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Chapter 1

Introduction

1.1 Range Searching Problem

One of the fundamental areas of computational geometry is the range search problem.
Range search problem is convincingly motivated by practical applications like GIS (Geo-
graphical Information Systems), CAD (Computer Aided Design) and databases. Before
presenting a formal definition of range search problem, we need to speak about range and
its various types.

Let Rd be d-dimensional Euclidean space and R be a group of subsets of Rd. Each member
of R is called a range. Describing typical kinds of ranges may help for deeper understanding.
1. Orthogonal ranges (Rorthog) are axis parallel boxes which all sets are in the form of∏d

i=1[ai, bi] where a1, b1, ..., ad, bd ∈ R.
2. Half space range (Rhalf ) is the set of all halfspaces in Rd space.
3. Simplex range is the set of all simplices in Rd where simplices is a generalization of triangle
in d-dimensional space.
4. Ball range (Rball) is the set of all balls in Rd [21].
Figure 1.1 shows examples of R in 2-dimensional space.

3



Figure 1.1: Examples of range search in 2-dimensions;(a) rectangular, (b) half-space, (c) simplex,
(d) ball.

Figure 1.1(a) shows a specific example of rectangular ranges. To define a general form,
let R(d, k) be a rectangular range in d-dimensional space with k dimensions having finite
interval where 0 ≤ k ≤ d [2]. According to this definition, Figure 1.1(a) shows a rectangular
range R(2, 2). Figure 1.2 shows various rectangular ranges in 2 and 3 dimensional space.

Figure 1.2: 2 and 3 dimensional rectangular range(from [2])

Let P be a set of N points in Rd and r is a range ∈ R. The range searching problem is to
design an efficient algorithm which reports all points of P lying in r.

Assuming a RAM model, the set of all points, P and the range r are available in main
memory at the same time. The simplest range search algorithm goes through all points of
P one by one and report points in the range. This ”linear search” algorithm uses Θ(N)
space and Θ(N) time. Typically, however, the point set P is given in advance and we want
to answer different queries over the same set P several times. In range search problems, we
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typically want to preprocess N points into data structure in order to answer range queries
as fast as possible.

Reporting points of the set P which intersecting with range r (range-reporting query) is
just one of the possible range search problems. Counting points lying in a given range is
called a range-counting query is another one. Sometimes we just want to check the emptiness
of P ∩ r (range emptiness query). Another case of range searching problems is optimization
range query. In this case, we are looking for a specific point with certain property among
range’s points [24].

In reality, spatial data objects usually occupy areas in multi-dimensional space. In 2-
dimensional space, these objects are represented by points, triangles or polygons. In range
searching, when objects are represented by triangles or polygons, we want to determine all
the objects intersecting a given range. For example, on a map, objects like counties cover
non-zero size regions in 2-dimensional space, we want to find all counties within 20 km of
our location. Different representations of objects use various approaches for solving range
search problems. in this work, we assume that all objects are represented by points.

1.2 Motivation and Applications

Different types of range-search problems are motivated from different practical applica-
tions. In the following we speak about a simple example which is presented in most of
range search references for explaining the application of range search. Consider a Company
employees data table. In this table, each record is related to one employee and can be in-
terpreted as a point in d-dimensional space where each dimension corresponds to one field
of the table. For example if we want to report all employee born between 1950 and 1955
who earn between $3,000 and $4,000 per month and have 2, 3 or 4 children, we could use a
3-dimensional space where each point shows an employee. Figure 1.3 shows this case. We
can see that one coordinate is devoted to date of birth, the second one to salary and the
last one to number of children. All the points lying in grey parallel box are the answer of an
orthogonal query [20].
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Figure 1.3: Orthogonal range in 3-dimensional space (from [20])

Locating an airport by a defective airplane in emergency condition can be an application
of ball range search. In ball range search, all the ranges are in form of ball range and we are
looking for all points within distance r from one specific point that is moving. More important
than direct applications, range search has applications as subroutines in other geometric
algorithms. For example, in facility location problem, we are looking for optimal placement
of facilities in an area to minimize some distances and costs like transportation cost. Range
searching algorithms may be used as subroutines in optimal placement of facilities algorithms.

Various works on computational geometry, generalize the range searching problem in order
to merge all kinds of range searching and making a unified problem. Given P a set of points,
we assign a weight w(p) ∈ S to each point p ∈ P . If (S,+) is a commutative semigroup,
for any subset P ′ ⊆ P , w(P ′) = Σp∈P′w(p). For each query R, our purpose is computing
w(P∩R) = Σp∈P∩Rw(p) by this definition all types of range searching problem can be defined.
For example, for range counting query, S is the set of integers Z and + is the standard integer
addition. By getting w(p) = 1 for each p ∈ P , this problem has been defined. For emptiness
query, semigroup is ({0, 1}, or) and w(p) = 1 for each p ∈ P [3].

The performance of a data structure is affected by three elements with different levels of
importance. The first one is preprocessing time, P , the time that we need for constructing
a data structure. Preprocessing time, P , is less important than the search cost (Q) and
storage space (S).
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The size of the data structure includes the original data size N plus auxiliary information
required to create the data structure. In the RAM model, search cost is the time spent to
answer a query and depends on number of points, N and d, the number of dimensions. In
the I/O efficient model, search cost is measured by the number of disk blocks accessed during
the search process and depends on N , d and B where B is the number of points in one disk
block. For range reporting, query cost also depends on the number of reported points, K,
in addition to other parameters. It should be mentioned that for dynamic data structures,
the cost to update the data structure (insertion and deletion) may be important [13].

1.3 Objective

In this report, we try to do a comprehensive survey of recent developments on dynamic spa-
tial data structures supporting orthogonal range search on a distributed computing model.
We are looking for various constraints and advantages of different data structures and col-
lecting some open problems in this area. In addition to the problem size N and number of
dimensions d, the distributed computing model also considers the number of nodes n partic-
ipating in the computation. Our focus is on data structures supporting d-dimensional points
and robust range search that still provide correct results under failure of one or more nodes.
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Chapter 2

Distributed Computing Model

In a formal definition, a distributed system is a collection of independent computer sys-
tems connected by a communication network which cooperate to achieve a common purpose
(see e.g. [14]). Distributed computing is a model of computation which uses distributed
systems to solve a computational problem. Special characteristics of distributed computing
make it distinctive from other models, as follow [14]:
1. There is not any global clock in the system. It mean that all processors work asyn-
chronously.
2. Each processor has its local memory and there is no shared memory in the system. Be-
cause of this important feature, message passing is required for communication.
3. Processors could be geographically separated from each other or be part of a cluster of
workstations on a LAN.
4. Processors are autonomous from each other. Each of them can have different speeds and
different operating systems.

In this study, due to the above properties of distributed systems, shared memory models
are not considered.

Distributed systems are composed of n processing nodes, each of which has a its own
memory and processing unit. Processing units can be a single processor or a shared mem-
ory multiprocessor. Figure 2.1 shows a typical distributed system. Processing nodes are
connected by a communication network.
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Figure 2.1: A typical distributed system (from [14]).

Use of distributed systems can enhance reliability significantly. It’s clear that the possibil-
ity of malfunction of distributed resources at the same time is low. In addition, replicating
resources for increasing reliability is common. Availability, fault-tolerance and integrity are
other advantages of a distributed model which follow reliability. In some cases, data cannot
be replicated at all nodes of a distributed system because of its size or sensitivity. Distributed
systems provide the conditions for accessing geographically remote data and resources. Fur-
thermore, distributed systems benefit from scalability which means increasing the number
of processors without losing efficiency.

