm 1, Table shows the estimated position
of X1, X9 and their difference with the known positions x; and xa.

The straight line connecting the two estimated points X; and X, passes
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Figure 4.5: Architectural diagram for the two points test.

Table 4.6: Table of estimated positionl and position2, unit in this table are

all in cm.
Coordinate X1 )A(l X1 — )’\(1 Xo )A(2 Xgo — f(z
X 71 | -441.25 | 512.25 71 113.11 | -42.11
y 173.4 | -56.57 | 229.97 | 295.3 | 278.73 | 16.57
zZ 76.2 | 481.28 | -405.28 | 76.2 | 103.66 | -27.66
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through the plane formed by the x-axis and y-axis. The line connecting
the actual measured points x; and X5 is parallel to the y-axis. The large

error in distance clearly results in large estimated position error.
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Chapter 5

Dynamic Testing

Chapter 4| presented the results of testing our position estimation method
in a static situation. In this chapter, we used a model train to carry the
moving node that moves around a mobile wireless sensor network testbed
track, which tests the ability of our positioning method for mobile objects.
The train can go both forward and backward, and we can control the speed
of the train velocity. Up to six stationary nodes were positioned outside the
testbed track in the corners of the lab. The detailed layout of the test track

is explained in section

5.1 Time Synchronization

To make the stationary nodes communicate with the moving node one after

the other, we synchronized the stationary nodes using a beacon node, so that
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stationary nodes can send messages to the moving node at an interval of o

seconds (e.g. 10 to 50 ms).

5.1.1 Flooding Time Synchronization Protocol

The Flooding Time Synchronization Protocol (FTSP) is one of the most
widely used time synchronization methods in wireless sensor network ap-
plications. Delays in radio message transmission in WSNs will affect the
precision of time synchronization. These delays [23] are:

(1) Send Time: the time used to assemble the packet on the transmit node.
(2) Access Time: the time the packet waits for access to the transmit chan-
nel.

(3) Transmission Time: the time for the transmit node to send the whole
packet.

(4) Propagation Time: the time for the transmitted packet to reach the re-
ceive node.

(5) Reception Time: the time for the receive node to receive the whole packet.
(6) Receive Time: the time for the receive node to process the packet.

(7) Interrupt Handling Time: the time required for the radio chip to send
a request until the microcontroller gives a response. This delay may be less
than a few microseconds at the beginning, but it can grow larger in later
processing.

(8) Encoding Time: the time for the radio chip to encode the the binary data

into electromagnetic waves, and then send them to the microcontroller and
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have the microcontroller raise an interrupt.

(9) Decoding Time: the time for a radio chip to decode the received massage
until it raises an interrupt indicating it finishes.

(10) Byte Alignment Time: the delay that occurred because of different byte
alignment in the sender and the receiver.

Figures and show all the delays mentioned above during the process

to transmit a packet.

sender: send | access | transmission
\ ‘\
propagation —>! '\ €— \
\ \
receiver: reception receive

Figure 5.1: Decomposition of the message delivery delay over a wireless link
(from [23]).

Time at each node (without FTSP) is based on the natural frequency of the
node’s crystal clock. The FTSP effectively reduces the interrupt handing
and encoding/decoding times by using a MAC layer time-stamped massage
at both send and receive sides. A beacon node acts as a root, and broadcasts
its local time as global time to synchronize all stationary nodes. Based on
the experiment in [23], the message delivery delay of FTSP in a typical WSN
is less than 1us for 300 meters. Figure 5.3 shows the wiring of the TestFtsp

application.
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( cpu: v >
= <—> interrupt handling
= < radio: —@ >
2 <€——> encoding
antenna: @ >
<> propagation
4 antenna: @ >
decoding <«<——>
5 radio: ® >
'% < (byte alignment) €—>
2 radio: @ >
interrupt handling <>
\ cpu: T

Figure 5.2: An idealized point (such as the end of one byte of a massage)
transmits in the software, hardware and physical layer on both sides. Each
line represents a time line, the dots represent the time instance and the
triangles on two cpu time lines represent the time when the cpu makes the
time-stamps (from [23]).
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TestFtspC

Leds

PacketTimeStamp<TMilli, unit32_t>

Boot

MainC

GlobalTime<TMilli>

Boot
Init

ActiveMessageC

TimeSyncC ‘

Figure 5.3: Wiring of the TestFtsp application (from [2]).

5.1.2 TestFtsp Message Structure

The data rate of the CC2420 chip is 250 Kbps. We used the TestFtsp
message structure [23] to determine the RSSI value from each stationary
node at the moving node. The message structure for the broadcast message
is in file TestFtsp.h as shown in Appendix[A.3] TestFtsp messages are sent
by stationary nodes to the moving node. The data format for the TestFtsp
message is shown in Figure 5.4l The counter in a TestFtsp message comes
from the RadioCountToLeds message, which is sent by the beacon node to
each stationary node. Each TestFtsp message is 39 bytes, or 312 bits long,

which requires at least 1.248 ms to transmit at 250 Kbps.
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11 bytes 21 bytes 7 bytes

RssiMsg | header data meta

“ftsp_root_addr
ftsp_table_entries
-\ ftsp_seq

src_addr counter is_synced

f Tl
global skew_
rx_timestampitimes_100000

bytes: 2 2 4 4 4 1 2 1 1

local
rx_timestamp

Figure 5.4: Structure of the TestFtsp message.

5.1.3 Beacon Node Algorithm

The beacon node, as explained in section is an important device for time
synchronization of the stationary nodes. Here we give a detailed description

of the beacon node algorithm.

5.1.3.1 Radio Count Message Structure

RadioCount messages are sent from the beacon node to stationary nodes.
Figure[5.5|shows the detailed RadioCount message structure that contains 20

bytes of data, with the payload being a two byte counter. The RadioCountToLeds.h
file is given in Appendix The program running on the beacon node is

called RadioCountToLedsC.nc, and is given in Appendix [A.2] Algorithms

and [3| summarize the main logic of the RadioCountToLeds program.

The beacon node sends RadioCount messages to the stationary nodes one

after the other in the order of the stationary node id with an interval of ¢
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11 bytes 2 bytes 7 bytes
data
(counter)

RadioCountMsg: header

meta

Figure 5.5: Structure of the RadioCount message.

ms. Figure [5.6) shows the pattern of sending up to K RadioCount messages.
The interval is controlled by a countdown timer, which is a binary precision
millisecond level timer [31], where one second equals to 1024 binary millisec-
onds. K is the maximum number of stationary nodes, and k is the number of

existing stationary nodes.

counter: c counter:c+1

A
Li Ko L K& )

>
-6 k= K& -k& —l¢ k& k— K& -kd—)
1
T

|

LT PR G b b e Yer Yoo tias tua o Terer eaeneoes re t(ms)

Figure 5.6: RadioCount message pattern transmitted by the beacon node.

Algorithm [3| shows how the counter remains the same for K messages in a

row. The RadioCount message rcm is sent to the stationary node id addr.

Algorithm 2: Beacon Node Boot Event Fg
Trigger: Ep invoked when the beacon node boots up.
Result: Initialize the node’s index
count < 0;
addr <« 0;
initialize RadioCountToLeds message (counter <— 0);
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Algorithm 3: Beacon Node (RadioCount Message) Send Event Eg
Trigger: Es invoked by a countdown timer with interval of § ms.
Result: Send RadioCount message to stationary nodes.
count+-+;
addr < count % K; //stationary node id to send to
if (addr == 0) then

| counter ++;
end
addr + addr + offset;
rcm.counter <— counter;

if (call AMSend.send(addr, rcm) == SUCCESS) then
| locked < TRUE;

end

5.1.4 Stationary Node Algorithm

The TestFtspC.nc program (see Appendix sends TestFtsp messages
when a beacon node RadioCount message (see section is received. The
beacon node algorithm is discussed in section [5.1.3] Algorithm [ shows how
the stationary nodes synchronize with the GlobalTime from the beacon node.
The main method local2Global(uint32_t *time) (see [3]) converts the

local time into the corresponding global time using the following equation:

globalTime = localTime + offset + skew * (localTime - syncPoint)
(5.1.1)
where offset, skew and syncPoint are computed using the TimeSyncInfo

interface povided by the TinyOS 2.x FTSP library.
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Algorithm 4: Stationary node (TestFtsp Message) Send Event Eg
Trigger: Es invoked by receipt of a RadioCount message from the
beacon node.

Result: Send TestFtsp message to moving node.
//stationary node synchronized with beacon node
tfm.src_addr < TOS_NODE_ID;

tfm.counter < rcm.counter;

tfm.local_rx_timestamp < rxTimestamp;

tfm.is_synced < GlobalTime.local2Global(&rxTimestamp);
tfm.global_rx_timestamp < rxTimestamp;
tfm.skew_times_1000000 <«

(uint32_t) TimeSyncInfo.getSkew()*1000000UL;
tfm.ftsp_root_addr < TimeSyncInfo.getRootID();
tfm.ftsp_seq <— TimeSyncInfo.getSeqNum/();
tfm.ftsp_table_entries - TimeSyncInfo.getNumEntries();

if (AMSend.send(tfm) == SUCCESS) then
| locked < TRUE;

end

5.2 Real-Time Message Passing Architecture

5.2.1 MULTI RSSI Message Structure

In our experiment, the moving node collects RSSI values from TestFtsp
messages sent from up to eight stationary nodes, and combines them into
one MULTI_RSSI message that is then sent to the gateway node. Figure
shows the structure of the MULTI RSSI message. Appendix gives the
MultiRssi.h file that defines this message structure.

The data fields of the MULTI_RSSI message contain (a) one byte no_of vals
indicating the numbers of RSSI values contained in this message, (b) two

byte counter indicating the sequence number of this message, (c) one byte
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for each nodeID indicating which node the RSSI value is from, (d) two bytes
to store each rssi value, and (e) four bytes for rssi time which indicates
the local time that the TestFtsp messages arrived at the moving node. The
rssi time is the local time on the moving node which is not synchronized
with the stationary nodes. Recording rssi time permits the calculation of

the difference in arrival times for messages from each stationary node.

11 bytes 60 bytes 7 bytes
MULTI_RSSI
= header data meta
message _
no of V/;;I'S)( node ID . continued 1=yes
_\,7’ counter / 0=no
NI 1SSi [ wnwmmans rssi 1ssi | veewas rssi /
value value time time
no. of bytes: 1 2 11 1 2 2 4 4 1
Y \ \ A ;
| | |
Upto8nodelDs  Upto8rssivalues Up to 8 rssi times
readings

Figure 5.7: Structure of the MULTI_RSSI message.

5.2.2 Moving Node Algorithm

Algorithms [p] and [6] summarize the operation of the moving node algorithm.
Appendix gives the complete MultiRssiC.nc program corresponding to
these algorithms.

Figure |5.8| shows a state diagram indicating how the MULTI_RSSI message

is constructed and sent in a state diagram. Variable current (initially 0)
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Algorithm 5: Moving Node Boot Event Fg
Trigger: Ep invoked when the moving node boots up and received a
TestFtsp message
Result: Initalize the node’s index
current <— 0;
no_of_vals < 0;
initialize MULTI RSSI message (index < 0);
continued < 0;
rssi_time_save < 0;
rssi_val save < 0;
nodeid _save < 0;

keeps track of the current set of RSSI observations. The state accumulate
represents the fact that we are adding RSSI observations s; to the set S.
Once we see a message with different sequence number, we enter the check
|S| state to check if we have seen at least three TestFtsp messages from
different nodes. If we have three or more messages from different nodes, we
send a MULTI_RSSI message containing the set S of RSSI observations and
save the first message sy from the new set. Otherwise, we reset S to the
empty set &, save the first message sy from the new set and return to the

accumulate state.

5.3 Test Track

As part of the mobile WSN testbed, a short test track (143 cm long) was
constructed (see Figure . With regard to the origin (the northwest floor

corner in the lab), we obtained the positions of the test track ends. The
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Algorithm 6: Moving Node Message Receive and Send Event Epr

Trigger: Eg invoked by arrival of a TestFtsp message
Data: TestFtsp message (see Figure

Result: Push RSSI values into MULTI_RSSI message
get counter and src_addr from TestFtsp message;
rssi_time <— LocalTime.get( );

//accumulate state

if (counter == current) then
if (rssi_time_save = 0 && rssi_val save |= 0 && nodeid_save !=
0) then

rssi_time[index| <— rssi_time_save;
rssi_val[index| <— rssi_val_save;
nodelD[index] « nodeid_save;
index ++; no_of_vals < index;
rssi_time_save < 0;

rssi_val_save <— 0;

nodeid_save < 0;

end

rssi_time[index]| «— LocalTime.get( );
rssi_val[index] < getRssi( );
nodelD[index] «— src_addr;

index +-; no_of vals < index;

end

// check |S| state

else if index >=3 then
seq ++; continued < 0;
if (call AMSend.send(MultiRssi message) == SUCCESS) then

‘ index <— 0; no_of vals < 0;

end
rssi_time_save <— LocalTime.get( );
rssi_val_save <— getRssi( );
nodeid_save <— src_addr;
current < counter;

nd

else
current <— counter;

index < 0; rssi_time_save <— LocalTime.get( );
rssi_val_save <— getRssi( );

nodeid_save <— src_addr;

end 60
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counter == current

current<— counter M counter #current m

IS1>3

S <5

Figure 5.8: State diagram for the Moving node algorithm @

61



start is located at [303.34,569.64,76.50], and the end of the test track is
[409.24, 569.64, 76.5].

Jyranyel N\

) compurer
UNB scince

Mot Wiroloss Sensor Network Testbed

RS oo D M R

Cangpructed oy
e M. P and Bt 6. HRers
3y < scembar, 2011

A Sensor Web Language {SWL) .

Figure 5.9: Test track for initial testing.

The train with the flatbed trailer is 39 cm long, so the distance that the train
can move is 104 cm. We placed a moving node (TelosB mote with two AA
batteries) on the trailer. Using the maximum speed, it took 3.6s for the train
to run from one end to the other; the maximum speed of the model train
carrying the moving node is 0.289m/s.

As discussed below, we determined that 250 ms is the smallest interval be-

tween moving node position estimate calculations. With this rate of 4 posi-
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tion estimations per second, the train moves 0.07225m in 250 ms.

