
Efficient Text Search with Spatial Constraints

by

Dan (Amber) Han

TR14-233, August 18, 2014

This is an unaltered version of the author’s MCS thesis
Supervisor: Bradford G. Nickerson

Faculty of Computer Science
University of New Brunswick
Fredericton, N.B. E3B 5A3

Canada

Phone: (506) 453-4566
Fax: (506) 453-3566
E-mail: fcs@unb.ca

http://www.cs.unb.ca

Copyright c© 2014 Dan (Amber) Han

Abstract

This thesis presents a search engine called TexSpaSearch that can search text documents

having associated positions in space. We defined three query types Q1(t) , Q2(t, r) and

Q3(p, r) that can search documents with queries containing text t, position p and radius

r components. We indexed a sample herbarium database of 40,791 records using a novel

R*-tree and suffix tree data structure to achieve efficient text search with spatial data

constraints. Significant preprocessing was performed to transform the herbarium database

to a form usable by TexSpaSearch. We built unique data structures used to index text

with spatial attributes that simultaneously support Q1, Q2 and Q3 queries.

This thesis presents a novel approach for simplifying polygon boundaries for packing into

R*-tree leaf nodes. Search results are ranked by a novel modified Lucene algorithm that

supports free form text indexing in a general way. A novel ranking of Q2 search results

combines the text and spatial scores. The architecture of a prototype Java based web

application that invokes TexSpaSearch is described. A theoretical analysis shows that

TexSpaSearch requires O(A2|b|) average time for Q1 search, where A is the number of

single words in the query string t, and ||b| is the average length of a subphrase in t. Q2

and Q3 require O(A2|b| + Z logMDn + y) and O(logMDn + y), respectively, where Z is

the number of point records in the list P of text search results, Dn is the number of data

objects indexed in the R*=tree for n records, M is the maximum number of entries of an

ii

internal node in the R*-tree, and y is the number of leaf nodes found in range in a Q3 query.

Testing was performed with 20 test Q1 queries to compare TexSpaSearch to a Google

Search Appliance (GSA) for text search. Results indicate that the GSA is about 45.5

times faster than TexSpaSearch. The same 20 test queries were combined with a Q2 query

radius r = 5, 50 and 500m. Results indicate Q2 queries are 22.8 times slower than Q1

queries. For testing Q3 queries, 15 points were chosen in 15 different N.B. counties. The

average Tc, Ts and Te values of 191.5ms, 3603.2ms and 4183.9ms are given in the Q3 test,

respectively, and the average value of Npt +Npl is 1313.4.

iii

Acknowledgements

My first and sincere thank goes to my supervisor Dr. Bradford G. Nickerson, who

continuously and kindly supported all stages of my Master’s thesis. I could not have

imagined completing my thesis without Dr. Nickerson’s guidance. He is a person open to

ideas, and he was always available to shape my work.

I would like to thank the UNB Faculty of Computer Science for providing me many

useful courses and resources. It would be hard for me to complete my thesis without the

lab equipments they offered. I would also like to thank UNB Harriet Irving library for

providing me the permission to use Google Search Appliance and the UNB Department

of Biology for providing me the Connell Memorial Herbarium database for testing.

My greatest appreciation also goes to all my family members without whom I could not

have made it here. Although they are far away, they always cheer me up and encourage

me. Their emotional help inspired me to give my best.

Last but not least, I would like to thank all my friends whoever near or far, for giving me

so much fun.

iv

Table of Contents

Abstract ii

Acknowledgments iv

Table of Contents viii

List of Tables ix

List of Figures xii

Abbreviations xiii

1 Introduction 1

1.1 Suffix Trees . 3

1.2 Background and Literature Review . 5

1.3 Objective . 7

2 A System Supporting Text Search with Queries Having Spatial Con-

straints 11

2.1 Methodology . 11

2.2 Test Methodology . 13

3 Data Preprocessing 16

3.1 UNB Connell Memorial Herbarium database 16

v

3.2 Transforming the collection . 18

3.2.1 Work station on FCS network . 19

3.2.2 Transform database records . 20

3.2.3 Adding Spatial Information to the Records 22

3.2.3.1 Adding locations to the records 23

3.2.3.2 Adding polygons to the records 25

3.2.3.3 Polygon Simplification . 26

3.2.3.4 PackPolygon algorithm can give a non-simple polygon for

an input simple polygon 42

4 Indexing 45

4.1 Text Indexing . 45

4.1.1 Suffix tree Leaf Nodes . 46

4.1.2 Constructing a suffix tree . 47

4.1.3 Querying a Suffix Tree . 50

4.1.3.1 Reverse Document-Subphrases Hashtable 51

4.1.3.2 Ranking text search results 53

4.1.3.3 The Format for the Q1 Returned List 58

4.2 Spatial Index Using Packed R* Tree . 58

4.2.1 R* Tree Leaf Nodes . 59

4.2.2 Constructing an R* Tree . 60

4.2.3 Querying an R* Tree . 63

4.2.3.1 The Format for the Q3 Returned List 66

4.3 Combined Text and Spatial Query Q2 . 68

4.3.1 Data Structures for Maintaining Q2 Search Results 68

4.3.2 Combined Score for the Text + Spatial Search 71

vi

4.3.3 Algorithm for Q2 query . 72

4.4 Web Server architecture . 75

4.4.1 Server Side Architecture . 75

4.4.2 Client Side Architecture . 79

4.4.2.1 Display Q1 Results . 80

4.4.2.2 Display Q2 Results . 81

4.4.2.3 Display Q3 Results . 83

4.5 Source Code Summary . 85

4.6 Search Complexity . 85

5 Google Search Appliance (GSA) Indexing 90

5.1 PageRank Algorithm . 90

5.2 Result Biasing . 91

5.3 GSA operation . 94

5.3.1 Configuring the GSA for Crawling and Indexing 94

5.3.2 Build Result Biasing Policy . 98

6 Test Results 102

6.1 R* Tree and Suffix Tree Construction . 102

6.2 Q1 Test Results . 105

6.2.1 Comparing with GSA test results 107

6.3 Q2 Test Results . 111

6.4 Q3 Test Results . 116

7 Summary and Conclusions 124

7.1 Summary . 124

7.1.1 Contributions . 125

vii

7.2 Conclusions . 125

7.3 Future Work . 126

References 131

A Stopwords list 132

Vita

viii

List of Tables

3.1 The number of points for describing the county boundaries before and after
the PolygonSimplification algorithm. 40

4.1 TexSpaSearch search engine source code summary. 89

6.1 Q1 test results for the 20 sample queries. All times are shown in ms. 106
6.2 The comparison of the TexSpaSearch engine and the Google Search Appli-

ance (GSA) on the 20 sample queries. All times are shown in ms. 108
6.3 Time (in ms) per returned record for Q1 search results of TexSpaSearch and

the GSA. 109
6.4 Q2 test results for the 20 sample queries used for the Q1 query tests, with

radius 2m, 20m and 200m, respectively. All times are shown in ms. 112
6.5 Q3 test results for the 15 sample query points with radius 5m, 50m, 500m

and 5000m, respectively. All times are shown in ms. 118

ix

List of Figures

1.1 SPIRIT search engine architecture (from [38]). 2
1.2 A suffix tree for the string “BANANA” from [22] 4
1.3 An example database with records consisting of plain text and associated

spatial information . 8
1.4 Positions on Google Map of records in Figure 1.3 9
1.5 Examples of the three query types using database as shown in Figure 1.3. . 10

2.1 A possible system architecture for text+spatial query. 12
2.2 An example for ranking method. 13
2.3 Testing system. 14

3.1 The preprocessing process for GSA index. 17
3.2 An example database record from the UNB Connell Memo-

rial Herbarium database FileMaker version as viewed at
http://herbarium.biology.unb.ca/fmi/iwp/cgi [21]. 18

3.3 The tree structure under the directory http://131.202.243.11. 20
3.4 IBM PC Extended ASCII Set code page 437, character 8016 (128) through

FF16 (255) [5]. 21
3.5 Extended ASCII table for ISO-8859-1 standard, character 8016 (128) through

FF16 (255) [13]. 22
3.6 Architecture of the Transformer.java program which is used to transform

database records to required web pages. 23
3.7 An example of a generated web page 52686.htm. 24
3.8 The user interface for projection in ArcCatalog as used for transforming

N.B. Stereographic Double projection coordinates to (φ, λ) pairs. 26
3.9 An example of how the Ramer–Douglas–Peucker algorithm works for a piece-

wise linear curve [7]. 27
3.10 An example of the PackPolygon algorithm with the input polygon P con-

taining 6 points and wB = 5. 31
3.11 Two examples of the PackPolygon algorithm. Figure (a) shows the worst

case example. Figure (b) shows the example when the points are equally
distributed along a circle. 35

3.12 Example showing the effect of the ShiftPolygon algorithm with wB = 6. . 38

x

3.13 The comparison of the polygon data before and after simplification for coun-
ties of New Brunswick, Canada on Google Map. The map on the left side
shows the original polygon data, the map on the right side shows the corre-
sponding simplified data with wB = 500. 39

3.14 The comparison of the polygon data before and after simplification for the
area 1 and 2 in Figure 3.10. The map on the left side shows the original
polygon data, the map on the right side shows the corresponding simplified
polygon data. 41

3.15 An example of the PackPolygon algorithm with the input polygon P con-
taining 10 points and wB = 9. 42

4.1 The text + spatial indexing scheme using an R* tree and a suffix tree. . . . 46
4.2 An example suffix tree. 47
4.3 The structure of a suffix tree leaf node. 48
4.4 The sequence diagram for constructing a suffix tree. 49
4.5 The sequence diagram for a Q1 query. 51
4.6 The data structure for constructing the reverse document-subphrases

hashtable. 52
4.7 An example of the generating of the reverse document-subphrases hashtable. 54
4.8 The data structure used in text search ranking process. 57
4.9 Data structures used in R* tree construction. 59
4.10 The sequence diagram for constructing an R* tree. 60
4.11 The sequence diagram for a Q3 query. 64
4.12 The data structure of the RankedSpatialSearchResult. Both L1 and

L2 are stored in the structure. For L1 results, isPolygon = “false” and
countyName = ∅. For L2 results, currentPoint = ∅. 66

4.13 An example of a Q2 point results. 69
4.14 An example of a Q2 polygon results. 69
4.15 The data structures of the TexSpaPointResult and TexSpaPolygonResult.

These are denoted as r1 and r2 in Alg. 4.2. 70
4.16 An example of the TexSpaPolygonResult when there is more than one disk

arising from a Q2 text query intersecting a polygon. Rqd is the text score
for a document as defined by equation (4.10) and finalScore is defined by
equation (4.11). 72

4.17 The flow chart for Algorithm 4.2. 74
4.18 An example of a Q2(t, r) search with t = “Mc” and r = 0.6 km. 75
4.19 Architecture diagram of the TexSpaSearch web application server. 76
4.20 Lines 6-9 from web.xml file. 77
4.21 Three example queries sent to the TCP Socket. 78
4.22 Sequence diagram of server and client interaction for the TexSpaSearch engine. 80
4.23 The welcome page of the HTMLHandler web application. 81
4.24 Q1 search result for string “Carex magellanica”, with listNum = 5. 82

xi

4.25 An example showing the link to display all 6 associated records for point 2:
(45.905, -66.26) from a Q2 point result. 83

4.26 A sample of a Q2 point result showing two distinct points with distance
0 m to the Q2 string search results having primary keys 49846 and 58468,
respectively. 84

4.27 An example of Q2 polygon results for query string “Carex magellanica” and
radius 2m displayed on the web page. 84

4.28 An example of linking to display all the associated records for a Q2 polygon
result, in county Sunbury. 85

4.29 An example of Q3 point results for point (46.888, -65.513) and radius 5000m
displayed on a web page. 86

4.30 An example of Q3 polygon results for point (46.888, -65.513) and radius
5000m displayed on the web page. 87

5.1 The Metadata biasing user interface from a GSA model GB-7007-1M run-
ning version 6.8.0.G.30 of the GSA software. 92

5.2 The page Crawl and Index > Crawl URLs in the Admin Console of GSA
software. 95

5.3 The page Crawl and Index > Collections in the Admin Console of GSA
software. 96

5.4 The XSLT code which is used to associate herbarium collection to the
test front end. 97

5.5 The XSLT code which is used to associate herbarium collection to the
test front end. 98

5.6 An example query result from the unb herbarium collection with the
query string “Asteraceae” using the test front end. Only the first five
results are shown. 99

5.7 The user interface for configuring Source Biasing. 100
5.8 The user interface for configuring Data Biasing. 101

6.1 Several key points in the entire query process. 103
6.2 Several key points in the query process for subsequent queries sent by clicking

a page number. 104
6.3 Search engine server side (including C++ and Java) processing time Ts and

total query time Te plotted versus the number Nr of returned search results
for Q1 queries. 107

6.4 Search engine C++ processing time Tc, server side (including C++ and
Java) processing time Ts and total query time Te plotted versus the number
of returned search results for Q2 queries Rpt +Rpl. 117

6.5 Search engine C++ processing time Tc, server side (including C++ and
Java) processing time Ts and total query time Te plotted versus the number
of returned search results for Q3 queries Rpt +Rpl. 123

xii

List of Symbols, Nomenclature or
Abbreviations

Note that the following sections 1.2 uses symbols and notation as they appeared in the
original author’s articles, which means they are inconsistent with the List of Symbols,
Nomenclature or Abbreviations.

A the number of single words in a phrase
a1 the first point in the sorted list allPoints
b a subphrase
|b| the length of the subphrase b

|b| the average length of subphrases in the query string t
B the maximum number of data points contained in one leaf node in

the R* tree
bb a bounding square
Bb the user-specified boost factor on a subphrase b
Bd the boost factor for document d
Bt the boost factor for query t
c for each (φ, λ) pair, the average number of keys indexed
C1 the time complexity for the Q1 query
C1 the average time complexity for Q1 query
C3 the time complexity for the Q3 query
CSV comma separated values
Ctd a score factor based on how many of the subphrases in the query

string t are found in the document d
d a document
D set of records in the index
d1, d2 and d3 objects of DocObject
Db number of documents containing the specific subphrase b
Dn the number of data objects indexed in the R* tree for n records
e1, e2 and e3 the values of influence strength for tags in GSA Metadata Biasing
ε tolerance
f the general degree of influence that the GSA Metadata Biasing has
finalScore the combined score for the TexSpaSearch

xiii

fmax the maximum value of the general degree of influence that the GSA
Metadata Biasing has

G a specific web page
Gi a web page
GIS geographic information system
GRS84 1984 Geodetic Reference System
GSA Google Search Appliance
Ib inverse document frequency, Ib = 1 + log(n

Db+1
)

Ichosen the index in the ordered point set P of the point we choose to add
to Pchosen in one loop

Iinsert the index of the element right before Ichosen in Pchosen, so Ichosen is
inserted between elements Pchosen[Iinsert] and Pchosen[Iinsert + 2]

IL Pchosen[Iinsert]
Imin and Imax the indices for the two points having the greatest distance between

them on the boundary of a polygon P
IR information retrieval
IR Pchosen[Iinsert + 2]
J the number of leaf nodes in the suffix tree of input string S
JSON JavaScript Object Notation
JSP Java Server Pages
k a loop in the PackPolygon algorithm
` an element in list L1 or L2

L a polyline
L1 sorted list for Q3InternalSearch point results
L2 sorted list for Q3InternalSearch polygon results
Lb subphrase length normalization, which is computed in accordance

with the number of words in the subphrase b
Ll and Lr the two polylines that the polyline L is divided into at point O
lp the maximum length of the primary key
Ls a list of LatLngPairs, which stores the points that have already

been used as inputs of the Q3InternalSearchs in the entire Q2
query process.

m number of subphrases in the query string t
M the point having the greatest perpendicular offsets from a segment

S in the polyline L
M the maximum number of entries of an internal node in the R*-tree
mtd the total number of subphrases of the query string t found in a

document d
n the number of records in the index, n = |D|
Nbd encapsulates the document boost Bd and subphrase length normal-

ization Lb
Ng total number of search results returned by a GSA query

xiv

np the number of subsequent page queries we performed for a query
npl the number of subsequent page queries we performed for a Q2 or

Q3 polygon query
Npl the total number of counties returned for Q2 and Q3 polygon results
npt the number of subsequent page queries we performed for a Q2 or

Q3 point query
Npt the total number of (φ, λ) pairs returned for Q2 and Q3 point results
Nr the total number of search results returned in Q1 query
Nt a normalizing factor used to make scores between queries compa-

rable
O the greatest perpendicular offsets from a segment S to points in the

polyline L
p (latitude, longitude) point
P the set of ranked text search results
P a polygon or an ordered point set for a polygon
P ′ the simplified polygon containing wB or fewer points
Pchosen the vector used to maintain the indices of chosen points of the

simplified polygon
(φ, λ) latitude and longitude pairs
pi a point on a polygon or polyline boundary
Pi an element in P
PL an input polyline of the RDP algorithm
P ′L the simplified polyline generated by the RDP algorithm
prk primary keys
Pshifted the shifted polygon of P generated by the algorithm ShiftPolygon

Q a query string to the suffix tree of string S
Q a query
Q1 = (t) text only query
Q2 = (t, r) text + radius query
Q3 = (p, r) text + radius query
r radius
r1, r2 two records
R1 a list for TexSpaPointResult objects
R2 a list for TexSpaPolygonResult objects
RDP Ramer–Douglas–Peucker algorithm
Ri the final rank score of the web page Wi

Rpl the total number of records returned for Q2 and Q3 polygon results
Rpt the total number of records returned for Q2 and Q3 point results
Rtd the ranking score of query t for a document d
S the input string for constructing a suffix tree
S single line segment
s1, s2 and s3 objects of subphraseResult
SBST Suffix Binary Search Tree

xv

ScoreMax the maximum text ranking score returned by the Q1 text search.
sepF field separator
sepN node separator
sepP primary key separator
Sindex stores information of segments defining by the adjacent points in

Pchosen
SL line segment from IL to Ichosen
Soffset stores information of segments defining by the adjacent points in

Pchosen
SR line segment from Ichosen to IR
t query string
τ the length of query string t
Tbd Tbd =

√
termFrequency

Tc the C++ side processing time
Te the equally distributing case time for the PackPolygon algorithm
Te the total query time from the user clicking the serch button to the

search results displayed on the web page
termFrequency the number of times the SubPhrase text appears in a document
Tg the total query time for a GSA query
Tp the page query timing, which is the timing for subsequent requests

sent by clicking a page number
Ts the server side (including C++ processing time and Java processing

time) processing time
Tw the worst case time for the PackPolygon algorithm
u the length of the input string S for a suffix tree
U the set for point results for a r star tree query
v the length of the query string Q to the suffix tree of string S
V the set for polygon results for a r star tree query
w the number of points representing a polyline L or a polygon P
wB the maximum number of points that can fit on one disk block
Wmb the score of the first matched tag in the document’s metadata in

GSA Result Biasing
Ws the weight for the spatial search
Wt the weight for the text search
x1, x2 distances from the interest point p to the records r1 and r2, respec-

tively
y the number of leaf nodes found in range in a Q3 query
Z the number of point records in the list P of text search results

xvi

Chapter 1

Introduction

Many human activities are more or less related to geographic information. For example,

most documents stored on the web include references to geographical content, typically

names of places. As a result, some applications wish to combine spatial location with

text data when searching [35][38]. Traditional search engines treat place names in the

search strings in the same way as any other keyword. This may be adequate in most

circumstances, but there are situations, for example, when we want to find all the

restaurants falling with 10 km of our working place, in which text only search engines

could be improved. In this case, we are interested in all the documents that are associated

with the region which is specified by the place name and a radius. In this thesis, we

investigate efficient indexing method to support text + spatial query.

To support spatial search, in addition to conventional text search functions, we need to

add features of spatial queries to the search engine, including [20]

1. Representation of spatial data in the index

2. Filtering by some spatial concept such as a bounding box or other shape

1

3. Sorting, scoring and boosting by distance from a query point or query region

In 2004, a general architecture for text + spatial search engine called the SPIRIT search

engine architecture was presented [38]. SPIRIT consists of the following components:

user interface; geographical and domain-specific ontologies; web document collection; core

search engine; textual and spatial indexes of document collection; relevance ranking and

metadata extraction as shown in Figure 1.1 [38].

Figure 1.1: SPIRIT search engine architecture (from [38]).

In this thesis, we use UNB Connell Memorial Herbarium database as the basis for a web

document collection with spatial information. We compare two approaches. The first uses

suffix trees and R*-trees as data structures with a Lucene scoring algorithm for ranking

2

search results, the second approach applies spatial filtering to rank the results from a

Google Search Appliance (GSA) search on a GSA index of the same data.

1.1 Suffix Trees

Suffix tree is a popular data structure for indexing text. Since 1960 tries were used in

many computer science applications such as searching and sorting, dynamic hashing,

conflict resolution algorithms, leader election algorithms, IP addresses lookup, coding,

polynomial factorization, Lempel-Ziv compression schemes, and molecular biology [41].

Also, a number of suffix-based data structures have been proposed to facilitate on-line

string searching [36]. Suffix tree is a special kind of trie, which can be used to index all

suffixes in a text in order to carry out fast full text searches [23].

A suffix tree for a string S is a tree whose edges are labeled with strings, such that each

suffix of S corresponds to exactly one path from the tree’s root to a leaf. It is thus a

Patricia tree for the suffixes of S [22]. The suffix tree for the string S of length u is defined

as a tree such that: [32]

1. The paths from the root to the leaves have a one-to-one relationship with the suffixes

of S.

2. Edges spell non-empty strings.

3. All internal nodes (except perhaps the root) have at least two children.

Since such a tree does not exist for all strings, S is padded with a terminal symbol not

seen in the string (usually denoted $). This ensures that no suffix is a prefix of another,

and that there will be J leaf nodes, one for each of the J suffixes of S.

3

An example suffix tree for the string “BANANA” is shown in Figure 1.2. Each substring

is terminated with special character $. The six paths from the root to a leaf correspond to

the six suffixes A$, NA$, ANA$, NANA$, ANANA$ and BANANA$. The numbers in the

boxes give the start position of the corresponding suffix [22]. Dashed edges link internal

node.

Figure 1.2: A suffix tree for the string “BANANA” from [22]

The classic application for suffix trees is the substring problem. One is first given a text

S of length u. After O(u), or linear, preprocessing time, one must be prepared to take in

a query Q of length v and in O(v) time either find an occurrence of Q in S or determine

that Q is not contained in S. These bounds are achieved with the use of a suffix tree. The

suffix tree for the text S is built in O(u) time during a preprocessing stage; thereafter,

whenever a string of length O(v) is input, the algorithm searches for it in O(v) time using

that suffix tree [32].

4

1.2 Background and Literature Review

The first linear time algorithm for constructing suffix trees was presented by Weiner [48]

in 1973, although at that time a suffix tree was called a position tree. A few years later, a

more space efficient algorithm to build suffix trees in linear time was given by McCreight

[40]. More recently, a conceptually different linear-time algorithm was developed by

Ukkonen [47], which has all the advantages of McCreight’s algorithm, but allows a much

simplier explanation [32]. These classical algorithms [48, 40, 47] construct a suffix tree

for a string of length n in O(n log |
∑
|) time and O(n) space, where

∑
is the alphabet.