A distributed program consists of p asynchronous processes which are separated among n
processing units in a distributed system. If the number of processes, p, is greater than number
of processors, n, more than one process will be devoted to one processor. Each process uses
two kinds of channels for communication with other processes. Processes running on the
same processor use internal channels to exchange messages among themselves and processes
running on different processors use external channels for communication. For running a
process, a processor executes its different actions sequentially. In [12] various actions of
a process are divided into three events; internal events, message send events and message
receive events. Figure 2.2 shows the progress of three processes p1, p2 and p3 over time.
In this figure exi is a representation of xth event at processor pi. Horizontal lines and dots
represent time and events respectively. An arrow indicates message transfer and three types
of events are described. The second event of process p1 is a message send event, the third
event is an internal event, and the fourth event is a message receive event. Data transferred
in distributed systems are copied to another node using message send and message receive
events.
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Figure 2.2: The space-time diagram of a distributed execution. (from [14])

2.1 Routing in Message Passing network

The distributed model is based on communication of processing nodes by message passing
over an interconnection network. The performance of this system is related to how messages
get to their destinations. Routing is a mechanism for determining a path among all the
eligible paths for a message to get to a destination node from a source node. The routing
mechanism gets the addresses of source and destination nodes as input. In addition, de-
pending on the type of routing mechanism, it may require current sate of network as another
input. The output of the routing mechanism is one or more paths over the network from
source to destination.

Routing mechanisms can be categorized based on different criteria. Based on the length
of chosen path, routing mechanisms are classified as minimal and non-minimal. A minimal
routing mechanism returns one of the shortest paths from source node to destination node
and may cause congestion in part of the network. A non-minimal mechanism considers the
current state of the network and may return a longer path to avoiding network congestion.

Routing mechanisms can also be classified based on their input into two groups; Adaptive
and Deterministic. Deterministic routing mechanisms use only source and destination node
addresses to determine the path. They don’t use any information about the current state
of network. In comparison, adaptive routing mechanisms depend on network conditions to
determine a path between source and destination nodes for message passing.

In addition to previous classifications, based on the method used to make routing deci-
sions, routing techniques can be categorized as centrilized and distributed groups. In the
centralized approach, the entire path for a message is determined at the beginning of the
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path. To use this technique, each processing node needs to know about the status of the
other nodes. In contrast, in a distributed approach, each node determines which channel
should be used for forwarding messages. So, each processing node just needs knowledge
about the state of neighbouring nodes.

One of the deterministic minimal routing mechanism is dimesion order routing. In this
method, messages traverse a network, dimension by dimension. For a 2-dimensional mesh,
dimension order routing which is called XY −routing, first send message along X dimension
and then along Y dimension. For example, assuming [Sx, Sy] and [Dx, Dy] are the coordina-
tion of source and destination nodes respectively. The message is passed along X dimension
until it reaches [Dx, Sy] and then along the Y dimension until it reaches the destination.
Figure 2.3 shows a sample of XY-routing [15].

Figure 2.3: XY-routing in 4× 4 mesh.

2.2 Switching Mechanisms

In distributed systems, switching mechanisms as a factor affecting network performance
have been considered. Switching mechanisms are defined as techniques for transforming
data from an input channel into output channel. Various switching mechanisms with different
drawbacks and advantages are used. In the following, some common techniques are discussed.

Circuitswitching is one of common techniques which reserve a path between source and
destination processing nodes before sending messages, and release reserved links after mes-
sage exchange. This technique allocates static bandwidth for transferring messages over a
communication network. Such static bandwidth allocation, regardless of real need, decreases
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performance in this model. Circuit switching techniques benefit from a simple buffering strat-
egy and guarantees maximum latency. Latency is an important parameter in communication
networks. It measures the time to complete a message transfer through the network. In ad-
dition, among all switching mechanisms, circuit switching has the smallest amount of delay
in message routing.

Another alternative switching scheme is called store − and − forward. A major char-
acteristic of store-and-forward methods is dynamic bandwidth allocation. Two common
types of store-and-forward networks are packet − switched and virtual cut − through. In
packet-switched networks, before sending message, each message is broken into limited size
packets and then packets are sent over an interconnection network. Routing each packet
independently may cause different packets to follow different paths over the network and
arrive at their destination out of order. So we need more overhead for each packet, in order
to reassemble packets at the destination processing node. In the packet-switched technique,
because of dynamic bandwidth allocation, all links are not available at the start of routing.
Each node needs enough buffers to hold packets until the next link becomes available.

Virtual cut-through is another kind of store-and-forward mechanism that tries to improve
the draw-backs of a packet-switched scheme. In the virtual cut-through method, each in-
termediate node stores the packet if the next selected link is busy; otherwise the packet is
forwarded to the next node before the whole packet has been received. This method reduces
latency and the required buffer size in each node. In virtual cut-through switching, a mes-
sage is divided into fixed size parts smaller than packets in packet-switching called flits (flow
control digits). The first flit called the header flit carries information about the destination
node and determines the path for all subsequent flits. In his way, all the flit will be delivered
in order. In addition, if the header is blocked, other flits will also be blocked. This is another
reason why nodes in the virtual cut-through technique have less buffer space in nodes.

2.3 Message Passing Programming Model

In message passing programs, processes communicate with others by send and receive
operations. There are different programming languages and libraries to implement send
and receive operations and message passing protocols. Data exchanging varies from one
program to another. At first glance, it may seem simple to ensure safe data transfer. For
example, if process p0 sends a message containing the value of A to process p1 and after send
operation, process p0 changes the value of A immediately, the program should ensure that
the value received by p1 is equal to the value of A at the time of the send operation. In this
section we will discuss different message passing communication protocols, their drawbacks
and advantages.
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2.3.1 Blocking Message Passing Operations

Blocking send operations until the program makes sure that the next operation is safe to
do, is one simple way to avoid violation in previous example. Based on this simple idea,
there are two approaches for implementing send/receive operations, blocking non-buffered
send/receive and blocking buffered send/receive.

In the blocking non-buffered send/receive method, the send operation doesn’t return until
the receive operation is executed on the receiver process and the data will transfer from
source node to destination node. This method usually follows this scenario; sending process
asks receiver to send a message, when the receiving process replies to the sender’s request,
then the sending process will send data. Figure 2.4 shows handshaking in blocking non-
buffered send/receive. In this figure, three different states are shown. In (a) and (c), sender
and receiver begin communication at different times. We see that in these cases one of the
processes is idle for a period of time. This idle state is the main drawback of this technique.

Figure 2.4: Handshaking for a blocking non-buffered send/receive operation (from [15]).

The second way for blocking message passing is blocking buffered send/receive. In this
method the main drawback of first method is resolved by buffering. The sender and receiver
have specific buffers allocated for communicating messages. First, the sender copies the data
into a pre-allocated buffer. The sending operation is blocked until copying is completely
done. After this step actual communication will be done from source to destination using
the interconnection network. In this step data is stored in a buffer at the receiver end. When
the receiver process encounters receive operations, it checks its own buffer and copies data
into the target location. In comparison with non-buffered send/receive, here we are solving
the idling time problem at the cost of adding buffer and buffer management. Figure 2.5

13



shows the blocking buffered transfer protocol assuming the existence of buffers at send and
receive ends.

Figure 2.5: Blocking buffered transfer protocol (from [15]).

2.3.2 Non-Blocking Message Passing Operations

In blocking message passing implementations, send and receive operations return when it is
safe to do so. In other words, further changes on transmitted data don’t violate program. In
non-blocking message passing operations, it is the task of the programmer to make sure the
program is correct. In this case, send or receive operations return before it is safe to so. The
programmer should not change sent or received data before completion of the transfer. The
state of send and receive operations can be determined using check-status operations. This
operation shows whether using specific data is permissible or not. Immediately after return-
ing from send and receive operations, processes do any computation which is independent
from send and receive.