We designed an RSSI message transmission pattern to work in a dynamic
environment with one moving node and k stationary nodes. The interval
between RSSI messages is § ms (e.g. 10 to 25 ms), and a group of & RSSI

messages is repeated every A ms (e.g. 250 ms). The pattern is shown in

Figure [5.10}
k""" A ol A 4
-6 - Aks k- - AkS k-
l 1 | | 1 | | l l l l 1 I 3
I I I I I 1 I I I I I I Lt
t, ot oty ty . ty b e Ber Tiop Bes My wms ty oy oo e

Figure 5.10: RssiMsg message transmit pattern.

Figure shows how we combined the time synchronization messages with
the position estimation for four stationary nodes. The beacon node broad-
casts a Flooding Time Synchronization Protocol (FTSP) packet every second.
Then, the stationary nodes send RssiMsg messages to the moving node in a

synchronized fashion.

5.4 Test Architecture

We have an entire model train track near the ceiling in the Wireless Commu-
nication and Sensor Network lab (ITB214), as shown in Figure |5.12| Table
shows the coordinates of the stationary nodes.

We measured the precise location of eight points p;, ---, ps on the inner
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Beacon Nodeaa Node 1 Node 2 Node 3 Node 4 Moving Node
RadioCountTolLeds.nc TestFtsp.nc TestFtsp.nc TestFtsp.nc TestFtsp.nc MultiRssiC.nc
T I T T T T
! [ | | ]
radio_count_m TestFtspMsg | | | i
‘? ﬁIJ I I | > ive(msg)
radio_count_msg TestFisoMs | | @l
%\ | peg + + -
. | réceive(msg) |
y | radio_count_msg | TespFtsoMs
X . | | prispMsg 1 —
9 | radio_count_msg | \ ! réceive(msg)l
A4 | | TestFtspMs
| | | b
| | receive(msg)
A ! | ! Z‘
| | | | | MultiRssiMsg
| | | ! |
I | | ! I
' | | ' I
' | | ' I
' | | ' I
I | ) I repeat each |
! I | ' transmit interval |
L ; ! I T
i I : [ | |
| |
) }'adio_count_msg ! ' :
|
|
|
|
X |
(@)
Moving Node Gateway Node BaseStation
RssiBase.nc BaseStation.nc PosDatalLogger.java
T T T
1 . ]
MULTI_RSSI mote:Motell — e
artSendTask(AM) checkAMtype
message
registerListener ‘PosMsg
I

msgReceived(msg) |

writeReport(PositionMsg psm)
il

)

(b)

L
|
|
|

Figure 5.11: Sequence diagram for time synchronization and sending RSSI
messages. (a) stationary nodes send messages to the moving node, (b) moving
node sends message to the gateway and base station.
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Figure 5.12: Physical layout of the wireless sensor network testbed.

Table 5.1: Coordinates of the stationary nodes.

Point

Coordinates (cm)

2

(6.4, 6.1, 229)

(6.3, 643.4, 203)

(441, 643.2, 224)

(440.4, 6, 224)

(1008.8, 643.2, 225.5)

|| Y | W

(10088, 6.1, 223)

65

v



track, and eight locations p), ---, p; on the outer track. The coordinates of
these 16 points are shown in Tables 5.2 and [5.3] Positions p; and p| are the
start and end points for one circuit around the track. A Java application was
written called mouseListener that records the start time ¢; and end time t3
of one round trip through a mouse right key click. The variable ¢ is the time
the train is at any other position except p; and p}, so we have t; <ty < t3.
Based on the length of the track, the time to finish one circuit and eight
known positions at the track joints, the Java application posOnTrack (see
Appendix is used to get the position of the train at any time ¢, between
t; and t3 time. It should be noted that we assume that the velocity during
one round trip is constant. The outer track length is 24.36m, and the inner

track length is 23.92m.

Table 5.2: Coordinates of Table 5.3: Coordinates of
points on the inner track. points on the outer track.
Point | Coordinates(cm) Point | Coordinates(cm)
D1 (139, 490, 250) I (139, 496, 250)
D2 (872, 491, 251) h (872, 497, 251)
D3 (989, 383, 252) s (995, 383, 252)
D4 (987, 261, 251) ) (993, 261, 251)
Ds (871, 162, 250) D (871, 156, 250)
Dé (136, 162, 252) D (136, 156, 252)
D7 (30, 267, 252) b (24, 267, 252)
Ds (29, 386, 252) Dk (23, 386, 252)
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5.4.1 Software Architecture

Figures [5.13] and [5.14] show an overall architecture diagram of our moving

node position estimation (MobiPos) system. MobiPos comprises four Tinyos

(.nc) programs and four Java programs. The four object classes shown in

Figure are JAVA programs.

\N

Beacon Node

RadioCountTolLeds.nc

7

Stationary Node

TestFtspC.nc

Moving Node

\\\ MultiRssiC.nc

Gateway Node

BaseStationC.nc

&

MULTI_Rssi message mouse click

A 2

PosDatalogger.java mouselistener.java

Base Station

N v
GrainPos.txt ( @ouseCIick.txt(

Figure 5.13: MobiPos software architecture diagram.

Figure shows the data flow in the MobiPos application.
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mouseListener. java

+mouseClick()

¢t1 1
posDatalLogger. java

+leastSquares() <mouseCIick.txt<
itz,X,y,Z,C,;,r ¢tl’t3

osOnTrack. java
< trainPos.txt< > P ]

+GetApproxTrue()

¢t2,)_c ,Y,2
diffCal.java ¢ _‘ trainPosE.tX’[<

1, Ax,Ay,Az,b

Figure 5.14: Data flow on the base station for computing estimated positions
of the moving node at the time the MULTI_RSSI message was received. All
four object classes shown here are JAVA programs.
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Object class mouseListener uses any click of the mouse to record the start
and end times of the moving node for one round trip. The posOnTrack ob-
ject class uses the 1, t5 and t3 times to compute the approximate true train
position (Z, g, Z) on the track at time t. Appendix contains the complete
source code for the getApproxTrue () method of the posOnTrack object class.
Object class posDataLogger implements the LeastSquares method given in
Chapter 2. The complete source code for the leastSquares() method is
given in Appendix Method getArrayD() reads the MULTI_RSSI mes-
sages to extract the RSSI values, converts them to distance observations
(dy,--- ,dg), and passes these observations to the LeastSquares method.
The LeastSquares method computes the estimated position (Z, 7, 2) of the
moving node, along with the associated covariance matrix Ciz and residuals
. Finally, we use diffCal to compute the position difference(Ax, Ay, Az)
= (z,9,2) - (¢,9, 2), and the difference b between the estimated and approx-

imate true positions as follows:

b= /Az2+ Ay + Az2 (5.4.1)

The complete diffCal program is given in Appendix [A.9]

69



Chapter 6

Dynamic Testing Experimental

Results

This chapter shows the experimental result of four different dynamic tests,
as illustrated in Table [6.1l

Table 6.1: Four different dynamic tests.

Test | no. of stationary nodes | packets received | time duration
test 1 4 131 128 s
test 2 6 131 127 s
test 3 6 282 276 s
test 4 6 64,443 175 h
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6.1 Data Noise

In our experimental testing, we found a large variation in observed RSSI
values. Time variations of 2.4 GHz wireless signal noise in I'TB214 seemed to
affect the results significantly. Thus, we need to obtain reasonable estimates

for the variance o2 of distance observations d; used in the weight matrix P.

6.1.1 Stationary Train Noise Situation

With the moving node held stationary, we first estimated the variation in
RSSI observations using the following process:

1) Place the moving node at p;, and observe rssi_vals for the six stationary
nodes for at least 50 observations. We used equation (3.13) to compute the
distance d; to each stationary node. This gives the average d; and variance
ai , for the distance from p; to each stationary node 1.

2) Place the moving node at ps, and observe at least 50 times the rssi_val.
This gives the average d; and variance 035 for the distance from ps to each
stationary node 1.

02 402 . .
—5—= as the weight matrix P values for G%
i

3) Take the average 02 =
Table shows the average standard deviation of the estimated distance at
each stationary node. These average variances were used to compute the

weight matrix P value as shown in equation (2.0.9).

71



Table 6.2: Variance of the estimated distance at each stationary node.

node | d; | o7, | ds ols | o} (cm?)
2 618 | 1180 | 874 | 33262 17221
89 24 402 | 1366 695
328 | 1963 | 1187 | 582 1273
677 | 1882 | 266 715 1299
785 | 1883 | 1130 | 17372 9628

479 | 1445 | 221 173 809

| O T =~ | W

6.1.2 Using Actual Residuals

The values in Table are far smaller than the residuals ¥ computed using
equation (2.0.14). To give a more reasonable estimate of the observed dis-
tance variances, we used the average residual 7; (equation of up to 50
residuals 7; from test 2 (Table for stationary node i. We estimate the

weight matrix P values ﬁ by computing o? as follows:

2 S (Fig —Ta)?

)

(6.1.1)

m—1
where m is the number of observed distances to stationary node 7 in test 2,
and

Ty

= ==1 " 6.1.2
== (6.2

The results of the above computations for the six stationary nodes in test 2

are shown in Table [6.3]
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Table 6.3: Average residual 7; from test 2 for each stationary node.

node | m T o? (ecm?)
2 64 | -369.43 | 8912.39
3 64 | -285.99 | 676.93
4 64 | -142.57 | 2517.13
) 64 | -93.65 72.60
6 64 | -256.77 | 2271.24
7 64 | -339.77 | 358.62

6.2 Position Estimation with Four Stationary

Nodes

We refer to the test with four stationary nodes as test 1. We tested the train
moving clockwise (looking from on top) on the inside track. To estimate
the average speed, we observed one circuit of the moving node start time
(java time) of 1384889721693ms (11/19/2013 3:35:21 PM, 2013 GMT-4) and
end time of 1384889849797ms (11/19/2013 3:37:29 PM, 2013 GMT-4). This
gives an average speed of 0.19m/s with an inside track length of 23.92m.
We received 131 valid MULTI RSSI messages for a single circuit of the train
around the track. As designed, Algorithm 6 only sends MULTI_RSSI messages
with three or more RSSI values. All 131 messages sent during this 128 second
test period were received as no sequence numbers are missing. As shown in
Tables and [6.5] we chose 10 MULTI_RSSI messages (every 13th one) to
check the accuracy of our method.

JAVA_TIME represents the time the gateway node received the MULT_RSSI

message from the moving node. node_id shows the stationary node number
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Table 6.4: Data in the MULTI_RSSI message for test 1.

[JAVA_TIME] | [SEQ-NUM] | pos | [node_id] [rssi_val]
1377603342649 186 1 [2435]| [10-94-16]
1377603355341 198 2 2435 [F3-122-17]
1377603367050 210 3 |[2435]| [120-25-12]
1377603378771 922 1 |[2435] [10-14-15-17]
1377603390498 234 5 |2435]] [3-11-156]
1377603402220 246 6 |2435]]| [8-11-15-8]
1377603413934 253 7 [ 2435]| [12-6-141]
1377603425677 270 S |[4352]| [223-33]
1377603437519 282 0 |[[4352] | [I1-16-115]
1377603450070 204 10| 235] [11-5 6]

sending the TestFtsp message in the order TestFtsp messages were received.

Table 6.5: Estimated and approximate true positions for test 1.

[SEQ_-NUM] | pos (Z,9,2) cm (z,y,z) cm
186 1 | N/A (Matrix is singular) | [ 134, 489, 249
198 2 | N/A (Matrix is singular) | [ 375, 490, 250 |
210 3 | N/A (Matrix is singular) | [ 598, 490, 250]
222 1 490, 158, -294] [821, 490, 250]
234 5 245, -165, 50] (988, 385, 251]
246 6 409, -48, -179] [ 954, 180, 251]
258 7 | N/A (Matrix is singular) | [ 740, 162, 250]
270 8 | N/A (Matrix is singular) | [ 517, 162, 250]
282 9 26, -205, 352] [202, 162, 251 |
204 10 [471, 518, 400] [62, 192, 252]

Figure |6.1| shows a plot of the estimated and approximate true positions
computed using the least squares method given in Chapter 2. The weight
matrix P values given in Table [6.3] were used for estimating all positions.

Table shows the computed estimate of residuals, along with the square
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Figure 6.1: The positions from Table plotted in 2d for testl.

root of the diagonal of covariance matrix Cx (see equation (2.0.12))). If these
error estimates are reasonable, they should match the actual difference shown
in Table [6.7]

Table shows the calculated distance between the least squares estimated
position (Z,7, 2) and the estimated true position(z,y, zZ) at the same time,
using equation (5.4.1)). For point 9, the difference b is smaller than 500 cm,

for points 5, 6 and 10 b is smaller than 1000 cm, and for point 4, b is greater
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Table 6.6: Data in diffCal.txt for test 1.

[SEQ NUM] | pos | [node_id] #(cm) o2 v/ Cxli, ] (cm)
186 1 [2435] N/A N/A N/A
193 > [2435] N/A N/A N/A
210 3 [2435] N/A N/A N/A
222 4 [[2435] | [-139, 244, 180, 212] | 2.5 | [ 898, 568, 1170]
534 5 [[2435]| [67,-183,177,73] | 1.19 | [273, 269, 507]
246 6 |[2435] [-95, 134, 147, 72] 0.86 (325, 248, 226]
558 7 [2435] N/A N/A N/A
270 8 [[4352] N/A N/A N/A
282 0 [[4352] | [-394, 127, 129, -342] | 4.83 | [729, 680, 1390]
294 10 | 235] | [111,-541,-527] | 1.69 | [ 301, 292, 3702 ]

than 1000 cm.

Table 6.7: Difference between trainPos and trainPosE for test 1.

[JAVA_TIME] | [SEQ.NUM] | pos |Z—2 |y—9y | Z—2 | b (cm)
1377603342649 186 1 | N/A | N/A | N/A | N/A
1377603355341 193 5 [ N/A | N/A | N/A | N/A
1377603367050 210 3 | N/A | N/A | N/A | N/A
1377603378771 222 4 1311 | 332 544 1458
1377603390498 234 D 743 550 201 946
1377603402220 246 6 045 228 430 731
1377603413934 258 7 [ N/A | N/JA | N/A | N/A
1377603425677 270 8 | N/A | N/A | N/A | N/A
1377603437519 282 9 318 367 | -101 496
1377603450070 294 10 | -409 | -326 | -148 043

For the complete test 1 data, i.e. all 131 MULTI_RSSI messages, we found that

52 messages (40%) provided estimated positions, and 80 messages (60%) did

not converge, (i.e. gave a “Matrix is singular.” error message).

