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Abstract

This thesis presents a search engine called TexSpaSearch that can search text documents
having associated positions in space. We defined three query types Q1(t) , Q2(¢,r) and
Q3(p,r) that can search documents with queries containing text ¢, position p and radius
r components. We indexed a sample herbarium database of 40,791 records using a novel
R*-tree and suffix tree data structure to achieve efficient text search with spatial data
constraints. Significant preprocessing was performed to transform the herbarium database
to a form usable by TexSpaSearch. We built unique data structures used to index text

with spatial attributes that simultaneously support Q1, Q2 and Q3 queries.

This thesis presents a novel approach for simplifying polygon boundaries for packing into
R*-tree leaf nodes. Search results are ranked by a novel modified Lucene algorithm that
supports free form text indexing in a general way. A novel ranking of Q2 search results
combines the text and spatial scores. The architecture of a prototype Java based web
application that invokes TexSpaSearch is described. A theoretical analysis shows that
TexSpaSearch requires O(A2|_|) average time for Q1 search, where A is the number of
single words in the query string ¢, and |m is the average length of a subphrase in t. Q2
and Q3 require O(A2[b| + Zlog,, Dy, + y) and O(log,, D, + y), respectively, where Z is

the number of point records in the list P of text search results, D,, is the number of data

objects indexed in the R*=tree for n records, M is the maximum number of entries of an

1



internal node in the R*-tree, and y is the number of leaf nodes found in range in a Q3 query.

Testing was performed with 20 test Q1 queries to compare TexSpaSearch to a Google
Search Appliance (GSA) for text search. Results indicate that the GSA is about 45.5
times faster than TexSpaSearch. The same 20 test queries were combined with a Q2 query
radius » = 5, 50 and 500m. Results indicate Q2 queries are 22.8 times slower than Q1
queries. For testing Q3 queries, 15 points were chosen in 15 different N.B. counties. The
average 1., T, and T, values of 191.5ms, 3603.2ms and 4183.9ms are given in the Q3 test,

respectively, and the average value of N, + N is 1313.4.
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Chapter 1

Introduction

Many human activities are more or less related to geographic information. For example,
most documents stored on the web include references to geographical content, typically
names of places. As a result, some applications wish to combine spatial location with
text data when searching [35][38]. Traditional search engines treat place names in the
search strings in the same way as any other keyword. This may be adequate in most
circumstances, but there are situations, for example, when we want to find all the
restaurants falling with 10 km of our working place, in which text only search engines
could be improved. In this case, we are interested in all the documents that are associated
with the region which is specified by the place name and a radius. In this thesis, we

investigate efficient indexing method to support text + spatial query.

To support spatial search, in addition to conventional text search functions, we need to

add features of spatial queries to the search engine, including [20]
1. Representation of spatial data in the index

2. Filtering by some spatial concept such as a bounding box or other shape



3. Sorting, scoring and boosting by distance from a query point or query region

In 2004, a general architecture for text + spatial search engine called the SPIRIT search
engine architecture was presented [38]. SPIRIT consists of the following components:
user interface; geographical and domain-specific ontologies; web document collection; core
search engine; textual and spatial indexes of document collection; relevance ranking and

metadata extraction as shown in Figure 1.1 [38].

Ontologies
Geographical
Domain

s Metadsta
T farkeup

EY
»

ery
dizambiguation
QLEry expansiol

Relevance|  Document -
Footprints

Fankin
0 Metadata
F 3
Segrch Unranked Fanked L
LB Reguest Resufts Rezults oo .
Interface ! .- Bocument .
Ranked a” Footprints L
anke .
Results Sea!’ch o '._
E”Qme Mark-up

Search Indexing .

Indexes

Collection

Textual

_ Documents
Spatial

Figure 1.1: SPIRIT search engine architecture (from [38]).

In this thesis, we use UNB Connell Memorial Herbarium database as the basis for a web
document collection with spatial information. We compare two approaches. The first uses

suffix trees and R*-trees as data structures with a Lucene scoring algorithm for ranking



search results, the second approach applies spatial filtering to rank the results from a

Google Search Appliance (GSA) search on a GSA index of the same data.

1.1 Suffix Trees

Suffix tree is a popular data structure for indexing text. Since 1960 tries were used in
many computer science applications such as searching and sorting, dynamic hashing,
conflict resolution algorithms, leader election algorithms, IP addresses lookup, coding,
polynomial factorization, Lempel-Ziv compression schemes, and molecular biology [41].
Also, a number of suffix-based data structures have been proposed to facilitate on-line
string searching [36]. Suffix tree is a special kind of trie, which can be used to index all

suffixes in a text in order to carry out fast full text searches [23].

A suffix tree for a string S is a tree whose edges are labeled with strings, such that each
suffix of S corresponds to exactly one path from the tree’s root to a leaf. It is thus a
Patricia tree for the suffixes of S [22]. The suffix tree for the string S of length w is defined

as a tree such that: [32]

1. The paths from the root to the leaves have a one-to-one relationship with the suffixes

of S.
2. Edges spell non-empty strings.
3. All internal nodes (except perhaps the root) have at least two children.

Since such a tree does not exist for all strings, S is padded with a terminal symbol not
seen in the string (usually denoted $). This ensures that no suffix is a prefix of another,

and that there will be J leaf nodes, one for each of the J suffixes of S.



An example suffix tree for the string “BANANA” is shown in Figure 1.2. Each substring
is terminated with special character $. The six paths from the root to a leaf correspond to
the six suffixes A$, NAS, ANAS, NANAS, ANANAS$ and BANANAS$. The numbers in the
boxes give the start position of the corresponding suffix [22]. Dashed edges link internal

node.

NA$

3 1

Figure 1.2: A suffix tree for the string “BANANA” from [22]

The classic application for suffix trees is the substring problem. One is first given a text
S of length u. After O(u), or linear, preprocessing time, one must be prepared to take in
a query Q of length v and in O(v) time either find an occurrence of Q in S or determine
that Q is not contained in S. These bounds are achieved with the use of a suffix tree. The
suffix tree for the text S is built in O(u) time during a preprocessing stage; thereafter,
whenever a string of length O(v) is input, the algorithm searches for it in O(v) time using

that suffix tree [32].



1.2 Background and Literature Review

The first linear time algorithm for constructing suffix trees was presented by Weiner [48]
in 1973, although at that time a suffix tree was called a position tree. A few years later, a
more space efficient algorithm to build suffix trees in linear time was given by McCreight
[40].  More recently, a conceptually different linear-time algorithm was developed by
Ukkonen [47], which has all the advantages of McCreight’s algorithm, but allows a much
simplier explanation [32]. These classical algorithms [48, 40, 47] construct a suffix tree
for a string of length n in O(nlog|>_|) time and O(n) space, where ) is the alphabet.
Given a suffix tree for o and a pattern «a of length m, an algorithm to determine whether
the pattern appears in the string can be implemented to run in O(mlog|)_|) time. A

more recent algorithm due to Farach [30] removes the dependence on alphabet size [37].

The suffix array was introduced by Manber and Myers [39] in 1993 as an alternative to
the classical suffix tree. The main advantage of suffix arrays over suffix trees is that, in
practice, they use three to five times less space. The time bounds for construction and
search in the case of a suffix array are O(nlogn) and O(m + logn), with O(n) space
used [39]. Although both suffix trees and suffix arrays use linear space, the latter can be

represented more compactly [37].

Irving and Love [37] defined the suffix binary search tree (SBST) in 2000 and its variant
the suffix AVL tree in 2000. They show empirical evidence suggesting that, in practice,
the suffix BST is broadly competitive with suffix trees and suffix arrays in indexing real
data, such as plain text or DNA strings. A particular advantage is that a standard suffix
BST can easily be constructed so as to represent a proper subset of the suffixes of a text.

For example, if the text is natural language, it might be appropriate to present in the



tree only those suffixes that start on a word boundary, resulting in a saving in space and
construction time by a factor of the order of 1 4+ w, where w is the average word length
in the text. For a suitably implemented SBST, a search requires O(m + k) time, there k
is the length of the search path in the tree. This gives O(m + n) worst-case complexity,
but typically in practice, all search paths will have O(logn) length, and searching will be
O(m + logn) on average. This becomes a worst-case bound if AVL rotations are used to
balance the tree on construction. The construction time for standard SBST can be as
bad as O(n?) in the worst case, but for the refined version, it can be achieved in O(nh)
time, where h is the height of the tree. In the worst case, h can be ©(n), but for random
settings, h can be expected to be O(logn). In the case of the suffix AVL tree, construction

takes O(nlogn) time in the worst case [37].

In order to handle multi-dimensional point data efficiently, a number of structures have
been proposed. Cell methods are not good for dynamic structures because the cell
boundaries must be decided in advance [33]. A multidimensional binary search tree, or
k-d tree, was presented by Bentley [27], which then became one of the prominent data
structures for indexing spatial data. In the worst case, it requires O(n'~/? 4 F) search
time in a range search, where d is the number of dimensions and F' is the number of
points falling in the region. One drawback is that k-d trees and its variants do not take
paging of secondary memory into account [33]. The R-tree is a height-balanced tree that
is derived from the B-tree, and provides efficient indexing of multidimensional objects
with spatial extent [45]. R-tree represents data objects by intervals in several dimensions,
and is designed so that a spatial search requires visiting only a small number of nodes.
An improved version of R-tree, the R*-tree was introduced by Beckmann et al [26]. The
motivation of R*-tree is that there are several weaknesses of the original R-tree insertion

algorithms. R*-tree aims at minimizing the overlap region between sibling nodes and



achieving lower storage utilization.

1.3 Objective

We assume that text documents have associated positions in space and we wish to search
such documents with queries containing spatial components. For example, we might have
a set of populated place names (e.g. cities), with associated locations (latitude, longitude)
on the earth’s surface. These place names can be part of larger documents or text based
web pages. From here on, we use the word “document” to refer to item (e.g. web page,

document, database, record) indexed by the search engine.

An example query might be to find all populated places within 50 km of a specific populated
place, or of a given latitude, longitude. Let Q be a query, in this case, we have Q =
(“Fredericton”, 50km) or Q = ((45.95,-66.633333), 50km). Other example queries might
be to find restaurants within 10 km of your current position or of a known restaurant,
then we have Q = (“Golden Triangle”, 10km) where “Golden Triangle” is the name of a
restaurant. In any case, the search returns a ranked list of cities or restaurants nearby. If we
represent search strings (e.g. city or restaurant names) by ¢, represent spatial information

(e.g. latitude, longitude) by p and let r stand for radius, there are three query forms:

1. Q1 = (t), search returns a ranked list of items matching the search string ¢, along

with their associated spatial information (e.g. latitude, longitude).

2. Q2 = (t, r), search returns a ranked list of documents with at least one spatial
component having its location falling within the circle of radius r centred at the

position p of the ranked documents.



3. Q@3 = (p, r), search returns a ranked list of documents with at least one spatial
component having its location falling within the circle of radius r centred at position

p.
Assume now that there are records consisting of plain text and associated spatial informa-

tion in a database as shown in Figure 1.3.

Record 1 Record 2 Record 3
McDonald’s Restaurants of McConnell Hall, University of Head Hall, University of New

Canada New Brunswick Brunswick
(1)(45.934516N, 66.663308W) A (45.946419N, 66.639297W) (45.549361N, 66.641711W) E

(Z)(45.961817N, 66.643622W) F

Record 4 Record 5 Record 6
Shoppers Drug Mart Staple Business Depot Victory Meat Market Ltd
@{45.942639N, 66.655147wW) C (45.939778N, 66.662633W) (45.962739N, 66.645572W) H

(©)(45.961817N, 66.643622W) F

(3)(45.976414N, 66.649003W) |

Figure 1.3: An example database with records consisting of plain text and associated
spatial information

Figure 1.4 shows corresponding positions on a Google map of the records in Figure 1.3.
Figure 1.5 shows examples of the three queries and query answers using the database shown

in Figure 1.3.

Ranking of search results becomes important for large amounts of data in the search
result. In cases 3 and 4, we have to realize ranked nearest neighbour search and ranked

range search.
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Figure 1.4: Positions on Google Map of records in Figure 1.3

Suffix trees and its variants can be used to efficiently index and search text, but what if we
have spatial constraints on the query? Since it is not easy to use suffix trees to represent
the spatial data, we need another data structure to index spatial data. The R-tree and
its variants the R*-tree are among the most popular indexing methods supporting range
search and nearest neighbour search [44]. The R-tree is a dynamic index structure that
provides a way to handle multi-dimensional spatial data efficiently. Other than traditional
data structures, R-tree represents data objects by intervals in several dimensions. Thus,
we can index the herbarium database using two different data structures. How can we
implement and combine these two data structures for efficient text search with spatial
data constraints? Can the Lucene text similarity engine be used to effectively rank the
text search results [34]7 In this thesis, we explore novel data structures and ranking
algorithms for efficient combined text and spatial search. Our research objectives focus on

achieving efficient worst case and average case search cost using linear space.



Query 1: O = ("Mc")
Searchreturns:
{1). McDonald's Restaurants of Canada, (45.934516N, 66.663308W).
{2). McDonald's Restaurants of Canada, (45.961817N, 66.643622W).
(3). McConnell Hall, University of Mew Brunswick, (45.946419N, 66.639297W).
Query 2: @ = ("McDonald”, 1.5km)

Searchreturns:
{1). McDonald's Restaurants of Canada, (45.934516N, 66.663308W).
(2). McDonald's Restaurants of Canada, (45.961817N, 66.643622W).
(3). Shoppers Drug Mart, (45.961817N, 66.643622W), Okm from (2).
(4). victory Meat Market Ltd, (45.962739N, 66.645572W), 0.185km from [2).
{5). Staple Business Depot, (45.939778N, 66.662633W), 0.552km from (1.
(&). Shoppers Drug Mart, [45.942639N, 66.655147W), 1.098km from (1.
Query 3: Q = (position P = (45.952567N, 66.646001W), 1.5km)
Searchreturns:
{1). Head Hall, University of New Brunswick, (45.949961N, 66.641711W), 0.441km from P.
{2). McConnell Hall, University of Mew Brunswick, (45.946419N, 66.639297W), 0.862km
from R
(3). McDonald's Restaurants of Canada, (45.961817N, 66.643622W), 1.043 km from P.
{#). Shoppers Drug Mart, (45.961817N, 66.643622W), 1.043 km from P.
(5). Victory Meat Market Ltd, (45.962739N, 66.645572W), 1.122km from P.
(6). Shoppers Drug Mart, (45.942639N, 66.655147W), 1.315km from P.

Figure 1.5: Examples of the three query types using database as shown in Figure 1.3.
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Chapter 2

A System Supporting Text Search
with Queries Having Spatial

Constraints

2.1 Methodology

We plan to use the suffix binary search tree and R*-tree because they are efficient on
indexing text and spatial data, respectively. To achieve efficient query in the three forms

described in Chapter 1, a system is desired as shown in Figure 2.1.

The targeted database will be indexed using two different data structures; the R*-tree for
spatial data and suffix binary search tree for text data. The text data will be associated
with the corresponding spatial information. This will enable us to do two basic kinds of
queries; text query based on SBST and spatial only query based on the R*-tree. The
central question of this thesis is how can we perform a text 4 spatial query efficiently? As

we can see from Figure 2.1, to perform a Q2 (text + radius ) query, we first perform pure

11



Q1 query
Qz query Search Search
results P
Q3 query / /
Radiusr
list

Figure 2.1: A possible system architecture for text+spatial query.

text search, which will return a set P of search results. We then introduce a radius into
the system, for each point in P, we perform a point + radius search, or nearest neighbour

search, which will return all points falling in range.

Since the number of points in range can vary, an important question is how can we rank
the results as to their importance. Our way is to rank the results by their positions. This
idea is based on the common sense that the nearer a point is to a specific point, the more
likely that people will be interested in it. An example is illustrated in Figure 2.2. In this
example, two records r; and r, fall inside a circle of radius r at point p. The distance from
p to r; and ry are x; and x, respectively, with x; < x5. Thus, document r; should be

ranked higher than document ry.

12



Figure 2.2: An example for ranking method.
2.2 Test Methodology

The system will be tested on a database. The performance of the system will be compared
with the Google Search Appliance (GSA) on the targeted data set. The testing system is
depicted in Figure 2.3. In our testing, we can have Q1 (text only), Q2 (text + radius)
or Q3 (point + radius) search. Since the GSA does not provide a way to perform
text plus spatial data search, we have to do the text search first and then introduce
spatial constraints in a different way. Steps 2 and 3 in Figure 2.3 are data preprocessing
procedures for the GSA search engine. In step 4, we perform text search using GSA
search engine. If the given query contains latitude and longitude information, this spatial
information should be converted to text information associated with it first, such as a
nearby city or place name. In step 5, a ranked set of matching documents will be generated
and the ranking will be decided merely on text data during this procedure. In step 6, we
introduce the spatial constraint (radius) through a nearest neighbour filter. After this,

the ranked set of matching documents with spatial components will be generated.

In the UNB text + spatial search engine, the targeted database will be preprocessed as

13
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Figure 2.3: Testing system.
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shown in steps 8 and 9. The system then directly performs the given query Q = (text or
(latitude, longitude), radius) in step 10, and generates a ranked set of matching documents
with spatial constraints in step 11. For text search Q1 ranking, we plan to use a text

retrieval ranking algorithm such as Lucene scoring [34].

Finally, we will compare and contrast these two search engines on various aspects such as

searching time and suitability of ranked results in step 12.
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Chapter 3

Data Preprocessing

UNB has a Connell Memorial Herbarium database, each record of which contains text
and spatial information (latitude and longitude). In the thesis, the system will be tested
on the herbarium database. The performance of the system will be compared with the
Google Search Appliance (GSA) on the UNB Herbarium data set. To index the UNB
Connell Memorial Herbarium database using a Google Search Appliance (GSA), we have
to perform the data preprocessing first. In the data preprocessing stage, we transformed
each database record to a webpage with appropriate metadata and content, put all the
webpages generated on the web server running on the UNB FCS network, and indexed

these webpages using the GSA.

The preprocessing steps are illustrated as shown in Figure 3.1.

3.1 UNB Connell Memorial Herbarium database

The Connell Memorial herbarium is the largest collection of vascular plant specimens from

the New Brunswick flora. There are approximately 55,000 vascular plant specimens from
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Record1: EE
UNB accession UNB accession number 29
number29, ... 48 htm

UNB accession number 29

Record1:
UNB accession 29.htm

UNB accession number 29
number48, ...

Transformation

Record: | |\
UNB accession
number53, ... Content
............. GSA
Index

Figure 3.1: The preprocessing process for GSA index.

New Brunswick, 9,000 non-New Brunswick vascular plants, and about 1,000 algae, mainly
seaweeds . About one third of the vascular plant specimens from New Brunswick are
currently in the database [21]. An example record of the online database is shown in

Figure 3.2.

The electronic version of the UNB Connell Memorial Herbarium database was provided
to us by Michael Casey (UNB Biology department) as a .csv file on Sep. 13, 2011. The
database contains 40,791 records in total. An example database record is as follows:

"29" ,"Botrychium multifidum (Gmel.) Rupr.'","", mn nwn mn wqgn ngn n1844",
"","Hill pastures","College Hill, Fredericton","York", "NB","",

"Leathery grapefern", "Ophioglossaceae", "Botryche & feuille couchée","",
wnomn "College Hill, Fredericton","",""

The meaning of the 22 columns in each record are: UNB accession number, Full name,
Latitude, Longitude, Collector(s), Collector’s number, Day, Month, Year, Abundance,
Habitat, Location, County, Prov/State, Notes, Common Name, Family, French name,
Phenology, Rare latitude, Rare longitude, Rare location, CDC status and Synonyms.

The above example contains missing values, which are Latitude, Longitude, Collector(s),

17



fa A Specimen Label Data for the Connell Memorial Herbarium
Browse = \2’
& L _+ — E: f e
L§ynut.
UNBspecimenData -
View as:
_ L= FullName \Agropyron trachycaufum (Link) Malte var. trachycaulum
& }: EY Family Poaceae )
Synonyms Elymus trachycaulus ssp. novae-angliae
French Name _Ch\_e_ndent a tiges rudes
Record: 1= CommenName Dog couch grass, slender whetgrass, slender rye grass
Found Set: 40956 Q CDC Status N Only provided for the more rare $1-53 or SX species
) UNB Accession # 52686
o R 0050 Collector(s) Bishop, G.; Bell, G. Collector’s # GBO5-359
Unsorted Day 14 Month o ¥Yr 1995
———————— = Abundance Uncommon
Habitat Edge of coastal marsh
Location The Rocks Provincial Park
Latitude 45,82 ~ Longitude [ 64.575
gl
Prov/State NB
Notes
Phenology |
Please remember to Logout at the end of your session - Last update May 2 2011.
Figure  3.2: An  example database record from the UNB  Con-

nell  Memorial Herbarium  database  FileMaker version as  viewed  at
http://herbarium.biology.unb.ca/fmi/iwp/cgi [21].

Collector’s number, Abundance, Phenology, Rare latitude, Rare longitude, CDC status

and Synonyms.

Attributes are separated by commas and each attribute is surrounded by quatation marks.

The records can be uniquely recognized by their UNB accession numbers.

3.2 Transforming the collection

This section describes how we transformed the UNB Connell Memorial Herbarium database
records to a collection of web pages in the form required by the GSA crawler. Generally,
there are two parts in the transformation process. First, we set up a web server running on

the FCS network. Secondly, we wrote a program to realize database record transformation

18



to an HTML format suitable for GSA crawling.