Blocking and non-blocking operations are two common implementations in message pass-
ing. Both are implemented in typical message passing libraries like Message Passing Interface
(MPI). Blocking operations are safer and easier in comparison with non-blocking protocols.
Non-blocking operations are more appropriate for performance optimization.
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Chapter 3

Rainbow Skip Graph

3.1 Introduction to Skip List and Skip Graph

3.1.1 Skip List

A Skip List is a data structure constructed from some linked lists connected to each other
containing a subsequence of ordered sequences of elements. Each linked list skips some
elements of previous linked lists and result in an increasingly sparse set of linked lists. A
skip list uses probabilistic balancing, and elements to be slipped are chosen probabilistically.

Figure 3.1 shows the basic idea behind of skip list data structure. When we are searching
for a specific element a linked list in storing N sorted elements, every node has to be explored
in worst case scenario (Figure 3.1.a). If every second node stores a pointer to the node two
ahead, dn

2
e+ 1 nodes have to be explored in the worst case (Figure 3.1.b). To generalize this

rule, consider that every 2ith node stores a pointer to the 2i node ahead, we need to explore
dlog2 ne nodes in the worst case. This data structure works well for searching but insertion
and deletion are impractical.
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Figure 3.1: Linked list with additional pointers (from [25]).

In the above data structure if we randomly choose the nodes which contain a pointer
to some node ahead, we achieve a probabilistically balanced data structure called the skip
list. Figure 3.2 shows an example of a skip list. The bottom linked list contains all sorted
elements. For all higher layers, an element in layer i is in layer i+ 1 with probability p. Two
commonly chosen values for p are 1

2
or 1

3
. The first layer of a skip list for n elements stores n

pointers, the next layer stores np pointers, and the next one stores np2 pointers, etc. Using
a geometric series equation, the number of stored pointers required for a skip list is n

1−p , on

average. If p = 1/2, we require 2 pointers per element on average. The space required for a
skip list S(N) = O(N) with high probability.

Figure 3.2: An example of skip list

Figure 3.3 shows the search algorithm for a skip list. This algorithm starts from the
tallest level of the skip list and traverses this level horizontally until no more progress can
be achieved. In other words, when all the remaining nodes in the current level has a key
greater than the search key, the search algorithm moves down to the next level and does the
same operation in current level until it reaches level 1. In level 1, when no more progress
can be made, we find the desired key and return the stored value, or the desired key isn’t in
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the list and return failure.

Figure 3.3: Skip list search algorithm (from [25]).

To insert a value in a skip list, we need to find the key and update the value. In the case
when the key is not found, we need to add a new node in the proper place. The level of node
is randomly chosen. Figure 3.4 shows insertion and deletion algorithms for a skip list.
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Figure 3.4: Skip list insertion and deletion algorithms (from [25]).

Table 3.1 shows the time and space complexity of the skip list data structure. Although
the skip list data structure has a very bad worst case complexity, the probability of having
an unbalanced skip list that gives rise to the worst case scenario is very low. The term, ”with
high probability” is a technical term which is used in analysis of randomized algorithms. In
a formal definition, an event E occurs with high probability, if it occurs with probability at
least 1−O(1/nc) for some constant c > 0 and independent from n.

3.1.2 Skip Graph

Skip graphs are a kind of distributed data structure which use the skip list idea. In compar-
ison to skip lists where each level contains one linked list, in skip graphs each level contains
multiple linked lists. In addition, in a skip list each level skips over some elements of the
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Table 3.1: Skip list space and time complexity (from [25]).

With High Probability Worst case
Space O(n) O(n log n)
Search O(log n) O(n)
Insert O(log n) O(n)
Delete O(log n) O(n)

previous level but in skip graphs all nodes participate in every level. A skip graph has
O(log n) levels, on average and the highest level consists of singletones, i.e. linked list with
one element. Figure 3.5 shows an example of a skip graph.

In a skip graph, different nodes can be stored at geographically separate locations and it
supports failure of nodes at any time. Skip lists don’t work well in distributed systems. as
they suffers from lack of redundancy. In the skip list, since each node is connected to only
O(1) other nodes and just a few nodes appear in the higher levels, failure of nodes affects
the properties of data structure significantly and makes some nodes isolated. Skip graphs
generalize the skip list data structure to define another data structure supporting distributed
nodes and unpredictable failures.

Figure 3.5: An example of skip graph (from [4]).

A skip graph is like a collection of skip lists that share some lower levels. Searching a skip
graph uses the lists containing the starting element of the search. The set of all lists which
contains a specific elements in a skip graph constructs a skip list. For example, in Figure
3.5 if we are looking for key 75 starting from node 33, the search path is restricted to the
skip list in this figure. That is the reason why the search, insertion and deletion algorithms
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of skip graphs are similar to the algorithms of skip lists and require logarithmic time. In
addition, each node in a skip graph needs logarithmic space to store pointers.

Each of the nodes in a skip graph has a membership vector which controls members of lists
in the skip graph’s levels. Usually, the membership vector is a binary sequence of O(logN)
length. At level i of the skip graph, each node is connected to other nodes that have the
same prefix of length i in their membership vectors.

One of the most important properties of a skip graph is fault tolerance. Experimental
results in [4] shows that the skip graph is highly resilient against failure of nodes. In this
experiment, in a skip graph of 131, 072 nodes, nodes are chosen to fail in a random pattern
Figure 3.6 shows the result of this experiment. We see that as the probability of node failure
is increased (X axis), the size of primary component as well as the fraction of isolated nodes
over total number of nodes is measured (Y axis). Primary component is the fraction of total
nodes in the largest connected component of live nodes and isolated nodes is the fraction of
total nodes in the graph not connected to the primary components. Figure 3.6 shows that
the number of isolated nodes in a large skip graph is almost zero until two-third of the nodes
fail.

Figure 3.6: The number of isolated nodes in a skip graph in an experiment with 131,072 nodes
(from [4]).

Table 3.2 shows the complexity of skip graph algorithms in term of time and number of
messages.
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Table 3.2: Skip graph complexity (from [4]).

Expected time Expected number of messages
Search O(log n) O(log n)
Insert O(log n) O(log n)
Delete O(log n) O(1)

3.2 Non-redundant Rainbow Skip Graph

A non-redundant rainbow skip graph partitions n nodes into Θ(n/ log n) supernodes accord-
ing to their keys, assigns a specific key to each supernode and constructs a skip graph by
considering supernodes as a node in a skip graph. Each supernode S consists of Θ(log n)
nodes in a doubly-linked list which is called a core list. The smallest key of ordered keys in a
core list is the key of a supernode. Each node of a supernode S participates in one level of a
skip graph as a representative of the supernode in that level. Si is the element of supernode
S in level i and is connected to Si−1 and Si+1 to construct another linked list called tower
list. A non-redundant rainbow skip graph is a skip graph constructed over supernodes. As
explained in previous section, each level of skip graph contains different level lists. The same
notion of level lists in a skip graph is used for a non-redundant rainbow skip graphs. Each
node of a non-redundant rainbow skip graph participates in at most three lists, core list,
tower list and level list.

Figure 3.7 shows an example of a non-redundant rainbow skip graph. Three different types
of lists of a non-redundant rainbow skip graph are shown in this figure. Dashed lines shows
different level lists in different levels and the sets of contiguous squares in level 0 refer to
core lists. Arcs which are called rainbow connections shows the connections between nodes
in a core list and their copies in a related tower list.

Figure 3.7: An example of rainbow skip graph (from [8]).