76




6.3 Position Estimation with Six Stationary

Nodes

We refer to the first test with six stationary nodes as test 2. We tested
the train moving clockwise (viewed from the top) on the inside track. To
estimate the average speed, we observed one circuit of the moving node start
time (java time) of 1384889721889ms (11/19/2013 3:35:21 PM, 2013 GMT-4)
and end time of 1384889848846ms (11/19/2013 3:37:28 PM, 2013 GMT-4).
This gives an average speed of 0.19m/s with an inside track length of 23.92m.
We received 131 valid MULTI_RSSI messages for a single circuit of the train
around the track. As designed, Algorithm 3 only sends MULTI _RSSI messages
with three or more RSSI values. All 131 messages, with sequence numbers
203 to 333, sent during this 126.957 seconds test period were received as no
sequence numbers are missing. We used the least squares approach described
in Chapter 2, Algorithm 1 to compute the estimated position (Z, 3, 2) for each
MULTI RSSI message, we used o7 = 62500 for test 2. The time interval A was
set to 1000 binary ms (1.024 s) with § = 50 binary ms ( = 50 * 0.001024 s =
0.0512 s). As shown in Tables[6.8|and [6.9} we chose 10 MULTI_RSST messages
(every 12th one) to illustrate of the test 2 results.

Figure shows a plot of the five successful estimates compared to the
approximate true positions.

Table shows the calculated distance between the least squares estimated

position (Z,7, %) and the estimated true position(z,y, z) at the same time,
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Table 6.8: A subset of 10 MULTI_RSSI messages in trainPos.txt for test 2.

[JAVA_TIME] | [SEQ-NUM] [node_id] [rssi_vall
1384389721889 203 234567]| [1053-13-140]
1384880733611 215 234567 [181-10-12-2 6]
1384889745329 227 234567 [-8-13-12-14 -3 -7 ]
1384880757051 239 234567 [14-11 -3-8-9-10]
1384889768771 251 234567]|| [9-14-9426]
1384889780485 263 234567 | [9-9-7-2-11-23]
1384889792213 275 234567]| [10-8-13-105]
1384889803927 287 234567]| [188-5002]
1384889815635 209 234567 | [4-23-7-10 21 -13 ]
1384889827363 311 234567 [2-8-7-2-9-10 |

Table 6.9: Estimated and approximate true positions for test 2.

[SEQ-NUM] | pos (z,9,2) (%,7,2)
203 1 (330.77 482.50 214.62) | (139.00 490.00 250.00 )
215 2 Matrix is singular (361.91 490.30 250.30 )
227 3 (826.32 370.76 -21.81) | (584.75 490.61 250.61)
239 4 (631.04 467.02 24.53 ) | (807.66 490.91 250.91)
251 D Matrix is singular (986.28 399.06 251.86)
263 6 | (-157.61 570.99 -23.38 ) | (963.28 190.71 250.59)
275 7 Matrix is singular ( 754.59 162.00 250.32)
287 8 Matrix is singular (531.87 162.00 250.92)
299 9 Matrix is singular (309.25 162.00 251.53)
311 10 | ( 355.04 133.67 99.18) (88.06 173.46 252.00)
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Figure 6.2: Positions in 2d for test2 (Table .
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Table 6.10: Data in trainPosE.txt for test 2.

pos (cm) o2 \/Cx[i,i] (cm)
1 | [173, 366, -170, 167, 245, -696] | 4.09 | [311, 338, 495]
2 NA NA NA
3 451, -62, 211, 341, -133, -45] 2.08 223, 259, 356]
1 [123, -6, -49, -57, 72, -30] 015 | [57.66, 101]
) NA NA NA
6 | [-104, 246, -221, -610, 528, 1166] | 11.37 | [710, 738, 1252]
7 NA NA NA
8 NA NA NA
9 NA NA NA
10 | [-1257, -835, -883, -1149, -906, -898] | 32.06 | [1351, 1613, 724]

using equation (5.4.1)). For positions (pos) 3, 4 and 10, the difference b is

smaller than 400 cm, for positions (pos) 1 and 6, b is greater than 1000 cm.

Table 6.11: Difference between trainPos and trainPosE for test 2.

[JAVA_ TIME] |pos| Z—% | §—79 z—2 | b(cm)
1384889721889 | 1 | -358.18 | 117.99 | -1381.03 | 1431.59
1384889733611 | 2 NA NA NA NA
1384889745329 | 3 -242 120 272 383.32
1384889757051 | 4 -177 -24 -226 288.12
1384889768771 | 5 NA NA NA NA
1384889780485 | 6 1121 -380 274 1214.93
1384889792213 | 7 NA NA NA NA
1384889803927 | 8 NA NA NA NA
1384889815635 | 9 NA NA NA NA
1384889827363 | 10 -267 40 152 309.88

For the complete test 2 data, i.e. all 131 MULTI _RSSI messages, we found that
72 messages (55%) provided estimated positions, and 59 messages (45%) did

not converge, (i.e. gave a “Matrix is singular.” error message), the result
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is better than we use four stationary nodes (40% messages are converged).
In addition, we discarded 8 “unsuccessful” estimated positions as these esti-
mated residuals  were always very large (>1000 m or <-1000 m), which gives
a very large 62 (always >5000). The complete input test 2 data is given in
Appendix B.1} Appendix plots the individual distances observed for all
131 MULTTI RSSI messages. The noisy nature of distance observations derived
solely from RSSI values is clearly evident in the Appendix plots.

For the 64 successful estimates, the average b was 503.34 cm, the average 62
was 18.99, and the average \/Cxl[i, 4] (cm) was [697.42, 855, 799.81] (Table
. Table shows the average b (cm), 63 and /Cxl[i, i] (cm) value for
the 64 successful estimates from test 2.

Table 6.12: Average b (cm), 62 and /Cxli,i] (cm) for the 64 successful
estimates from test 2.

average value, N = 64
b 503.34

62 18.99
v/Cxl[1,1] 697.42
/Cx[2,2] 855

v/Czl[3, 3] 799.81

6.3.1 Test 3

Test 2 used all apriori estimates of the variance of a single distance obser-
vation as o7 = 62500 cm?. Test 3 uses the computed average residuals from

Test 2 to define the apriori variance estimate o? of a distance observation to
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stationary node . These apriori estimates are given in Table 6.3, We tested
the train moving clockwise (looking from on top), and we ran two sircuits
around the inside track, receiving 282 valid MULTI _RSSI messages during the
time period java time 1387404238298 ms (12/18/2013 6:03:58 PM GMT-4)
to java time 1387404514450 ms (12/18/2013 6:08:34 PM GMT-4), with se-
quence numbers from 150 to 432, and sequence number 387 was missing. We
found that 134 messages (48%) provided estimated positions and 148 (52%)
did not converge. In addition, we discarded 10 “unsuccessful” estimated po-
sitions as these estimated residuals T were always very large (>1000 m or
<-1000 m), which gives a very large 62 (always >5000).

For the 124 successful estimates, the average b was 548.28 cm, the average

o2 was 19.37, and the average /Cxzli, 4] (cm) was [730.24, 893.94, 922.01].

Table shows the average b (cm), 62 and /Cxli, 7] (cm) value for the 124

successful estimates from test 3. These results are slightly worse than test 2.

Table 6.13: Average b (cm), 62 and \/Cxli,i] (cm) for the 124 successful
estimates from test 3.

average value, N = 124

b 548.28

62 19.37
V/Cx[1,1] 730.24
V/Cx[2,2] 893.94
v/Cz[3, 3] 922.01
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6.3.2 Test 4

During test 2 testing, we noticed that the moving node stopped transmitting
MULTI_RSSI messages after about four minutes. We traced this down to a
bug in the code that initialized an integer counter using 8 bits instead of 16
bits. Once this was fixed, we ran another experiment called test 4 which used
the same experimental setup as test 3. For test 4, we started the MobiPos
application at java time 1387404174124 (12/18/2013 6:02:54 PM GMT-4)
and stopped it at java time 1387467544986 (12/19/2013 11:39:04 AM GMT-
4). The MobiPos application ran 17.5 hours straight with continuous receipt
of TestFtsp messages. We received 64,443 MULTI_RSSI messages, with se-
quence numbers from 84 to 64981, and 455 (0.7%) sequence numbers missing.
Of these 64,443 received MULTI_RSSI messages, 3593 (5.6%) MULTI_RSSI had
five valid distances with the remaining 60,850 (94.4%) having six valid dis-
tances. We found that 29,632 messages (46%) provided estimated positions
and 34,811 (54%) did not converge. In addition, we discarded 2137 “unsuc-
cessful” estimated positions as these estimated residuals r were always very
large (>1000 m or <-1000 m), which gives a very large 6% (always >5000).
For the 27495 successful estimates, the average b was 617.39 cm, the average
62 was 62.51, and the average \/Cxzli, 4] (cm) was [1748.51, 2190.39, 1631.31].
Table shows the average b (cm), 62 and /Cxg[i,i] (cm) value for the
27495 successful estimates from test 4.

Running the post processing part of MobiPos (as shown in Figure 5.14) took

498.49 seconds to process the 64,443 MULTI_RSSI messages, including the
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Table 6.14: Average b (cm), 65 and /Cxli, 7] (cm) for the 27495 successful

estimates from test 4.

average value, N = 27495
b 617.39
o2 62.51
V/Cx[1,1] 1748.51
v/Cz[2,2] 2190.39
v/Cx[3, 3] 1631.31

time to determine the “unsuccessful” estimated positions and the average b,
62 and /Cxzli,i] (cm) values. The post processing was done on a MacBook
Air computer with 1.86 GHz Intel Core 2 Duo and 2 GB RAM.
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Chapter 7

Summary and Conclusions

7.1 Summary

To obtain a reasonable position of a moving node in an indoor environment,
we measured distances using two motes (TelosB and MicaZ) and two prop-
agation models (Free Space Propagation Model (FSPM) and Log-normal
Shadowing Model (LNSM)). Our experimental calibration indicated a better
performance for the TelosB mote and the FSPM as they gave a distance esti-
mate that was 0.5 m closer to the actual distances (as measured with a tape
measure) compared to the LNSM with MicaZ or with the TelosB. The best
experimental results for the FSPM were achieved for a path loss exponent n
= 2.1.

In our MobiPos system, the moving node collected RSSI values from TestFtsp

messages sent (at a default power level of 0 dBm) by up to six stationary
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nodes within a short period (i.e. 300ms). All six TestFtsp messages were
received 95% of the time, and five TestFtsp messages were received for the
remaining 5%. A stationary gateway node received all MULTI_RSSI messages
with no lost packets. For the two tests (test 2 and test 3) with six station-
ary nodes, we found that 49% and 44% converged with reasonable position
estimates. Compared to the approximate true position (as estimated assum-
ing constant velocity), the average position difference for the 49% estimated
positions from test 2 is 503.34 cm. Thus, we can say that using RSSI signals
in the I'TB214 lab with TelosB motes and a free space propagation model
gives a position accurate to approximately Hm on average. RSSI signals are
noisy (e.g. due to multiple reflections), resulting, on average, in around half
of them giving unreasonable position estimates. Our approach of comput-
ing a position estimate using a least squares approach with more than the
minimum of three distances to compute the estimated position allows us to
effectively detect and eliminate the unreasonable position estimates. In ad-
dition, this approach provides a good estimate of the error in the estimated

position.

7.2 Future Work

To obtain more accurate distances, we may need to use e.g. cellular telephone
(e.g. Google patent: GPS/MEM Hybrid Location-Detection (GMHLD) [40]).

Cellular telephones consume more energy than TelsoB motes, but cellular
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telephones give reasonable distances (e.g. GMHLD request GPS signals once
every 100 seconds (0.01 Hz) to gain precision accuracy within 1 meter [40]).
Position estimation accuracy can probably be improved by incorporating
other devices (e.g. accelerometers to measure change in position) combined
with a more robust navigation algorithm such as Kalman filtering.

Another option to investigate would be to filter RSSI measurements observed
at a higher rate (e.g. ¢ = 10 ms), to smooth out the noise. Can the MobiPos
algorithm be implemented directly on a moving node so that the moving node
can know it’s own position without first transmitting MULTI _RSSI messages

to a gateway node?
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Appendix A

Code for the MobiPos
Application

A.1 RadioCountToLeds.h

Message structure of RadioCount message.

1
#ifndef RADIO_.COUNT_TO_LEDSH
3 #define RADIO_.COUNT_TO_LEDS_H

5 enum
{
7 K = 20,
astNoOffset = 2,
9 interval = 50,
b

11

typedef nx_struct radio_count_msg {
13 nx_uintl6_t counter;

} radio_count_msg_t;
15

enum {

17 AM RADIO_.COUNTMSG = 6,
}s

19

#endif
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23

29

33

A.2 RadioCountToLedsC.nc

Codes for stationary nodes to synchronize time and send TestFtsp message.

#include ”Timer.h”
3 #include ”RadioCountToLeds.h”

/%%

*

* X K X ¥

Implementation of the RadioCountToLeds application .
RadioCountToLeds

maintains a 4Hz counter, broadcasting its value in an AM
packet

every time it gets updated. A RadioCountToLeds node that
hears a counter

displays the bottom three bits on its LEDs. This application
is a useful

test to show that basic AM communication and timers work.