Given a suffix tree for σ and a pattern α of length m, an algorithm to determine whether

the pattern appears in the string can be implemented to run in O(m log |
∑
|) time. A

more recent algorithm due to Farach [30] removes the dependence on alphabet size [37].

The suffix array was introduced by Manber and Myers [39] in 1993 as an alternative to

the classical suffix tree. The main advantage of suffix arrays over suffix trees is that, in

practice, they use three to five times less space. The time bounds for construction and

search in the case of a suffix array are O(n log n) and O(m + log n), with O(n) space

used [39]. Although both suffix trees and suffix arrays use linear space, the latter can be

represented more compactly [37].

Irving and Love [37] defined the suffix binary search tree (SBST) in 2000 and its variant

the suffix AVL tree in 2000. They show empirical evidence suggesting that, in practice,

the suffix BST is broadly competitive with suffix trees and suffix arrays in indexing real

data, such as plain text or DNA strings. A particular advantage is that a standard suffix

BST can easily be constructed so as to represent a proper subset of the suffixes of a text.

For example, if the text is natural language, it might be appropriate to present in the

5

tree only those suffixes that start on a word boundary, resulting in a saving in space and

construction time by a factor of the order of 1 + w, where w is the average word length

in the text. For a suitably implemented SBST, a search requires O(m + k) time, there k

is the length of the search path in the tree. This gives O(m + n) worst-case complexity,

but typically in practice, all search paths will have O(log n) length, and searching will be

O(m + log n) on average. This becomes a worst-case bound if AVL rotations are used to

balance the tree on construction. The construction time for standard SBST can be as

bad as O(n2) in the worst case, but for the refined version, it can be achieved in O(nh)

time, where h is the height of the tree. In the worst case, h can be Θ(n), but for random

settings, h can be expected to be O(log n). In the case of the suffix AVL tree, construction

takes O(n log n) time in the worst case [37].

In order to handle multi-dimensional point data efficiently, a number of structures have

been proposed. Cell methods are not good for dynamic structures because the cell

boundaries must be decided in advance [33]. A multidimensional binary search tree, or

k-d tree, was presented by Bentley [27], which then became one of the prominent data

structures for indexing spatial data. In the worst case, it requires O(n1−1/d + F) search

time in a range search, where d is the number of dimensions and F is the number of

points falling in the region. One drawback is that k-d trees and its variants do not take

paging of secondary memory into account [33]. The R-tree is a height-balanced tree that

is derived from the B-tree, and provides efficient indexing of multidimensional objects

with spatial extent [45]. R-tree represents data objects by intervals in several dimensions,

and is designed so that a spatial search requires visiting only a small number of nodes.

An improved version of R-tree, the R*-tree was introduced by Beckmann et al [26]. The

motivation of R*-tree is that there are several weaknesses of the original R-tree insertion

algorithms. R*-tree aims at minimizing the overlap region between sibling nodes and

6

achieving lower storage utilization.

1.3 Objective

We assume that text documents have associated positions in space and we wish to search

such documents with queries containing spatial components. For example, we might have

a set of populated place names (e.g. cities), with associated locations (latitude, longitude)

on the earth’s surface. These place names can be part of larger documents or text based

web pages. From here on, we use the word “document” to refer to item (e.g. web page,

document, database, record) indexed by the search engine.

An example query might be to find all populated places within 50 km of a specific populated

place, or of a given latitude, longitude. Let Q be a query, in this case, we have Q =

(“Fredericton”, 50km) or Q = ((45.95,-66.633333), 50km). Other example queries might

be to find restaurants within 10 km of your current position or of a known restaurant,

then we have Q = (“Golden Triangle”, 10km) where “Golden Triangle” is the name of a

restaurant. In any case, the search returns a ranked list of cities or restaurants nearby. If we

represent search strings (e.g. city or restaurant names) by t, represent spatial information

(e.g. latitude, longitude) by p and let r stand for radius, there are three query forms:

1. Q1 = (t), search returns a ranked list of items matching the search string t, along

with their associated spatial information (e.g. latitude, longitude).

2. Q2 = (t, r), search returns a ranked list of documents with at least one spatial

component having its location falling within the circle of radius r centred at the

position p of the ranked documents.

7

3. Q3 = (p, r), search returns a ranked list of documents with at least one spatial

component having its location falling within the circle of radius r centred at position

p.

Assume now that there are records consisting of plain text and associated spatial informa-

tion in a database as shown in Figure 1.3.

Figure 1.3: An example database with records consisting of plain text and associated
spatial information

Figure 1.4 shows corresponding positions on a Google map of the records in Figure 1.3.

Figure 1.5 shows examples of the three queries and query answers using the database shown

in Figure 1.3.

Ranking of search results becomes important for large amounts of data in the search

result. In cases 3 and 4, we have to realize ranked nearest neighbour search and ranked

range search.

8

Figure 1.4: Positions on Google Map of records in Figure 1.3

Suffix trees and its variants can be used to efficiently index and search text, but what if we

have spatial constraints on the query? Since it is not easy to use suffix trees to represent

the spatial data, we need another data structure to index spatial data. The R-tree and

its variants the R*-tree are among the most popular indexing methods supporting range

search and nearest neighbour search [44]. The R-tree is a dynamic index structure that

provides a way to handle multi-dimensional spatial data efficiently. Other than traditional

data structures, R-tree represents data objects by intervals in several dimensions. Thus,

we can index the herbarium database using two different data structures. How can we

implement and combine these two data structures for efficient text search with spatial

data constraints? Can the Lucene text similarity engine be used to effectively rank the

text search results [34]? In this thesis, we explore novel data structures and ranking

algorithms for efficient combined text and spatial search. Our research objectives focus on

achieving efficient worst case and average case search cost using linear space.

9

Figure 1.5: Examples of the three query types using database as shown in Figure 1.3.

10

Chapter 2

A System Supporting Text Search

with Queries Having Spatial

Constraints

2.1 Methodology

We plan to use the suffix binary search tree and R*-tree because they are efficient on

indexing text and spatial data, respectively. To achieve efficient query in the three forms

described in Chapter 1, a system is desired as shown in Figure 2.1.

The targeted database will be indexed using two different data structures; the R*-tree for

spatial data and suffix binary search tree for text data. The text data will be associated

with the corresponding spatial information. This will enable us to do two basic kinds of

queries; text query based on SBST and spatial only query based on the R*-tree. The

central question of this thesis is how can we perform a text + spatial query efficiently? As

we can see from Figure 2.1, to perform a Q2 (text + radius) query, we first perform pure

11

Figure 2.1: A possible system architecture for text+spatial query.

text search, which will return a set P of search results. We then introduce a radius into

the system, for each point in P , we perform a point + radius search, or nearest neighbour

search, which will return all points falling in range.

Since the number of points in range can vary, an important question is how can we rank

the results as to their importance. Our way is to rank the results by their positions. This

idea is based on the common sense that the nearer a point is to a specific point, the more

likely that people will be interested in it. An example is illustrated in Figure 2.2. In this

example, two records r1 and r2 fall inside a circle of radius r at point p. The distance from

p to r1 and r2 are x1 and x2, respectively, with x1 < x2. Thus, document r1 should be

ranked higher than document r2.

12

Figure 2.2: An example for ranking method.

2.2 Test Methodology

The system will be tested on a database. The performance of the system will be compared

with the Google Search Appliance (GSA) on the targeted data set. The testing system is

depicted in Figure 2.3. In our testing, we can have Q1 (text only), Q2 (text + radius)

or Q3 (point + radius) search. Since the GSA does not provide a way to perform

text plus spatial data search, we have to do the text search first and then introduce

spatial constraints in a different way. Steps 2 and 3 in Figure 2.3 are data preprocessing

procedures for the GSA search engine. In step 4, we perform text search using GSA

search engine. If the given query contains latitude and longitude information, this spatial

information should be converted to text information associated with it first, such as a

nearby city or place name. In step 5, a ranked set of matching documents will be generated

and the ranking will be decided merely on text data during this procedure. In step 6, we

introduce the spatial constraint (radius) through a nearest neighbour filter. After this,

the ranked set of matching documents with spatial components will be generated.

In the UNB text + spatial search engine, the targeted database will be preprocessed as

13

Figure 2.3: Testing system.

14

shown in steps 8 and 9. The system then directly performs the given query Q = (text or

(latitude, longitude), radius) in step 10, and generates a ranked set of matching documents

with spatial constraints in step 11. For text search Q1 ranking, we plan to use a text

retrieval ranking algorithm such as Lucene scoring [34].

Finally, we will compare and contrast these two search engines on various aspects such as

searching time and suitability of ranked results in step 12.

15

Chapter 3

Data Preprocessing

UNB has a Connell Memorial Herbarium database, each record of which contains text

and spatial information (latitude and longitude). In the thesis, the system will be tested

on the herbarium database. The performance of the system will be compared with the

Google Search Appliance (GSA) on the UNB Herbarium data set. To index the UNB

Connell Memorial Herbarium database using a Google Search Appliance (GSA), we have

to perform the data preprocessing first. In the data preprocessing stage, we transformed

each database record to a webpage with appropriate metadata and content, put all the

webpages generated on the web server running on the UNB FCS network, and indexed

these webpages using the GSA.

The preprocessing steps are illustrated as shown in Figure 3.1.

3.1 UNB Connell Memorial Herbarium database

The Connell Memorial herbarium is the largest collection of vascular plant specimens from

the New Brunswick flora. There are approximately 55,000 vascular plant specimens from

16

Figure 3.1: The preprocessing process for GSA index.

New Brunswick, 9,000 non-New Brunswick vascular plants, and about 1,000 algae, mainly

seaweeds . About one third of the vascular plant specimens from New Brunswick are

currently in the database [21]. An example record of the online database is shown in

Figure 3.2.

The electronic version of the UNB Connell Memorial Herbarium database was provided

to us by Michael Casey (UNB Biology department) as a .csv file on Sep. 13, 2011. The

database contains 40,791 records in total. An example database record is as follows:

"29","Botrychium multifidum (Gmel.) Rupr.","","","","","15", "8","1844",

"","Hill pastures","College Hill, Fredericton","York", "NB","",

"Leathery grapefern", "Ophioglossaceae", "Botryche à feuille couchée","",

"","","College Hill, Fredericton","",""

The meaning of the 22 columns in each record are: UNB accession number, Full name,

Latitude, Longitude, Collector(s), Collector’s number, Day, Month, Year, Abundance,

Habitat, Location, County, Prov/State, Notes, Common Name, Family, French name,

Phenology, Rare latitude, Rare longitude, Rare location, CDC status and Synonyms.

The above example contains missing values, which are Latitude, Longitude, Collector(s),

17

Figure 3.2: An example database record from the UNB Con-
nell Memorial Herbarium database FileMaker version as viewed at
http://herbarium.biology.unb.ca/fmi/iwp/cgi [21].

Collector’s number, Abundance, Phenology, Rare latitude, Rare longitude, CDC status

and Synonyms.

Attributes are separated by commas and each attribute is surrounded by quatation marks.

The records can be uniquely recognized by their UNB accession numbers.

3.2 Transforming the collection

This section describes how we transformed the UNB Connell Memorial Herbarium database

records to a collection of web pages in the form required by the GSA crawler. Generally,

there are two parts in the transformation process. First, we set up a web server running on

the FCS network. Secondly, we wrote a program to realize database record transformation

18

to an HTML format suitable for GSA crawling.

3.2.1 Work station on FCS network

Web servers are used to serve web pages requested by client computers. Clients typically

request and view web pages using web browsers such as Firefox, Opera, or Mozilla.

Apache is the most commonly used Web Server on Linux systems. The goal of Apache is

to provide a secure, efficient and extensible server that provides HTTP services in sync

with current HTTP standards. The Apache HTTP server is called “httpd”, where the “d”

stands for daemon. Apache’s http server is a project of The Apache Software Foundation

[2].

Under CentOS Linux, we first installed the httpd package using yum install httpd.

Then the httpd RPM package was invoked and the /etc/init.d/httpd script was

installed. We can set the environmental variables in the configuration file for the httpd

service, which can be accessed using the vim /etc/sysconfig/httpd command, and in

the init script, which can be accessed by the command vim /etc/init.d/httpd. In our

case, we only checked that the port number was correctly set to port 80, and that the paths

were set correctly. They were all correct on installation so no actual changes were made.

After installing and initializing, we can get access to the /etc/init.d/httpd script by

using the /sbin/service command. To start the httpd server, we used /sbin/service

httpd start. Command /sbin/service httpd stop is used to stop the web server and

/sbin/service httpd restart is used to restart the web server. To reload the server

configuration file, the command /sbin/service httpd reload is run when logged in as

root.

The URL of the installed web server is decided by the machine’s IP address. For example,

19

if the IP address is 131.202.243.11, then the web server URL address is:

http://131.202.243.11/

The content you want to show on the web server is placed under subdirectory

/var/www/html/ on the machine running the web server httpd. People can get access

to these contents through the URL directly by typing, e.g. http://131.202.243.11. In our

case, we created a subdirectory /test under /var/www/html as shown in Figure 3.3:

Figure 3.3: The tree structure under the directory http://131.202.243.11.

3.2.2 Transform database records

We used a Java program to read database records, recognize attributes, and write each

record to a separate .htm file with the correct format. The generated web pages are

uniquely named by their UNB accession numbers.

For the field “French name”, the original records are encoded using IBM PC Extended

ASCII, or MS-DOS code page 437 character set, which is the character set of the original

IBM PC [5]. To determine that the code page used in the Connell Memorial Herbarium

database was this version of IBM PC Extended ASCII, we viewed the hexadecimal

code used to represent French characters such as à, é, ô and ç using the Emacs editor.

20

Note that the .csv file French characters are different from the UTF-8 version stored

in the FileMaker database. We know this as we can view the database contents in a

web browser (see e.g. Figure 3.2), and find the hexadecimal value of the displayed character.

Figure 3.4 is the IBM PC Extended ASCII table. In web browsers, the most widely used

Extended ASCII standard is ISO-8859-1. The Extended ASCII table for ISO-8859-1 is

shown in Figure 3.5 [13].

Figure 3.4: IBM PC Extended ASCII Set code page 437, character 8016 (128) through
FF16 (255) [5].

In order to display French names in the correct form, we first built a one-to-one trans-

formation table for the two Extended ASCII standards. For each record, we encode the

string in field “French Name” using the getBytes() function of String class in Java, get a

sequence of bytes using the IBM PC charset, store the result into a new byte array , then

perform lookup in the transformation table and retrieve the corresponding ISO-8859-1

21

Figure 3.5: Extended ASCII table for ISO-8859-1 standard, character 8016 (128) through
FF16 (255) [13].

codes. Finally, we construct a new string using the constructor String(byte[] bytes,

String charsetName) of class String by decoding the specified array of bytes using the

ISO-8859-1 character set and generate the French name which can be recognized by

HTML. The architecture for the entire java program is shown in Figure 3.6.

The generated web page 52686.htm with UNB accession number 52686 is shown in Fig-

ure 3.7. The time to transform all 40,791 records by the transform.java program was 11.8

seconds.

3.2.3 Adding Spatial Information to the Records

For records in Herbarium database that have latitude and longitude pairs (φ, λ) associated,

we can directly use (φ, λ) pairs in spatial indexing. For those ones that do not have (φ, λ)

22

Figure 3.6: Architecture of the Transformer.java program which is used to transform
database records to required web pages.

pairs but have locations related, we can acquire the corresponding (φ, λ) pairs using a

Google Map API. If neither of the (φ, λ) pair and location exist, we can add polygon

information according to their county or province as spatial information.

3.2.3.1 Adding locations to the records

For the records that have specific locations related to them, such as “Mary-land Road,

College Hill, Fredericton, NB”, the Google Map API for web services provides us a way to

convert those locations into geographic coordinates, such as a latitude and longitude pair

(φ, λ). The process of this conversion is called Geocoding. The Google Geocoding API

provides a direct way to access a geocoder via an HTTP request [8]. A Geocoding API

23

Figure 3.7: An example of a generated web page 52686.htm.

request is in the following form:

http://maps.google.com/maps/geo?address&output&key

where address is a string containing the text stored in the Location, County and

Prov/State fields (comma separated) of a record, output can be one of three formats:

JSON (JavaScript Object Notation), XML, or CSV (comma separated values), and key is a

text string used when authenticating for paying users (i.e. users with >2,500 geolocation

requests per day). All parameters are separated by the ampersand (&) character. After

sending an HTTP request, the Geocoding response is returned in the format indicated

by output; we used CSV for this research. Then we can analyze the output and get the

corresponding latitude and longitude pair (φ, λ). In some cases, the Google Geocoding API

returns “error”. In “error” cases, we describe the location using a polygon corresponding

to the County or Prov/State field.

24

3.2.3.2 Adding polygons to the records

After the above processing, some records do not has an address that provides a (φ, λ)

position. For these records, we add polygons based on their County or Prov/State fields.

The geographic data describing county and N.B. province boundaries was downloaded

from SNB Geographic Data & Maps [19] . The downloaded data is in ESRI Shapefile

(.shp) format, which we transformed to common text file (.txt) format using the Shapefile

API from a Shapefile C library [18]. The output polygon descriptions include a pair of

points p1 and p2 that define the bounding box of all points defining the polygon.

The transformed data is in the N.B. Stereographic Double projection with the following

parameters:

Reference System: North American Datum 1983 (CSRS)

False Northing: 7,500,000

False Easting: 2,500,000

Latitude of Origin: 46.5

Central Meridian: -66.5

Scalefactor: 0.999912

Units: Meters

In our indexing scheme, the spatial data are represented by latitude and longitude, so we

need to convert the Stereographic Double (x, y) (East, North) coordinates into the corre-

sponding geographic coordinates. The projection can be done using the ArcGIS engine,

which is a geographic information system (GIS) for working with maps and geographic

information [4]. Figure 3.8 shows the user interface for projection in ArcCatalog as we

invoked it.

We invoked this process on a total of 15 county boundaries and one province boundary.

25

Figure 3.8: The user interface for projection in ArcCatalog as used for transforming N.B.
Stereographic Double projection coordinates to (φ, λ) pairs.

The input is the original Shapefile using the N.B. Stereographic Double projection

coordinate system. The output file is a Shapefile containing (φ, λ) geographic coordinate

pairs as spatial components. Note that the NAD 1983 CSRS reference frame was used as

output as most of the records were collected prior to the existence of GPS and the 1984

Geodetic Reference System (GRS84) [24].

3.2.3.3 Polygon Simplification

In the output Shapefile, each polygon can be represented by thousands of (φ, λ) pairs,

which is too large to directly use in our indexing. It is helpful to simplify the polygons

before we start to index the data. There is a famous polyline simplification algorithm

independently developed in 1972 by Urs Ramer [43] and by David Douglas and Thomas

Peucker in 1973 [29] for reducing the number of points in a curve that is approximated by

26

a series of points. Assume that the input is a polyline L represented by an ordered set of

w points and a tolerance ε. The algorithm proceeds as follows:

1. Connect the start point and the end point of L using a line segment S.

2. Compute the perpendicular offsets of all points in L from S, and mark the point M

with the greatest offset O.

3. If O < ε, then S is considered adequate to represent all the points between the

start point and the end point in a simplified form. Otherwise, L is divided into two

polylines Ll and Lr at point O.

4. The algorithm then recursively repeats this process for the two parts Ll and Lr, from

the start point to O, and from O to the end point.

Figure 3.9 shows an example of how the Ramer–Douglas–Peucker (RDP) algorithm works

for a piecewise linear curve.

Figure 3.9: An example of how the Ramer–Douglas–Peucker algorithm works for a piece-
wise linear curve [7].

27

We can use a similar way to RDP algorithm to reduce the number of (φ, λ) pairs describing

a polygon, which in turn reduces the space required for representing a polygon in our

index. Our requirements for a polygon simplification algorithm are different from the RDP

algorithm in the following aspects:

1. The RDP algorithm is designed for polylines and paths, so it requires its input ordered

point set to have a distinct start point and end point, while the start and end points

for a polygon are the same point geometrically.

2. For the RDP algorithm, ε is an input parameter, and a larger ε value increases

the number of points removed from the original polyline. For I/O-efficient polygon

simplification, the overriding concern is that each simplified polygon fits on one disk

block. As original polygons have widely varying numbers of points defining them, ε

cannot be used as an input parameter.

3. For I/O-efficiency, we require that approximately the same number of points are used

to represent each simplified polygon. This permits each simplified polygon to fit on

one disk block. We assume at most wB points can fit on one disk block. So instead

of ε, the input parameter wB is used to control the number of points describing a

simplified polygon.

To use the RDP algorithm for I/O-efficient polygon simplification, we have modified the

RDP algorithm. The polygon simplification algorithm PackPolygon shown in Algorithm

3.1 is a significant modification of the RDP algorithm. Note that we compute the offset

properly using the great-circle distance [11]. For all the polygons P that have more than

wB points, PackPolygon returns a simplified polygon, containing exactly wB points; if P

has less than wB points, the simplified polygon P ′ is exactly the input polygon P .

28

Algorithm 3.1: PackPolygon (point[] P , int wB)

Input:

point[] P : the input polygon describing by an ordered point set;
int wB: the maximum number of points fitting on one disk block;
Output:

point[] P ′: the simplified polygon containing wB or fewer points ;
1 if |P | ≤ wB then
2 P ′ ← P ; return P ′ ;

3 Vector Pchosen, Soffset, Sindex; initially empty ;
4 Append 0 to Pchosen; Append |P | − 1 to Pchosen ;
5 int Imax ← −1; double Dmax ← 0 ;
6 forall the points in P between 0 and |P | − 1 do
7 Imax ← index of the point having the biggest great circle distance to P [0] ;

Dmax ← distance (P [0], P [Imax]) ;

8 Append Imax to Sindex; append Dmax to Soffset ;
9 int Ichosen, Iinsert, Is, Ie ;

10 while |Pchosen| < wB do
11 Ichosen ← −1, Iinsert ← −1 ;
12 int index← the index of the maximum element in Soffset ;
13 Ichosen ← Sindex[index] ;
14 for int i← 0 to |Pchosen| − 1 do
15 if Pchosen[i] < Ichosen & Ichosen < Pchosen[i+ 1] then
16 Insert Ichosen to Pchosen at position i+ 1; Iinsert ← i; break ;

17 Soffset.removeElementAt(Iinsert); Sindex.removeElementAt(Iinsert) ;
18 for int i← Iinsert to Iinsert + 1 do

// 1st time ⇒ left side; 2nd time ⇒ right side

19 Is ← Pchosen[i], Ie ← Pchosen[i+ 1] ;
20 if Ie == Is + 1 then
21 Insert 0.0 to Soffset at position i ;
22 Insert −1 to Sindex at position i ;

23 else
24 forall the points in P between Is and Ie do
25 Imax ← the index of the point having the biggest great circle distance

Dmax to the circle from P [Is] to P [Ie];

26 Insert Dmax to Soffset at position i ;
27 Insert Imax to Sindex at position i ;

28 for int i← 0 to wB − 1 do
29 P ′[i]← P [Pchosen[i]] ;

30 return P ′ ;

29

We use the vector Pchosen to maintain the indices of chosen points of the simplified polygon.