21



To search for a specific key in a rainbow skip graph, the query node sends the key to the
topmost node of its own tower list. Using the skip graph search algorithm, the predecessor
of the search key in the set of supernode keys is found. The found key is the key of the
supernode whose the search key belongs. By searching the list of corresponding supernodes,
the search key (or the next largest key, if the search key is not found) is found and returned
to the query node. The required time for searching a rainbow skip graph is O(log n) as long
as the size of every supernode is O(log n).

Updating a non-redundant rainbow skip graph is more complicated than updating a skip
graph or a skip list. The complication arises from keeping the size of supernodes in O(log n)
after insertion and deletion of nodes. The technique presented in [8] for achieving this goal
is using the merge/split method used in updating B-trees. In this method, two constants c1
and c2 are chosen, where c1 < c2 and the number of nodes in a supernode always must be
between c1 log n and c2 log n. We should check the size of a supernode after every deletion and
insertion and merge a supernode with its adjacent supernode when the size of a supernode
is less than c1 log n and split a node into two supernodes when the size of supernode is more
than c2 log n.

Another requirement of updating a non-redundant rainbow skip graph is estimation of
the value log n at each supernode without sending message to every supernode after each
insertion and deletion. It is proven [9] that the number of levels in a skip graph is log n with
high probability. Ideally, the height of supernodes in a non-redundant rainbow skip graph
can be used as an estimation of log n but updating a skip graph may change the height of
nodes. For solving this problem, a specific range is considered for the height of supernodes
and when the height of one of the supernodes is outside of this range, we recompute the
number of nodes in the skip graph using Θ(n) messages and rebuild the entire graph.

The main improvement of a rainbow skip graph compared to a skip graph is reducing the
size of the nodes. As explained above, each node of a skip graph is required to store log n
pointers while a rainbow skip graph has constant size nodes.

3.3 Rainbow Skip Graph

Using rainbow connections in a non-redundant skip graph with hydra components and
erasure codes as explained in this section, we augment the non-redundant skip graph to
make a new data structure called the rainbow skip graph (RSG). The RSG support failure
of nodes which would render the non-redundant rainbow skip graph unsearchable. In the
node failure process, we assume that each node with a constant probability less than 1
may leave the graph without notifying its neighbours or providing information necessary for
restoring the structure of the graph.
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Hydra components consist of a group of nodes which are connected to each other in such
a way that deleting a constant fraction of nodes in the components with high probability
leaves large connected subcomponents with high probability. Using erasure codes stored in
the subcomponent, remaining nodes refresh the overlay network (deleting failed nodes) and
compute new links between remaining nodes. In the following, we first present a formal def-
inition of hydra components and introduce erasure codes, and then explain how to partition
the non-redundant skip graph into hydra components to construct a rainbow skip graph [9].

The structure of a hydra component is based on 2d-regular graphs. A 2d-regular graph
is a graph whose the set of edges is composed of d Hamilton cycles. Figure 3.8 shows an
example of a 2d-regular graph with d = 3. The set of all 2d-regular graphs with n vertices is
Hn,d. A (µ, d, δ)-hyda component is a set of µ nodes connected to each other based on one
random graph of Hµ,d, where δ < 1.

Figure 3.8: An example of a 2d-graph consisting of 3 Hamilton cycles (from [16]).

An (n, c, l, r)-erasure-resilient code consists of two algorithm, encoding algorithm and de-
coding algorithm. The encoding algorithm gets an n-bit message as input and produces a set
of l-bit packets with total length cn. The decoding algorithm recovers the original message
from any set of packets with total length at least rn.

For a hydra component, we put the critical information (the information we need to restore
the structure of a rainbow skip graph after failure of some nodes) in a message with M bits.
Then, using (n, c, l, r)-erasure-resilient codes, the message is encoded into a new message
with cM bits. The packets of the encoded message are equally distributed among µ nodes
of the hydra component. The parameters (n, c, l, r) of the (n, c, l, r)-erasure-resilient code
must be chosen in such a way that the original message can be restored from the information
stored on any set of δµ nodes of each hydra component. Given the number of required nodes
for restoring the original message after failure of up to (1− δ)µ, δµ, and the number of bits
stored on each node, (i.e. cM/µ bits), we get that δ is equal to r/c.
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To complete a non-redundant rainbow skip graph and achieve a rainbow skip graph, we
need to explore how to partition the nodes of a non-redundant skip graph into hydra compo-
nents. In a non-redundant skip graph we consider two kind of hydras, level-list hydras and
supernode hydras. In [9], 9β log(n′) and 27β log(n′) are considered as minimum and maxi-
mum size of hydras respectively where β = µ/ log n. For the level-list hydras, the elements of
level lists based on their orders in the lists are placed in hydra components. In the case that
the element of a list are not enough for constructing a hydra component, the elements in the
beginning of the next list in the same level are added to hydra component. In the same way,
the elements of a core list and tower lists construct the supernode hydras and when the size
of hydra is too small, the nodes of adjacent supernod will be added to the hydra.
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Chapter 4

Peer-To-Peer Indexing Structures

4.1 Peer-To-Peer Networks

Peer-to-peer(P2P) networks are a class of networks without any central point that uses
distributed resources to achieve a specific purpose. Each node called a peer in the network is
a consumer and supplier of data. As there is no single failure points in P2P systems, they are
more reliable and scalable in comparison with client-server systems. Communication in P2P
networks is done in a distributed manner and all the participants are peers. A peer-to-peer
network is illustrated in Figure 4.1.

Figure 4.1: A peer-to-peer network.

4.2 Peer-To-Peer Indexing Data Structures

Recently there has been some effort toward development of distributed data structures for
range search in multiple dimensions. In this chapter, we study two schemes supporting range
query on peer-to-peer networks. The first data structure in [18] is a delay-bounded range
search scheme which works over FissionE, a constant degree distributed hash table (DHT).
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The presented scheme called Armada can support both single attribute and multi-attribute
range queries. The second approach in [5] uses the non-redundant rainbow skip graph to
implement an orthogonal search in 2-dimensional space.

4.2.1 Armada

Recently, some peer-to-peer systems use a DHT as general indexing scheme to support
different applications. As a result, they inherit DHT’s strong properties like scalability and
efficiency. As DHTs support exact-match query, to process a range query we need a new
scheme that works on top of the DHT. Armada is a delay bounded range search scheme
that uses FissionE [19] as an underlying DHT to organize peers in an overlay network.
The average degree of FissionE is 4 and its average path length is about log n. In addition
FissionE supports dynamic insertion and deletion of peers in less than 3 log n messages where
n is the number of peers.

FissionE supports an exact-match query. Armada on top of FissionE provides support for
single attribute and multiple attribute range queries without modifying the structure of the
underlying FissionE DHT. In this section, we first give an overview of FissionE and then we
discuss the components of Armada.

The topology of FissionE is based on Kautz graphs. In this topology, the identifiers of
peers and objects stored on peers are Kautz strings. The string u1u2...uk of length k and
base d is a Kautz string where ui ∈ {0, 1, 2, ..., d} and ui 6= ui+1 (1 ≤ i ≤ k − 1). All Kautz
strings of length k and base d create the KautzSpace(d, k) of size dk + dk−1. The Kautz
graph K(d, k) is a directed graph whose nodes are labeled by strings in KautzSpace(d, k).
Each node U = u1u2...uk of a graph has an out-degree d to the nodes V = u2u3...ukα where
α ∈ {0, 1, ..., d} and α 6= uk. There is an outgoing edge from U to V iff V is a left-shifted
version of U [19].