@author Philip Levis
@date June 6 2005
/

module RadioCountToLedsC @safe () {

}

uses {
interface Leds;
interface Boot;
interface Receive;
interface AMSend;
interface Timer<TMilli> as MilliTimer ;
interface SplitControl as AMControl;
interface Packet;

}

implementation {

message_t packet;

bool locked;

uintl6_-t count = 0;

uintl6_t counter = 0;

uint8_t addr = O0;

event void Boot.booted () {
call AMControl.start () ;

}
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event void AMControl.startDone(error_t err) {
if (err = SUCCESS) {

call MilliTimer.startPeriodic (interval);

}
else {

call AMControl.start () ;
}

}

event void AMControl.stopDone(error_t err) {
// do mnothing

event void MilliTimer. fired () {
count++;
call Leds.led0Toggle () ;
dbg (” RadioCountToLedsC” ; ”RadioCountToLedsC: timer fired ,

counter is %hu.\n”, counter);
if (locked) {
return;
else {
radio_count_msg_t* rem = (radio_count_msg_tx*)call

Packet . getPayload(&packet , sizeof(radio_count_-msg._t));
if (rem = NULL) {
return;

}

addr = count%K; // addr = stationary node id to send to
if (addr = 0) {

counter +4+4;
}

rcm—>counter = counter;
addr = addr + astNoOffset; // node id to send to 4=
astNoOffset (e.g. 2)
if (call AMSend.send (addr, &packet,
sizeof (radio_count_msg_t)) = SUCCESS) {
dbg (” RadioCountToLedsC” , ”RadioCountToLedsC: packet sent.\n”,
counter) ;
locked = TRUE;

}
}
}
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event message_tx* Receive.receive (message_tx bufPtr,
void* payload, uint8_t len) {
dbg (”RadioCountToLedsC” , ”Received packet of length
%hhu.\n”, len);

if (len != sizeof(radio_count_msg_t)) {return bufPtr;}
else {
radio_count_msg_t* rcm = (radio_count_-msg_t ) payload;

if (rem—>counter & 0x1) {
call Leds.led0On () ;

}

else {
call Leds.led0Off();

}

if (rem—>counter & 0x2) {
call Leds.led1On();

}

else {
call Leds.led1Off();

}

if (rem—>counter & 0x4) {
call Leds.led20n();

}

else {
call Leds.led20ff();

t

return bufPtr;

}

}

event void AMSend.sendDone(message_t* bufPtr, error_t error) {
if (&packet = bufPtr) {
locked = FALSE;

A.3 TestFtsp.h

Message structure of TestFtsp message.

95



2> #ifndef TEST FTSP_H
#define TEST FTSP_H

typedef nx_struct test_ftsp_msg

o {
nx_uintl6_t src_addr ;

8 nx_uintl6_t counter;
nx_uint32_t local_rx_timestamp ;

10 nx_uint32_t global_rx_timestamp ;
nx_int32_t skew_times_1000000 ;

12 nx_uint8_t is_synced;
nx_uintl6-t ftsp-root_addr;

14 nx_uint8_t ftsp_seq;
nx_uint8_t ftsp_table_entries;

16} test_ftsp_msg_t;

enum

AM_TEST FTSPMSG = 137
20 };

20 #endif

A.4 TestFtspC.nc

Codes for stationary nodes to synchronize time and send TestFtsp message.

1 #include " TestFtsp.h”
#include ”RadioCountTolLeds.h”

module TestFtspC
5 {
uses

7 {
interface GlobalTime<TMilli>;
9 interface TimeSynclnfo;
interface Receive;
11 interface AMSend;
interface Packet;
13 interface Leds;
interface PacketTimeStamp<TMilli,uint32_t >;
15 interface Boot;
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interface SplitControl as RadioControl;
7 // interface Timer<TMilli> as MilliTimer;

19 }
}

implementation

23 {
message_t msg;
25 bool locked = FALSE;

27 event void Boot.booted () {
call RadioControl.start () ;
29 }

event message_tx* Receive.receive (message_t* msgPtr, voidx
payload , uint8_t len)
33 {
call Leds.led0Toggle();
35 if (!locked && call PacketTimeStamp.isValid (msgPtr)) {
radio_count_msg_t* rcm = (radio_count_msg_tx)call
Packet . getPayload (msgPtr,
sizeof (radio_count_-msg_t));

37 test_ftsp-msg_t* report = (test_ftsp_msg_tx)call
Packet.getPayload(&msg, sizeof(test_ftsp_msg_t));

39 uint32_t rxTimestamp = call
PacketTimeStamp . timestamp (msgPtr) ;

11 report—>src_addr = TOSNODE.ID;
report—>counter = rcm—>counter;
43 report—>local_rx_timestamp = rxTimestamp;
report—>is_synced = call
GlobalTime.local2Global (&rxTimestamp) ;
15 report—>global_rx_timestamp = rxTimestamp;
report—>skew_times_1000000 = (uint32_t)call
TimeSyncInfo. getSkew () *1000000UL;
17 report—>ftsp_root_addr = call
TimeSyncInfo.getRootID () ;
report—>ftsp_seq = call TimeSyncInfo.getSeqNum () ;
19 report—>ftsp_table_entries = call
TimeSyncInfo.getNumEntries () ;
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1

if (call AMSend. send (AMBROADCAST_ADDR, &msg,
sizeof (test_ftsp_msg_t)) == SUCCESS) {

call Leds.led2Toggle ();

locked = TRUE;

event void AMSend.sendDone(message_t* ptr, error_t success)

}
}
return msgPtr;
¥
{
locked = FALSE;
return ;

}

event void RadioControl.startDone(error_t err) {}
event void RadioControl.stopDone(error_t error){}

A.5 MultiRssi.h

#ifndef MULTI_RSSI_H

3 #define MULTI_RSSI_H

5 enum

-

{

}s

{

TOTALNODE = 6,
MOVENODE = 1,
BEACONNODE = 100,
GATEWAYNODE = 99,

s typedef nx_struct multi_rssi_msg

MultiRssi message structure sending by the moving node.

nx_uint8_t no_of_vals;

nx_uintl6_t counter; //sequence number
nx_uint8_t nodeid [TOTALNODE]; //node IDs
nx_intl6_t rssi_val [TOTALNODE]; //rssi values
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nx_int32_t

rssi_time [TOTALNODE]; //record when Ftsp

message arrived to the Moving node

nx_uint8_t

continued; //1 = yes, 0 = no

} multi_rssi_msg_t;

3 enum

{
}s

#endif

AM_MULTIRSSIMSG = 133

A.6 MultiRssiC.nc

Codes running on the moving node.

2> #include <Timer.h>
#include 7 MultiRssi.h”
1+ #include ”TestFtsp.h”

6

14

module MultiRssiC

{

provides interface Init;

uses

{
interface
interface
interface
interface
interface
interface
interface

Receive;

AMSend ;

Packet; //for MULTI.RSSI message

Leds;

Boot ;

SplitControl as RadioControl;

CC2420Packet; //for getRssi() call to return

rssi via TestFtsp program

interface

>}

implementation

LocalTime<TMilli >;
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message_t msg2; // MULTI.RSSI message to send

bool locked = FALSE;

uint8_t no_of_vals = 0;

uintl6_t current = 0; //current set of rssi observation
uint8_t i = 0;

uint8_t index = O0;

uintl6.-t seq = 0; //squence number of rssi message
uint8_t count [TOTALNODE];

uint8_t nodeid [TOTALNODE];

intl6_t rssi_val [TOTALNODE];

uint32_t rssi_time_save = 0;
uintl6_t rssi_val_save = 0;
uint8_t nodeid_save = 0;

uint16_t getRssi(message_t xmsg)
{
return (uintl6_-t) call CC2420Packet. getRssi(msg);

}

event void Boot.booted () {
call RadioControl.start ();
}

command error_t Init.init () {

for (i = 0; i < TOTALNODE; i++) {
count[i] = 0
nodeid [i] =
rssi_val[i] = 0;

?
i

return SUCCESS;

event message_t* Receive.receive (message_t* msgl, voidx
payload , uint8_t len)
{

if (len != sizeof(test_ftsp.msg_t)) {return msgl;}
else {
test_ftsp-msg_t* tfm = (test_ftsp_msg_tx*)call
Packet . getPayload (msgl,
sizeof (test_ftsp_msg_t)); //message received
from stationary nodes
multi_rssi_msg_t* mrm = (multi_rssi_msg_tx*)call
Packet . getPayload(&msg2,
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sizeof (multi_rssi_msg_t)); //message sent from
moving node

uint32_t localTime = call LocalTime.get () ;
uintl6_t counter = tfm—>counter; //sequence number

if (counter = current)

call Leds.led0Toggle();

{

if ( rssi_time_save != 0 && rssi_val_save = 0
&& nodeid_save != 0 )
mrm—>rssi_time [index] = rssi_-time_save;
//get the time when TestFtsp msg arrived
mrm—>rssi_val[index] = rssi_val_save; //push
rssi value to multi_rssi msg
mrm—>nodeid [index] = nodeid_save; //push

node id to multi_rssi msg
mrm—>no_of_vals = 4+index;

rssi_time_save = 0;
rssi_val_save = 0;
nodeid_save = 0;
¥
mrm—>rssi-time [index] = localTime; //get the

time when TestFtsp msg arrived

mrm—>rssi_val [index] = getRssi(msgl); //push

rssi value to multi_rssi msg

mrm—>nodeid [index] = tfm—>src_addr; //push node

id to multi_rssi msg

mrm—>no_of_vals = ++index;

}

else

{

if (index >= 3)

call Leds.led1Toggle();
mrnr—>counter = ++ seq;
mrm—>continued = 0; //1 = yes, 0 = no

/*send MULTI_RSSIx/
if (call AMSend. send (AMBROADCAST ADDR, &msg?2,

{

sizeof (multi_rssi_msg_t)) = SUCCESS)
call Leds.led2Toggle () ;

locked = TRUE;
index = 0;
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100 }

rssi_time_save = localTime; //get the time when
TestFtsp msg arrived
102 rssi_val_save = getRssi(msgl); //push rssi

value to multi_rssi msg
nodeid_save = tfm—>src_addr; //push node id to
multi_rssi msg
104 index = 0; // start a new set S
current = counter;
106
else // < 3 rssi messages; throw them away, but
keep new message
108 {

current = counter;
110 index = 0; // start a new set S
rssi_time_save = localTime; //get the time when
TestFtsp msg arrived
112 rssi_val_save = getRssi(msgl); //push rssi

value to multi_rssi msg
nodeid_save = tfm—>src_addr; //push node id to
multi_rssi msg
114 }
}

116 return msgl;

event void AMSend.sendDone(message_t* msg, error_t success)

122 {
locked = FALSE;

124 return;

}

event void RadioControl.startDone(error_-t err) {}
128 event void RadioControl.stopDone(error_t error){}

A.7 GetApproxTrue()

Method GetApproxTrue() in posOnTrack. java
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29

33

35

39

41

/%%

*

* X K K ¥

* %

Using Least Squares Method to calculate the position of
moving node.

@param t1 start time of a loop.
@param t2 end time of a loop.
)

@param t3 get the position of moving node at t3, tl1<t3<t2.

@param dir 1 = clockwise from the top, 0 = counter
clockwise from the top.
@param track 1 = outside track, 0 = inside track.

* @Qreturn

*/

public double[] GetApproxTrue(double t1, double t2, double

di

t3, int dir, int track) {
r =1; // 1 = clockwise from top, 0 = ccw from top

track = 0; // 1 = outside, 0 = inside

double v; // Velocity of train for circuit
double s = 0.0; // Distance from p0 to the moving node
double p = 0.0; // Function way around track
double X[] = {0.0, 0.0, 0.0};
double p0 = {139, 490, 250};
double pl = {872, 491, 251};

[]
[]
double [] p2 = {989, 383, 252};
double [] p3 = {987, 261, 251};
[]
[]
[]
[]

double p4d = {871, 162, 250};
double pbs = {136, 162, 252};
double [] p6 = {30, 267, 252};

double p7 = {29, 386, 252};

double[] pOo = {139, 496, 250};
double plo = {872, 497, 251};
double p2o = {995, 383, 252};

[]
]
double [] p3o = {993, 261, 251};
[]
[]
[]
[]

double pdo = {871, 156, 250};
double pb5o = {136, 156, 252};
double p6o = {24, 267, 252};
double p7o = {23, 386, 252};

double insideLength = 2414.27;
double outsideLength = 2436;
double L; // Length of track
if( track =1 ) {
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43 L = outsideLength;

}
45 else {

L = insideLength;
47 }

49 double [] Si = {0.0, 733.0, 916.78, 1038.78, 1220.89,
1955.99, 2122.49, 2241.49, 2414.27};
double[] So = {0.0, 740.0, 920.0, 1038.0, 1218.0, 195%8.0,
2138.0, 2256.0, 2436.0 };
51 double [] SiCounter = {0.0, 169.0, 287.0, 456.0, 1196.0,
1365.0, 1483.0, 1652.0, 2392.0};
double [] SoCounter = {0.0, 180.0, 298.0, 478.0, 1218.0,
1398.0, 1516.0, 1696.0, 2436.0};

53
55 v=L/ (t2 — tl); // velocity in cm/sec
System.out.println (”Moving node is moving at speed of: 7);
57 System.out.print (v);
59 s =v x (t3 — tl);
61 /**% When moving node is on outside track, cw, at SO to
S1 area, return its position
@return X
63 */
if( (dir = 1) & (track = 1) & s < So[1] ) {
65 =s / So[l];
for(int j = 0; j<=2; j++){
67 }X[j} =p0[j] +p = (plo[j] — pOo[j]);
69 System.out.println (”Moving node is between plOo and plo”);
System.out.print (”The position of moving node is :7);
71 System.out.println(” X = [ 7 + X[0] + 7 ,” + X[1] + 7
+ X[2] +7 7 );
¥
73
/**% When moving node is on inside track, cw, at SO to Sl
area, return its position
75 @return X
*/
77 else if( (dir = 1) & (track = 0) & s < Si[1] ) {
=s / Si[l];
79 for(1nt i =0; j<=2; j++)
X[l =p0[j] +p * (pP1[Jj] — pO[j]);
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}

System.out.println (”Moving node is between p0 and pl”);
System.out.println (7 X1 = [ 7 + X[0] + 7 ,” + X[1] + 7
+ X[Z] + 7 ]77 );

/**% When moving node is on outside track, cw, at Sl to
S2 area, return its position
@return X
o/
else if( (dir = 1) && (track = 1) && ( s > So[1l]) && (s
<= So[2]) )
double r = Math.abs(p20[0] — plo[0]);
double alpha = 180 % (s — So[1l]) / (Math.PIxr);
p = alpha / 90;
X[0] = plo[0] + Math.sin (alpha);
X[1] = plo[1] — (r — Math.cos(alpha));
X[2] = plo[2] + p * (p20[2] — plo[2]);
System.out.println (”Moving node is between plo and p207);
System.out.println (7 X2 = [ 7 + X[0] + 7 7 +X[1] + 7 7
FX[2) 47 )7 )