The vectors Soffset and Sindex store information of segments defining by the adjacent points

in Pchosen. As we can see from Algorithm 3.1, the PackPolygon has the following steps:

1. Initially, we add the indices of the first and last points, which are 0 and |P | − 1, to

the vector Pchosen, as we can see at line 4. For input polygon P , we assume these two

points are the same point geometrically. At lines 6 to 7, we compute the distances

from all the other points to P [0], recording the index Imax of the point with the

biggest distance Dmax to P [0]. At line 8, we add Dmax to the vector Soffset, and add

Imax to the vector Sindex.

2. Within all the elements in Soffset, we find the biggest one, and record its index as

index at line 12. Then we get the value of the element at position index in vector

Sindex , which is recorded as Ichosen at line 13. Ichosen is the index in P of the point

we choose to add to Pchosen in this loop. In lines 14 to 16, we insert Ichosen to Pchosen

at the right position, so that Pchosen can be kept as an ordered point set. In Pchosen,

the index of the element right before Ichosen is recorded as Iinsert, so Ichosen is inserted

between elements Pchosen[Iinsert] and Pchosen[Iinsert+2]. For easy description, we mark

Pchosen[Iinsert] and Pchosen[Iinsert + 2] as IL and IR.

3. At line 17, we remove the element at position Iinsert in vectors Soffset and Sindex,

since the segment between IL and IR is replaced by two new segments SL and SR,

where SL is from IL to Ichosen, and SR is from Ichosen to IR.

4. In the original point set P , for the points between IL and Ichosen (left side), we

compute the perpendicular offsets from them to the segment SL, and record the

index of the point having the biggest offset Dmax as Imax. Since segment SL is the

Iinsertth segment in Pchosen, so we insert Dmax to Soffset at position Iinsert, and add

30

(a) The original polygon (b) The simplified polygon with wB = 5.

Figure 3.10: An example of the PackPolygon algorithm with the input polygon P contain-
ing 6 points and wB = 5.

Imax to Sindex at position Iinsert. For those points between Ichosen and IR (right side),

we compute their perpendicular offsets to the segment SR, recording the index Imax

of the point with the biggest offset Dmax. Then we add Dmax and Imax to Soffset and

Sindex at position Iinsert + 1, respectively. This step is completed by the pseudocode

between lines 18 and 27, using a for loop from Iinsert to Iinsert+1, i.e. execute twice.

5. If the number of points in Pchosen is more than wB, we go back to step 2 (line 11)

and repeat, until we get wB points in Pchosen.

Figure 3.10 (a) shows a simple example illustrating how PackPolygon works. In this

example, the original polygon has 6 points, so we have P = {p0, p1, p2, p3, p4, p5}. Assuming

wB = 5, the PackPolygon algorithm proceeds as follows:

1. Initially, we add the indices of p0 and p5, which are 0 and 5 to the Pchosen vector.

Within all the other points, p2 has the maximum distance d0,1 to p0, so we append

d0,1 to Soffset, and append the index of p2, which is 2 to Sindex. After initialization,

we have Pchosen = {0, 5}, Soffset = {d0,1}, Sindex = {2} and |Pchosen| = 2. Here we

use the notation di,j to indicate the maximum distance computed at i times through

31

the while loop at line 10. Subscript j indicates the count (1 or 2) of iterations in the

for loop at line 18. Initially, d0,1 is computed as Dmax outside the while loop at line

7.

2. The algorithm enters the while loop. The maximum element in Soffset now is d0,1,

stored as Soffset[0]. We next get the element at position 0 in Sindex, which is 2. In

the for loop at lines 14 to 16, the index 2 is next inserted into the vector Pchosen

between 0 and 5. So now we have Pchosen = {0, 2, 5}, and Iinsert = 0. At line 17, we

remove the element at position 0 in Sindex and Soffset, leaving both as Ø. For point

p1 (which is P [1] in the PackPolygon algorithm), we compute (for loop at lines 24

and 25) its distance Dmax to the segment p0p2, getting the maximum distance d1,1

and the index 1 of the corresponding point p1. We insert d1,1 to Soffset at line 26 and

1 to Sindex at line 27 at position 0, making Soffset = {d1,1} and Sindex = {1}. For the

2nd time through the for loop at line 18, we compute the distances of points p3 and p4

to segment p2p5, getting the maximum offset d1,2 and the index of the corresponding

point, which is 4. We then insert d1,2 and 4 to Soffset and Sindex at position 1,

respectively. After the first time through the while loop, we have: Pchosen = {0, 2, 5},

Soffset = {d1,1, d1,2}, Sindex = {1, 4} and |Pchosen| = 3.

3. In the second iteration of the while loop, the maximum element in Soffset is d1,1, the

index of which is 0. At line 13, the index Ichosen of the maximum distance point is

Sindex[0] = 1. We insert 1 to Pchosen between elements 0 and 2, and Iinsert becomes 0

(line 16). We next remove the element at position 0 in Sindex and Soffset. Since the

points p0, p1 and p2 are adjacent in P , we insert 0.0 to Soffset at position 0 and 1,

and insert −1 to Sindex at position 0 and 1. After the second iteration through the

while loop, we have : Pchosen = {0, 1, 2, 5}, Soffset = {0, 0, d1,2}, Sindex = {−1,−1, 4}

and |Pchosen| = 4.

32

4. In the third while loop iteration, the maximum element in Soffset is d1,2 with corre-

sponding index 2. The index Ichosen of this maximum offset point is Sindex[2] = 4.

We insert 4 to Pchosen between elements 2 and 5, and Iinsert becomes 2. We remove

the element at position 2 in Soffset and Sindex. For point p3, the only one left be-

tween p2 and p4, we compute its distance d2,1 to the segment p2p4. We insert d2,1 to

Soffset at position 2, and insert 3 to Sindex at position 2. Since p4 and p5 are adja-

cent, we insert 0.0 to Soffset, and −1 to Sindex at position 3, respectively. After the

third while loop iteration, we have: Pchosen = {0, 1, 2, 4, 5}, Soffset = {0, 0, d2,1, 0},

Sindex = {−1,−1, 3,−1} and |Pchosen| = 5.

5. Now we have |Pchosen| = 5 which is equal to wB, so the algorithm ends, and the

simplified polygon P ′ = {p0, p1, p2, p4, p5} is returned. The simplified polygon is

shown in Figure 3.10 (b).

In this way, we just add one more point to the chosen point set in each while loop

iteration. In the kth loop, there are k + 2 points in the chosen point set, and the polygon

has been broken into k + 1 segments. In the while loop, we just need to recompute the

offsets of points in P that have an index between IL and Ichosen, and between Ichosen and

IR. Segment SL is defined by two points having indices IL and Ichosen. Segment SR is

defined by two points having indices Ichosen and IR.

Lemma 3.2.1. Using the PackPolygon algorithm, the worst case time required to simplify

a simple polygon P containing w points into a polygon P ′ containing wB points (w > wB)

is O(wBw).

Proof. For an input polygon having w points where w > wB, the algorithm stops when we

get wB points in the chosen point set. In the worst case, for points that have not yet been

added to the chosen point set, we select the left-most or right-most one to add each time.

33

In the kth loop, we need to recompute the offsets of all the left w− (k+ 2) points that are

not in the chosen point set. The time Tw for PackPolygon algorithm in the worst case can

be computed as following:

Tw = (w − 2) + (w − 3) + · · ·+ (w − (k + 2)) + · · ·+ (w − wB)

= (w − 2) + (w − 3) + · · ·+ 1− [(w − wB − 1) + (w − wB − 2) + · · ·+ 1]

= (w−2)(w−2+1)
2

− (w−wB−1)(w−wB)
2

= (w2−3w+2)−(w2−(2wB+1)w+wB(wB+1))
2

= (wB − 1)w + 1− w2
B+wB

2

= wBw + 1− (w +
w2

B

2
+ wB

2
)

So we have Tw ∈ O(wBw)

If we treat wB as a constant, for different polygons, the worst case time efficiency is O(w).

An example of the worst case is shown in Figure 3.11 (a). Usually, the start point and

end point are the same point geometrically for a polygon, marked as Ps in this example.

Assuming that B = 7, ci is used to indicate the ith point that is added to the chosen point

set. The start and end points are added to Pchosen in the initialization, which are marked

as c0 and c1. We use oj to indicate the maximum offset in the vector Soffset in the jth

while loop iteration. After c2 is added to Pchosen, the remaining points are added on the

left side, which is the first worst-case scenario of Lemma 3.1.1.

Assume the points of a polygon are equally distributed along a circle, as shown in Figure

3.11 (b). For points that have equal offsets to their segments, we add the first one we

encounter to the chosen point set each time. In Figure 3.11 (b), ci indicates the ith point

added to the chosen point set. For an input polygon having w equidistant points, the time

Te for the PackPolygon algorithm can be computed as following:

34

(a) Worst case example. (b) Equidistant distributing example.

Figure 3.11: Two examples of the PackPolygon algorithm. Figure (a) shows the worst case
example. Figure (b) shows the example when the points are equally distributed along a
circle.

Te = (w − 2) + 2(
w − 3

2
)︸ ︷︷ ︸

2

+ 4(
w − 5

4
)︸ ︷︷ ︸

4

+ · · ·+ 2k(
w − 1− 2k

2k
)︸ ︷︷ ︸

2k︸ ︷︷ ︸
(wB−1) items in total

Initially, we add 2 points (start and end point) to the chosen point set at one time.

Then in each while loop, we just add one more point in the chosen point set. When the

algorithm ends, we have exactly wB points in the chosen point set, so we have:

wB − 1 = 20 + 21 + 22 + · · ·+ 2k−1 + c

where 2k−1 < c ≤ 2k

Assuming, without loss of generality, that k is the largest positive integer value

≤ log2wB − 1, we have:

Te ≤ (w − 2) + 2(w−3
2

) + 4(w−5
4

) + · · ·+ 2k(w−1−2
k

2k
)

= (w − 1− 1) + (w − 1− 2) + (w − 1− 22) + · · ·+ (w − 1− 2k)

= (k + 1)(w − 1)− (1 + 2 + 22 + · · ·+ 2k)

35

= (k + 1)(w − 1)− 1(1−2k+1)
1−2

= (k + 1)(w − 1)− (2w+1 − 1)

Thus, we have:

Te ≤ log2wB(w − 1)− (wB − 1) ∈ O(w log2wB)

This proves the following lemma:

Lemma 3.2.2. For a simple polygon P containing w points that are equally distributed

along a circle, the time Te for simplifying it into a polygon P ′ containing wB points (w >

wB) using the PackPolygon algorithm is O(w log2wB).

If we treat wB as a constant, then for polygons defined by a sequence of points distributed

equidistant along a circle, the time efficiency for the PackPolygon algorithm is O(w).

The complete polygon simplification algorithm is shown in Algorithm 3.2.

Algorithm 3.2: PolygonSimplification(point[] P)

Input:

point[] P : an ordered point set for describing a polygon;
int wB: the maximum number of points fitting on one disk block;
Output:

point[] P ′: an ordered point set for the simplified polygon ;
1 if P.length < wB then
2 Q = P

3 else
4 point[] Pshifted ← ShiftPolygon (P) ;
5 P ′ ← PackPolygon(Pshifted, wB) ;

6 return P’ ;

Note that in PolygonSimplification algorithm, we call the procedure ShiftPolygon,

which is shown in Algorithm 3.3, before the procedure PackPolygon is called. In the

Algorithm ShiftPolygon, we first compute the distances between any two points in point

36

set P , and find out the two points indexed by Imin, Imax that have the greatest distance

between them. Then we shift the points in P , letting it start from the point with the index

Imin. The shifted polygon is returned as Pshifted. The shifted polygon is used as the input

of the PackPolygon algorithm. In doing so, we can guarantee that in the PackPolygon

algorithm, the point added to Pchosen in the first while loop iteration has the maximum

distance to the start point P [0] among all the point pairs in P . This can, in turn, optimize

the simplified results of the PackPolygon algorithm in some cases, as illustrated below.

Algorithm 3.3: ShiftPolygon(point[] P)

Input:

point[] P is an ordered point set for describing a polygon
Output:

point[] Pshifted: int Imin and int Imax are the indexes for the two points having the
greatest distance between them in P , Pshifted is the shifted point set that contains
the same points as P , but starts from Imin;

1 double max← 0;
2 int Imin ← −1, Imax ← −1 ;
3 for int i← 0 to P.length− 2 do
4 for int j ← i+ 1 to P.length− 1 do
5 double dist← distance (P [i], P [j]) ;
6 if dist > max then
7 max← dist, Imin ← i, Imax ← j ;

8 for int m← 0 to P.length− Imin − 1 do
9 Pshifted[i]← P [i+ Imin] ;

10 for int i← P.length− Imin to P.length− 2 do
11 Pshifted[i]← P [i− P.length+ Imin + 1] ;

12 Pshifted[P.length− 1]← Pshifted[0] ;
13 return Pshifted ;

The example in Figure 3.12 shows the effect of the ShiftPolygon algorithm. The original

polygon P containing 11 points is shown in Figure 3.12 (a). Assuming that wB = 6, we

directly run the PackPolygon algorithm for the input P and wB, as a result, the simplified

37

polygon P ′ = p0, p1, p3, p7, p9, p10 is returned, which is shown in Figure 3.12 (b). In Figure

3.12 (a), oi indicates the maximum offset in the Soffset vector in the ith while loop iteration.

If we call the ShiftPolygon algorithm before PackPolygon, the resulted polygon Pshifted

is as shown in Figure 3.12 (c), in which p0 and p6 consist the points pair that has the

maximum distance between them. We then call the PackPolygon procedure for Pshifted

and wB, the resulted simplified polygon P ′s is shown in Figure 3.12 (d). As we can see,

comparing with P ′, P ′s can better reflect the features of the original polygon P .

Figure 3.12: Example showing the effect of the ShiftPolygon algorithm with wB = 6.

Figure 3.13 shows the comparison of the polygon data before and after simplification for

counties of New Brunswick, Canada. The detailed comparisons for the area 1 and area 2

in Figure are shown in Figure 3.14 (a) and (b), respectively. These figures are generated

38

Figure 3.13: The comparison of the polygon data before and after simplification for counties
of New Brunswick, Canada on Google Map. The map on the left side shows the original
polygon data, the map on the right side shows the corresponding simplified data with
wB = 500.

39

from the latitude and longitude values of county boundaries using the Google Maps API.

There are 15 county boundaries shown in Figure 3.13. Their corresponding county names,

the number of (φ, λ) pairs in the original data, and the number of (φ, λ) pairs in the

simplified data are listed in Table 3.1. As we can see, using our PolygonSimplification

Table 3.1: The number of points for describing the county boundaries before and after the
PolygonSimplification algorithm.

County name
Num of points Num of points
in original polygon in simplified polygon

Saint John 30412 500
Charlotte 2088 500
Sunbury 20158 500
Queens 1593 500
Kings 49404 500
Albert 38759 500
Westmorland 472 472
Kent 511 500
Northumberland 44277 500
York 1133 500
Carleton 1902 500
Victoria 27756 500
Madawaska 454 454
Restigouche 13429 500
Gloucester 25774 500

algorithm, the number of (φ, λ) pairs in the polygon data is significantly decreased, while

the important features for the polygons are well maintained. This, in turn, guarantees

the I/O-efficiency in our spatial indexing as each polygon definition is stored on one disk

block with wB = 500.

40

(a) The detailed comparison for area 1 in Figure 3.10.

(b) The detailed comparison for area 2 in Figure 3.10.

Figure 3.14: The comparison of the polygon data before and after simplification for the
area 1 and 2 in Figure 3.10. The map on the left side shows the original polygon data, the
map on the right side shows the corresponding simplified polygon data.

41

(a) The original polygon (b) The simplified polygon with wB = 9.

Figure 3.15: An example of the PackPolygon algorithm with the input polygon P contain-
ing 10 points and wB = 9.

3.2.3.4 PackPolygon algorithm can give a non-simple polygon for an input sim-

ple polygon

For an input simple polygon, PackPolygon algorithm can return a non-simple polygon.

The following lemma is proven using an example.

Lemma 3.2.3. The PackPolygon algorithm can produce a non-simple polygon from an

input simple polygon.

Proof. An example is shown in Figure 3.15. Assume that the input polygon P contains

10 points, the (x, y) coordinates of which are: p0(0, 1), p1(1, 6), p2(3, 3), p3(5, 6), p4(5, 4),

p5(6, 7), p6(4, 9), p7(10, 5), p8(6, 0) and p9(0, 1). We use algorithm PackPolygon for P with

wB = 9. Initially, 0 and 9 are appended to Pchosen. Since p7 has the biggest distance 10.77

to p0, we append 7 to Sindex and 10.77 to Soffset. The changes of the vectors Pchosen, Soffset

and Sindex in each while loop iteration are listed as follows:

Iteration 1

Point p7 is chosen to add. Pchosen = {0, 7, 9}, Sindex = {6, 8}, Soffset = {5.94, 3.16}.

42

Iteration 2

Point p6 is chosen to add. Pchosen = {0, 6, 7, 9}, Sindex = {4,−1, 8}, Soffset =

{3.13, 0, 3.16}.

Iteration 3

Point p8 is chosen to add. Pchosen = {0, 6, 7, 8, 9}, Sindex = {4,−1,−1,−1}, Soffset =

{3.13, 0, 0, 0}.

Iteration 4

Point p4 is chosen to add. Pchosen = {0, 4, 6, 7, 8, 9}, Sindex = {1, 5,−1,−1,−1},

Soffset = {3.77, 1.56, 0, 0, 0}.

Iteration 5

Point p1 is chosen to add. Pchosen = {0, 1, 4, 6, 7, 8, 9}, Sindex = {−1, 2, 5,−1,−1,−1},

Soffset = {0, 1.79, 1.56, 0, 0, 0}.

Iteration 6

Point p2 is chosen to add. Pchosen = {0, 1, 2, 4, 6, 7, 8, 9},

Sindex = {−1,−1, 3, 5,−1,−1,−1}, Soffset = {0, 0, 1.79, 1.56, 0, 0, 0}.

Iteration 7

Point p3 is chosen to add. Pchosen = {0, 1, 2, 3, 4, 6, 7, 8, 9},

Sindex = {−1,−1,−1,−1, 5,−1,−1,−1}, Soffset = {0, 0, 0, 0, 1.56, 0, 0, 0}.

Now |Pchosen| = 9 is equal to wB, so the algorithm stops. The output polygon P ′ =

{p0, p1, p2, p3, p4, p6, p7, p8, p0} is shown in Figure 3.15 (b). As we can see, the resulting

polygon P ′ is a non-simple polygon although the input polygon is a simple one.

Figure 3.14 (a) also shows a non-simple polygon arising from a input simple polygon.

43

The above example also applies to the RDP algorithm, from which we can observe the

following corollary:

Corollary 3.2.1. The Ramer-Douglas-Peucker algorithm can give a non-simple polyline

for an input simple polyline.

Proof. An example for Corollary 3.2.1 uses the polyline PL consisting of the points from

p0 to p7 in Figure 3.15 (a). We use the RDP algorithm (see section 3.2.3.3) for the input

PL and ε = 1.6. The simplified polyline P ′L contains points p0, p1, p2, p3, p4, p6 and p7 ,

which is a non-simple polyline.

44

Chapter 4

Indexing

We used a suffix tree and a packed R* tree to realize the text + spatial search, as shown

in Figure 4.1. We index the full text of the .html web pages in the collection and generate

a suffix tree and its associated data structures. To generate an R* tree, if the latitude and

longitude pair (φ, λ) exists, we index the spatial data by this; otherwise, we index by the

polygon of the county or province where the object is located. While building the packed

R* tree, an R* tree leaf node hash table is generated at the same time. The hash table

links the R*-tree with the suffix tree as explained in section 4.2.

4.1 Text Indexing

We use a suffix tree [22] for indexing English language text from a database. Figure 4.2

shows an example suffix tree for the phrase “the cat in the hat”. In the text index, we

first skip all the stop words, such as “the”, “a”, and “and”. The complete list of the stop

words is given in Appendix A. In this example, we will then get the compact phrase “cat

in hat”. After that, to speed up the text search, we index all the possible sub-phrases of

this compact phrase. In this example, we have 6 sub-phrases in total; they are: “cat”,

45

Figure 4.1: The text + spatial indexing scheme using an R* tree and a suffix tree.

“cat in”, “cat in hat”, “in”, “in hat” and “hat”.

All sub-phrases are stored in the leaf nodes of our suffix tree. Figure 4.3 shows the structure

of a suffix tree leaf node.

4.1.1 Suffix tree Leaf Nodes

We use the data structure SuffixTrieDataObject to represent the data object stored in

the leaf, which contains a string for the corresponding sub-phrase, the integer value of the

document frequency and a vector of DocObjects in which the sub-phrase appears. The

document frequency is a counter of the total number of documents containing a specific

subphrase. DocObject is a data structure that indicates the relationship between the

stored sub-phrase and a document containing this sub-phrase. A DocObject consists of

the text of the subphrase, the primary key (e.g. record number) for the document and

the termFrequency, defined as the count of the number of times the text shows up in this

document. The Primary Key is a string containing the database record accession number.

The complete text for each indexed document is stored in a text array as discussed next.

46

Figure 4.2: An example suffix tree.

4.1.2 Constructing a suffix tree

We implement the Patricia trie template class from [31] for constructing a suffix tree.

Figure 4.4 shows the sequence diagram for the suffix tree constructor. To build the suffix

tree, we first get the stop words list. In computing, stop words are words which are

filtered out prior to, or after, processing of natural language data (text) [42]. The English

stopwords list is obtained from [6]. Then the program gets the document input from the

input file via getDocInput(input file), where the input file is a .csv file as described

in section 3.1, and generates a list of document contents. Each document’s text is stored

in one element of the doc text array. The suffix tree is built afterwards.

For each entry of the doc text array, there are 22 fields as described in section 3.1, and

47

Figure 4.3: The structure of a suffix tree leaf node.

each field contains multiple phrases. We first transform each character in one document

text to lower case using convertToLower(str doc). The complete text for one document

is then split into 22 fields by the function getSingleField(str doc) using the ","

as a field separator. For each field, we get single phrases by splitting the fields with

separators“;”, “:” and “,” using getSinglePhrase(str field). For each phrase, we then

remove the punctuation such as “&”, “\”, “.” and parentheses to arrive at a compact

phrase. Then we get a list of single words using getSingleWord(str compact phrase)

by separating the compact phrase by spaces. The function getAllSubphrases will then

generate a list of all possible subphrases consisting of the single words. In the inner loop,

if the subphrase contains only one word, the program will check if the word is in the

stopwords list first; if it is, this single word will not be inserted to the suffix tree. We then

insert all the other subphrases to the suffix tree.