3.2.1 Work station on FCS network

Web servers are used to serve web pages requested by client computers. Clients typically
request and view web pages using web browsers such as Firefox, Opera, or Mozilla.
Apache is the most commonly used Web Server on Linux systems. The goal of Apache is
to provide a secure, efficient and extensible server that provides HT'TP services in sync
with current HTTP standards. The Apache HTTP server is called “httpd”, where the “d”

stands for daemon. Apache’s http server is a project of The Apache Software Foundation

2].

Under CentOS Linux, we first installed the httpd package using yum install httpd.
Then the httpd RPM package was invoked and the /etc/init.d/httpd script was
installed. We can set the environmental variables in the configuration file for the httpd
service, which can be accessed using the vim /etc/sysconfig/httpd command, and in
the init script, which can be accessed by the command vim /etc/init.d/httpd. In our
case, we only checked that the port number was correctly set to port 80, and that the paths
were set correctly. They were all correct on installation so no actual changes were made.
After installing and initializing, we can get access to the /etc/init.d/httpd script by
using the /sbin/service command. To start the httpd server, we used /sbin/service
httpd start. Command /sbin/service httpd stop is used to stop the web server and
/sbin/service httpd restart is used to restart the web server. To reload the server
configuration file, the command /sbin/service httpd reload is run when logged in as

root.

The URL of the installed web server is decided by the machine’s IP address. For example,

19



if the IP address is 131.202.243.11, then the web server URL address is:
http://131.202.243.11/

The content you want to show on the web server is placed under subdirectory
/var/www/html/ on the machine running the web server httpd. People can get access
to these contents through the URL directly by typing, e.g. http://131.202.243.11. In our

case, we created a subdirectory /test under /var/www/html as shown in Figure 3.3:

http://131.202.243.11/

l

test

testCollection HerbariumDatabase AcadiensisCollection style ...

Figure 3.3: The tree structure under the directory http://131.202.243.11.

3.2.2 Transform database records

We used a Java program to read database records, recognize attributes, and write each
record to a separate .htm file with the correct format. The generated web pages are

uniquely named by their UNB accession numbers.

For the field “French name”, the original records are encoded using IBM PC Extended
ASCII, or MS-DOS code page 437 character set, which is the character set of the original
IBM PC [5]. To determine that the code page used in the Connell Memorial Herbarium
database was this version of IBM PC Extended ASCII, we viewed the hexadecimal

code used to represent French characters such as a, é, 6 and ¢ using the Emacs editor.

b1
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Note that the .csv file French characters are different from the UTF-8 version stored
in the FileMaker database. We know this as we can view the database contents in a

web browser (see e.g. Figure 3.2), and find the hexadecimal value of the displayed character.

Figure 3.4 is the IBM PC Extended ASCII table. In web browsers, the most widely used
Extended ASCII standard is ISO-8859-1. The Extended ASCII table for ISO-8859-1 is

shown in Figure 3.5 [13].

s P ~ s = A e -~ 3 - -~ H -]

c i é a a a a = é é e i i i A A
8- 0oc7 00FC 00E9 00E2 00E4 00E0 00E5 00E7 00EA 00EB 00E8 00EF 00EE 00EC 00c4 00cs
128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143

9= 00C9 00E6 0oce 00F4 00F6 00F2 00FB 00F9 00FF 00D6 00DC 00A2 00A3 00A5 20A7 0192
144 145 i46 147 148 149 150 151 152 153 i54 155 156 157 158 159

A- 00EL 00F3 00FA 00F1 00D1 00aA 00BA 00BF 2310 00AC 00BD 00BC 00A1 00AB 00BB

i62 163 164 165 166 167 168 169 i70 171 172 173 174 175

B- 2591

2593 2502 2524 2561 2562 2556 2555 2563 2551 2557 255D 255C 255B 2510

176 178 179 180 181 182 183 184 185 186 187 188 189 190 191

L |_ _ _|_ |= ||_ L AL L — I L

T IF r r = r =

[ 2514 2534 252¢ 251C 2500 253C 255E 255F 2554 2554 2569 2566 2560 2550 256C 2567

192 193 i94 195 196 197 198 199 200 201 202 203 204 205 206 207

D- 2568 2564 2565 2559 2558 2552 2553 256B 256A 2518 250C 2588 2584 258C 2590 2580
208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223

E- | 0381 | oobF | 0393 | 03co | 03a3  03c3 0085 | 03c4 | 036 | 0398 | 03A9 | 03B4 | 221E  03C6 | 03BS | 2229
224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239
= + > < [ J + = © . . Vv n 2 | | NBSP

| 2261 00B1 2265 2264 2320 2321 00F7 2248 00B0 2219 00B7 221A 207F 00B2 25A0 00A0
240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255

= o § -2 =3 -4 =5 -6 =7 -8 -9 -A -B -C =D -E -F

Figure 3.4: IBM PC Extended ASCII Set code page 437, character 8016 (128) through
FFig (255) [5].

In order to display French names in the correct form, we first built a one-to-one trans-
formation table for the two Extended ASCII standards. For each record, we encode the
string in field “French Name” using the getBytes() function of String class in Java, get a
sequence of bytes using the IBM PC charset, store the result into a new byte array , then

perform lookup in the transformation table and retrieve the corresponding ISO-8859-1

21



NBSP i (e £ o] ¥ I § - © a2 « - SHY ® B
A- | 00A0 | 00A1 | 00A2 | 0OA3  OOA4  OOA5  OOA6 | O0OA7 | O0OA8 | 00AY | OOAA | O0OAB | OOAC  OOAD  OOAE | OOAF
160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175

-3 + 2 3 - ;U T . 1 o » L‘{ 15 ;:i é
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D- 00D0 00D1 00D2 00D3 00D4 00D5 00D6 00D7 00D8 00D9 00DA 00DB oopc 00DD 00DE 00DF
208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223

E- 00E0 00E1 00E2 00E3 00E4 00E5 00E6 00E7 00E8 00E9 00EA 00EB 00EC 00ED 00EE 00EF
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Figure 3.5: Extended ASCII table for ISO-8859-1 standard, character 8054 (128) through
FFyg (255) [13].

codes. Finally, we construct a new string using the constructor String(bytel[] bytes,
String charsetName) of class String by decoding the specified array of bytes using the
ISO-8859-1 character set and generate the French name which can be recognized by

HTML. The architecture for the entire java program is shown in Figure 3.6.

The generated web page 52686.htm with UNB accession number 52686 is shown in Fig-
ure 3.7. The time to transform all 40,791 records by the transform.java program was 11.8

seconds.

3.2.3 Adding Spatial Information to the Records

For records in Herbarium database that have latitude and longitude pairs (¢, A) associated,

we can directly use (¢, \) pairs in spatial indexing. For those ones that do not have (¢, \)
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IBM PC Extended I1S0-8859-1
ASClI Table Extended ASClI Table

InitialTransformTable()
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String[] Synonyms 24 _
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- ReadFile()

- TransformFrench() L]
- WriteFile()

Figure 3.6: Architecture of the Transformer.java program which is used to transform
database records to required web pages.

pairs but have locations related, we can acquire the corresponding (¢, A) pairs using a
Google Map API. If neither of the (¢, ) pair and location exist, we can add polygon

information according to their county or province as spatial information.

3.2.3.1 Adding locations to the records

For the records that have specific locations related to them, such as “Mary-land Road,
College Hill, Fredericton, NB”, the Google Map API for web services provides us a way to
convert those locations into geographic coordinates, such as a latitude and longitude pair
(¢, A). The process of this conversion is called Geocoding. The Google Geocoding API

provides a direct way to access a geocoder via an HTTP request [8]. A Geocoding API
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Specimen Label Data for the Connell Memorial Herbarium

UNB Accession Number: 52686

FullNameAgropyron trachycaulum (Link) Malte var. trachycaulum
FamilyPoaceae
SynonymsElymus trachycaulus ssp. novae-angliae
French NameChiendent & tiges rudes
CommonNameDog couch grass, slender whetgrass, slender rye grass
CDC Status
Collector(s) Bishop, G.; Bell, G.
Basic Information Collector(s) NumberGB35-359
Day14
Month9
Year1995
AbundanceUncommon
HabitatEdge of coastal marsh
Notes
Phenology
LocationThe Rocks Provincial Park
Latitude45.82
Spatial Information Longitude-64.575
CountyAlbert
Prov/StateNB

Figure 3.7: An example of a generated web page 52686.htm.

request is in the following form:
http://maps.google.com/maps/geo?address&outputékey

where address is a string containing the text stored in the Location, County and
Prov/State fields ( comma separated ) of a record, output can be one of three formats:
JSON (JavaScript Object Notation), XML, or CSV ( comma separated values ), and key is a
text string used when authenticating for paying users (i.e. users with >2,500 geolocation
requests per day). All parameters are separated by the ampersand (&) character. After
sending an HTTP request, the Geocoding response is returned in the format indicated
by output; we used CSV for this research. Then we can analyze the output and get the
corresponding latitude and longitude pair (¢, A). In some cases, the Google Geocoding API
returns “error”. In “error” cases, we describe the location using a polygon corresponding

to the County or Prov/State field.
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3.2.3.2 Adding polygons to the records

After the above processing, some records do not has an address that provides a (¢, \)
position. For these records, we add polygons based on their County or Prov/State fields.
The geographic data describing county and N.B. province boundaries was downloaded
from SNB Geographic Data & Maps [19] . The downloaded data is in ESRI Shapefile
(.shp) format, which we transformed to common text file (.txt) format using the Shapefile
API from a Shapefile C library [18]. The output polygon descriptions include a pair of

points p; and py that define the bounding box of all points defining the polygon.

The transformed data is in the N.B. Stereographic Double projection with the following

parameters:

Reference System: North American Datum 1983 (CSRS)
False Northing: 7,500,000

False Easting: 2,500,000

Latitude of Origin: 46.5

Central Meridian: -66.5

Scalefactor: 0.999912

Units: Meters

In our indexing scheme, the spatial data are represented by latitude and longitude, so we
need to convert the Stereographic Double (z,y) (East, North) coordinates into the corre-
sponding geographic coordinates. The projection can be done using the ArcGIS engine,
which is a geographic information system (GIS) for working with maps and geographic
information [4]. Figure 3.8 shows the user interface for projection in ArcCatalog as we

invoked it.

We invoked this process on a total of 15 county boundaries and one province boundary.
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Figure 3.8: The user interface for projection in ArcCatalog as used for transforming N.B.
Stereographic Double projection coordinates to (¢, \) pairs.

The input is the original Shapefile using the N.B. Stereographic Double projection
coordinate system. The output file is a Shapefile containing (¢, \) geographic coordinate
pairs as spatial components. Note that the NAD 1983 CSRS reference frame was used as
output as most of the records were collected prior to the existence of GPS and the 1984

Geodetic Reference System (GRS84) [24].

3.2.3.3 Polygon Simplification

In the output Shapefile, each polygon can be represented by thousands of (¢, \) pairs,
which is too large to directly use in our indexing. It is helpful to simplify the polygons
before we start to index the data. There is a famous polyline simplification algorithm
independently developed in 1972 by Urs Ramer [43] and by David Douglas and Thomas

Peucker in 1973 [29] for reducing the number of points in a curve that is approximated by
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a series of points. Assume that the input is a polyline L represented by an ordered set of

w points and a tolerance e. The algorithm proceeds as follows:
1. Connect the start point and the end point of L using a line segment S.

2. Compute the perpendicular offsets of all points in L from S, and mark the point M

with the greatest offset O.

3. If O < ¢, then S is considered adequate to represent all the points between the
start point and the end point in a simplified form. Otherwise, L is divided into two

polylines L; and L, at point O.

4. The algorithm then recursively repeats this process for the two parts L; and L,, from

the start point to O, and from O to the end point.

Figure 3.9 shows an example of how the Ramer-Douglas—Peucker (RDP) algorithm works

for a piecewise linear curve.

4 L J .

Figure 3.9: An example of how the Ramer—Douglas—Peucker algorithm works for a piece-
wise linear curve [7].
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We can use a similar way to RDP algorithm to reduce the number of (¢, A) pairs describing
a polygon, which in turn reduces the space required for representing a polygon in our
index. Our requirements for a polygon simplification algorithm are different from the RDP

algorithm in the following aspects:

1. The RDP algorithm is designed for polylines and paths, so it requires its input ordered
point set to have a distinct start point and end point, while the start and end points

for a polygon are the same point geometrically.

2. For the RDP algorithm, € is an input parameter, and a larger ¢ value increases
the number of points removed from the original polyline. For I/O-efficient polygon
simplification, the overriding concern is that each simplified polygon fits on one disk
block. As original polygons have widely varying numbers of points defining them, €

cannot be used as an input parameter.

3. For I/O-efficiency, we require that approximately the same number of points are used
to represent each simplified polygon. This permits each simplified polygon to fit on
one disk block. We assume at most wg points can fit on one disk block. So instead
of €, the input parameter wg is used to control the number of points describing a

simplified polygon.

To use the RDP algorithm for I/O-efficient polygon simplification, we have modified the
RDP algorithm. The polygon simplification algorithm PackPolygon shown in Algorithm
3.1 is a significant modification of the RDP algorithm. Note that we compute the offset
properly using the great-circle distance [11]. For all the polygons P that have more than
wp points, PackPolygon returns a simplified polygon, containing exactly wpg points; if P

has less than wp points, the simplified polygon P’ is exactly the input polygon P.
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Algorithm 3.1: PackPolygon (point| | P, int wg)

N

N o o0k W

Input:

point[ | P: the input polygon describing by an ordered point set;
int wg: the maximum number of points fitting on one disk block;
Output:

point[ | P’: the simplified polygon containing wg or fewer points ;
if |P| < wp then
L P' < P ;return P ;
Vector Penosen, Soffsets Sinder; itially empty ;
Append 0 to Pchosen; Append |P| —1to Pchosen ;
int I,,,, < —1; double D, + 0 ;
forall the points in P between 0 and |P| — 1 do
Inaz < index of the point having the biggest great circle distance to P[0] ;
L Do < distance ( P[0], P[lnaz]) ;

Append ]mam to Sindex; append Dmaz to Soffset )

9 Int IChOSETL) ]insert7 Isy Ie ;

10
11
12
13
14
15
16

17
18

19
20
21
22

23
24
25

26
27

28
29

30

while |P.osen| < wp do
Ichosen — _17 [insert +— -1 )
int index <— the index of the maximum element in Sy fse ;
Ichosen — Sindex [anex} ;
for int i < 0 to |P.posen| — 1 do
if Pchosen [Z] < Ichosen & Ichosen < Pchosen [Z + ]-] then
L Insert I.posen t0 Peposen at position ¢ + 1; Lisere <— ¢ break ;

Sof fset-removeElement At (1insert); Sindes-remove Element At(1insert) ;
for int © < I;peert tO Lipgers + 1 do

// 1% time = left side; 2" time = right side

Is — Pchosen[i]y Ie — Pchosen[i + 1] )

if I, ==1,+1 then

Insert 0.0 to Syffser at position ¢ ;

Insert —1 to Sjnger at position 7 ;

else
forall the points in P between I, and I, do

I1y0: < the index of the point having the biggest great circle distance
L Doz to the circle from P[I] to P[I.];

Insert D0z t0 Soffser at position @ ;
Insert 1,40 10 Sindes at position i ;

for inti<+ 0towp—1do
L P/[Z] — P[Pchosen[i]] ;

return P’ ;
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We use the vector Py, to maintain the indices of chosen points of the simplified polygon.
The vectors Sy fset and Sipges store information of segments defining by the adjacent points

in P.posen- As we can see from Algorithm 3.1, the PackPolygon has the following steps:

1. Initially, we add the indices of the first and last points, which are 0 and |P| — 1, to
the vector P.posen, as we can see at line 4. For input polygon P, we assume these two
points are the same point geometrically. At lines 6 to 7, we compute the distances
from all the other points to P[0], recording the index I, of the point with the
biggest distance D4, to P[0]. At line 8, we add D4, to the vector Sy sset, and add

10 to the vector S;ndex-

2. Within all the elements in S, ts, we find the biggest one, and record its index as
index at line 12. Then we get the value of the element at position index in vector
Sindex » Which is recorded as I posen at line 13. I posen is the index in P of the point
we choose to add to P.jsen in this loop. In lines 14 to 16, we insert I .nosen 10 Peposen
at the right position, so that P.,.sen can be kept as an ordered point set. In P.osen,
the index of the element right before I posen is recorded as Ijsert, SO Leposen is inserted
between elements Peposen|linsert] a0d Peposen|[Linsert +2]. For easy description, we mark

Pchosen [Iinsert] and Pchasen [Iinsert + 2] as IL and IR~

3. At line 17, we remove the element at position Ijse in vectors Syrrser and Sindes,
since the segment between I, and Iy is replaced by two new segments S; and S,

where S, is from I, t0 I posen, and Sg is from I .p5en t0 Ig.

4. In the original point set P, for the points between I and I.pesen (left side), we
compute the perpendicular offsets from them to the segment Sp, and record the
index of the point having the biggest offset D,,qp as Inee- Since segment Sy, is the

Linsersth segment in Pposen, 50 we insert Dypqp t0 Sofpser at position Lisers, and add
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P! P2
Py
(a) The original polygon (b) The simplified polygon with wg = 5.

Figure 3.10: An example of the PackPolygon algorithm with the input polygon P contain-
ing 6 points and wg = 5.
Lnaz t0 Sinder at position Ij,e. For those points between I pose, and Ig (right side),
we compute their perpendicular offsets to the segment Sg, recording the index I,
of the point with the biggest offset D,,q,. Then we add Dypqp and Ipaq 10 Sofpser and
Sinder at position I;,ses + 1, respectively. This step is completed by the pseudocode

between lines 18 and 27, using a for loop from I;j,sert t0 Linsers + 1, i.€. execute twice.

5. If the number of points in Pejyse, is more than wpg, we go back to step 2 (line 11)

and repeat, until we get wp points in P.posen-

Figure 3.10 (a) shows a simple example illustrating how PackPolygon works. In this
example, the original polygon has 6 points, so we have P = {po, p1, pa2, P3, D1, P5 }- Assuming

wp = b, the PackPolygon algorithm proceeds as follows:

1. Initially, we add the indices of py and ps, which are 0 and 5 to the P, g, vector.
Within all the other points, py has the maximum distance dy; to py, so we append
do.1 to Soffset, and append the index of py, which is 2 to Sipger. After initialization,
we have Poposen = {0,5}, Sorfset = {do1}, Sindex = {2} and |Peposen| = 2. Here we

use the notation d; ; to indicate the maximum distance computed at ¢ times through
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the while loop at line 10. Subscript j indicates the count (1 or 2) of iterations in the
for loop at line 18. Initially, do; is computed as D,,q, outside the while loop at line

7.

. The algorithm enters the while loop. The maximum element in S,ftser nOW is do 1,
stored as Syrrset[0]. We next get the element at position 0 in Sjpges, which is 2. In
the for loop at lines 14 to 16, the index 2 is next inserted into the vector P.posen
between 0 and 5. So now we have P.osen = {0,2,5}, and Ljsere = 0. At line 17, we
remove the element at position 0 in Sjpge; and Syfrser, leaving both as ). For point
p1 (which is P[1] in the PackPolygon algorithm), we compute (for loop at lines 24
and 25) its distance D,,q, to the segment Pops, getting the maximum distance d; ;
and the index 1 of the corresponding point p;. We insert dj 1 to Syfsser at line 26 and
1 t0 Sindes at line 27 at position 0, making S,frser = {d11} and Sipges = {1}. For the
274 time through the for loop at line 18, we compute the distances of points ps and py
to segment Dyps, getting the maximum offset d; » and the index of the corresponding
point, which is 4. We then insert dio and 4 to Soffser and Sipger at position 1,
respectively. After the first time through the while loop, we have: P.osen = {0,2,5},

Soffset - {dLla d1,2}> Sindez = {L 4} and |Pchosen| =3.

. In the second iteration of the while loop, the maximum element in Syf s is di 1, the
index of which is 0. At line 13, the index I o5, Of the maximum distance point is
Sindez[0] = 1. We insert 1 t0 P.ppsen between elements 0 and 2, and I;,se-+ becomes 0
(line 16). We next remove the element at position 0 in Sipger and S,fser. Since the
points py, p1 and p, are adjacent in P, we insert 0.0 to S,¢fse+ at position 0 and 1,
and insert —1 to Sj,4e. at position 0 and 1. After the second iteration through the
while loop, we have : Puosen = {0,1,2,5}, Sorfset = {0,0,d12}, Singes = {—1,—1,4}

and | Peposen| = 4.
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4. In the third while loop iteration, the maximum element in Soffse is di 2 With corre-
sponding index 2. The index I ppsen Of this maximum offset point is Sinae.[2] = 4.
We insert 4 to P.josen between elements 2 and 5, and I;,s.+ becomes 2. We remove
the element at position 2 in Soffser and Sipges. For point ps, the only one left be-
tween p, and py4, we compute its distance dg; to the segment pops. We insert dy; to
Soffset at position 2, and insert 3 to Sipge, at position 2. Since py and p; are adja-
cent, we insert 0.0 to Spyffset, and —1 to Sipger at position 3, respectively. After the
third while loop iteration, we have: Puosen = {0,1,2,4,5}, Sprrset = {0,0,da1,0},
Sindez = {—1,—1,3, —1} and |Poposen| = 5.