/** When moving node is on inside track, cw, at SI1 to S2
area, return its position
Qreturn X
*/
else if( (dir = 1) & (track = 0) && ( s > Si[1]) && (s
<= Si[2]) ){
double r = Math.abs(p2[0] — pl[0]);
double alpha = 180 * (s — Si[l]) / (Math.PIxr);
p = alpha / 90;
X[0] = pl[0] + Math.sin (alpha);
X[1] = pl[1] — (r — Math.cos(alpha));
X[2] = p1[2] + p = (p2[2] — pl[2]);
System.out.println (”Moving node is between pl and p2”);
System.out.println (" X2 = [ 7 + X[0] + 7 ,” + X[1] + 7
+ X[2] +7 7 )

/*+ When moving node is on outside track, cw, at S2 to
S3 area, return its position
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Qreturn X

119 */
else if( (dir = 1) && (track = 1) && ( s > So[2]) && (s
<= So[3]) ){
121 p= (s —So[2]) / (So[3] — So[2]);
for(int j = 0; j <= 2; j++){
123 >}<[j] = p20[j] + p * (p3o[j] — p20[j]);
125 System.out.println (”Moving node is between p20 and p30”);
System.out.println (7 X3 = [ 7 + X[0] + 7 ,” + X[1] + 7
+X[2] +7 7 );
127 }
129 /*% When moving node is on inside track, cw, at S2 to S3
area, return its position
@return X
131 */
else if( (dir = 1) && (track = 0) && ( s > Si[2]) && (s
<= Si[3]) H{
133 p= (s —Si[2]) / (Si[3] — Si[2]);
for (int j = 0; j <= 2; j++){
135 P}i[j] =p2[j] +p * (P3[J] — p2[J]);
137 System.out.println (”Moving node is between p2 and p3”);
System.out.println (” X3 = [ 7 + X[0] + 7 7 + X[1] + 7
+X[2] +7 7 );
139 }

/*% When moving node is on outside track, cw, at S3 to
S4 area, return its position

143 @return X
*/
145 else if( (dir = 1) && (track = 1) && ( s > So[3]) && (s
<= So[4]) ){
double r = Math.abs(p40[0] — p30o[0]);
147 double alpha = 180 % (s — So[3]) / (Math.PIxr);
p = alpha / 90;
149 X[0] = p30[0] — (r — Math.cos(alpha));
X[1] = p3o[1] — Math.sin (alpha);
151 X[2] = p3o[2] + p * (p4o[2] — p3o[2]);
System.out.println (”Moving node is between p3o and p4o0”);
153 System.out.println(” X4 = [ 7 + X[0] + 7 ,” + X[1] + 7

FX[2] 47 ] )
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155
/**% When moving node is on inside track, cw, at S3 to S4
area, return its position

157 @return X
/
159 else if( (dir = 1) && (track = 0) && ( s > Si[3]) && (s
< si[4]) )1
double r = Math.abs(p4[0] — p3[0]);
161 double alpha = 180 % (s — Si[3]) / (Math.PIxr);
p = alpha / 90;
163 X[0] = p3[0] — (r — Math.cos(alpha));
X[1] = p3[1] — Math.sin (alpha);
165 X[2] = p3[2] + p = (p4[2] — p3[2]);
System.out.println (”Moving node is between p3 and p4”);
167 System.out.println(”? X4 = [ 7 + X[0] + 7 ,” + X[1] + 7
+ X[2] +7 7 );
¥
169
171 /#% When moving node is on outside track, cw, at S4 to
S5 area, return its position
Q@return X
173 */
else if( (dir = 1) && (track = 1) && ( s > So[4]) && (s
<= So[5]) ){
175 p = (s — So[4])/(So[5] — So[4]);
for(int j = 0; j <= 2; j++){
177 }X[5} = p4o[5] + p * (p50[5] — pdo[5]);
179 System.out.println (”Moving node is between pdo and pho”);
System.out.println (7 X5 = [ 7 + X[0] + 7 ,” + X[1] + 7
+X[2] +7 7 );
181 }
183
/#* When moving node is on inside track, cw, at S4 to S5
area, return its position
185 Q@return X
*/
187 else if( (dir = 1) & (track = 0) && ( s > Si[4]) && (s
<= Si[5]) ){
p = (s — Si[4])/(Si[5] — Si[4]);
189 for (int j = 0; j <= 2; j++){
X[j] =p4[j] +p = (p5[j] — p4[i]);

191
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195

197

199

201

203

205

207

209

215

221

N
N

225

N
¥]
-~

System.out.println (”Moving node is between p4d and p5”);
System.out.println(” X5 = [ 7 + X[0] + 7 ,” + X[1] + 7
+X[2] +7 7 );

/**% When moving node is on outside track, cw, at S5 to
S6 area, return its position
@return X

*/
else if( (dir = 1) && (track = 1) && ( s > So[5]) && (s
<= So[6]) N

double r = Math.abs(p6o[0] — pb5o[0]);

double alpha = 180 % (s — So[5]) / (Math.PIxr);

p = alpha / 90;

X[0] = p50[0] — Math.sin (alpha);

X[1] = pb5o[l] + (r — Math.cos(alpha));

X[2] = p5o[2] + p = (p6o[6] — pdo[6]);

System.out.println (”Moving node is between pbo and p6o”);

System.out.println(” X6 = [ 7 + X[0] + 7 ,” + X[1] + 7
+X[2] + 77 )

¥
/*% When moving node is on inside track, cw, at S5 to S6
area, return its position
@return X
«/
else if( (dir = 1) && (track = 0) && ( s > Si[5]) && (s
<= Si[6]) ){

double r = Math.abs(p6[0] — p5[0]);

double alpha = 180 * (s — Si[5]) / (Math.PIxr);

p = alpha / 90;

X[0] = p5[0] — Math.sin (alpha);

X[1] = p5[1] + (r — Math.cos(alpha));

X[2] = p5[2] + p * (p6[2] — p5[2]);

System.out.println (”Moving node is between p5 and p6”);

System.out.println (" X6 = [ 7 + X[0] + 7 7 +X[1] + 7 )7
FX[2] 4] )

/*% When moving node is on outside track, cw, at S6 to
S7 area, return its position
@return X

*/
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else if( (dir = 1) && (track = 1) && ( s > So[6]) && (s

<= So[7]) ){
229 p= (s —So[6])/(So[7] — So[6]);
for(int j = 0; j <= 2; j++){
231 X[7] = p6o[7] + p * (p7[2] — p6[2]);
}
233 System.out.println (”Moving node is between p6o and p70”);

System.out.println (7 X7 = [ 7 + X[0] + 7 ,7 + X[1] + 7
+X[2] + ” ]77 );

235 }
237 /**% When moving node is on inside track, cw, at S6 to S7
area, return its position
@return X
239 */
else if( (dir = 1) && (track = 0) && ( s > Si[6]) && (s
<= Si[7])
241 p= (s — Si[6])/(Si[7] — Si[6]);
for(int j = 0; j <= 2; j++){
213 }X['} p6[j] +p * (p7[j] — p6[jl);
245 System.out.println (”Moving node is between p6 and p7”);
System.out.println (" X7 = [ 7 + X[0] + 7 ,” + X[1] + 7
+X[2] +7 7 );
247 }
249
/**% When moving node is on outside track, cw, at S7 to
S8 area, return its position
251 Qreturn X
*/
253 else if( (dir = 1) && (track = 1) && ( s > So[7]) && (s
<= So[8]) N
double r = Math.abs(p0o[0] — p70[0]);
255 double alpha = 180 % (s — So[7]) / (Math.PIxr);
p = alpha / 90;
257 X[0] = p7o][0] (r — Math.cos(alpha));

+
X[1] = p7o[1] + Math.sin (alpha);
+

259 X[2] = p7o[2] + p = (pOo[2] — pTo[2]);
System.out.println (”Moving node is between p7o and p0o”);
261 System.out.println(”? X8 = [ 7 + X[0] + 7 ,” + X[1] 4+ 7

FX[2] 47 ) )

263
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269

279

289

291

293

295

299

/*+ When moving node is on inside track, cw, at S7 to S8
area, return its position
@return X

*/
else if( (dir = 1) && (track = 0) && ( s > Si[7]) && (s
<= Si[8]) ){

double r = Math.abs(p0[0] — p7[0]);

double alpha = 180 * (s — Si[7]) / (Math.PIxr);

p = alpha / 90;

X[0] = p7[0] + (r — Math.cos(alpha));

X[1] = p7[1] + Math.sin (alpha);

X[2] = p7[2] + p = (p0[2] — P7[2]);

System.out.println (”Moving node is between p7 and p0”);

System.out.println (” X8 = [ 7 + X[0] + 7 7 + X[1] + 7
FX[2] 47 )7 )

/**% When moving node is on outside track, ccw, at
SoCounter0 to SoCounterl area, return its position

@return X
/

else if( (dir = 0) && (track = 1) && ( s > SoCounter [0])
&& (s <= SoCounter[1]) ){

double r = Math.abs(p0o[0] — p7o[0]);

double alpha = 180 % (s — SoCounter [0]) / (Math.PIxr);

p = alpha / 90;

X[0] = p0o[0] — Math.sin (alpha);

X[1] = pOo[1l] — (r — Math.cos(alpha));

X[2] = pOo[2] + px(pTo[2] — pOo[2]);

System.out.println (”Moving node is between plOo and p70”);

System.out.println (" X = [ 7 4+ X[0] + 7 ,” + X[1] + 7 ,”
+X[2] +7 7 );

/*% When moving node is on inside track, ccw, at
SiCounter0 to SiCounterl area, return its position

@Qreturn X
*/

else if( (dir = 0) && (track = 0) && ( s > SiCounter[0])
&& (s <= SiCounter [1]) ){

double r = Math.abs(p0[0] — p7[0]);

double alpha = 180 % (s — SiCounter[0]) / (Math.PIxr);

p = alpha / 90;

X[0] = p0[0] — Math.sin (alpha);

X[1] = p0[1] — (r — Math.cos(alpha));
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301

303

305

307

309

311

313

317

321

325

327

329

331

333

X[2] = p0[2] + px(p7[2] — pO[2]);

System.out.println (”Moving node is between p0 and p7”);

System.out.println (" X = [ 7 4+ X[0] + 7 ,” + X[1] + 7 ,”
+ X[2] + 7 ]77 );

/*+ When moving node is on outside track, ccw, at
SoCounterl to SoCounter2 area, return its position
@return X
*/
else if( (dir = 0) && (track = 1) && ( s > SoCounter[1])
&& (s <= SoCounter[2]) ){
/(

p = (s — SoCounter [1]) /(SoCounter [2] — SoCounter[1]) ;
for(int j = 0; j <= 2; j++){
X[j] = p7olj] + p * (p6o[j] — pTo[j]);

}

System.out.println (”Moving node is between p7o and p6o”);
System.out.println (" X = [ 7 4+ X[0] + 7 ,” + X[1] + 7 ,”
+X[2] +7 7 );

/*+ When moving node is on inside track, ccw, at
SiCounterl to SiCounter2 area, return its position

@return X
f

else if( (dir = 0) && (track = 0) && ( s > SiCounter[1])
&& (s <= SiCounter [2]) ){

p = (s — SiCounter[1]) /(SiCounter [2] — SiCounter[1]) ;

for(int j = 0; j <= 2; j++){

X[j] =p7[i] +p * (p6[i] — p7[i]);

System.out.println (”Moving node is between p7 and p6”);
System.out.println (" X = [ 7 4+ X[0] + 7 ,” + X[1] + 7 7
+ X[2] + 7 ]7 )5

/*+ When moving node is on outside track, ccw, at
SoCounter2 to SoCounter3 area, return its position

@return X
f

else if( (dir = 0) && (track = 1) && ( s > SoCounter[2])
&& (s <= SoCounter [3]) ){

double r = Math.abs(p6o[0] — pb5o[0]);

double alpha = 180 * (s — SoCounter[2]) / (Math.PIxr);
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337 p = alpha / 90;
X[0] p6o[0] + (r — Math.cos(alpha));

339 X[1] p6o[1] — Math.sin (alpha);
X[2] = p6o[2] + px(p5o[2] — p6o[2]);

341 // System.out.println (" Moving node is between pOo and plo”);
System.out.println (" X = [ 7 4+ X[0] + 7 ,” + X[1] + 7 ,”

+X[2] +7 7 );
343 }

345 /** When moving node is on inside track, ccw, at
SiCounter2 to SiCounter3 area, return its position
Q@return X

347 */
else if( (dir = 0) && (track = 0) && ( s > SiCounter[2])
&& (s <= SiCounter [3]) ){

349 double r = Math.abs(p6[0] — p5[0]);

double alpha = 180 * (s — SiCounter[2]) / (Math.PIxr);
351 p = alpha / 90;

X[0] = p6[0] + (r — Math.cos(alpha));
353 X[1] = p6[1] — Math.sin (alpha);

X[2] = p6[2] + px(p5[2] — p6[2])

2]);
355 System.out.println (" X = [ 7 4+ X[0] + 7 ,” + X[1] + 7 ,”

FX[2] 47 )7 )

/** When moving node is on outside track, ccw, at
SoCounter3 to SoCounterd area, return its position
359 @return X
*/
361 else if( (dir = 0) && (track = 1) && ( s > SoCounter [3])
&& (s <= SoCounter [4]) ){
p = (s — SoCounter[3]) /(SoCounter [4] — SoCounter[3]) ;
363 for(int j = 0; j <= 2; j++){
X[j] = pool[j] +p = (pdo[j] — pbolj]);
365
System.out.println (? X = [ 7 + X[0] + 7 ,” + X[1] + 7 7
+X[2] +7 7 );
367 }

369 /**% When moving node is on inside track, ccw, at
SiCounter3 to SiCounter4d area, return its position
@return X

371 */
else if( (dir = 0) && (track = 0) && ( s > SiCounter [3])
&& (s <= SiCounter [4]) ){
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383
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393

395

397

399

401

403

405

407

p = (s — SiCounter [3]) /(SiCounter [4] — SiCounter[3]) ;
for(int j = 0; j <= 2; j++){
X[j] = p5[j]l +p * (p4[j] — p5[il);

System.out.println (" X = [ 7 4+ X[0] + 7 ,” + X[1] + 7 7
+X[2] + 77 )

/*% When moving node is on outside track, ccw, at
SoCounterd to SoCounterb5 area, return its position