A Kautz graph is a static topology and needs some adjustments to be used for dynamic
peer-to-peer networks. In FissionE, peers are organized in the form of an approximate
Kautz graph using their Kautz strings as identifiers. The identifiers of peers in FissionE are
Kautz strings of base 2. The length of identifiers may be different for different peers and
the maximum length is less than 2 logN . Organization of nodes in FissionE is based on
a defined rule called neighborhood invariant. Based on this rule, the difference of length
of identifiers of every two neighbours must be one or less. Figure 4.2 shows an example of
FissionE topology for 12 peers.
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Figure 4.2: An example of FissionE topology (from [18]).

Armada uses the overlay network of FissionE and presents two parts. The first part uses
order-preserving naming algorithms to assign object IDs from the Kautz namespace to the
objects in order to distribute them on corresponding peers. The second part uses range
query processing forward queries to the appropriate peers and return the results. In the
following, we discuss order-preserving naming and range query processing algorithms for
multiple attribute range queries.

4.2.1.1 Multiple hash Algorithm

In order to support range query, naming algorithms that generate objectIDs for objects
must keep the locality of attribute values. Order-preserving algorithms in Armada assign
adjoining objectIDs in Kautz namespace to objects with close attribute values.

Before discussing the order-preserving naming algorithm, Multiple hash for multiple at-
tribute objects, we give some definitions. In addition, we assume that ≺ symbol provides
the no more than relation between Kautz strings in lexicographical order. We assume that
each object has m attributes, A0, A1, ..., Am−1 and the values of objects are in m-dimensional
subspace w = <r0, r1, ..., ri, ..., rm−1> where ri is the domain of values of attribute Ai.

Definition 4.1. The Kautz region Jα, βK is the subset of KautzSpace(2, k) which includes
all s that are in KautzSpace(2, k) and α ≺ s and s ≺ β.

Definition 4.2. For two objects in m-dimensional subspace w, δ1 = <u0, u1, ..., um−1> and
δ2 = <v0, v1, ..., vm−1>, δ1 / δ2 if for each 0 ≤ i < m− 1, ui ≤ vi.
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Definition 4.3. Surjective function F from multiple dimensional space D to Kautz names-
pace V is multiple attribute partial order preserving iff for any δ1 and δ2 in D, if δ1 / δ2 then
F (δ1) ≺ F (δ2).

The partition tree presented in [18] tries to explain the Multiple hash algorithm to assign
partial order preserving objectIDs to objects. Partition tree P (2, k) partitions the entire
m-dimensional space w into smaller subspaces and maps the subspace in each leaf node to a
specific Kautz string. Partition tree has k + 1 levels and the root node represents the entire
space w. The root node has three children while other intermediate nodes have two children.
The label of edges in a partition tree depends on the label of the parent node. Edge label
can be 0, 1 or 2, increasing from left to right. All nodes have a specific label at level j of the
partition tree and the space covered by each node is divided into two subspaces along the
ith attribute where i = j mod m with m is the number of attributes for each object. Figure
4.3 illustrates an example of partition tree P (2, 4) for 2-dimensional space < [0, 6], [0, 8] >.

Figure 4.3: An example of partition tree P (2, 4) for 2-dimensional space < [0, 6], [0, 8] >(from [18]).

It is worth noting that in the Multiple hash algorithm, we don’t need to construct the
partition tree. Partition tree is a model presented to design the Multiple hash algorithm. As
explained the Multiple hash algorithm maps the multiple dimensional space to Kautz strings
in KautzSpace(2, k). So to publish objects in Armada, we first provide the ObjectID using
Multiple hash algorithm.Then we use the FissionE routing approach to find the unique peer
whose peerID is the prefix of the objectID. The pseudocode of the Multiple hash algorithm
is shown in Figure 4.4.
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Figure 4.4: The pseudocode of the Multiple hash algorithm (from [17]).

4.2.1.2 MIRA Algorithm

It is straightforward to prove that the Multiple hash algorithm is a multiple attribute
partial order preserving function from multiple attribute space to the KautzSpace(2, k).
When a peer publishes a range query ω = <[x0, y0], ..., [xi, yi], ..., [xm−1, ym−1]>, Armada
uses a multiple attribute range query processing algorithm called MIRA to forward queries
to appropriate peers. Suppose that δ1 = <x0, x1, ..., xm−1> and δ2 = <y0, y1, ..., ym−1>. We
use the Multiple hash algorithm to find the Kautz strings corresponding to objects δ1 and
δ2 and call them LowT and HighT, respectively. It is clear that for each object O in range
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ω, δ1 / O and O / δ2. The Multiple hash algorithm is a multiple attribute partial preserving
function. So the range ω is a subset of the Kautz region JLowT,HighT K. For example, if
ω = <[1.2, 1.8], [1, 5]> is the range query, then δ1 = <1.2, 1> and δ2 = <1.8, 5>. We use
the partition tree shown in Figure 4.3 to obtain Kautz strings corresponding to δ1 and δ2.
Thus, JLowT,HighT K = J0120, 0210K. This Kautz region contains five leaf nodes P,R,W, S
and M . Based on the partial order preserving property of the Multiple hash algorithm, all
the nodes that intersect a query are among five Kautz region nodes, but they may not be
adjoining leaf nodes. Figure 4.3 shows that W and S leaf nodes don’t intersect the query.
So to process a range query, we need an algorithm to forward the query to only those peers
which intersect the query. MIRA is the algorithm proposed in [18] to forward a range query
to the appropriate peers. Figure 4.5 shows the pseudocode of MIRA.
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Figure 4.5: The pseudocode of the MIRA algorithm (from [17]).

In FissionE, the out-neighbours of peer P = u1u2...ub are in the form of P = u2u3...ubv1...vq
with 0 ≤ q ≤ 2. For demonstrating the routing path from a query issuer to a destinations
peer, the forward routing tree (FRT) is defined in [18]. Each node of the FRT is a peer
of FissionE. The root node is a query issuer. Children of each node are its out-neighbours
which are sorted in increasing order from left to right. The number of levels in a FRT is
b+ 1. Figure 4.6 shows an example of the FRT.
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Figure 4.6: An example of the FRT and MIRA search path (from [18]).

To process a range query, we first obtain the Kautz region JLowT,HighT K. If the Kautz
string LowT and HighT don’t have a common prefix, we need to divide the Kautz region into
several subregions. In the case that LowT and HighT have a common prefix, we consider
ComT as the longest common prefix of LowT and HighT . Then we get ComS with length
f as longest Kautz string which is both the prefix of ComT and the root peerID (see line 4
of P.MulSearch in Figure 4.5). All the peers that intersect query ω are at the level of b− f
of the FRT. At level i of the FRT, the peer B = ui+1ui+2...ub−fX have some children in the
form of C = ui+2ui+3...ub−fXY . When B receives the query, it forwards the query to the
children with their corresponding XY having an intersection with range query ω. Line 4 of
algorithm U.MultiplePruining (which calls the InterSection algorithm) handle the sending
of query messages only to peers intersecting the query range.

In Figure 4.6, an example of processing query by MIRA is shown. The dashed arrows
shows the search path. The root peer 212 issues the range query ω = <[1.2, 1.8], [1, 5]>.
As explained before, for this query LowT = 0120 and HighT = 0210. So ComT = 0,
ComS = ”null” and f = 0. In the result, all the destination peers are in level 3. In the node
120 of FRT, we calculate the subspace stored on peer 2020 and figure out that the subspace
don’t intersect with ω. Therefore the query is not forwarded to 2020.

4.2.1.3 Performance

The performance of Armada is evaluated by analysis and simulation in [18]. Armada is
built on top of the FissionE which is a constant degree DHT. That means we need to store
a constant number of pointers per peer. It is proven that the average number of messages
to process one-dimensional queries in Armada is logN + 2n− 2 where N is number of peers
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and n is the number of peers that intersect with the query. In addition, the maximum query
delay for single and multiple attribute queries is less than 2 logN hops in Armada. Query
delay is the number of hops we need to traverse from the query issuer to detect the peer
containing query results.