Here we show an example of constructing a suffix tree . An example Herbarium database

record is as follows:

”283”,”Prenanthes trifoliolata (Cass.) Fern. ”,”45.9635895”,”-66.6431151”,”Taylor,

A.R.A.”,””,

”14”,”9”,”1946”,””,”roadside of woodlot”,”Fredericton”,”York”,”NB”,””,”Gall-of-the-earth”,

”Asteraceae”,”Pattes d’oie”,”Specimen has Fruit but no Flowers”,””,””,”Fredericton”,””,

48

Figure 4.4: The sequence diagram for constructing a suffix tree.

”Scirpus americanus auct. non Pers.; Scirpus pungens”

We take the last field as an example, the content of which is ”scirpus americanus auct. non

pers.; scirpus pungens” (the characters have been transformed to lower cases by

convertToLower). The field content is split into two phrases “scirpus americanus auct.

non pers.” and “scirpus pungens” first. The punctuation in the phrases are then removed,

and we generate the compact phrases “scirpus americanus auct non pers” and “scirpus

pungens”. For the phrase “scirpus americanus auct non pers”, we get the list of single

words by splitting it with spaces. The generated list is: ”scripus”, ”americanus”, ”auct”,

49

”non”, ”pers”. After that, the list of all possible subphrases is generated, which is:

”scripus”, ”scirpus americanus”, ”scirpus americanus auct”, ”scirpus americanus auct non”,

”scirpus americanus auct non pers.”, ”americanus”, ”americanus auct”, ”americanus auct

non”, ”americanus auct non pers”, ”auct”, ”auct non”, ”auct non pers”, ”non ”, ” non pers”,

”pers”

Let A be the number of single words, there are always A(A+1)
2

subphrases.

Since there is no single stopword in the list, we directly insert all of the subphrases in the

list to the suffix tree. For the second phrase “scirpus pungens”, we go through the same

process and get the three subphrases:

”scirpus ”, ”scirpus pungens”, ”pungens”

There is no single stopword in the list, so we insert all three subphrases to the suffix tree.

4.1.3 Querying a Suffix Tree

Figure 4.5 shows the sequence diagram for a Q1 query Q(t), where t is the query

string. We first transfer the the query string to an all lower case query string, and

remove the punctuation in the string, obtaining a compact query string. The program

then invokes Q1InternalSearch, which uses the compact query string as the input

parameter. The Q1InternalSearch method first generates the subphrases list of the

compact query string, using the same method as described in subsection 4.1.2. For

each subphrase, we perform a tree look up, which will return a suffix tree data object if

this subphrase has been indexed. As shown in Figure 4.3, each suffix tree data object

contains an integer value of document frequency and a vector of DocObjects. Since one

DocObject can show up in the query results of several different subphrases, we build

a reverse document-subphrases hashtable for each document as described in section 4.1.3.1.

50

Figure 4.5: The sequence diagram for a Q1 query.

4.1.3.1 Reverse Document-Subphrases Hashtable

Figure 4.6 shows the structure for constructing the reverse document-subphrases

hashtable. The data object SubphraseResult contains the text of the corresponding sub-

phrase and the factors indicating the relationship between a document d and a subphrase b.

51

Figure 4.6: The data structure for constructing the reverse document-subphrases hashtable.

Db stands for the number of documents containing the specific subphrase b, i.e. the

documentFrequency in the corresponding SuffixTrieDataObject. The parameter Tbd is

defined as follows:

Tbd =
√

termFrequency (4.1)

where termFrequency is the number of times the SubPhrase text appears in the docu-

ment(here called a record). Nbd encapsulates the length factor, defined as the square root

of the number of words in the subphrase b. These three factors are used to compute the

scores in the ranking process. Each generated SubphraseResult for a Q query refers to a

specific document for which Db, Nbd and Tbd are computed.

As shown in Figure 4.6, allResults is a hashtable that relates a specific document to

a vector of SubphraseResults by using the document primary keys as the hashtable

key value. While performing a Q1 query, when searching for a subphrase b, if we get a

non-empty SuffixTrieDataobject returned, it provides a list of DocObjects at the same

time. For each DocObject in the list, we then create a SubphraseResult object, and

52

insert to the hashtable allResults.

Figure 4.7 shows an example of how to generate the reverse document-subphrases

hashtable. Assume that the tree structure is as shown in Figure 4.2. We now query

the suffix tree with the string “in hat”, ignoring the single stopword “in”. The Q1 query

now has two subphrases “in hat” and “hat” in the list of all subphrases. Following the

path in the suffix tree, two nodes “in hat” and “hat” are found, with their corresponding

SuffixTrieDataObject returned as currentResult. The generated reverse document-

subphrases hashtable allResults is as shown is the Figure 4.7. For the DocObject d1,

we initially find there is no entry having the key value “33” in allResults. We create a

new vector containing only one SubphraseResult s1 and add it to hashtable allResults.

We then search for the subphrase “hat” and get two DocObjects returned. For DocObject

d2, we look for the key value “33” in allResults, and find the key value already exists.

We then create a subphraseResult s2 and insert to the corresponding vector. For the

DocObject d3, we find no entry with key value “65” exists in allResult, so we add a new

vector containing only one element s3 with the key value “65” to allResults.

4.1.3.2 Ranking text search results

After getting the document-subphrases hashtable for query Q(t), we need to analyze the

data stored in the hashtable to get the final ranking.

We use the Lucene ranking algorithm [34] to compute the scores of text search results.

Apache Lucene [3] is an open source information retrieval (IR) software library, originally

created by Doug Cutting [14]. It is a technology suitable for nearly any application that

requires full-text search, especially cross-platform [3]. Lucene provides a scoring algorithm

to find the best matches to document queries, which ranks documents resulting from a

53

Figure 4.7: An example of the generating of the reverse document-subphrases hashtable.

search query based on their content. The default scoring algorithm considers such factors

as the frequency of a particular query term within individual documents and the frequency

of the term in the total population of documents. The Lucene scoring algorithm considers

the rarity of a matched term within the global space of all terms for a given field. In other

words, if you match a term that is not very common in the data then this match is given

a higher score [15].

54

We modified the Lucene ranking algorithm to adapt to our system. The original version can

be found in [34]. To illustrate Lucene’s scoring algorithm, we have definitions as follows:

Definition 4.1.1.

m: number of subphrases in the query string t

D: set of records in the index, and n = |D|

b: a possible subphrase in the query string t

Db: number of documents containing the specific subphrase b

Let Rtd stand for the ranking score of query t for a document d, Rtd is computed as follows:

Rtd = CtdNt

∑
∀b∈t

(TbdI
2
bBbNbd) (4.2)

The parameters influencing the score are as follows:

1. As described in 4.1.3.1, Tbd is computed as:

Tbd =
√

termFrequency (4.3)

Documents that have more occurrences of a given b receive a higher score.

2. Ib stands for inverse document frequency, which can be computed as:

Ib = 1 + log(
n

Db + 1
) (4.4)

where Db stands for the number of documents containing subphrase b, as described

in section 4.1. Rarer subphrases give a higher contribution to the total ranking score,

as Ib ≥ 1.5 and the term I2b appears in equation (4.2).

55

3. Ctd is a score factor based on how many of the subphrases in t are found in the specific

document d. Typically, a document that contains more of the query’s subphrases will

receive a higher score than another document with fewer subphrases. Ctd is computed

as:

Ctd =
mtd

m
(4.5)

where mtd is the total number of subphrases of query string t found in a document

d.

4. Bb is the user-specified boost factor on a subphrase b. In our system, we use the

default boost factor of 1.

5. Nt is a normalizing factor used to make scores between queries comparable. This

factor does not affect document ranking (since all ranked documents are multiplied

by the same factor), but rather just attempts to make scores from different queries

(or even different indexes) comparable. The default computation of Nt in Default-

Similarity is [16]:

Nt =
1

sumOfSquaredWeights
(4.6)

The sum of squared weights is computed as:

sumOfSquaredWeights = B2
t

∑
allbint

(IbBb)
2 (4.7)

Bt is the boost factor for query t, the default value of which is 1.

6. Nbd encapsulates two factors: document boost Bd and subphrase length normalization

Lb. Bd is the boost factor for document d. Lb is computed in accordance with the

number of words in subphrase b, so the longer subphrases contribute more to the

score. The longer the matching subphrase is, the greater the matching document’s

56

score will be. Lb is implemented as follows:

Lb =
√

numOfWords (4.8)

Nbd is computed as follows:

Nbd = BdLb (4.9)

Assume that we use the default value 1 for all the boost factors, Rtd can be computed as

follows:

Rtd =
mtd

m

1∑
∀b∈t(Ib)

2

∑
∀b∈t

(
√

termFrequencyI2bLb) (4.10)

In Figure 4.5, the loop on the bottom shows the ranking process. For each item in

allResults, we first compute the score for the current document, then an object of

RankedTextSearchResult is created. The structure of RankedTextSearchResult is shown

in Figure 4.8, which contains the primary key of the document, the final score Rtd and the

query string t. The RankedTextSearchResult for the current document will then be

Figure 4.8: The data structure used in text search ranking process.

added to the list Text search results, which is a list of RankedTextSearchResult. Af-

ter all the matched documents are inserted to Text search results, we sort this list by Rtd

and get the ranked list, which will be then returned to the process Q1query(queryString).

As shown in Figure 4.5, Q1query finally generates the returned list based on the ranked

Text search results.

57

4.1.3.3 The Format for the Q1 Returned List

As shown in Figure 4.5, a Q1 query finally generates a returned list returnList based

on the sorted Text search results. The returnList is a long string containing all the

information in the Text search results that is useful for the user. Using sepF to stand

for field separator and sepN to stand for node separator, the format for the returnList

is shown as follows:

Q1: prk1 sepF Rtd1︸ ︷︷ ︸
Result1

sepN prk2 sepF Rtd2︸ ︷︷ ︸
Result2

sepN . . .

For the text search result, each node corresponds to a RankedTextSearchResult (see

Figure 4.8). The prk and Rtd values indicate the values of the attributes primaryKey and

Rtd in the corresponding RankedTextSearchResult, respectively. In the program, we use

“@@@” as node separator and “;;;” as field separator. We do not use spaces, newline

characters or normal punctuation as separators because they might be part of the search

results.

4.2 Spatial Index Using Packed R* Tree

After adding locations to the records as explained in chapter 3, we will have two different

types of records: records that have (φ, λ) locations describing them, and records that have

polygons related to them. For the records having specific locations, we first pack B points

in the smallest bounding box that encloses them, where B is the maximum number of

data points contained in one leaf node. Then we insert the generated bounding boxes with

associated B point data as leaf nodes into an R* tree. For the records having polygon

descriptions (e.g. York County), we directly get the bounding box of the polygon, and

insert it together with the polygon data as a leaf node of the same R* tree.

58

4.2.1 R* Tree Leaf Nodes

Figure 4.9 shows the data structures used in R* tree construction. We use struct

Figure 4.9: Data structures used in R* tree construction.

DataPoint to stand for point data in the records, each with a LatLngPair and a

list of primary keys of documents associated with it. The LatLngPair stores the

(φ, λ) location of the point, the data type of which is a pair of double values. Struct

DataPolygon represents polygon objects, which contains a string of county name, a

list of primary keys of related documents and spatial data for corresponding polygons.

The spatial data for polygons is represented using a vector of LatLngPairs in the program.

We use the data structure RStarDataObject to represent the data object stored on the

R* leaf nodes. The Boolean flag isPolygon is used to differentiate leaf nodes storing

points from those storing polygons. If IsPolygon is true, the data object contains the

59

name of the polygon and the associated spatial information for that polygon; otherwise,

it contains a list of B packed points.

4.2.2 Constructing an R* Tree

The library we use for constructing an R* tree is from [46]. Figure 4.10 shows the sequence

diagram for the R* tree constructor. Before building an R* tree, there are several data

Figure 4.10: The sequence diagram for constructing an R* tree.

structures created for later use, they are:

1 allDataObjects: a vector of RStarDataObject, which will be used to store all the R*

data objects.

2 allPoints: a hashtable from LatLngPairs to DataPoint objects.

60

3 pointsRecordsHashTable: a hashtable from records’ primary keys to their correspond-

ing LatLngPairs. The key value only exists when the record has an associated point

data (φ, λ) pair. This hashtable will be used in a Q2 type query for checking if a

record has point information in it.

4 nameOfCounties: an array of strings containing the names of the 15 counties in New

Brunswick, Canada.

5 polygonsData: an array of DataPolygons, which contains the polygon defining the

county boundaries for the 15 counties in New Brunswick, Canada, and the primary

keys of their associated records.

To build an R* tree, the constructor first invokes the process getPointsInput, which will

in turn invoke another process readPointsRecords(input file). The method

readPointsRecords(input file) obtains records line by line from input files that contain

records having associated (φ, λ) pairs giving their locations. For each line, the program

retrieves the values of (φ, λ) and primary key, which are used as input parameters of

the method addPointData(lat, lng, PRKey). The method addPointData(lat, lng,

PRKey) first checks if a point with this LatLngPair (φ, λ) already exists in allPoints.

If the current LatLngPair already exists, the program will get the DataPoint object

pointed to by the LatLngPair, and add PRKey to the primary key list stored in the

corresponding DataPoint. Otherwise, the current LatLngPair appears for the first

time in the data, so we create a new DataPoint object containing only one primary

key, and add this LatLngPair, DataPoint pair to the allPoints hashtable. In each

loop of readPointsRecords(input file), the program will also add the primary

key, LatLngPair pair to the pointsRecordsHashTable for later use. At the end of

readPointsRecords, the hashtable allPoints is returned to getPointsInput.

61

The process getPointsInput then invokes the method packPoints(allPoints), which

will pack every nearest B DataPoint objects into one RStarDataObject. The isPolygon

attributes of the generated RStarDataObjects are set to false, indicating that these

RStarDataObjects store point records. For each RStarDataObject, the nearest B points

are chosen as follows:

1 Sort allPoints by their latitude.

2 Pack the first point a1 in the sorted list allPoints to a RStarDataObject object, then

remove point a1 from allPoints.

3 Sort allPoints by their distances to a1.

4 Pack the first B − 1 points in allPoints to the same RStarDataObject, then remove

these points from allPoints.

The process will loop until the list allPoints is empty. The generated RStarDataObject

objects are returned to the R* tree constructor in the list all packed points.

After inserting the points records, the R* tree constructor invokes the process

getPolygonInput. The getPolygonInput first calls the method

readPolygonBoundaries(input files), which will read the polygon boundary informa-

tion consisting of (φ, λ) pairs for the 15 counties in New Brunswick, Canada. The input

file for the readPolygonBoundaries contains the (φ, λ) pairs of the simplified polygon

boundaries as described in section 3.2.3.3. The obtained county boundaries are stored

in the array polygonsData as vectors of LatLngPairs, along with their corresponding

county names. The polygonsData array has 15 elements, each corresponding to a county

in New Brunswick, Canada.

62

The getPolygonInput method invokes the method readPolygonRecords next, to get the

records line by line from input files that contain records having associated polygons. For

each record, the program retrieves its “County name” field, and checks if it matches the

county name of any entry in the polygonsData array. If there is a matched county name,

the program adds the primary key of this record to the primary key list of the matching

DataPolygon object in the polygonsData array. After inputting all the records having

polygons related, the 15 DataPolygon objects in polygonsData will have the primary

keys of all the records associated to their corresponding county stored in their primary key

lists. Finally, 15 RStarDataObject objects are created, with their isPolygon attributes

set to true. The objects in polygonsData are assigned to RStarDataObject objects as

their attributes polygon. The generated RStarDataObject objects are returned to the

R* tree constructor in the list all polygons.

Now we have all the records along with their spatial information encapsulated as

RStarDataObject objects. The R* tree constructor combines the two lists

all packed points and all polygons as a new list all data objects, and uses it as the

input of the method InsertToRstar. For each RStarDataObject in all data objects,

InsertToRstar gets the bounding box of this RStarDataObject, and calls the process

r star tree.insert to insert all the RStarDataObject to the R* tree.

4.2.3 Querying an R* Tree

Figure 4.11 shows the sequence diagram for a Q3 query Q(p, r), where p is our interest

point and r is the radius. A Q3 query returns the ranked documents with their locations

falling within the circle of radius r centered at position p. To perform a Q3 query, the

Q3Query(p, r) first invokes Q3InternalSearch(p, r, L1, L2), which returns two lists

L1 and L2 of ranked results, with L1 for point results, and L2 for polygon results. The

63

Q3Query(p, r)

Q3InternalSearch(interestPoint, raius)

Q3InternalQuery(p, r)

generateReturnList(L1, L2)

returnList

Lists of ranked Q3_points_results L1

and Q3_polygon_results L2

Figure 4.11: The sequence diagram for a Q3 query.

Q3Query generates the returned list returnList based on L1 and L2, which is a long string

containing all the useful information in L1 and L2. The method Q3InternalSearch(p,

r, L1, L2) is shown in Algorithm 4.1.

As we can see from Algorithm 4.1, the lists L1 and L2 are initially empty. The

bounding square bb defined by the circle Q(p, r) is first computed at line 2. The

r star tree.query(bb) method is then called, which returns two sets of query results: U

for point results and V for polygon results intersecting bb. Each element of U and V is an

RStarDataObject (see Figure 4.9). In the program, we use the visitor design pattern to

perform a range query in the R* tree, and keep two global lists U and V to maintain the

results.

If a Q3 query has point results returned (i.e. |U | ≥ 1), the program goes into the for loop

at line 4. For each point record in U , the program first computes the geographic distance

64

Algorithm 4.1: Q3InternalSearch (p, r, L1, L2)

Input:

Interest point p, radius r defining circle Q(p, r) ;
Output:

List of points L1 and polygons L2 intersecting Q(p, r) ;
1 L1 and L2 are empty lists ;
2 bb← square encompassing circle Q(p, r) ;
3 U , V ← r star tree.query(bb) ;
4 for int i← 0 to |U | − 1 do
5 dist← ApproxDistance(Ui, p) ; // geographic distance

6 if dist ≤ r then
7 L1 ← L1 + Ui ;

8 Sort L1 on dist ;
9 for int j ← 0 to |V | − 1 do

10 if p ∈ Vj then
// if p is inside Vj

11 L2 = L2 + Vj ;

12 else
// if p falls outside or on the boundary of Vj

13 dist← minDist(Vj, p) ; // from p to polygon boundary

14 if dist ≤ r then
15 L2 = L2 + Vj ;

16 Sort L2 on dist ;
17 return L1, L2 ;

dist (on the earth’s surface) from p to the current point Ui. If dist ≤ r, the current point

Ui is added to the list L1. After checking all the points Ui ∈ S, L1 is sorted on dist. If the

set V for polygon results is not empty, we enter the for loop from lines 9 to 15. For all the

polygon results Vj ∈ V , the program first checks if p is inside the polygon Vj. If p is falling

within Vj, we set the distance dist to 0 and add the record to the list L2. Otherwise,

the program computes the minimum distance dist from p to the polygon boundary of

Vj. If dist ≤ r, the current record Vj is then added to the list L2. The generated

list L2 is sorted on dist after adding all polygons in V that intersect Q(q, r). Finally,

65

the lists L1 and L2 are returned to the process Q3Query by the method Q3InternalSearch.

The ranked results in the lists L1 and L2 are maintained by the struct

RankedSpatialSearchResult, which is shown in Figure 4.12. The attributes score,

distance and primaryKeys are valid for both point and polygon results. Vector

primaryKeys stores the primary keys for records having the position indicated by

currentPoint (for L1) or county with countyName (for L2). For a point result ` ∈ L1,

attribute distance is the distance from point p to `‘s (φ, λ) pair currentPoint. For

polygon result ` ∈ L2, distance is the distance from p to the nearest edge of the poly-

gon l‘s boundary. The boolean attribute isPolygon indicates the result type for the

RankedSpatialSearchResult. Only one of LatLngPair or countyName is valid for each

RankedSpatialSearchResult.

Figure 4.12: The data structure of the RankedSpatialSearchResult. Both L1 and L2 are
stored in the structure. For L1 results, isPolygon = “false” and countyName = ∅. For L2

results, currentPoint = ∅.

4.2.3.1 The Format for the Q3 Returned List

As shown in Figure 4.11, The Q3Query(p, r) finally generates a returned list returnList

from the point results list L1 and polygon results list L2. The returnList is a long

string which contains all the information for a valid Q2 search result. The format for the

66

returnList is shown as follows:

Q2:PointResultsHeader###PointResultsCountents%%%PolygonResultsHeader###PolygonReusltsCountents

As we can see, the query type “Q2” is separated by the “:” with the search result contents.

There are two parts in the search result contents: point search results consisting of

PointResultsHeader and PointResultsContents, and polygon search results consisting

of PolygonResultsHeader and PolygonResultsContents. The corresponding results

header and results contents are split by the separator ”###”.

Assume that we use sepN, sepF and sepP to represent node separator, field separator and

primary key separator, respectively. The format for the PointReusltsCoutents is shown

as follows:

lat1 sepF lng1 sepF dist1 speF prk1 sepP prk2 sepP . . .︸ ︷︷ ︸
primary keys︸ ︷︷ ︸

Node 1

sepN

lat2 sepF lng2 sepF dist2 speF prk1 sepP prk2 sepP . . .︸ ︷︷ ︸
primary keys︸ ︷︷ ︸

Node 2

sepN

...

For the point search results, each node corresponds to a RankedSpatialSearchResult

(see Figure 4.12) having the isPolygon attribute set to false. The lat, lng and dist fields

indicate the values of the attributes currentPoint and distance. All the primary keys

in the vector primaryKeys are encoded as one single field, in which every primary key is

separated using sepP. Similarly, the PolygonResultsContents are formatted as follows:

countyName1 sepF dist1 speF prk1 sepP prk2 sepP . . .︸ ︷︷ ︸
primary keys︸ ︷︷ ︸

Node 1

sepN

countyName2 sepF dist2 speF prk1 sepP prk2 sepP . . .︸ ︷︷ ︸
primary keys︸ ︷︷ ︸

Node 2

sepN

...

67

4.3 Combined Text and Spatial Query Q2

As explained in Section 1.3, a Q2 query Q2(t, r) returns the ranked list of records having

their locations intersecting a circular disk of radius r centered at the locations of the

records matching search string t. To perform a Q2(t, r) query, a text query Q1(t) needs

to be performed first, which will return a set P of search results. We then perform a set

of Q3 point + radius queries for points Pi ∈ P , which will return all points and polygons

falling in range.

4.3.1 Data Structures for Maintaining Q2 Search Results

For the Q3 point results and Q3 polygon results, we have two types of results for a Q2

query, which are Q2 point results and Q2 polygon results. As an example of Q2 point

results, assume we have 4 points in a database as shown in Figure 4.13. In the example,

we search for Q2(t, r) = Q2(“Mc”, 0.5km). We first perform text search for Q1(“Mc”),

which returns two point results matching the text ”Mc” in the list P , point A with the

text ”McDonald’s Restaurant” and point C with the text ”McConell Hall”. The Q2 query

then searches for the points intersecting the disk of radius 0.5km centered at points A and

C, which then finds points B and D in range. In Figure 4.13 and Figure 4.14, we use L1 to

represent Q3 point results and L2 to represent Q3 polygon results. In Figure 4.13, P1.L1

is the Q3 point results list centered at the first element in P , and P2.L1 is the Q3 point

results list centered at the second element in P .