@return X
*/

else if( (dir = 0) && (track = 1) && ( s > SoCounter[4])
&& (s <= SoCounter [5]) ){

double r = Math.abs(p30[0] — pdo[0]);

double alpha = 180 % (s — SoCounter[4]) / (Math.PIxr);

p = alpha / 90;

X[0] = p40[0] + Math.sin (alpha);

X[1] = p4o[1] + (r — Math.cos(alpha));

X[2] = p4o[2] + px(p30[2] — pdo[2]);

System.out.println (” X = [ 7 + X[0] + 7 ,” + X[1] + 7 )7
FX[2) 47 )7 )

/*% When moving node is on inside track, ccw, at
SiCounterd to SiCounterb area, return its position

@return X
*/

else if( (dir = 0) && (track = 0) && ( s > SiCounter[4])
&& (s <= SiCounter [5]) ){

double r = Math.abs(p3[0] — p4[0]);

double alpha = 180 % (s — SiCounter[4]) / (Math.PIxr);

p = alpha / 90;

X[0] = p4[0] 4+ Math.sin (alpha);

X[1] p4[1] + (r — Math.cos(alpha));

X[2] = p4[2] + p*(p3[2] — p4[2]);

System.out.println (” X = [ 7 + X[0] + 7 )7 + X[1] + 7 )7
TX[2) )T )

/*% When moving node is on outside track, ccw, at
SoCounter5 to SoCounter6 area, return its position
@return X

*/
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443

else if( (dir = 0) && (track = 1) && ( s > SoCounter[5])
&& (s <= SoCounter[6]) ){

p = (s — SoCounter [5]) /(SoCounter [6] — SoCounter [5]) ;

for(int j = 0; j <= 2; j++){

}XIJ} =p3o[j] + p * (p20[j] — p3o[jl]);

System.out.println (” X = [ 7 + X[0] + 7 ,” + X[1] + 7 .7
+X[2] + 7 7 );

/*x When moving node is on inside track, ccw, at
SiCounterb5 to SiCounter6 area, return its position

@return X
f

else if( (dir = 0) && (track = 0) && ( s > SiCounter[5])
&& (s <= SiCounter [6]) ){

p = (s — SiCounter [5]) /(SiCounter [6] — SiCounter [5]) ;

for(int j = 0; j <= 2; j++){

X[j] =p3[i] +p = (p2[i] — p3[i]);

System.out. println (” X = [ 7 + X[0] + 7 .7 + X[1] + 7 .7
+ X[2] +7 17 )5

/*% When moving node is on outside track, ccw, at
SoCounter6 to SoCounter7 area, return its position

@return X
*/

else if( (dir = 0) && (track = 1) && ( s > SoCounter[6])
&& (s <= SoCounter [7]) ){

double r = Math.abs(plo[0] — p20[0]);

double alpha = 180 % (s — SoCounter[6]) / (Math.PIxr);

p = alpha / 90;

X[0] = p20[0] — (r — Math.cos(alpha));

X[1] p20[1] + Math.sin (alpha);

X[2] = p20[2] + px(plo[2] — p20[2]);

System.out.println (” X = [ 7 + X[0] + 7 )7 + X[1] + 7 )7

TX[2) )T )

/*% When moving node is on inside track, ccw, at
SiCounter6 to SiCounter7 area, return its position
@return X

*/
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449

459

461
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465

467

469

}

else if( (dir = 0) && (track = 0) && ( s > SiCounter[6])
&& (s <= SiCounter [7]) ){

double r = Math.abs(pl[0] — p2[0]);

double alpha = 180 % (s — SiCounter[6]) / (Math.PIxr);

p = alpha / 90;

] = p2[0] — (r — Math.cos(alpha));

] p2[1] + Math.sin (alpha);

] = p2[2] + px(pl[2] — p2[2])

System.out.println (” X = [ 7 +

+X[2] + 77 )

X[0
X[1
X[2

X[O] + b2 ’77 +X[1] _"_ 7 777

/*% When moving node is on outside track, ccw, at
SoCounter7 to SoCounter8 area, return its position

@return X
*/

else if( (dir = 0) && (track = 1) && ( s > SoCounter [7])
&& (s <= SoCounter [8]) ){

p = (s — SoCounter [7]) /(SoCounter [8] — SoCounter[7]) ;

for (int j = 0; j <= 2; j++){

}X[H = plo[j] + p * (pOo[j] — plo[j]);

System.out.println (" X = [ 7 4+ X[0] + 7 ,” + X[1] + 7 7
+ X[2] +7 7 );

/**% When moving node is on inside track, ccw, at
SiCounter7 to SiCounter8 area, return its position
@return X
/
else if( (dir = 0) && (track = 0) && ( s > SiCounter[7])
&& (s <= SiCounter [8]) ){
p = (s — SiCounter [7]) /(SiCounter [8] — SiCounter[7]) ;
for(int j = 0; j <= 2; j++){
X[j] =p1[j] +p = (pO[j] — p1[j]);

System.out.println (" X = [ 7 4+ X[0] + 7 ,” 4+ X[1] + 7
FX[2] 4] )
}

return X;
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A.8 leastSquares.java

Full implementation of the least squares method discussed in Chapter

public class leastSquares {

> private double[] xHat;
private double[] d;

1 private double[][] Ps;
private double epsilon;

¢ private double[] var;
private double[] deltaX;

s private double[][] Cx;
private double[] rHat;

10 private double sigmaSquare;
private static int m, n;

12 String contents = "7
PrintStream outReport = null;

16
/%%
18 * Using Least Squares Method to calculate the position of
moving node.

20 % @param epsilon = parameter (cm); if length of deltaX
vector in cm < epsilon ,

* then the least squares
iteration process ends.

22 x @param d distances between moving node to stationary nodes
in cm.
x Q@param var variances of distances in cm”2.
24 x @Qparam Ps position of stationary nodes in cm.

x @param xHat estimated position of moving node.
26 */

public leastSquares(double epsilon, double[] d, double[] var,
28 double [][] Ps, double[] xHat) {

30 if (d = null || var = null || Ps = null || xHat = null
|| d.length < 3 || Ps.length < 3 || xHat.length < 3)

32 throw new IllegalArgumentException(”invalid parameter”);
this.epsilon = 0.1;

34 this.d = d;
this.var = var;

36 this.Ps = Ps;
this.xHat = xHat;

38 this.m = Ps.length;
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this.n = Ps[0].length;

40

2 /%
* get estimated position.
%/
int count = 0; int maxcount = 1000;

16 double lengthDeltaX = 100000.0;
double [][] P = Matrix.getP (var);
s double [] dHat = new double [m];
deltaX = new double [m];
50
while (lengthDeltaX > epsilon && count < maxcount){
52 // estimated distance (4.6)
double ds = 0.0;
54 for (int j = 0; j <m; j++) {
for (int i = 0; i < n; i++) {
56 ds = ds + (xHat[i] — Ps[j]][1
//distance squared

) «(xHat[i] — Ps[j][i]);

}

58 dHat[j] = Math.sqrt (ds);
ds = 0.0;

60 }

62 // closure vector (4.8)
double [] w = Matrix.getClosure (dHat, d);

64 double [][] A = Matrix.getA (dHat, xHat, Ps);
double [][] ATP = new double[n][m];

66 ATP = Matrix.times (Matrix . transpose (A), P);
double [][] N = new double[n][n];

68 N = Matrix. times (ATP, A);
double [][] NI = new double[n][n];

70 NI = Matrix.inverse (N);
double [][] T = new double[n][n];

72 I = Matrix.times (N, NI);

74 double [] ATPW = new double[n];
ATPW = Matrix. times21 (ATP, w);
76 deltaX = Matrix.times21 (NI, ATPW);

78 // Update estimated position (4.11)
for (int i = 0; i < n; i++) {

80 xHat[1] = xHat[i] + deltaX[i];
}

82 lengthDeltaX = 0.0;
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double sqrSum = 0.0;
84 for (int i = 0; i < n; i++) {

sqrSum += deltaX[i] = deltaX[i];
86 }

lengthDeltaX = Math.sqrt (sqrSum) ;
88 count++;

90 /%
x+ Get estimated vector of residuals.
92 * @param xHat estimated position.

*/

double [] AbydeltaX = new double[m];
96 AbydeltaX = Matrix.times21 (A, deltaX);
rHat = Matrix.vectorPlus (AbydeltaX, w);

94

98

100
/ *

102 x Get estimated reference variance of the observations.
* @param xHat estimated position.

104 */

106 double [] rTP = new double [m];
for (int j = 0; j <m; j++) {
108 for(int i = 0; i<m; i+—|—) {
rTP[i] += rHat[i] = P[i][j];
110 }
}

112 sigmaSquare = Matrix.timesll (rTP, rHat) / (m — n);

114 /*
x Get covariance.
116 x @param xHat estimated position.
*/
s Cx = Matrix. times02 (sigmaSquare ,
Matrix.inverse (Matrix . times (Matrix. times (Matrix. transpose (A) ,

P), A)));
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A.9 diffCal.java

Used to compute the position difference(Ax, Ay, Az) = (Z,y,2) - (2,9, 2),
and the difference b between the estimated and approximate true positions.

public class diffCal {

public static void main(String []
int i,j,u,v,t=0;
int count = 0;
double disadd = 0;

double dis,

double sqrtCladd
double sqrtC2add
double sqrtC3add
double sSadd = 0

double []
double []
double []
double []

—256.77,

rHatadd

sigmaSquaredif = {0.0,0.0,0.0,0.0,0.0,0.0};

.0;

disSquare = 0.0;

0.

0;
0;
0

0.0
0.0;

{0.0,0.0,0.0,

args) {

0.0,0.0,0.0};

sigmaSquare = new double [6];

avrHat = {—369.43,
—339.77};

—285.99, —142.57, —-93.65,

java.text.DecimalFormat df = new
java.text.DecimalFormat (7 0.00”);
df.setRoundingMode (RoundingMode . HALF UP) ;

try {
FileReader readl = new FileReader(”src/trainPos.txt”);
FileReader read2 = new FileReader(”src/trainPosE.txt”);

N

BufferedReader brl = new BufferedReader (readl);
BufferedReader br2 = new BufferedReader(read2);
String rowl ,row?2;

while ((rowl = brl.readLine())!=null && (row2 =
br2.readLine () )!=null ){

if (rowl.length() < 50) // check if trainPos available
{
rowl = null;
row2 = null;
System.out.println (”Estimated position doesn’t exsit!”);
telse
{

t = rowl.indexOf(”:7);
String Javatime = rowl.substring (t,t+15);
System.out.println (7 Java time at 7 + Javatime);
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= rowl.indexOf(” [”)

= rowl.indexOf("]”);

= row2.indexOf (" [7);
v = row2.indexOf(”]”);

43 String strl = rowl.substring(i+2, j—1);
System.out.println (strl);

15 String str2 = row2.substring (u+2, v—1);
System.out.println (str2);

17 String [] arrayXHat = strl.split(” 7);
double [] xHat = new double [arrayXHat.length];

49 int m = 0;
for (String str : arrayXHat) {

51 xHat [mt++] = Double. parseDouble(str);

}

String [] arrayXBar = str2.split(” 7);

39 )

o e e

55 double [] xBar = new double [arrayXBar.length];
int n = 0;
57 for (String str : arrayXBar) {

xBar [n++4] = Double. parseDouble(str);

61 double [] deltaX = new double[xBar.length |;

int a = 0;
63 a = rowl.indexOf(”7s”);

String str3 = rowl.substring(a);
65 int b = 0;

int ¢ = 0;

67 b = str3.indexOf("=");
¢ = str3.indexOf(” 7);

69 String strd = str3.substring(b+1,¢); //sqrtC[1][1]
String str5 = str3.substring(c+2);

71 int d = 0;
d = str5.indexOf(”"s”);

73 String str6 = strb.substring(d);
int e = 0;

75 int f = 0;

e = str6.indexOf(7=");
77 f = str6.indexOf(” 7);
String str7 = str6.substring(e+1,f);
79 String str8 = str6.substring ({42);
int g = 0;
81 g = str8.indexOf(”s”);
String str9 = str8.substring(g);
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89

91

97

99

101

107

109

111

113

117

121

int h = 0;

int 1 = 0;

h = str9.indexOf("=");

1 = str9.indexOf(” 7);

String strl0 = str9.substring (h+1,1);

String strll = str9.substring (1415);

String strl2 = rowl.substring (j+2);

int o = 0;

int p = 0;

o = str12.indexOf(”[”);

p = strl2.indexOf("]”);

String str13 = strl2.substring (o+2, p—1); //rHat
String [] arrayrHat = strl3.split(” 7);

double [] rHat = new double [arrayrHat.length];
int q = 0;

for (String str : arrayrHat) {

rHat [q++] = Double. parseDouble (str);

if (xHat[0]>10000 ||xHat[1]>10000 ||
xHat[2] >10000||xHat[0] <0)
{

System.out.println (” Position didn’t converge in the
right way.”);

System.out.println ();

}

else{

double sqrtCl = Double.parseDouble(str4);

double sqrtC2 = Double.parseDouble(str7);

double sqrtC3 = Double.parseDouble(strl0);

double sigmaSquared = Double.parseDouble(strll);

System.out.print (” Position difference: xBar — xHat =

(7 )
for (int k = 0; k < xBar.length; k ++)

deltaX [k] = xBar[k] —xHat[k];
disSquare +=deltaX [k] * deltaX [k];
System.out . print (df.format (deltaX [k]) + "&”);

}
dis = Math.sqrt (disSquare);
disSquare = 0;

System.out.println (7)”);
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System.out.println (7 distance difference: 7 +
df.format (dis));
125 count ++;
sqrtCladd = sqrtCladd + sqrtCl;
127 sqrtC2add = sqrtC2add + sqrtC2;
sqrtC3add = sqrtC3add + sqrtC3;
129 sSadd = sSadd + sigmaSquared;
for (int k = 0; k<rHat.length ;k++){
131 rHatadd [k] = rHatadd [k] +rHat[k];
sigmaSquaredif [k] =(rHat[k] — avrHat[k]) * (rHat[k]
— avrHat [k]) ;
133 System.out.println (”average rHat[” + k +7] =7 4+
df.format (rHatadd [k]/count));
System.out.println (”sigmaSquared [” + k +7] = +
df . format (sigmaSquaredif[k]/(count—1)));