5. Now we have |P.psen| = 5 which is equal to wg, so the algorithm ends, and the
simplified polygon P’ = {po,p1, p2, p4, 05} is returned. The simplified polygon is
shown in Figure 3.10 (b).

In this way, we just add one more point to the chosen point set in each while loop
iteration. In the ky, loop, there are k£ + 2 points in the chosen point set, and the polygon
has been broken into k + 1 segments. In the while loop, we just need to recompute the
offsets of points in P that have an index between I, and I.posen, and between I.osen and
Ir. Segment S is defined by two points having indices I, and I.posen. Segment Sy is

defined by two points having indices I o5, and Ig.

Lemma 3.2.1. Using the PackPolygon algorithm, the worst case time required to simplify
a simple polygon P containing w points into a polygon P’ containing wg points (w > wg)

is O(wpw).

Proof. For an input polygon having w points where w > wg, the algorithm stops when we
get wp points in the chosen point set. In the worst case, for points that have not yet been

added to the chosen point set, we select the left-most or right-most one to add each time.
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In the &y, loop, we need to recompute the offsets of all the left w — (k 4 2) points that are
not in the chosen point set. The time 7, for PackPolygon algorithm in the worst case can
be computed as following:

To=(w-=2)+(w-3)+-+(w—-(k+2)+ -+ (w—wp)
=(w=-2)+(w—=-3)+-+1—-[(w—wp—1)+ (w—wp —2)+ -+ +1]

(w=2)(w—2+41)  (w—wp—1)(w—wpg)
2 2

(w?—=3w+2)—(w?—2wp+1)wt+wp(wp+1))
2

=(wg—1w+1-—

2
wptwp

w2 w
=wpw + 1 — (w+ =2 + 4F)

So we have T, € O(wpw) O

If we treat wp as a constant, for different polygons, the worst case time efficiency is O(w).
An example of the worst case is shown in Figure 3.11 (a). Usually, the start point and
end point are the same point geometrically for a polygon, marked as P, in this example.
Assuming that B = 7, ¢; is used to indicate the 7;, point that is added to the chosen point
set. The start and end points are added to P,.j.se, in the initialization, which are marked
as ¢p and ¢;. We use o, to indicate the maximum offset in the vector Spyffse¢ in the jip
while loop iteration. After ¢y is added to P.posen, the remaining points are added on the

left side, which is the first worst-case scenario of Lemma 3.1.1.

Assume the points of a polygon are equally distributed along a circle, as shown in Figure
3.11 (b). For points that have equal offsets to their segments, we add the first one we
encounter to the chosen point set each time. In Figure 3.11 (b), ¢; indicates the iy, point
added to the chosen point set. For an input polygon having w equidistant points, the time

7. for the PackPolygon algorithm can be computed as following:
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(a) Worst case example. (b) Equidistant distributing example.

Figure 3.11: Two examples of the PackPolygon algorithm. Figure (a) shows the worst case
example. Figure (b) shows the example when the points are equally distributed along a
circle.

-3 -5 —1— 2k
Te = (w—2) + 255 ) +4( )+ + 2()
2

(wp—1) items in total

Initially, we add 2 points (start and end point ) to the chosen point set at one time.
Then in each while loop, we just add one more point in the chosen point set. When the
algorithm ends, we have exactly wp points in the chosen point set, so we have:
wg—1=20420 4224 ... 4214 ¢

where 2F-1 < ¢ < 2k

Assuming, without loss of generality, that k is the largest positive integer value
<log, wp — 1, we have:

To < (w—2) +2(%52) + 4(22) + - + 28 (=12
=(w—-1-1)+(w—-1-2)+(w—-1-2) 4+ 4 (w—1-2%)

=(k+D(w—-1)—1+2+22+---+2F
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_ok+1
= (k+1)(w—1) - 12
=(k+1)(w—-1)—2v" -1)
Thus, we have:

Te <logywp(w —1) — (wp — 1) € O(wlog, wp)

This proves the following lemma:

Lemma 3.2.2. For a simple polygon P containing w points that are equally distributed
along a circle, the time T, for simplifying it into a polygon P’ containing wg points (w >

wg) using the PackPolygon algorithm is O(w log, wp).

If we treat wp as a constant, then for polygons defined by a sequence of points distributed

equidistant along a circle, the time efficiency for the PackPolygon algorithm is O(w).

The complete polygon simplification algorithm is shown in Algorithm 3.2.

Algorithm 3.2: PolygonSimplification(point| | P)

Input:

point[ | P: an ordered point set for describing a polygon;
int wg: the maximum number of points fitting on one disk block;
Output:

point[ | P": an ordered point set for the simplified polygon ;
if Plength < wp then
L e="P
else
point| | Pspiftea < ShiftPolygon ( P ) ;
P’ < PackPolygon(Pspifted, WB) ;

N =

(S B NN

6 return P’ ;

Note that in PolygonSimplification algorithm, we call the procedure ShiftPolygon,
which is shown in Algorithm 3.3, before the procedure PackPolygon is called. In the

Algorithm ShiftPolygon, we first compute the distances between any two points in point
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set P, and find out the two points indexed by I,,in, Ime: that have the greatest distance
between them. Then we shift the points in P, letting it start from the point with the index
I'pnin. The shifted polygon is returned as Psp;ifieq- The shifted polygon is used as the input
of the PackPolygon algorithm. In doing so, we can guarantee that in the PackPolygon
algorithm, the point added to P, in the first while loop iteration has the maximum
distance to the start point P[0] among all the point pairs in P. This can, in turn, optimize

the simplified results of the PackPolygon algorithm in some cases, as illustrated below.

Algorithm 3.3: ShiftPolygon(point| | P)
Input:

point[ | P is an ordered point set for describing a polygon
Output:

point| | Pspiftea: int Ipin and int 1,4, are the indexes for the two points having the
greatest distance between them in P, Py, fieq is the shifted point set that contains
the same points as P, but starts from 1,,;,;

1 double max «+ 0;

2 int I, < —1, Ihee < —1;

3 for int i < 0 to P.length — 2 do

4 for int j <1+ 1 to P.length — 1 do

5 double dist < distance (P[i], P[j]) ;
6 if dist > max then

7 L max <— dist, Lyin < @, Lpae < J 3
8 for int m < 0 to P.length — I,,;, — 1 do

9 L Pipifrealt] < Pli + Inin) ;

10 for int i < Plength — I,,;, to P.length — 2 do
11 L Pshifted[i] < P[’L — Plength + Imm + 1] ;

12 Pypifrea| Plength — 1] <= Pypifieal0] ;
13 return Pypifieq ;

The example in Figure 3.12 shows the effect of the ShiftPolygon algorithm. The original
polygon P containing 11 points is shown in Figure 3.12 (a). Assuming that wp = 6, we

directly run the PackPolygon algorithm for the input P and wpg, as a result, the simplified
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polygon P’ = pg, p1, p3, P7, P, P10 is returned, which is shown in Figure 3.12 (b). In Figure
3.12 (a), o; indicates the maximum offset in the S, sse¢ vector in the iy, while loop iteration.
If we call the ShiftPolygon algorithm before PackPolygon, the resulted polygon Psp;fteq
is as shown in Figure 3.12 (c), in which py and pg consist the points pair that has the
maximum distance between them. We then call the PackPolygon procedure for Pyp;fteq
and wg, the resulted simplified polygon P! is shown in Figure 3.12 (d). As we can see,

comparing with P’, P! can better reflect the features of the original polygon P.

P; .
P,
Pol PoP
P oP1o P, P oP1o D,
(a) Theoriginal polygon P (b) The simplified polygon for P
P
P,
P
PoPry Ps PoPro Ps
(c) The original polygonP , .., (d) The simplified polygon for P shified

Figure 3.12: Example showing the effect of the ShiftPolygon algorithm with wp = 6.

Figure 3.13 shows the comparison of the polygon data before and after simplification for
counties of New Brunswick, Canada. The detailed comparisons for the area 1 and area 2

in Figure are shown in Figure 3.14 (a) and (b), respectively. These figures are generated
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Figure 3.13: The comparison of the polygon data before and after simplification for counties
of New Brunswick, Canada on Google Map. The map on the left side shows the original
polygon data, the map on the right side shows the corresponding simplified data with
wpg = 500.
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from the latitude and longitude values of county boundaries using the Google Maps API.

There are 15 county boundaries shown in Figure 3.13. Their corresponding county names,
the number of (¢, \) pairs in the original data, and the number of (¢, A\) pairs in the

simplified data are listed in Table 3.1. As we can see, using our PolygonSimplification

Table 3.1: The number of points for describing the county boundaries before and after the
PolygonSimplification algorithm.

Num of points Num of points
County name i .. o

in original polygon | in simplified polygon
Saint John 30412 500
Charlotte 2088 500
Sunbury 20158 500
Queens 1593 500
Kings 49404 500
Albert 38759 500
Westmorland 472 472
Kent 511 500
Northumberland | 44277 500
York 1133 500
Carleton 1902 500
Victoria 27756 500
Madawaska 454 454
Restigouche 13429 500
Gloucester 25774 500

algorithm, the number of (¢, ) pairs in the polygon data is significantly decreased, while
the important features for the polygons are well maintained. This, in turn, guarantees
the I/O-efficiency in our spatial indexing as each polygon definition is stored on one disk

block with wg = 500.
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(a) The detailed comparison for area 1 in Figure 3.10.

 wapclan casia sengle - memacd g Saiglie | o Lffup | Sateliie ||

(b) The detailed comparison for area 2 in Figure 3.10.

Figure 3.14: The comparison of the polygon data before and after simplification for the
area 1 and 2 in Figure 3.10. The map on the left side shows the original polygon data, the
map on the right side shows the corresponding simplified polygon data.
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(a) The original polygon (b) The simplified polygon with wg = 9.

Figure 3.15: An example of the PackPolygon algorithm with the input polygon P contain-
ing 10 points and wg = 9.

3.2.3.4 PackPolygon algorithm can give a non-simple polygon for an input sim-

ple polygon

For an input simple polygon, PackPolygon algorithm can return a non-simple polygon.

The following lemma is proven using an example.

Lemma 3.2.3. The PackPolygon algorithm can produce a non-simple polygon from an

wmput simple polygon.

Proof. An example is shown in Figure 3.15. Assume that the input polygon P contains
10 points, the (x,y) coordinates of which are: py(0, 1), pi(1,6), p2(3,3), p3(5,6), pa(5,4),
p5(6,7), ps(4,9), pr(10,5), ps(6,0) and po(0, 1). We use algorithm PackPolygon for P with
wp = 9. Initially, 0 and 9 are appended to P.posen. Since p; has the biggest distance 10.77
to po, we append 7 to Singe, and 10.77 to S,y rrsee. The changes of the vectors Prposen, Sof fset

and Sj,qge: in each while loop iteration are listed as follows:

Iteration 1

Point p; is chosen to add. Puposen = {0,7,9}, Sinder = {6, 8}, Soffser = {5.94,3.16}.
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Iteration 2
Point pg is chosen to add. Peposen = {0,6,7,9}, Singex = {4, —1,8}, Soffset =
{3.13,0, 3.16}.

Iteration 3
Point psg is chosen to add. Puposen = {0,6,7,8,9}, Sindex = {4, —1, =1, =1}, Soffset =
{3.13,0,0,0}.

Iteration 4
Point p4 is chosen to add. Puosen = {0,4,6,7,8,9}, Singee = {1,5,—1,—1,—1},
Sogpset = {3.77,1.56,0,0, 0}

Iteration 5
Point p; is chosen to add. Pepesen = {0,1,4,6,7,8,9}, Sindger = {—1,2,5,—1,—1,—1},
St peet = {0,1.79,1.56,0,0,0}.

Iteration 6
Point p, is chosen to add. Puosen = {0,1,2,4,6,7,8,9},
Sindez = {—1,—1,3,5,—1,—1, =1}, Sprsset = {0,0,1.79,1.56,0,0,0}.

Iteration 7
Point p3 is chosen to add. P.pesen = {0,1,2,3,4,6,7,8,9},
Sindex = {_17 _17 _17 _17 57 _17 _17 _1}7 Soffset = {07 07 07 OJ 1567 07 OJ 0}

Now |P.posen| = 9 is equal to wpg, so the algorithm stops. The output polygon P’ =
{po, p1, D2, P3, P4, D6, P7, Ps, Po} 18 shown in Figure 3.15 (b). As we can see, the resulting

polygon P’ is a non-simple polygon although the input polygon is a simple one. O

Figure 3.14 (a) also shows a non-simple polygon arising from a input simple polygon.
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The above example also applies to the RDP algorithm, from which we can observe the

following corollary:

Corollary 3.2.1. The Ramer-Douglas-Peucker algorithm can give a non-simple polyline

for an input simple polyline.

Proof. An example for Corollary 3.2.1 uses the polyline P, consisting of the points from
po to pr in Figure 3.15 (a). We use the RDP algorithm (see section 3.2.3.3) for the input
Pp and € = 1.6. The simplified polyline P; contains points po, pi1, p2, ps, P4, P and p7 ,

which is a non-simple polyline. O
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Chapter 4

Indexing

We used a suffix tree and a packed R* tree to realize the text + spatial search, as shown
in Figure 4.1. We index the full text of the .html web pages in the collection and generate
a suffix tree and its associated data structures. To generate an R* tree, if the latitude and
longitude pair (¢, \) exists, we index the spatial data by this; otherwise, we index by the
polygon of the county or province where the object is located. While building the packed
R* tree, an R* tree leaf node hash table is generated at the same time. The hash table

links the R*-tree with the suffix tree as explained in section 4.2.

4.1 Text Indexing

We use a suffix tree [22] for indexing English language text from a database. Figure 4.2
shows an example suffix tree for the phrase “the cat in the hat”. In the text index, we
first skip all the stop words, such as “the”, “a”, and “and”. The complete list of the stop
words is given in Appendix A. In this example, we will then get the compact phrase “cat
in hat”. After that, to speed up the text search, we index all the possible sub-phrases of

this compact phrase. In this example, we have 6 sub-phrases in total; they are: “cat”,
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Figure 4.1: The text 4 spatial indexing scheme using an R* tree and a suffix tree.

“cat in”, “cat in hat”, “in”, “in hat” and “hat”.

All sub-phrases are stored in the leaf nodes of our suffix tree. Figure 4.3 shows the structure

of a suffix tree leaf node.

4.1.1 Suffix tree Leaf Nodes

We use the data structure SuffixTrieDataObject to represent the data object stored in
the leaf, which contains a string for the corresponding sub-phrase, the integer value of the
document frequency and a vector of DocObjects in which the sub-phrase appears. The
document frequency is a counter of the total number of documents containing a specific
subphrase. DocObject is a data structure that indicates the relationship between the
stored sub-phrase and a document containing this sub-phrase. A DocObject consists of
the text of the subphrase, the primary key (e.g. record number) for the document and
the termFrequency, defined as the count of the number of times the text shows up in this
document. The Primary Key is a string containing the database record accession number.

The complete text for each indexed document is stored in a text array as discussed next.
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catin hat

Leaf node Internal node O

Figure 4.2: An example suffix tree.

4.1.2 Constructing a suffix tree

We implement the Patricia trie template class from [31] for constructing a suffix tree.
Figure 4.4 shows the sequence diagram for the suffix tree constructor. To build the suffix
tree, we first get the stop words list. In computing, stop words are words which are
filtered out prior to, or after, processing of natural language data (text) [42]. The English
stopwords list is obtained from [6]. Then the program gets the document input from the
input file via getDocInput (input file), where the input _file is a .csv file as described
in section 3.1, and generates a list of document contents. Each document’s text is stored

in one element of the doc_text_array. The suffix tree is built afterwards.

For each entry of the doc_text_array, there are 22 fields as described in section 3.1, and
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SuffixTrieDataObject DocObject

suffix : String suffix ; String
documentFrequency : Integer primaryKey : String
listOfDocObject : vector<DocObject> termFrequency : Integer

Figure 4.3: The structure of a suffix tree leaf node.

each field contains multiple phrases. We first transform each character in one document
text to lower case using convertToLower (str_doc). The complete text for one document
is then split into 22 fields by the function getSingleField(str_doc) using the ","
as a field separator. For each field, we get single phrases by splitting the fields with
separators“;”, “” and “,” using getSinglePhrase(str_field). For each phrase, we then
remove the punctuation such as “&”, “\”, “” and parentheses to arrive at a compact
phrase. Then we get a list of single words using getSingleWord(str_compact_phrase)
by separating the compact phrase by spaces. The function getAllSubphrases will then
generate a list of all possible subphrases consisting of the single words. In the inner loop,
if the subphrase contains only one word, the program will check if the word is in the

stopwords list first; if it is, this single word will not be inserted to the suffix tree. We then

insert all the other subphrases to the suffix tree.

Here we show an example of constructing a suffix tree . An example Herbarium database
record is as follows:

"283"," Prenanthes trifoliolata (Cass.) Fern. ","45.9635895","-66.6431151" " Taylor,
ARA"™",

"147 79" "1946" """ roadside of woodlot”,"” Fredericton”,” York™,” NB" """ Gall-of-the-earth”,

non "non

" Asteraceae”,” Pattes d'oie”,

"m o NN "o onn

Specimen has Fruit but no Flowers”,”",”" " Fredericton”,"",
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SuffixTrie()

T
L

getStopWords
(stopwords_list)

buildSuffixTrie
(doc_text_array)

loop

getDocInput
(input_file)

L.
.l

buildSuffixTrie
(doc_text_array)

---
A

Figure 4.4: The sequence diagram for constructing a suffix tree.
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for each record

convertTolLower(str_doc)

‘getSingIeFieId[str_duc)

i

-

loop

for each field

getSinglePhrase(str_field)

[

loop

for each phrase

removePunct{str_phrase)

i

«
getSingleword(str_compact_phrase)

i

]

.
getallSubphrases(all_single_words)

d

-

loop

for each subphrase

alt

if is not stopword

suffixTrie.insert{subphrase)

=== TT
I
I
I

"Scirpus americanus auct. non Pers.; Scirpus pungens”

We take the last field as an example, the content of which is "scirpus americanus auct. non
pers.; scirpus pungens’ (the characters have been transformed to lower cases by

convertToLower). The field content is split into two phrases “scirpus americanus auct.

Y

non pers.’

and we generate the compact phrases “scirpus americanus auct non pers” and “scirpus
pungens”. For the phrase “scirpus americanus auct non pers”, we get the list of single

words by splitting it with spaces. The generated list is: "scripus”, "americanus”, "auct”,

49

and “scirpus pungens” first. The punctuation in the phrases are then removed,




"non”, "pers’. After that, the list of all possible subphrases is generated, which is:
"scripus”, "scirpus americanus”, "scirpus americanus auct”, "scirpus americanus auct non",
"scirpus americanus auct non pers.”, "americanus”, "americanus auct”, "americanus auct

noon noon

non”, "americanus auct non pers’, "auct”, "auct non”, "auct non pers’, "non ", " non pers",

" persn

Let A be the number of single words, there are always w

subphrases.

Since there is no single stopword in the list, we directly insert all of the subphrases in the
list to the suffix tree. For the second phrase “scirpus pungens”, we go through the same
process and get the three subphrases:

"scirpus ", "scirpus pungens’, " pungens”

There is no single stopword in the list, so we insert all three subphrases to the suffix tree.

4.1.3 Querying a Suffix Tree

Figure 4.5 shows the sequence diagram for a Q1 query Q(t), where t is the query
string. We first transfer the the query string to an all lower case query string, and
remove the punctuation in the string, obtaining a compact query string. The program
then invokes QlInternalSearch, which uses the compact query string as the input
parameter. The QlInternalSearch method first generates the subphrases list of the
compact query string, using the same method as described in subsection 4.1.2. For
each subphrase, we perform a tree look up, which will return a suffix tree data object if
this subphrase has been indexed. As shown in Figure 4.3, each suffix tree data object
contains an integer value of document frequency and a vector of DocObjects. Since one
DocObject can show up in the query results of several different subphrases, we build

a reverse document-subphrases hashtable for each document as described in section 4.1.3.1.
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Q1Query(queryString) QiInternalSearch

T (compactQueryString)
| T
o allToLower(queryString) .
- |
lowerQueryString |_| —
removePunct{lowerQueryString) getQuerySubphrases(compactQueryStringl
~
compactQueryString f
- - - - - — P I List all_subphrases
- - - - - - - - -
QlinternalSearch(compactQueryString)
Ll
for each phrase .
loop | in all_subphrases suf‘flx_trle.search(currentPhrase)>
< SuffixTrieDataObject currentResult
Alt if currentResult is not null
loa for each DocObject in Generate reverse
P | currentResult document-subphrases hashtable
¢ |

for each item in
loop document-subphrases Compute the score for current_document
hashtable allReaults l
>
-
Addto Text_search_results
< |
Sort(Text_search_results)
< |

List of RankedTextSearchResult

generateReturnList(Text_search_results) o

»—
returnList | |
- — — - - - — o — - ———— - —

-
|
|
|
|
|

Figure 4.5: The sequence diagram for a Q1 query.

4.1.3.1 Reverse Document-Subphrases Hashtable

Figure 4.6 shows the structure for constructing the reverse document-subphrases
hashtable. The data object SubphraseResult contains the text of the corresponding sub-

phrase and the factors indicating the relationship between a document d and a subphrase b.
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SubphraseResult

allResults : map<primaryKey, vector<SubphraseResult>> subPhrase : String
Dt : Double

Ntd : Double

Ttd : Double

Figure 4.6: The data structure for constructing the reverse document-subphrases hashtable.