Assume we have 4 points A, B, C, D and 1 polygon E in a database, an example of Q2

polygon results is shown in Figure 4.14. In the example, we search for the text t =“Mc”

68

Figure 4.13: An example of a Q2 point results.

and radius r = 0.3km, which first returns points A and C as the text search results. We

then perform a search for the polygon intersecting the disk of radius 0.3km centered at A

and C. The Carleton county E is finally returned as the polygon result found in range. In

Figure 4.14, P1.L2 is the Q3 polygon results list centered at the first element in P , and

P2.L2 is the Q3 polygon results list centered at the second element in P .

Figure 4.14: An example of a Q2 polygon results.

69

In Figure 4.14, assume that the distances from A to B and from D to C are both less than

0.6km. If we perform a Q2 query Q2(“Mc”, 0.6), we will get points B and D returned

as Q2 point results P1.L1 = B, P2.L1 = D, and polygon E returned as a Q2 polygon

result P1.L2 = E. The Q2 point results and Q2 polygon results are maintained by the

data structures TexSpaPointResult and TexSpaPolygonResult, respectively, as shown in

Figure 4.15.

Figure 4.15: The data structures of the TexSpaPointResult and TexSpaPolygonResult.
These are denoted as r1 and r2 in Alg. 4.2.

In TexSpaPointResult, currentPoint is the LatLngPair that defines the location of

records with this (φ, λ) matching the Q2 query. The attribute finalScore is the combined

text + spatial score for the result, as defined in equation 4.11. The list of primary keys

primaryKeys stores all records with this (φ, λ) pair within radius r of query point p

has the primary key texSearchPRK. Query point p is not recorded explicitly. For more

than one centering disk intersecting the (φ, λ) pair, the attribute texSearchPRK is the

primary key of the nearest text search result that has a circular disk of radius r centered

at its location covering the currentPoint. The dist indicates the distance from the

currentPoint to the point associated with the record having texSearchPRK.

A TexSpaPolygonResult uses the countyName to identify its location. The

TexSpaPolygonResult also contains a finalScore and a list of primary keys of its

associated records. For a TexSpaPolygonResult, the vector texSearchPRKs of struct

70

PrkDistPair contains all the primary keys of the text search results having the circular

disks of radius r centered at their locations intersecting the county boundary, along with

the nearest distances from their locations to the county boundary. The PrkDistPair is

a struct containing 2 attributes: a string primarykey and a distance dist. For a Q2

polygon result, a distance dist in the PrkDistPair of 0 means the location of the text

search result is inside the polygon or on the polygon boundary.

Figure 4.16 shows an example in which there is more than one disk arising from text

search results of a Q2 search intersecting a polygon. Assume that points A and B are

point records matching the text from a Q2 search. Both disks of radius r centered at A

and B intersect the polygon Charlotte County. The generated TexSpaPolygonResult P

is shown in Figure 4.16, which contains a PrkDistPair vector of length 2, for text search

results A and B, respectively. The primary key list prk list p contains all the records

without a (φ, λ) pair (i.e. having only this county name describing their location).

4.3.2 Combined Score for the Text + Spatial Search

For the text ranking score Rtd from a text result in P and distance dist obtained from the

Q3 point + radius search, the combined score finalScore of TexSpaSearch is computed

as follows:

finalScore = Wt ∗
Rtd

ScoreMax
+Ws ∗ cos(

π

2

dist

r
) (4.11)

where Wt is the weight for the text search and Ws is the weight for the spatial search,

with the further restriction that Wt ∈ [0, 1], Ws ∈ [0, 1] and Wt + Ws = 1. By default,

Wt and Ws are both set to 0.5. ScoreMax is the maximum text ranking score returned

by the Q1 text search. Since Q1(t) search returns a ranked list P of text search results,

we can obtain ScoreMax as ScoreMax = P0.R(q, d) (see Figure 4.5), which means the

71

Figure 4.16: An example of the TexSpaPolygonResult when there is more than one disk
arising from a Q2 text query intersecting a polygon. Rqd is the text score for a document
as defined by equation (4.10) and finalScore is defined by equation (4.11).

first result in the ranked list. For the text search score, we have Rtd

ScoreMax
∈ [0, 1]. For the

spatial search score, since only points and polygons having dist ≤ r are returned, we have

cos(π
2
dist
r

) ∈ [0, 1], where dist ∈ [0, r] is inversely proportional to the spatial score.

4.3.3 Algorithm for Q2 query

Algorithm 4.2 shows the pseudo-code for a Q2 query Q(t, r), where t is the query string

and r is the radius. The query string t is first transferred to an all lower case query

string t lower at line 4. Any punctuation is then removed to obtain a compact query

string t compact at line 5. At line 6 of Algorithm 4.2, the Q2 search first performs a

Q1InternalSearch Q(t) to return a ranked list P of text search results. The Q1 process

is explained in Section 4.1.3. If the ith record Pi is a point record (i.e. not a polygon),

then we perform a search for other point or polygon records intersecting the disk of radius

72

r centered at Pi from lines 13 to 24.

For a RankedTextSearchResult (see Figure 4.8) Pi, we first obtain the text ranking score

Rtd and corresponding primary key textPrk at lines 9 and 10. We can then retrieve the

LatLngPair p associated with the textPRK in the R* tree using the

pointsRecordsHashTable, which is a hash table from records’ primary keys to their

corresponding LatLngPairs, as described in 4.2.2. List Ls is a list of LatLngPairs, which

stores the points that have already been used as inputs of the Q3InternalSearchs in the

entire Q2 query process. If p is not in Ls (p is first used as the input point in a Q3 point

+ radius search in the Q2 process), we perform a Q3InternalQuery(p,r), getting the

lists L1 for Q3 point results and L2 for Q3 polygon results.

R1 and R2 are empty lists for TexSpaPointResult and TexSpaPolygonResult initially.

At lines 17 and 22, Algorithm 4.2 first computes the combined score using the text score

R(q, d) and dist. The corresponding TexSpaPointResult r1 and TexSpaPolygonResult

r2 are then generated based on the text result Pi, the Q3 internal search results L1[j] or

L2[j], and the finalScore at lines 18 and 23, respectively. Algorithm 4.3 and 4.4 detail

these two result generation processes. Figure 4.15 illustrates the structure used to hold

r1 and r2. The generated r1 and r2 results are added to the list R1 and R2, respectively.

Finally, we sort R1 and R2 on the finalScore at lines 25 and 26, and generate a return

list returnList based on the sorted R1 and R2 at line 27. The returnList is a long string

containing all the information in R1 and R2 that is useful for the user. Figure 4.17 shows

the flow chart for Algorithm 4.2.

Assume we have 4 points A, B, C, D and 1 polygon E in a database, Figure 4.18 shows

an example for a Q2(t, r) search with t = “Mc” and r = 0.6 km. The Q2 query first

73

Figure 4.17: The flow chart for Algorithm 4.2.

invokes a Q1InternalQuery, which returns a list of RankedTextSearchResults containing

results A and C. We then perform a search for the points and polygons intersecting the

disk of radius 0.6 km centered at A and C. The TexSpaPointResults Rb, Rd and the

TexSpaPolygonResult Re are finally returned as the Q2 search results. The primary key

vectors prk list b, prk list d and prk list e store the primary keys of the records

associated with the point B, D and the polygon E in the R* tree, respectively. Primary

key lists are necessary as point records can have identical (φ, λ) coordinates, and some

records have only a county name indicating their location (see section 3.2.3.2).

The format and processing for generating the returnList for Q2 query is similar to that

74

Figure 4.18: An example of a Q2(t, r) search with t = “Mc” and r = 0.6 km.

shown in Section 4.2.3.1 (for Q3, spatial search) and 4.1.3.3 (for Q1, text search).

4.4 Web Server architecture

4.4.1 Server Side Architecture

We wrote a Java and C++ server called TexSpaSearch that provides a web user interface

for our search engine. The web server we used is Apache Tomcat. HTMLHandlerServlet is

the server side Java servlet that handles HTML requests. The server architecture is shown

in Figure 4.19.

75

Figure 4.19: Architecture diagram of the TexSpaSearch web application server.

Each time after a servlet is instantiated, a method init() is called exactly once to indicate

that the servlet is being placed into service [12]. We can change the servlet configuration

by editing the web.xml file. On lines 6-9 of web.xml, we set the tag load-on-startup to

be a non-zero value so that the init() method is called when the Servlet is started on

the Tomcat web server. If the load-on-startup tag is set to zero, init() is called when

the Servlet is created, which is appropriate on startup. Our preprocessed data is read

into a Java HashMap in the init() method, which guarantees that the reading process is

executed only once after the servlet is loaded (which means it does not execute every time

the user sends a request). Part of the configuration file web.xml for the servlet is shown

76

in Figure 4.20.

Figure 4.20: Lines 6-9 from web.xml file.

We use JSP (Java Server Pages) to implement the client page code. JSP allows Java code

to be interleaved with static web markup content, so we can define a ResultClass to

store the search results. It is very helpful to be able to associate some data with each

client in a web server. For this purpose, a session can be used in JSP. A session is an

object associated with a client. Data can be put in the session and retrieved from it, and

operates like a hash table. In our servlet, an object of ResultClass called finalResult

is used to store the search result for each session. The session can be obtained from the

HTTP request. Each client has a session with our server, so each client has their own

finalResult object. In this way the server can process queries for each client separately

without causing critical section issues.

In the JSP file index.jsp, we have an input form named inputForm. The action of

the form is HTMLHandlerServlet, with the submit button click sending HTTP POST

requests to the servlet. When clients click on the search button, index.jsp will first

check whether the user input is valid or not by calling validateForm() (longitudes and

latitudes must be in range). If the input is valid, the user query strings are sent to

HTMLHandlerServlet. The search queries are passed to HTMLHandlerServlet by the

doGet(request, response) method. The method doGet(request, response) will be

called when the Servlet receives an HTTP GET request.

77

When clients send requests via clicking the search button, HTMLHandlerServlet.java

creates a TCP socket connection to the TexSpaSearch C++ program through port 81.

The query strings and other parameters (e.g. radius, φ, λ) are maintained in the pa-

rameter request, which is of type HttpServletRequest. Qtype determines the query

type. In HTMLHandlerServlet, four String variables qString, radius, lat, lng are

defined to store user queries. The search request that is being sent out is Qtype + query.

HTMLHandlerServlet checks the query type first. The format of the query differs for the

three Qtypes, as follow:

1. If Qtype equals Q1, the query is formed with qString.

2. If Qtype equals Q2, the query is formed with qString and radius.

3. If Qtype equals Q3, the query is formed with lat, lng and radius.

The different fields in the search request are separated by the separator string “&&&”.

Figure 4.21 shows three example queries sent to the TCP Socket. The query requests are

Figure 4.21: Three example queries sent to the TCP Socket.

sent to the TexSpaSearch C++ back end program via a socket connection through port 81.

The search results are returned by the TexSpaSearch program through the same socket

via a string recvMsg through the TCP socket. The exact content of RecvMsg for each

query type is explained in Section 4.2.3.1 and 4.1.3.3. We initialize finalResult after

receiving a long string returnList. In the constructor of ResultClass, we separate the

78

long string into single results. For a Q1 search, each result corresponds to a record. For Q2

and Q3 search, each result corresponds to either a point or a polygon. All the separated

results are stored in the arrays q1FullResults (for Q1 search) or pointFullResults and

polygonFullResults (for Q2 and Q3 search). The size of the above arrays might be too

large to return to the client at once, so we only return the results to be displayed on the

current page. If the user sends the request by clicking the search button, the server returns

the results of the first page. If the user sends the request by clicking a page number, the

server returns the results of the requested page (see e.g. Figure 4.24).

A request is invoked by clicking the search button or a page number. Method

getResults() is called to interpret the corresponding entries of the results arrays

q1FullResults,

pointFullResults and polygonFullResults based on the query type and the page

number. The interpreted results are stored in vectors q1CurrentResults (for a Q1

search), or pointCurrentResults and polygonCurrentResults (for Q2 and Q3 search).

The currentResults vectors contain the human readable search results meta information

such as the count of found records, URLs associated with the returned primary keys, and

the contents of pages of the URLs. A sequence diagram showing how the server and client

interact is shown in Figure 4.22.

4.4.2 Client Side Architecture

Before the server side returns any result, the welcome page index.jsp on the client side of

the HTMLHandler is shown in Figure 4.23. Once a Q1, Q2 or Q3 search is performed by the

user, the search results are displayed in the text field surrounded by the dashed line. On

the server side, the servlet stores the search results in the session object. The client page

79

Figure 4.22: Sequence diagram of server and client interaction for the TexSpaSearch engine.

gets the result object clientResult from the session in the header of the index.jsp file.

Method updateMessage() is the main method that controls the results displayed on the

client side. In updateMessage() we get the query type and all the results to be displayed

on the page corresponding to the query type through clientResult. There are three code

blocks in the method updateMessage() on the client side, which are for Q1, Q2, and Q3

queries, respectively.

4.4.2.1 Display Q1 Results

If the query type is Q1, each resultEntry contains two parts: the URL link of the search

result generated from the record’s primary key, and the context of the corresponding record.

80

Figure 4.23: The welcome page of the HTMLHandler web application.

Method upPageq1() can display the search results in multiple pages. The number of search

results displayed on each page is determined by variable listNum. An example of a Q1

search results display for the Q1 query string “Carex magellanica” is shown in Figure 4.24

with listNum = 5.

4.4.2.2 Display Q2 Results

For the Q2 point results, each element of clientResult.pointCurrentResults corre-

sponds to a (φ, λ) pair. Each individual in resultEntry contains three fields: description

of a returned point (a (φ, λ) pair), the URL of the nearest string search result, and all the

URLs to the records having the same (φ, λ) pair associated, along with their context. The

three fields are separated by symbol &&&. For each element in the resultEntry, we get

81

Figure 4.24: Q1 search result for string “Carex magellanica”, with listNum = 5.

a single field by splitting the individual element using separator &&&. Then, for the third

field in the element, we can further obtain the single URL and context pairs of the records

by splitting the field using separator @@@. At this point, the client side has all the readable

information of Q2 point results. An example Q2 search showing point results as displayed

on a web page is shown in Figure 4.26. The query used for Figure 4.26 is Q2(t, r) where

t = “crab apple”, r = 5 meters. In Figure 4.26, we labelled the corresponding attributes

in TexSpaPointResult on the web page, the nearest string search result texSearchPRK of

which is obtained from line 8 of Algorithm 4.2. For each point result in Q2 point results

list R1, up to three records having exactly the same (φ, λ) are shown. If the number of

records having exactly the same (φ, λ) is more than 3, we can click the link after the third

result to display all the records, as shown in Figure 4.25.

Method upPageq2point() displays Q2 point results in multiple pages under the Q2

points tab. Figure 4.26 indicates 7 pages of Q2 point results.

82

Figure 4.25: An example showing the link to display all 6 associated records for point 2:
(45.905, -66.26) from a Q2 point result.

For the Q2 polygon results, all the individuals are stored in

resultclass.polygonCurrentResults, each element of which corresponds to a county.

Each resultEntry consists of three fields, as follows: (1) the description of a polygon result,

i.e. the county name, (2) the URLs to the text search results intersecting the county along

with their context, and (3) the URLs and their context of the records having no (φ, λ) pair

but within this county. An example Q2 polygon result displayed on a webpage is shown in

Figure 4.27. The contents of the third part of a Q2 polygon result are originally hidden.

We can show the results associated with a county by clicking the link “Click to display

all” on the bottom of the corresponding county result, as shown in Figure 4.28. Method

upPageq2polygon() displays Q2 polygon results in multiple pages under the Q2 polygon

tab.

4.4.2.3 Display Q3 Results

If the query type is Q3, we get the point and polygon results from

resultclass.pointCurrentResults and resultclass.polygonCurrentResults. The

83

Figure 4.26: A sample of a Q2 point result showing two distinct points with distance 0 m
to the Q2 string search results having primary keys 49846 and 58468, respectively.

Figure 4.27: An example of Q2 polygon results for query string “Carex magellanica” and
radius 2m displayed on the web page.

display panel for Q3 search results are also divided into two parts using two tabs. Method

upPageq3point() displays Q3 point results in multiple pages under the Q3 points tab,

and method upPageq3polygon() displays Q3 polygon results in multiple pages under the

Q3 polygontab. Examples of Q3 point and Q3 polygon results are shown in Figures 4.29

and 4.30, respectively.

84

Figure 4.28: An example of linking to display all the associated records for a Q2 polygon
result, in county Sunbury.

4.5 Source Code Summary

All the programs with their names, functionalities and number of lines are shown in Ta-

ble 4.1. The total lines of code written is 8571.

4.6 Search Complexity

This section analyses the asymptotic search complexity of queries using the TexSpaSearch

data structure. For a Q1 query Q1(t), where t is the query string of length τ , we perform a

suffix tree look up for each possible subphrase b of t. We represent the length of a subphrase

b by |b|, so the algorithm searches for b in O(|b|) time using the suffix tree as described in

Section 1.1. For the query string t containing A single words, the time complexity C1 can

be computed as follows:

C1 =

A(A+1)
2∑
i=1

O(|bi|) (4.12)

Since the longest subphrase of t has the length τ , so the upper bound of C1 is O(A(A+1)
2

τ).

Assume the average length of subphrases is |b|, the average time complexity for a Q1 query

85

Figure 4.29: An example of Q3 point results for point (46.888, -65.513) and radius 5000m
displayed on a web page.

C1 can be computed as:

C1 = O(
A(A+ 1)

2
|b|) = O(A2|b|) (4.13)

For a Q3(p, r) query, assume there are Dn data objects indexed in the R* tree for n records,

and the maximum number of entries of an internal node is M, the query complexity C3

for the Q3 search is C3 = O(logMDn + y), where y is the number of leaf nodes found in

range. In the worst case when all the bounding boxes in the R* tree overlap the bounding

square defined by p and r, the worst case query complexity is O(Dn). In the application,

we use M = 8.

For a Q2(t,r) query, the search engine first performs a Q1(t) query returning a list P of

text search results, which takes C1 = O(A2|b|) time. We then perform a Q3(p, r) query

for each point record in P . Assuming there are Z point records in P , the time complexity

C2 for Q2 query can be computed as:

C2 = O((

A(A+1)
2∑
i=1

|bi|) + Z logMDn + y) = O(A2|b|+ Z logMDn + y) (4.14)

86

Figure 4.30: An example of Q3 polygon results for point (46.888, -65.513) and radius
5000m displayed on the web page.

on average. As we can see, the Q2 query time heavily depends on the number of point

results returned by the list P .

87

Algorithm 4.2: Q2Query (t, r, returnList)

Input:

Query string t, radius r ;
Output:

A long string returnList contains all the information of records intersecting a disk
of radius r centered at points matching string t;

1 R1 is an empty list of TexSpaPointResult ;
2 R2 is an empty list of TexSpaPolygonResult ;
3 L1, L2, Ls ← empty lists ;
4 t lower ← allToLower(t) ;
5 t compact← removePunct(t lower) ;
6 P ← Q1InternalSearch(t compact) ;
7 for int i← 0 to |P| − 1 do
8 if Pi is a point record then

// not a polygon

9 Rtd ← Pi.Rtd // text score eq. (4.10);
10 textPrk← Pi.primaryKey ;
11 p← r star tree.pointsRecordsHashTable[textPrk] // p = (φ, λ) of Pi;
12 if p /∈ Ls then

// p not already reported

13 Ls ← Ls + p ;
14 Pi.L1,Pi.L2 ← Q3InternalSearch(p, r) // see Alg. 4.1;

// two lists are returned, L1 for point results, L2 for

polygon results

15 for int j ← 0 to |L1| − 1 do
// point records

16 dist← L1[j].distance // distance to p;
17 finalScore← getCombinedScore(Rtd, dist) // eq. (4.11);
18 TexSpaPointResult r1 ← generateQ2Point(Pi, L1[j], finalScore);
19 R1 = R1 + r1 ;

20 for int k ← 0 to |L2| − 1 do
// polygon records

21 dist← L2[j].distance // distance to p;
22 finalScore← getCombinedScore(Rtd, dist) // eq. (4.11);
23 TexSpaPolygonResult r2 ← generateQ2Polygon(Pi, L2[j], finalScore)

;
24 R2 = R2 + r2 ;

25 Sort R1 based on finalScore ;
26 Sort R2 based on finalScore ;
27 return returnList ← generateReturnList(R1, R2) ;

88

Table 4.1: TexSpaSearch search engine source code summary.

Module Program name Lines
of
codes

Comments

R*tree RStarBoundingBox.h 282 R* bounding box manipu-
lations

RStarVisitor.h 112 ‘acceptor’ functions used
for queries and removals

RStarTree.h 726 R* tree library

BuildRStarTree.h 644 R* tree constructor

Suffix tree nPatriciaTrie.h 508 Suffix tree library

BuildSuffixTrie.h 620 Suffix tree constructor

TexSpaSearchEngine TexSpaSearch.h 1237 Functions for Q1, Q2 and
Q3 queries

ServerEndTest.h 818 Server end test

Communicate.h 275 Communication with Java
program

RStarTest.cpp 52 Main method for integra-
tion test and server run-
ning

Java side HTMLHandlerServlet.java 808 Java Servlet class

ResultClass.java 286 The Java class for holding
search results

TimeBean.java 47 The Java class for record-
ing time

Client side index.jsp 736 client side .jsp page file

ShapeSimplify EarthGeometry.java 149 The Java class for comput-
ing geometry parameters

TrackPoint.java 31 The Java class defines
points

ShapeSimplify.java 278 Shape simplification

Data Preprocessing DataPreprocessing.java 652 Data preprocessing for the
source data getting from
UNB Connell Memorial
Herbarium database

GenerateWebpage.java 310 Generate web pages from
the preprocessed data

89

Chapter 5

Google Search Appliance (GSA)

Indexing

The Google Search Appliance is a rack-mounted device providing document indexing func-

tionality that can be integrated into an intranet, document management system or web

site using a Google search-like interface for end-user retrieval of results. The operating

system is based on CentOS [9]. The GSA software that we use is from a GSA model

GB-7007-1M running version 6.8.0.G.30. GSA provide us efficient ways of indexing web

pages, performing text queries and ranking the query results. We first introduce the basic

scoring algorithm that GSA uses to rank the search results and the Result Biasing Policy

which is used for exerting influence on the ranking of the final results. We then describe

how to configure the GSA for crawling and indexing.

5.1 PageRank Algorithm

PageRank is used by Google together with a number of different factors, including

standard information retrieval (IR) measures, proximity, and anchor text (text of links

90

pointing to Web pages) in order to find most relevant answers to a given query [28]. Other

than document collections, web pages on the web are hypertext and provide plenty of

auxiliary information in the metadata of the web pages, such as link structure and link

text [?]. The PageRank algorithm makes use of these features. The algorithm is based

on the directed graph created by treating web pages as nodes and hyperlinks as edges

[17]. Google’s PageRank algorithm assesses the importance of web pages without hu-

man evaluation of the content. Google claims, “the heart of our software is PageRank” [25].