}
137 disadd = disadd + dis;

}

139 System.out.println (7 average sqrtC[1][1] =7 4
df . format (sqrtCladd/count));
System.out.println (7 average sqrtC[2][2] =7 +
df . format (sqrtC2add/count));
141 System.out.println ("average sqrtC[3][3] =7 +
df.format (sqrtC3add/count) ) ;
System.out.println (”average sigmaSquared =7 +
df.format (sSadd/count)) ;
143 System.out.println (”average distance difference =7 +

df.format (disadd/count));
System.out. println (count);
145 System.out.println (”unsucessfull lines: 7 4+ (line —
count));
}

147 }

tcatch (FileNotFoundException e){
149 e.printStackTrace () ;

}catch (IOException e){
151 e.printStackTrace () ;

}
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Appendix B

Test Result for the MobiPos
Application

B.1 Full Data for Test 2

[JAVA_TIME] [No_of _VALS] [SEQ_NUM] [DISTANCES] [NODE_ID] [RSSI_VAL]
[RSSI_TIME] [CONTINUED]

1384889721889 6 203 [597.48 115.36 143.64 830.2 926.41 199.59 ] [23 456 7
] 10 5 3 -13 -14 0 ] [659997 660051 660106 660152 660192 660249 | 0
1384880722876 6 204 [430 128.72 222.72 248.53 345.33 222.72 | [23 456 7 |
7 4-1-2-5-1] [660997 661049 661102 661158 661198 661257 | 0
1384889723842 6 205 [1153.56 143.64 597.48 1602.87 277.33 830.2 ] [23 4 5
6 7] [-16 3 -10 -19 -3 -13 ] [662005 662052 662100 662148 662202 662254 ] 0
1384889724820 6 206 [3853.46 178.86 309.47 535.44 1153.56 430 | 2345 6
7] [-27 1-4-9-16 -7 ] [662993 663049 663098 663149 663198 663247 | 0
1384889725800 6 207 [666.72 597.48 430 248.53 926.41 385.35 | [23 456 7 |
[-11 -10 -7 -2 -14 -6 ] [663999 664049 664096 664156 664194 664253 | 0
1384889726783 6 208 [830.2 160.29 128.72 597.48 479.83 385.35 | [234 56 7
] 13 24 -10 -8 -6 ] [665000 665050 665098 665143 665195 665254 ] 0
1384889727757 6 209 [248.53 222.72 178.86 385.35 926.41 199.59 | [23 45 6
7] [-2-11-6-14 0] [666004 666047 666097 666148 666201 666253 | 0
1384889728728 6 210 [309.47 535.44 199.59 535.44 222.72 597.48 | [23 45 6
7] [4-90-9-1-10] [666999 667046 667107 667152 667198 667248 | 0
1384889729708 6 211 [178.86 277.33 830.2 479.83 597.48 479.83 ] [234 56 7
] [1-3-13 -8 -10 -8 ] [667998 668048 668100 668152 668201 668247 ] 0
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1384889730687 6 212 [248.53 199.59 128.72 430 666.72 345.33 ] [23 456 7 |
[-204-7-11-5] [669002 669055 669105 669146 669200 669251 | 0
1384889731662 6 213 [143.64 1287.24 199.59 743.99 926.41 479.83 ] [23 4 5
67][3-170-12-14 -8 ] [669997 670052 670102 670154 670197 670247 ] 0
1384889732644 6 214 [597.48 309.47 128.72 4798.31 535.44 479.83 ] [234 5
67][-10-44-29-9-8][671001 671046 671099 671146 671198 671247 ] 0
1384889733611 6 215 [1436.41 178.86 597.48 743.99 248.53 385.35 | (234 5
67][-181-10-12-2-6] [672006 672046 672102 672146 672194 672251 | O
1384889734588 6 216 [385.35 385.35 143.64 597.48 926.41 597.48 | 234 56
7][-6-63-10-14 -10 ] [673000 673054 673099 673148 673197 673250 | 0
1384889735571 5 217 [535.44 199.59 597.48 385.35 345.33 ] 2356 7] [-90
-10 -6 -5 ] [673997 674058 674156 674202 674254 ] 0

1384889736544 6 218 [666.72 926.41 830.2 926.41 535.44 1436.41 ] 23456
7] [-11-14 -13 -14 -9 -18 ] [675002 675052 675099 675143 675199 675251 ] O
1384889737526 6 219 [1602.87 479.83 430 666.72 128.72 1033.77 ] 234 56
7][-19-8-7-11 4 -15 ] [675999 676047 676104 676145 676207 676249 | 0
1384889738496 6 220 [666.72 597.48 666.72 1153.56 430 830.2][23 456 7 |
[-11 -10 -11 -16 -7 -13 ] [677005 677052 677100 677156 677203 677251 | 0
1384889739471 6 221 [597.48 479.83 199.59 1602.87 479.83 1033.77 ] [234 5
67][-10-80-19-8-15] [677997 678049 678103 678151 678204 678249 | 0
1384889740449 6 222 [248.53 597.48 385.35 830.2 430 666.72 | 23456 7 ]
[-2-10 -6 -13 -7 -11 ] [678997 679043 679102 679146 679200 679249 | 0
1384889741427 6 223 [178.86 743.99 309.47 1033.77 345.33 597.48 | [23 4 5
67][1-12-4-15-5-10] [680000 680055 680100 680153 680195 680248 | O
1384889742408 6 224 [385.35 479.83 743.99 830.2 1033.77 666.72 | [23 4 56
7][6-8-12-13-15-11] [681001 681044 681098 681146 681203 681251 | 0
1384889743371 6 225 [1033.77 743.99 160.29 1033.77 535.44 830.2 | [23 45
67][-15-122-15-9-13 ] [681999 682051 682109 682150 682200 682259 | 0
1384889744355 6 226 [666.72 597.48 743.99 535.44 199.59 1287.24 | [23 4 5
6 7][-11-10-12-90-17 ] [682995 683050 683099 683157 683198 683244 ] 0
1384889745329 6 227 [479.83 830.2 743.99 926.41 277.33 430 | 23456 7]
[-8 -13 -12 -14 -3 -7 | [684002 684047 684093 684145 684206 684251 | 0
1384889746305 6 228 [277.33 7439.86 345.33 926.41 535.44 535.44 ] (2345
67][3-33-5-14-9-9] [685001 685045 685100 685150 685205 685254 | 0
1384889747285 6 229 [1033.77 666.72 309.47 1033.77 199.59 385.35 | [23 45
67][-15-11-4-150 -6 ] [685999 686049 686104 686145 686204 686260 | 0
1384889748266 6 230 [666.72 430 248.53 2773.28 309.47 1602.87 | 234 56
7] [-11-7-2-24 -4 -19 ] [686997 687053 687093 687153 687209 687252 | 0
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1384889749242 6 231 [385.35 1033.77 385.35 926.41 199.59 926.41 ] [23 4 5
67][-6-15-6-14 0 -14 ] [688001 688047 688093 688156 688199 688244 | 0
1384889750222 6 232 [535.44 597.48 277.33 535.44 199.50 535.44 ] [23 45 6
719 -10 -3 -9 0 -9 ] [689000 689054 639099 689152 689201 689253 | 0
1384889751191 6 233 [479.83 1033.77 160.29 666.72 222.72 128.72 ] [23 4 5
67][-8-152-11 -1 4 | [690006 690050 690097 690152 690205 690249 | 0
1384889752176 6 234 [535.44 1436.41 743.99 277.33 1995.89 1033.77 ] [2 3 4
56 7] [-9-18 -12 -3 -21 -15 ] [690995 691051 691092 691152 691200 691254
10

1384889753144 6 235 [597.48 385.35 1436.41 597.48 103.38 385.35 | [23 4 5
6 7] [-10 -6 -18 -10 6 -6 ] [692003 692054 692101 692150 692199 692251 | 0
1384889754126 6 236 [1033.77 597.48 926.41 597.48 160.29 309.47 | [23 4 5
6 7] [-15-10 -14 -10 2 -4 ] [692994 693046 693101 693144 693206 693250 ] 0
1384889755088 6 237 [926.41 926.41 666.72 597.48 385.35 743.99 ] [23 4 5 6
7] [-14 -14 -11 -10 -6 -12 ] [694000 694049 694101 694150 694198 694253 ] 0
1384889756076 6 238 [479.83 479.83 479.83 597.48 143.64 248.53 ] [23 45 6
7] [-8 -8 -8 -10 3 -2 ] [694995 695048 695103 695152 695199 695248 | 0
1384889757051 6 239 [926.41 666.72 277.33 479.83 535.44 597.48 | [23 45 6
7] [-14 -11 -3 -8 -9 -10 ] [696002 696053 696100 696148 696199 696244 | 0
1384889758029 6 240 [1287.24 666.72 479.83 1788.62 926.41 479.83 ] [23 4 5
6 7] [-17-11 -8 -20 -14 -8 ] [696996 697047 697094 697152 697202 697254 | 0
1384889759011 6 241 [1033.77 743.99 277.33 248.53 74.4 248.53 | 23456 7
] 15 -12 -3 -2 9 -2 ] [697999 698056 698105 698145 698196 698251 | 0
1384889759980 6 242 [597.48 309.47 345.33 666.72 160.29 926.41 ] [23 45 6
71 [-10 -4 -5 -11 2 -14 ] [699006 699049 699096 699150 699200 699244 | 0
1384889760959 6 243 [597.48 597.48 830.2 277.33 1033.77 385.35 ] [23 4 5 6
7] [-10 -10 -13 -3 -15 -6 | [699999 700055 700103 700157 700197 700255 | 0
1384889761931 6 244 [1602.87 830.2 479.83 345.33 248.53 345.33 ] [23 45 6
7] [-19 -13 -8 -5 -2 -5 ] [700999 701043 701106 701145 701198 701250 ] 0
1384889762910 6 245 [535.44 597.48 1287.24 926.41 926.41 926.41 ] [23 45 6
71 [:9 -10 -17 -14 -14 -14 ] [702000 702049 702109 702147 702196 702247 ] 0
1384889763883 6 246 [830.2 430 385.35 430 178.86 830.2] [234 56 7] [-13
7 -6 -7 1-13 ] [703000 703054 703103 703152 703202 703255 | 0
1384889764873 6 247 [535.44 743.99 385.35 535.44 597.48 199.50 | [23 45 6
719 -12 -6 -9 -10 0 ] [704000 704048 704094 704149 704198 704250 | 0
1384889765840 6 248 [535.44 535.44 743.99 160.29 479.83 248.53 ] [23 4 5 6
71 [:9-9-12 2 -8 -2 ] [705007 705051 705101 705147 705199 705243 ] 0
1384889766808 6 249 [535.44 479.83 830.2 430 222.72 248.53 | 2345 6 7 ]
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-9 -8 -13 -7 -1 -2 ] [706000 706058 706100 706151 706197 706256 ] 0
1384889767802 6 250 [430 2773.28 479.83 479.83 479.83 1287.24 | [23 4 5 6
7] [-7-24 -8 -8 -8 -17 ] [706995 707051 707103 707155 707204 707250 ] 0
1384889768771 6 251 [535.44 926.41 535.44 128.72 160.29 385.35] [23 45 6
719 -14-9 4 2 -6 ] [708006 708052 708098 708148 708195 708248 ] 0
1384889769738 6 252 [277.33 743.99 597.48 830.2 1153.56 597.48 | [23 45 6
7] [-3 -12 -10 -13 -16 -10 ] [709005 709059 709100 709146 709194 709255 | 0
1384889770721 6 253 [277.33 1033.77 1153.56 1033.77 178.86 178.86 ] [2 3 4
56 7] [-3-15-16-15 1 1] [709996 710045 710095 710154 710199 710252 ] 0
1384889771699 6 254 [666.72 535.44 479.83 222.72 160.29 597.48 | [23 45 6
7] [-11-9 -8 -12-10 ] [710999 711050 711095 711150 711201 711250 ] 0
1384889772666 6 255 [597.48 597.48 597.48 222.72 1033.77 1033.77 | [23 4 5
6 7] [-10 -10 -10 -1 -15 -15 | [711998 712046 712103 712145 712202 712254 |
0

1384889773650 6 256 [597.48 1436.41 666.72 666.72 479.83 385.35 ] [2 3 4 5
6 7] [-10 -18 -11 -11 -8 -6 ] [712994 713046 713104 713159 713202 713251 ] 0
1384889774632 6 257 [926.41 1287.24 926.41 199.59 345.33 430 | 23456 7
] [[14 -17 -14 0 -5 -7 ] [714001 714050 714103 714159 714199 714254 | 0
1384889775605 6 258 [479.83 597.48 309.47 479.83 199.59 199.59 ] [23 45 6
7] [-8-10 -4 -8 0 0 ] [715003 715057 715101 715153 715207 715241 | 0
1384889776585 6 259 [1602.87 309.47 743.99 830.2 1436.41 345.33 ] [2 3 4 5
6 7] [-19 -4 -12 -13 -18 -5 ] [716004 716046 716103 716150 716201 716257 | 0
1384889777555 6 260 [430 597.48 1033.77 248.53 666.72 128.72] 23456 7
] [-7-10 -15 -2 -11 4 ] [717002 717055 717108 717148 717203 717248 ] 0
1384889778539 6 261 [479.83 926.41 666.72 309.47 277.33 83.02] [23456 7
| [[8-14 -11 -4 -3 8 ] [717996 718050 718099 718145 718202 718252 ] 0
1384889779505 6 262 [248.53 666.72 926.41 479.83 479.83 222.72 | [23 45 6
7] [-2-11 -14 -8 -8 -1 ] [719007 719046 719098 719153 719198 719250 ] 0
1384889780485 6 263 [535.44 535.44 430 248.53 666.72 2485.27 | 23456 7
] [[9-9 -7 -2 -11 -23 ] [719998 720043 720091 720154 720202 720244 | 0
1384889781512 6 264 [1995.89 666.72 830.2 743.99 666.72 277.33 ] [23 45 6
7] [-21 -11 -13 -12 -11 -3 ] [720993 721052 721096 721148 721197 721251 ] 0
1384889782435 5 265 [277.33 926.41 385.35 385.35 128.72 | [34 56 7] [-3-14
-6 -6 4 ] [722046 722102 722144 722204 722248 | 0