Dy, stands for the number of documents containing the specific subphrase b, i.e. the
documentFrequency in the corresponding SuffixTrieDataObject. The parameter Ty, is

defined as follows:

Tyq = +/termFrequency (4.1)

where termFrequency is the number of times the SubPhrase text appears in the docu-
ment (here called a record). N, encapsulates the length factor, defined as the square root
of the number of words in the subphrase b. These three factors are used to compute the
scores in the ranking process. Each generated SubphraseResult for a () query refers to a

specific document for which Dy, Nyg and Ty, are computed.

As shown in Figure 4.6, allResults is a hashtable that relates a specific document to
a vector of SubphraseResults by using the document primary keys as the hashtable
key value. While performing a Q1 query, when searching for a subphrase b, if we get a
non-empty SuffixTrieDataobject returned, it provides a list of DocObjects at the same

time. For each DocObject in the list, we then create a SubphraseResult object, and
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insert to the hashtable allResults.

Figure 4.7 shows an example of how to generate the reverse document-subphrases
hashtable. Assume that the tree structure is as shown in Figure 4.2. We now query
the suffix tree with the string “in hat”, ignoring the single stopword “in”. The Q1 query
now has two subphrases “in hat” and “hat” in the list of all_subphrases. Following the
path in the suffix tree, two nodes “in hat” and “hat” are found, with their corresponding
SuffixTrieDataObject returned as currentResult. The generated reverse document-
subphrases hashtable allResults is as shown is the Figure 4.7. For the DocObject dj,
we initially find there is no entry having the key value “33” in allResults. We create a
new vector containing only one SubphraseResult s; and add it to hashtable allResults.
We then search for the subphrase “hat” and get two DocObjects returned. For DocObject
ds, we look for the key value “33” in allResults, and find the key value already exists.
We then create a subphraseResult s; and insert to the corresponding vector. For the
DocObject d3, we find no entry with key value “65” exists in allResult, so we add a new

vector containing only one element s3 with the key value “65” to allResults.

4.1.3.2 Ranking text search results

After getting the document-subphrases hashtable for query Q(¢), we need to analyze the

data stored in the hashtable to get the final ranking.

We use the Lucene ranking algorithm [34] to compute the scores of text search results.
Apache Lucene [3] is an open source information retrieval (IR) software library, originally
created by Doug Cutting [14]. Tt is a technology suitable for nearly any application that
requires full-text search, especially cross-platform [3]. Lucene provides a scoring algorithm

to find the best matches to document queries, which ranks documents resulting from a

23



in hat hat

¥ ¥

SuffixTrieDataObject 1 SuffixTrieDataObject 2

suffix: in hat suffix: hat
documentFrequency: 1 documentFrequency: 2
listOfDocObject listOfDocObject
DocObject d1 DocObject d2 DocObject d3
suffix: in hat suffix: hat suffix: hat
primaryKey: 33 primaryKey: 33 primaryKey: 65
termFrequency: 2 termFrequency: 3 termFrequency: 2
Generate reverse document-subphrases hashtable
allResults

Key
value Vector Vector

subphraseResult s1 subphraseResult s2 subphraseResult s3
subPhrase: in hat subPhrase: hat subPhrase: hat

Dt: 1 Dt: 2 Dt: 2

Ntd: sqrt(2) Ntd: sqrt(1) Ntd: sqrt(1)
Ttd: sqrt(2) Ttd: sqrt(3) Ttd: sqrt(2)

Figure 4.7: An example of the generating of the reverse document-subphrases hashtable.

search query based on their content. The default scoring algorithm considers such factors
as the frequency of a particular query term within individual documents and the frequency
of the term in the total population of documents. The Lucene scoring algorithm considers
the rarity of a matched term within the global space of all terms for a given field. In other
words, if you match a term that is not very common in the data then this match is given

a higher score [15].
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We modified the Lucene ranking algorithm to adapt to our system. The original version can

be found in [34]. To illustrate Lucene’s scoring algorithm, we have definitions as follows:

Definition 4.1.1.

m: number of subphrases in the query string t
D: set of records in the indez, and n = |D|

b: a possible subphrase in the query string t

Dy: number of documents containing the specific subphrase b

Let R;; stand for the ranking score of query t for a document d, R,y is computed as follows:

Rig = CiaNy» (Thal} ByNya) (4.2)

vbet

The parameters influencing the score are as follows:

1. As described in 4.1.3.1, T}4 is computed as:

Tyq = /termFrequency (4.3)

Documents that have more occurrences of a given b receive a higher score.

2. I stands for inverse document frequency, which can be computed as:

I, =1+ log(

) (4.4)

Dy+1

where D, stands for the number of documents containing subphrase b, as described
in section 4.1. Rarer subphrases give a higher contribution to the total ranking score,

as I, > 1.5 and the term I? appears in equation (4.2).
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3. Cyq is a score factor based on how many of the subphrases in ¢ are found in the specific
document d. Typically, a document that contains more of the query’s subphrases will
receive a higher score than another document with fewer subphrases. C}4 is computed
as:

Myq

= — 4.
Ca - (4.5)

where my, is the total number of subphrases of query string ¢ found in a document

d.

4. B, is the user-specified boost factor on a subphrase b. In our system, we use the

default boost factor of 1.

5. N; is a normalizing factor used to make scores between queries comparable. This
factor does not affect document ranking (since all ranked documents are multiplied
by the same factor), but rather just attempts to make scores from different queries
(or even different indexes) comparable. The default computation of N; in Default-

Similarity is [16]:

1
N; = 4.
! sumOfSquared Weights (46)
The sum of squared weights is computed as:
sumOfSquaredWeights = B? Z (I, By)? (4.7)

allbint
B; is the boost factor for query ¢, the default value of which is 1.
6. Npq encapsulates two factors: document boost By and subphrase length normalization
Ly. By is the boost factor for document d. L, is computed in accordance with the

number of words in subphrase b, so the longer subphrases contribute more to the

score. The longer the matching subphrase is, the greater the matching document’s
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score will be. L, is implemented as follows:

Ly = VnumOfWords (4.8)

Npq is computed as follows:

Nyg = BaLy (4.9)

Assume that we use the default value 1 for all the boost factors, R;y can be computed as

follows:

1
td
Z%et([b)g \;et

In Figure 4.5, the loop on the bottom shows the ranking process. For each item in

m

Ry = (v/termFrequency 2 L) (4.10)

allResults, we first compute the score for the current document, then an object of
RankedTextSearchResult is created. The structure of RankedTextSearchResult is shown
in Figure 4.8, which contains the primary key of the document, the final score R;; and the

query string t. The RankedTextSearchResult for the current_document will then be

RankedTextSearchResult

primarykey : String
Rad : Double
gueryString : String

Figure 4.8: The data structure used in text search ranking process.

added to the list Text_search_results, which is a list of RankedTextSearchResult. Af-
ter all the matched documents are inserted to Text_search results, we sort this list by R4
and get the ranked list, which will be then returned to the process Qlquery(queryString).
As shown in Figure 4.5, Qlquery finally generates the returned list based on the ranked

Text_search_results.
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4.1.3.3 The Format for the Q1 Returned List

As shown in Figure 4.5, a Q1 query finally generates a returned list returnList based
on the sorted Text_search results. The returnList is a long string containing all the
information in the Text_search results that is useful for the user. Using sepF to stand
for field separator and sepN to stand for node separator, the format for the returnList
is shown as follows:

Q1: prkl sepF thlj sepN Prk2 sepF th% sepN ...

TV TV
Resultl Result2

For the text search result, each node corresponds to a RankedTextSearchResult (see
Figure 4.8). The prk and Ry, values indicate the values of the attributes primaryKey and
R4 in the corresponding RankedTextSearchResult, respectively. In the program, we use
“@Q@Q” as node separator and “;;;” as field separator. We do not use spaces, newline

characters or normal punctuation as separators because they might be part of the search

results.

4.2 Spatial Index Using Packed R* Tree

After adding locations to the records as explained in chapter 3, we will have two different
types of records: records that have (¢, \) locations describing them, and records that have
polygons related to them. For the records having specific locations, we first pack B points
in the smallest bounding box that encloses them, where B is the maximum number of
data points contained in one leaf node. Then we insert the generated bounding boxes with
associated B point data as leaf nodes into an R* tree. For the records having polygon
descriptions ( e.g. York County), we directly get the bounding box of the polygon, and

insert it together with the polygon data as a leaf node of the same R* tree.
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4.2.1 R* Tree Leaf Nodes

Figure 4.9 shows the data structures used in R* tree construction. We use struct

RStarDataObject
isPolygon . Boolean
packedPoints : DataPoint[ ]
polygon : DataPolygon
countyName : String

DataPoint DataPolygon
LatLngPair point : Integer countyName : String
primaryKeys . Vector<String> primaryKeys : Vector<String>

polygoninfo ; Vector<LatLngPair>

Figure 4.9: Data structures used in R* tree construction.

DataPoint to stand for point data in the records, each with a LatLngPair and a
list of primary keys of documents associated with it. The LatLngPair stores the
(¢, A) location of the point, the data type of which is a pair of double values. Struct
DataPolygon represents polygon objects, which contains a string of county name, a
list of primary keys of related documents and spatial data for corresponding polygons.

The spatial data for polygons is represented using a vector of LatLngPairs in the program.

We use the data structure RStarDataObject to represent the data object stored on the
R* leaf nodes. The Boolean flag isPolygon is used to differentiate leaf nodes storing

points from those storing polygons. If IsPolygon is true, the data object contains the
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name of the polygon and the associated spatial information for that polygon; otherwise,

it contains a list of B packed points.

4.2.2 Constructing an R* Tree

The library we use for constructing an R* tree is from [46]. Figure 4.10 shows the sequence

diagram for the R* tree constructor. Before building an R* tree, there are several data

RStarTree() getPaintsinput() readPointsRecords(input_file) getPolygonInput() InsertToRstar

r T ; ; (all_data_object)
L ! I | T
getPointsInput() a I I I
> readPointsRecords(input_file) ! |
> I I
| |
loop addPointData | |
(lat, Ing, PRkey) | |
for each line 2 ]| |
add to ! !
pointsRecordsHashTable : :
(—l | |
| |
i | |
- - - - — - allPoints _ | | |
packPoints(allPoints) ! readPoI.\,rgoanundaries |
all_packed_paints | | | (input.file) :
““““ « getPolygonInput() I |

L.
' = readPolygonRecords |
(input_file) |
|
all_polygons I !
e all_data_object
loo r_star_tree.insert
R (data_object)

e e .

Figure 4.10: The sequence diagram for constructing an R* tree.

structures created for later use, they are:

1 allDataObjects: a vector of RStarDataObject, which will be used to store all the R*

data objects.

2 allPoints: a hashtable from LatLngPairs to DataPoint objects.
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3 pointsRecordsHashTable: a hashtable from records’ primary keys to their correspond-
ing LatLngPairs. The key value only exists when the record has an associated point
data (¢, A) pair. This hashtable will be used in a Q2 type query for checking if a

record has point information in it.

4 nameOfCounties: an array of strings containing the names of the 15 counties in New

Brunswick, Canada.

5 polygonsData: an array of DataPolygons, which contains the polygon defining the
county boundaries for the 15 counties in New Brunswick, Canada, and the primary

keys of their associated records.

To build an R* tree, the constructor first invokes the process getPointsInput, which will
in turn invoke another process readPointsRecords (input_file). The method

readPointsRecords (input_file) obtains records line by line from input files that contain
records having associated (¢, A) pairs giving their locations. For each line, the program
retrieves the values of (¢, \) and primary key, which are used as input parameters of
the method addPointData(lat, 1lng, PRKey). The method addPointData(lat, lng,
PRKey) first checks if a point with this LatLngPair (¢, A) already exists in allPoints.
If the current LatLngPair already exists, the program will get the DataPoint object
pointed to by the LatLngPair, and add PRKey to the primary key list stored in the
corresponding DataPoint. Otherwise, the current LatLngPair appears for the first
time in the data, so we create a new DataPoint object containing only one primary
key, and add this LatLngPair, DataPoint pair to the allPoints hashtable. In each
loop of readPointsRecords(input file), the program will also add the primary
key, LatLngPair pair to the pointsRecordsHashTable for later use. At the end of

readPointsRecords, the hashtable allPoints is returned to getPointsInput.
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The process getPointsInput then invokes the method packPoints(allPoints), which
will pack every nearest B DataPoint objects into one RStarDataObject. The isPolygon
attributes of the generated RStarDataObjects are set to false, indicating that these

RStarDataObjects store point records. For each RStarDataObject, the nearest B points

are chosen as follows:
1 Sort allPoints by their latitude.

2 Pack the first point a; in the sorted list allPoints to a RStarDataObject object, then

remove point a; from allPoints.
3 Sort allPoints by their distances to a;.

4 Pack the first B — 1 points in allPoints to the same RStarDataObject, then remove

these points from allPoints.

The process will loop until the list al1Points is empty. The generated RStarDataObject

objects are returned to the R* tree constructor in the list all packed points.

After inserting the points records, the R* tree constructor invokes the process
getPolygonInput. The getPolygonInput first calls the method
readPolygonBoundaries (input_files), which will read the polygon boundary informa-
tion consisting of (¢, A) pairs for the 15 counties in New Brunswick, Canada. The input
file for the readPolygonBoundaries contains the (¢, \) pairs of the simplified polygon
boundaries as described in section 3.2.3.3. The obtained county boundaries are stored
in the array polygonsData as vectors of LatLngPairs, along with their corresponding
county names. The polygonsData array has 15 elements, each corresponding to a county

in New Brunswick, Canada.
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The getPolygonInput method invokes the method readPolygonRecords next, to get the
records line by line from input files that contain records having associated polygons. For
each record, the program retrieves its “County name” field, and checks if it matches the
county name of any entry in the polygonsData array. If there is a matched county name,
the program adds the primary key of this record to the primary key list of the matching
DataPolygon object in the polygonsData array. After inputting all the records having
polygons related, the 15 DataPolygon objects in polygonsData will have the primary
keys of all the records associated to their corresponding county stored in their primary key
lists. Finally, 15 RStarDataObject objects are created, with their isPolygon attributes
set to true. The objects in polygonsData are assigned to RStarDataObject objects as
their attributes polygon. The generated RStarDataObject objects are returned to the

R* tree constructor in the list all_polygons.

Now we have all the records along with their spatial information encapsulated as
RStarDataObject objects. The R* tree constructor combines the two lists

all packed_points and all _polygons as a new list all_data_objects, and uses it as the
input of the method InsertToRstar. For each RStarDataObject in all data objects,
InsertToRstar gets the bounding box of this RStarDataObject, and calls the process

r_star_tree.insert to insert all the RStarDataObject to the R* tree.

4.2.3 Querying an R* Tree

Figure 4.11 shows the sequence diagram for a Q3 query Q(p,r), where p is our interest
point and 7 is the radius. A Q3 query returns the ranked documents with their locations
falling within the circle of radius r centered at position p. To perform a Q3 query, the
Q3Query(p, r) first invokes Q3InternalSearch(p, r, L;, Ls), which returns two lists

L, and Lo of ranked results, with L; for point results, and Ly for polygon results. The
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Q3Query(p, r) Q3lInternalQuery(p, r)

1 |
-
Q3InternalSearch(interestPoint, raius)
Lists of ranked Q3_points_results L1
and Q3_polygon_results L2
- - - - - - - = - = - = ==
—
I
generateReturnList(L1, L2)
returnList
- - - - - - - = = = = - - -
—

Figure 4.11: The sequence diagram for a Q3 query.

Q3Query generates the returned list returnList based on L; and Ly, which is a long string
containing all the useful information in L; and Ls. The method Q3InternalSearch(p,

r, Ly, L) is shown in Algorithm 4.1.

As we can see from Algorithm 4.1, the lists L; and Ly are initially empty. The
bounding square bb defined by the circle Q(p,r) is first computed at line 2. The
r_star_tree.query(bb) method is then called, which returns two sets of query results: U
for point results and V for polygon results intersecting bb. Each element of U and V is an
RStarDataObject (see Figure 4.9). In the program, we use the visitor design pattern to
perform a range query in the R* tree, and keep two global lists U and V' to maintain the

results.

If a Q3 query has point results returned (i.e. |[U| > 1), the program goes into the for loop

at line 4. For each point record in U , the program first computes the geographic distance
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Algorithm 4.1: Q3InternalSearch (p, r, Ly, Ls)
Input:

Interest point p, radius r defining circle Q(p,r) ;
Output:

List of points L; and polygons L, intersecting Q(p, ) ;
Ly, and L, are empty lists ;
bb < square encompassing circle Q(p,r) ;
U,V « r_star_tree.query(bb) ;
for int i < 0 to |U| — 1 do
dist < ApproxDistance(U;,p) ; // geographic distance
if dist < r then
L L1+ L1+ U;;

N 0 ok W N

8 Sort L on dist ;
9 for int j < 0to |V|—1do

10 if p €V, then
// if p is inside V]
11 L2 = L2 + ‘/J )
12 else
// if p falls outside or on the boundary of Vj
13 dist <= minDist(V},p) ; // from p to polygon boundary
14 if dist < r then
15 L Ly= Lo+ Vj;

16 Sort Ly on dist ;
17 return L, L ;

dist (on the earth’s surface) from p to the current point U;. If dist < r, the current point
U; is added to the list L;. After checking all the points U; € S, L, is sorted on dist. If the
set V for polygon results is not empty, we enter the for loop from lines 9 to 15. For all the
polygon results V; € V, the program first checks if p is inside the polygon V;. If p is falling
within Vj, we set the distance dist to 0 and add the record to the list Ly. Otherwise,
the program computes the minimum distance dist from p to the polygon boundary of
Vj. If dist < r, the current record V; is then added to the list L,. The generated

list Ly is sorted on dist after adding all polygons in V' that intersect Q(q,r). Finally,

65



the lists Ly and Ly are returned to the process Q3Query by the method Q3InternalSearch.

The ranked results in the lists L; and Ly are maintained by the struct
RankedSpatialSearchResult, which is shown in Figure 4.12. The attributes score,
distance and primaryKeys are valid for both point and polygon results. Vector
primaryKeys stores the primary keys for records having the position indicated by
currentPoint (for L;) or county with countyName (for L,). For a point result ¢ € L,
attribute distance is the distance from point p to ¢‘s (¢, ) pair currentPoint. For
polygon result ¢ € Lo, distance is the distance from p to the nearest edge of the poly-
gon ['s boundary. The boolean attribute isPolygon indicates the result type for the
RankedSpatialSearchResult. Only one of LatLngPair or countyName is valid for each

RankedSpatialSearchResult.

RankedSpatialSearchResult

isPolygon : Boolean
primarykeys . vector<String>
countyMame - String
currentPoint: - LatLngPair
distance . Double

Figure 4.12: The data structure of the RankedSpatialSearchResult. Both L; and L, are
stored in the structure. For L; results, isPolygon = “false” and countyName = (). For L,
results, currentPoint = ().

4.2.3.1 The Format for the Q3 Returned List

As shown in Figure 4.11, The Q3Query(p, r) finally generates a returned list returnList
from the point results list L; and polygon results list Ls. The returnList is a long

string which contains all the information for a valid Q2 search result. The format for the
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returnlList is shown as follows:

Q2:PointResultsHeader### PointResultsCountents%%%PolygonResultsHeader ###PolygonReusltsCountents

As we can see, the query type “Q2” is separated by the “:” with the search result contents.
There are two parts in the search result contents: point search results consisting of
PointResultsHeader and PointResultsContents, and polygon search results consisting

of PolygonResultsHeader and PolygonResultsContents. The corresponding results

header and results contents are split by the separator " ###".

Assume that we use sepN, sepF and sepP to represent node separator, field separator and
primary key separator, respectively. The format for the PointReusltsCoutents is shown
as follows:

latl sepF Ingl sepk distl speF prkl sepP prk2 sepP ... sepN

primary keys
A o
Vv

Node 1
lat2 sepF Ing2 sepF dist2 speF Prkl sepP prk2 sepP .. 3 sepN

primary keys

N

~
Node 2

For the point search results, each node corresponds to a RankedSpatialSearchResult
(see Figure 4.12) having the isPolygon attribute set to false. The lat, Ing and dist fields
indicate the values of the attributes currentPoint and distance. All the primary keys
in the vector primaryKeys are encoded as one single field, in which every primary key is

separated using sepP. Similarly, the PolygonResultsContents are formatted as follows:

countyNamel sepF distl speF prkl sepP prk2 sepP ... sepN

primary keys
- -
TV

Node 1
countyName2 sepF dist2 speF prkl sepP prk2 sepP ... sepN

primary keys
A g

~
Node 2
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4.3 Combined Text and Spatial Query Q2

As explained in Section 1.3, a Q2 query Q2(t,r) returns the ranked list of records having
their locations intersecting a circular disk of radius r centered at the locations of the
records matching search string t. To perform a Q2(t,7) query, a text query Q1(¢) needs
to be performed first, which will return a set P of search results. We then perform a set
of Q3 point + radius queries for points P; € P, which will return all points and polygons

falling in range.

4.3.1 Data Structures for Maintaining Q2 Search Results

For the Q3 point results and Q3 polygon results, we have two types of results for a Q2
query, which are Q2 point results and Q2 polygon results. As an example of Q2 point
results, assume we have 4 points in a database as shown in Figure 4.13. In the example,
we search for Q2(t,r) = Q2(“Mc”, 0.5km). We first perform text search for Q1(“Mc”),
which returns two point results matching the text "Mc” in the list P, point A with the
text ”McDonald’s Restaurant” and point C with the text "McConell Hall”. The Q2 query
then searches for the points intersecting the disk of radius 0.5km centered at points A and
C, which then finds points B and D in range. In Figure 4.13 and Figure 4.14, we use L, to
represent Q3 point results and Ls to represent Q3 polygon results. In Figure 4.13, P;.L;
is the Q3 point results list centered at the first element in P, and Py.L; is the Q3 point

results list centered at the second element in P.