The basic idea behind PageRank is that a page is ranked higher if there are more links to

it. More specifically, PageRank is a probability distribution which is created to represent

the likelihood that a person randomly clicking on links will arrive at any particular page

[17]. A probability is expressed as a numeric value between 0 and 1. A PageRank of 0.5

means there is a 50% chance that a person clicking on a random link will be directed to the

document with the 0.5 PageRank [25]. In this way, web pages with the highest PageRank

value will appear on the top of the search results.

5.2 Result Biasing

The Google Search Appliance (GSA) provides multiple ways to exert influence on the

search results. This includes Source Biasing, Date Biasing and Metadata Biasing.

Metadata Biasing enables us to influence the order of documents based on metadata

associated with a document. For example, we might use metadata biasing to increase the

score of documents whose document type is “Article”. We can create a biasing scheme

with the user interface depicted in Figure 5.1 [34].

To use Metadata Biasing, we can first change the influence setting from “No influence”

91

Figure 5.1: The Metadata biasing user interface from a GSA model GB-7007-1M running
version 6.8.0.G.30 of the GSA software.

to a stronger setting. We can make a specific adjustment by compiling a list of metadata

tags. Documents are modified to include metadata tags corresponding to the metadata

attributes described in the Metadata Biasing entries. As explained in [1], a metadata tag

contains a name-value pair. An example name-value pair is as follows:

<meta name="DC.type" content="Article" xml:lang="en"> (5.1)

We have seven choices on the influence strength of each tag: Strong decrease, Medium

decrease, Weak decrease, Leave unchanged, Weak increase, Medium increase and Strong

increase. We assume these tags have values −e3,−e2,−e1, 0, e1, e2, e3, respectively, where

e1, e2 and e3 are ∈ R+, and e1 < e2 < e3. When the search appliance ranks search results,

it compares metadata tags with each pattern in the list. For each document, the search

appliance traverses the list in the order we specify the metadata tags from top to bottom,

and compares the tags with the document’s metadata. The search appliance makes only

one score adjustment for each document. Once a tag matches a document, the score of

92

the document is modified, and the search appliance continues with the next document to

be rescored, to see if the document matches any metadata tag [1].

Assume for a specific web page G, the PageRank value is Wpr(G). The general degree of

influence that Metadata Biasing has is represented by f , which is one of 11 nonnegative

numbers ∈ [0, fmax]. The score of the first matched tag in the document’s metadata is

represented by Wmb. As there are seven possible degrees of strength for each tag, the

domain of Wmb should be seven numbers corresponding to seven degrees as described

above. Wmb = 0 corresponds to the strength of a tag setting to “Leave unchanged”. Based

on the documentation we can find, we estimate that the final rank Ri of web page Gi is as

follows [34]:

Ri = Wpr(Gi) + fWmb(Gi) (5.2)

Assuming that we have a web of four pages, the PageRanks for page 1, 2, 3 and 4 are

Wpr(1) ≈ 0.368, Wpr(2) ≈ 0.142, Wpr(3) ≈ 0.288 and Wpr(4) ≈ 0.202, respectively.

The ranking of these pages is 1, 3, 4, 2 from top to bottom. Now assume we have the

name:content pair in the Metadata Biasing list, which is meta name = “DC.type” and

meta content = “Article”. The strength is set to “Strong increase”. In the four pages, we

assume only pages 2 and 3 have metadata tags that agree with this name:content pattern.

If our equation (3.2) is correct, the search appliance will make score adjustments for pages

2 and 3 as follows:

R2 = Wpr(2) + fWmb(2) = 0.142 + fWmb(2)

R3 = Wpr(3) + fWmb(3) = 0.288 + fWmb(3)

Assuming there is no other metadata tags in the list in Metadata Biasing scheme, then

the search appliance will not make changes to the scores of pages 1 and 4. The final scores

93

for these two pages are as follows:

R1 = Wpr(1) = 0.368

R4 = Wpr(4) = 0.202

Consider a Metadata Biasing scheme in which the general degree of influence is set to the

strongest degree. Assuming that f ∈ [0, 1], then in this situation, f = 1. We assume the

values (e1, e2, e3) = (0.05, 0.10, 0.15). With a Wmb value of “Strong increase” = e3 for pages

2 and 4, we have the following four final ranks:

R1 = 0.368

R2 = 0.142 + 1 ∗ 0.15 = 0.292

R3 = 0.288 + 1 ∗ 0.15 = 0.438

R4 = 0.202

Thus, the final ranking of these four pages is 3, 1, 2, 4 from top to bottom. We can see

that after Metadata Biasing, the scores of pages 2 and 3 are boosted, and the rank of every

page has changed from that arising from the original rankings (i.e. rankings of 1, 3, 4, 2).

5.3 GSA operation

5.3.1 Configuring the GSA for Crawling and Indexing

We now have the web page collection in a form required for GSA crawling. Before crawling

starts, we first configure the GSA for crawling the collection. We use the Crawl and Index

> Crawl URLs page of the Admin Console of the GSA to configure a crawl of the URL

patterns, as shown in Figure 5.2.

In the field “Start Crawling from the Following URLs”, we added the following line:

http://131.202.243.11/test/HerbariumDatabase/

This is the start URL which controls where the GSA begins crawling the content. In the

94

Figure 5.2: The page Crawl and Index > Crawl URLs in the Admin Console of GSA
software.

field “Follow and Crawl Only URLs with the Following Patterns”, we added the following

line:

131.202.243.11/test/HerbariumDatabase/

In this way, only URLs matching the patterns we specify in this field are followed and

crawled. In the field “Do Not Crawl URLs with the Following Patterns ”, we added the

following lines:

Test collection on ib214m20.cs.unb.ca herbarium database(Do not crawl

list)

regexp:http://131.202.243.11/test/HerbariumDatabase/.*statistics$

regexp:http://131.202.243.11/test/HerbariumDatabase/.*show=full$

regexp:http://131.202.243.11/test/HerbariumDatabase/.*browse?

regexp:http://131.202.243.11/test/HerbariumDatabase/.*advanced-search$

95

These are URL patterns for specific file types, directories, or other sets of pages that we

do not want crawled in this collection [10]. The $ specifies the end of a string and forces

matching only one web page. The “.*” matches any number of characters. To test URL

patterns, click a “Test these patterns” link to open the Pattern Tester Utility. We can

specify a list of URLs on the left and a set of patterns on the right. It notifies you if each

URL is matched by one of the patterns in the set.

After configuring the GSA crawler, we can build a new collection in the GSA for the web

pages transformed from the Herbarium database records. The user interface for managing

collections is shown in Figure 5.3.

Figure 5.3: The page Crawl and Index > Collections in the Admin Console of GSA
software.

We created a collection called “herbarium collection” by using the Crawl and Index >

96

Collections page in the Admin Console. In the field “Include Content Matching the

Following Patterns”, we entered the pattern as follows:

131.202.243.11/test/HerbariumDatabase/

Clicking the button “Save Collection Definition” creates the herbarium collection.

In the next step, we associate the herbarium collection with a front end generated using

GSA software. We used the test front end to perform search of herbarium collection. The

test front end is the front end we built initially for exploring how GSA ranks search results

and comparing Google search with Synergies search. Three collection (e.g. Synergies,

default collection, test collection) are already associated with the “test” front end. The

test front end can be accessed by the url http://gsa1.lib.unb.ca/ as shown in Figure 5.4.

Figure 5.4: The XSLT code which is used to associate herbarium collection to the test

front end.

To associate the herbarium collection to the test front end, we choose “Edit” for the

test front end in the Serving > Front Ends page in Admin Console. Then we can

view the XSLT stylesheet code of the test front end. Using <Ctrl>F in the browser, we

found the section "Collection menu beside the search box" in the code, and added

a paragraph as shown in Figure 5.5.

After adding this XSLT “choose” item, we clicked the button “Save XSLT Code” to

97

Figure 5.5: The XSLT code which is used to associate herbarium collection to the test

front end.

save the update. We can then use the test front end to perform text search under the

herbarium collection. We first open the web page http://gsa1.lib.unb.ca/. In the

drop-down menu beside the search box, we choose the item unb herbarium collection

and input a search string in the text field. Clicking the “Synergies Search” button, the

corresponding search results are displayed. An example query with the query string “Aster-

aceae” is shown in Figure 5.6.

5.3.2 Build Result Biasing Policy

We can use the Serving > Result Biasing page to create or edit a result biasing policy.

The search appliance ranks the documents that it finds in response to a user search query

by calculating the PageRank score for each document [34]. The score reflects the probable

relevance of the document content and determines the order in which results appear on

the search results page . To influence search appliance rankings, use a result biasing policy

[1].

To create a new result biasing policy, under Serving > Result Biasing subdirectory, we

98

Figure 5.6: An example query result from the unb herbarium collection with the query
string “Asteraceae” using the test front end. Only the first five results are shown.

enter a name of the new result biasing policy in the Result Biasing Name text box, then

we can edit the created policy by clicking the hyperlink “edit”. The GSA provides us 3

ways to exert influence on the documents’ scores. They are Source Biasing, Date Biasing

and Metadata Biasing. The user interface for configuring the Metadata Biasing is shown

in Figure 5.1. We have already talked about how to use the Metadata Biasing in Section 5.2.

The Source Biasing enables us to increase or decrease a document’s score when it belongs

to a specified collection or its URL matches a specified pattern. The user interface for

Source Biasing is shown in Figure 5.7. To configure a Source Biasing, we first set the

strength of general influence. Similar to the Metadata Biasing, there are 11 different

general degrees of influence, which can be considered as 11 nonnegative numbers [34].

99

If we want to configure Source Biasing by Collection, we select Collection from the

pull-down menu and select a collection name of which we want to exert influence. Then

we specify the strength of this adjustment. Similar to the Metadata Biasing, we have

seven choices on the influence strength of each adjustment: Strong decrease, Medium

decrease, Weak decrease, Leave unchanged, Weak increase, Medium increase and Strong

increase. If we want to configure Source Biasing by URL Pattern, we select URL Pattern

from the pull-down menu. For each URL we want to affect, we enter a pattern that the

URL matches. Then we specify the strength of each pattern we entered.

Figure 5.7: The user interface for configuring Source Biasing.

The Date Biasing enables us to increase the score of more recent documents relative to

older documents [1]. The user interface for Data Biasing is shown in Figure 5.8. To use the

Data Biasing, we first specify how much we want our adjustment to influence the scoring

calculation . Optionally, to specify a time period for considering documents moderately

old, click the check box and choose a time period from the list [1]. Finally, click Save

Settings to save the configuration for Result Biasing.

100

Figure 5.8: The user interface for configuring Data Biasing.

101

Chapter 6

Test Results

6.1 R* Tree and Suffix Tree Construction

In the R* tree construction, their are 28,435 records having (φ, λ) pairs associated, 11,909

records having county names but no (φ, λ) pairs associated, and 447 records having no

related spatial information ((φ, λ) pair or county name). The total number of records

in the Herbarium database we used (circa 2012) is 40,791, in which 40,344 records are

indexed by the R* tree.

While inserting point records into the R* tree, there are 8291 distinct (φ, λ) pairs obtained,

each associated with one or more records represented by their primary keys. For each (φ, λ)

pair, the average number of keys indexed c is 3.46726. In the packPoints(allPoints)

process in the R* tree construction (see Section 4.2.2), we pack up to B neighbouring points

together to make the generated RStarDataObject (see Section 4.2.1) approximately fit on

one disk block. As shown in Figure 4.9, for the point data, each RStarDataObject contains

a Boolean flag isPolygon and a list of B DataPoints consisting of a (φ, λ) pair and a

primary key list. The average number of keys per point is c = 3.46726, and the maximum

102

length of the primary key is lp = 10 characters, so the value of B can be computed as

follows:

sizeof(boolean) +B(2 ∗ sizeof(double) + lp ∗ c ∗ sizeof(char)) < Block size (6.1)

or:

B < (Block size− sizeof(boolean))/(2 ∗ sizeof(double) + lp ∗ c ∗ sizeof(char)) (6.2)

We have B = 19 for Block size = 1024, c = 3.46726, lp = 10, sizeof(boolean) = 1,

sizeof(double) = 8 and sizeof(char) = 1.

The time for constructing the R* tree (the entire process shown in Figure 4.10) is 249.213

seconds. The time for constructing the suffix tree (the entire process shown in Figure 4.4)

is 142.157 seconds. There are several key points in the entire query process, as shown in

Figure 6.1.

Figure 6.1: Several key points in the entire query process.

The key points for the subsequent queries that are sent by clicking a page number are

shown in Figure 6.2.

For measuring the timing in the tests, we define the following:

103

Figure 6.2: Several key points in the query process for subsequent queries sent by clicking
a page number.

1. r: radius for Q2 and Q3 query in meters.

2. Nr: is the total number of search results returned by a Q1 query.

3. Npt: the total number of (φ, λ) pairs returned for Q2 and Q3 point results.

4. Rpt: the total number of records returned for Q2 and Q3 point results.

5. Npl: the total number of counties returned for Q2 and Q3 polygon results.

6. Rpl: the total number of records returned for Q2 and Q3 polygon results.

7. Tc = T4 − T3, which is the C++ side processing time.

8. Ts = T5 − T2, which is the server side (including C++ and Java) processing time.

9. Te = T6 − T1, which is the total query time from the user clicking the search button

to the search results displayed on the web page. So Te is the total time for the Text

Search with Spatial Constraints Search Engine.

10. Tp = T ′4 − T ′1, where queries exclude C++ processing as shown in Figure 6.2. Tp is

the page query timing, which is the timing for subsequent requests sent by clicking a

page number. Note that the first query response is longer, especially for Q2 and Q3

query.

104

11. np: the number of subsequent page queries we performed for a Q1 query. When there

are more than 10 pages of search results, we only test the page query timing for the

first 10 pages; otherwise, we perform page query for all the existing pages.

12. npt: the number of subsequent page queries we performed for a Q2 or Q3 point query.

When there are more than 5 pages of results returned, we perform page query for

the first 5 pages in the point results; otherwise, we perform page query for all the

existing pages.

13. npl: the number of subsequent page queries we performed for a Q2 or Q3 polygon

query. When there are more than 5 pages of results returned, we perform page query

for the first 5 pages in the polygon results; otherwise, we perform page query for all

the existing pages.

The TexSpaSearch testing environment had the web server and web browser running on

the same workstation in the ITB214 Communication and Networking Laboratory.

6.2 Q1 Test Results

We choose 20 sample query strings for Q1 test as shown in Table 6.1.

The line graph in Figure 6.3 shows the changes of the Ts and Te measured in ms versus

Nr. As we can see, Ts and Te rise proportionately to the number of results returned.

Approximately 500 ms offset between the two curves is constant for most values of Nr, and

is due to the overhead of sending the query request and response from and to the client,

and dynamically generating the displayed results. Since each page can only display limited

number of records, so data contained in the generated web page is approximately constant,

which leads to a constant value of Te−Ts, the average of which is 507.2. To return certain

105

Table 6.1: Q1 test results for the 20 sample queries. All times are shown in ms.

Query string Nr Tc Ts Te
Tp

np Avg. St. dev.

apple 60 5 20 524 10 515.1 4.8408
crab 10 3 7 516 2 513.5 9.1924
crab apple 69 10 14 520 10 512.8 5.2451
Red spruce 2706 915 916 1424 10 513.9 4.9318
Hieracium pilosella 361 122 144 646 10 517.5 7.5755
Rosa virginiana 661 213 221 725 10 518 11.5758
seaside arrow grass 3759 1361 1366 1854 10 511.1 3.984693
Red pitcher plant 2149 744 750 1263 10 510.8 3.5214
pitcher plant 413 136 144 659 10 514.7 5.2079
Eupatorium perfoliatum 142 38 41 547 10 517.3 5.4375
Bromus Inermis Leyss 151 44 49 555 10 513.9 5.5867
Amelanchier laevis wieg 1244 449 452 955 10 518.3 15.8539
Vesce des haies 1959 698 700 1214 10 516.5 6.0782
Poison ivy 70 14 17 525 10 513.5 4.0346
Lilac 15 13 15 519 3 513.3 5.8595
Lady slipper 267 60 61 575 10 514.1 4.5570
lady’s slipper 200 16 18 524 10 518.3 9.6500
Herbe aux écrevisses 1054 481 487 986 10 516.6 9.8229
Verge d’or des bois 2654 943 946 1450 10 520.4 13.2262
vanilla 43 14 28 535 9 514.7778 11.6809

106

amount of results, the time cost for the entire search process (Te) is significantly higher

than the server side (including C++ and Java) processing time Ts. The processing time Ts

is slightly higher than Tc as shown in Table 6.1, which accounts for the extra time (5.65ms,

on average) for Java to reformat the search results for web display. For the Q1 test, the

average costs for Tc, Ts and Te are 315.05ms, 323.95ms and 825.8ms, respectively. The

average number of records returned is 899.35.

Figure 6.3: Search engine server side (including C++ and Java) processing time Ts and
total query time Te plotted versus the number Nr of returned search results for Q1 queries.

6.2.1 Comparing with GSA test results

Let Ng stand for the total number of search results returned by a GSA query, and Tg stand

for the corresponding total query time. The comparison of the TexSpaSearch engine and

the Google Search Appliance (GSA) on the 20 sample queries is shown in Table 6.2.

Table 6.3 shows the time (in ms) per returned record for Q1 search results of TexSpaSearch

and the GSA. Notice that the Tg/Ng value of Red pitcher plant is not counted for calculating

107

the average value of Tg/Ng.

Table 6.2: The comparison of the TexSpaSearch engine and the Google Search Appliance
(GSA) on the 20 sample queries. All times are shown in ms.

Query string
TexSpaSearch GSA

Te/Tg Tc/TgNr Te Tc Ng Tg

apple 60 524 27 59 20 26.2 1.35

crab 10 516 3 10 20 25.8 0.15

crab apple 69 10 520 1 10 52 1

Red spruce 2706 1424 915 290 30 47.7 30.5

Hieracium pilosella 361 646 122 40 10 64.6 12.2

Rosa virginiana 661 725 213 72 20 36.25 10.65

seaside arrow grass 3759 1854 1361 47 20 92.7 68.05

Red pitcher plant 2149 1263 744 0 20 63.15 37.2

pitcher plant 413 659 136 3 30 22.0 4.53

Eupatorium perfoliatum 142 547 38 32 20 27.4 1.9

Bromus Inermis Leyss 151 555 44 28 20 27.8 2.2

Amelanchier laevis wieg 1244 955 449 188 20 47.8 22.45

Vesce des haies 1959 1214 698 30 10 121.4 69.8

Poison ivy 70 525 14 40 20 26.3 0.7

Lilac 15 519 13 15 20 26.0 0.65

Lady slipper 267 575 60 119 20 28.75 3

lady’s slipper 200 524 16 119 20 26.2 0.8

Herbe aux écrevisses 1054 986 481 54 20 49.3 24.05

Verge d’or des bois 2654 1450 943 34 20 72.5 47.15

vanilla 43 535 14 43 20 26.8 0.7

Average 45.5 16.95

The times for GSA queries were obtained by manually recording the search time and count

shown in the upper right corner of the test front end (see e.g. Figure 5.6). The GSA was

residing in the UNB server facility located adjacent to the building where the work station

running the browser was located. From Tables 6.2 and 6.3, and the search results, we make

the following observations:

1. The query time for GSA is significantly lower than that for TexSpaSearch. If we

assume that the GSA reported search time Tg includes the time to display the search

108

Table 6.3: Time (in ms) per returned record for Q1 search results of TexSpaSearch and
the GSA.

Query string
TexSpaSearch GSA

Nr Te/Nr Tc/Nr Ng Tg/Ng

apple 60 8.73 0.45 59 0.34

crab 10 51.6 0.3 10 2

crab apple 69 7.54 0.14 1 10

Red spruce 2706 0.53 0.34 290 0.10

Hieracium pilosella 361 1.79 0.34 40 0.25

Rosa virginiana 661 1.10 0.32 72 0.28

seaside arrow grass 3759 0.49 0.36 47 0.43

Red pitcher plant 2149 0.59 0.35 0 N.A.

pitcher plant 413 1.60 0.33 3 10

Eupatorium perfoliatum 142 3.85 0.27 32 0.63

Bromus Inermis Leyss 151 3.68 0.29 28 0.71

Amelanchier laevis wieg 1244 0.77 0.36 188 0.11

Vesce des haies 1959 0.62 0.36 30 0.33

Poison ivy 70 7.5 0.2 40 0.5

Lilac 15 34.6 0.87 15 1.33

Lady slipper 267 2.15 0.22 119 0.17

lady’s slipper 200 2.62 0.08 119 0.17

Herbe aux écrevisses 1054 0.94 0.46 54 0.37

Verge d’or des bois 2654 0.55 0.36 34 0.59

vanilla 43 12.44 0.33 43 0.47

Average 899.35 7.18 0.34 61.2 1.51

109

results on the screen, then the GSA is 45.5 times faster (on average) than TexS-

paSearch. If the GSA is reporting only the search engine search time, then TexS-

paSearch is 16.95 times slower than the GSA.

2. For some of the sample queries, TexSpaSearch returns more results than GSA. The

reason is that GSA only returns records that contain all of the single words in the

query string t, while TexSpaSearch returns records containing one or more subphrases

of t. So we have: Ng ≤ Nr.

3. Both TexSpaSearch and GSA index French characters well.

4. For the query strings like Lady slipper and lady’s slipper, GSA treats them as

the same phrase, while TexSpaSearch regards them as different phrases.

5. We checked 7 of the 20 samples (crab, crab apple, pitcher plant, Eupatorium perfo-

liatum, Bromus Inermis Leyss, Lilac, Verge d’or des bois), and the top Ng records in

the TexSpaSearch Q1 results are exactly the same as the GSA search results. For 6

of the 7 search results, the ranking within those top Ng results is different. This is

because GSA only returns results containing all the single words in the query string t.

In TexSpaSearch Q1 query results, the records containing exactly t or all the single

words in t usually rank higher than other records.

6. From Table 6.3 we can see that, although the efficiency for Q1 text search compared

to the GSA is low (45.5 times lower for Te and 16.95 times lower for Tc), the theoretical

analysis does show a highly efficient search cost on the time per returned record when

the number of results returned is large. For the sample query strings Red spruce,

seaside arrow grass, Red pitcher plant, Amelanchier laevis wieg, Vesce des haies,

Herbe aux écrevisses and Verge d’or des bois whose numbers of records Nr returned

by TexSpaSearch are greater than 1000, the values of Te/Nr are 0.53, 0.49, 0.59, 0.77,

110

0.62, 0.94 and 0.55, respectively, and the values of Tc/Nr are 0.34, 0.36, 0.35, 0.36,

0.36, 0.46 and 0.36, respectively, which are lower than the corresponding average

value of TexSpaSearch and the average Tg/Ng of GSA.

6.3 Q2 Test Results

We tested Q2 text + spatial search using the 20 sample query strings with radius 2m,

20m and 200m respectively.

111

T
ab

le
6.

4:
Q

2
te

st
re

su
lt

s
fo

r
th

e
20

sa
m

p
le

q
u
er

ie
s

w
it

h
ra

d
iu

s
2m

,
20

m
an

d
20

0m
,

re
sp

ec
ti

ve
ly

.
A

ll
ti

m
es

ar
e

sh
ow

n
in

m
s.