1384889783410 6 266 [666.72 479.83 666.72 535.44 926.41 178.86 ] [23 4 5 6
7] [-11 -8 -11 -9 -14 1] [722996 723048 723096 723145 723204 723254 ] 0
1384889784395 6 267 [277.33 345.33 535.44 385.35 1287.24 222.72 ] 23 4 5
6 7] [-3-5-9-6-17 -1 ] [723993 724058 724105 724146 724203 724250 | 0
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1384889785375 6 268 [345.33 535.44 345.33 199.59 1153.56 222.72 ] 23 4 5
67][-5-9-50-16 -1 ] [725000 725053 725096 725148 725207 725250 | 0
1384889786344 6 269 [743.99 222.72 385.35 830.2 1033.77 128.72] 2345 6
7] [-12-1-6 -13 -15 4 ] [726001 726046 726103 726142 726194 726250 | 0
1384889787328 6 270 [277.33 597.48 479.83 160.29 743.99 115.36 ] 2345 6
7] [-3-10 -8 2-12 5 ] [726998 727050 727105 727152 727198 727251 | 0
1384889788301 6 271 [666.72 277.33 143.64 385.35 199.59 103.38 ] 2345 6
7] [-11-3 3 -6 0 6 ] [728003 728050 728099 728155 728194 728250 | 0
1384889789275 6 272 [535.44 535.44 597.48 1788.62 666.72 199.59 ] [23 4 5
67][-9-9-10-20 -11 0 ] [729005 729054 729098 729142 729203 729247 | 0
1384889790257 6 273 [743.99 385.35 479.83 830.2 535.44 535.44 ] 234 56 7
| [-12 -6 -8 -13 -9 -9 ] [729993 730050 730107 730152 730204 730258 | 0
1384880791232 6 274 [385.35 479.83 277.33 160.29 1033.77 597.48 | 23 4 5
67][6-8-32-15-10] [731005 731050 731107 731144 731203 731251 ] 0
1384889792213 6 275 [597.48 479.83 222.72 143.64 597.48 11536 ] 2345 6
7] [-10-8 -1 3-10 5 ] [732002 732050 732099 732146 732197 732253 | 0
1384889793179 6 276 [666.72 830.2 199.59 199.59 430 160.29 ] 234 56 7 ]
-11-13 0 0 -7 2] [733001 733050 733100 733155 733198 733256 ] 0
1384889794165 6 277 [597.48 385.35 479.83 479.83 1033.77 143.64 ] 23 4 5
6 7] [-10 -6 -8 -8 -15 3 | [733993 734048 734098 734152 734202 734253 | 0
1384889795130 6 278 [926.41 830.2 178.86 143.64 160.29 103.38 ] [234 56 7
| [-14 -13 1 3 2 6 ] [735006 735055 735093 735152 735197 735247 | 0
1384889796114 6 279 [222.72 385.35 430 1602.87 430 128.72 ] 234 5 6 7 ]
-1 -6 -7 -19 -7 4] [735998 736043 736101 736145 736200 736247 | 0
1384889797084 5 280 [666.72 1033.77 103.38 248.53 385.35 | [34 56 7] [-11
-15 6 -2 -6 | [737042 737100 737147 737200 737254 ] 0

1384889798065 6 281 [597.48 277.33 743.99 103.38 277.33 199.59 ] 2345 6
7] [F10 -3 -12 6 -3 0 ] [737998 738053 738099 738149 738201 738246 | 0
1384889799049 6 282 [597.48 309.47 222.72 160.29 479.83 430 | [23 4 56 7 ]
110 -4 -1 2 -8 -7 ] [739003 739053 739104 739149 739203 739243 | 0
1384889800018 6 283 [830.2 248.53 199.59 103.38 1033.77 309.47 | 2345 6
7] [-13-2 0 6 -15 -4 | [740006 740053 740106 740150 740199 740248 | 0
1384889800995 6 284 [160.29 743.99 345.33 345.33 666.72 597.48 ] 2345 6
7]1[2-12-5-5-11 -10 ] [741004 741053 741102 741148 741208 741254 ] 0
1384889801973 6 285 [1033.77 277.33 926.41 597.48 926.41 430 ] [23456 7
| [15 -3 -14 -10 -14 -7 | [741998 742050 742097 742146 742202 742249 | 0
1384889802941 6 286 [926.41 597.48 926.41 199.59 743.99 160.29 ] 23 45 6
7] [-14-10 -14 0 -12 2 ] [743001 743047 743104 743158 743200 743253 ] 0
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1384889803927 6 287 [1436.41 479.83 345.33 199.59 199.59 160.29 ] [2 3 4 5
67][-18-8-500 2] [743993 744046 744107 744156 744202 744244 ] 0
1384889804910 5 288 [178.86 535.44 535.44 830.2 597.48 | [34 56 7] [1 -9 -9
~13 -10 ] [745045 745101 745154 745205 745249 ] 0

1384889805888 6 289 [178.86 345.33 248.53 597.48 597.48 597.48 | [23 4 5 6
7] [1-5-2-10-10 -10 ] [746003 746051 746102 746152 746194 746254 | 0
1384889806859 6 290 [666.72 666.72 1436.41 430 597.48 345.33 | 23456 7
] 11 -11 -18 -7 -10 -5 | [747007 747046 747104 747153 747205 747256 ] 0
1384889807840 6 291 [103.38 430 479.83 830.2 248.53 178.86 ] 2345 6 7 ]
[6 -7 -8 -13 -2 1] [748004 748054 748110 748152 748195 748256 ] 0
1384889808806 6 292 [222.72 385.35 743.99 830.2 345.33 309.47 | 23456 7
] 1 -6 -12 -13 -5 -4 | [749003 749053 749107 749158 749204 749253 | 0
1384889809778 6 203 [743.99 479.83 277.33 178.86 666.72 430 ] [23 456 7]
12 -8 -3 1 -11 -7 ] [749995 750046 750103 750149 750205 750251 ] 0
1384889810756 6 294 [103.38 743.99 830.2 53.54 535.44 535.44 | [23 4 56 7
] [6-12-13 12 -9 -9 ] [750997 751056 751097 751155 751201 751254 ] 0
1384889811740 6 295 [385.35 385.35 926.41 143.64 1153.56 1033.77 ] [23 4 5
67][-6-6-14 3-16 -15 | [751999 752058 752096 752160 752199 752243 | 0
1384889812717 6 296 [160.29 277.33 479.83 160.29 830.2 430 | 23456 7 ]
2-3-82-13 -7 ] [753000 753054 753100 753150 753199 753250 ] 0
1384889813683 6 297 [430 160.29 535.44 160.29 1153.56 199.59 | 23 456 7
] [-72-92-16 0] [754002 754055 754102 754149 754205 754249 ] 0
1384889814663 6 298 [385.35 103.38 385.35 479.83 1995.89 830.2 ] [23 4 5 6
7] [6 6 -6 -8 -21 -13 ] [754997 755050 755101 755154 755198 755255 | 0
1384889815635 6 299 [128.72 2485.27 430 597.48 1995.89 830.2 ] 23456 7
] [4-23 -7 -10 -21 -13 ] [756001 756054 756099 756144 756202 756248 ] 0
1384889816620 6 300 [143.64 309.47 597.48 160.29 597.48 830.2 ] 23456 7
] [3-4-10 2-10 -13 ] [756993 757051 757102 757146 757203 757247 | 0
1384889817599 6 301 [115.36 222.72 926.41 385.35 1153.56 277.33 ] [23 4 5
67][5-1-14 -6 -16 -3 ] [757996 758042 758101 758158 758198 758255 | 0
1384889818577 6 302 [92.64 222.72 597.48 115.36 743.99 926.41 ] 23456 7
] [7-1-105-12 -14 ] [759002 759057 759095 759146 759196 759256 | 0
1384889819549 6 303 [83.02 248.53 430 178.86 1153.56 743.99 ] [23456 7]
[8 -2 -7 1 -16 -12 ] [760000 760046 760100 760147 760197 760247 ] 0
1384889820520 6 304 [83.02 430 926.41 345.33 535.44 1436.41 ] [23456 7 |
8 -7 -14 -5 -9 -18 ] [760997 761058 761108 761151 761207 761250 ] 0
1384889821498 5 305 [103.38 222.72 385.35 743.99 385.35 | [234 5 7] [6 -1
6-12 -6 ] [761996 762050 762101 762157 762252 ] 0
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1384889822486 6 306 [128.72 248.53 926.41 597.48 1033.77 1788.62 ] [23 4 5
6 7] [4-2-14 -10 -15 -20 ] [762997 763047 763108 763160 763205 763255 | 0
1384889823462 6 307 [309.47 309.47 535.44 309.47 535.44 743.99 ] [23 45 6
7] [4-4-9-4-9-12 ] [764005 764053 764099 764154 764199 764257 | 0
1384889824437 6 308 [160.29 743.99 248.53 248.53 1788.62 1602.87 | [23 4 5
67][2-12-2-2-20 -19 ] [765008 765048 765106 765148 765203 765254 | 0
1384889825414 6 309 [160.29 926.41 345.33 1153.56 1033.77 926.41 ] [23 4 5
67][2-14-5-16 -15 -14 ] [765998 766051 766104 766146 766200 766257 | 0
1384889826390 5 310 [143.64 1287.24 199.59 830.2 2773.28 | 3456 7] [3
~17 0 -13 -24 ] [767048 767094 767149 767199 767254 ] 0

1384889827363 6 311 [160.29 479.83 430 248.53 535.44 597.48 | [23 456 7 ]
[2-8 -7 -2 -9 -10 ] [768005 768048 768097 768151 768201 768254 | 0
1384889828338 6 312 [430 535.44 385.35 535.44 926.41 666.72] [23 456 7]
-7 -9 -6 -9 -14 -11 ] [769004 769052 769100 769152 769204 769251 ] 0
1384889829317 6 313 [597.48 128.72 309.47 345.33 479.83 830.2 ] 23456 7
] [[10 4 -4 -5 -8 -13 ] [770001 770054 770104 770144 770206 770255 ] 0
1384889830285 6 314 [345.33 199.59 535.44 309.47 535.44 385.35 ] [23 4 5 6
7] [-50-9-4-9-6] [771004 771050 771105 771142 771196 771250 | 0
1384889831269 6 315 [222.72 222.72 597.48 926.41 597.48 830.2] 23456 7
] -1 -1-10 -14 -10 -13 ] [771992 772049 772101 772151 772194 772251 ] 0
1384889832245 6 316 [222.72 479.83 535.44 535.44 535.44 2227.18 | [23 4 5
67][-1-8-9-9-9-22][773001 773051 773107 773144 773204 773255 ] 0
1384889833219 6 317 [143.64 248.53 479.83 1153.56 926.41 479.83 ] [23 4 5
67][3-2-8-16 -14 -8 | [773997 774054 774097 774150 774206 774255 | 0
1384889834203 5 318 [222.72 309.47 597.48 479.83 743.99 | [34 56 7] [-1 -4
-10 -8 -12 ] [775045 775105 775156 775194 775243 ] 0

1384889835171 6 319 [430 160.29 535.44 479.83 535.44 1995.80 | 23456 7
] -7 2-9 -8 -9 -21 ] [776007 776050 776109 776157 776196 776250 | 0
1384880836148 6 320 [345.33 430 830.2 743.99 926.41 743.99 | 23456 7 ]
-5 -7 -13 -12 -14 -12 ] [776993 777053 777108 777149 777200 777245 ] 0
1384889837139 6 321 [277.33 535.44 277.33 830.2 430 222.72 ] 2345 6 7 ]
[-3-9 -3 -13 -7 -1 ] [777998 778049 778109 778158 778205 778250 | 0
1384880838103 6 322 [666.72 222.72 128.72 345.33 666.72 743.99 ] [23 45 6
7] [-11-14 -5 -11 -12 ] [779005 779050 779098 779148 779203 779255 | 0
1384889839076 6 323 [248.53 103.38 277.33 1033.77 1033.77 830.2 ] [23 4 5
67][-26-3-15-15-13 ] [780000 780055 780097 780142 780196 780252 ] 0
1384889840060 6 324 [830.2 160.29 199.59 666.72 385.35 1033.77] [23 4 5 6
7] [-1320-11 -6 -15 | [780998 781043 781102 781158 781200 781249 ] 0
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1384889841031 6 325 [222.72 128.72 535.44 535.44 743.99 597.48 ] 2345 6
71 [-14-9-9-12-10 ] [782000 782050 782104 782154 782204 782249 ] 0
1384889842009 5 326 [277.33 199.59 666.72 830.2 479.83 | 3456 7] [-3 0
-11 -13 -8 ] [783056 783105 783153 783204 783259 ] 0

1384889842985 6 327 [222.72 115.36 248.53 666.72 926.41 926.41 ] 2345 6
7] [-15-2-11-14 -14 ] [784003 784050 784103 784148 784194 784253 ] 0
1384889843967 6 328 [1153.56 103.38 160.29 1153.56 277.33 597.48 ] 234 5
6 7] [-16 6 2 -16 -3 -10 | [785002 785053 785094 785151 785196 785247 | 0
1384889844946 6 329 [597.48 830.2 1153.56 479.83 430 160.29 | [23 456 7 |
[-10 -13 -16 -8 -7 2 ] [786000 786058 786095 786150 786201 786259 ] 0
1384889845928 5 330 [160.29 479.83 128.72 1033.77 430 | 3456 7] [2-8 4
-15 -7 ] [787050 787099 787146 787203 787252 ] 0

1384889846893 6 331 [926.41 92.64 666.72 178.86 830.2 479.83 | [23 456 7
] 14 7-11 1 -13 -8 ] [788008 788045 788100 788148 788202 788253 | 0
1384889847872 6 332 [597.48 222.72 385.35 248.53 926.41 385.35 ] 2345 6
7] [-10 -1 -6 -2 -14 -6 ] [788999 789055 789096 789149 789203 789254 | 0
1384889848846 6 333 [479.83 128.72 1033.77 143.64 1153.56 248.53 ] 234 5
67][-84-153-16 -2 ] [790002 790050 790098 790158 790203 790256 | 0

B.2 Plots of Distances for Observations in

Appendix
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Figure B.2: Stationary node 3 distances.
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Figure B.4: Stationary node 5 distances.
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Figure B.6: Stationary node 7 distances.
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