In [27], it has been shown the lower bound on the diameter of a constant-degree graph
is O(log n). Based on this, it has been proven in [18] that the lower bound on the message
cost of general range query schemes on constant-degree distributed hash tables (DHTs) is
O(log n) + m − 1. The complexity of Armada in 2-dimensional space is O(log n + m) in
average where n is the number of nodes and m is the number of nodes that intersect with
the query. For simplicity, Li et al [18] assume that the number of required messages for
reporting points in their intersection to the query issuer is constant for each node. The
worst case complexity in 2 or more dimensional space range queries on Armada is still an
open problem.

4.2.2 Bisadi and Nickerson Distributed Spatial Data Structure

Bisadi and Nickerson in [5] use the non-redundant rainbow skip graph explained in the
previous chapter to implement a distributed orthogonal range search in 2-dimensional space.
The presented scheme is based on the non-redundant rainbow skip graph, so the topology
of the proposed structure and message routing algorithm is based on the non-redundant
rainbow skip graph.

To distribute the data on-to nodes of a non-redundant rainbow skip graph, the entire space
is split into regions based on one of the coordinates (x or y). Then, each region is assigned
to one node and the lower x coordinate bound of the region is considered to be the node key.
Distribution based on x coordinates provides a total order relation for the key set. Figure
4.7 shows a distribution of 2-dimensional points among non-redundant rainbow skip graph
nodes. In this figure, L2 and U2 are the lower and upper bound of the second node region
and LX , LY , UX , UY are the range queries bounds.
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Figure 4.7: A distribution of a 2D space among 5 nodes (from [5]).

After distributing the data among nodes, the corresponding non-redundant rainbow skip
graph is created. To search the non-redundant rainbow skip graph for range ω([Lx, Ux], [Ly, Uy]),
the non-redundant rainbow skip graph search algorithm is used to find the node whose region
contains Lx. This node reports the results to the query issuer and forwards the query to the
successor node if Ux is greater than the upper bound of its region. This step is continued
until all the nodes which intersect with the query ω report the appropriate points.
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Chapter 5

The SD-RTree

The Scalable Distributed Rtree (SD-Rtree) is a distributed spatial data structure support-
ing point, window and kNN queries proposed in [7]. The structure of an SD-Rtree is a
distributed balanced binary tree that is constructed by splitting overloaded servers and in-
sertion of new storage servers. The SD-Rtree aims at minimizing the number of servers.
In other words, the structure adds or removes a server based on the size of the dataset. It
assumes that queries are issued from a client node. There is an image (possibly incomplete)
of tree structure on the client node which is used to address the tree for a specific query. In
the case when the image is outdated, routing is done by forwarding the query among the
servers. In the following sections we explain routing using an image in detail and discuss
building the SD-Rtree and query algorithms.

5.1 Overall Structure of SD-RTree

The purpose of the SD-Rtree is constructing a cluster of nodes that provide fast access to
a dataset of spatial objects. In addition, the data storage and query processing are evenly
distributed on the servers. In an SD-Rtree each 2-dimensional object of a data set has an
id (oid). The SD-Rtree is a binary tree which is mapped to a set of servers. There are two
kinds of nodes in the tree: Routing node and data node. The properties of an SD-Rtree are
as follow:
- each internal node is a routing node and has exactly two children.
- each routing node maintains left and right directory rectangles (dr) which are the minimal
bounding boxes (mbb) of the left and right subtrees.
- each leaf node is a data node that stores a subset of objects.
- the height of the subtrees of each node differs by at most one.

The SD-Rtree has N leaves and N − 1 internal nodes distributed over N servers. Each
server Si (0 ≤ i ≤ N − 1) contains one data node di and one routing node ri except S0 that
contains only the data node d0. Figure 5.1 shows an example of an SD-Rtree. In 5.1(a), we
have one server containing all the data. After splitting, in 5.1(b) the whole data is distributed
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among S0 and S1, with S1 storing r1 and d1. It is shown in Figure 5.1(b) that the directory
rectangle of r1 is a = mbb(b ∪ c). As mentioned in the properties of the SD-Rtree, a, b and
c are kept in r1 to guide insertion and search operations. Figure 5.1(c) shows a further split
on server S1. Figure 5.2 shows updating of nodes in the servers during split operations of
Figure 5.1.

Figure 5.1: An example of SD-Rtree (from [7]).

Figure 5.2: Updating of nodes in servers (from [7]).
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5.1.1 Structure of an Internal Node

Each internal node in the SD-Rtree is a routing node. The routing node contains a local
description of the tree with the following information:
- height: the height of the node that is max(left.heigth, right.heigth) + 1.
- dr: the directory rectangle of the node.
- left, right: the links to the left and right children of a node. A link includes the id of
the server that stores the reference node, the directory rectangle of the referenced node, the
height and type of the referenced node.
- Parent− id: id of parent routing node.
- OC: the overlapping coverage which is an array that contains a shared part of the directory
rectangle with other servers (see next paragraph).

Having overlap between directory rectangles of different nodes means that each node
doesn’t contain all the objects covered by its dr. To define a formal definition of over-
lapping coverage, first we explain some concepts. Let N1, N2, ..., Nn be the ancestors of node
N . Each ancestor Ni has two children, one of them is an ancestor of N or N itself and the
other one is called the outer node outerN(Ni). For instance the outer node outerd2(r2) and
outerd2(r1) in Figure 5.1 are d1 and d0, respectively.

The overlapping coverage or OC is defined as an array OCN = [1 : oc1, 2 : oc2, ..., n : ocn]
that oci is N.dr∩outerN(Ni). In other words, OC stored on node N contains the intersections
of N with outer nodes of the ancestors of N .

5.1.2 Structure of a Leaf Node

Each leaf node of an SD-Rtree is a data node containing the following information:
- data: the local data set stored on the server where the node resides.
- dr: the directory rectangle.
- parent id: id of parent routing node.
- OC: the overlapping coverage.

It is worth noting that each node is identifiable by its type (data or routing) and the id
(number) of its server.
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5.1.3 The Image

As mentioned in previous sections, one of the principal properties of an SD-Rtree is main-
taining an image on the client node. The image is a collection of links stored on the client
node to provide a partial or outdated view of the tree structures. To process a query, the
estimation about the address of target server (that contains data we are looking for)is done
by the image. When the image is outdated, an incorrect server is chosen for routing the
query. In this case, the structure forwards the query among servers and finally delivers the
query to the correct server. Then, the correct server sends an Image Adjustment Message
(IAM) to the client node to update the image.

Each time a server is visited, the following four links are collected:
- the data link describing the data node of the server,
- the routing link describing the routing node of the server,
- the left and right links describing the left and right subtrees of the routing node.

These four links are added to any message forwarded by the server, and finally all con-
nected links are sent to the client as an IAM.

The rationale behind use of an image in routing is balancing the processing load. Usually,
the servers that store the routing nodes located at or near the root receives many more
messages. To distribute query processing among all servers, the image is used to estimate
the location of the target server.

5.2 Tree Search and Updates

5.2.1 Insertion

To insert an object o with rectangle mbb to the SD-Rtree, the image on the client node has
to be searched. Firstly, we find all the image data links whose directory rectangles contain
mbb. Among such data links, the data link with smallest directory rectangle is chosen. If
no such data link is found, we consider all routing links and choose the one whose height
is minimum. In the case when we have more than one candidate, the link with the smaller
directory rectangle is chosen. If we cannot find a link with above conditions, the data link
whose directory rectangle is the closet to o.mbb is chosen.

After choosing the link, if the type of link is data, an Insert-In-Leaf message is sent to
the server S containing the chosen link. If the type of link is routing, an Insert-In-Subtree
message is sent to the server S.
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When a server S receives the Insert-In-Leaf message, it compares the directory rect-
angle of its data node dS with o.mbb. If dS contains o.mbb, the server S inserts o into its
repository; else the server sends an Insert-In-Subtree message to the parent of dS.

When a server S ′ receives an Insert-In-Subtree message, it first compares the directory
rectangle of its routing node rS′ with o.mbb. IF dS contains o.mbb, the top-down R-tree
insertion algorithm [10] is carried out from rS′ ; else the server forwards the Insert-In-
Subtree message to the parent of dS′ .

As explained before, when the insertion procedure is done in more than one hop, the server
inserting the new object sends back an IAM containing all collected links to the client node.
Then the client node updates its image. Figure 5.3 shows the HandleMessage insertion
procedure.
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Figure 5.3: The pseudo code description of the HandleMessage insertion algorithm (from [7]).

The cost of inserting one object into an existing SD-Rtree is one message on average.
If the client sends the message to a node whose directory rectangle doesn’t contain o.mbb,
then in the worst case it takes logN messages to forward an insertion message to the root,
where N is the number of servers (i.e. nodes). Another logN messages are necessary to
find the appropriate data node for the Rtree insertion algorithm. Another logN messages
are necessary to do splitting, if the server is overloaded by a new object. We need 3 logN
messages in the worst case. The worst case may occur when the image is outdated.

5.2.2 Searching

In order to process a window query W in a SD-Rtree, first the client node searches its image
to find the link to a node that contains W . Then the client sends a message containing
rectangle W to the server whose hosts the node. If the contacted node covers W , the
classical Rtree window query algorithm WQTraversal is carried out from the node as
well as overlapping coverage area. If the window W is out of contacted node range, the
query message is forwarded to the contacted node parent. The window query algorithm
which is called WindowQuery is shown in Figure 5.4 in detail.
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Figure 5.4: The pseudo code description of WindowQuery algorithm (from [7]).

5.2.3 Deletion

To delete an object in SD-Rtree, we need to define the constant τ which is the percentage
of full capacity for a server. First, using the WindowQuery procedure explained above,
the object o is found and deleted. After deletion, based on the value of τ for the server S
hosting the object o, three cases are possible as follows:

1. the space occupancy of sever S is not below τ . In this case, after deletion of object
o, it is necessary to adjust the directory rectangles of the nodes by a bottom-up tree
traversal. In the worst case, we need to adjust the dr of all the nodes in the path from
server S to the root. In addition, the OC of the nodes whose directory rectangle is
adjusted, must be updated.

2. the space occupancy of sever S is below τ but the space occupancy of its sibling S ′

is strictly above τ . After deletion, S ′ sends some of its objects to S that reduces
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the spatial overlapping between two siblings. S and S ′ both update their directory
rectangle and OC, and send update message to their parent like previous case.

3. the space occupancy of sever S is below τ and the space occupancy of its sibling S ′ is
τ .

In this case both servers must be merged. Objects of S are inserted to S ′ and server S
will be free. Data node stored on S ′ becomes the child of its grandparent. In addition, we
need appropriate adjustment of the height of nodes in the tree.
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Chapter 6

Apache Hadoop

Hadoop is an open source software framework that provides a reliable shared storage and
analysis system. The hadoop framework contains different modules and capabilities. The
two most fundamental parts of hadoop are MapReduce and HDFS. Hadoop Distributed File
System or HDFS is distributed file system that provides shared storage of data on a cluster
of machines. MapReduce is a programming model that performs processing analysis of data.

6.1 MapReduce Model

MapReduce is a programming model for processing of large datasets. In this programming
model, the user defines two functions, map and reduce to provide a specific computation in a
parallel manner. In the following subsection, the programming model is explained in detail.

6.1.1 Programming Model

In the MapReduce model, to process and analyse the data, the user needs to specify the
query as two distinct phases, the map phase and the reduce phase. The map function and
reduce function have to be defined by programmer. The map function takes a key-value pair
as input and produces a set of intermediate key-value pairs. In this step all intermediate
pairs containing the same key are grouped and passed to the reduce function. The reduce
function each time accepts an intermediate key and all corresponding values for that key,
and combines these values to produce usually one key-value pair as output. The following
example from [26] shows a sample of map and reduce functions.

Consider the problem of finding the maximum global temperature for each year in a large
dataset. The input of map phase in this example is raw data. Each record of raw data
contains different information fields collected by weather stations. In this example, the map
function works like a preprocessing phase. It extracts the year and the air temperature of
each record and drops the records with missing values. The output of the map function is
as follows:
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(1950, 0)
(1950, 22)
(1950,−11)
(1949, 111)
(1949, 78)
The MapReduce framework processes the map phase output, and then passes it as input to
the reduce phase. The processing past preceding reduce consists of grouping and sorting the
key-value pairs by the key. The input of the reduce phase is as follows:
(1949, [111, 78])
(1950, [0, 22,−11])
The reduce function goes through the list of values for each key, and takes the maximum
temperature for each year. The final output of the reduce function is as follows:
(1949, 111)
(1950, 22)
The logical data flow of the above example is shown in Figure 6.1.

Figure 6.1: An example of MapReduce logical data flow (from [26]).

6.1.2 Execution Overview

In MapReduce execution, the input data is automatically partitioned into M splits. These
splits of data can be processed by different machines in parallel. The intermediate keys
produced by the map phase are partitioned into R splits. The partitioning can be performed
by a user defined partitioning function. The default partitioning function is hash(key) mod
R which places keys in buckets using a hash function.

In Figure 6.2 the overall data flow of MapReduce is illustrated.
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Figure 6.2: MapReduce execution overview (from [6]).

Firstly the user program calls the MapReduce function, and then the following actions
occur:

1. The input file is partitioned into M pieces, each one of size 16 − 64MB (controllable
by the user). Then many copies of the map program start working on a cluster of
machines in parallel.

2. One of the MapReduce program copies is called the master program and the other
ones are workers. To execute a program, M map tasks and R reduce tasks have to be
divided by the master among workers. The master program assigns a map task or a
reduce task to idle worker programs.

3. The map workers read their corresponding input data split. It parses the key-value
pair, passes each key-value pair to the map function and produces the intermediate
key-value pairs. The intermediate key-value pairs are buffered in memory.

4. The buffered pairs are written to the local disk periodically and then partitioned into
R splits. The locations of these R splits are sent back to the master program. The
master program forwards these location to the reduce workers.

5. The reduce workers use the received location to read the buffered intermediate key-
value corresponding to its partition. Then the reduce workers sort data by their inter-
mediate keys and groups together the data with the same key. The reduce workers use
an external sort, if necessary.
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6. The reduce workers pass each intermediate key and its corresponding list of values to
the reduce function, and appends the result to a final output file that belongs to this
reduce function.

7. After completing all map and reduce functions, the master worker reports back to the
user program.

After the above execution steps, there are R output files available. Users typically don’t
need to combine the files. They are usually passed to the another MapReduce program or
another distributed application.

6.1.3 Refinements and Performance

A few extensions are added to the MapReduce programming model,as follows: [6]

• As explained in the previous section, a user can define a new partitioning function to
map the intermediate keys to the R reduce workers.

• Within each partition, the intermediate key-value pairs are sorted by key in increasing
order.

• To decrease the data transfer between map and reduce tasks and save available band-
width, the user can specify a combiner function. The combiner function combines the
output of map tasks with the same key within the same map task. This reduces the
amount of work done in reduce tasks.

• The MapReduce library supports different types of input and output data.

• The MapReduce library provides a single machine mode for debugging and testing of
the program.

The performance of MapReduce in [6] is measured by two computations. Each one of
these computations is representative of a large subset of programs written by MapReduce
users. The first computation scans approximately one terabyte of data to look for a specific
rare pattern. This problem is the representative of a class of program that extracts a small
amount of interesting data from a large dataset. In this example, M = 15000 and each split
is about 64MB and R = 1. In other words, the entire output is in one file.

Figure 6.3 shows the rate of input data scanning over time for the above example. As
the number of machines assigned to the MapReduce tasks increases, the rate of scanning
increases and the peak occurs when we have 1764 workers. When the map tasks finish,
the rate starts dropping. The computation including a minute of startup overhead takes
150 seconds totally. The startup overhead is due to distribution of programs to all worker
machines, and opening input files in the GFS (Google File System).
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Figure 6.3: Data transfer rate over time (from [6]).

6.1.4 Large-Scale Indexing

MapReduce in [6] is used to implement an indexing system as a data structure for the Google
Web search service. The input of the system is a large set of documents stored as a set of
GFS files. The MapReduce implementation of an indexing system is composed of a sequence
of 8 MapReduce operations. The advantages of using MapReduce are as follows [6]:

1. The MapReduce code is simpler and smaller. In MapReduce indexing code, the code
for distribution of data, fault tolerance and parallelization is hidden in the MapReduce
library.

2. In MapReduce indexing, all unrelated tasks are kept separate. So it is easy to modify
a specific part of code.

3. In the MapReduce indexing process, performance can be improved easily by adding
more machines. In addition, it doesn’t need an operator to respond to machine failures
or network problems. The MapReduce library automatically deals with such problems.

6.2 The Hadoop Distributed Filesystem

The Hadoop Distributed File System (HDFS) is a distributed file system for data storage
used by hadoop applications. Although HDFS has some similarities with other distributed
file systems, many specific characteristics make it distinct from others. HDFS highly tolerates
failure of machines and can be deployed on low cost hadware. In addition, HDFS provides
high throughput access to data. A number of goals of HDFS are as follows [1]:

• Due to the huge number of machines in the network, there is a non-trivial probability of
machine failure. Fault tolerance is an important goal of HDFS performed by detecting
faults followed by quick and automatic recovery.

• HDFS needs to store large data sets. Scalability is another important property of
HDFS to reliably store and process massive amounts of data.
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• It is more efficient to execute a requested computation near the data it operates on.
When the size of the data is huge, it is better to move the computation closer to where
the data is located rather than moving the data to where application is running. HDFS
does this to decrease network congestion.

• HDFS is easily portable from across heterogeneous hardware and different operating
systems.

• HDFS provides reliability by automatically maintaining multiple copies of data and
automatically redeploying processing logic in the event of failures. The number of
copies is 3 by default and can be modified by user.

6.3 Hadoop Cluster

A cluster of machines in hadoop supports three different modes:

• Local or Standalone mode: This non-distributed mode is he tdefault configuration of
hadoop in which hadoop runs in a single Java process. This mode is used for debugging.

• Pseudo-distributed mode: Although pseudo-distributed mode runs on a single node, it
mimics the operation of a real cluster. In this mode, each hadoop daemon runs in a
separate Java process.

• Fully-distributed mode: this mode is the real production cluster.

As the map and the reduce code in hadoop will be running on a large volume of data
distributed among hundreds of nodes, any bugs may be amplified and make system-wide
problems. Using the three modes and iterative development in hadoop, a user is able to
remove bugs on a small data set before deploying on a distributed cluster.

The cluster machines in hadoop are classified into three groups: Master nodes, Slave nodes
and Client machines. Master nodes supervise two essential functions in hadoop, storage of
data and analysis; Master nodes have two types: Name Node and Job Tracker. The name
node and job tracker are responsible for coordinating and controlling of data storage in HDFS
and parallel processing of data, respectively. The majority of nodes in hadoop clusters are
slave nodes. The salve nodes run a data node and a task tracker daemon. The daemons on
slave nodes communicate with their master node to receive instructions. The task tracker is
a slave to the job tracker, and the data node daemon is a slave to the name node.

The client machines load data into the cluster and submit MapReduce jobs describing
how that data should be processed, and then view the results of the job when it is finished.
Figure 6.4 describes briefly different types of nodes in a cluster.
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Figure 6.4: Different roles in hadoop (from [11]).

Some recent research [22, 23] used MapReduce as a framework for implementing and anal-
ysis of indexing strategies. None of this research, however, has implemented distributed
spatial indexing to support range queries on MapReduce. The possibility of using MapRe-
duce to process multidimensional range queries while minimising data transfer between nodes
is still an open problem.
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Chapter 7

Comparison

In chapters 4 and 5, three distributed spatial data structures are discussed. To our knowledge
these are the only distributed data structures proposed for spatial data indexing. In this
chapter we aim to compare these three data structures, Armada [18], Bisadi and Nickerson
data structure [5] and SD-Rtee [7].

Before summarizing the complexity of these three data structures, we introduce a number
of variables and symbols, as follows:

• n: The number of nodes or peers in the network.

• K: The number of points reported in range.

• B: The number of reported points that fit in one message.

• α: The fraction of points reported in range; α ∈ [0, 1], with K = αN where N is the
number of points.

• |Si|: The number of points stored in node i.

• m: The number of nodes intersecting the query Q.

• S(N): The memory size of the data structure including number of data items and
pointers.

• Q(N, j): Worst case j-dimensional range search cost in number of messages passed.

• I(N, d): The cost of inserting one new point in an existing data structure storing N
points in number of messages.

• D(N, d): The cost of deleting one new point in an existing data structure storing N
points in number of messages.
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Table 7.1: Comparison of Armada, SD-Rtree and Bisadi and Nickerson data structures.

Parameters Armada Bisadi and Nickerson SD-Rtree
S(N) O(n+N) O(n+N) O(n+N)

Q(N, 1) a - b N.A. -
Q(N, 2) - O(n+ K

B
) O(log n)

Q(N, d) - N.A. N.A.
Expected Cost O(log n+ 2m− 2) c O(log n+ n

√
α + K

B
)d O(log n)e

I(N, d) O(log n) O(log n) 3 log n

D(N, d) O(log n) O(log n+ |Si|
B

) -
Supports Redundancy no yes no

Peer-to-peer yes yes no
Can index rectangle no no yes

aThe cost of reporting points in the query is counted in the search cost of Bisadi and Nickerson but this is not
counted in Armada and SD-Rtree.

bDash shows an open question for corresponding data structure.
cThis is the average message cost for 1-dimensional range search by Armada. No theoretical proof for d-dimensional

range search is presented in [18].
dExpected cost is computed for 2-d range queries.
eThis is for 2-dimensional space.
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Chapter 8

Open Problems

This report present a survey of recent developments on spatial data structures supporting
orthogonal range search on a distributed computing model. We explored the advantages and
disadvantages of these data structures. We identified several open problems, as follows:

• Is there a linear space distributed spatial data structure that supports optimal worst
case O(log n+m+ K

B
) messages for Q(N, 2) range search in peer-to-peer network?

• Is there a data structure with redundancy permitting any one node to be off-line and
still answer any 2-d range query? If so, what is the worst case space and messaging
cost of this data structure? What about 3-d data?

• Is there an adaptive grid structure that can support efficient dynamic distributed spa-
tial data structures in a peer-to-peer networks?

• What is the Q(N, d) cost of MIRA and PIRA in Armada in the worst case?

• Is there any way to implement range query processing in 2 or more dimensional space
on a MapReduce framework? If so, how efficient is MapReduce indexing running
on hadoop clusters in comparison with other distributed spatial data range query
processing schemes?
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