Q
u
e
ry

st
ri
n
g

r(
m
)

T
c

T
s

T
e

P
o
in
t
re

su
lt
s

P
o
ly
g
o
n

re
su

lt
s

N
p
t

R
p
t

n
p
t

A
v
g
.

S
t.

d
ev

.
N

p
l

R
p
l

n
p
l

A
v
g
.

S
t.

d
ev

.

ap
p

le
5

20
50

69
73

7
7
0
7

1
7

5
8
0

5
7
8
1
.8

1
4
5
.9

8
9

1
1

9
6
7
2

4
7
4
0
6
.7

5
3
6
1
6
.0

9
2

50
20

88
70

63
7
6
9
2

1
8

5
8
1

5
8
1
7
.6

2
8
1
.0

7
8

1
2

1
0
2
42

4
7
5
4
7
.7

5
3
6
1
7
.7

3
1

50
0

23
35

12
94

9
1
4
5
6
4

4
1

7
2
1

5
7
2
6
.6

6
9
.5

6
1

1
3

1
1
1
38

5
6
5
4
3
.2

4
1
8
0
.4

8
8

cr
ab

5
11

05
62

35
6
9
4
1

5
4
2

2
6
6
6

3
8
.1

8
4

6
5
8
5
8

2
9
7
8
3

5
6
6
9
.5

8
2

50
10

27
62

03
6
7
9
9

5
4
2

2
6
5
4
.5

3
4
.6

4
8

6
5
8
4
8

2
9
8
4
6
.5

5
8
1
1
.7

1
1

50
0

12
49

63
93

7
0
6
7

2
6

3
6
9

5
6
3
0
.8

5
1
.4

8
0

7
6
7
2
3

3
7
2
9
6

5
7
9
2
.5

6
1

cr
ab

ap
p

le
5

23
64

72
77

7
8
7
4

2
1

6
2
1

5
6
4
6

5
0
.4

1
8

1
3

1
0
8
49

5
6
5
0
4

2
8
7
5
.7

9
0

50
27

27
76

65
8
3
5
6

2
2

6
2
2

5
7
1
0
.8

1
8
0
.1

3
1

1
4

1
1
4
19

5
6
6
4
9
.8

2
9
8
0
.2

6
0

50
0

27
38

15
16

8
1
5
9
2
9

6
3

1
0
8
5

5
7
3
2
.6

8
2
.7

5
4

1
4

1
1
4
19

5
6
5
7
8
.8

4
4
1
0
.0

0
3

R
ed

sp
ru

ce
5

22
77

8
36

25
7

3
7
0
1
8

5
9
4

8
5
2
2

5
8
7
9
.4

1
8
0
.3

8
4
6

1
5

1
1
9
09

5
6
8
3
0
.8

4
8
9
0
.3

9
8

50
23

31
9

36
98

7
3
7
7
9
7

6
0
5

8
5
9
3

5
8
0
8
.2

1
5
8
.8

2
3

1
5

1
1
9
09

5
6
8
4
7
.4

4
8
6
9
.3

5
7

50
0

28
14

6
41

75
8

4
2
5
0
8

1
4
8
2

1
0
9
7
3

5
8
6
4

1
4
0
.7

6
0

1
5

1
1
9
09

5
6
7
1
0
.8

4
3
6
8
.4

3
2

H
ie

ra
ci

u
m

p
il

os
el

la
5

60
03

18
09

3
1
8
8
7
6

1
3
9

4
1
8
9

5
8
1
0
.2

1
8
8
.2

0
5

1
5

1
1
9
09

5
6
6
4
4

4
8
4
1
.3

0
8

50
61

05
18

17
9

1
8
9
3
4

1
4
1

4
2
0
1

5
8
2
1
.6

1
7
7
.5

0
3

1
5

1
1
9
09

5
6
2
7
9
.6

3
8
6
5
.2

5
7

50
0

71
47

16
88

1
1
7
5
6
9

4
0
9

5
2
0
3

5
7
7
1
.8

1
9
5
.5

8
0

1
5

1
1
9
09

5
6
7
1
9
.8

4
5
6
7
.4

8
5

R
os

a
v
ir

gi
n

ia
n

a
5

11
33

3
15

08
0

1
5
6
7
5

2
9
8

4
5
6
2

5
6
1
8
.4

3
3
.9

3
8

1
5

1
1
9
09

5
6
7
6
3
.4

3
7
8
1
.2

6
3

50
11

79
7

15
60

6
1
6
3
1
2

3
0
6

4
6
2
4

5
7
1
0
.6

1
3
2
.7

0
9

1
5

1
1
9
09

5
6
8
0
9
.6

3
8
0
3
.9

5
3

C
o
n
ti

n
u

ed
o
n

n
ex

t
p

a
g
e

112

T
a
b
le

6
.4

–
c
o
n
ti
n
u
e
d

fr
o
m

p
re

v
io
u
s
p
a
g
e

Q
u
e
ry

st
ri
n
g

r(
m
)

T
c

T
s

T
e

P
o
in
t
re

su
lt
s

P
o
ly
g
o
n

re
su

lt
s

N
p
t

R
p
t

n
p
t

A
v
g
.

S
t.

d
ev

.
N

p
l

R
p
l

n
p
l

A
v
g
.

S
t.

d
ev

.

50
0

13
89

5
20

35
4

2
1
0
1
2

7
7
4

6
4
9
9

5
6
5
2
.2

4
0
.7

9
5

1
5

1
1
9
09

5
6
7
6
0
.2

2
9
2
0
.2

5
0

se
as

id
e

ar
ro

w
gr

as
s

5
23

27
6

25
95

8
2
6
6
3
0

7
5
2

1
0
5
0
3

5
6
1
3

3
6
.0

6
2

1
5

1
1
9
09

5
6
7
8
8
.2

3
7
3
6
.4

5
2

50
24

06
8

26
74

4
2
7
3
4
0

7
5
9

1
0
5
2
6

5
5
8
5
.4

2
4
.5

8
3

1
5

1
1
9
09

5
6
7
7
9
.8

3
8
1
7
.6

4
4

50
0

29
51

2
32

26
9

3
2
9
3
7

1
7
5
5

1
2
8
7
8

5
6
3
0

3
9
.3

2
6

1
5

1
1
9
09

5
6
8
0
4
.2

3
8
2
9
.9

3
2

R
ed

p
it

ch
er

p
la

n
t

5
20

52
5

25
20

6
2
5
9
2
2

5
7
3

8
6
5
0

5
6
2
5

2
7
.1

0
2

1
5

1
1
9
09

5
6
7
4
4

2
6
9
5
.9

0
6

50
20

82
7

25
57

7
2
6
2
9
8

5
8
3

8
6
7
9

5
6
4
3
.8

3
2
.5

7
6

1
5

1
1
9
09

5
6
8
8
5

2
9
0
9
.5

2
0

50
0

25
46

3
29

56
7

3
0
6
0
5

1
4
4
2

1
1
0
3
0

5
6
7
6
.4

2
5
.2

3
5

1
5

1
1
9
09

5
6
8
5
9
.4

2
9
8
1
.6

5
9

p
it

ch
er

p
la

n
t

5
69

44
14

03
0

1
4
7
7
8

1
4
3

2
1
8
6

5
9
3
2

3
0
3
.2

0
0

1
5

1
1
9
09

5
6
6
9
2
.4

3
1
2
4
.9

9
7

50
66

17
13

52
8

1
4
2
5
5

1
4
5

2
1
9
4

5
8
1
5
.8

3
1
4
.6

2
1

1
5

1
1
9
09

5
6
8
4
7
.2

3
2
1
2
.6

3
8

50
0

79
49

14
82

6
1
5
4
5
5

4
6
7

3
3
7
3

5
7
8
1
.8

1
3
7
.4

1
4

1
5

1
1
9
09

5
6
8
3
3
.8

3
2
3
4
.0

2
5

E
u

p
at

or
iu

m
p

er
fo

li
at

u
m

5
38

74
10

91
5

1
1
6
3
3

7
5

2
6
0
7

5
7
3
6
.8

1
9
1
.4

8
6

1
3

1
0
3
55

5
6
1
8
2
.8

5
1
4
6
.1

2
8

50
39

75
11

12
0

1
1
8
4
3

7
5

2
6
0
7

5
8
3
8
.2

3
4
4
.9

8
3

1
4

1
1
0
13

5
6
3
8
4
.2

4
9
3
7
.4

7
8

50
0

45
55

11
71

9
1
2
4
4
0

1
8
9

2
9
8
1

5
7
4
8

1
7
0
.2

0
6

1
5

1
1
9
09

5
6
8
3
3
.4

3
4
5
3
.8

6
3

B
ro

m
u

s
In

er
m

is
L

ey
ss

5
45

17
63

21
6
9
1
8

9
2

3
1
7
3

5
6
0
6
.8

4
2
.0

3
8

1
4

1
1
4
81

5
6
8
3
6
.8

5
1
4
1
.1

4
1

50
44

78
62

70
6
9
7
4

9
3

3
1
8
3

5
6
0
8
.2

3
6
.3

5
5

1
4

1
1
4
81

5
6
7
6
7
.8

5
0
7
7
.0

7
6

50
0

52
71

70
88

7
6
6
9

3
0
3

3
9
7
7

5
5
7
7

1
2
.8

0
6

1
5

1
1
9
09

5
6
9
8
1
.2

5
2
2
9
.4

7
6

A
m

el
an

ch
ie

r
la

ev
is

w
ie

g
5

15
37

7
19

67
5

2
0
3
8
9

3
8
5

4
3
7
6

5
6
8
3
.4

1
8
.0

7
8

1
5

1
1
9
09

5
7
1
0
7
.4

3
4
0
7
.8

8
6

50
15

72
6

20
06

6
2
0
7
9
9

3
9
1

4
4
3
4

5
7
2
1
.2

1
4
8
.3

8
2

1
5

1
1
9
09

5
6
9
7
8
.6

3
0
3
9
.9

0
4

C
o
n
ti

n
u

ed
o
n

n
ex

t
p

a
g
e

113

T
a
b
le

6
.4

–
c
o
n
ti
n
u
e
d

fr
o
m

p
re

v
io
u
s
p
a
g
e

Q
u
e
ry

st
ri
n
g

r(
m
)

T
c

T
s

T
e

P
o
in
t
re

su
lt
s

P
o
ly
g
o
n

re
su

lt
s

N
p
t

R
p
t

n
p
t

A
v
g
.

S
t.

d
ev

.
N

p
l

R
p
l

n
p
l

A
v
g
.

S
t.

d
ev

.

50
0

18
75

7
23

05
1

2
3
7
5
6

9
1
9

6
3
8
1

5
6
6
0
.4

2
9
.5

0
1

1
5

1
1
9
09

5
7
0
6
7
.4

3
2
6
6
.3

7
4

V
es

ce
d

es
h
ai

es
5

21
06

9
37

52
1

3
8
3
8
8

6
7
0

9
8
6
8

5
8
5
1

1
4
1
.2

6
2

1
5

1
1
9
09

5
6
9
5
7
.4

6
0
4
3
.9

1
4

50
21

62
2

38
09

9
3
8
8
8
0

6
8
2

9
8
9
9

5
8
5
4
.8

1
2
0
.3

5
0

1
5

1
1
9
09

5
7
0
8
2
.4

6
3
2
7
.9

9
1

50
0

26
26

7
42

97
2

4
3
8
0
6

1
6
5
0

1
2
3
3
8

5
7
5
7
.2

3
4
.2

3
0

1
5

1
1
9
09

5
7
0
6
8
.2

5
9
9
2
.0

0
5

P
oi

so
n

iv
y

5
32

45
74

65
8
1
7
9

3
6

9
8
5

5
7
9
1
.2

1
8
2
.5

4
6

1
5

1
1
9
09

5
6
9
7
2
.2

3
4
0
5
.3

6
1

50
31

65
69

70
7
5
6
1

3
7

9
8
6

5
8
5
9
.6

3
0
4
.3

4
1

1
5

1
1
9
09

5
6
8
5
5

3
2
3
3
.7

9
2

50
0

34
55

72
39

7
8
8
0

1
1
1

1
3
0
7

5
6
7
1
.6

4
2
.4

6
5

1
5

1
1
9
09

5
7
0
1
9

6
7
0
0
.9

2
9

L
il

ac
5

44
6

67
12

7
3
7
9

3
9
6

1
6
9
5

N
.A

.
3

2
5
9
6

1
6
8
3

N
.A

.

50
72

5
72

08
7
7
2
8

3
9
6

1
7
0
8

N
.A

.
4

4
4
0
1

2
8
2
3
8

1
8
0
4
.5

3
7

50
0

10
37

75
70

8
2
7
6

5
9
8

2
8
6
2

2
2
6
.2

7
4

6
6
1
3
7

2
1
0
8
7
2

5
5
2
9
.5

7
5

L
ad

y
sl

ip
p

er
5

49
81

17
18

4
1
7
9
7
9

9
3

3
2
7
9

5
7
8
3
.4

5
1
.4

5
7

1
5

1
1
9
09

5
5
1
2
3

3
2
6
3
.3

3
0

50
48

22
17

15
7

1
7
9
8
3

9
5

3
2
8
5

5
7
7
8
.6

6
6
.4

5
5

1
5

1
1
9
09

5
7
0
9
2
.2

4
6
3
7
.3

2
5

50
0

56
63

17
79

4
1
8
6
0
6

2
4
5

3
8
4
1

5
7
4
6

9
1
.8

2
9

1
5

1
1
9
09

5
6
9
8
9
.2

4
5
8
5
.9

1
0

la
d

y
’s

sl
ip

p
er

5
21

14
11

26
4

1
2
0
2
3

2
0

7
8
0

5
7
1
5
.4

2
3
.4

4
8

1
0

8
9
5
8

4
7
3
1
6
.7

5
3
1
2
6
.2

7
7

50
22

36
11

39
5

1
2
1
2
8

2
0

7
8
0

5
7
7
7
.2

1
2
7
.2

7
0

1
1

9
4
4
8

4
7
3
9
2
.2

5
3
3
9
6
.5

7
6

50
0

24
76

11
64

2
1
2
3
7
4

9
3

1
1
0
0

5
7
6
0
.8

1
6
4
.1

8
5

1
1

9
4
4
8

4
7
2
8
2
.2

5
3
3
2
3
.7

7
2

H
er

b
e

au
x

éc
re

v
is

se
s

5
13

23
8

22
58

6
2
3
3
4
6

4
0
5

8
1
5
4

5
7
4
7
.6

1
5
8
.2

4
8

1
5

1
1
9
09

5
6
8
2
5
.6

3
4
6
2
.3

2
9

50
13

44
2

22
65

1
2
3
3
8
8

4
1
2

8
1
7
3

5
7
8
4
.6

1
8
8
.1

9
0

1
5

1
1
9
09

5
7
2
5
5
.6

3
2
8
4
.7

1
4

C
o
n
ti

n
u

ed
o
n

n
ex

t
p

a
g
e

114

T
a
b
le

6
.4

–
c
o
n
ti
n
u
e
d

fr
o
m

p
re

v
io
u
s
p
a
g
e

Q
u
e
ry

st
ri
n
g

r(
m
)

T
c

T
s

T
e

P
o
in
t
re

su
lt
s

P
o
ly
g
o
n

re
su

lt
s

N
p
t

R
p
t

n
p
t

A
v
g
.

S
t.

d
ev

.
N

p
l

R
p
l

n
p
l

A
v
g
.

S
t.

d
ev

.

50
0

16
20

9
25

43
2

2
6
1
5
0

9
5
2

9
7
2
6

5
8
0
7

1
7
6
.2

2
9

1
5

1
1
9
09

5
7
1
4
3

3
9
0
4
.7

9
0

V
er

ge
d

’o
r

d
es

b
oi

s
5

27
90

5
37

21
7

3
8
1
5
6

8
4
3

1
1
5
3
9

5
6
5
0
.8

4
7
.6

3
1

1
5

1
1
9
09

5
7
6
3
9
.8

3
6
6
0
.4

4
4

50
26

96
9

36
36

0
3
7
0
8
6

8
6
0

1
1
6
0
0

5
6
9
2
.2

5
4
.8

6
1

1
5

1
1
9
09

5
7
4
5
8

3
6
2
2
.6

6
4

50
0

33
04

7
42

48
3

4
3
2
2
0

1
9
7
5

1
4
2
2
3

5
7
1
9
.2

6
8
.1

2
6

1
5

1
1
9
09

5
7
8
8
6

3
7
0
7
.8

0
9

va
n

il
la

5
17

95
10

92
5

1
1
5
5
2

1
3

2
2
9

5
6
8
5
.4

5
1
.7

1
4

1
0

8
4
9
3

4
7
5
4
9
.5

3
3
6
5
.5

8
3

50
18

43
10

98
2

1
1
7
4
7

1
4

2
3
9

5
6
5
3
.2

4
4
.5

5
6

1
0

8
4
9
3

4
7
3
8
9
.2

5
3
4
7
3
.2

5
7

50
0

15
03

10
56

1
1
1
3
0
1

3
6

4
0
0

5
6
9
8
.2

2
5
.3

7
1

1
1

9
2
1
1

4
7
6
9
6
.5

3
7
8
9
.0

2
8

115

Compared to Q1 results, Q2 test results shown in Table 6.4 take 22.8 more time. A

main reason is the search complexity on the C++ side is higher than that of Q1. The

line graph in Figure 6.4 shows the changes of the Tc, Ts and Te measured in ms with

increasing Rpt +Rpl. As we can see, Tc, Ts and Te rise proportionately to the total number

of point results and polygon results returned. Note that the line of Tc fluctuates more

frequently than that in Q1. A possible reason leading to the fluctuation is that the time

for a Q2 query heavily depends on the number of text search results returned, which is

an uncertain factor. Similar to Q1 results, the constant value of Te − Ts still holds, the

average of which is 732.45 ms. To return certain amount of results, the time cost for the

entire search process (Te) and the server side (including C++ and Java) processing time

Ts are significantly higher than the C++ processing time Tc. In Table 6.4, the average

value of Ts − Tc is 7619.32. The value of Ts − Tc is considerably higher than that in

Q1, because the format of returnList returned by C++ of Q2 is more complex than

Q1, which leads to a higher overhead on analysing and interpreting the returnList to

generate the ResultClass object. The total number of results returned by Q2 queries

being higher than that of Q1 queries also gives rise to the larger Ts − Tc values. For the

Q2 test, the average Tc, Ts and Te are 10488ms, 18107.3ms and 18839.8ms, respectively,

and the average value of Rpt +Rpl is 15433.6.

6.4 Q3 Test Results

We tested Q3 point + radius search using 15 sample query points spread in the 15 counties

in New Brunswick, Canada with radius 5m, 50m and 500m and 5000m, respectively.

116

Figure 6.4: Search engine C++ processing time Tc, server side (including C++ and Java)
processing time Ts and total query time Te plotted versus the number of returned search
results for Q2 queries Rpt +Rpl.

117

T
ab

le
6.

5:
Q

3
te

st
re

su
lt

s
fo

r
th

e
15

sa
m

p
le

q
u
er

y
p

oi
n
ts

w
it

h
ra

d
iu

s
5m

,
50

m
,

50
0m

an
d

50
00

m
,

re
sp

ec
ti

ve
ly

.
A

ll
ti

m
es

ar
e

sh
ow

n
in

m
s.

Q
u
e
ry

p
o
in
t

r(
m
)

T
c

T
s

T
e

P
o
in
t
re

su
lt
s

P
o
ly
g
o
n

re
su

lt
s

N
p
t

R
p
t

n
p
t

A
v
g
.

S
t.
d
ev
.

N
p
l

R
p
l

n
p
l

A
v
g
.

S
t.
d
ev
.

(4
6.

88
8

,
-6

5.
51

3)
5

16
3

37
33

4
2
6
5

1
2

1
5
3
0

N
.A

.
1

1
1
6
6

1
5
7
3

N
.A

.

50
15

6
37

18
4
2
8
7

1
2

1
5
3
7

N
.A

.
1

1
1
6
6

1
5
4
9

N
.A

.

50
0

29
8

60
71

6
6
5
5

4
2
4

2
6
9
5
.5

3
.5

3
6

2
2
0
6
2

1
6
1
7

N
.A

.

50
00

29
4

60
24

6
7
2
5

4
2
4

2
6
9
8
.5

1
0
.6

0
7

2
2
0
6
2

1
6
7
9

N
.A

.

(4
5.

82
7

,
-6

7.
54

9
)

5
30

7
75

38
8
4
4
5

1
1
4

1
6
8
5

N
.A

.
1

1
8
0
5

1
6
3
4

N
.A

.

50
23

4
75

02
8
0
9
2

1
1
4

1
5
6
9

N
.A

.
1

1
8
0
5

1
6
5
1

N
.A

.

50
0

22
6

74
04

8
0
2
2

2
1
9

1
5
8
1

N
.A

.
1

1
8
0
5

1
5
9
9

N
.A

.

50
00

29
4

75
19

8
1
5
6

1
1

7
8

4
5
7
8
.2

5
2
9
.2

5
0

1
1
8
0
5

1
5
5
3

N
.A

.

(4
7.

89
2

,
-6

6.
95

4
)

5
15

3
19

32
2
5
6
0

1
5
5

1
5
7
5

N
.A

.
1

8
7
5

1
5
2
3

N
.A

.

50
15

2
18

88
2
4
2
6

1
5
5

1
5
4
0

N
.A

.
1

8
7
5

1
6
3
5

N
.A

.

50
0

14
4

18
31

2
3
8
1

5
6
0

2
5
5
8
.5

2
8
.9

9
1

1
8
7
5

1
5
6
5

N
.A

.

50
00

21
9

20
56

2
5
9
6

4
9

1
4
6

5
5
5
7
.4

3
3
.6

8
7

1
8
7
5

1
5
3
2

N
.A

.

(4
7.

05
,

-6
7.

73
6

)
5

58
45

5
9
6
2

1
2

1
5
2
9

N
.A

.
1

4
4
3

1
5
1
0

N
.A

.

50
11

7
72

2
1
2
7
9

1
2

1
5
5
8

N
.A

.
2

7
2
4

1
5
3
1

N
.A

.

50
0

12
3

71
0

1
2
7
2

1
1

5
6

4
5
6
9
.5

3
8
.2

6
7

2
7
2
4

1
5
4
0

N
.A

.

50
00

13
2

73
1

1
2
5
9

2
7

8
6

5
5
6
4
.4

2
1
.8

4
7

2
7
2
4

1
5
3
4

N
.A

.

(4
6.

55
,

-6
5.

11
6

)
5

17
7

23
48

2
8
9
3

1
5

1
5
3
9

N
.A

.
1

8
9
6

1
5
3
9

N
.A

.

C
o
n
ti

n
u

ed
o
n

n
ex

t
p

a
g
e

118

T
a
b
le

6
.5

–
c
o
n
ti
n
u
e
d

fr
o
m

p
re

v
io
u
s
p
a
g
e

Q
u
e
ry

p
o
in
t

r(
m
)

T
c

T
s

T
e

P
o
in
t
re

su
lt
s

P
o
ly
g
o
n

re
su

lt
s

N
p
t

R
p
t

n
p
t

A
v
g
.