Assume we have 4 points A, B, C, D and 1 polygon E in a database, an example of Q2

polygon results is shown in Figure 4.14. In the example, we search for the text ¢ =“Mc”
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Shoppers Drug Mart Q2 Query(t, r) for

t= “MC”
B =
A/ r=0.5km

McDonald’s Restaurants

Text search result:
2={A C}
Q2 point results:

@0 ?.1,={B}
UNB Head Ha \c ? 1,={D}
McConnell Hall, UNB Q2 polygon results:

B.L={)
2.1,=0)

Figure 4.13: An example of a Q2 point results.

and radius r = 0.3km, which first returns points A and C as the text search results. We
then perform a search for the polygon intersecting the disk of radius 0.3km centered at A
and C. The Carleton county E is finally returned as the polygon result found in range. In
Figure 4.14, P;.L, is the Q3 polygon results list centered at the first element in P, and

Ps. Ly is the Q3 polygon results list centered at the second element in P.

E _wdg===============sss============= A
Carleton CW\\ \ Q2 Query(t, r) for
N oB L [t=Me
,
"\ Shoppers Drug_MaFt-—”"' r=0.3km

A@ Text search result:
McDonald’s Restaurants 2={A C}

Q2 point results:
P.L={

P,L = ¢

Q2 polygon results:
2 1,={E}
P,.1,={

eD
UNB Head Hall

Figure 4.14: An example of a Q2 polygon results.
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In Figure 4.14, assume that the distances from A to B and from D to C are both less than
0.6km. If we perform a Q2 query Q2(“Mc”, 0.6), we will get points B and D returned
as Q2 point results P;.L; = B, Py.L; = D, and polygon E returned as a Q2 polygon
result P;.Ly = E. The Q2 point results and Q2 polygon results are maintained by the

data structures TexSpaPointResult and TexSpaPolygonResult, respectively, as shown in

Figure 4.15.
TexSpaPointResult TexSpaPolygonResult
currentPoint : LatLngPair countyName: String
finalScore : Double finalScore : Double _ _
primaryKeys : Vector<String> primaryKeys : Vector<String> PrkDistPair
dist : Double texSearchPRKs : Vector<PrkDistPair> < primaryKey : String
texSearchPRK : String dist : Double

Figure 4.15: The data structures of the TexSpaPointResult and TexSpaPolygonResult.
These are denoted as r; and ro in Alg. 4.2.

In TexSpaPointResult, currentPoint is the LatLngPair that defines the location of
records with this (¢, A) matching the Q2 query. The attribute finalScore is the combined
text + spatial score for the result, as defined in equation 4.11. The list of primary keys
primaryKeys stores all records with this (¢, A\) pair within radius r of query point p
has the primary key texSearchPRK. Query point p is not recorded explicitly. For more
than one centering disk intersecting the (¢, \) pair, the attribute texSearchPRK is the
primary key of the nearest text search result that has a circular disk of radius r centered
at its location covering the currentPoint. The dist indicates the distance from the

currentPoint to the point associated with the record having texSearchPRK.

A TexSpaPolygonResult uses the countyName to identify its location. The
TexSpaPolygonResult also contains a finalScore and a list of primary keys of its

associated records. For a TexSpaPolygonResult, the vector texSearchPRKs of struct
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PrkDistPair contains all the primary keys of the text search results having the circular
disks of radius r centered at their locations intersecting the county boundary, along with
the nearest distances from their locations to the county boundary. The PrkDistPair is
a struct containing 2 attributes: a string primarykey and a distance dist. For a Q2
polygon result, a distance dist in the PrkDistPair of 0 means the location of the text

search result is inside the polygon or on the polygon boundary.

Figure 4.16 shows an example in which there is more than one disk arising from text
search results of a Q2 search intersecting a polygon. Assume that points A and B are
point records matching the text from a Q2 search. Both disks of radius r centered at A
and B intersect the polygon Charlotte County. The generated TexSpaPolygonResult P
is shown in Figure 4.16, which contains a PrkDistPair vector of length 2, for text search
results A and B, respectively. The primary key list prk_1ist_p contains all the records

without a (¢, \) pair (i.e. having only this county name describing their location).

4.3.2 Combined Score for the Text + Spatial Search

For the text ranking score R;; from a text result in P and distance dist obtained from the
Q3 point + radius search, the combined score finalScore of TexSpaSearch is computed
as follows:

th 7 dist

+ W, * COS(E—) (4.11)

finalS =W, ————
fraioeore tx ScoreMazx r

where W, is the weight for the text search and W is the weight for the spatial search,
with the further restriction that W, € [0,1], W, € [0,1] and W; + W = 1. By default,
W, and W; are both set to 0.5. ScoreMax is the maximum text ranking score returned
by the Q1 text search. Since QQ1(t) search returns a ranked list P of text search results,

we can obtain ScoreMaz as ScoreMax = Py.R(q,d) (see Figure 4.5), which means the
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Q2:(t, r) \

Charlotte County

RankedTextSearchResult A TexSpaPolygonResult P

primaryKey: prk_a countyName: Charlotte

Rtd: Rtd_a fianlScore: R_f

queryString: t primaryKeys: prk_list_p
texSearchPRKs

RankedTextSearchResult B J' *l'

primaryKey: prk_b PrkDistPair P_a PrkDistPair P_b

Rtd: Rtd_b primaryKey: prk_a primaryKey: prk_b

queryString: t dist: d1 dist: 0

Figure 4.16: An example of the TexSpaPolygonResult when there is more than one disk
arising from a Q2 text query intersecting a polygon. Rqd is the text score for a document
as defined by equation (4.10) and finalScore is defined by equation (4.11).

first result in the ranked list. For the text search score, we have =4 — ¢ [0,1]. For the

spatial search score, since only points and polygons having dist < r are returned, we have

cos(Z9t) € [0, 1], where dist € [0, 7] is inversely proportional to the spatial score.

4.3.3 Algorithm for Q2 query

Algorithm 4.2 shows the pseudo-code for a Q2 query Q(t,r), where t is the query string
and r is the radius. The query string t is first transferred to an all lower case query
string t_lower at line 4. Any punctuation is then removed to obtain a compact query
string t_compact at line 5. At line 6 of Algorithm 4.2, the Q2 search first performs a
QlInternalSearch Q(¢) to return a ranked list P of text search results. The Q1 process
is explained in Section 4.1.3. If the iy, record P; is a point record (i.e. not a polygon),

then we perform a search for other point or polygon records intersecting the disk of radius
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r centered at P; from lines 13 to 24.

For a RankedTextSearchResult (see Figure 4.8) P;, we first obtain the text ranking score
R;; and corresponding primary key textPrk at lines 9 and 10. We can then retrieve the
LatLngPair p associated with the text PRK in the R* tree using the

pointsRecordsHashTable, which is a hash table from records’ primary keys to their
corresponding LatLngPairs, as described in 4.2.2. List Ly is a list of LatLngPairs, which
stores the points that have already been used as inputs of the Q3InternalSearchs in the
entire Q2 query process. If p is not in L (p is first used as the input point in a Q3 point
+ radius search in the Q2 process), we perform a Q3InternalQuery(p,r), getting the

lists L for Q3 point results and Ly for Q3 polygon results.

R, and R, are empty lists for TexSpaPointResult and TexSpaPolygonResult initially.
At lines 17 and 22, Algorithm 4.2 first computes the combined score using the text score
R(q,d) and dist. The corresponding TexSpaPointResult r1 and TexSpaPolygonResult
r2 are then generated based on the text result P;, the Q3 internal search results L;[j] or
Ls[j], and the finalScore at lines 18 and 23, respectively. Algorithm 4.3 and 4.4 detail
these two result generation processes. Figure 4.15 illustrates the structure used to hold
rl and r2. The generated r1 and r2 results are added to the list Ry and R,, respectively.
Finally, we sort Ry and Ry on the finalScore at lines 25 and 26, and generate a return
list returnList based on the sorted R; and R, at line 27. The returnList is a long string
containing all the information in R; and Ry that is useful for the user. Figure 4.17 shows

the flow chart for Algorithm 4.2.

Assume we have 4 points A, B, C, D and 1 polygon E in a database, Figure 4.18 shows

an example for a Q2(¢, r) search with ¢ = “Mc” and r = 0.6 km. The Q2 query first
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Q2 Query(t, r) —_—
[t
QllInternalSearch(t)
2,i=0
|
v
Ifi<| 2|
no l\/es
returnList= i=i+1
generateReturnlList l
(R1,R2)
! IfP,is a no|
retum point record
returnList 1yes
Retrieve the (@, A) pair p
associated with 2;
Lp
Q3InternalQuery(p, r) L
pointresults T, polygonresults L,
within r of p within r of p
find points I; find polygons I,
Add Q2 pointresultstoR, ,

Q2 polygon resultstoR,

Figure 4.17: The flow chart for Algorithm 4.2.

invokes a Q1InternalQuery, which returns a list of RankedTextSearchResults containing
results A and C. We then perform a search for the points and polygons intersecting the
disk of radius 0.6 km centered at A and C. The TexSpaPointResults R;, Ry and the
TexSpaPolygonResult R, are finally returned as the Q2 search results. The primary key
vectors prk_list b, prk list d and prk_list_e store the primary keys of the records
associated with the point B, D and the polygon E in the R* tree, respectively. Primary
key lists are necessary as point records can have identical (¢, A) coordinates, and some

records have only a county name indicating their location (see section 3.2.3.2).

The format and processing for generating the returnList for Q2 query is similar to that
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Q2: (“Mc”, 0.6km)

E /‘-\ -------------------------------
Carleton County ,

A TR

McDonald’s Restaurants

D
\
C

McConnell Hall, UNB

TextSpa results:

TexSpaPointResult Rb

currentPoint: B
finalScore: f_b
primaryKeys: prk_list_b
dist: d1
textSearchPRK: prk_a

TexSpaPointResult Rd

currentPoint: D
finalScore: f_d
primaryKeys: prk_list d
dist: d2
textSearchPRK: prk_c

TexSpaPolygonResult Re

Text results:

countyName: Carleton
finalScore: f_e
primaryKeys: prk_list_e

textSearchPRKs: Pa

RankedTextSearchResult A

primaryKey: prk_a
Rtd: Rtd_a
queryString: “Mc”

primaryKey: prk_c
Rtd: Rtd_c¢
queryString: “Mc*

RankedTextSearchResult C

v

PrkDistPair Pa

primaryKey: prk_a
dist: d3

Figure 4.18: An example of a Q2(t, r) search with ¢ = “Mc¢” and r = 0.6 km.

shown in Section 4.2.3.1 (for Q3, spatial search) and 4.1.3.3 (for Q1, text search).

4.4 Web Server architecture

4.4.1 Server Side Architecture

We wrote a Java and C++ server called TexSpaSearch that provides a web user interface
for our search engine. The web server we used is Apache Tomcat. HTMLHandlerServlet is

the server side Java servlet that handles HTML requests. The server architecture is shown

in Figure 4.19.
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Text Search with Spatial Constraints Search Engine Search queries are sent to

HTMLHandlerServlet.java Submit form or
through HTTP request page number

Apache Tomcat
server

N

Search results are passed to
client by the object of Client
ResultClass for each session
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| TimeBean java |
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|__HTMLHandlerServlet.java Ié's """" "' --------------- F> Index.jsp 2
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returnList
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the ResultClass
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ResultClass.java |

Qtype

style.css

R

returnList query

TexSpaSearch.cpp

results

Suffix tre

R* tree

C++ side

Figure 4.19: Architecture diagram of the TexSpaSearch web application server.

Each time after a servlet is instantiated, a method init () is called exactly once to indicate
that the servlet is being placed into service [12]. We can change the servlet configuration
by editing the web.xml file. On lines 6-9 of web.xml, we set the tag load-on-startup to
be a non-zero value so that the init() method is called when the Servlet is started on
the Tomcat web server. If the load-on-startup tag is set to zero, init () is called when
the Servlet is created, which is appropriate on startup. Our preprocessed data is read
into a Java HashMap in the init () method, which guarantees that the reading process is
executed only once after the servlet is loaded (which means it does not execute every time

the user sends a request). Part of the configuration file web.xml for the servlet is shown
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in Figure 4.20.

o

<servlet>
<zservliet-name>HTMLHandlerServlet</serviet—name>
¢servliet-class>*HTMLHEandlerServlet</servliet-class>
<load-on-startup>2</load-on-starcup>

Figure 4.20: Lines 6-9 from web.xml file.

We use JSP (Java Server Pages) to implement the client page code. JSP allows Java code
to be interleaved with static web markup content, so we can define a ResultClass to
store the search results. It is very helpful to be able to associate some data with each
client in a web server. For this purpose, a session can be used in JSP. A session is an
object associated with a client. Data can be put in the session and retrieved from it, and
operates like a hash table. In our servlet, an object of ResultClass called finalResult
is used to store the search result for each session. The session can be obtained from the
HTTP request. Each client has a session with our server, so each client has their own
finalResult object. In this way the server can process queries for each client separately

without causing critical section issues.

In the JSP file index.jsp, we have an input form named inputForm. The action of
the form is HTMLHandlerServlet, with the submit button click sending HTTP POST
requests to the servlet. When clients click on the search button, index.jsp will first
check whether the user input is valid or not by calling validateForm() (longitudes and
latitudes must be in range). If the input is valid, the user query strings are sent to
HTMLHandlerServlet. The search queries are passed to HTMLHandlerServlet by the
doGet (request, response) method. The method doGet (request, response) will be

called when the Servlet receives an HT'TP GET request.
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When clients send requests via clicking the search button, HTMLHandlerServlet. java
creates a TCP socket connection to the TexSpaSearch C++ program through port 81.
The query strings and other parameters (e.g. radius, ¢, \) are maintained in the pa-
rameter request, which is of type HttpServletRequest. Qtype determines the query
type. In HTMLHandlerServlet, four String variables qString, radius, lat, lng are
defined to store user queries. The search request that is being sent out is Qtype + query.
HTMLHandlerServlet checks the query type first. The format of the query differs for the

three Qtypes, as follow:
1. If Qtype equals Q1, the query is formed with qString.
2. If Qtype equals Q2, the query is formed with qString and radius.
3. If Qtype equals Q3, the query is formed with lat, 1lng and radius.

The different fields in the search request are separated by the separator string “&&&”.

Figure 4.21 shows three example queries sent to the TCP Socket. The query requests are

Q1 query:  Ql&&&Carex MAgellanica
Q2 query:  Q2&&&Carex Magellanica&&&20

Q3 query: | Q2&&&51.39&&&-64.97&&&500

Figure 4.21: Three example queries sent to the TCP Socket.

sent to the TexSpaSearch C++ back end program via a socket connection through port 81.

The search results are returned by the TexSpaSearch program through the same socket
via a string recvMsg through the TCP socket. The exact content of RecvMsg for each
query type is explained in Section 4.2.3.1 and 4.1.3.3. We initialize finalResult after

receiving a long string returnList. In the constructor of ResultClass, we separate the
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long string into single results. For a Q1 search, each result corresponds to a record. For Q2
and Q3 search, each result corresponds to either a point or a polygon. All the separated
results are stored in the arrays q1FullResults (for Q1 search) or pointFullResults and
polygonFullResults (for Q2 and Q3 search). The size of the above arrays might be too
large to return to the client at once, so we only return the results to be displayed on the
current page. If the user sends the request by clicking the search button, the server returns
the results of the first page. If the user sends the request by clicking a page number, the

server returns the results of the requested page (see e.g. Figure 4.24).

A request is invoked by clicking the search button or a page number. Method
getResults() is called to interpret the corresponding entries of the results arrays
glFullResults,

pointFullResults and polygonFullResults based on the query type and the page
number. The interpreted results are stored in vectors qlCurrentResults (for a Q1

search), or pointCurrentResults and polygonCurrentResults (for Q2 and Q3 search).

The currentResults vectors contain the human readable search results meta information
such as the count of found records, URLs associated with the returned primary keys, and
the contents of pages of the URLs. A sequence diagram showing how the server and client

interact is shown in Figure 4.22.

4.4.2 Client Side Architecture

Before the server side returns any result, the welcome page index. jsp on the client side of
the HTMLHandler is shown in Figure 4.23. Once a Q1, Q2 or Q3 search is performed by the
user, the search results are displayed in the text field surrounded by the dashed line. On

the server side, the servlet stores the search results in the session object. The client page

79



Client

HTMLHandlerServlet

Submit HT ML form {Get),

Query request

generateHTML()

p—

TexSpaSearch

engine

R* tree
Suffix trie

doGet(request, response)
get query

Dynamically display search
results on index.jsp

TCP socket on port 81
via printin{)

»

—

query

search result

can be
invoked
multiple
times
for each

query

Send Get() request by
clicking @ page number

generateHTML()

doGet{request, response)

Dynamically display search
results on index.jgp

get query

Get results for
requested page

Figure 4.22: Sequence diagram of server and client interaction for the TexSpaSearch engine.

gets the result object clientResult from the session in the header of the index. jsp file.
Method updateMessage () is the main method that controls the results displayed on the
client side. In updateMessage() we get the query type and all the results to be displayed
on the page corresponding to the query type through clientResult. There are three code

blocks in the method updateMessage() on the client side, which are for Q1, Q2, and Q3

s
|

queries, respectively.

4.4.2.1 Display Q1 Results

If the query type is Q1, each resultEntry contains two parts: the URL link of the search

result generated from the record’s primary key, and the context of the corresponding record.
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Text Search with Spatial Constraints Search Engine

Q1 Queny String
Q2 Query String Radius. {mn}
Q3 Latitude Deg Min  Seconds Longitude De=g Min  Seconds Radius

search

Figure 4.23: The welcome page of the HTMLHandler web application.

Method upPageql () can display the search results in multiple pages. The number of search
results displayed on each page is determined by variable 1istNum. An example of a Q1
search results display for the Q1 query string “Carex magellanica” is shown in Figure 4.24

with list Num = 5.

4.4.2.2 Display Q2 Results

For the Q2 point results, each element of clientResult.pointCurrentResults corre-
sponds to a (¢, \) pair. Each individual in resultEntry contains three fields: description
of a returned point (a (¢, \) pair), the URL of the nearest string search result, and all the
URLS to the records having the same (¢, A) pair associated, along with their context. The

three fields are separated by symbol &&&. For each element in the resultEntry, we get
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Search results displayed at: 2014-04-14 23:59::38.326. Search takes 2.24 secs.
firstpage1 2 3 4 5 |ast page 1/804 (4020 records shown 5 per page)

hitp/131.202 243 11/test/HerbariumDatabase/dict10/58303.himl

UNB Accession Num.: 58303 Full name: Carex limosa L. Latitude 46 132 Longitude -66.24 Collector- Blaney, C.S. Collector num.:
3002 Day:-12 Month:7 Year 2000 Habitat: open bog. Assoc.Spp: Carex utriculata, Eriophorum chamissonis, Vaccinium oxycoccos,
Carex canescens, Carex magellanica. Carex utriculata, Erlophorum chamissonis, Vaccinium oxycoccos, Carex canescens, Carex
magellanica Location. Cranberry Bog 15 km NW of Minto  County: Sunbury Province. NB Notes: Databaser's Note - Some seeds appear
to be replaced with a fungus Common name: Mud sedge Family: Cyperaceae French name: Carex de bourbiers Phenology: Specimen
is reproductive
http://131.202.243.11/test/HerbariumDatabase/dict10/58230.himl

UNB Accession Num.: 58230 Full name: Carex magellanica Lam. ssp. irrigua (Wahl) Fern. Latitude: 46.359 Longitude:
7677 Collector: Blaney, C.5 et. al. Collector num.. 5414 Day.6 Month: 7 Year 2005 Abundance. Uncommon Habitat: Edge of
cedar swamp, opening into wet graminoid-low shrub fen Location: Two Mile Brook; 2.1 km SW of outlet at N end Kelch Lake County:
Carleton Province: NB Notes: GEOLOC: wpt. 058. Survey of potential Protected Matural Areas for NB DNB  Common name: Stunted
sedge Family: Cyperaceae French name: Carex chélif Phenology: Specimen is Reproductive  Synonyms: Carex paupercula var. imigua,
Carex magellanica var. irrigua
hitp://131.202 243 11/testHerbariumDatabase/dict9/53218 html

UNB Accession Num.: 53218 Full name: Carex magellanica Lam. ssp. irrigua (Wahl) Fern. Latitude: 47.967 Longitude:
-66.683 Collector: Bishop, G.; Bagnell, BA. Collector num.: 1981 Day:21 Month:8 Year: 1997 Abundance:
uncommon/scattered Habitat: in black spruce bogy area, marginal to cedar swamp Location: south of single powerline, west of Prichard
Lake, Sugarloaf Prov. Park, Campbeliton County: Restigouche Province:NB Common name: Stunted sedge  Family:
Cyperaceae French name: Carex chétif Synonyms: Carex paupercula var. irrigua; Carex magellanica var. irrigua
hitp://131.202.243 11/test/HerbariumDatabase/dict7/38550. html

HIMR Arroccinn Mum - 30REN Eull name™ Caray manallanica | am cen irinna (Wably Farn  Callactnr Munra 1 - Lunne VR Mallactor

Figure 4.24: Q1 search result for string “Carex magellanica”, with 1istNum = 5.

a single field by splitting the individual element using separator &&&. Then, for the third
field in the element, we can further obtain the single URL and context pairs of the records
by splitting the field using separator @@@. At this point, the client side has all the readable
information of Q2 point results. An example Q2 search showing point results as displayed
on a web page is shown in Figure 4.26. The query used for Figure 4.26 is Q2(t,r) where
t = “crab apple”, r = 5 meters. In Figure 4.26, we labelled the corresponding attributes
in TexSpaPointResult on the web page, the nearest string search result texSearchPRK of
which is obtained from line 8 of Algorithm 4.2. For each point result in Q2 point results
list Ry, up to three records having exactly the same (¢, \) are shown. If the number of
records having exactly the same (¢, A) is more than 3, we can click the link after the third

result to display all the records, as shown in Figure 4.25.

Method upPageq2point() displays Q2 point results in multiple pages under the Q2

points tab. Figure 4.26 indicates 7 pages of Q2 point results.
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2:(45.905, -66.26) with distance Om to the string search result : N
http://131.202.243.11/test/HerbariumDatabase/dict10/58468.html

http://131.202.243.11/test/HerbariumDatabase/dict9/55220.html

UNB Accession Num.: 55220 Full name: Carex lupulina Muhl. ex Willd.  Latitude: 45.905 Longitude:
-66.26 Collector: Blaney, C.S. Collector num.: 3361 Day: 14 Month: 8 Year: 2000 Habitat: red
maple-dominated floodplain forest Location: French Lake Nash Point, French Lake County:

Sunbury Province: NB Common name: Hop sedge Family: Cyperaceae French name: Carex
houblon CDC Status: S3

http://131.202.243.11/test/HerbariumDatabase/dict9/55221.html

UNB Accession Num.: 55221 Full name: Betula pumila L.  Latitude: 45.905 Longitude:

-66.26 Collector: Blaney, C.S. Collector num.: 3362 Day: 14 Month: 8 Year: 2000 Abundance:

rare one mature shrub seen Habitat: shoreline thicket Location: French Lake Nash Point, French

Lake County: Sunbury Province: NB Notes: Count: one mature shrub seen. Abundance: rare.
Common name: Low birch, swamp birch Family: Betulaceae French name: Bouleau nain CDC

Status: S3

http://131.202.243.11/test/HerbariumDatabase/dict9/55841.html
UNB Accession Num.: 55841 Full name: Muhlenbergia frondosa (Poir.) Fern. Latitude:
45.905 Longitude: -66.26 Collector: Blaney, C.S. Collector num.: 3360 Day: 14 Month: 8 Year:
2000 Habitat: red maple-dominated floodplain forest Location: French Lake Nash Point, French
Lake County: Sunbury Province: NB  Common name: Leafy muhly, wire-stem muhly Family:
Poaceae French name: Muhlenbergie feuillée Phenology: Specimen is reproductive CDC Status:
S3
! Click to display all the 6 matching results. 1
2+ TAS OR7T “Khh 75R) WiTh dTetfance Nm Ta the &fTina cearch racnlt -

Figure 4.25: An example showing the link to display all 6 associated records for point 2:
(45.905, -66.26) from a Q2 point result.

For the Q2 polygon results, all the individuals are stored in

resultclass.polygonCurrentResults, each element of which corresponds to a county.
Each resultEntry consists of three fields, as follows: (1) the description of a polygon result,
i.e. the county name, (2) the URLSs to the text search results intersecting the county along
with their context, and (3) the URLs and their context of the records having no (¢, \) pair
but within this county. An example Q2 polygon result displayed on a webpage is shown in
Figure 4.27. The contents of the third part of a Q2 polygon result are originally hidden.
We can show the results associated with a county by clicking the link “Click to display
all” on the bottom of the corresponding county result, as shown in Figure 4.28. Method
upPageq2polygon() displays Q2 polygon results in multiple pages under the Q2 polygon

tab.

4.4.2.3 Display Q3 Results

If the query type is Q3, we get the point and polygon results from

resultclass.pointCurrentResults and resultclass.polygonCurrentResults. The
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TexSpaPointResult

currentPoint: LatLngPair

Search results displayed at: 2014-04-15 00:12::13.424. Search takes 9.958 secs.

Q2 points Q2 polygon
first page 1 2 ; 4 5 lastpage 1/7 (21 points 621 records shown 3 points per page) |
297 -67.52: i :
hitp: 4311 <D, Alg. 42, line 8 |
http: ~202.243.11/test/HerbariumDatabase/dict5/28885.html

ccession Num.: 28885 Full name: Pentaphylloides floribunda (Pursh) A. Love Latitude:
46.297 Longitude: -67.528 Collector: Hinds, H.R.; Clayden, S. Collector num.: 71-77 Day:

21 Month: 8 VYear: 1977 Habitat: Open rocky river edge Location: 1 mile S of Hartland Covered
Bridge on Saint John River County: Carleton Province: NB  Common name: Shrubby cinquefoil,
buckbrush, gold-withy Family: Rosaceae French name: Potentille frutescente Phenology: Specimen

has flowers Synonyms: Potentilla fruticosa auct. non L.; Potentilla fruticosa ssp. floribunda
2: (45 905, -66. 26) with distance Om to the string search result -
P, Alg. 42, line 8

43.11/test/HerbariumDatabase, dlc@H
http://131.202.243.11/test/HerbariumDatabase/dict9/55220.html
UNB Accession Num.: 55220 Full name: Carex lupulina Muhl. ex Willd.  Latitude: 45.905 Longitude:
-66.26 Collector: Blaney, C.S. Collector num.: 3361 Day: 14 Month: 8 Year: 2000 Habitat: red
maple-dominated floodplain forest Location: French Lake Nash Point, French Lake County:

Sunbury  Province: NB  Common name: Hop sedge Family: Cyperaceae French name: Carex
houblon CDC Status: S3

finalScore: Double
prima ryKeysW/
dist: Double

texSearchPRK ———

http: ) 243, Herbari .html S

Figure 4.26: A sample of a Q2 point result showing two distinct points with distance 0 m
to the Q2 string search results having primary keys 49846 and 58468, respectively.

Search results displayed at: 2014-04-22 13:23::34.318. Search takes 8.0 secs.

Q2 points ‘ Q2 polygon |

|ﬁrst page 1 2 3 4 |lastpage 1/4 (11 polygons 9672 records shown 3 per page)
Part1 1: There are 5 matching string search records falling within 2 metres of county SUNBURY:
http://131.202.243.11/test/HerbariumDatabase/dict10/5846
ttp://131.202.243.11/test/HerbariumDatabase/dict9/57106.
http://131.202.243.11/test/HerbariumDatabase/dict9/55849.

http://131.202.243.11/test/HerbariumDatabase/dict9/55224.html with distance O0m
ttp://131.202.243.11/test/HerbariumDatabase/dict3/16317.html with distance Om

Part3 There are 681 records without (latitude, longitude) within this county. Click to display all.

2: There are 3 matching string search records falling within 2 metres of county ALBERT:

.html with distance Om
html| with distance Om
html with distance Om

Part 2

http://131.202.243.11/test/HerbariumDatabase/dict10/60984.html with distance 0m
ttp zz131 202. 243 1lztesgHerbarlumDatabaseZdlth[12106 html with distance Om
Herbarium 48.html with distance 0m

There are 658 records without (latitude, longitude) within this county. Click to display all.
3: There are 3 matching string search records falling within 2 metres of county CARLETON:

ttp //131.202.243.11/test/HerbariumDatabase/dict8/49846.html with distance Om
tt 131.202. 243 11/test/HerbariumDatabase, dlct3 15462 html with distance Om
Herbarium .html with distance 0m v

Figure 4.27: An example of Q2 polygon results for query string “Carex magellanica” and
radius 2m displayed on the web page.

display panel for Q3 search results are also divided into two parts using two tabs. Method
upPageq3point () displays Q3 point results in multiple pages under the Q3 points tab,
and method upPageq3polygon() displays Q3 polygon results in multiple pages under the
Q3 polygontab. Examples of Q3 point and Q3 polygon results are shown in Figures 4.29

and 4.30, respectively.
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Search results displayed at. 2014-04-22 13:23.:34.318. Search takes 8.0 secs

Q2 points Q2 polygon

firstpage 1 2 3 4 lastpage 1/4 (11 polygons 9672 records shown 3 per page)

1: There are 5 matching string search records falling within 2 metres of county SUNBURY:

http://131.202.243 11/test/HerbariumDatabase/dict10/58468.html with distance Om
http://131.202.243.11/test/HerbariumBDatabase/dict9/57106.html with distance O0m
http://131.202.243.11/test/HerbariumDatabase/dict9/55849.html with distance Om
http://131.202.243.11/test/HerbariumDatabase/dict9/55224.html with distance Om
http://131.202.243 11/test/HerbariumDatabase/dict3/16317.html with distance 0m

There are 681 records without (latitude, longitude) within this county. Click to display all.

http://131.202.243.11/test/HerbariumDatabase/dict2/7530.htm|

UNB Accession Num.: 7530 Full name: Brachyelytrum septentrionale (Babel) G. Tucker  Collector:
Roberts, P.R.; Drury, D.E. Collector num.: 63-1349 Day: 13 Month: 8 Year: 1963 Habitat: cut-
aver woods Location: near Portobello Stream, Lakeville County: Sunbury Province: NB  Common
name: Northern short-husk Family: Poaceae Phenology: Specimen is Reproductive Synonyms:
Brachyelytrum erectum var. septentrionale; Brachyelytrum aristosum var. glabratum

http://131.202.243.11/test/HerbariumDatabase/dict2/7790.html

UNB Accession Num.: 7790 Full name: Lonicera villosa (Michx.) J.A. Schultes  Collector: Roberts,

P.R.; Bateman, N. Collector num.: 64-26 Day: 19 Month: 5 Year: 1964 Abundance: small

patch Habitat: edge of road Location: 2 mi. SE of Geary County: Sunbury Province: NB  Common -

Figure 4.28: An example of linking to display all the associated records for a Q2 polygon
result, in county Sunbury.

4.5 Source Code Summary

All the programs with their names, functionalities and number of lines are shown in Ta-

ble 4.1. The total lines of code written is 8571.

4.6 Search Complexity

This section analyses the asymptotic search complexity of queries using the TexSpaSearch
data structure. For a Q1 query Q1(t), where ¢ is the query string of length 7, we perform a
suffix tree look up for each possible subphrase b of . We represent the length of a subphrase
b by |b|, so the algorithm searches for b in O(]b]) time using the suffix tree as described in
Section 1.1. For the query string ¢ containing A single words, the time complexity C1 can

be computed as follows:
A(A+1)
2

Cl= Z O(|bi)) (4.12)

A(A-i—l)T)'

Since the longest subphrase of ¢ has the length 7, so the upper bound of C1 is O(=5

Assume the average length of subphrases is m, the average time complexity for a Q1 query
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Search results displayed at: 2014-04-22 13:37::04 605. Search takes 6.731 secs

Q3 points Q3 polygon

|f\rst page 1 2 last page 1/2 (4 points 24 records shown 3 points per page)
1. (46.888, -65.513), distance = Om.

http://131.202.243 11 /test/HerbariumDatabase/dict1/5674 . html

UNB Accession Num.: 5674 Full name: Agrimonia striata Michx. Latitude: 46.888 Longitude:
-65.513 Collector: Roberts, P.R.; Drury, D.E. Collector num.: 63-969 Day: 7 Month: 8 Year:
1963 Habitat: under birches Location: Barnaby River County: Northumberland Province:

NB Common name: Roadside agrimony Family: Rosaceae French name: Aigremaine

striée  Phenology: Specimen is reproductive
http://131.202.243.11/test/HerbariumDatabase/dict1/5679.html

UNB Accession Num.: 5679 Full name: Galium palustre L.  Latitude: 46.888 Longitude:

-65.513 Collector: Roberts, P.R.; Drury, D.E. Coflector num.: 63-964 Day: 7 Month: 8 Year:
1963 Habitat: river edge Location: Barnaby River County: Northumberland Province: NB  Common
name: Marsh bedstraw Family: Rubiaceae French name: Gaillet palustre Phenology: Specimen is
reproductive

2. (46.8884, -65.5119), distance = 93.2563m.

http://131.202.243 11 /test/HerbariumDatabase/dict1/5675.html

UNB Accession Num.: 5675 Full name: Betula papyrifera Marsh. Latitude: 46.888366 Longitude:

-65.511899 Collector: Roberts, P.R.; Drury, D.E. Collector num.: 63-968 Day: 7 Month: 8 Year:

1963 Habitat: edge of field Location: Barnaby River County: Northumberland Province: -
»

Figure 4.29: An example of Q3 point results for point (46.888, -65.513) and radius 5000m
displayed on a web page.

C1 can be computed as:

AA+1)— _

Cl = O(———=b]) = O(4%]p)) (4.13)

For a Q3(p, r) query, assume there are D,, data objects indexed in the R* tree for n records,
and the maximum number of entries of an internal node is M, the query complexity C3
for the Q3 search is C3 = O(log, Dy, + vy), where y is the number of leaf nodes found in
range. In the worst case when all the bounding boxes in the R* tree overlap the bounding
square defined by p and r, the worst case query complexity is O(D,,). In the application,
we use M = 8.

For a Q2(t,r) query, the search engine first performs a Q1(¢) query returning a list P of
text search results, which takes C1 = O(A2]b|) time. We then perform a Q3(p, ) query
for each point record in P. Assuming there are Z point records in P, the time complexity
C2 for Q2 query can be computed as:

A(A+1)
2

c2=0(( Y. |bil) + Zlogp Dy +y) = O(AZB[ + Zlogp Dy +y)  (4.14)

=1
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Search resulis displayed at- 2014-04-22 13:37::04 605. Search takes 6.731 secs

Q3 points Q3 polygon |

first page 1 last page 1/1 (2 polygons 2062 records shown 3 polygons per page)
1. County NORTHUMBERLAND with distance Om.

There are 1166 records without (latitude, longitude) within this county. Click to display all.
2. County KENT with distance 56.5623m.

There are 896 records without (latitude, longitude) within this county. Click to display all.
first page 1 last page 1/1 (2 polygons 2062 records shown 3 polygons per page)

Figure 4.30: An example of Q3 polygon results for point (46.888, -65.513) and radius
5000m displayed on the web page.

on average. As we can see, the Q2 query time heavily depends on the number of point

results returned by the list P.
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Algorithm 4.2: Q2Query (¢, r, returnlList)

® N O kA W N+

10
11
12

13
14

15

16
17
18
19

20

21
22
23

24

25
26
27

Input:

Query string ¢, radius r ;
Output:

A long string returnList contains all the information of records intersecting a disk

of radius r centered at points matching string ¢;

R is an empty list of TexSpaPointResult ;

R5 is an empty list of TexSpaPolygonResult ;

Ly, Ly, Ly < empty lists ;

t_lower «+ allToLower(t) ;

t_compact < removePunct(t_lower) ;

P «+ QlInternalSearch(t_compact) ;

for int i < 0 to |P| — 1 do

if P, is a point record then

// not a polygon

Ry < P;.Riq // text score eq. (4.10);

textPrk <— P;.primaryKey ;

p < r_star_tree.pointsRecordsHashTable[textPrk] // p = (¢, \) of P;;

if p ¢ L, then

// p not already reported

Ly Ls+p;

P;.Ly, P;. Ly < Q3InternalSearch(p,r) // see Alg. 4.1;

// two lists are returned, L; for point results, L, for
polygon results

for int j < 0 to |L;| — 1 do

// point records

dist <— Ly [j].distance // distance to p;

finalScore < getCombinedScore( Ry, dist) // eq. (4.11);

TexSpaPointResult r; «— generateQ2Point(P;, L1[j], finalScore);

Ry =Ry+r1;

for int k < 0 to |Ly] — 1 do

// polygon records

dist <— Lo[j].distance // distance to p;

finalScore < getCombinedScore( Ry, dist) // eq. (4.11);
TexSpaPolygonResult 7y < generateQ2Polygon(P;, Lo[j], finalScore)

R2:R2+T2;

Sort R; based on finalScore ;
Sort Ry based on finalScore ;
return returnList < generateReturnList(R;, Ry) ;
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Table 4.1: TexSpaSearch search engine source code summary.

Module Program name Lines | Comments
of
codes
R*tree RStarBoundingBox.h 282 | R* bounding box manipu-
lations
RStarVisitor.h 112 | ‘acceptor’ functions used
for queries and removals
RStarTree.h 726 | R* tree library
BuildRStarTree.h 644 | R* tree constructor
Suffix tree nPatriciaTrie.h 508 | Suffix tree library
BuildSuffixTrie.h 620 | Suffix tree constructor
TexSpaSearchEngine | TexSpaSearch.h 1237 | Functions for Q1, Q2 and
Q3 queries
ServerEndTest.h 818 | Server end test
Communicate.h 275 | Communication with Java
program
RStarTest.cpp 52 Main method for integra-
tion test and server run-
ning
Java side HTMLHandlerServlet.java | 808 | Java Servlet class
ResultClass.java 286 | The Java class for holding
search results
TimeBean.java 47 The Java class for record-
ing time
Client side index.jsp 736 | client side .jsp page file
ShapeSimplify EarthGeometry.java 149 | The Java class for comput-
ing geometry parameters
TrackPoint.java 31 The Java class defines
points
ShapeSimplify.java 278 | Shape simplification
Data Preprocessing | DataPreprocessing.java 652 | Data preprocessing for the
source data getting from
UNB Connell Memorial
Herbarium database
GenerateWebpage.java 310 | Generate web pages from

the preprocessed data
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Chapter 5

Google Search Appliance (GSA)

Indexing

The Google Search Appliance is a rack-mounted device providing document indexing func-
tionality that can be integrated into an intranet, document management system or web
site using a Google search-like interface for end-user retrieval of results. The operating
system is based on CentOS [9]. The GSA software that we use is from a GSA model
GB-7007-1M running version 6.8.0.G.30. GSA provide us efficient ways of indexing web
pages, performing text queries and ranking the query results. We first introduce the basic
scoring algorithm that GSA uses to rank the search results and the Result Biasing Policy
which is used for exerting influence on the ranking of the final results. We then describe

how to configure the GSA for crawling and indexing.

5.1 PageRank Algorithm

PageRank is used by Google together with a number of different factors, including

standard information retrieval (IR) measures, proximity, and anchor text (text of links
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pointing to Web pages) in order to find most relevant answers to a given query [28]. Other
than document collections, web pages on the web are hypertext and provide plenty of
auxiliary information in the metadata of the web pages, such as link structure and link
text [?]. The PageRank algorithm makes use of these features. The algorithm is based
on the directed graph created by treating web pages as nodes and hyperlinks as edges
[17]. Google’s PageRank algorithm assesses the importance of web pages without hu-

man evaluation of the content. Google claims, “the heart of our software is PageRank” [25].

The basic idea behind PageRank is that a page is ranked higher if there are more links to
it. More specifically, PageRank is a probability distribution which is created to represent
the likelihood that a person randomly clicking on links will arrive at any particular page
[17]. A probability is expressed as a numeric value between 0 and 1. A PageRank of 0.5
means there is a 50% chance that a person clicking on a random link will be directed to the
document with the 0.5 PageRank [25]. In this way, web pages with the highest PageRank

value will appear on the top of the search results.

5.2 Result Biasing

The Google Search Appliance (GSA) provides multiple ways to exert influence on the
search results. This includes Source Biasing, Date Biasing and Metadata Biasing.
Metadata Biasing enables us to influence the order of documents based on metadata
associated with a document. For example, we might use metadata biasing to increase the
score of documents whose document type is “Article”. We can create a biasing scheme

with the user interface depicted in Figure 5.1 [34].

To use Metadata Biasing, we can first change the influence setting from “No influence”
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Metadata Biasing (Help)
Metadata biasing lets you increase or decrease a document's score when it contains a <meta> tag with one of the
name:content pairs specified below.

How much influence should metadata biasing have?

‘No influence More influence .

0O 0 0O QO 0O O 0O 0O O O (S] :

When the search appliance scores a document, it compares the values in the document's <meta> tags to the
name:content pairs below. When a name:content pair below matches a name:content pair in a <meta> tag, the
search appliance uses the Strength setting to adjust the document's score.

To remove an entry, make the name and the content fields blank.

Metadata Name Metadata Content Strength
DC.type Article Strong increase I--:]

Leave unchanged |4

Leave unchanged | -3]

[ Add Rows )

Figure 5.1: The Metadata biasing user interface from a GSA model GB-7007-1M running
version 6.8.0.G.30 of the GSA software.

to a stronger setting. We can make a specific adjustment by compiling a list of metadata
tags. Documents are modified to include metadata tags corresponding to the metadata
attributes described in the Metadata Biasing entries. As explained in [1], a metadata tag

contains a name-value pair. An example name-value pair is as follows:

<meta name="DC.type" content="Article" xml:lang="en"> (5.1)

We have seven choices on the influence strength of each tag: Strong decrease, Medium
decrease, Weak decrease, Leave unchanged, Weak increase, Medium increase and Strong
increase. We assume these tags have values —es, —eq, —eq, 0, €1, €9, €3, respectively, where
e1, eo and eg are € R, and e; < ey < e3. When the search appliance ranks search results,
it compares metadata tags with each pattern in the list. For each document, the search
appliance traverses the list in the order we specify the metadata tags from top to bottom,
and compares the tags with the document’s metadata. The search appliance makes only

one score adjustment for each document. Once a tag matches a document, the score of

92



the document is modified, and the search appliance continues with the next document to

be rescored, to see if the document matches any metadata tag [1].

Assume for a specific web page G, the PageRank value is W,,.(G). The general degree of
influence that Metadata Biasing has is represented by f, which is one of 11 nonnegative
numbers € [0, fuaz]. The score of the first matched tag in the document’s metadata is
represented by W,,,. As there are seven possible degrees of strength for each tag, the
domain of W,,;, should be seven numbers corresponding to seven degrees as described
above. W,,;, = 0 corresponds to the strength of a tag setting to “Leave unchanged”. Based
on the documentation we can find, we estimate that the final rank R; of web page G; is as
follows [34]:

R; = Wpr(gi) + meb(gi) (5-2)

Assuming that we have a web of four pages, the PageRanks for page 1, 2, 3 and 4 are
Wyr(1) = 0.368, W,.(2) ~ 0.142, W,.(3) ~ 0.288 and W, (4) ~ 0.202, respectively.
The ranking of these pages is 1, 3, 4, 2 from top to bottom. Now assume we have the
name:content pair in the Metadata Biasing list, which is meta name = “DC.type” and
meta content = “Article”. The strength is set to “Strong increase”. In the four pages, we
assume only pages 2 and 3 have metadata tags that agree with this name:content pattern.
If our equation (3.2) is correct, the search appliance will make score adjustments for pages
2 and 3 as follows:

Ry = Wy (2) + fWip(2) = 0.142 4+ fIV,,5(2)

Ry = Wy, (3) + fWip(3) = 0.288 4+ fW,,4(3)

Assuming there is no other metadata tags in the list in Metadata Biasing scheme, then

the search appliance will not make changes to the scores of pages 1 and 4. The final scores

93



for these two pages are as follows:
Ry = W,.(1) = 0.368
Ry = W,.(4) = 0.202

Consider a Metadata Biasing scheme in which the general degree of influence is set to the
strongest degree. Assuming that f € [0,1], then in this situation, f = 1. We assume the
values (eq, ea, e3) = (0.05,0.10,0.15). With a W,,,;, value of “Strong increase” = e3 for pages
2 and 4, we have the following four final ranks:

Ry = 0.368

Ry =0.142 4+ 1%0.15 = 0.292

R3 =0.2884+1x%0.15 = 0.438

Ry =0.202

Thus, the final ranking of these four pages is 3, 1, 2, 4 from top to bottom. We can see
that after Metadata Biasing, the scores of pages 2 and 3 are boosted, and the rank of every

page has changed from that arising from the original rankings (i.e. rankings of 1, 3, 4, 2).

5.3 GSA operation

5.3.1 Configuring the GSA for Crawling and Indexing

We now have the web page collection in a form required for GSA crawling. Before crawling
starts, we first configure the GSA for crawling the collection. We use the Crawl and Index
> Crawl URLs page of the Admin Console of the GSA to configure a crawl of the URL
patterns, as shown in Figure 5.2.

In the field “Start Crawling from the Following URLs”, we added the following line:
http://131.202.243.11/test/HerbariumDatabase/

This is the start URL which controls where the GSA begins crawling the content. In the
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Help Center - Log Out

GOL_}SIE Google Search Appliance >Crawl and Index >Crawl URLs [ Test Center |
Home Start Crawling from the Following URLs: * (Help)

Crawl URLs http://dspace.hil.unb.ca: 8080/

Databases http://dspace.hil . unb.ca:BOBO/xmlui/links . html

Feeds http://synergiescanada.org/journals/

Crawl Schedule

Crawler Access
Proxy Servers

Forms Authenbcation

http://131.202.243.11/test/testCollection/
http://131.282.243.11/test /HerbariumDatabase/
http://131.262.243.11/test/AcadiensisCollection/
http://l1ib.unb. ca/Texts/NBHistory/chipman/
http://lib.unb.ca/Texts/Special_Collections/Hathaway/new
http://Lib.unb.ca/Texts/marston/
http:/fetc.lib.unb.ca/freethought/

Case-Insensitive Patterns

HTTP Headers

Duplicate Hosts
Document Dates

Host Load Schedule

Freshness Tuning
Collechions

Composite Collections

http://www_ lib.unb.ca/Texts/WmWriters,/
http://journals. hil . unb.ca/index. php
http:/satlanticportal . hil. unb.ca/

example: hitp./fwww. myorganization. mycompany. comy

Follow and Crawl Only URLs with the Following Patterns: * (Help - Test these patterns)

dspace.hil.unb.cas

synergiescanada.org/journals/
m 131.262.243.11/test/testcollectiany
b Status and Reports 131.202.243.11/test /HerbariumDatabasey

F Connector Administration Gt
1D. s
lib.unb.cajfarchives

131.262.243.11/test/AcadiensisCollection/
unb.ca/Texts

Cln Lib.unb.ca/winslow

p GSA Unification

journals.hil.unb.ca/

Figure 5.2: The page Crawl and Index > Crawl URLs in the Admin Console of GSA

software.

field “Follow and Crawl Only URLs with the Following Patterns”, we added the following

line:

131.202.243.11/test/HerbariumDatabase/

In this way, only URLs matching the patterns we specify in this field are followed and

crawled. In the field
following lines:
# Test collection

list)

regexp:http://131.
regexp:http://131.
regexp:http://131.

regexp:http://131.

“Do Not Crawl URLs with the Following Patterns ”, we added the

on ib214m20.cs.unb.ca herbarium database(Do not crawl

202.243.11/test/HerbariumDatabase/.*statistics$
202.243.11/test/HerbariumDatabase/.*show=full$
202.243.11/test/HerbariumDatabase/ . *browse?

202.243.11/test/HerbariumDatabase/ . *advanced-search$
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These are URL patterns for specific file types, directories, or other sets of pages that we
do not want crawled in this collection [10]. The $ specifies the end of a string and forces
matching only one web page. The “.*” matches any number of characters. To test URL
patterns, click a “Test these patterns” link to open the Pattern Tester Utility. We can
specify a list of URLs on the left and a set of patterns on the right. It notifies you if each

URL is matched by one of the patterns in the set.

After configuring the GSA crawler, we can build a new collection in the GSA for the web
pages transformed from the Herbarium database records. The user interface for managing

collections is shown in Figure 5.3.

Help Center - Log Out
GOL)S [e ll Google Search Appliance >Crawl and Index >Collections [ Test Center |

Home

ottt A collection is a subset of the complete index. For example, create a markefing
Crawl URLs collection or an engineering collection to supporn searches only in the marketing
Databases

or engineernng pages in your index. You specify the contents of the collection
Feeds using URL paterns. Create as many collections as you need. Use the Test
Center to test collections.

Current Collections (Help)

Crawl Schedule

Crawler Access Library Edit Export Configuration Delete
Proxy Servers Synergies Edit Expaort Configuration Delete
Forms Authentication acadiensis_collection Edit Export Configuration Delete
% default_collection Edit Export Configuration Delete
Case-Insensitive Pattérns  perparium_collection Edit Export Configuration Delete
HTTE Headers test_collection Edit Export Configuration Delete
Duplicate Hosts P g
Document Dates MNote: The index is updated periodically with collection information. Expect a time

delay before this information is updated.

Host Load Schedule

Freshness Tuning Create New Collection (Help)
Caliectiona Collection Name: |
Composite Collections
m Initial Configuration: t:':”(s;;gt:. Click on the Edit link afterwards to configure the
F Status and Reporis & ” = — _—
F Connector Administration S S UL  AL e.[ = |
F Social Connect et L g
F Cloud Connect | Create Collection

Figure 5.3: The page Crawl and Index > Collections in the Admin Console of GSA
software.

We created a collection called “herbarium_collection” by using the Crawl and Index >
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Collections page in the Admin Console. In the field “Include Content Matching the
Following Patterns”, we entered the pattern as follows:
131.202.243.11/test/HerbariumDatabase/

Clicking the button “Save Collection Definition” creates the herbarium collection.

In the next step, we associate the herbarium collection with a front end generated using
GSA software. We used the test front end to perform search of herbarium_collection. The
test front end is the front end we built initially for exploring how GSA ranks search results
and comparing Google search with Synergies search. Three collection (e.g. Synergies,
default_collection, test_collection) are already associated with the “test” front end. The

test front end can be accessed by the url http://gsal.lib.unb.ca/ asshown in Figure 5.4.

\V4
\ Web Google Mews Map Appliance
"\ Synergies ~|[  Synergies Search :;:7:";'_?? 5535’3*

default_collection
test_gge_reports100
unb_herbarium_collection
acadiensis_collection

Powered by Google Search Appliance

Figure 5.4: The XSLT code which is used to associate herbarium collection to the test
front end.

To associate the herbarium_collection to the test front end, we choose “Edit” for the
test front end in the Serving > Front Ends page in Admin Console. Then we can
view the XSLT stylesheet code of the test front end. Using <Ctrl>F in the browser, we
found the section "Collection menu beside the search box" in the code, and added

a paragraph as shown in Figure 5.5.

After adding this XSLT “choose” item, we clicked the button “Save XSLT Code” to

97



|
|=xsl:choose=
<xsl:when test="PARAM[ (@name="site’') and (@value='herbarium_collection’)]"=

<pption value="herbarium_collection"
selected="selected"=unb_herbarium_collection</option=

=/%s1:when=
<xsl:otherwise=

<option value="herbarium_collection"=unb herbarium collection</option=
</%sl:otherwvise=

=/xsl:choose>

Figure 5.5: The XSLT code which is used to associate herbarium collection to the test
front end.

save the update. We can then use the test front end to perform text search under the
herbarium collection. We first open the web page http://gsal.lib.unb.ca/. In the
drop-down menu beside the search box, we choose the item unb_herbarium_collection
and input a search string in the text field. Clicking the “Synergies Search” button, the
corresponding search results are displayed. An example query with the query string “Aster-

aceae” is shown in Figure 5.6.

5.3.2 Build Result Biasing Policy

We can use the Serving > Result Biasing page to create or edit a result biasing policy.
The search appliance ranks the documents that it finds in response to a user search query
by calculating the PageRank score for each document [34]. The score reflects the probable
relevance of the document content and determines the order in which results appear on

the search results page . To influence search appliance rankings, use a result biasing policy

[1].

To create a new result biasing policy, under Serving > Result Biasing subdirectory, we
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A

e

ld Web Google News Map  Appliance
Asteraceae Synergies ¥, Synergies Search

synerqies

Search Results 1 - 10 of about 31 for Asteraceae. Search took 0.06 seconds.
MNext = Sort by date / Sort by relevance

RiverRun | Origins, distribution, and local co-occurrence of ...
RiverRun Origins, distribution, and local co-occurrence of polyploid cytotypes
in Solidago altissima (Asteraceae). RiverRun Repository. ...

dspace hil.unb.ca:8080/handle/1882/19035 - 2011-09-02 - Cached

RiverRun | Population genetic structure of the Gulf of St ...

RiverRun Population genetic structure of the Gulf of St. Lawrence aster,
Symphyotrichum laurentianum (Asteraceae), a threatened coastal endemic. ...
dspace.hil.unb.ca:8080/handle/1882/19096 - 2011-09-02 - Cached

[ More results from dspace hil.unb.ca:8080/handle/1882 ]

Inhibition of Pratylenchus penetrans by intercroping of ...

... In several studies on the Asteraceae family. various authors commented on

the présence of polyacetylene-deriva-1. Agriculture and Agri-Food ...
www_synergiescanada.org/journals/erudit/phyto7 1/phyto3379/706234ar - 2011-12-05 - Cached

Résumeés des communications / Paper Session Abstracts ...

... vitians de causer des symptdmes sur des espéces de mauvaises herbes de

differentes familles telles que les Asteraceae, les Chenopodiacae, les ...

www _synergiescanada.orgfjournalsierudit/phyto71/phyto1432/013979ar - 2011-12-19 - Cached
[ More results from www_synergiescanada.org/journals/erudit/phyto71 ]

Figure 5.6: An example query result from the unb_herbarium collection with the query
string “Asteraceae” using the test front end. Only the first five results are shown.

enter a name of the new result biasing policy in the Result Biasing Name text box, then
we can edit the created policy by clicking the hyperlink “edit”. The GSA provides us 3
ways to exert influence on the documents’ scores. They are Source Biasing, Date Biasing
and Metadata Biasing. The user interface for configuring the Metadata Biasing is shown

in Figure 5.1. We have already talked about how to use the Metadata Biasing in Section 5.2.

The Source Biasing enables us to increase or decrease a document’s score when it belongs
to a specified collection or its URL matches a specified pattern. The user interface for
Source Biasing is shown in Figure 5.7. To configure a Source Biasing, we first set the
strength of general influence. Similar to the Metadata Biasing, there are 11 different

general degrees of influence, which can be considered as 11 nonnegative numbers [34].
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If we want to configure Source Biasing by Collection, we select Collection from the
pull-down menu and select a collection name of which we want to exert influence. Then
we specify the strength of this adjustment. Similar to the Metadata Biasing, we have
seven choices on the influence strength of each adjustment: Strong decrease, Medium
decrease, Weak decrease, Leave unchanged, Weak increase, Medium increase and Strong
increase. If we want to configure Source Biasing by URL Pattern, we select URL Pattern
from the pull-down menu. For each URL we want to affect, we enter a pattern that the

URL matches. Then we specify the strength of each pattern we entered.

Source Biasing (Help)
Source hiasing lets you increase or decrease a document's score when its URL matches one of the pafterns or belongs to a collection
specified below.

How much influence should source biasing have?

Mo influegnce More influence

The search appliance tries to match each URL in a result set to a collection or a URL paitern,
starting from the top of the paitern list. When a URL matches, the search appliance applies the
specified tuning and then tries to match the next URL. Only the first applicable biasing rule is applied
1o any given URL.

To remove an entry, change it to blank URL pattern and save.
URL Pattern or Collection Strength

Figure 5.7: The user interface for configuring Source Biasing.

The Date Biasing enables us to increase the score of more recent documents relative to
older documents [1]. The user interface for Data Biasing is shown in Figure 5.8. To use the
Data Biasing, we first specify how much we want our adjustment to influence the scoring
calculation . Optionally, to specify a time period for considering documents moderately
old, click the check box and choose a time period from the list [1]. Finally, click Save

Settings to save the configuration for Result Biasing.
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Date Biasing (Help)
Date biasing lets you increase the score of more recent documents relative to older documents.

How much influence should date biasing have?

No influgnce Maore influence

Consider documents moderately old after

Figure 5.8: The user interface for configuring Data Biasing.
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Chapter 6

Test Results

6.1 R* Tree and Suffix Tree Construction

In the R* tree construction, their are 28,435 records having (¢, ) pairs associated, 11,909
records having county names but no (¢, \) pairs associated, and 447 records having no
related spatial information ((¢, A) pair or county name). The total number of records
in the Herbarium database we used (circa 2012) is 40,791, in which 40,344 records are

indexed by the R* tree.

While inserting point records into the R* tree, there are 8291 distinct (¢, A) pairs obtained,
each associated with one or more records represented by their primary keys. For each (¢4, A)
pair, the average number of keys indexed ¢ is 3.46726. In the packPoints(allPoints)
process in the R* tree construction (see Section 4.2.2), we pack up to B neighbouring points
together to make the generated RStarDataObject (see Section 4.2.1) approximately fit on
one disk block. As shown in Figure 4.9, for the point data, each RStarDataObject contains
a Boolean flag isPolygon and a list of B DataPoints consisting of a (¢, A) pair and a

primary key list. The average number of keys per point is ¢ = 3.46726, and the maximum
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length of the primary key is [, = 10 characters, so the value of B can be computed as

follows:

sizeof (boolean) + B(2 * sizeof (double) + 1, * ¢ x sizeof (char)) < Block_size (6.1)

or:

B < (Block_size — sizeof (boolean)) /(2  sizeof (double) + 1, * ¢ * sizeof (char))  (6.2)

We have B = 19 for Block_size = 1024, ¢ = 3.46726, |, = 10, sizeof(boolean) = 1,

sizeof (double) = 8 and sizeof (char) = 1.

The time for constructing the R* tree (the entire process shown in Figure 4.10) is 249.213
seconds. The time for constructing the suffix tree (the entire process shown in Figure 4.4)
is 142.157 seconds. There are several key points in the entire query process, as shown in

Figure 6.1.

Begin
HTMLHandlerServlet
processing (java side)

exSpaSearc|
returns search
results

Search results
displayed on client

TS

HTMLHandlerServlet
processing ends

User clicks
search button

Begin TexSpaSearch
processing (C++ side)

Figure 6.1: Several key points in the entire query process.

The key points for the subsequent queries that are sent by clicking a page number are

shown in Figure 6.2.

For measuring the timing in the tests, we define the following:
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Begin
HTMLHandlerServlet
processing (java side)

Search results
displayed on client

HTMLHandlerServlet
processing ends

User clicks a
page number

Figure 6.2: Several key points in the query process for subsequent queries sent by clicking
a page number.

1.

10.

r: radius for Q2 and Q3 query in meters.

N.,.: is the total number of search results returned by a Q1 query.
Npi: the total number of (¢, A) pairs returned for Q2 and Q3 point results.
R,;: the total number of records returned for Q2 and Q3 point results.

N,

»: the total number of counties returned for Q2 and Q3 polygon results.

R,;: the total number of records returned for Q2 and Q3 polygon results.

. T, =T, —Tj, which is the C++ side processing time.
. Ty = T5 — T3, which is the server side (including C++ and Java) processing time.

. T, ="Ts — T1, which is the total query time from the user clicking the search button

to the search results displayed on the web page. So T, is the total time for the Text

Search with Spatial Constraints Search Engine.

T, = Ty — T}, where queries exclude C++ processing as shown in Figure 6.2. T}, is
the page query timing, which is the timing for subsequent requests sent by clicking a

page number. Note that the first query response is longer, especially for Q2 and Q3

query.
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11. n,: the number of subsequent page queries we performed for a Q1 query. When there
are more than 10 pages of search results, we only test the page query timing for the

first 10 pages; otherwise, we perform page query for all the existing pages.

12. np: the number of subsequent page queries we performed for a Q2 or Q3 point query.
When there are more than 5 pages of results returned, we perform page query for
the first 5 pages in the point results; otherwise, we perform page query for all the

existing pages.

13. npy: the number of subsequent page queries we performed for a Q2 or Q3 polygon
query. When there are more than 5 pages of results returned, we perform page query
for the first 5 pages in the polygon results; otherwise, we perform page query for all

the existing pages.

The TexSpaSearch testing environment had the web server and web browser running on

the same workstation in the I'TB214 Communication and Networking Laboratory.

6.2 Q1 Test Results

We choose 20 sample query strings for Q1 test as shown in Table 6.1.

The line graph in Figure 6.3 shows the changes of the T, and 7, measured in ms versus
N,.. As we can see, Ty and T, rise proportionately to the number of results returned.
Approximately 500 ms offset between the two curves is constant for most values of V,., and
is due to the overhead of sending the query request and response from and to the client,
and dynamically generating the displayed results. Since each page can only display limited
number of records, so data contained in the generated web page is approximately constant,

which leads to a constant value of T, — T, the average of which is 507.2. To return certain
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Table 6.1: Q1 test results for the 20 sample queries. All times are shown in ms.

Query string N, | T. T, T, e T, S ey
apple 60 5 20 524 |10 | 515.1 4.8408
crab 10 3 7 516 |2 | 513.5 9.1924
crab apple 69 10 14 520 | 10 | 512.8 5.2451
Red spruce 2706 | 915 | 916 | 1424 | 10 | 513.9 4.9318
Hieracium pilosella 361 | 122 | 144 | 646 | 10 | 517.5 7.5755
Rosa virginiana 661 | 213 |[221 | 725 | 10| 518 11.5758
seaside arrow grass 3759 | 1361 | 1366 | 1854 | 10 | 511.1 3.984693
Red pitcher plant 2149 | 744 | 750 | 1263 | 10 | 510.8 3.5214
pitcher plant 413 | 136 | 144 | 659 | 10 | 514.7 5.2079
Eupatorium perfoliatum | 142 | 38 41 547 | 10 | 517.3 5.4375
Bromus Inermis Leyss 151 | 44 49 555 | 10 | 513.9 5.5867
Amelanchier laevis wieg | 1244 | 449 | 452 | 955 | 10 | 518.3 15.8539
Vesce des haies 1959 | 698 | 700 | 1214 | 10 | 516.5 6.0782
Poison ivy 70 14 17 525 | 10 | 513.5 4.0346
Lilac 15 13 15 519 |3 | 513.3 5.8595
Lady slipper 267 | 60 61 575 | 10 | 514.1 4.5570
lady’s slipper 200 | 16 18 524 |10 | 518.3 9.6500
Herbe aux écrevisses 1054 | 481 | 487 | 986 | 10 | 516.6 9.8229
Verge d’or des bois 2654 | 943 | 946 | 1450 | 10 | 520.4 13.2262
vanilla 43 14 28 535 |9 | 514.7778 | 11.6809
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amount of results, the time cost for the entire search process (7) is significantly higher
than the server side (including C++ and Java) processing time 7. The processing time T
is slightly higher than 7, as shown in Table 6.1, which accounts for the extra time (5.65ms,
on average) for Java to reformat the search results for web display. For the Q1 test, the
average costs for T,., T, and T, are 315.05ms, 323.95ms and 825.8ms, respectively. The

average number of records returned is 899.35.

2000

1800

1600

1400

1200

Time in ms 1000

800

600

400

200 —

-
-

0 .

Figure 6.3: Search engine server side (including C++ and Java) processing time T and
total query time T, plotted versus the number N, of returned search results for Q1 queries.

6.2.1 Comparing with GSA test results

Let N, stand for the total number of search results returned by a GSA query, and T}, stand
for the corresponding total query time. The comparison of the TexSpaSearch engine and
the Google Search Appliance (GSA) on the 20 sample queries is shown in Table 6.2.
Table 6.3 shows the time (in ms) per returned record for Q1 search results of TexSpaSearch

and the GSA. Notice that the T,/ N, value of Red pitcher plant is not counted for calculating
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the average value of T,/N,,.

Table 6.2: The comparison of the TexSpaSearch engine and the Google Search Appliance
(GSA) on the 20 sample queries. All times are shown in ms.

TexSpaSearch GSA

Query string N, |T. |T. Ny [T,

Te / Tg TC / Tg

apple 60 524 | 27 59 | 20 | 26.2 1.35
crab 10 516 | 3 10 | 20 | 25.8 0.15
crab apple 69 10 520 |1 10 | 52 1
Red spruce 2706 | 1424 | 915 | 290 | 30 | 47.7 30.5
Hieracium pilosella 361 | 646 | 122 |40 | 10 | 64.6 12.2
Rosa virginiana 661 | 725 | 213 |72 |20 | 36.25 | 10.65
seaside arrow grass 3759 | 1854 | 1361 | 47 | 20 | 92.7 68.05
Red pitcher plant 2149 | 1263 | 744 | O 20 | 63.15 | 37.2
pitcher plant 413 | 659 | 136 |3 30 | 22.0 4.53

Eupatorium perfoliatum | 142 | 547 | 38 32 |20 274 1.9
Bromus Inermis Leyss 151 | 555 | 44 28 | 20 | 27.8 2.2
Amelanchier laevis wieg | 1244 | 955 | 449 | 188 | 20 | 47.8 22.45

Vesce des haies 1959 | 1214 | 698 | 30 | 10 | 121.4 | 69.8
Poison ivy 70 525 | 14 40 | 20 | 26.3 0.7
Lilac 15 519 | 13 15 | 20 | 26.0 0.65
Lady slipper 267 | 575 | 60 119 | 20 | 28.75 | 3
lady’s slipper 200 | 524 | 16 119 | 20 | 26.2 0.8
Herbe aux écrevisses 1054 | 986 | 481 | 54 | 20 | 49.3 24.05
Verge d’or des bois 2654 | 1450 | 943 |34 | 20 | 72.5 47.15
vanilla 43 535 | 14 43 | 20 | 26.8 0.7

| Average \ \ \ || 455 [16.95 |

The times for GSA queries were obtained by manually recording the search time and count
shown in the upper right corner of the test front end (see e.g. Figure 5.6). The GSA was
residing in the UNB server facility located adjacent to the building where the work station
running the browser was located. From Tables 6.2 and 6.3, and the search results, we make

the following observations:

1. The query time for GSA is significantly lower than that for TexSpaSearch. If we

assume that the GSA reported search time 7}, includes the time to display the search
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Table 6.3: Time (in ms) per returned record for Q1 search results of TexSpaSearch and

the GSA.

Query string TexSpaSearch GSA
N, | T./N, | T./N, | Ny | T,/N,

apple 60 8.73 0.45 59 0.34
crab 10 51.6 0.3 10 2
crab apple 69 7.54 0.14 1 10
Red spruce 2706 0.53 0.34 290 | 0.10
Hieracium pilosella 361 1.79 0.34 40 0.25
Rosa virginiana 661 1.10 0.32 72 0.28
seaside arrow grass 3759 0.49 0.36 47 0.43
Red pitcher plant 2149 0.59 0.35 0 N.A.
pitcher plant 413 1.60 0.33 3 10

Eupatorium perfoliatum | 142 3.85 0.27 32 0.63
Bromus Inermis Leyss 151 3.68 0.29 28 0.71
Amelanchier laevis wieg | 1244 0.77 0.36 188 | 0.11

Vesce des haies 1959 0.62 0.36 30 0.33
Poison ivy 70 7.5 0.2 40 0.5

Lilac 15 34.6 0.87 15 1.33
Lady slipper 267 2.15 0.22 119 | 0.17
lady’s slipper 200 2.62 0.08 119 | 0.17
Herbe aux écrevisses 1054 0.94 0.46 54 0.37
Verge d’or des bois 2654 0.55 0.36 34 0.59
vanilla 43 12.44 | 0.33 43 0.47

| Average 899.35 [ 718 [ 034 [61.2]151 |
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results on the screen, then the GSA is 45.5 times faster (on average) than TexS-
paSearch. If the GSA is reporting only the search engine search time, then TexS-

paSearch is 16.95 times slower than the GSA.

. For some of the sample queries, TexSpaSearch returns more results than GSA. The
reason is that GSA only returns records that contain all of the single words in the
query string t, while TexSpaSearch returns records containing one or more subphrases

of t. So we have: Ny < N,.
. Both TexSpaSearch and GSA index French characters well.

. For the query strings like Lady slipper and lady’s slipper, GSA treats them as

the same phrase, while TexSpaSearch regards them as different phrases.

. We checked 7 of the 20 samples (crab, crab apple, pitcher plant, Eupatorium perfo-
liatum, Bromus Inermis Leyss, Lilac, Verge d’or des bois), and the top N, records in
the TexSpaSearch Q1 results are exactly the same as the GSA search results. For 6
of the 7 search results, the ranking within those top IV, results is different. This is
because GSA only returns results containing all the single words in the query string ¢.
In TexSpaSearch Q1 query results, the records containing exactly ¢ or all the single

words in ¢ usually rank higher than other records.

. From Table 6.3 we can see that, although the efficiency for Q1 text search compared
to the GSA is low (45.5 times lower for T, and 16.95 times lower for 77.), the theoretical
analysis does show a highly efficient search cost on the time per returned record when
the number of results returned is large. For the sample query strings Red spruce,
seaside arrow grass, Red pitcher plant, Amelanchier laevis wieg, Vesce des haies,
Herbe aux écrevisses and Verge d’or des bois whose numbers of records N, returned

by TexSpaSearch are greater than 1000, the values of T, /N, are 0.53, 0.49, 0.59, 0.77,
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0.62, 0.94 and 0.55, respectively, and the values of T,./N, are 0.34, 0.36, 0.35, 0.36,
0.36, 0.46 and 0.36, respectively, which are lower than the corresponding average

value of TexSpaSearch and the average T,/N, of GSA.

6.3 Q2 Test Results

We tested Q2 text + spatial search using the 20 sample query strings with radius 2m,

20m and 200m respectively.
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Compared to Q1 results, Q2 test results shown in Table 6.4 take 22.8 more time. A
main reason is the search complexity on the C++ side is higher than that of Q1. The
line graph in Figure 6.4 shows the changes of the 7., T, and T, measured in ms with
increasing R, + R,. As we can see, T, Ty and T, rise proportionately to the total number
of point results and polygon results returned. Note that the line of T, fluctuates more
frequently than that in Q1. A possible reason leading to the fluctuation is that the time
for a Q2 query heavily depends on the number of text search results returned, which is
an uncertain factor. Similar to Q1 results, the constant value of T, — T still holds, the
average of which is 732.45 ms. To return certain amount of results, the time cost for the
entire search process (7¢.) and the server side (including C++ and Java) processing time
T, are significantly higher than the C++ processing time 7.. In Table 6.4, the average
value of Ty — T, is 7619.32. The value of Ty — T, is considerably higher than that in
Q1, because the format of returnList returned by C++ of Q2 is more complex than
Q1, which leads to a higher overhead on analysing and interpreting the returnList to
generate the ResultClass object. The total number of results returned by Q2 queries
being higher than that of Q1 queries also gives rise to the larger T, — T, values. For the
Q2 test, the average T,, T, and T, are 10488ms, 18107.3ms and 18839.8ms, respectively,

and the average value of R, + Ry is 15433.6.

6.4 Q3 Test Results

We tested Q3 point + radius search using 15 sample query points spread in the 15 counties

in New Brunswick, Canada with radius 5m, 50m and 500m and 5000m, respectively.
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The line graph in Figure 6.5 illustrates the changes of the T,, Ty and T, measured in ms
with increasing R, + R,. As we can see, T, and T, show an increase in proportion to the
total number of point results and polygon results returned; 7, remains relatively steady for
most values of R, + R,; at around 200 ms. The steady performance of 7, is consistent with
the constant average query complexity O(logy, D, + y) of the R* tree, although O(D,,) is
the worst case time complexity for a rectangle intersecting a set of n records, where D,, is
the number of objects indexed in the R* tree, and y is the number of the records found in
range (see section 4.6). Similar to Q1 and Q2, a constant value of T, — Ty still holds, with
an average of 580.68 ms. The time cost for the entire search process (7.) and the server
side (including C++ and Java) processing time T} are significantly higher than the C++
processing time 7T.. In Table 6.5, the average value of T, — T, is 3411.63. The value of
T, — T, is considerably higher than that for Q1, but lower than that for Q2. A main reason
for the lower value is due to the size of the results returned by Q3, which is less than that
of Q2, but generally more than that of Q1. The time spent on analysing and interpreting
the returnList gives rise to these differences. For the Q3 test, the average T, Ty and T,
are 191.5ms, 3603.2ms and 4183.9ms, respectively, and the average value of R, + R, is
1313.4.
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Figure 6.5: Search engine C++ processing time T, server side (including C++ and Java)
processing time Ty and total query time T, plotted versus the number of returned search
results for Q3 queries R, + R,
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Chapter 7

Summary and Conclusions

7.1 Summary

A search engine system called TexSpaSearch supporting text with spatial constraints
searching is presented in this thesis. A polygon simplification algorithm PackPolygon is
proposed in the data preprocessing phase, which is a variant of the RDP algorithm. We
indexed the UNB Connell Memorial Herbarium database of 40,791 records using the R*
tree and suffix tree simultaneously, and designed data structures for efficiently combining
them to realize the Q1(¢), Q2(¢t,r) and Q3(p,r) queries. A Lucene scoring algorithm is

implemented to rank the text search results.

A Java-based web application was implemented to provide the web user interface for our
search engine. It also handles sending and receiving requests and responses between the
clients and the server, communicating with the C++ back end program through TCP
sockets, analysing the results returned by the C++ program, and interpreting the results
to generate the corresponding web pages. We use JSP pages to generate search results

dynamically. The Java server transmits messages to the JSP pages using session objects.
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7.1.1 Contributions

This thesis presents an innovative Q2(¢,r) query definition and text + spatial data struc-
tures supporting Q2 as well as Q1(¢) and Q3(p,r) search simultaneously. To our knowledge,
this is the first data structure supporting all three query types. Our data structure can
also return points or polygons describing spatial objects resulting from Q2 or Q3 queries.
Our R*-tree data structure is, to our knowledge, the first one to efficiently pack simplified
polygons defined by up to wp points into the leaf nodes. Leaf nodes can also contain up
to B points. A modified Lucene scoring algorithm was designed and implemented. This
modified Lucene scoring uses words and subphrases instead of fields and multiword terms
to provide a better way to index and search free-form-text. We also present a novel scheme
for ranking combined text and spatial search results. To improve the efficiency of returning
ranked text search results, our suffix tree data structure contains precomputed components
(e.g. term frequency, document frequency) needed by the modified Lucene scoring algo-
rithm. A unique scheme for displaying the Q1, Q2 and Q3 search results was designed
and implemented. Although the efficiency for Q1 text search compared to the GSA is low,
our theoretical analysis does show a highly efficient search cost when the number of results

returned is large.

7.2 Conclusions

The TexSpaSearch engine can perform Q1(¢), Q2(¢,r) and Q3(p,r) queries successfully,
and can rank the search results reasonably. The experimental results on the 20 sample
query strings for the Q1 text only query indicate an average 45.5 times slower search time for
T, (total query time) and 16.95 times slower search time for 7, (C++ side processing time)
compared with a Google Search Appliance, but returns a wider range of results (records

containing any subphrase of the query string) than the GSA. The average query time for
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Q1 is 825.8ms, with on average 899.35 results returned, while the average theoretical query
time for Q1 is O(A2W). For a Q2 query, the average query time is 18839.8ms to return
an average number of records is 15433.6, and the average theoretical query time for Q2 is
O(A2m+ Zlog s Dy +y). Q3 test gives an average query time of 4183.9ms for an average
1313.4 returned records, when the average theoretical query time for Q3 is O(log, D, +v).
A constant value of T, — T, where T, stands for the total query time and 7T is the server
side (including C++ and Java) processing time, holds for all the three query types due to
the data contained in the generated web page being approximately constant (the number

of results displayed on each page is limited to e.g. 5 for Q1, and 3 for Q2 and Q3).

7.3 Future Work

Future work on improving and testing the TexSpaSearch engine might include the following

topics:

1. Time did not permit us to complete the nearest neighbour filtering of GSA ranked
results as planned. Nearest neighbour filtering of GSA search results might be added

in the future.

2. We implement a Q2 text + spatial query by performing the text search first. Can

the Q2 query be achieved in the inverse order (perform spatial query first)?

3. It would be useful to test the performance of TexSpaSearch on different operating

systems, web browsers and on a much larger database.

4. Evaluation of the search engine by those with domain knowledge (e.g. biologists
for the herbarium database) would be valuable to determine how the TexSpaSearch

engine could be improved.
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5. How can support for approximate spatial search be incorporated? For example an

approximate query might be “find pitcher plants near Fredericton”.

127



References

[10]

[11]

[12]

[13]

[14]

http://code.google.com/apis/searchappliance/documentation/610/, accessed
May 22, 2011.

Apache hitp server project, http://httpd.apache.org/, accessed November 4, 2011.
Apache lucene, http://lucene.apache.org, accessed November 10, 2013.
Arcgis, http://en.wikipedia.org/wiki/ArcGIS, accessed December 4, 2012.

Code page 437, http://en.wikipedia.org/wiki/Code_page_437, accessed Novem-
ber 4, 2011.

English stopwords, http://www.ranks.nl/resources/stopwords.html, accessed
November 1, 2013.

Fichier: Douglas peucker.png, http://fr.wikipedia.org/wiki/Fichier:Douglas\
_Peucker.png, accessed December 6, 2012.

The google geocoding api, https://developers.google.com/maps/documentation/
geocoding/#GeocodingRequests, accessed December 3, 2012.

Google Search Appliance, Available at http://en.wikipedia.org/wiki/Google_
Search_Appliance.

Google  search  appliance  help  center, https://gsal.lib.unb.ca:8443/
EnterpriseController/crawl_urls.html, accessed November 7, 2011.

Great-circle distance, http://en.wikipedia.org/wiki/Great-circle_distance,
accessed December 16, 2012.

Interface  servlet, http://tomcat.apache.org/tomcat-5.5-doc/servlietapi/
javax/servlet/Servlet.html, accessed May 12, 2014.

Iso/iec 8859-1, http://en.wikipedia.org/wiki/IS0/IEC_8859-1, accessed Novem-
ber 12, 2011.

Lucene, http://en.wikipedia.org/wiki/Lucene, accessed November 10, 2013.

128



[21]

[22]
23]
[24]

[25]

[20]

[27]

28]

[29]

[30]

Lucene as a ranking engine., http://www.wortcook.com/pdf/lucene-ranking.pdf,
accessed November 10, 2013.

Lucene java doc, class similarity., http://lucene.apache.org/java/2_4_1/api/
org/apache/lucene/search/Similarity.html, accessed November 10, 2013.

Pagerank, http://en.wikipedia.org/wiki/PageRank, accessed May 22, 2011.
Shapefile ¢ library, http://shapelib.maptools.org/, accessed December 1, 2012.

Snb geographic data & maps products € services, http://www.snb.ca/gdam-igec/
e/2900e_1.asp, accessed December 1, 2012.

Spatial search, http://wiki.apache.org/solr/SpatialSearch, accessed December
4, 2011.

Specimen Label Data for the Connell Memorial Herbarium, Available at http:
//herbarium.biology.unb.ca/fmi/iwp/res/iwp_auth.html.

Suffix tree, http://en.wikipedia.org/wiki/Suffix_tree, accessed June 23, 2011.
Trie, http://en.wikipedia.org/wiki/Trie, accessed December 4, 2011.

World geodetic system 1984 - background, http://www.dqts.net/wgs84.htm, ac-
cessed December 15, 2012.

David Austin, How google finds your needle in the web’s haystack, http://wuw.ams.
org/samplings/feature-column/fcarc-pagerank, accessed May 22, 2011.

Norbert Beckmann, Hans-Peter Kriegel, Ralf Schneider, and Bernhard Seeger, The
r*-tree: An efficient and robust access method for points and rectangles, SIGMOD
Conference, 1990, pp. 322-331.

Jon Louis Bentley, Multidimensional binary search trees used for associative searching,
Commun. ACM 18 (1975), no. 9, 509-517.

Monica Bianchini, Marco Gori, and Franco Scarselli, Inside pagerank, ACM Trans.
Internet Technology 5 (2005), no. 1, 92-128.

David H. Douglas and Thomas K. Peucker, Algorithms for the reduction of the number
of points required to represent a digitized line or its caricature, Cartographica: The
International Journal for Geographic Information and Geovisualization 10 (1973),
no. 2, 112-122.

Martin Farach, Optimal suffiz tree construction with large alphabets, FOCS, 1997,
pp. 137-143.

129



[31]

[32]

[33]

[34]

[37]

[38]

Radu Gruian, Patricia trie template class, http://www.codeproject.com/Articles/
9497/Patricia-Trie-Template-Class, July 2007, accessed January 1, 2013.

Dan Gusfield, Algorithms on strings, trees, and sequences - computer science and
computational biology, Cambridge University Press, 1997.

Antonin Guttman, R-trees: A dynamic index structure for spatial searching, SIGMOD
Conference, 1984, pp. 47-57.

Dan Han and Bradford G. Nickerson, Comparison of text search ranking algorithms,
Tech. report, TR11-209, Faculty of Computer Science, University of New Brunswick,
August 2011.

Jan T. Heuer and Soren Dupke, Towards a Spatial Search Engine Using Geotags,
GI-Days 2007 - Young Researchers Forum (Florian Probst and Carsten Kefler, eds.),
IfGIprints, 2007.

Robert W. Irving and Lorna Love, Suffix binary search trees and suffix arrays, Tech.
report, TR-2001-82, Computing Science Department Research Report, University of
Glasgow, March 2001.

, The suffix binary search tree and suffiz avl tree, J. Discrete Algorithms 1
(2003), no. 5-6, 387-408.

Christopher B. Jones, Alia I. Abdelmoty, David Finch, Gaihua Fu, and Subodh Vaid,
The spirit spatial search engine: Architecture, ontologies and spatial indexing, GI-
Science, 2004, pp. 125-139.

Udi Manber and Eugene W. Myers, Suffix arrays: A new method for on-line string
searches, STAM J. Comput. 22 (1993), no. 5, 935-948.

Edward M. McCreight, A space-economical suffiz tree construction algorithm, J. ACM
23 (1976), no. 2, 262-272.

Gahyun Park and Wojciech Szpankowski, Towards a complete characterization of tries,
Proceedings of the sixteenth annual ACM-SIAM symposium on Discrete algorithms
(Philadelphia, PA, USA), SODA ’05, Society for Industrial and Applied Mathematics,
2005, pp. 33—42.

A Rajaraman and J. D. Ullman, Mining of massive datasets, (2011), 1"C17.

Urs Ramer, An Iterative Procedure for the Polygonal Approximation of Plane Curves,
Computer Graphics and Image Processing 1 (1972), 244-256+-.

H. Samet, Foundations of multidimensional and metric data structures, Morgan Kauf-
mann, 2006.

130



[45]

[46]

[47]

[48]

Qingxiu Shi, Data structures for efficient search in high-dimensional spaces, Ph.D.
thesis, University of New Brunswick, 2002.

Dustin Spicuzza, A header-only  c++ r*  tree  implementation.,
http://www.virtualroadside.com/blog/index.php/2008/10/04/
r-tree-implementation-for-cpp/, accessed November 14, 2013.

Esko Ukkonen, On-line construction of suffix trees, Algorithmica 14 (1995), no. 3,
249-260.

Peter Weiner, Linear pattern matching algorithms, Proceedings of the 14th Annual
Symposium on Switching and Automata Theory, SWAT 1973, Washington, DC, USA,
IEEE Computer Society, 1973, pp. 1-11.

131



Appendix A

Stopwords list

a about above after again against
all am an and any are
aren’t as at be because | been
before being below between | both but
by can’t cannot could couldn’t | did
didn’t do does doesn’t | doing don’t
down during each few for from
further had hadn’t has hasn’t have
haven’t having he he’d he’ll he’s
her here here’s hers herself | him
himself his how how’s i i'd

il i'm i've if in into
is isn’t it it’s its itself
let’s me more most mustn’t | my
myself no nor not of off

on once only or other ought
our ours ourselves | out over own
same shan’t she she’d she’ll she’s
should shouldn’t | so some such than
that that’s the their theirs them
themselves | then there there’s | these they
they’d they’ll they’re they’ve | this those
through to too under until up
very was wasn’t we we’'d we’ll
we're we’ve were weren’t | what what’s
when when’s where where’s | which while
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who who’s whom why why’s with
won'’t would wouldn’t | you you'd you'll
you're you've your yours yourself | yourselves
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