S
t.
d
ev
.

N
p
l

R
p
l

n
p
l

A
v
g
.

S
t.
d
ev
.

50
12

1
22

64
2
8
2
2

1
5

1
5
5
2

N
.A

.
1

8
9
6

1
5
3
6

N
.A

.

50
0

25
8

59
25

6
5
8
9

2
8

1
6
9
3

N
.A

.
2

2
0
6
2

1
7
0
4

N
.A

.

50
00

26
1

59
65

6
5
4
1

2
4

8
5

5
6
7
3
.4

4
9
.3

3
4

2
2
0
6
2

1
7
0
0

N
.A

.

(4
7.

64
6

,
-6

5.
67

7
)

5
12

7
11

38
1
7
2
2

1
7

1
5
7
3

N
.A

.
1

7
1
8

1
5
5
7

N
.A

.

50
98

11
06

1
6
4
3

1
7

1
5
4
2

N
.A

.
1

7
1
8

1
5
5
5

N
.A

.

50
0

10
7

11
28

1
6
6
3

4
1
6

2
5
3
5
.5

3
.5

3
6

1
7
1
8

1
5
3
9

N
.A

.

50
00

13
0

11
76

1
7
1
2

2
1

8
7

5
5
3
8
.2

1
1
.4

3
2

1
7
1
8

1
5
4
9

N
.A

.

(4
5.

93
5

,
-6

6.
06

7
)

5
10

1
40

6
9
1
4

1
2
7

1
5
1
2

N
.A

.
1

3
5
9

1
5
1
7

N
.A

.

50
61

38
2

8
8
8

1
2
7

1
5
1
2

N
.A

.
1

3
5
9

1
5
1
2

N
.A

.

50
0

72
37

4
8
8
0

4
4
5

2
5
2
2
.5

6
.3

6
4

1
3
5
9

1
5
0
9

N
.A

.

50
00

43
6

10
03

7
1
0
6
6
8

4
5

1
7
7

5
6
8
2

4
4
.4

8
0

3
2
8
4
5

1
6
2
3

N
.A

.

(4
6.

06
7

,
-6

5.
09

2
)

5
77

76
5

1
2
7
1

1
1

1
5
2
5

N
.A

.
1

5
7
0

1
5
0
7

N
.A

.

50
19

1
18

05
2
4
4
5

1
1

1
5
8
2

N
.A

.
2

1
2
2
8

1
5
5
6

N
.A

.

50
0

17
9

17
53

2
2
8
5

2
2

1
5
3
8

N
.A

.
2

1
2
2
8

1
5
7
3

N
.A

.

50
00

24
8

23
87

2
9
8
3

1
0

2
4

4
5
9
1
.5

4
1
.6

2
1

3
1
7
1
8

1
6
4
7

N
.A

.

(4
5.

9
,

-6
4.

58
3

)
5

74
78

3
1
2
9
1

1
2

1
5
3
2

N
.A

.
1

5
7
0

1
5
4
5

N
.A

.

50
15

9
17

67
2
3
1
9

1
2

1
5
4
1

N
.A

.
2

1
2
2
8

1
5
4
6

N
.A

.

50
0

16
3

17
53

2
2
9
3

1
2

1
5
3
7

N
.A

.
2

1
2
2
8

1
5
4
8

N
.A

.

50
00

20
9

17
87

2
3
4
2

7
1
5

3
5
3
5

8
.7

1
8

2
1
2
2
8

1
6
2
1

N
.A

.

C
o
n
ti

n
u

ed
o
n

n
ex

t
p

a
g
e

119

T
a
b
le

6
.5

–
c
o
n
ti
n
u
e
d

fr
o
m

p
re

v
io
u
s
p
a
g
e

Q
u
e
ry

p
o
in
t

r(
m
)

T
c

T
s

T
e

P
o
in
t
re

su
lt
s

P
o
ly
g
o
n

re
su

lt
s

N
p
t

R
p
t

n
p
t

A
v
g
.

S
t.
d
ev
.

N
p
l

R
p
l

n
p
l

A
v
g
.

S
t.
d
ev
.

(4
7.

66
4

,
-6

8.
31

5
)

5
46

26
0

7
6
7

1
1
1

1
5
1
6

N
.A

.
1

2
8
1

1
5
0
9

N
.A

.

50
43

24
7

7
5
5

1
1
1

1
5
1
8

N
.A

.
1

2
8
1

1
5
0
6

N
.A

.

50
0

16
4

22
15

2
7
7
5

2
1
2

1
5
4
4

N
.A

.
2

1
1
5
6

1
5
7
2

N
.A

.

50
00

18
8

22
08

2
7
3
8

2
2

6
1

5
5
5
3

2
0
.6

5
2

2
1
1
5
6

1
5
8
5

N
.A

.

(4
6.

15
2

,
-6

7.
59

8
)

5
14

3
27

42
3
2
7
7

1
3
1

1
5
5
0

N
.A

.
1

1
0
1
9

1
5
7
4

N
.A

.

50
14

5
27

65
3
3
0
6

1
3
1

1
5
5
4

N
.A

.
1

1
0
1
9

1
5
4
5

N
.A

.

50
0

36
3

10
89

1
1
1
5
9
2

5
3
9

2
7
3
3

4
5
.2

5
5

2
2
8
2
4

1
7
3
0

N
.A

.

50
00

47
0

11
09

5
1
1
8
4
0

4
3

1
5
5

5
6
8
7
.4

4
5
.0

9
2

2
2
8
2
4

1
7
3
5

N
.A

.

(4
5.

18
,

-6
7.

29
6

)
5

17
9

61
80

6
9
9
1

1
3

1
5
7
3

N
.A

.
1

1
5
2
0

1
6
0
1

N
.A

.

50
21

5
61

27
6
7
9
3

1
3

1
6
7
6

N
.A

.
1

1
5
2
0

1
6
6
0

N
.A

.

50
0

20
8

61
30

6
7
3
8

6
5
4

2
5
7
5
.5

2
.1

2
1

1
1
5
2
0

1
6
6
3

N
.A

.

50
00

22
7

61
91

6
8
0
4

3
3

1
7
0

5
6
0
1

4
3
.1

7
4

1
1
5
2
0

1
5
9
6

N
.A

.

(4
5.

87
2

,
-6

6.
44

5
)

5
14

0
13

89
1
9
2
4

1
6

1
5
6
1

N
.A

.
1

6
8
1

1
5
4
4

N
.A

.

50
10

6
14

40
1
9
6
8

2
9

1
5
5
5

N
.A

.
1

6
8
1

1
5
7
2

N
.A

.

50
0

27
2

97
84

1
0
3
6
3

4
1
1

2
6
7
3

4
.2

4
3

2
2
4
8
6

1
6
7
6

N
.A

.

50
00

48
8

10
72

3
1
1
4
9
5

2
7

4
9

5
7
0
6
.8

1
8
.2

5
4

4
3
3
3
5

2
6
5
2
5

8
0
5
1
.1

1
8

(4
5.

58
3

,
-6

4.
96

1
)

5
96

11
21

1
6
2
8

1
1

1
5
4
5

N
.A

.
1

6
5
8

1
5
0
9

N
.A

.

50
10

2
10

81
1
5
8
8

1
1

1
5
2
8

N
.A

.
1

6
5
8

1
5
2
5

N
.A

.

50
0

43
3

10
11

3
1
0
7
2
6

9
3
9

3
6
9
4
.6

6
7

2
3
.4

3
8

3
2
8
9
1

1
1
0
0
6

N
.A

.

C
o
n
ti

n
u

ed
o
n

n
ex

t
p

a
g
e

120

T
a
b
le

6
.5

–
c
o
n
ti
n
u
e
d

fr
o
m

p
re

v
io
u
s
p
a
g
e

Q
u
e
ry

p
o
in
t

r(
m
)

T
c

T
s

T
e

P
o
in
t
re

su
lt
s

P
o
ly
g
o
n

re
su

lt
s

N
p
t

R
p
t

n
p
t

A
v
g
.

S
t.
d
ev
.

N
p
l

R
p
l

n
p
l

A
v
g
.

S
t.
d
ev
.

50
00

79
3

15
93

4
1
6
6
8
1

5
3

1
4
2

5
7
6
4
.8

2
8
.3

5
0

5
4
9
0
1

2
1
0
0
4
9
.5

1
1
9
0
1
.3

1
4

(4
5.

25
9

,
-6

6.
08

8
)

5
60

48
6

9
9
3

1
5

1
5
3
1

N
.A

.
1

4
2
8

1
5
3
5

N
.A

.

50
61

48
1

9
9
0

1
5

1
5
1
8

N
.A

.
1

4
2
8

1
5
0
7

N
.A

.

50
0

58
48

9
9
9
5

2
6

1
5
1
8

N
.A

.
1

4
2
8

1
5
1
3

N
.A

.

50
00

17
3

12
15

1
7
5
8

2
9

1
3
0

5
5
5
5
.4

2
2
.1

3
1

2
9
1
8

1
5
6
1

N
.A

.

121

The line graph in Figure 6.5 illustrates the changes of the Tc, Ts and Te measured in ms

with increasing Rpt +Rpl. As we can see, Ts and Te show an increase in proportion to the

total number of point results and polygon results returned; Tc remains relatively steady for

most values of Rpt+Rpl at around 200 ms. The steady performance of Tc is consistent with

the constant average query complexity O(logMDn + y) of the R* tree, although O(Dn) is

the worst case time complexity for a rectangle intersecting a set of n records, where Dn is

the number of objects indexed in the R* tree, and y is the number of the records found in

range (see section 4.6). Similar to Q1 and Q2, a constant value of Te − Ts still holds, with

an average of 580.68 ms. The time cost for the entire search process (Te) and the server

side (including C++ and Java) processing time Ts are significantly higher than the C++

processing time Tc. In Table 6.5, the average value of Ts − Tc is 3411.63. The value of

Ts−Tc is considerably higher than that for Q1, but lower than that for Q2. A main reason

for the lower value is due to the size of the results returned by Q3, which is less than that

of Q2, but generally more than that of Q1. The time spent on analysing and interpreting

the returnList gives rise to these differences. For the Q3 test, the average Tc, Ts and Te

are 191.5ms, 3603.2ms and 4183.9ms, respectively, and the average value of Rpt + Rpl is

1313.4.

122

Figure 6.5: Search engine C++ processing time Tc, server side (including C++ and Java)
processing time Ts and total query time Te plotted versus the number of returned search
results for Q3 queries Rpt +Rpl.

123

Chapter 7

Summary and Conclusions

7.1 Summary

A search engine system called TexSpaSearch supporting text with spatial constraints

searching is presented in this thesis. A polygon simplification algorithm PackPolygon is

proposed in the data preprocessing phase, which is a variant of the RDP algorithm. We

indexed the UNB Connell Memorial Herbarium database of 40,791 records using the R*

tree and suffix tree simultaneously, and designed data structures for efficiently combining

them to realize the Q1(t), Q2(t, r) and Q3(p, r) queries. A Lucene scoring algorithm is

implemented to rank the text search results.

A Java-based web application was implemented to provide the web user interface for our

search engine. It also handles sending and receiving requests and responses between the

clients and the server, communicating with the C++ back end program through TCP

sockets, analysing the results returned by the C++ program, and interpreting the results

to generate the corresponding web pages. We use JSP pages to generate search results

dynamically. The Java server transmits messages to the JSP pages using session objects.

124

7.1.1 Contributions

This thesis presents an innovative Q2(t,r) query definition and text + spatial data struc-

tures supporting Q2 as well as Q1(t) and Q3(p,r) search simultaneously. To our knowledge,

this is the first data structure supporting all three query types. Our data structure can

also return points or polygons describing spatial objects resulting from Q2 or Q3 queries.

Our R*-tree data structure is, to our knowledge, the first one to efficiently pack simplified

polygons defined by up to wB points into the leaf nodes. Leaf nodes can also contain up

to B points. A modified Lucene scoring algorithm was designed and implemented. This

modified Lucene scoring uses words and subphrases instead of fields and multiword terms

to provide a better way to index and search free-form-text. We also present a novel scheme

for ranking combined text and spatial search results. To improve the efficiency of returning

ranked text search results, our suffix tree data structure contains precomputed components

(e.g. term frequency, document frequency) needed by the modified Lucene scoring algo-

rithm. A unique scheme for displaying the Q1, Q2 and Q3 search results was designed

and implemented. Although the efficiency for Q1 text search compared to the GSA is low,

our theoretical analysis does show a highly efficient search cost when the number of results

returned is large.

7.2 Conclusions

The TexSpaSearch engine can perform Q1(t), Q2(t, r) and Q3(p, r) queries successfully,

and can rank the search results reasonably. The experimental results on the 20 sample

query strings for the Q1 text only query indicate an average 45.5 times slower search time for

Te (total query time) and 16.95 times slower search time for Tc (C++ side processing time)

compared with a Google Search Appliance, but returns a wider range of results (records

containing any subphrase of the query string) than the GSA. The average query time for

125

Q1 is 825.8ms, with on average 899.35 results returned, while the average theoretical query

time for Q1 is O(A2|b|). For a Q2 query, the average query time is 18839.8ms to return

an average number of records is 15433.6, and the average theoretical query time for Q2 is

O(A2|b|+Z logMDn + y). Q3 test gives an average query time of 4183.9ms for an average

1313.4 returned records, when the average theoretical query time for Q3 is O(logMDn+y).

A constant value of Te − Ts, where Te stands for the total query time and Ts is the server

side (including C++ and Java) processing time, holds for all the three query types due to

the data contained in the generated web page being approximately constant (the number

of results displayed on each page is limited to e.g. 5 for Q1, and 3 for Q2 and Q3).

7.3 Future Work

Future work on improving and testing the TexSpaSearch engine might include the following

topics:

1. Time did not permit us to complete the nearest neighbour filtering of GSA ranked

results as planned. Nearest neighbour filtering of GSA search results might be added

in the future.

2. We implement a Q2 text + spatial query by performing the text search first. Can

the Q2 query be achieved in the inverse order (perform spatial query first)?

3. It would be useful to test the performance of TexSpaSearch on different operating

systems, web browsers and on a much larger database.

4. Evaluation of the search engine by those with domain knowledge (e.g. biologists

for the herbarium database) would be valuable to determine how the TexSpaSearch

engine could be improved.

126

5. How can support for approximate spatial search be incorporated? For example an

approximate query might be “find pitcher plants near Fredericton”.

127

References

[1] http://code.google.com/apis/searchappliance/documentation/610/, accessed
May 22, 2011.

[2] Apache http server project, http://httpd.apache.org/, accessed November 4, 2011.

[3] Apache lucene, http://lucene.apache.org, accessed November 10, 2013.

[4] Arcgis, http://en.wikipedia.org/wiki/ArcGIS, accessed December 4, 2012.

[5] Code page 437, http://en.wikipedia.org/wiki/Code_page_437, accessed Novem-
ber 4, 2011.

[6] English stopwords, http://www.ranks.nl/resources/stopwords.html, accessed
November 1, 2013.

[7] Fichier: Douglas peucker.png, http://fr.wikipedia.org/wiki/Fichier:Douglas\
_Peucker.png, accessed December 6, 2012.

[8] The google geocoding api, https://developers.google.com/maps/documentation/
geocoding/#GeocodingRequests, accessed December 3, 2012.

[9] Google Search Appliance, Available at http://en.wikipedia.org/wiki/Google_

Search_Appliance.

[10] Google search appliance help center, https://gsa1.lib.unb.ca:8443/

EnterpriseController/crawl_urls.html, accessed November 7, 2011.

[11] Great-circle distance, http://en.wikipedia.org/wiki/Great-circle_distance,
accessed December 16, 2012.

[12] Interface servlet, http://tomcat.apache.org/tomcat-5.5-doc/servletapi/

javax/servlet/Servlet.html, accessed May 12, 2014.

[13] Iso/iec 8859-1, http://en.wikipedia.org/wiki/ISO/IEC_8859-1, accessed Novem-
ber 12, 2011.

[14] Lucene, http://en.wikipedia.org/wiki/Lucene, accessed November 10, 2013.

128

[15] Lucene as a ranking engine., http://www.wortcook.com/pdf/lucene-ranking.pdf,
accessed November 10, 2013.

[16] Lucene java doc, class similarity., http://lucene.apache.org/java/2_4_1/api/

org/apache/lucene/search/Similarity.html, accessed November 10, 2013.

[17] Pagerank, http://en.wikipedia.org/wiki/PageRank, accessed May 22, 2011.

[18] Shapefile c library, http://shapelib.maptools.org/, accessed December 1, 2012.

[19] Snb geographic data & maps products & services, http://www.snb.ca/gdam-igec/
e/2900e_1.asp, accessed December 1, 2012.

[20] Spatial search, http://wiki.apache.org/solr/SpatialSearch, accessed December
4, 2011.

[21] Specimen Label Data for the Connell Memorial Herbarium, Available at http:

//herbarium.biology.unb.ca/fmi/iwp/res/iwp_auth.html.

[22] Suffix tree, http://en.wikipedia.org/wiki/Suffix_tree, accessed June 23, 2011.

[23] Trie, http://en.wikipedia.org/wiki/Trie, accessed December 4, 2011.

[24] World geodetic system 1984 - background, http://www.dqts.net/wgs84.htm, ac-
cessed December 15, 2012.

[25] David Austin, How google finds your needle in the web’s haystack, http://www.ams.
org/samplings/feature-column/fcarc-pagerank, accessed May 22, 2011.

[26] Norbert Beckmann, Hans-Peter Kriegel, Ralf Schneider, and Bernhard Seeger, The
r*-tree: An efficient and robust access method for points and rectangles, SIGMOD
Conference, 1990, pp. 322–331.

[27] Jon Louis Bentley, Multidimensional binary search trees used for associative searching,
Commun. ACM 18 (1975), no. 9, 509–517.

[28] Monica Bianchini, Marco Gori, and Franco Scarselli, Inside pagerank, ACM Trans.
Internet Technology 5 (2005), no. 1, 92–128.

[29] David H. Douglas and Thomas K. Peucker, Algorithms for the reduction of the number
of points required to represent a digitized line or its caricature, Cartographica: The
International Journal for Geographic Information and Geovisualization 10 (1973),
no. 2, 112–122.

[30] Martin Farach, Optimal suffix tree construction with large alphabets, FOCS, 1997,
pp. 137–143.

129

[31] Radu Gruian, Patricia trie template class, http://www.codeproject.com/Articles/
9497/Patricia-Trie-Template-Class, July 2007, accessed January 1, 2013.

[32] Dan Gusfield, Algorithms on strings, trees, and sequences - computer science and
computational biology, Cambridge University Press, 1997.

[33] Antonin Guttman, R-trees: A dynamic index structure for spatial searching, SIGMOD
Conference, 1984, pp. 47–57.

[34] Dan Han and Bradford G. Nickerson, Comparison of text search ranking algorithms,
Tech. report, TR11-209, Faculty of Computer Science, University of New Brunswick,
August 2011.

[35] Jan T. Heuer and Sören Dupke, Towards a Spatial Search Engine Using Geotags,
GI-Days 2007 - Young Researchers Forum (Florian Probst and Carsten Keßler, eds.),
IfGIprints, 2007.

[36] Robert W. Irving and Lorna Love, Suffix binary search trees and suffix arrays, Tech.
report, TR-2001-82, Computing Science Department Research Report, University of
Glasgow, March 2001.

[37] , The suffix binary search tree and suffix avl tree, J. Discrete Algorithms 1
(2003), no. 5-6, 387–408.

[38] Christopher B. Jones, Alia I. Abdelmoty, David Finch, Gaihua Fu, and Subodh Vaid,
The spirit spatial search engine: Architecture, ontologies and spatial indexing, GI-
Science, 2004, pp. 125–139.

[39] Udi Manber and Eugene W. Myers, Suffix arrays: A new method for on-line string
searches, SIAM J. Comput. 22 (1993), no. 5, 935–948.

[40] Edward M. McCreight, A space-economical suffix tree construction algorithm, J. ACM
23 (1976), no. 2, 262–272.

[41] Gahyun Park and Wojciech Szpankowski, Towards a complete characterization of tries,
Proceedings of the sixteenth annual ACM-SIAM symposium on Discrete algorithms
(Philadelphia, PA, USA), SODA ’05, Society for Industrial and Applied Mathematics,
2005, pp. 33–42.

[42] A Rajaraman and J. D. Ullman, Mining of massive datasets, (2011), 1¨C17.

[43] Urs Ramer, An Iterative Procedure for the Polygonal Approximation of Plane Curves,
Computer Graphics and Image Processing 1 (1972), 244–256+.

[44] H. Samet, Foundations of multidimensional and metric data structures, Morgan Kauf-
mann, 2006.

130

[45] Qingxiu Shi, Data structures for efficient search in high-dimensional spaces, Ph.D.
thesis, University of New Brunswick, 2002.

[46] Dustin Spicuzza, A header-only c++ r* tree implementation.,
http://www.virtualroadside.com/blog/index.php/2008/10/04/

r-tree-implementation-for-cpp/, accessed November 14, 2013.

[47] Esko Ukkonen, On-line construction of suffix trees, Algorithmica 14 (1995), no. 3,
249–260.

[48] Peter Weiner, Linear pattern matching algorithms, Proceedings of the 14th Annual
Symposium on Switching and Automata Theory, SWAT 1973, Washington, DC, USA,
IEEE Computer Society, 1973, pp. 1–11.

131

Appendix A

Stopwords list

a about above after again against
all am an and any are
aren’t as at be because been
before being below between both but
by can’t cannot could couldn’t did
didn’t do does doesn’t doing don’t
down during each few for from
further had hadn’t has hasn’t have
haven’t having he he’d he’ll he’s
her here here’s hers herself him
himself his how how’s i i’d
i’ll i’m i’ve if in into
is isn’t it it’s its itself
let’s me more most mustn’t my
myself no nor not of off
on once only or other ought
our ours ourselves out over own
same shan’t she she’d she’ll she’s
should shouldn’t so some such than
that that’s the their theirs them
themselves then there there’s these they
they’d they’ll they’re they’ve this those
through to too under until up
very was wasn’t we we’d we’ll
we’re we’ve were weren’t what what’s
when when’s where where’s which while

132

who who’s whom why why’s with
won’t would wouldn’t you you’d you’ll
you’re you’ve your yours yourself yourselves

133

Vita

Candidate’s full name: Dan(Amber) Han

University attended:
September 2010 - May 2014
Faculty of Computer Science
University of New Brunswick
Fredericton, New Brunswick, Canada

September 2006 - June 2010
Bachelor of Engineering
Shool of Information and Communication Engineering
Beijing University of Post and Telecommunications
Beijing, China

Technical Report:
Dan Han and Bradford G. Nickerson, “Comparison of Text Search Ranking Algorithms”,
UNB Faculty of Computer Science, TR11-209, August 2011, Fredericton, N.B., Canada.

Poster:
Dan Han and Bradford G. Nickerson, “Poster: Text Search with Spatial Constraints”,
10th UNB Computer Science Research Exposition, April 12, 2013, Fredericton, N.B.,
Canada.

Publications:
Conference Presentations:

