
Estimating the Safety Function Response Time for
Wireless Control Systems

by

Victoria Pimentel

TR15-234, March 2015

This is an unaltered version of the author’s MCS thesis
Supervisor: Bradford G. Nickerson

Faculty of Computer Science
University of New Brunswick
Fredericton, N.B. E3B 5A3

Canada

Phone: (506) 453-4566
Fax: (506) 453-3566
E-mail: fcs@unb.ca

http://www.cs.unb.ca

Copyright © 2015 Victoria Pimentel Guerra



Abstract

Safety function response time (SFRT) is a metric for safety-critical automation sys-

tems defined in the IEC 61784-3-3 standard for single input and single output systems

communicating over wired technologies. This thesis proposes a model to estimate

the SFRT for multiple input and multiple output feedback control systems communi-

cating over the IEEE 802.15.4e wireless medium access control standard designed for

process automation. The wireless SFRT model provides equations for the worst case

delay time and watchdog timer of participating network entities, including wireless

communication channels. Thirty-nine on board, wired and wireless control experi-

ments using real devices were carried out to evaluate control performance, and the

applicability of the wireless SFRT model. The estimated SFRT for the wired im-

plementation is 38.2 ms. For the wireless experiments, the best SFRT obtained

was 655.4 ms with no acceptable packet loss. The wireless implementation failed to

provide successful control on 15 of the 21 experiments.
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Chapter 1

Introduction

Automation involves the interconnection of different devices to achieve tasks for in-

dustrial processes. Devices can work together to implement control systems, and for

monitoring and supervising, among other tasks. When distance between devices is

not a factor, closed-loop control systems are extensively employed to regulate the

behaviour of a variable [13]. Figure 1.1 shows a block diagram representing a closed-

loop control system. As explained by Frederick and Carlson [13], the plant is the part

of the system that performs certain work that needs to be controlled. To implement

this control, some of the plant’s output variables are monitored by appropriate sen-

sors. The sensors generate readings that are compared by the comparator with the

desired reference values. The difference between a sensor reading and its reference

value is communicated to the controller which dictates the control strategy, that is

Figure 1.1: Elements of a closed-loop control system (from [13]).
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Table 1.1: Wireless industrial control usage classes (adapted from [23]).

Type Class Description Characteristic
Safety 0 Emergency action Always critical

Control

1 Closed loop regulatory
control

Often critical

2 Closed loop supervisory
control

Usually non-critical

3 Open loop control Human in the loop

Monitoring

4 Alerting Short-term operational
consequence

5 Logging and download-
ing/uploading

No immediate opera-
tional consequence

the corrective action that should be applied to the plant. The actuator, which is a

device that can perform actions to affect the operation of the system, implements

or executes the control strategy. Then, the process is repeated and variations in the

output resulting from changes in the forward path are fed back to the system for

corrective action. This concept of feeding the system with the plant’s output is the

main characteristic of closed-loop or feedback control systems.

Some of the blocks in Figure 1.1 can be implemented in different devices in close

physical proximity. Communication between the set of devices involved in the control

system becomes an important factor to achieve the desired behaviour. Typically the

communication occurring at this level is critical, some systems might be required

to implement safety functions that are intended to achieve or maintain a safe state

for the equipment under control [21]. Table 1.1 presents 6 usage classes for inter-

device industrial wireless communication. Each class has different characteristics

and different communication requirements.

Safety communication and integrity has been addressed by IEC standards, such

as the IEC 61784-3 [20] and IEC 61784-3-3 [21]. One of the system requirements

defined by the IEC 61784-3-3 is the safety function response time (SFRT) and is

considered one of the most important metrics for safety-critical applications [3]. The

estimation of the SFRT provides important metrics that study the performance of
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a control network and evaluate if it is suitable for implementing safety and critical

functions, which are widely used in automation. The SFRT was introduced and

defined for wired fieldbus technologies, specifically for PROFIsafe, the safety profile

that runs on top of PROFIBUS [24] .

The use of wireless technologies on automation can potentially lead to significant

cost savings, e.g. reduce installation costs by a factor of 10 [28] [34]. Wiring can

be expensive and the installation can be time consuming, especially in industrial

environments where wires might require special coating, e.g. fire protection coating.

Wireless technologies also provide ease of operation, installation, and maintenance.

Wireless is more flexible and can provide communication in environments where

wiring is not possible [29].

For an appropriate use of wireless technologies in industrial environments, con-

cepts that were initially devised for wired technologies should be applied. This would

provide the same safety metrics, and a comparison of process quality can be estab-

lished. Due to the characteristics of the wireless medium, i.e. non-deterministic

shared medium, however, applying the same concepts as wired technologies, e.g.

estimating delays, is non-trivial. Deterministic communication is not possible for

wireless channels due to interference and other unpredictable factors.

1.1 Problem Statement and Objectives

The safety function response time (SFRT) is considered one of the most important

metrics for safety-critical applications. Currently, it is defined and modelled on the

IEC 61784-3-3 standard for single input single output systems operating with wired

technologies. The calculation of the SFRT requires the estimation of the worst

case delay times and watchdog timers of the participating network entities. The

IEC 61784-3-3 standard leaves the responsibility of providing the exact calculation

3



methods to manufacturers.

This thesis studies the application of the SFRT model to wireless networks. This

thesis attempts to answer the following questions:

1. How can the SFRT of a wireless network be defined?

2. How can worst case delay times of wireless channels be defined and calculated?

3. Can the current definition of SFRT be extended to include other architectures,

e.g. multiple input multiple output (MIMO) systems and multi-hop topologies?

4. Can existing industrial wireless communication protocols be incorporated in a

model to estimate the SFRT?

5. How feasible is to apply the SFRT model on real wireless networks?

6. Can wireless technologies provide the same process quality on industrial appli-

cations as wired technologies?

IEC 61784-3-3 communication channels are not required to implement any safety

measure, but the channel can be adapted to better accommodate the implementation

of a safety function. Åkerberg et al. [3] demonstrated that changing the network

schedule can reduce the SFRT. One of the network entities considered for calculating

the SFRT is the transmission delay. The media and protocol of the communication

channel directly affect the transmission delay, as demonstrated by Anand et al. in

[4].

This thesis proposes to take into account the communication channel as a factor

that affects the performance of the implementation of a safety function by a network,

and thus the channel can be adapted to better accommodate such requirements. To

achieve this, this thesis proposes a model to estimate the SFRT on a network im-

plementing a feedback control loop, as control loops are extensively employed in

control systems. The model takes into account factors that affect network delay, e.g.

4



medium access technique, communication protocol, number of devices and network

topology. The model considers the delays which the network entities incur when

implementing the blocks from the closed-loop control system while communicating

with each other wirelessly. The worst case delay times and watchdog timers are mod-

elled for all participating entities in the network, including wireless communication

channels.

This thesis includes an experimental validation where the SFRT of a wireless

feedback control system is estimated using the proposed model. The experimental

validation evaluates the applicability of the model, and the feasibility of obtaining

the input required by the model. The experimental validation also evaluates the

performance of wireless communication when used in feedback control systems, where

high speed reliable communication is required to maintain control of the system.
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Chapter 2

Background

2.1 Control Networks

The fieldbus is a well known technology standardized in the IEC 61158 [17] standard

and is commonly used for real-time control networks. Initially developed to avoid

wiring problems that arise when working with some networks topologies such as

point-to-point and star-like, the fieldbus provides two way communication between

field devices in a shared medium. The fieldbus operates in a ring topology fashion

where devices can communicate with each other through the bus, i.e. the shared

medium. The idea of a shared bus for the communication of field devices can be

traced back to 1970 when the roots of the modern fieldbus technology were conceived

[41].

The International Electrotechnical Commission (IEC) has played an important

role on the fieldbus standardization. Due to the many and different application fields

of the fieldbus technology, different committees work on standardization activities

inside and outside the IEC. Other organizations are the International Organization

for Standardization (ISO), the European Committee for Standardization (CEN), and

the European Committee for Electrotechnical Standardization (CENELEC).
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Figure 2.1: WirelessHART, ISA 100.11a and 6LoWPAN protocol stacks.

The fieldbus was designed as a wired technology, but the motivation for wireless

gave way to the development of wireless communication protocols targeting real-

time control networks and industrial applications. WirelessHART (Wireless Highway

Addressable Remote Transducer protocol) and ISA 100.11a (International Society of

Automation) are two examples.

6LoWPAN (IPv6 over Low-power Wireless Personal Area Networks) is a wireless

communication protocol designed to enable efficient use of IPv6 (Internet Protocol

version 6) on small devices, and plays an important role in the emerging Internet of

Things [42] [5]. The range of applications for 6LoWPAN is very wide, and its use

for industrial applications has been considered in [35]. 6LoWPAN implements an

adaptation layer to define the specification for transmitting IPv6 packets (at least

1280 bytes [45]) over IEEE 802.15.4 (frames of 127 bytes [45]). The adaptation layer

defines fragmentation, reassembly and header compression.

The protocol stacks of WirelessHART, ISA 100.11a and 6LoWPAN are shown

in Figure 2.1. A detailed comparison between these three wireless communication

protocols can be found in [36].

Wireless communication is carried in an open medium. As a consequence, wireless

networks are especially vulnerable to two of the four classes of network attacks shown

in [15]; fabrication and interruption attacks. Wireless communication is especially

7



vulnerable to continuous jamming at all frequencies and collisions attacks [8], during

which data transmission is made impossible.

2.2 Safety Considerations for Network Control

Motivation for safety related communication networks initially arose for railway ap-

plications [22], and has been applied in other areas since. For example, Jiang et

al. [25] present a design for vehicular safety communication. They propose a sys-

tem that warns the driver or the vehicle system of potentially dangerous situations.

They illustrate with an example where a vehicle that is stopping or moving slowly

broadcasts its presence to other vehicles. Another vehicle approaching fast can be

aware of the presence of the first vehicle and carry out the proper action (e.g. per-

form a quick maneuver) while broadcasting the message to other vehicles. This

situation is an example where special communication is needed to respond or alert

about an emergency or system state that can cause harm to humans. To achieve

communication in this and other similar situations, Jiang et al. [25] define safety

messages and safety communication protocols on top of the Dedicated Short Range

Communication (5.9 GHz DSRC) standard.

Similarly, in industrial control networks there are many situations, e.g. extremely

high or abnormal temperature or pressure values, where the safety of humans is

directly involved. In these cases, systems are required to implement safety functions

to keep risks at an acceptable level [1].

2.2.1 IEC 61784-3-3

Safety integrity can be claimed by systems that comply with the rules specified in

the IEC 61508 [19] standard. For wired fieldbus, safety profiles were introduced in

the IEC 61784-3 [20] standard, where the the black channel principle was defined.
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The black channel principle simplifies the implementation of safety related measures

by adding a safety layer on the device protocol stack. This safety layer comprises

all measures to deterministically discover any fault that could be introduced by

the communication channel. As a consequence, the communication channel does

not implement any safety measures and only serves as the transmission medium for

data packets and safety frames by non-safe and safe applications. The black chan-

nel principle provides interoperability, because the safety layer can be implemented

regardless of the transmission medium.

The IEC 61784-3-3 [21] standard defines additional safety specifications for in-

dustrial process measurement, control and automation. One-hop communication

channels are defined between a controller (fail-safe host, F-Host) and a device (fail-

safe device, F-Device) for the exchange of safety packet datagram units (PDU).

The IEC 61784-3-3 standard also defines an important safety metric; the safety

function response time (SFRT). The SFRT is defined as the worst case time elapsed

from the actuation of a safety sensor connected to a fieldbus, until the safe state of

the corresponding safety actuator is achieved in the system in the presence of errors

in the channel. The IEC 61784-3-3 standard describes an architecture that consists

of five network entities: (a) input, (b) transmission delay 1, (c) fail-safe host, (d)

transmission delay 2, and (e) output. Delays from these five entities define the SFRT

term, illustrated in Figure 2.2 and defined in the IEC 61784-3-3 standard with the

following equation:

SFRT =
n∑

i=1

WCDTi + max
i=1,2,...,n

(WDTimei −WCDTi) (2.1)

where:

• n is the number of network entities, n = 5 for the architecture described in the

standard,
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Figure 2.2: Safety function response time definition for the IEC 61784-3-3 model.

• WCDTi is the worst case delay time of entity i. Thus,
n∑

i=1

WCDTi represents

the total worst case delay time for n entities,

• WDTimei is the watchdog timer of entity i, which takes the necessary actions

to activate the safe state whenever a failure or error occurs within entity i, and

• ∆T WDi = WDTimei −WCDTi, where ∆T WDi is included as it appears in

Figure 2.2.

The watchdog timer is implemented as a countdown timer in all participating

network entities. Upon the expiration of the local timer, the entity abandons normal

operation and activates its safe reaction to reach a safe state. Safe reactions are

defined in the IEC 61784-3-3 standard for each device entity. For example, the

safe reaction for the output entity consists of shutting down the outputs, and the

automatic safe reaction of the actuator unit. The safe reaction of all the network

entities constitute the fault reaction of the system. For each of the five network

entities, the watchdog timer is defined in the IEC 61784-3-3 standard as follows:
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1. For i = Input, F-Host, or Output,

WDTimei = OFDTi (2.2)

2. For i = TD1,

WDTimei = F WD Time1 + WCDTTD1 + TcyF-Host (2.3)

3. For i = TD2,

WDTimei = F WD Time2 + WCDTTD2 + DATOutput (2.4)

where:

• OFDTi is the one fault delay time of entity i, i.e. worst case delay time in case

of a fault within entity i,

• TDi is the transmission delay entity i,

• F WD Timei is the fail-safe watchdog timer of entity i. The minimum F WD Time

is defined for a 1:1 safety protocol datagram unit (PDU) exchange using PROFIsafe,

and is composed of four time delays; DAT (Device Acknowledgement Time),

HAT (Host Acknowledgement Time), and two bus transmissions,

• WCDTi is the worst case delay time of entity i, and

• TcyF-Host is the F-Host entity cycle time.

DAT and HAT are two acknowledgement times measured by the device and the

host, respectively. The acknowledgement time is the time the entity takes to process

the PROFIsafe protocol and prepare a new safety PDU with the currently available

process values.
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The worst case of transmission delays are required to calculate the SFRT of the

system. To get a good estimate of these magnitude, deterministic communication

is ideal. Most of the time, however, deterministic communication is not possible for

wireless channels due to interference and other unpredictable factors.

A wireless approach to estimate the SFRT was done by Åkerberg et al. [3]

where they propose a framework for safe and secure communication regardless of the

communication media and based on the black channel principle. One of the metrics of

the proof-of-concept experiment is the SFRT that is calculated using Equation (2.1)

with values provided by the authors. An approach to measure SFRT components

was not included.

Bertocco et al. [6] propose an approach to estimate device delays, specifically

access points, in hybrid wireless and wired real-time industrial networks.

2.2.2 IEEE 802.15.4e

IEEE 802.15.4 [32] is a standard that provides a framework for the physical and

MAC layers of LR-PANs (low rate personal area networks). These networks have

typically low complexity, low energy consumption and low cost [39].

The IEEE 802.15.4 standard can be applied with different configurations. For

example, there could be non-beacon or beacon enabled PANs, slotted or unslotted

medium access, implementation of the Carrier sense multiple access with collision

avoidance (CSMA/CA) or Aloha protocols, star or peer-to-peer network formations,

among other optional parameters.

Amendments and refinements of the IEEE 802.15.4 have been done over the past

few years. Some of the most recent amendments are:

• IEEE 802.15.4g (2012): amendment to the physical layer for low data rate,

wireless, smart, metering utility networks.
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• IEEE 802.15.4e (2012): amendment to the MAC layer to support better the

industrial market and permit compatibility with Chinese WPAN.

• IEEE 802.15.4f (2012): amendment to the physical layer that defines the Ac-

tive Radio Frequency Identification (RFID) System for applications combining

low cost, low energy consumption, reliable communication and precision on

location.

• IEEE 802.15.4k (2013): amendment to the physical layer for low energy critical

infrastructure monitoring networks.

• IEEE 802.15.4j (2013): amendment to the physical layer to support medical

body area networks.

Specifically, the IEEE 802.15.4e [33] amendment arises to support specific and

critical requirements of industrial applications, such as low latency, robustness and

determinism, that are not adequately addressed by IEEE 802.15.4-2011. The IEEE

802.15.4e standard provides MAC amendments for specific industrial application

domain requirements under the modes shown in Table 2.1; timeslotted channel hop-

ping (TSCH), low latency deterministic network (LLDN), and deterministic and

synchronous multi-channel extension (DSME).

Of interest to this thesis are industrial applications, specifically process automa-

tion. Some examples of process automation industries are oil, gas, pulp and paper

[2]. The main characteristic of process automation, unlike discrete manufacturing,

is the continuous nature of the production process. Åkerberg et al. [2] present three

groups of sensor network applications and their requirements for the process automa-

tion domain. These groups are: monitoring and supervising, closed loop control, and

interlocking and control. These groups match the wireless industrial control usage

classes presented in Table 1.1. For monitoring and supervising, corresponding to
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Table 2.1: MAC modes introduced in the IEEE 802.15.4e standard for specific in-
dustrial application domains.

Mode Application Major
requirement

Topology Medium
access

Synchro-
nization

Discovery

TSCH Process
automation

Network
robustness

Any CSMA-
CA,
guar-
anteed,
channel
hopping

Frames in
defined
timeslots

TSCH
enhanced
beacons

LLDN Factory
automation

Very low
latency,
high cyclic
determin-
ism

Star,
many
devices

TDMA,
GTS

Beacons,
super-
frames

Discovery
state
beacons

DSME Industrial,
commer-
cial and
healthcare

Determin-
istic la-
tency,
flexibility

Any,
many
devices

Multi-
channel,
multi-
super-
frame,
GTS

Beacons
from time
synchro-
nization
parent

DSME
enhanced
beacons

usage classes 4 and 5, the required update interval of sensors ranges between sec-

onds and days. For closed loop control, corresponding to usage classes 1 to 3, the

required update interval of sensors ranges between 10 and 500 ms. For interlocking

and control, also corresponding to usage classes 1 to 3, the required update interval

of sensors ranges between 10 and 250 ms.

2.2.2.1 Timeslotted Channel Hopping

Typical process automation industries in which the timeslotted channel hopping

(TSCH) mode could be used are: oil and gas, food and beverage products, chem-

ical and pharmaceutical products, water and waste water treatment, green energy

production, and climate control [33].

The IEEE 802.15.4e standard defines two main features of TSCH; time synchro-

nized communication and channel hopping. Time synchronization is achieved by the
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exchange of acknowledged frames and providing timing corrections via the ACK/-

NACK Time Correction information element (IE), i.e. a frame or packet containing

an ID, a length, and a data payload, used to specify synchronization information.

Time synchronization information is represented with a signed 16 bit time correction

number in the range of -2,048 µs to 2,047 µs (approximately -2 to 2 ms), where 2

bits are needed for specifying positive or negative ACK. TSCH is defined for star or

full mesh topologies.

TSCH uses different types of IEs, not only to keep time synchronization in the

network, but also to advertise the network to new devices. A TSCH personal area

network (PAN) is formed when the PAN coordinator advertises the presence of the

network using enhanced beacons (EB), a type of IE. The join priority of the PAN

coordinator is zero, where lower join priority means that the device is the preferred

one to connect to. EBs contain information about the network, such as the timeslot

ID, the length of one timeslot, the minimum time to wait for the start of an ac-

knowledgement, and transmission time to send the maximum length frame, among

others.

Timeslots are a very important unit of time on TSCH. The IEEE 802.15.4e

standard defines a timeslot as a defined period of time during which a frame and an

acknowledgement may be exchanged between devices. Slotframes are defined as a

collection of timeslots repeating cyclically in time. Slotted communication reduces

collisions and minimizes the need for retransmissions.

Access to transmission on a timeslot can be guaranteed or based on request.

Guaranteed on dedicated timeslots, i.e. timeslots that are reserved for the commu-

nication of a specific pair of devices. For shared timeslots, transmission is based

on request using CSMA/CA. Unlike for shared timeslots, there is no waiting for

transmission on dedicated timeslots.

An example of a slotframe with three timeslots is shown in Figure 2.3a. Times-
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(a) Slotframe with three timeslots.

(b) Multiple slotframes operating simultaneously.

Figure 2.3: Examples of slotframes in a network (from [33]).

lots 0 and 1 are dedicated timeslots reserved for the communication from device A

to device B, and from device B to device C, respectively. Timeslot 2 is a shared

timeslot and it is not reserved for any pair of devices. The absolute slot number

(ASN) indicates the total number of timeslots that have elapsed since the start of

the network or since an arbitrary time determined by the PAN coordinator.

TSCH also supports the use of multiple slotframes of different size operating

simultaneously in one network. An example of multiple slotframes is shown in Figure

2.3b. Multiple slotframes, each with their own unique identifier slotframeHandle,

provide multiple schedules for groups of devices that may need to communicate at

different duty cycles. Not all devices need to participate in all slotframes, and one

device can participate in multiple slotframes even at the same time. When one device

has communication links in multiple slotframes at the same time, transmissions take

precedence over receives, and a lower slotframeHandle identifier of the slotframe
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Figure 2.4: OpenWSN protocol stack.

takes precedence over higher slotframeHandle identifiers.

For one timeslot with the default length of 10 ms, after one transmission and

if no ACK is received or a NACK is received, there is not enough time for a re-

transmission of the packet. As a consequence, the IEEE 802.15.4e standard defines

that retransmissions, if required, will occur in the next available timeslot. Devices

should implement an exponential backoff mechanism as described in the standard.

Retransmission on a dedicated link may occur at any time. If an acknowledgement

is still not received after macMaxFrameRetries retransmissions, the MAC sublayer

assumes the transmission has failed and acts accordingly by notifying an upper layer.

For example, for macMaxFrameRetries = 4, retransmission is assumed to be failed

after 4 tries where there was no reply or a NACK was received.

OpenWSN [43] is a project that implements the open source standards-based

protocol stack shown in Figure 2.4. OpenWSN implements the IEEE 802.15.4-

2006 standard at the physical (PHY) layer, the TSCH mode of the IEEE 802.15.4e

standard at the medium access (MAC) layer, the Internet Engineering Task Force

(IETF) implementations of IPv6 over Low-power Wireless Personal Area Networks
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(6LoWPAN) and the IPv6 Routing Protocol for Low-Power and Lossy Networks

(RPL) at the adaptation and Internet Protocol (IP)/routing layers, respectively, the

User Datagram Protocol (UDP) and Transmission Control Protocol (TCP) at the

transport layer, and the Constrained Application Protocol (CoAP) and Hypertext

Transfer Protocol (HTTP) at the application layer. To the author’s best knowledge,

OpenWSN is the only open source implementation of the TSCH mode of IEEE

802.15.4e.

OpenWSN consists of firmware and the OpenVisualizer software. The firmware is

implemented in C and consists of the protocol stack that runs on small, i.e. low power

and processing limited, devices also called motes. The OpenWSN firmware supports

many hardware platforms, such as TelosB, GINA, and OpenMote, among others.

The OpenVisualizer software is implemented in Python, and runs on a computer.

OpenVisualizer interacts with the OpenWSN motes, and displays information about

the OpenWSN network, such as routing structures, packet queues, network schedule,

and error messages. OpenVisualizer also provides connectivity over a virtual interface

between the OpenWSN network and the Internet. Remote programs can connect to

the virtual interface in order to communicate with motes in the OpenWSN network.

The OpenWSN firmware includes the specification of the network schedule, which

is a set of timeslots that can be of the following types:

• CELLTYPE ADV: advertisement timeslot during which the PAN coordinator

advertises the network, so other devices can join.

• CELLTYPE TXRX: shared timeslot during which access can is requested using

CSMA/CA, and can be assigned to any device in the network.

• CELLTYPE TX: guaranteed transmission timeslot during which a specific de-

vice is known to have access to the medium for transmission.

• CELLTYPE RX: guaranteed reception timeslot during which a specific device
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is known to be the destination of a guaranteed transmission.

• CELLTYPE SERIALRX: serial timeslot during which the mote is performing

serial communication.

A recent (2013) MAC protocol suitable for time-critical applications was proposed

by Zheng et al. [46]. The proposed MAC, WirArb, is based on user priority to guar-

antee that the most critical communication will occur first, ensuring timely delivery

and real-time performance on critical wireless applications. The authors character-

ize the maximum packet delay based on the communication protocol required by

WirArb.

2.3 Network Delay Models

Mathematical models can be built to estimate and study the behaviour of network

parameters (see e.g. [27], [44] and [6]). Such models are built taking into account

certain variables, like the network protocol and media access control (MAC), and

based on assumptions, for example the number of devices in the network and the

network topology.

Calculation of transmission or processing delays in time units is typically not

included in models, because these delays are implementation dependent and difficult

to estimate. Some models estimate network latency or service delay (e.g. [40]), but

they are based on other more complicated approaches, such as Markov chains.

Cruz provides an extensive study [10] [11] in which the elements on a network

and the traffic flow on those elements are modelled. Delays are calculated for each

element based on traffic flow. The delays of a set of elements are added to calculate

the delay from when a packet enters the network until the packet leaves the network.

The model considers different network topologies and calculates upper bound delays.
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Samaras and Hassapis [40] model the IEEE 802.15.4 unslotted CSMA/CA mech-

anism using an M/G/1 queue [12] combined with a discrete Markov chain. The paper

describes the operation of unslotted CSMA/CA and based on this description the

authors define the states in which a wireless device can be at any given time. These

states are used to define the Markov chain model, from where probability equations

are inferred.

To calculate latency on a wireless sensor network, Ghadimi et al. [14] built a

model for a wireless network that consists of a number of stationary nodes sharing

a common medium. The MAC protocol implemented by the nodes is IEEE 802.11

in the RTS/CTS mode. Packets arrive to the node with a known arrival rate dis-

tributed as a Poisson process and nodes are modeled as an M/G/1 queue. The mean

message latency is defined in a closed form equation for both single hop and multi-

hop networks. The variables needed to calculate mean message latency are derived

from a Markov chain model built specifically for IEEE 802.11 by Bianchi [7]. The

Markov chain model is used to analyze the probability of transmission at each node

and derive channel access delay.

Table 2.2 compares the characteristics of some network delay models. To estimate

the worst case delay time of transmission delays required to calculate the SFRT,

the models in Table 2.2 that consider upper bounds are appropriate. These two

models considering upper bounds do not incorporate medium access. In wireless

networks, the medium access dictates the communication schedule, and should be

taken in consideration when calculating the SFRT. The models by Samaras and

Hassapis, and Ghadimi et al. consider medium access, but they are based on more

complicated models, i.e. Markov chains. Note that the works in Table 2.2 did not

include experiments with real equipment, but simulations were performed.
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Chapter 3

Wireless Safety Function Response

Time Model

3.1 Formulation

The set E = {I,H,O,D} defines the set of network entities divided into four subsets

I, H, O, and D. Here, I, H, O, and D contain the unique index numbers ∈ {1...n}

identifying input, fail-safe host, output and transmission delay entities in the system,

respectively. The safety function response time (SFRT) in Equation (2.1) is redefined

for multiple input and multiple output (MIMO) systems as follows:

SFRT =
∑
m∈E

WCDTEm + max
m∈E

(WDTimeEm −WCDTEm) (3.1)

where WCDTEm is the worst case delay time of all entities in setm. Thus,
∑

m∈E WCDTEm

represents the total worst case delay time of all the entities in the network, and

WDTimeEm is the watchdog timer of all entities in set m.

The n network entities are divided into |I| = kI input entities, |H| = kH fail-safe

host entities, |O| = kO output entities, and |D| = kD transmission delay entities.

Typically, kH = 1 for a feedback control loop.
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Figure 3.1: Network entities implementing the blocks of a feedback control system
as defined in [13].

The wireless SFRT model for MIMO systems extends the IEC SFRT definition

and model, as equation (3.1) becomes equation (2.1) in the case of a single input

single output system; i.e. kI , kH and kO are all 1, and kD = 2.

An input entity is defined as the network element that implements the sensor

block as shown in Figure 3.1. To achieve this, the entity has at least one attached

sensor. The input entity builds a network packet with sensor reading(s) from the

attached sensor(s) and requires access to the network to transmit the packet. An

input entity i has N i
s sensors attached, and there are kI input entities in the network.

Thus, the total number of sensors Ns in the network is defined as

Ns =
∑
i∈I

N i
s (3.2)

The fail-safe host entity is defined as the network element that implements the

comparator and controller blocks as shown in Figure 3.1. The fail-safe host entity

requires access to the network to receive data from the input entities, and to send

control strategies to the output entities.

An output entity is defined as the network element that implements the actuator

block as shown in Figure 3.1. To achieve this, the entity has at least one attached
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actuator. The output entity receives packets from the fail-safe host containing the

corrective action to be implemented by the attached actuator(s). An output entity

i has N i
a actuators attached, and there are kO output entities in the network. The

total number of actuators Na in the network is thus

Na =
∑
i∈O

N i
a (3.3)

3.2 Worst Case Delay Time

The IEC 61784-3-3 standard models the network entities in cycles composed of a

waiting and processing time, but the standard does not define delays of entity cycles.

Each network entity in the control system has to perform a specific action. The

execution of this action is triggered by a stimulus and the entity must respond

accordingly. Table 3.1 shows the stimuli and responses for each entity of the feedback

control system. The stimulus of an entity might be expected during the waiting

time of its cycle, providing the necessary input for processing. During the processing

time, the entity uses the most recent available input data to generate the appropriate

response.

The worst case delay time of each entity is defined as the time elapsed since the

beginning of the entity cycle time until the time when the corresponding response is

achieved as stated in Table 3.1.

3.2.1 Input Entities

The role of the input entity in the feedback control loop is to provide the most recent

information about the state of the variable that is being controlled by the system.

To achieve this, every Wi time units the input entity performs a process that takes

at most Pi time units. These 2 quantities Wi and Pi constitute the cycle of the
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Table 3.1: Stimuli and responses for each network entity implementing a feedback
control system.

Network Stimulus Response
entity
Input New sensor reading(s) Packet with new sensor

reading(s) generated
Transmission
delay

New packet ready to be
transmitted

Packet successfully received
by destination

Fail-safe host Packet with new sensor
reading(s) successfully re-
ceived

Packet with new corrective
action(s) generated

Output Packet with new correc-
tive action(s) successfully
received

Corrective action(s) imple-
mented

input entity i, and vary for different sensors depending on the variable the sensor is

measuring and on the physical device. For example, two different wind sensors from

Gill Instruments Limited can have different update frequency rates varying from 1

to 10 Hz.

The worst case delay time of the input entity is observed at the start of the entity

cycle, meaning the input entity must wait the longest possible time before processing

readings from all the N i
s attached sensors.

For the kI input entities in the network, the worst case delay time to be used in

Equation (3.1) is calculated by the following equation:

WCDTEI = max
i∈I

WCDTi (3.4)

where WCDTi is the worst case delay time of input entity i calculated as follows:

WCDTi = Wi + Pi +

N i
s∑

j=1

P j
s , i ∈ I (3.5)

where Wi is the longest waiting time of input entity i, Pi is the worst case processing

time of input entity i and includes the time to read the available sensor value(s) and
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create a packet for transmission, N i
s is the number of sensors attached to input entity

i, and P j
s is the worst case processing time of sensor j (i.e. the time to obtain a new

reading from sensor j). Note that individual sensor cycle times are not included in

P j
s . The focus for the wireless SFRT model is on the safety function response time,

which always uses the latest sensor readings available.

3.2.2 Fail-safe Host Entity

The role of the fail-safe host is to compare sensor readings with the desired reference

values and dictate the control strategy. Consistent with the IEC 61784-3-3 network

entities, the wireless SFRT model assumes one fail-safe host per feedback control

loop.

The fail-safe host cycle consists of a waiting time Wi, the processing time of

the controller Ci, and the processing time to generate a packet with the corrective

action Pi. After Wi the most recent available sensor readings are used as input by

the controller to generate the corrective action. The controller is executed using a

time triggered program (see [21]), which limits the waiting time to ensure that the

fail-safe host will not wait indefinitely for input data. After executing the controller,

the fail-safe host builds a packet containing the corrective action to be sent to the

output entity.

The appropriate waiting time depends on the nature of the feedback control

loop and on the variable(s) that are being monitored and controlled by the system.

Similarly, processing times depend on the physical device in which the controller is

implemented.

The worst case delay time of a fail-safe host entity is observed at the start of

the entity cycle, meaning the fail-safe host must wait Wi before processing. Thus,

the worst case delay time of the fail-safe host entity to be used in Equation (3.1) is
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calculated with the following equation:

WCDTEH = WCDTi = Wi + Ci + Pi, i ∈ H (3.6)

where |H| = 1, Wi is the longest waiting time of the fail-safe host entity, Ci is the

worst case processing time of the fail-safe host entity to execute the controller, and

Pi is the worst case processing time of the fail-safe host entity and includes the time

to create a packet for transmission.

Fail-safe host processing and waiting times define the fail-safe host entity cycle

time TcyF-Host (see Equation (2.3)) as follows:

TcyF-Host = WCDTEH (3.7)

3.2.3 Output Entities

The role of the output entity is to implement the corrective action in the system as

soon as possible. The action time Aj of actuator j is defined as the longest time

it takes to apply the corrective action to the system. The time required by the

actuator to perform such action depends on the characteristics of the system and

on the actuator physical device. The output entity does not have to wait for the

actuators’ response. As each of the attached actuators receive the corrective action,

they implement it in parallel.

The worst case delay time of the output entity is the longest action time observed

in the N i
a actuators attached to the output entity, plus any waiting and processing

times within the output entity.

For the kO output entities in the network, the worst case delay time to be used
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in Equation (3.1) is calculated by the following equation:

WCDTEO = max
i∈O

WCDTi (3.8)

where WCDTi is the worst case delay time of the output entity i calculated as follows:

WCDTi = Wi + Pi +

N i
a∑

j=1

P j
a +

N i
a

max
j=1

Aj, i ∈ O (3.9)

where Pi is the worst case processing time of output entity i and includes the time

to open and read the new packet recently received, N i
a is the number of actuators

attached to output entity i, P j
a is the worst case processing time of actuator j that

includes receiving the corrective action from the output entity, and Aj is the worst

case action time of actuator j (i.e. the longest time actuator j takes to apply the

corrective on the system).

If processing times within an output entity and all attached actuators is negligible,

Equation (3.9) becomes

WCDTi = Wi +
N i

a
max
j=1

Aj, i ∈ O (3.10)

For the wireless SFRT model to take into consideration any kind of device entity,

the processing and waiting times, i.e. Pi, Wi, Pj, Aj and Ci, are implementation

dependent and are considered as input to the model.

3.2.4 Transmission Delay Entities

Transmission delays are observed in directed communication links that connect de-

vice network entities. The transmission delay of a directed communication link

depends on the protocol implemented by the communication link.

Given a network that operates under the TSCH mode of IEEE 802.15.4e, the
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worst case transmission delay of a directed communication link is observed when a

packet has to wait the longest possible time before transmission. This happens when

the packet is ready to be transmitted at the moment the sender’s dedicated timeslot

ends, meaning that the transmission has to wait for an entire slotframe. Thus, the

worst case delay time of the transmission delay entity i is calculated as follows:

WCDTi = NtsLts, i ∈ D (3.11)

where Nts is the number of timeslots in the slotframe1, including one enhanced

beacon frame for advertising, and Lts is the total length of one timeslot2, including

any unused time after frame transmission and acknowledgement.

The worst case delay time of the kD transmission delay entities to be used in

Equation (3.1) is calculated by the following equation:

WCDTED = kDWCDTi, i ∈ D (3.12)

where kD is the total number of transmission delay entities in the network, and

WCDTi is the worst case delay time of the transmission delay entity i (see Equation

(3.11)).

Equation (3.11) arises from the study of the TSCH mode of the IEEE 802.15.4e,

and the analysis of the configuration parameters that are most suitable for a feedback

control system. Equation (3.11) takes into account waiting and processing times of

the directed communication link, and is based on the following assumptions:

1. The feedback control system is implemented in a network that operates under

the IEEE 802.15.4e protocol in TSCH mode, with a fixed number of devices

1Corresponds to the variable macSlotframeSize defined in the IEEE 802.15.4e. The range for
the variable is any integer between 0 and 65536.

2Corresponds to the variable macTsTimeslotLength defined in the IEEE 802.15.4e. The range
for the variable is any integer between 0 and 65536. The default value is 10, 000µs (10 ms)
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that have already successfully joined the network. There is one dedicated times-

lot per directed communication link, and one timeslot to advertise the network.

A directed communication link consists of a sender-destination pair of devices.

Each directed communication link has access to one dedicated timeslot, mean-

ing guaranteed access to the medium during the timeslot. Guaranteed access

to the medium, however, does not imply that communication will be successful.

2. Consistent with the IEC 61784-3-3 standard, the network is assumed to operate

in a star topology, where devices can be sensors, actuators or the host. The

host is the central device with the role of PAN coordinator and has a one-to-one

communication link with each device in the network. Sensors and actuators

communicate only with the host, and not directly with each other. Sensors

send readings to the host. The host processes readings, calculates the corrective

actions and sends them to the actuators.

3. As a consequence of assuming a star topology, the host is active on every

timeslot of the slotframe, either receiving a frame from a sensor or sending a

frame to an actuator. Except for the device communicating with the host, the

rest of the devices are not trying to access the medium. Thus, there is one

slotframe in the network at any time, and only a pair of devices participate

on each timeslot. If there were to be more than one slotframe on the network

at the same time, the host will certainly be scheduled to participate in more

than one timeslot simultaneously. Multiple slotframes will negatively affect

the worst case delay time of the devices in the network because access to the

medium will no longer be guaranteed. The wireless SFRT model does not

include the possibility of multiple slotframes.

4. The order of timeslots in the slotframe will dictate the communication schedule

of the network, i.e. the order of communication links in the slotframe. This
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order directly affects delays because there will be devices that participate in the

communication cycle earlier than others. Timeslots are assigned to devices as

they join the network, so the order in which devices participate in the slotframe

is not known beforehand.

5. In a feedback control system network, the next available timeslot for a retrans-

mission is the next dedicated timeslot for the corresponding sender-destination

pair. Due to the nature of automation, the data in the feedback control net-

work is valid for a short period of time and propagating new data is pre-

ferred over guaranteed delivery [2]. Thus, the wireless SFRT model specifies

macMaxFrameRetries = 0. This means that if the transmission of a frame fails,

no retransmission is performed. In the next cycle, a new packet with the most

recent information available will be used. If consecutive transmissions fail, the

watchdog timer within the entity will expire and the entity will activate its safe

reaction to reach a safe state. In the wireless SFRT model, acknowledgement

frames are still necessary because they are used by the TSCH mode to perform

timing corrections.

6. Channel hopping is an important feature of the TSCH mode as it can help

mitigate the negative effects of multipath fading and interference. Transmis-

sions hop over the entire channel space according to a calculated frequency

channel sequence. Channel hopping does not affect the moment in which a

device transmits a packet. Thus, it does not affect the worst case delay time

of transmission delay entities.

3.3 Watchdog Timer

The IEC 61784-3-3 standard provides equations to model and calculate watchdog

timers (see Equations (2.2) through (2.4)). The wireless SFRT model extends the
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watchdog timer to consider MIMO systems, and introduces the watchdog timer for

wireless communication links.

3.3.1 Device Entities

The watchdog timer of a device entity is defined as the one fault delay time (OFDT)

of a device entity, and varies for different devices and implementations. As a conse-

quence, OFDT of device entities are considered as input to the wireless SFRT model.

The watchdog timer WDTimeEm to be used in Equation (3.1) is calculated by the

following equation:

WDTimeEm = max
i∈m

OFDTi (3.13)

where m can be I, H, or O, and OFDTi is the one fault delay time of entity i.

3.3.2 Transmission Delay Entities

DAT and HAT are defined in the IEC 61784-3-3 standard as the processing delay

times of the PROFIsafe protocol for a received safety PDU and the preparation of a

new safety PDU on the device and host entities. For the wireless SFRT model, the

DAT corresponds to Pi for i ∈ I (see Equation (3.5)) and HAT corresponds to Pi,

for i ∈ H (see Equation (3.6)).

These two delays DAT and HAT plus two bus transmissions compose the fail-safe

watchdog time F WD Time of a 1:1 PROFIsafe communication link. The wireless

SFRT model assumes that the transmission delay entities are implemented in com-

munication links that operate under the TSCH mode of IEEE 802.15.4e, where in

one timeslot there is enough time for the exchange of an acknowledged frame. As a

consequence, when the input entity is the sender and the host is the destination, one

timeslot includes the HAT and 2 transmissions. On the other hand, when the host

is the sender and the output entity the destination, one timeslot includes the DAT
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and 2 transmissions. This results in

F WD Timei,j = c1(Pj + Lts) (3.14)

where i ∈ D, j ∈ I or j ∈ H, F WD Timei,j is the fail-safe watchdog time of

transmission delay entity i where the sender initializing communication is entity j,

Pj is the protocol processing time of sender entity j, Lts is the total length of one

timeslot, and c1 is a constant. The IEC 61784-3-3 standard recommends c1 values

in the range 1 ≤ c1 ≤ 1.3.

The watchdog timer of transmission delay entity i is defined as

WDTimei = F WD Timei,j + WCDTi, i ∈ D (3.15)

where F WD Timei,j is the fail-safe watchdog time of transmission delay entity i and

sender entity j, and WCDTi is the worst case delay time of transmission delay entity

i.

The watchdog timer to be used in Equation (3.1) is calculated by the following

equation:

WDTimeED =
∑
i∈D

WDTimei (3.16)

where WDTimei is the watchdog timer of transmission delay entity i.

The wireless SFRT model has been applied to a climatic chamber system with 9

network entities implementing a dual control loop of temperature and humidity in

[37].
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Chapter 4

Experimental Validation

The safety function response time (SFRT) is the worst case delay time since the

actuation of a sensor until a safe state is achieved in the system. The wireless

SFRT model proposed in Chapter 3 provides a method for estimating the SFRT on

a wireless network implementing a feedback control loop. The wireless SFRT model

defines input, fail-safe host, output and transmission delay entities of the wireless

network elements required to implement a feedback control loop. Based on the

feedback control loop block that each entity implements, the wireless SFRT model

provides equations to calculate the worst case delay time and watchdog timer value

for each entity.

Equations in the model are based on the theory presented in standards, such

as the IEC 61784-3-3 and the IEEE 802.15.4e, and on the analysis of the delays

that the network entities incur when implementing feedback control loop blocks.

The experimental validation provides a study of the application of these concepts

in a real experiment with real devices and real communication links. The wireless

SFRT model assumes some parameters are provided as input, e.g. waiting and

processing times. In the experimental validation, the input parameters required by

the model are measured experimentally. This provides an evaluation of the feasibility
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of obtaining the input required by the model, and how these inputs can be measured

in a real experiment.

The experimental validation also provides a set of results that can be used as a

reference to determine important values that should be reported when implementing

control loops, how to evaluate the response time of devices, and if response times are

suitable for the control loop being implemented. The results from the experiments

provide information that can help evaluate whether the achievable SFRT value is

acceptable for the system under control.

4.1 Wireless Line Following

Line following robots are very popular in the robotics community and relatively easy

to implement. The robot usually has a set of sensors that are able to detect the

position of a black line on the floor and the motors change speed accordingly to

keep the robot centered on the line. A line following robot can be implemented with

a feedback control loop, where the variable being monitored is the position of the

robot with respect to the line. The measured line position is provided as input to

the controller. The controller generates the corrective action that is the speed at

which the motors should be set in order to keep the robot centered on the line. The

speed is applied to the motors, which changes the position of the robot with respect

to the line. Then, the process is repeated and the new line position generated from

the change in motor speed is fed back as input to the controller.

Successful line following requires a fast line position update interval, since the

position of the line is constantly changing as the robot moves along the course. Also,

a moving robot illustrates the motivation for using wireless technologies very well.

A wired set-up would be inconvenient and would require special considerations when

designing the course; for example the size of the course and length of wires, as well
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as preventing the robot from tangling up the wires. Also, wireless line following

experiments can be repeated on the same course as many times as required, which

allows to evaluate the impact of different factors on the same experiment.

To implement a line following feedback control loop, the input, fail-safe host, and

output entities are deployed in real hardware, and the feedback control loop blocks

implemented in software.

4.1.1 Hardware

Figure 4.1 shows an architecture diagram with all the devices involved in the imple-

mentation of the wireless line following feedback control loop. The diagram shows

the network entities and feedback control loop blocks implemented by each device,

as well as the communication channels. The directed acyclic graph root (DAG root)

TelosB mote is the personal area network (PAN) coordinator and gateway of the

OpenWSN network, which has special functions such as advertising the network.

The second TelosB, called the mobile mote, is serially connected to the 3pi. Ap-

pendix B illustrates the wireless line following experimental set-up.

The Pololu 3pi is a mobile robot with two micro metal gearmotors, five reflectance

sensors, a liquid crystal display (LCD), a buzzer, and three user buttons. The 3pi is

controlled by a C programmable ATmega328p processor with 32 KB of flash mem-

ory, 2 KB random access memory (RAM), 1 KB of persistent electrically erasable

programmable read-only memory (EEPROM), and a maximum operating frequency

of 20 MHz. The 3pi has a diameter of 9.5 cm, is powered by four AAA batteries,

and is capable of reaching a speed of up to 100 cm per second. The Pololu Cor-

poration provides a very complete C library with a collection of support functions

for programming Pololu devices like the 3pi, among others. The Pololu 3pi and its

components are shown in Figure 4.2.

The 3pi supports many applications and custom behaviours, but the 3pi was
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Figure 4.1: Devices implementing network entities and feedback control loop blocks
to achieve wireless line following control.
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(a) Pololu 3pi top view.

(b) Pololu 3pi bottom view.

Figure 4.2: Pololu 3pi with labeled components (from [9]).
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Figure 4.3: Line following feedback control loop.

designed to excel in line following, where the five reflectance sensors detect the

position of a black line on the floor and the two micro metal gearmotors change the

position of the 3pi. The Pololu Corporation C library provides an implementation of

a PID controller for line following. In this implementation, the PID controller runs

in a loop that reads the line position from the sensors, calculates the proportional,

integral and derivative values, and applies the settings to each motor. This loop runs

locally on the 3pi where one iteration of the loop takes less than 2 ms. This means

that a new corrective action is calculated and applied to the motors approximately

500 times per second. The control model is shown in Figure 4.3 and is represented

by the following equations:

Error = P = 2000− L (4.1)

D = P − P ′ (4.2)

I = I + P (4.3)

A = KPP +KII +KDD (4.4)
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where P represents the proportional term, P ′ represents the previous value of P ,

D represents the derivative term, I represents the integral term, A is the power

difference (corrective action) applied to the motors and has values in the range

−60 ≤ A ≤ 60, KP = −1/20 and is the constant for the proportional term, KI =

1/10000 and is the constant for the integral term, and KD = 3/2 and is the constant

for the derivative term. The actual power level transmitted to the left and right

motors depends on a non-linear mapping of the corrective action A as follows:

L =

 L′ if A ≥ 0

L′ + A if A < 0
(4.5)

R =

 R′ if A < 0

R′ − A if A ≥ 0
(4.6)

where L is the new left motor setting (rpm), L′ is the previous left motor setting

(rpm), R is the new right motor setting (rpm), and R′ is the previous right motor

setting (rpm). The 3pi code that sets the power levels is given in Appendix A. The

output of the plant is a change in the position of the 3pi.

Since the 3pi has access to the sensors and the motors, and has processing power,

implementing the feedback control loop locally is possible, however this might not

always be the case. A feedback control loop can be implemented in different devices

of close proximity. In such cases, devices need to communicate with each other to

achieve the desired control.

To apply the wireless SFRT model to PID control line following, the implementa-

tion provided by the Pololu Corporation is broken into the feedback control blocks,

i.e. sensor, comparator, controller, and actuator blocks, and implemented on its

corresponding network entity, i.e. input, fail-safe host, and output entities. The 3pi

has access to the reflectance sensors (sensor block) and motors (actuator block), so
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the 3pi implements both the input and output entities. A Ubuntu Linux worksta-

tions acts as the host device implementing the comparator and controller blocks.

The fail-safe host and the 3pi need to communicate wirelessly with each other. As

a consequence, the 3pi and the host must be given wireless networking capabilities,

specifically for the IEEE 802.15.4e standard assumed by the wireless SFRT model.

The TelosB is a low power wireless module with a Texas Instruments MSP430F1611

microcontroller with 10 KB of RAM and 48 KB of flash memory. The TelosB has

an integrated antenna and an IEEE 802.15.4 wireless transceiver that can operate at

250 kbps on the 2.4 GHz band. A TelosB can be powered by two AA batteries and

has many components as shown in Figure 4.4, such as temperature, humidity and

solar radiation sensors, two user buttons, and pin expansion support among others.

The TelosB is fully supported by OpenWSN [43], the open source implementation

of a complete protocol stack based on the Internet of Things standards that includes

the IEEE 802.15.4e standard. A TelosB running the OpenWSN firmware works

together with the Pololu 3pi and the Ubuntu workstation in order to provide IEEE

802.15.4e wireless networking capabilities. To achieve this, the TelosB keeps constant

communication with the 3pi and the Ubuntu workstation. For example, the 3pi

generates a line position that is transmitted wirelessly by the TelosB to the Ubuntu

workstation.

The TelosB has serial communication lines, two universal asynchronous receiver/-

transmitter channels (UART0 and UART1) and a universal serial bus (USB), that

the TelosB can use to communicate with other devices. The USB male connector

incorporated on the TelosB provides the required communication link between the

TelosB and the Ubuntu workstation. The TelosB running the OpenWSN firmware is

easily plugged into one of the female USB serial connectors available at the Ubuntu

workstation to provide IEEE 802.15.4e wireless networking capabilities.

The Pololu 3pi does not have a female USB connector and one cannot be simply
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(a) TelosB top view.

(b) TelosB bottom view.

Figure 4.4: TelosB wireless module with labeled components (from [31]).
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added, as a USB controller is required. The 3pi has UART TX and RX channels

which can be used to communicate with the UART RX and TX channels on the

TelosB. Access to the UART0 lines on the TelosB is provided on the 10 pin expansion

connector shown in Figure 4.4a. UART0, however, uses the same resources on the

TelosB as the wireless radio. As a consequence, special low level resource arbitration

needs to be implemented in order to use both the UART0 and radio components on

the TelosB. Fortunately, there is the second UART1 line which does not have conflicts

with other components, but is not easily accessed via an expansion connector. The

UART1 line is used by the USB interface component which uses an I/O buffer to

translate UART to USB signals. These translated signals are then transmitted over

the USB male connector on the TelosB. This is the serial line used by OpenWSN

to transmit information regarding the state of the TelosB mote. The only way to

access the UART1 line is to intercept its pins directly on the microcontroller. To

achieve this, three cables were soldered directly on the GND (ground), UART1TX,

and UART1RX pins on the MSP430F1611 microcontroller on the TelosB as shown

in Figure 4.5. The cables accessing the GND, UART1TX, and UART1RX on the

TelosB are connected to the GND, UARTRX, and UARTTX, respectively, on the 3pi.

These connections allow for communication between the TelosB and the 3pi, making

it possible for the TelosB running OpenWSN firmware to provide IEEE 802.15.4e

wireless networking capabilities to the 3pi.

4.1.2 Software

The software components involved in the implementation of the wireless line following

feedback control loop are shown in Figure 4.6.

OpenWSN consists of firmware, i.e. the protocol stack running on TelosB motes,

and on the OpenVisualizer software, i.e. the program running on a computer where

at least the DAG root mote is connected on a serial port. OpenVisualizer commu-
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Figure 4.5: TelosB MSP430F1611 microcontroller with wires soldered into the GND,
UART1TX, and UART1RX pins.

nicates with the DAG root mote serially to receive information from the OpenWSN

network, such as routing structures, packets addressed to the Internet, and error

messages. OpenVisualizer provides connectivity between the OpenWSN network

and the Internet over a virtual interface. Other programs running locally or re-

motely can connect to the virtual interface in order to communicate with motes in

the OpenWSN network. This functionality of connecting the OpenWSN network to

the Internet over a virtual interface is provided by default in OpenVisualizer.

As shown in Figure 4.1, the TelosB mote that is connected serially to the Ubuntu

workstation assumes the role of the DAG root. The DAG root mote is running the

OpenWSN firmware and is communicating serially with OpenVisualizer, which is

running on the Ubuntu workstation, as illustrated in Figure 4.6.

The second TelosB mote shown in Figure 4.1 is called the mobile mote; it is

serially connected to the Pololu 3pi. The purpose of the mobile mote is to wirelessly

connect the 3pi with the DAG root mote. To achieve this, the mobile mote runs two

applications that serve as a bridge between serial and radio communication. These

two applications are called udpprint and udpinject as illustrated in Figure 4.6.

The udpprint applications runs on the mobile mote and is accessed on port 2189

of the mobile mote. When the mobile mote receives a UDP packet on port 2189
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Figure 4.6: Software components implementing the wireless line following feedback
control loop.
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addressed to itself, the packet moves up the stack reaching the application layer.

The data payload of the packet is then handled by the udpprint application with

the udpprint receive method. This method prints a data frame containing the

packet payload over the TelosB UART1 serial pins, where the 3pi is connected and

constantly reading. The udpprint application receives packets transmitted over the

radio and forwards them to the serial pins. The udpprint application is implemented

as shown in Appendix D.

The second application running on the mobile mote receives packets transmit-

ted serially by the 3pi and forwards them over the radio to the DAG root mote.

This udpinject application is accessed on port 2188 of the mobile mote. When the

mobile mote receives a serial frame starting with the character ‘U’, the method

udpinject trigger is called. This method generates a UDP packet and adds to the

payload of that packet the data received on the serial frame.

The mobile mote is constantly transmitting serial frames to the 3pi. As a conse-

quence, the 3pi is running the program input-output.c that constantly reads bytes

from the serial pins of the 3pi, builds a frame, checks the CRC, and acts according to

the type of frame received. OpenWSN only allows for serial communication from the

3pi to the mobile mote to occur upon request from the mobile mote. This request

is sent from the mobile mote using a request serial frame. Once the 3pi receives a

complete request frame, the 3pi reads the line position and generates a udpinject

frame that is transmitted serially to the mobile mote. The udpinject application is

implemented as shown in Appendix E.

The 3pi can also receive from the mobile mote a data frame (generated by the

udpprint application), which will contain a corrective action to be applied to the

motors. When the 3pi receives a data frame and the frame passes the CRC check,

the 3pi extracts the corrective action and applies the new speed to the motors. If

the frame does not pass the CRC check, the frame is discarded.
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The mobile mote can also transmit error frames to the 3pi, which can indicate

that the mobile mote got desynchronized, that there was a CRC check failure, or

other errors. The 3pi does not perform any action when an error frame is transmitted,

but it keeps a counter of the number of times this happened. Besides the error, data

and request frames, the 3pi should also be receiving status frames, which contain

information about the OpenWSN network. The 3pi does not take action to change

the status of the OpenWSN network, so status frames are ignored by the 3pi.

The 3pi reads the line position and applies the corrective action, but the controller

is the component that calculates the corrective action based on the line position. The

controller is implemented on the host, which is a C program running at the Ubuntu

workstation. The virtual interface raised by OpenVisualizer provides the host with

access to the mobile mote and the 3pi. To achieve this, the host generates two UDP

sockets with the destination address of the mobile mote and the ports of the udpprint

and udpinject applications, as illustrated on Figure 4.6. The socket connecting to

the udpprint application will communicate with the 3pi and the host in the direction

from the host to the 3pi. The socket connecting to the udpinject application will

communicate in the direction from the 3pi to the host. Using two sockets for different

communication directions and on different ports of the same destination address, is

appropriate since the communication between the host and the 3pi is asynchronous.

The 3pi does not wait for a corrective action from the host before reading a line

position. This means that the 3pi can send a line position while the host sends a

corrective action.

The process to achieve a wireless implementation of line following via feedback

control using OpenWSN is illustrated with the sequence diagram in Figure 4.7. The

3pi receives a request frame from the mobile mote once every ∆ ms. After the 3pi

receives the request frame, the 3pi reads from its reflectance sensors and generates

a line position, which is represented as an integer in the range of −2000 to 2000.
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Figure 4.7: Sequence diagram for one iteration of the wireless line following feedback
control loop.
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The line position is transmitted serially to the mobile mote, which generates a UDP

packet with the line position and injects the packet into the OpenWSN network using

the udpinject application. This UDP packet containing the line position is addressed

to the host. As a consequence, when the DAG root receives the UDP packet, it is

forwarded serially to OpenVisualizer. OpenVisualizer forwards the UDP packet over

the virtual interface to the socket connected at the udpinject port on the host. After

a line position is successfully received at the host, the host runs the controller and

calculates the corrective action. The corrective action is the power difference that

should be applied to the motors, and is represented with an integer in the range of

−40 to 40. A UDP packet containing the corrective action is created. Note that even

though there is only one integer transmitted, there are two corrective actions applied,

since each motor gets a different setting based on the same power difference number.

The UDP packet is then transmitted back over the udpprint socket connected to

OpenVisualizer on the virtual interface. OpenVisualizer then forwards the UDP

packet to the DAG root mote, which injects the packet on the OpenWSN network.

The packet is then received by the mobile mote and printed serially to the 3pi. Once

the 3pi successfully receives a corrective action, the 3pi applies the new speed setting

to its motors.

4.2 Model Application

The five network entities implementing wireless line following are shown in Figure

4.8. The SFRT of this system can be estimated by applying Equation (3.1) of the

wireless SFRT model, which defines the SFRT as follows:

SFRT =
∑
m∈E

WCDTEm + max
m∈E

(WDTimeEm −WCDTEm) (4.7)
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Figure 4.8: Five network entities implementing wireless line following.

For the system in Figure 4.8, E = {I,H,O,D}, I = {1}, H = {3}, O = {5} and

D = {2, 4}. Given that I, H and O have only one element, WCDTEm = WCDTi,

when m is I, H, or O, and i ∈ I, i ∈ H, or i ∈ O, respectively. Equation (4.7) can

be simplified for the case of single input single output systems as follows:

SFRT =
5∑

i=1

WCDTi +
5

max
i=1

(WDTimei −WCDTi) (4.8)

where WCDTi is the worst case delay time of entity i, WDTimei is the watchdog

timer of entity i, and i = 1 for the input entity (with 5 reflectance sensors attached),

i = 2 for the transmission delay entity where the input entity is the sender and the

host the destination, i = 3 for the fail-safe host entity, i = 4 for the transmission

delay entity where the host is the sender and the output entity the destination, and

i = 5 for the output entity (with two micro metal gearmotors attached).
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To calculate the SFRT of the system in Figure 4.8, the components of the worst

case delay times and watchdog timers of each participating entity are determined,

and entities should meet the assumptions made by the wireless SFRT model.

4.2.1 Worst Case Delay Times

The wireless SFRT model provides Equations (3.4) to (3.12) to estimate the worst

case delay times of the network entities implementing a wireless feedback control

loop. The worst case delay times are modelled as the sum of the processing and

waiting times incurred by the entities.

The wireless SFRT model assumes that processing and waiting times are input

to the model. In a real experimental set-up, processing and waiting times can be

precisely defined and experimentally measured.

4.2.1.1 Input Entity

The wireless SFRT model defines the worst case delay time of input entity i in

Equation (3.5) as follows:

WCDTi = Wi + Pi +

N i
s∑

j=1

P j
s , i ∈ I (4.9)

where Wi is the longest waiting time of input entity i, Pi is the worst case processing

time of input entity i (including the time to read the available sensor value(s) and

create a packet for transmission), N i
s is the number of sensors attached to input

entity i, and P j
s is the worst case processing time of sensor j.

In the wireless line following experiment, entity 1 (input), shown in Figure 4.8,

reads the line position in the 3pi. The 3pi only sends a new line position after a

request from the mobile mote is received. This means that the waiting time at the

input entity is defined as the time between two received request frames. According
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to the OpenWSN schedule implementation, this happens at the beginning of every

CELLTYPE SERIALRX timeslot. Based on the slotframe with 8 timeslots each

with a duration of 15 ms, a CELLTYPE SERIALRX timeslot occurs every 120 ms.

This means that the 3pi waits 120 ms before generating a new line position, giving

W1 = 120 ms for entity 1 (input) in the wireless line following system. This waiting

time also provides the update interval of the feedback control loop.

After the 3pi receives a request frame from the mobile mote, the 3pi calls the

method hdlcRes request which performs the necessary operations to respond to

the request frame received. This includes reading the line position and building the

serial frame to be transmitted back to the mobile mote. This serial frame contains

the line position, the sequence number and logging information, and should be built

using the corresponding High-Level Data Link Control (HDLC) serial communication

implementation. The processing time P1 corresponds to the processing time of the

hdlcRes request method. The implementation of the hdlcRes request method is

shown in Appendix F.

Even though there are 5 reflectance sensors attached to the 3pi, the Pololu Cor-

poration C library provides an abstraction that allows the line position to be read

with one call to the method read line. This method reads from all the reflectance

sensors and returns an integer from −2000 to 2000 that represents the line position.

Calling this method directly unifies the processing times from the 5 reflectance sen-

sors, making N1
s = 1 and P 1

s the processing time for the read line method. This

read line method is called by the hdlcRes request method. As a consequence, for

the wireless line following experiment, the processing time P1 includes the processing

time P 1
s . Processing time P1 was experimentally measured as reported in Section

5.3.
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4.2.1.2 Fail-safe Host Entity

The wireless SFRT model defines the worst case delay time of the fail-safe host entity

i in Equation (3.6) as follows:

WCDTEH = WCDTi = Wi + Ci + Pi, i ∈ H (4.10)

where Wi is the longest waiting time of the fail-safe host entity, Ci is the worst case

processing time of the fail-safe host entity to execute the controller, and Pi is the

worst case processing time of the fail-safe host entity and includes the time to create

a packet for transmission.

In the wireless line following experiment, entity 3 (fail-safe host), shown in Figure

4.8, is implemented in the host running on the Ubuntu workstation. The waiting

time at the host is defined as the time between two received line positions. Since the

update interval provided by the 3pi is 120 ms, the host should wait 120 ms between

each new line position. This means W3 = 120 ms for entity 3 (fail-safe host) in the

wireless line following system.

Every time the host receives a new line position, the host runs the controller

which is implemented in the control calculate action(line position) method

(see Appendix A). This method computes the derivative, integral and proportional

values based on the line position received from the 3pi, and returns the calculated

corrective action. The processing time of the control calculate action method

corresponds to C3 and is measured experimentally as reported in Section 5.3.

The corrective action generated by the control calculate action method is

added to a message along with the corresponding sequence number by the act

method. The message should use the same sequence number received with the line

position that was used to calculate such corrective action. The act method builds

and transmits the message back to the 3pi, and is shown in Appendix G. The pro-

53



cessing time of the act method corresponds to P3 and is measured experimentally

as reported in Section 5.3.

4.2.1.3 Output Entity

The wireless SFRT model defines the worst case delay time of output entity i in

Equation (3.9) as follows:

WCDTi = Wi + Pi +

N i
a∑

j=1

P j
a +

N i
a

max
j=1

Aj, i ∈ O (4.11)

where Wi is longest waiting time of output entity i, Pi is the worst case processing

time of output entity i and includes the time to open and read the new packet

recently received, N i
a is the number of actuators attached to output entity i, P j

a is

the worst case processing time of actuator j that includes receiving the corrective

action from the output entity, and Aj is the worst case action time of actuator j (i.e.

the longest time actuator j takes to apply the corrective on the system).

In the wireless line following experiment, entity 5 (output), shown in Figure 4.8,

is implemented in the 3pi, which has two attached motors, thus N5
a = 2. The output

entity implements corrective actions sent by the host. This means that the waiting

time at the output entity is defined as the time between two received data frames with

a new corrective action. Since the waiting time at the host is 120 ms, the host can

only generate a new corrective action at most once every 120 ms. As a consequence,

W5 ≥ 120 ms for entity 5 (output) in the wireless line following system, and depends

on the processing time at the host.

When the 3pi receives a corrective action, the hdlcRecv data method is called to

handle the recently received data frame. This method performs the required HDLC

operations and checks for the CRC. If the CRC is correct, the corrective action is

extracted from the frame and applied to both of the motors. The processing time P5
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corresponds to the processing time of the hdlcRecv data method and is measured

experimentally as reported in Section 5.3. The implementation of the hdlcRecv data

method is shown in Appendix H.

The motors are set using the set motors(speed1, speed2) method, which in-

cludes P j
a and Aj for both actuators. The method set motors is called at the

hdlcRecv data method. For the wireless line following experiment, a simplifying

assumption is made to include the processing times P j
a and Aj, for j = 1, 2, in

processing time P5.

4.2.1.4 Transmission Delay Entities

Wireless transmission delays are observed in the wireless communication links that

connect the devices in the system. These wireless communication links are accessed

by the TelosB motes, which operate as part of an OpenWSN network. OpenWSN

implements the TSCH mode of the IEEE 802.15.4e standard at the MAC layer. As

a consequence, there is an IEEE 802.15.4e network operating in TSCH mode, as

assumed by the wireless SFRT model. The TSCH mode operates with a schedule

that is defined as a slotframe repeating cyclically in time. A slotframe is a collection

of timeslots, where one timeslot is a defined period of time during which a pair of

devices can exchange a frame and an acknowledgement.

An assumption made by the wireless SFRT model is that the network operates

in a star topology. In the experimental set-up, there are only two devices, i.e. the

DAG root mote and a mobile mote, accessing the IEEE 802.15.4e network. The PAN

coordinator role is assumed by the DAG root mote and there is one communication

hop between the PAN coordinator and the mobile mote.

Another assumption made by the wireless SFRT model is that propagating new

data is preferred over guaranteed delivery. As a consequence, there are no retransmis-

sions and each packet is only given one try to be successfully transmitted. OpenWSN
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allows configuration of the number of attempts to transmit a packet with the variable

TXRETRIES. This variable is set to 1 to allow for only one attempt of transmission

and no retransmissions.

One of the most important assumptions made by the wireless SFRT model con-

cerns the network schedule. The model defines a directed communication link as a

sender-destination pair of devices, and the model assigns one dedicated or guaranteed

timeslot to each directed communication link. There is one directed communication

link from the mobile mote to the DAG root (from the 3pi to the host), and a second

directed communication link from the DAG root to the mobile (from the host to the

3pi). Each of these directed communication links requires one guaranteed timeslot.

In OpenWSN the communication schedule is defined and processed when starting

the network. The schedule is included in the OpenWSN firmware that runs in each of

the TelosB devices where a timeslot is added using the method schedule addActiveSlot

(slotOffset, type, shared, channelOffset, neighbor). The first argument

indicates the number of the timeslot being added, and the second argument indi-

cates the type of the timeslot, i.e. advertisement, shared, guaranteed, or serial. The

third argument shared is a boolean that indicates if the timeslot is shared or not.

The fourth argument channelOffset indicates the frequency channel offset for the

timeslot, and is used for channel hopping. The last argument is used for guaranteed

timeslots to indicate the IP address of the second device participating in the timeslot.

Based on the definition and implementation of the network schedule provided

by OpenWSN, for a given value of the slotOffset argument, a guaranteed times-

lot is added at the sender of the directed communication link by specifying type

CELLTYPE TX on the second argument of the schedule addActiveSlot method.

The shared boolean on the third argument should be set to false, and the last ar-

gument should indicate the IP address of the destination. The fourth argument

channelOffset is set to the default value 0, since the frequency channel for a trans-
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mission is calculated dynamically by OpenWSN at the beginning of each timeslot.

For the same value of the slotOffset argument, the destination should have a cor-

responding CELLTYPE RX timeslot, with the shared boolean set to false, and the

last argument specifying the IP address of the sender.

Using the schedule addActiveSlot method with the correct arguments, two

guaranteed timeslots are added to the schedule; one where the sender is the mobile

mote and the destination is the DAG root mote, and a second timeslot where the

sender is the DAG root mote and the destination is the mobile mote. An adver-

tisement timeslot is also added to the schedule using the CELLTYPE ADV on the

type argument of the schedule addActiveSlot method. The resulting schedule

meets the wireless SFRT model assumption. OpenWSN, however, has its own set

of schedule requirements that should be met in order to get a proper OpenWSN

network.

OpenWSN uses shared timeslots to transmit important network information such

as routing structures. As a consequence, a requirement of OpenWSN is that the

slotframe defining the schedule of the network should have at least one shared

timeslot. A second requirement is that the slotframe should have at least one off

timeslot, where an off timeslot is a timeslot that has not been allocated using the

schedule addActiveSlot method. A third requirement is regarding serial com-

munication. OpenWSN does not perform serial communication in the background

and requires reserved time to deal with serial activity. This is done during serial

timeslots, which are defined with the schedule addActiveSlot method where the

second argument type has the value of CELLTYPE SERIALRX. One timeslot with

type CELLTYPE SERIALRX has a length of three times a regular timeslot, which

translates to three serial timeslots.

Based on the schedule requirements of OpenWSN and considering that the wire-

less SFRT model requires two guaranteed timeslots, the minimum number of times-
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lots in one slotframe required to implement the wireless SFRT model using Open-

WSN is eight; 1 advertisement timeslot, 1 shared timeslot, 2 guaranteed timeslots,

3 serial timeslots, and 1 off timeslot. By default, each timeslot in OpenWSN has a

duration of 15 ms. This means that the minimal slotframe of eight timeslots has a

total duration of 120 ms.

In OpenWSN the order of the timeslots in the schedule is known beforehand

because the schedule addActiveSlot method is called sequentially and the schedule

is processed before starting the network. In the wireless line following experiment,

the line position from the 3pi is required to calculate the corrective action at the host.

As a consequence, assigning the first guaranteed timeslot to the communication link

from the 3pi to the host makes sense.

Even though the order of the timeslots influences the moment at which a device

accesses the wireless channel, the order of the timeslots does not affect the worst case

delay time of wireless transmissions, since the worst case delay time is the same for

all transmission delays regardless of the communication link and timeslot in which

they are observed.

The worst case delay time of a transmission delay entity i is defined by the

wireless SFRT model in Equation (3.11) as follows:

WCDTi = NtsLts, i ∈ D (4.12)

where Nts is the number of timeslots in the slotframe, and Lts is the total duration

in time of one timeslot.

The wireless SFRT model defines the worst case delay time of the kD transmission

delay entities in Equation (3.12) as follows:

WCDTED = kDWCDTi, i ∈ D (4.13)
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where kD is the total number of transmission delay entities in the network, and

WCDTi is the worst case delay time of the transmission delay entity i.

Considering the OpenWSN network in the wireless line following experiment,

kD = 2, Nts = 8, and Lts = 15 ms. Using these values in the wireless SFRT model

equations, for transmission delay entity i, where i ∈ D, the following estimates are

obtained:

WCDTi = NtsLts = 8× 15 = 120 ms (4.14)

WCDTED = kDWCDTi = 2× 120 = 240 ms (4.15)

Equation (4.14) indicates that WCDT2 = WCDT4 = 120 ms for entities 2 and 4

(transmission delays) in the wireless line following system. This means that in the

worst case, a wireless transmission will be completed after 120 ms since the moment

the packet was ready to be transmitted. This applies for successful transmissions,

since the wireless SFRT model specifies no retransmissions. In the wireless line

following experiment, a transmission from the 3pi to the host will take at most 120

ms, and similarly a transmission from the host to the 3pi will take at most 120 ms.

Equation (4.15) indicates the total worst case delay time of all the wireless trans-

mission delays. This 240 ms will contribute to the total worst case delay time of

the system, which is required for the calculation of the SFRT as shown in Equation

(3.1).

4.2.2 Watchdog Timers

Watchdog timers are implemented as a superposed countdown timer in all partici-

pating network entities. Upon the expiration of the local timer, the entity abandons

normal operation and activates its safe reaction to reach a safe state. The watchdog

timer is a design decision that should be taken based on the study of how critical

and fast the control loop needs to be.
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4.2.2.1 Device Entities

Consistent with the IEC 61784-3-3 standard, the wireless SFRT model defines the

watchdog timers of devices, i.e. input, fail-safe host and output, entities as the one

fault delay time OFDT, i.e. the worst case delay time in case of a fault within

the entity (see Equation (3.13)). The OFDT is implementation dependent and is

considered input to the model.

The idea of the watchdog timer is to have some supervision over the operation of

the entity. If the entity is not responding as expected, the watchdog timer expires

and drives the entity into a safe state. For example, if the output entity does not

apply a corrective action within a certain amount of time, control of the system

can be lost. The output entity might be unresponsive for different reasons, e.g. the

corrective action was never received or the entity received a damaged packet and

could not apply the corrective action. Instead of losing control of the system, the

watchdog timer forces the output entity to reach a safe state. For the wireless line

following experiment, a safe state for the output entity could be setting the motors

to 0 rpm.

Considering the idea of a watchdog timer that supervises the entire operation of

the entity, the watchdog timer is set to expire on each entity at the worst case delay

time of the entity plus a certain factor for flexibility. The watchdog timer will expire

if the point of reset has not been reached by the entity during the expiration time

of the watchdog timer. Each entity has a reset point on which the watchdog timer

is reset, which happens when the entity is responding as expected. The reset should

occur every time the entity successfully finishes one cycle.

For the input entity one cycle includes the waiting for a request frame, reading a

line position, and transmitting the packet. Based on this cycle, the watchdog timer

is reset on the input entity every time a new line position is sent. At the host,

the cycle includes waiting for a line position, and calculating and transmitting the
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corrective action. Considering this, the watchdog timer is reset every time a new

corrective action is sent. The output entity cycle includes the waiting, processing

and application of the corrective action, so the watchdog timer is reset every time a

new corrective action is applied.

The time between two line positions being sent at the input entity, the time

between two corrective actions sent at the host, and the time between two corrective

actions applied at the output entity is measured experimentally (see Section 5.3) to

obtain what the expiration values of the watchdog timers should be.

4.2.2.2 Transmission Delay Entities

The wireless SFRT model defines the watchdog timer of a transmission delay entity

i in Equations (3.15) and (3.14) as follows:

WDTimei = F WD Timei,j + WCDTi (4.16)

and

F WD Timei,j = c1(Pj + Lts) (4.17)

where i ∈ D, j ∈ I or j ∈ H, F WD Timei,j is the fail-safe watchdog timer of

transmission delay entity i where the sender initializing communication is entity

j, Pj is the protocol processing time of sender entity j, Lts is the total length of

one timeslot, c1 ≥ 1 is a constant, and WCDTi is the worst case delay time of

transmission delay entity i.

For the wireless line following experiment, for entity 2 (transmission delay), the

sender initializing communication is the input entity, and for entity 4 (transmission

delay), the sender is the fail-safe host entity. Processing Pj for the input and fail-safe

host entities are determined experimentally, and Lts = 15 ms. The IEC 61784-3-3

standard recommends c1 values in the range 1 ≤ c1 ≤ 1.3. The higher the value
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of this constant, the longer the watchdog timer expiration time is, which allows for

more flexibility. The worst case delay time WCDTi for transmission delay entity i,

where i ∈ D, is determined for the wireless line following experiment in Equation

(4.14), and is 120 ms.

Wireless transmission delays are observed in the wireless communication links.

Since the wireless communication links are abstract and cannot perform any action,

the fail-safe watchdog timer of transmission delay entity F WD Time is implemented

by the sender of the communication link. The F WD Time supervises the opera-

tion of the communication link only and is reset every time an acknowledgement is

received after a new packet has been sent.

In the TSCH mode of IEEE 802.15.4e, one timeslot includes the exchange of

an acknowledged frame. This means that the successful transmission of one frame

and the reception of the corresponding acknowledgement is known to occur during

one timeslot. As a consequence, there is no need to experimentally measure the

time since a frame has been sent until the corresponding acknowledgement has been

received.

If a transmission fails, and the watchdog timer at the destination does not ac-

count for failed transmissions, the watchdog timer at the destination will expire. This

means that the watchdog timer at the device entities are monitoring the communi-

cation channel. Note that this is consistent with the idea of a watchdog timer that

supervises the entire operation of device entities, as it includes the operation of the

communication channel and waiting times. As a consequence, the fail-safe watchdog

timer of transmission delay entities is not directly implemented nor measured in the

wireless line following experiment.
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4.3 Experimental Design

The main objective of the experimental validation is to apply the wireless SFRT

model in a real experiment to study the usability and accuracy of the model. A

wireless implementation of a real feedback control loop also provides a good opportu-

nity to evaluate the performance of wireless communication, specifically OpenWSN,

when fast reliable communication is required to maintain control of a system.

The experimental validation is divided in two parts. The first part evaluates

the performance of wireless communication when implementing the line following

feedback control loop. The second part is the application of the wireless SFRT

model to the wireless line following feedback control loop to estimate the SFRT of

the system.

4.3.1 Performance Metrics

The objective of the line following feedback control loop is to keep the 3pi centered

on the line. The performance metric of this activity should measure how well or how

badly the 3pi follows the line.

The proportional term P of the PID line following controller can have values

in the range −2000 ≤ P ≤ 2000. When the 3pi is centered on the line, P = 0.

When the line is on the left of the 3pi, P < 0. When the line is on the right of

the 3pi, P > 0. The performance metric measuring the error of the line following

activity is defined as e = |P |, where P is the error communicated to the controller

in Figure 4.3. The error of the line following activity e can have values in the range

of 0 ≤ e ≤ 2000. The error e is calculated at the host every time a new line position

is received.

Since the terms P and e do not have units, function d(e) is defined to calculate

the corresponding distance in cm from an input error e based in the distance between
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Figure 4.9: Position of the 5 reflectance sensors on the Pololu 3pi.

the 5 reflectance sensors in the 3pi, which span a total of 5 cm from sensor 0 to sensor

4, as illustrated in Figure 4.9. Function d is defined as follows:

d(e) =

 0.001e if e ≤ 1000

1 + 0.0015(e− 1000) if e > 1000
(4.18)

The center of the 3pi is sensor 2, where e = 0 and d(e) = 0 cm. If the line is

under sensor 1, e = 1000 and d(e) = 1 cm, which indicates the line is 1 cm away

from the center of the 3pi.

The performance measures of the line following feedback control loop are defined

as the average, standard deviation, and maximum value of the error e. The smaller

the error, the better the 3pi performs at line following. These performance measures

are calculated at the host and reported at the end of a test in a log file.

To evaluate if an obtained value of e is acceptable, a comparison should be estab-

lished with other values of e. One goal for wireless communication is to achieve the

same level of communication and performance as achieved by wired technologies. As

a consequence, the wireless line following experiment is compared with a wired line

following experiment.

PROFIBUS [24] is a well-known wired communication fieldbus protocol. PROFI-

BUS operates on a master/slave architecture, where the slave sends information
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to the master upon request, and the master sends commands to the slave. The

wired line following implementation simulates the master/slave communication and

architecture present in the PROFIBUS communication protocol. In the wired line

following experiment, the host assumes the role of the master device, and the 3pi is

the slave. Every certain period of time, the host requests a line position from the 3pi.

The 3pi reads the line position and sends it to the host. Once the host receives the

line position, the host calculates the corrective action and sends a command to the

3pi with the corrective action. Then, the 3pi implements the corrective action. Wired

communication between the 3pi and the host is achieved with a USB to mini-USB

serial cable. The mini-USB end is connected to the Pololu USB AVR programmer

that translates USB signals to the UART RX and TX lines on the 3pi. Appendix C

illustrates the wired line following experimental set-up.

Another line following experiment that is worth studying is on board control

as provided by the Pololu Corporation C library. Since on board control does not

include any kind of communication channel because all entities are implemented in

the same device, on board control is not comparable with either the wired or wireless

implementations. On board control can, however, be used as an indicator of the best

achievable performance.

Besides measuring the line following performance metric e, evaluating other com-

munication metrics is important, since they affect the performance of the line follow-

ing activity. To evaluate the performance of the communication channel, the packet

loss PL and the action delay AD are also measured and logged.

The packet loss PL is calculated for both communication links; from the 3pi to

the host, and from the host to the 3pi. For the first communication link, the number

of packets lost is calculated by subtracting the number of line positions received

at the host from the number of line positions sent by the 3pi. The packet loss

percentage is then calculated based on the total number of line positions sent from
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the 3pi. Similarly, for the second communication link, the number of packets lost is

calculated by subtracting the number of corrective actions received at the 3pi from

the number of corrective actions sent by the host. The packet loss percentage is then

calculated based on the total number of corrective actions sent from the host. At the

end of one test, the 3pi sends the total number of line positions sent to the host, and

the total number of corrective actions received from the host. The host also keeps its

own counter for the number of line positions received and the number of corrective

actions sent. After the host receives the counters from the 3pi, the host performs the

required operations to calculate the packet loss for each of the communication links.

The action delay AD is defined as the time since a line position is read until the

time its corresponding corrective action is applied. The line position is read at the

3pi, and the corrective action is also applied at the 3pi. As a consequence, the 3pi

can measure the action delays by taking a timestamp when a line position is read,

and taking a second timestamp when the corrective action corresponding to such

line position is applied. Subtracting both timestamps will result in the time elapsed

since the line position was read until the corresponding corrective action was applied.

The sequence diagrams in Figure 4.10 show the interactions between the 3pi and the

host in the wired and wireless implementations of the line following experiment. The

diagram also indicates the time frame that is measured by the action delay in both

implementations.

On every test, there are many action delays that need to be reported. The 3pi

has limited resources and cannot store in memory all the action delays measured

in one test. As a consequence, the 3pi needs to send the action delays as they are

calculated. To achieve this, every time the 3pi sends a line position message to the

host, and there is an action delay to be reported, the 3pi appends the action delay to

the end of the line position message. When the host receives a message that contains

more data than one line position and a sequence number, the host parses the rest of
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(a) Wired implementation.

(b) Wireless implementation.

Figure 4.10: Sequence diagrams illustrate the interactions between the 3pi and the
host in two implementations of the line following experiment.
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Table 4.1: Worst case delay times and watchdog timers for the 5 network entities
implementing the line following experiment.

i Entity F WD Timei,j WCDTi WDTimei
1 Input NA c2(W1 + P1) OFDT1 = c3(W1 + P1)
2 TD c1(P1 + Lts) NtsLts F WD Time2,1 + WCDT2

3 F-Host NA c2((c4 + 1)W3 + P3) OFDT3 = c3((c4 + 1)W3 + P3)
4 TD c1(P3 + Lts) NtsLts F WD Time4,3 + WCDT4

5 Output NA c2((c4 + 1)W5 + P5) OFDT5 = c3((c4 + 1)W5 + P5)

the message as action delays. At the end of the test, the host has all reported action

delays, and calculates the average and standard deviation. These two values are also

reported in the log.

4.3.2 Model Validation

The experimental validation of the wireless SFRT model consists of two sets of

experiments. The first is a set of calibration experiments. During these experiments

the waiting and the maximum processing times are measured. These waiting and

processing times are used as shown in the expressions in Table 4.1 to calculate the

worst case delay time WCDTi and watchdog timer WDTimei of entity i, where

1 ≤ i ≤ 5. For MIMO systems with n entities, the expressions in Table 4.1 are still

applicable, with the difference that there would be n rows and 1 ≤ i ≤ n. All input

entities share the same expressions and this also applies for transmission delays and

fail-safe host entities.

Processing times are subject to changes in the state of the processes and other

tasks carried out by processors. To accommodate for variations in the processing

times incurred by device entities, constant c2 ≥ 1 is introduced as a factor that

multiplies the worst case delay time estimation provided by the wireless SFRT model

(see Table 4.1). Similarly to constant c1 introduced by the IEC 61784-3-3 standard,

c2 values are recommended in the range of 1 ≤ c2 ≤ 1.3.

Watchdog timers should reflect how critical the control in the system is. There
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might be systems where one failed entity cycle (where the cycle consists of waiting

and processing) is acceptable, but two failed cycles are not acceptable. This depends

on the type of control that the system is trying to achieve. To evaluate different

watchdog timers, constants c3 and c4 are introduced. As shown in Table 4.1, constant

c3 multiplies the watchdog timer of device entities to allow for variations in processing

times. The recommended range of values for c3 is again 1 ≤ c3 ≤ 1.3. Since the

watchdog timer should not expire if the entity is responding within its known worst

case delay time, the condition c3 > c2 is imposed.

Constant c4 is defined as the number of acceptable consecutive packets lost, and

multiplies the waiting time of device entities, as shown in Table 4.1. One lost packet

implies that the destination entity did not receive the required input, and counts as

a failed cycle. Values for c4 are positive integers in the range c4 ≥ 0. Control loops

operating reliably with a high number of failed cycles, e.g. c4 ≥ 10, are unusual.

The set of calibration experiments provides estimates for the processing times

incurred by device entities. These estimates are used to calculate worst case delay

times, which in turn are used to calculate watchdog timer values. The calculated

watchdog timer values are used and implemented on the second set of experiments

where 6 watchdog timers are implemented with values of c4 varying from 0 to 5.

Different values for the c4 constant are implemented to study how the control loop

behaves with different numbers of acceptable failed cycles, and also to illustrate the

use of constant c4.

When a watchdog timer expires, the entity should be driven to a safe state. To

avoid interrupting the execution of a test, when a watchdog timer expires in the line

following experiment, a counter for this watchdog timer is increased. At the end of

the test, the number of times each watchdog timer expired is reported in the log.
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Figure 4.11: Line following course used in experiments.

4.3.3 Experiments

The line following course used in the experiments is shown in Figure 4.11. The

course has an approximate length of 4.532 m, and the width of the line is 1.7 cm.

This course provides different elements to test line following, such as sharp and wide

turns, and straight lines. One test consists of the completion of one lap of the course

from the starting point indicated in Figure 4.11. After one test is completed, the

host has created and saved a log file with all the information relevant to the test.

The results reported in the log consist of the number of packets sent and received at

the host and 3pi, packet loss percentages, the average and standard deviation of the

action delays, the average and standard deviation of the error e, the maximum value

of error e, maximum processing and waiting times at the host, input and output

entities, and the number of times each watchdog timer expired.

The 3pi is not aware of positioning and does not know where the course starts

or ends, so the 3pi is placed at the starting point at the beginning of each test.

After the test time duration has elapsed, the 3pi stops its motors, and sends the log
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messages to the host. After all the expected messages are received at the host, the

host calculates and reports the results and the total duration of the test, including

the logging time.

The duration of one test is set to approximately the time the 3pi takes to finish

one lap of the course, as measured in the calibration tests. Reporting the exact time

the 3pi took to complete one lap is also an indicator of performance. To report this,

the time taken by the 3pi to finish one lap is measured manually with a stopwatch

and added to the set of results reported.

One test is repeated 3 times from the course starting point for the clockwise

and counter clockwise directions, for a total of 6 tests. Considering clockwise and

counter clockwise directions could help reduce the effect of physical errors in the 3pi,

for example power and gear differences in the motors. These 6 tests comprise one

complete experiment, which is done for each of the line following implementations;

i.e. on board, wired, and wireless.
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Chapter 5

Results

This chapter presents the results of worst case delay time and reliability measures for

the on board, wired and wireless line following control for the experiments described

in Chapter 4.

5.1 On Board Control

The line following implementation provided by the Pololu Corporation C library is

used to run the on board control experiment. The Pololu Corporation line following

implementation has the following default values for the proportional integral deriva-

tive (PID) control parameters; KP = −1/20, KI = 1/10000, and KD = 3/2. The

maximum corrective action is 60, and the maximum motor speed 120 rpm.

On board control means that the input, host and output entities are implemented

in the same device; the 3pi. This means the communication channels and transmis-

sion delay entities are entirely contained within the 3pi board shown in Figure 4.2.

Given that the 3pi has limited resources, a serial communication link was established

from the 3pi to the host for logging purposes only.

Results for the on board control experiments are shown in Table 5.1, where each of

the 3 tests in the clockwise (C) direction and in the counter clockwise (CC) direction
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Table 5.1: Experimental results using on board control to achieve line following;
N ≈ 12645 for each of the six experiments.

Dir. µe d (cm) σe maxe µAD (ms) T (s) F (s)
C 190 0.2 168.4 828 1.9 24 23.2
C 183.3 0.2 169 814 1.9 24 21.6
C 194.6 0.2 174.9 898 1.9 24 23.2
µC 189.3 0.2 170.8 846.7 1.9 24 22.7
CC 202.5 0.2 173.2 849 1.9 24 23.1
CC 216.1 0.2 184 946 1.9 24 23.2
CC 208.8 0.2 178.8 974 1.9 24 23.2
µCC 209.1 0.2 178.6 923 1.9 24 23.2
µC,CC 199.2 0.2 174.7 884.8 1.9 24 22.9

are included. Table 5.1 reports the average error µe, the average error expressed in cm

d (using the conversion function d(e) defined in Equation (4.18)), the error standard

deviation σe, the maximum observed error maxe, the average action delay µAD (ms),

the duration of the test T (s), and the time to complete one lap of the course F (s).

The number of samples N ≈ 12645. These results are reported for each test in the

C and CC directions. The average results for the C direction µC, the CC direction

µCC, and the combined directions µC,CC are also reported.

All entities are implemented in the same device and communication channels

involved are hard-wired into the 3pi board, so the control loop is running in the 3pi

as fast as possible. The results provided using on board control constitute the best

line following performance that can be achieved by the 3pi. Further tests revealed

that this performance could be improved even more if serial logging was removed,

reducing the average error by approximately 10%. Removing serial communication

does not allow for any logging at the host and the standard deviation σe could not

be reported. Considering that wired and wireless implementations keep a log at the

host, using serial communication for logging on board control response provides a

good base for comparison.

The action delay is defined as the time since a line position is read until the time

its corresponding corrective action is applied. This indicates the delay between the
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input and output entities. Input and output entities are implemented in the same

device, so the action delay is measured as one iteration of the control loop where

a new line position is read, and the corresponding corrective action is calculated

and applied. For on board control, the average action delay reported in Table 5.1

corresponds to the duration of the test divided by the number of iterations performed.

This provides the average time for one iteration. As shown in Table 5.1, one iteration

takes approximately 2 ms. This also means that the update interval is approximately

2 ms, which means that there is a new line position read every 2 ms.

Applying function d to the average error µC,CC = 199.2 results in an average

position of 0.2 cm. This means that on average the center of the 3pi was only 0.2

cm away from the line.

An average distance of 0.2 cm from the center of the 3pi to the position of the line

is the best performance the 3pi can achieve. The behaviour observed under these

conditions is a very smooth line following where the 3pi never loses sight of the line.

This is reflected in the short average time of 23 s that the 3pi took to finish the

course at a maximum motor speed of 120 rpm.

Even though the same course is used in all the tests, the 3pi can react differently

for each test based on many factors. For example, even though the starting point is

fixed, the exact angle and place in which the 3pi is placed at the beginning of the

test might change slightly. Also, the sensors are calibrated on each test based on

the current lighting of the room, and the movement of the motors can be affected

by dust or other small particles accumulated on the course. Considering all these

factors, it is very unlikely that the 3pi will perform exactly the same for 2 tests in

the same direction of the same course. This explains the differences in the results

reported by the 3 runs of the test in each direction. These factors could also explain

differences between the results reported in the C and CC directions. On average,

the 3pi performed better in the C direction, which is reflected in smaller values for
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the average error µe, the average standard deviation, and the maximum error maxe

for the C direction. In the eyes of the 3pi, the C and CC directions correspond to

two different courses. The first one starts with a wide curve, and the second with a

sharper turn. Even though there are the same number of curves and straight lines

on one lap of the course regardless of the direction, the position on which the 3pi

starts each segment of the course will affect the line positions readings from that

point forward. The position at which the 3pi starts each segment of the course is

not the same and not symmetric for both directions.

5.2 Wired Implementation

On board control provides a theoretical best performance because the communication

channels involved are all on the same circuit board. To obtain more realistic results,

the wired implementation of line following via feedback control consists on the 3pi,

where the input and output entities are deployed, and the Ubuntu workstation,

where the fail-safe host entity is deployed. The 3pi and the Ubuntu workstation

communicate serially in a master/slave architecture, where the Ubuntu workstation

acts as the master and the 3pi as the slave.

The wireless SFRT model can be applied to wired technologies, with the excep-

tion of equations for the worst case delay time and watchdog timer of transmission

delay entities, where the TSCH mode of IEEE 802.15.4e is assumed. For the wired

transmission delay entities operating over serial communication, the worst case delay

time was estimated as the latency observed in the network. An experiment with 100

samples reports the average round trip latency µRL = 3.5 ms, with a standard devia-

tion σRL = 0.06 ms, and an average one way latency µRL/2 = 1.7 ms. The standard

deviation σRL is small (less than 0.1 ms), so the worst case delay time of the trans-

mission delay entity can be estimated as the average one way latency multiplied by
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Figure 5.1: Sequence diagram for the wired implementation of line following control.
Numbers indicate the steps that should be accounted for the timer at the host.

constant c2. A similar approach is used when estimating the watchdog timer of the

wired transmission delay, which is defined as the average one way latency multiplied

by constant c3.

In the wired implementation, since the 3pi only sends a line position upon a

request from the host, the host dictates the update interval of the control loop.

The update interval U is defined as the frequency at which the host requests a new

line position from the 3pi, and is the time at which the timer in Figure 5.1 is set.

Experimentally it was determined that for an update interval less than or equal to

6 ms, the host would send two or more requests to the 3pi before receiving the first

line position. Ideally, the host will send a request and wait for the response from

the 3pi before sending a second request. This allows for the next frame sent to the

3pi to be the corresponding corrective action. To achieve this, the update interval

should account for the time since the request is sent to the 3pi, until the time the

corrective action is sent. This process is indicated in steps 1 to 5 in Figure 5.1. Steps
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Table 5.2: Expressions to calculate worst case delay times and watchdog timers for
network entities in the wired implementation.

i Entity WCDTi WDTimei
1 Input c2((c4 + 1)8 + 4) OFDT1 = c3((c4 + 1)8 + 4)
2 TD c2(1.7) OFDT2 = c3(1.7)
3 F-Host c2((c4 + 1)8 + 0.1) OFDT3 = c3((c4 + 1)8 + 0.1)
4 TD c2(1.7) OFDT4 = c3(1.7)
5 Output c2((c4 + 1)8 + 2) OFDT5 = c3((c4 + 1)8 + 2)

1, 3 and 5 correspond to three one way transmissions that were measured to take

approximately 1.7 ms each. Steps 1, 3 and 5 sum to a total of 5.1 ms. Steps 2 and 4

are the processing time at the input and host entities, respectively. Calibration tests

revealed that the maximum processing time at the input and host entities are 4 and

0.1 ms, respectively. Thus, steps 2 and 4 sum to at most 4.1 ms. The total time

from steps 1 to 5 is estimated to be 9.2 ms. This means that the update interval,

i.e. the host entity timer, should be set to around 9 ms.

Experimentally, it was determined that with an 8 ms update interval the second

request was sent from the host after the first corrective action. An update interval

of 8 ms, however, is less than the calculated 9 ms. This calculated 9 ms included

estimates for transmission delays, i.e. latency, which includes the processing time to

receive, open, and check the cyclic redundancy check (CRC) for one packet. This

processing time was also included in the maximum processing times observed at the

input and host entities. This means that the real time from steps 1 to 5 could be

less than the calculated 9 ms. An update interval of 8 ms, only 1 ms less than the

calculated value, was used for the wired implementation.

An update interval of 8 ms is reflected in the waiting times of the device entities.

With known waiting and processing times, the worst case delay times and watchdog

timers are calculated with the expressions shown in Table 5.2.

The values for constants c2 and c3 are set to 1.05 and 1.3, respectively. Constant

c4 represents the number of acceptable consecutive lost packets. For constant c4,
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Table 5.3: Safety function response time results for the wired implementation. All
units are ms.

(a) Results for c2 = 1.05, c3 = 1.3 and c4 = 0.

i Entity WCDTi WDTimei ∆T WDi

1 Input 12.6 15.6 3
2 TD 1.8 2.3 0.4
3 F-Host 8.5 10.5 2
4 TD 1.8 2.3 0.4
5 Output 10.5 13 2.5

(b) Results for c2 = 1.05, c3 = 1.3 and c4 = 1.

i Entity WCDTi WDTimei ∆T WDi

1 Input 21 26 5
2 TD 1.8 2.3 0.4
3 F-Host 16.9 20.9 4
4 TD 1.8 2.3 0.4
5 Output 18.9 23.4 4.5

two values of 0 and 1 are used. Using these values for constants c2, c3 and c4 in

the expressions in Table 5.2, the calculated worst case delay time WCDTi, watchdog

timer WDTimei, and the maximum difference between an entity’s watchdog timer

and its worst case delay time ∆T WDi are shown in Table 5.3. This results in

SFRT =
5∑

i=1

WCDTi + max
i∈{1,...,5}

∆T WDi = 38.2 ms (5.1)

when WCDTi and ∆T WDi are taken from Table 5.3a, and

SFRT =
5∑

i=1

WCDTi + max
i∈{1,...,5}

∆T WDi = 65.4ms (5.2)

when WCDTi and ∆T WDi are taken from Table 5.3b.

Table 5.3 shows the difference in the worst case delay time, watchdog timer, and

safety function response time values caused by c4. When c4 = 0, no packet lost is

acceptable. If one packet was to be lost in the c4 = 0 implementation, watchdog

timers would expire and the system would be driven to a safe state. This describes
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very strict control where worst case delay times and watchdog timers permit no

packet loss, and where the five participating network entities can be driven to a safe

state in at most 38.2 ms.

When c4 = 1, one packet lost per communication link is acceptable. To accom-

modate this, worst case delay times and watchdog timers are greater than those

when c4 = 0. Greater values for worst case delay times and watchdog timers account

for one lost packet. If one packet is lost, this is considered normal operation and

watchdog timers would not expire, unless a second consecutive packet is lost. This

less strict control is reflected in a larger value for the safety function response time,

where the five participating network entities can be driven to a safe state in at most

65.4 ms.

Note that the worst case delay time of wired transmission delay entities TD is only

1.8 ms. The main difference between on board control and the wired implementation

is the increase in the update interval from 1.9 ms to 8 ms. With an update interval of

8 ms, the wired implementation of line following can provide 125 new line positions

in 1 second.

An update interval U = 8 ms is reasonable for the line following activity as shown

by the results in Table 5.4. The six metrics µe, d, σe, maxe, T and F reported in

Table 5.4 are the same six metrics reported in Table 5.1 for on board control. The

control parameters KP , KI , KD and A have also the same values. The only difference

is the that number of samples N used to obtain average values changed to N ≈ 5042.

Table 5.4 reports that on average the 3pi was able to complete one lap of the

course in 32 s, with a maximum speed of 120 rpm. The average error reported is 0.2

cm, which means that on average the center of the 3pi was within 0.2 cm of the line.

The maximum value of the performance metric e is 2000. Error e can reach a

value of 2000 when the reflectance sensors detecting the line are sensors 0 or 4 (see

Figure 4.9), or when the line is not being currently detected by the 3pi at all. For
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Table 5.4: Experimental results using wired communication to achieve line following
control; KP = −1/20, KI = 1/10000, KD = 3/2, −60 ≤ A ≤ 60, U = 8 ms, and
N ≈ 5042 for each of the six experiments.

Dir. µe d (cm) σe maxe T (s) F (s)
C 246.8 0.2 230.4 918 40.3 32.2
C 221.2 0.2 224.6 1000 40.9 31.3
C 232.1 0.2 232.2 941 40 32.6
µC 233.3 0.2 229.1 953 40.4 32
CC 272.5 0.3 246.9 995 40.9 32.8
CC 246 0.2 233.4 924 40.7 31.2
CC 263 0.3 241.5 901 40 31.7
µCC 260.5 0.3 240.6 940 40.6 31.9
µC,CC 247 0.2 234.8 946.5 40.5 32

the results in Table 5.4, the maximum observed value of error e is 1000, which means

that the 3pi never lost sight of the line. A maximum error e of 1000 means that the

line was always within sensors 1 and 3 (see Figure 4.9).

The behaviour observed when running the tests was a successful line following.

When compared to on board control, however, the wired implementation provides a

less smooth line following, and the 3pi experiences vibrations.

As discussed in Section 5.3, experiments revealed that the 3pi is unable to follow

the line in the wireless implementation with values of KP = −1/20, KI = 1/10000,

KD = 3/2, and when −60 ≤ A ≤ 60. The power difference A (calculated in Equation

(4.4)) determines the magnitude of the corrective action, which is the speed to be

applied to the motors. The higher the corrective action, the sharper the turns. To

obtain a more gradual and gentle control, A should be smaller. To achieve this, the

control parameters were changed to KP = −1/40, KI = 1/20000 and KD = 3/4.

Using these control parameters, two tests were done with two different maximum

values of A: 60 and 40. Tests with a maximum A of 60 reported a higher error e

than when a maximum A of 40 was used. The reason for this increase in e when

only the control parameters are changed but the maximum value of A is not, is

that the same speed used for the default control is being used on a more gentle
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Table 5.5: Experimental results using wired communication to achieve line following
control; KP = −1/40, KI = 1/20000, KD = 3/4, −40 ≤ A ≤ 40, U = 8 ms, and
N ≈ 5034 for each of the six experiments.

Dir. µe d (cm) σe maxe T (s) F (s) µAD (ms) σAD (ms)
C 288.3 0.3 264.7 984 40.3 37.6 4.5 0.5
C 296 0.3 266.3 986 40.5 39.4 4.8 0.4
C 285.7 0.3 263.3 961 40.2 38.9 4.6 0.5
µC 290 0.3 264.8 977 40.3 38.6 4.6 0.4
CC 271.2 0.3 258.4 983 41 38.1 4.9 0.2
CC 278.1 0.3 251 1002 40.4 38 5.2 0.4
CC 279.6 0.3 257.8 1074 40.2 37.9 4.9 0.3
µCC 276.3 0.3 255.8 1019.7 40.5 38 5 0.3
µC,CC 283.1 0.3 260.3 998.3 40.4 38.3 4.8 0.4

control loop. This means the same speed is being applied to more gentle corrective

actions. Considering this, values of A were limited to the range −40 ≤ A ≤ 40,

which means that the maximum corrective action is now 40 rpm instead of 60 rpm,

for KP = −1/40, KI = 1/20000 and KD = 3/4. Experimentally it was determined

that these values generated more gentle corrective actions and slowed down the 3pi

enough so that it could follow the line when using the wireless implementation.

Tests were repeated for the wired implementation using the more gentle control.

Results are reported in Table 5.5 and they include the standard deviation σAD for

the average action delay µAD. The number of samples used to obtain average values

is N ≈ 5034.

Table 5.5 reports an increase in the average error e of approximately 15% com-

pared to Table 5.4, where the default control parameters and maximum speed are

used. This 15% increase only signifies a change of 1 mm, which means that the

average distance from the center of the 3pi to the line increased in 1 mm.

The behaviour observed when running the tests with the more gentle control was

a successful line following. The 3pi only experienced some minor vibrations, and

the line following was smoother than when using the default control parameters and

speed.
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Applying function d to the average error µC,CC = 283.1 results in an average

position error of 0.3 cm. This means that on average, the center of the 3pi was only

0.3 cm away from the line.

Table 5.5 shows that the average time to complete the course was approximately

38 s. This corresponds to 15 s more than on board control, but the maximum speed

used during the tests for the wired implementation was 80 rpm, 40 rpm less than

the maximum 120 rpm used for on board control.

Table 5.5 shows that the maximum error, maxe, was on average approximately

998. This is almost 1000, which corresponds to half the maximum value of error

e. An average maxe of 998 is higher than the average maxe of approximately 885

observed during on board control tests. This could be a consequence of the longer

update interval of 8 ms, which gives the 3pi more time to move before sending a new

line position. The system still remains in control because the average action delay

is 4.8 ms (µAD reported in Table 5.5), which means that a new corrective action is

received 4.8 ms after the line position was read.

The results obtained for the wired implementation provide a more realistic best

performance when off-board communication channels are involved. Results reported

consistent 0% packet lost in every test. The high performance observed for wired

communication is also reliable, as demonstrated by the small (less than 1 ms) stan-

dard deviation of action delays.

The experiments used to obtain the results reported in Table 5.5 implemented

the watchdog timers calculated in Table 5.3. For all the tests, both watchdog timers

implemented on each entity expired 0 times. This is expected with a reported packet

loss of 0%.
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5.3 Wireless Implementation

In the wireless implementation, when using the default control parameters KP =

−1/20, KI = 1/10000 and KD = 3/2, and corrective action values in the range

−60 ≤ A ≤ 60, experiments showed that the 3pi is unable to follow the line. The 3pi

loses sight of the line within 1 second of the test. In the best observed performance,

the 3pi was able to follow a segment of the straight line in the course, while stopping

and rotating on its center a couple of times. The results obtained when running this

experiments cannot be used, since most of the times the 3pi fell off the poster board

track.

To achieve line following feedback control using wireless communication, a more

gentle control loop was used in the experiments. The new values for the control

parameters are KP = −1/40, KI = 1/20000, KD = 3/4, and the corrective action

has values in the range −40 ≤ A ≤ 40.

Wireless calibration tests revealed that the maximum processing time for the

input, host and output entities are P1 = 4 ms, P3 = 0.1 ms, and P5 = 2 ms, respec-

tively. These maximum processing times correspond to the same values reported for

the wired implementation, as indicated in Section 5.2. Since the wired and wireless

implementations share the same sensor, comparator, controller and actuator blocks,

it is reasonable that measured maximum processing times are the same.

Given that the input entity can only provide an updated line position upon a

serial request from the mobile TelosB mote running OpenWSN, the update interval

of the line position is the time interval at which the mobile TelosB mote sends a

request frame to the input entity (3pi). Considering that the OpenWSN network

schedule has 8 timeslots with a duration of 15 ms each, the mobile mote can send a

serial request frame as fast as 120 ms, giving W1 = W3 = 120 ms for entity 1 (input)

and entity 3 (fail-safe host). The waiting time W5 for entity 5 (output) is defined

as the interval at which the host entity can provide a new corrective action to the
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Table 5.6: Expressions to calculate worst case delay times and watchdog timers for
network entities in the wireless implementation.

i Entity F WD Timei,j WCDTi WDTimei
1 Input NA c2(120 + 4) OFDT1 = c3(120 + 4)
2 TD c1(4 + 15) 8× 15 F WD Time2,1 + WCDT2

3 F-Host NA c2((c4 + 1)120 + 0.1) OFDT3 = c3((c4 + 1)120 + 0.1)
4 TD c1(0.1 + 15) 8× 15 F WD Time4,3 + WCDT4

5 Output NA c2((c4 + 1)120 + 2) OFDT5 = c3((c4 + 1)120 + 2)

output entity. This interval is the waiting time at the host plus the processing time

to generate a new corrective action. Since the maximum processing time at the host

P3 = 0.1 ms, the simplifying assumption that W5 = 120 ms is made.

Using the corresponding waiting and processing times in the expressions in Table

4.1, the worst case delay times WCDTi, fail-safe watchdog timers F WD Timei,j,

one fault delay time (OFDT) values, and watchdog timers WDTimei are calculated

for the wireless implementation as shown in Table 5.6.

The values for constants c1, c2 and c3 are set to 1.3, 1.05 and 1.3, respectively.

Using these in the expressions in Table 5.6, the calculated worst case delay time

WCDTi, fail-safe watchdog timer F WD Timei,j, watchdog timer WDTimei, and

the maximum difference between an entity’s watchdog timer and its worst case delay

time ∆T WDi are shown in Table 5.7a for entities 1 (input), 2 and 4 (transmission

delays).

The host and output entities are the only two possible destinations in the two

communication links present in the line following system. As a consequence, the

host and output entities are influenced by the behaviour of the communication links.

Constant c4 represents the number of acceptable consecutive lost packets. The value

of c4 determines the worst case delay times and watchdog timer values for the host

and output entities. For the wireless implementation, values of c4 from 0 to 5 are

used. Each possible value of c4 results in different values for the worst case delay

time WCDTi and watchdog timer WDTimei of entities i = 3 (fail-safe host) and
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Table 5.7: Safety function response time results for the wireless implementation. All
units are ms.

(a) Results for c1 = 1.3, c2 = 1.05 and c3 = 1.3.

i Entity WCDTi F WD Timei,j WDTimei ∆T WDi

1 Input 130.2 NA 161.2 31
2 TD 120 24.7 144.7 24.7
4 TD 120 19.63 139.6 19.6

(b) Results for c1 = 1.3, c2 = 1.05, c3 = 1.3, and c4 values in the range 0 ≤ c4 ≤ 5 .

c4 WCDT3 WDTime3 ∆T WD3 WCDT5 WDTime5 ∆T WD5 SFRT
0 126.1 156.1 30 128.1 158.6 30.5 655.4
1 252.1 312.1 60 254.1 314.6 60.5 936.9
2 378.1 468.1 90 380.1 470.6 90.5 1218.9
3 504.1 624.1 120 506.1 626.6 120.5 1500.9
4 630.1 780.1 150 632.1 782.6 150.5 1782.9
5 756.1 936.1 180 758.1 938.6 180.5 2064.9

i = 5 (output). For each of the six values of c4, the safety function response time

(SFRT) is calculated as shown in Table 5.7b.

As shown in Table 5.7b, the minimum SFRT value for the wireless implementation

of line following is 655 ms, when c4 = 0. The minimum SFRT of 655 ms is about 17

times the minimum SFRT for the wired implementation. This increase in the SFRT is

caused by the much larger update interval of 120 ms for the wireless implementation,

compared with the 8 ms for the wired implementation.

Another significant difference between the wired and wireless implementations is

the worst case delay time of transmission delay entities. It is estimated to be 1.8 ms

for the wired implementation, and 120 ms for the wireless implementation.

As shown in Table 5.7b, different values of c4 result in different values of the

SFRT. If c4 > 0, worst case delay times and watchdog timers should account for

a number of acceptable consecutive lost packets. Entities are only driven to a safe

state when the number of acceptable consecutive lost packets is exceeded. The higher

the value of c4, the more failed cycles are considered acceptable, resulting in higher

values of the system SFRT.
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Table 5.8: Packet loss values for different OpenWSN network schedules; N = 200
for each of the nine experiments.

Set GTS Nts U (ms) PL2 (%) PL4 (%) T (s)

1
Y 8 120 13 19.7 29.2
Y 8 240 29 42.6 48.1
Y 8 360 3.5 3.6 72.2

2
N 8 120 41 70.1 24.1
N 8 240 47 89.5 48.1
N 8 360 2.5 6.7 72.2

3
N 9 135 42.5 77.2 27.1
N 10 150 44.5 83.6 30.1
N 11 165 45.5 80.6 33.1

The minimum SFRT value for the wireless implementation is achieved when

c4 = 0. This means that the acceptable number of lost packets is 0. If one packet is

lost, the watchdog timers will expire and the system will be driven to a safe state.

A packet loss of 0% is a strong assumption for wireless communication, especially

for the wireless line following experiments where tests revealed that packet loss values

can be up to 80% under certain conditions. Table 5.8 shows measured packet loss

percentages for three sets of tests, where GTS indicates if the network schedule has

guaranteed timeslots allocated for each communication link in the system, Nts is

the number of timeslots in the network schedule, U is the update interval (ms) at

which input was sent from the input entity, PL2 represents the packet loss percentage

observed in entity 2 (transmission delay, where the input entity is the sender and the

fail-safe host the destination), PL4 represents the packet loss percentage observed

in entity 4 (transmission delay, where the fail-safe host is the sender and the input

entity the destination), and T is the duration of the test (s).

As shown in Table 5.8, in set #1 the network schedule has 8 timeslots: 1 adver-

tisement timeslot, 1 shared timeslot, 2 guaranteed timeslots (one for each commu-

nication link), 3 serial timeslots, and 1 off timeslot. This is the network schedule

assumed by the wireless SFRT model. If the 3pi answers every serial request frame

from the mobile TelosB mote with a new line position, the update interval U = 120
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ms. If the 3pi answers every 2nd serial request frame, U = 240 ms, and if the 3pi

answers every 3rd serial request frame, U = 360 ms. The difference between sets

#1 and #2 is that the network schedule used in set #2 has 3 shared timeslots and

no guaranteed timeslots. During these packet loss tests (Table 5.8), only packet loss

values were measured, and the 3pi was stationary on the table next to the DAG root

mote.

Consistently in sets #1 and #2, the smallest packet lost percentage is observed

with the slowest update interval of 360 ms. Except for one packet loss value when

U = 360 ms, smaller packet loss values are observed in set #1, where guaranteed

timeslots are used. This provides evidence that the use of guaranteed timeslots can

increase the reliability of the network.

Set #3 uses a network schedule consisting of more than 8 timeslots, where there

is 1 advertisement timeslot, 3 serial timeslots, 1 off timeslot, and the rest are shared

timeslots. Event though set #3 has more timeslots than sets #1 and #2, on every

request frame received by the 3pi a new line position is transmitted. As a conse-

quence, update intervals are less than the 240 ms and 360 ms implemented in sets

#1 and #2.

It seems reasonable that with a shorter update interval, more packets are lost,

since the network might not be able to keep up. Results in Table 5.8, however, show

that a longer update interval can result in a higher packet lost. For example, with

U = 240, set #1 reports PL4 = 42.6%. With a shorter update interval of U = 120

ms, set #1 reports PL4 = 19.7%. This inconsistency can indicate a timing problem

with the OpenWSN network schedule.

Table 5.8 also shows that PL4 is always greater than PL2, even though entities

2 and 4 belong to the same network and operate under the same conditions. The

value of PL4 can exceed PL2 up to 1.9 times.

Based on the results shown in Table 5.8, the best packet loss performance for
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Table 5.9: Experimental results using wireless communication to achieve line follow-
ing control; KP = −1/40, KI = 1/20000, KD = 3/4, −40 ≤ A ≤ 40, U = 120 ms,
and N ≈ 634 for each of the six experiments.

Dir. µe d (cm) σe maxe T (s) F (s) µAD (ms) σAD (ms)
C 1437.7 1.7 658.8 2000 92.3 75.4 411.5 26.5
C 1494.8 1.7 652.8 2000 92.3 67.8 410.8 24.9
C 1503.6 1.8 644.7 2000 92.3 67 413.5 29.9
µC 1478.5 1.7 652.1 2000 92.3 70.1 411.9 27.1
CC 1440.3 1.7 657.5 2000 92.3 66.5 409.8 23
CC 1404.7 1.6 685.3 2000 92.3 65.9 410.6 24.4
CC 1429.7 1.6 665.4 2000 92.3 67.3 411.5 26.7
µCC 1425.1 1.6 669.4 2000 92.3 66.6 410.6 24.7
µC,CC 1451.8 1.7 660.8 2000 92.3 68.3 411.3 25.9

line following implemented with OpenWSN is achieved with the network schedule

used in set #1 with an update interval of 360 ms. For line following, however, a

longer update interval affects the control of the system, and higher values of error e

were observed (i.e. µe = 1487 for U = 120 ms, N = 232 compared to µe = 1691 for

U = 360 ms, N = 94) for a line following test of roughly 30 seconds.

Further tests showed that when U = 120 ms and guaranteed timeslots are used,

even with PL2 and PL4 packet loss values of around 13% and 20%, respectively, the

best value for error e is obtained. The schedule used in set #1 of Table 5.8 with an

update interval of 120 ms was used to run the tests reported in Table 5.9.

Table 5.9 shows values of the average error e higher than those obtained with

the wired implementation (see Table 5.5). These higher values of the average e are

a consequence of the longer update interval used in the wireless implementation.

This means that in the wireless implementation input to the feedback control loop

is provided less often and will take more time to be transmitted, making the control

of the system more challenging.

The average error e for the wireless implementation is 1451.8, which means that

on average the center of the 3pi was 1.7 cm away from the line. Sensors 0 and 4 (see

Figure 4.9) are 2.5 cm away from the center of the 3pi. This means that on average
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the 3pi was less than 1 cm away from losing sight of the line.

Results in Table 5.9 show that maxe = 2000 for all the tests. This provides

evidence that the line reached sensors 0 and 4, and that the 3pi might have lost sight

of the line momentarily. The 3pi was still able to successfully complete the course

in an average time of approximately 1 minute and 8 seconds, 30 seconds more than

the average time to complete the course in the wired implementation.

When the error e reaches the value of 2000, the controller calculates the maximum

corrective action, which causes the 3pi to rotate on its center at the maximum speed.

If the line is close enough, the 3pi will be able to find the line and resume the line

following. If the line is too far from the 3pi, i.e. is not under the area covered by the

3pi, the 3pi cannot find the line and gets stuck rotating on its center.

To report the 6 successful completions of one lap of the course shown in Table

5.9, tests had to be repeated 11 times on the C direction, and 10 times on the CC

direction. The 15 tests where the 3pi did not finish one lap of the course in 90 seconds

include tests where the 3pi fell off the poster board track, could not find the line and

was stuck rotating, or rotated about 180 degrees and continued following the line

in the opposite direction. Results for these tests reported higher µe and σe values.

For example, one test reported µe = 1520.2 and σe = 638.4. This test reported

similar packet loss and action delay values as those reported in the tests were the

3pi finished one lap of the course, suggesting that the test was not influenced by

particular network conditions.

The behaviour observed when running the tests was a wobbly 3pi, where the 3pi

followed the line while oscillating from side to side, and performing wide turns that

sometimes caused the 3pi to lose sight of the line.

The average action delay for the wireless implementation reported in Table 5.9

is 411.3 ms. This means that on average the 3pi receives a corrective action 411 ms

after the line position was read. During this time, the 3pi is applying the previous
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Table 5.10: Packet loss percentages and the number of times each watchdog timer
expired X for the wireless implementation tests in Table 5.9.

WDTime3 (ms) WDTime5 (ms)
PL (%) 156 312 468 159 315 471 627 783 939

Dir. PL2 PL4 X = number of times WDTimei expired
C 14.3 18.4 94 13 1 163 35 11 3 1 1
C 15.6 21.5 109 7 0 186 46 8 4 1 0
C 16 19.9 109 11 0 174 44 13 1 0 0
µC 15.3 20 104 10.3 0.3 174.3 41.7 10.7 2.7 0.7 0.3
CC 14.4 20 93 14 2 172 37 13 4 1 1
CC 16.3 20.8 105 16 2 166 41 18 5 3 1
CC 15.5 23.7 100 14 2 154 44 16 5 3 1
µCC 15.4 21.5 99.3 14.7 2 164 40.7 15.7 4.7 2.3 1
µC,CC 15.4 20.7 101.7 12.5 1.2 169.2 41.2 13.2 3.7 1.5 0.7

corrective action. An average action delay of 411.3 ms corresponds to about 86 times

the average action delay reported for the wired implementation.

For the results shown in Table 5.9, the packet loss (%) of entities 2 and 4 (trans-

mission delays), PL2 and PL4, are reported in Table 5.10. These packet loss values

result in the expiration of the watchdog timers calculated in Table 5.7.

The watchdog timer of input entity WDTime1 set to 161 ms (see Table 5.7a) did

not expire in any of the tests. This means that the input entity is reliably providing

a new line position once every 120 ms, as expected.

The watchdog timer WDTime3 of entity 3 (fail-safe host) expired at least once

when set to 156, 312 or 468 ms, as reported in Table 5.10. These watchdog timer

values correspond to values of c4 of 0, 1 and 2, respectively. This means that up to

3 consecutive packets were lost in entity 2 (transmission delay). This is consistent

with the observed maximum waiting time on entity 3 (fail-safe host) of 481.3 ms,

which corresponds to 3 failed cycles with a waiting time of 120 ms each.

At the fail-safe host entity, 3 consecutive packets lost is the less frequent number

of consecutive packets lost, and was only observed up to 2 times in one test. The

watchdog timer of 156 ms (when c4 = 0), however, expired approximately 102 times.
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Given the packet loss percentages shown in Table 5.10, and considering that when

c4 = 0 no packet loss is acceptable, such high expiration times of the watchdog timer

of 156 ms is expected.

For entity 5 (output), all the calculated watchdog timers in Table 5.7b expired at

least once, as shown in Table 5.10. When c4 = 5, WDTime5 = 939 ms. This value of

the watchdog timer accounts for up to 5 consecutive packets lost, and expired once

on 4 of the 6 tests.

As shown in Table 5.10, values of PL4 are higher than values of PL2, which means

that the second communication link, where the output entity is the destination, is

less reliable than the first communication link. As a consequence, the watchdog

timers at the output entity expired more times than the watchdog timers of the host

entity.

5.4 Discussion

One unsuccessful wireless line following experiment, during which the 3pi did not

finish one lap of the course in 90 s, reported 328 samples with a value of 2000. This

corresponds to 52% of the samples, where the 3pi was detecting the line with sensors

0 or 4 (see Figure 4.9), or the 3pi had lost sight of the line. Even with 52% of the

samples having a value of 2000, the average reported for this test is µe = 1520.2,

79.9 higher than the average error for a test in which the 3pi successfully completed

one lap of the course.

Box plots are a standardized way of displaying a data set, as explained in Ap-

pendix I. In this section, box plots are used to study the distribution of the error

samples obtained during the wired and wireless experiments in order to determine

the characteristics of the error samples in the experiments where the 3pi lost sight

of the line.
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(a) 3pi lost sight of the line. (b) 3pi rotated on its center.

Figure 5.2: Box plots for samples of error e on unsuccessful wireless line following
experiments.

The box plot for error samples from a test where the 3pi lost sight of the line

and did not finish one lap of the course in 90 s is shown in Figure 5.2a. The median,

third quartile and upper extreme have all a value of 2000, which indicates there is a

high number of samples with a value of 2000. Given that the median for this data

set is 2000, 50% of the samples have values above 2000, and 50% of the samples

have values below 2000. Error e, however, has a maximum value of 2000, which

indicates that approximately 50% of the samples have a value of 2000. The graph

also shows a widely dispersed data set, where the range is 1993. The first quartile

has a value of 995, indicating that 75% of the samples have values greater that 995,

which corresponds to an error of almost 1 cm.

A second box plot is shown in Figure 5.2b for error samples from a test in which

the 3pi did not finish one lap of the course in 80 s. The 3pi was unable to follow

the line and rotated on its center several times. Similar to the box plot in Figure

5.2a, the median, third quartile and upper extreme have all a value of 2000. Data is
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(a) Wired implementation. (b) Wireless implementation.

Figure 5.3: Box plots for samples of error e on successful line following experiments.

distributed in a range of 1995 and the first quartile occurs at 1073.5.

The data sets shown in Figures 5.2a and 5.2b suggest that when the 3pi is unable

to follow the line, even with an average error of approximately 1500, the median of

the error samples is 2000.

Figure 5.3a shows the box plot for error samples from the third test in the C

direction using the wired implementation. Results for this test are shown in Table

5.5. The graph shows a much more concentrated data set distributed in a range of

961. The median for this data set is 185, and the first and third quartiles are 102

and 376, respectively. This means that 75% of the data has values below 376, which

corresponds approximately to an error of only 0.3 cm. The maximum error in this

data set has a value of 961 and was observed only once. From a total of 5005 samples

in the data set, 505 are considered outliers between the upper extreme value of 787

to the maximum value of the data set 961. The R software [38] by default extends

the upper extreme to the most extreme data point which is no more than 1.5 times

the inter-quartile range from the box (third quartile). Values greater than the upper
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extreme are considered outliers. A high concentration of outliers shows up in a box

plot as a vertical thick line resulting from many overlapping circles.

Figure 5.3b shows the box plot for error samples from the first test in the CC

direction using the wireless implementation. Results for this test are shown in Table

5.9. Figure 5.3b shows that the third quartile and upper extreme have values of

2000. The median for this data set is 1440.3, almost 8 times the median for the

wired implementation shown in Figure 5.3a. The third quartile with a value of 2000,

indicates that at least 25% of the samples are 2000. From the 641 samples in the

test, 278 had a value of 2000, giving approximately 43%. Samples are dispersed in a

range of 1975.

Figure 5.3b shows that the wireless implementation generates a less stable data

set, where 50% of the samples have values greater or equal to 1842, and at least 25%

of the samples have a value of 2000. Even under these conditions, the 3pi was able

to finish one lap of the course and successfully followed the line. This successful line

following is reflected by the median of 1440, which is less than the median of 2000

observed in the tests where the 3pi lost sight of the line.

Section 5.3 reported that an important difference between the wired and wireless

implementation is the update interval. In the wireless implementation, the update

interval is 120 ms, while in the wired implementation the update interval is 8 ms.

Figures 5.4a and 5.4b show box plots for error samples using a wired implementation

with an update interval of 120 ms and 240 ms, respectively. These graphs show the

impact of an increase in the update interval. Compared to Figure 5.3a, the range

and median have increased. Network conditions remained the same, no packet loss

was observed and watchdog timers did not expire.

For the test shown in Figure 5.4a, the median is 1540, and the first and third

quartiles are 931 and 1914, respectively. The maximum error in the sample has a

value of 2000, and is reported in 109 samples in the data set, from a total of 757
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(a) Update interval of 120 ms. (b) Update interval of 240 ms.

Figure 5.4: Box plots for samples of error e on successful wired line following exper-
iments.

samples.

Increasing the update interval to 240 ms can further negatively affect the perfor-

mance, as shown in Figure 5.4b. The median for this data set is 1637, and the third

quartile is 2000. Of the 379 samples in the data set, 121 samples have a value of

2000.

With an update interval of 120 ms, the wireless implementation has an average

error µe = 1440.3, and the wired implementation reports an average error µe =

1361.4. The wireless implementation reports an increase in the average error of only

78.9, corresponding to an increase in the average distance between the center of the

3pi and the line of less than 0.1 cm. The median, however, experienced a higher

increase of 302 in the wireless implementation, corresponding to an increase in the

median distance of approximately 0.3 cm.
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5.4.1 OpenWSN for Wireless Control

OpenVisualizer is an essential part of OpenWSN and needs to be running and com-

municating serially with the DAG root mote, so the OpenWSN network can operate

correctly. An attempt to implement the line following feedback control loop using

OpenWSN without OpenVisualizer was made. The host communicated serially with

the DAG root mote, providing a more direct communication where no sockets are

required. The mobile mote addressed udpinject frames with control data to the DAG

root mote. When the DAG root mote received a frame from the mobile mote, the

frame was forwarded serially and received by the host. Transmissions from the DAG

root to the mobile mote, however, were not possible since the application layer at

the DAG root is implemented by OpenVisualizer.

If transmissions from the DAG root to the mobile mote and viceversa were pos-

sible without the need of OpenVisualizer, communication between the host and the

mobile mote would be more direct, less components would be involved, and this

could simplify the implementation and reduce transmission times. OpenVisualizer

is a mandatory layer that provides interesting features, but also limits the way in

which OpenWSN can be used, and in which the OpenWSN network can be accessed.

The fail-safe watchdog timer, F WD Time, of a transmission delay entity su-

pervises a one-to-one communication link and monitors the correct operation of the

communication channel. The F WD Time is started every time a new packet is sent,

and is reset when the corresponding acknowledgement is received.

The F WD Time needs to be reset by the sendDone method, which is the method

in the OpenWSN implementation that reports successful and unsuccessful transmis-

sions. On the DAG root mote, the sendDone method runs locally, and OpenVisu-

alizer is not notified. As a consequence, when the host sends a UDP frame to the

mobile mote, the host is not notified when the corresponding acknowledgement is re-

ceived. To resolve this, when the DAG root receives an acknowledgement, the DAG

96



root should serially forward the frame to OpenVisualizer. OpenVisualizer could then

send a notification to the host over the socket. This would provide support for the

F WD Time, which cannot be implemented with the current OpenWSN implemen-

tation.

Experimental results discussed in Section 5.3, reported from 2.5% to 89.5% packet

loss for different OpenWSN network schedules. To investigate this behaviour, a

packet analyzer (sniffer) was configured as explained in Appendix J. The sniffer was

used to capture packets being transmitted over the air between the DAG root and

mobile motes. The Wireshark software was used to display the contents of the packets

captured by the sniffer. This set-up revealed that packets are sent successfully from

the mobile mote, but they are not received by the DAG root. As a consequence,

the DAG root does not reply with the corresponding acknowledgements, and the

mobile mote reports these failed transmissions. The reason why the DAG root is

not receiving the frames is suspected to be an OpenWSN synchronization problem

at the DAG root, as reported in Appendix K.

To reduce the minimum update interval provided by OpenWSN of 120 ms, and

thus the minimum SFRT achievable, the number of required timeslots in a slotframe

should be reduced. One way of achieving this is to perform serial activity in the

background. This would eliminate the requirement of having three reserved timeslots

for serial activity. OpenWSN should provide more reliability, so it can be used when

implementing critical control loops with fewer acceptable failed cycles. To achieve

this, the synchronization problem at the DAG root needs to be solved, which would

significantly reduce the packet loss.

5.4.2 Acceptable Safety Function Response Time

The IEC 61511 standard [18] defines the process safety time as the time between a

failure in a system and a hazardous event. A safe system state should be reached
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within the process safety time, to guarantee that a hazardous event will not occur.

For the line following experiment, a hazardous event is defined as the 3pi losing sight

of the line to the point where the 3pi is unable to find the line again. This means

that the line is no longer in the area covered by the dimensions of the 3pi, which is

an area of 69.3 cm2. For the line following experiment, a safe state is reached when

the 3pi stops before moving so far that the area covered by the 3pi no longer contains

some part of the line. For the line following experiment, the SFRT should be short

enough to ensure that the 3pi reaches its safe state in time.

The length of the course used in the experimental validation is 4.532 m. For the

wired implementation, the 3pi was able to complete one lap of the course in 38.3

s, as shown in Table 6.1. This provides an estimate of the speed at which the 3pi

moves in the course of 11.83 cm/s. Given that the calculated SFRT for the wired

implementation is 38.2 ms (see Table 6.1), it can be calculated that during 38.2 ms

the 3pi moves 0.45 cm. For the wired implementation, the center of the 3pi was

at most 1.11 cm from the line. From the worst case initial position of the center

of the 3pi being 1.11 cm away from the line, if the 3pi moves 0.45 cm more before

stopping, the area of the 3pi is guaranteed to still cover some part of the line. Based

on this analysis, an SFRT of 38.2 ms is acceptable for the wired implementation of

line following.

Similarly, for the wireless implementation, the estimate of the speed at which the

3pi moves in the course is 6.63 cm/s. The SFRT for the wireless implementation is

estimated to be 655.4 ms, as shown in Table 6.1. During this time, the 3pi moves

4.34 cm. For the wireless implementation, the worst case initial position is 2.5 cm

from the center of the 3pi to the line. If the 3pi moves 4.3 cm from this initial

position, it cannot be guaranteed that the area of the 3pi will still cover some part

of the line, since it depends in the angle, speed and corrective action being applied

at the moment.
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In the wireless implementation of the line following experiment, waiting times

are the main contributor for the SFRT. To reduce the SFRT, the minimum update

interval of 120 ms provided by OpenWSN needs to be reduced.
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Chapter 6

Conclusions

This thesis defined a model to estimate the safety function response time (SFRT) on

a wireless network implementing a feedback control loop with multiple inputs and

multiple outputs. The model extends the definition of the SFRT provided by the IEC

61784-3-3 standard to consider multiple input and multiple output (MIMO) systems.

The model treats the wireless transmission medium as an entity that can be adapted

to accommodate the implementation of safety functions. To achieve this, the model

considers the transmission medium to operate under the timeslotted channel hopping

(TSCH) mode of the IEEE 802.15.4e wireless communication protocol, suitable for

industrial applications and designed for process automation.

An experimental validation was performed in which the wireless SFRT model was

applied to a real feedback control loop implemented in a single-hop wireless network.

Processing and waiting times assumed as input by the wireless SFRT model were

experimentally measured, and the wireless SFRT model equations were applied.

Three line following feedback control experiments were completed to evaluate the

wireless SFRT model. Table 6.1 shows the average results of these tests for the C and

CC directions, where the update interval was 8 ms for the wired implementation, and

120 ms for the wireless implementation. More detailed conclusions for each thesis
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Table 6.1: Summary of the experimental results for the on board, wired and wireless
experiments. *Corresponds to the minimum SFRT achievable when no packet loss
is acceptable (c1 = 1.3, c2 = 1.05, c3 = 1.3, and c4 = 0).

Metric On board Wired Wireless
µe 199.2 283.1 1451.8

d (cm) 0.2 0.3 1.7
σe 174.7 260.3 660.8

maxe 974 1074 2000
µAD (ms) 1.9 4.8 411.3

F (s) 22.9 38.3 68.3
SFRT* (ms) NA 38.2 655.4

activity are below.

6.1 Wireless Safety Function Response Time Model

Summary

The wireless SFRT model applies the communication protocol defined in the IEEE

802.15.4e standard to the architecture defined in the IEC 61784-3-3 standard, con-

sidering that IEEE 802.15.4e packets can carry out the functions specified for safety

protocol datagram units (PDUs), i.e. keep the network securely synchronized and

deliver process data over one-hop communication links.

The wireless SFRT model considers periodic uplink and downlink transmissions,

that is demonstrated to reduce the SFRT by a factor of 4 [3]. The model is applicable

to any other timeslotted wireless communication protocol that can accommodate the

model assumptions, such as the IEEE 802.15.4 (with a limit of up to 7 timeslots), and

the LLDN and DSME modes of IEEE 802.15.4e. These two modes can be configured

based on the assumptions made by the model, but the LLDN and DSME modes

were designed for different requirements, including many devices in the network. For

the wireless SFRT model, this results in many timeslots in a slotframe, and would

increase the worst case delay time of transmission delay entities.
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The performance of the wireless medium is non-deterministic due to many possi-

ble unpredictable communication errors, such as corruption and packet loss, among

others. An important contribution from this thesis is to model the wireless commu-

nication channel to provide an equation that estimates the worst case delay time of

wireless channels. By including in the model the concept of watchdog timers intro-

duced by the IEC 61784-3-3 standard, then when wireless communication fails, the

system will be guaranteed to be able to reach a safe state.

As shown in Table 4.1, mathematical constants c2, c3 and c4 were introduced to

the wireless SFRT model to complement the IEC 61784-3-3 constant c1 ∈ [1, 1.3].

Constants c2, c3 and c4 take into consideration variations in the response time of real

devices, and the packet loss observed in wireless communications. These constants

make the wireless SFRT model adaptable to different types of control.

6.2 Experimental Validation Conclusions

Experimental validation was performed on a wireless network composed of two

TelosB motes running OpenWSN (see Section 4.1.2). OpenWSN is suitable for

control where an update interval greater or equal to 120 ms is appropriate, and

where several failed cycles are acceptable. The wireless line following experiment

was compared with on board control and a wired implementation.

The 3pi was able to follow the line successfully in the wired implementation

using the default control parameters provided by the Pololu Corporation. With

the wireless implementation, however, the 3pi was unable to follow the line using

the same control parameters. To achieve control in the wireless implementation,

the parameters were changed to develop a more gradual and gentle control. Using

the more gentle control, tests for the wireless implementation of the line following

experiment had to be repeated 21 times to achieve 6 tests in which the 3pi was able
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to follow the line to complete one lap of the course. The wireless implementation

experienced an increase in the average error of 1.4 cm, or about five times worse than

the wired implementation. There are two main reasons for the decline of control

performance on the wireless implementation. The first is the update interval and

the second is network conditions.

The update interval for the wired implementation is 8 ms, compared to 120 ms for

the wireless implementation. For the wireless implementation, the update interval is

dictated by the network schedule and the moment in which the mobile TelosB mote

is scheduled to communicate serially with the 3pi. Serial activity is not handled in

the background, so serial communication is scheduled to occur once every slotframe.

Given that the minimum slotframe with two guaranteed timeslots has a duration

of 120 ms, the fastest frequency for serial communication between the 3pi and the

mobile mote is once every 120 ms.

The impact of an update interval of 120 ms is demonstrated by the wired im-

plementation. When changing the update interval from 8 ms to 120 ms using the

wired implementation, the average error increases from 0.3 cm to 1.5 cm. Even with

perfect network conditions, i.e. no packet loss and high reliability, provided by the

wired implementation, the control performance drops with a longer update interval.

When comparing the wired and wireless implementations where both use an update

interval of 120 ms, the increase in the average error is only 0.2 cm for the wireless

implementation. This increase is due to the second reason for decline in control

performance: network conditions. The average packet loss in the wireless implemen-

tation is 16%, which provides an increase in the average error of 0.2 cm compared to

the wired implementation. This provides evidence that the main problem with the

wireless implementation is the high minimum update interval of 120 ms.

The wireless implementation can report median error values close or equal to

2000. The wireless implementation does not provide reliable behaviour, and control
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of the 3pi cannot be guaranteed, but can be kept at a safe level with the right

watchdog timers and SFRT.

6.3 Future Work

The wireless SFRT model assumes a wireless network operating on a star topology

with one-hop communication links between the host (PAN coordinator) and the

the rest of the devices in the network. The host participates in all communication

links, and there is only one slotframe to guarantee medium access. On a multi-

hop network, the host will not be scheduled to participate in all the timeslots, and

multiple slotframes can be used to enhance the performance of the network, since

two pairs of devices could be communicating simultaneously in different frequencies

without affecting each other. Future work could consider multi-hop networks, where

the calculation of the optimal schedule and number of slotframes is important.

A software tool can be implemented to automatically calculate the SFRT of a

given wireless network, provided that the waiting and processing times, and the

values for constants are read from the user as input. This tool could help configure

a given wireless network to achieve a desired SFRT value.

Future experimental validations could be done using other protocol stacks that

implement timeslotted and guaranteed medium access. For example, TinyOS version

2.1.2 [16] implements the IEEE 802.15.4-2006 standard and supports allocation of

guaranteed timeslots.

Implementing wireless communication from the input sensor to the host, and

wired communication from the host to the output actuator constitutes a valid archi-

tecture for industrial control [29]. This architecture merges the advantages of wired

and wireless technologies. Estimating the SFRT for this architecture would involve

combining the worst case delay time of both wireless and wired transmission delay
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entities.

To reduce the minimum SFRT achievable by wireless implementations, the wait-

ing time restricting the update interval should be reduced. For OpenWSN, this

waiting time is determined by the number of timeslots in a slotframe.
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[34] José E. G. Oliveira, Sónia M. V . Semedo, Duarte M. G. Raposo, and Francisco
J. A. Cardoso, Place-&-play industrial router addressing potential explosive at-
mospheres, 40th Annual Conference of IEEE Industrial Electronics Society, Oc-
tober 29-November 1 2014, Dallas, USA, pp. 3914–3918.

[35] M.R. Palattella, N. Accettura, X. Vilajosana, T. Watteyne, L.A. Grieco, G. Bog-
gia, and M. Dohler, Standardized protocol stack for the internet of (important)
things, Communications Surveys Tutorials, IEEE 15 (2013), no. 3, 1389–1406.

[36] Victoria Pimentel and Bradford G. Nickerson, Wireless industrial control
networks, Tech. Report TR13-223, Faculty of Computer Science, Univer-
sity of New Brunswick, Fredericton, January 2013, http://www.cs.unb.ca/

tech-reports/reportpage20102015.shtml.

108

http://www.physics.csbsju.edu/stats/
http://www.physics.csbsju.edu/stats/
http://www.che.com
http://www.cs.unb.ca/tech-reports/reportpage20102015.shtml
http://www.cs.unb.ca/tech-reports/reportpage20102015.shtml


[37] , A safety function response time model for wireless industrial control,
40th Annual Conference of IEEE Industrial Electronics Society, October 29-
November 1 2014, Dallas, USA, pp. 3878–3884.

[38] R Core Team, R: A language and environment for statistical computing, R Foun-
dation for Statistical Computing, Vienna, Austria, 2013, ISBN 3-900051-07-0.

[39] N. Salman, I. Rasool, and A. H. Kemp, Overview of the IEEE 802.15.4 standards
family for low rate wireless personal area networks, 7th International Symposium
on Wireless Communication Systems (ISWCS), September 2010, York, pp. 701–
705.

[40] Ioakeim K. Samaras and George Hassapis, A flexible analytical markov model for
the IEEE 802.15.4 unslotted mechanism in single-hop hierarchical wireless net-
works with hidden nodes, Wireless Personal Communications 72 (2013), no. 4,
2389–2424.

[41] Thilo Sauter, Fieldbus systems: History and evolution, ch. 13 of Integration
Technologies for Industrial Automated Systems, CRC Press, 2006, edited by
Richard Zurawski.

[42] Zach Shelby and Carsten Bormann, 6LoWPAN: The wireless embedded internet,
Wiley, 2009.

[43] Thomas Watteyne, Xavier Vilajosana, Branko Kerkez, Fabien Chraim, Kevin
Weekly, Qin Wang, Steven D. Glaser, and Kris Pister, OpenWSN: A standards-
based low-power wireless development environment, Transactions on Emerging
Telecommunications Technologies 23 (2012), no. 5, 480–493.

[44] Lianming Zhang, Jianping Yu, and Xiaoheng Deng, Modelling the guaranteed
QoS for wireless sensor networks: A network calculus approach, EURASIP Jour-
nal on Wireless Communications and Networking 82 (2011), 1–14.

[45] Weiqi Zhang and Bradford G. Nickerson, Wireless sensor network communi-
cation protocols, Tech. Report TR11-208, Faculty of Computer Science, Uni-
versity of New Brunswick, Fredericton, May 2011, http://www.cs.unb.ca/

tech-reports/reportpage20102015.shtml.

[46] Tao Zheng, Mikael Gidlund, and Johan Akerberg, Deterministic medium ac-
cess mechanism for time-critical wireless sensor network applications, Personal
Indoor and Mobile Radio Communications (PIMRC), 2013 IEEE 24th Interna-
tional Symposium on, Sept 2013, pp. 1598–1602.

109

http://www.cs.unb.ca/tech-reports/reportpage20102015.shtml
http://www.cs.unb.ca/tech-reports/reportpage20102015.shtml


Appendix A

Pololu Corporation Line Following

Control Implementation

The control code shown here is for the on board version of the 3pi controller. For

wireless and wired implementations, the control calculate action method was

created using the lines between and including those marked with an *.

while(1)

{

// Get the position of the line.

unsigned int position = read_line(sensors,IR_EMITTERS_ON);

*// The "proportional" term should be 0 when the 3pi is on the line.

int proportional = ((int)position) - 2000;

// Compute the derivative (change) and integral (sum) of the position.

int derivative = proportional - last_proportional;

integral += proportional;

// Remember the last position.

last_proportional = proportional;

// Compute the difference between the two motor power settings,

// m1 - m2. If this is a positive number the robot will turn

// to the right. If it is a negative number, the robot will

// turn to the left, and the magnitude of the number determines

// the sharpness of the turn.
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int power_difference = proportional/20 + integral/10000 + derivative*3/2;

// Compute the actual motor settings. We never set either motor

// to a negative value.

const int max = 60;

if(power_difference > max)

power_difference = max;

if(power_difference < -max)

* power_difference = -max;

if(power_difference < 0)

set_motors(max+power_difference, max);

else

set_motors(max, max-power_difference);

}
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Appendix B

Wireless Experimental Set-up

Figures B.1 and B.2 show pictures of the wireless line following experimental set-up.

The OpenWSN network is conformed of the TelosB DAG root and mobile motes.

The DAG root mote communicates serially with the Ubuntu workstation, and the

mobile mote communicates serially with the Pololu 3pi.

Figure B.1: TelosB mobile mote connected to the Pololu 3pi.
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Figure B.2: The TelosB DAG root mote communicates wirelessly with the TelosB
mobile mote.

113



Appendix C

Wired Experimental Set-up

Figures C.1 and C.2 show pictures of the wired line following experimental set-up.

Serial communication is used between the Pololu 3pi, the Pololu USB AVR program-

mer, and the Ubuntu workstation.

Figure C.1: Pololu USB AVR programmer connected to the UART RX and TX lines
on the Pololu 3pi.
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Figure C.2: Host connected over a USB wire to the Pololu USB AVR programmer
on the line following course.

115



Appendix D

Udpprint Application

The udpprint application runs on the mobile TelosB mote as part of the OpenWSN

firmware. The udpprint application forwards UDP frames received wirelessly to the

TelosB UART1 serial pins. The udpprint application is implemented as follows:

#include "openwsn.h"

#include "udpprint.h"

#include "openqueue.h"

#include "openserial.h"

//=========================== variables =================================

//=========================== prototypes ================================

//=========================== public ====================================

void udpprint_init() {

//Udpprint is for communication from host to mobile only

}

//This method will be triggered when the mobile receives a packet from

//host. This methods forwards the data received on UDP packet over serial

void udpprint_receive(OpenQueueEntry_t* msg) {

//No handshake required

if(!idmanager_getIsDAGroot()){

openserial_printData((uint8_t*)(msg->payload),msg->length);

}

openqueue_freePacketBuffer(msg);

}
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void udpprint_sendDone(OpenQueueEntry_t* msg, owerror_t error) {

openserial_printError(

COMPONENT_UDPPRINT,

ERR_UNEXPECTED_SENDDONE,

(errorparameter_t)0,

(errorparameter_t)0

);

openqueue_freePacketBuffer(msg);

}

bool udpprint_debugPrint() {

return FALSE;

}

//=========================== private ===================================
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Appendix E

Udpinject Application

The udpinject application runs on the mobile TelosB mote as part of the OpenWSN

firmware. The udpinject application generates a UDP packet from a received serial

frame. The udpinject application is implemented as follows:

#include "openwsn.h"

#include "udpinject.h"

#include "openudp.h"

#include "openqueue.h"

#include "openserial.h"

#include "packetfunctions.h"

//=========================== variables =================================

uint8_t host_addr_128b[] =

{0xbb, 0xbb, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, \

0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x01};

//=========================== prototypes ================================

//=========================== public ====================================

void udpinject_init() {

//Udpinject is for communication from mobile to host only

}

//This method will be triggered when the mobile mote receives a U serial

//frame

void udpinject_trigger() {
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OpenQueueEntry_t* pkt;

uint8_t number_bytes_from_input_buffer;

uint8_t input_buffer[255];

int i;

number_bytes_from_input_buffer = openserial_getInputBuffer(

&(input_buffer[0]),

sizeof(input_buffer));

//Prepare packet

pkt = openqueue_getFreePacketBuffer(COMPONENT_UDPINJECT);

if (pkt==NULL) {

openserial_printError(COMPONENT_UDPINJECT,ERR_NO_FREE_PACKET_BUFFER,

(errorparameter_t)0,

(errorparameter_t)0);

return;

}

pkt->creator = COMPONENT_UDPINJECT;

pkt->owner = COMPONENT_UDPINJECT;

pkt->l4_protocol = IANA_UDP;

pkt->l4_sourcePortORicmpv6Type = WKP_UDP_INJECT;

pkt->l4_destination_port = WKP_UDP_INJECT;

pkt->l3_destinationAdd.type = ADDR_128B;

//Address to host

memcpy(&(pkt->l3_destinationAdd.addr_128b[0]),&host_addr_128b,16);

packetfunctions_reserveHeaderSize(pkt,number_bytes_from_input_buffer);

for(i=0; i<number_bytes_from_input_buffer; i++)

((uint8_t*)pkt->payload)[i] = input_buffer[i];

//Send packet

if ((openudp_send(pkt))==E_FAIL)

openqueue_freePacketBuffer(pkt);

}

void udpinject_sendDone(OpenQueueEntry_t* msg, owerror_t error) {

msg->owner = COMPONENT_UDPINJECT;

if (msg->creator!=COMPONENT_UDPINJECT) {

openserial_printError(COMPONENT_UDPINJECT,ERR_UNEXPECTED_SENDDONE,

(errorparameter_t)0,

(errorparameter_t)0);

}

openqueue_freePacketBuffer(msg);

}

//This method will be triggered when the mobile receives a handshake

//packet from host

void udpinject_receive(OpenQueueEntry_t* msg) {
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OpenQueueEntry_t* pkt;

pkt = openqueue_getFreePacketBuffer(COMPONENT_UDPINJECT);

if (pkt==NULL) {

openserial_printError(COMPONENT_UDPINJECT,ERR_NO_FREE_PACKET_BUFFER,

(errorparameter_t)0,

(errorparameter_t)0);

return;

}

pkt->creator = COMPONENT_UDPINJECT;

pkt->owner = COMPONENT_UDPINJECT;

pkt->l4_protocol = IANA_UDP;

pkt->l4_sourcePortORicmpv6Type = WKP_UDP_INJECT;

pkt->l4_destination_port = WKP_UDP_INJECT;

pkt->l3_destinationAdd.type = ADDR_128B;

//Address to host

memcpy(&(pkt->l3_destinationAdd.addr_128b[0]),&host_addr_128b,16);

packetfunctions_reserveHeaderSize(pkt,2);

((uint8_t*)pkt->payload)[0] = ’O’;

((uint8_t*)pkt->payload)[1] = ’K’;

//Send packet

if ((openudp_send(pkt))==E_FAIL)

openqueue_freePacketBuffer(pkt);

openqueue_freePacketBuffer(msg);

}

bool udpinject_debugPrint() {

return FALSE;

}

//=========================== private ===================================
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Appendix F

Handling Request Frames

Request frames are sent from the mobile TelosB mote to the Pololu 3pi once during

every slotframe, i.e. once every 120 ms. When a request frame is received at the 3pi,

the following method is executed:

//3pi got a REQUEST frame, handle it and generate the response with

//the latest line position reading

void hdlcRes_request(long serial_duration)

{

int i, j, action_delay;

uint8_t one_byte;

unsigned int tmp_sensors[5];

long time, w_input, p_input;

long p_start, p_end, refresh;

//Start counting for processing time

p_start = get_ms();

//Get time since last R frame and store maximum as

//waiting time from input entity

if(w_input_0 == 0)

w_input_0 = get_ms();

else {

w_input_1 = get_ms();

w_input = w_input_1 - w_input_0;

if(w_input > max_w_input)

max_w_input = w_input;

w_input_0 = w_input_1;

}
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//If we have not reached the end of test

if(!check_end()){

//On every SERIALRX we will send new line position

//Won’t check CRC - no payload

outputHdlcOpen(); //1b

outputHdlcWrite(’U’); //1b

//Indicate this is position message

outputHdlcWrite(’P’); //1b

//Read line position

line_position = read_line(tmp_sensors, IR_EMITTERS_ON);

//Store current time

time = get_ms();

if(array_index == ARRAYSIZE)

array_index = 0;

sequence_numbers[array_index] = Rframe;

reading_times[array_index] = time;

array_index++;

//Add line position

for(i=0; i<NUMBYTES; i++){

one_byte = (line_position >> 8*i) & 0xff;

outputHdlcWrite(one_byte); //1B

}

//Add sequence number

for(i=0; i<NUMBYTES; i++){

one_byte = (Rframe >> 8*i) & 0xff;

outputHdlcWrite(one_byte); //1B

}

//If there are any action delays to report, add them

if(action_delays_index > 0){

for(i=0; i<action_delays_index; i++){

action_delay = action_delays[i];

for(j=0; j<NUMBYTES; j++){

one_byte = (action_delay >> 8*j) & 0xff;

outputHdlcWrite(one_byte); //1B

}

}

action_delays_index = 0;

}

outputHdlcClose(); //3b

//Send U frame
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serial_send_blocking((char *)openserial_vars.outputBuf,

openserial_vars.outputBufIdxW);

openserial_vars.outputBufIdxW = 0;

Rframe++;

}

//Refresh all input WDTimes

refresh = get_ms();

for(i=0; i<NWDTIMES; i++)

input_refresh[i] = refresh;

// Processing ends

p_end = get_ms();

p_input = p_end - p_start;

p_input += serial_duration;

if(p_input > max_p_input)

max_p_input = p_input;

}
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Appendix G

Generation of a Corrective Action

Corrective actions are generated at the host running at the Ubuntu workstation.

Every time a new line position is received at the host, the corresponding correc-

tive action is calculated and transmitted back to the 3pi. The controller shown in

Appendix A is implemented by the control calculate action method, which is

called by the following method:

//A new line position has been received at the host with the sequence

//number seq_num, calculate its corresponding corrective action

//and send it over the socket

double act(int seq_num){

struct timeval process_start, process_end;

double p_fhost, wdtime;

uint8_t byte;

uint8_t action_msg[MSGBYTES-1];

int i;

//Calculate corrective action

action = control_calculate_action(line_position);

//Start measuring process

gettimeofday(&process_start, NULL);

//Add corrective action

int_to_uint8(action_msg, action, 0);
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//Add sequence number

int_to_uint8(action_msg, seq_num, 4);

//Send message

fprintf(log_file, "Corrective action %d number %d\n", action, seq_num);

printf("Corrective action %d number %d\n", action, seq_num);

//We are not sending corrective action for first line position received

//since it is always the maximum corrective action

if(positions > 1){

if(sendto(socket_udpprint, action_msg, sizeof(action_msg),

MSG_DONTWAIT, (struct sockaddr *) &mobile_udpprint,

sizeof(mobile_udpprint)) < 0) {

perror("Error sendto failed");

fprintf(log_file, "Error sendto failed while sending corrective

action");

} else {

actions++;

fprintf(log_file, "Corrective action sent\n");

gettimeofday(&current_action_sent, NULL);

//WDTime calculation

wdtime = (double) (current_action_sent.tv_usec -

prev_action_sent.tv_usec) / 1000000 +

(double) (current_action_sent.tv_sec -

prev_action_sent.tv_sec);

//Report if any WDTime expired

for(i=0; i<NWDTIMES; i++){

if(wdtime > wdtimes_fhost[i])

wdexpirations_fhost[i]++;

}

prev_action_sent = current_action_sent;

}

} else

gettimeofday(&prev_action_sent, NULL);

//Process done

gettimeofday(&process_end, NULL);

p_fhost = (double) (process_end.tv_usec - process_start.tv_usec)

/ 1000000 + (double) (process_end.tv_sec - process_start.tv_sec);

return p_fhost;

}
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Appendix H

Handling Data Frames

When a corrective action is received at the mobile TelosB mote, the mote sends a

data frame to the Pololu 3pi. When a data frame is received at the 3pi, the following

method is executed:

//3pi got a DATA frame, check it, extract the corrective action

//(power_difference) and apply it to the motors

void hdlcRecv_data(long serial_duration)

{

int i, in_array, action_delay;

int j = 0;

int power_difference = 0;

int seq_num = 0;

uint8_t one_byte = 0;

long w_output, p_output, p_start, p_end, refresh;

//Start counting for processing time

p_start = get_ms();

//Get time since last D frame and store maximum as waiting time

//from output entity

if(w_output_0 == 0)

w_output_0 = get_ms();

else {

w_output_1 = get_ms();

w_output = w_output_1 - w_output_0;

if(w_output > max_w_output)

max_w_output = w_output;

w_output_0 = w_output_1;
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}

inputHdlcOpen();

for(i=0; i<pointer; i++){

inputHdlcWrite((uint8_t) message[i]);

}

inputHdlcClose();

//Check CRC

if(openserial_vars.inputBufFill != 0){ //PASS

Dframe++;

//Get corrective action

for(i=8; i<8+NUMBYTES; i++){

one_byte = openserial_vars.inputBuf[i];

power_difference |= one_byte << 8*j;

j++;

}

//Apply corrective action

if(power_difference < 0)

set_motors(max+power_difference, max);

else

set_motors(max, max-power_difference);

//Store current time

refresh = get_ms();

//Refresh all WDTimes

for(i=0; i<NWDTIMES; i++)

output_refresh[i] = refresh;

//Get sequence number

j = 0;

for(i=8+NUMBYTES; i<8+2*NUMBYTES; i++){

one_byte = openserial_vars.inputBuf[i];

seq_num |= one_byte << 8*j;

j++;

}

//Calculate action delay

in_array = search_in_array(seq_num);

if(in_array != -1){

if(action_delays_index == ARRAYSIZE)

action_delays_index = 0;

action_delay = refresh - reading_times[in_array];

action_delays[action_delays_index] = action_delay;

action_delays_index++;

}
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} else //FAIL

Eframe++;

//Processing ends

p_end = get_ms();

p_output = p_end - p_start;

p_output += serial_duration;

if(p_output > max_p_output)

max_p_output = p_output;

}
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Appendix I

Box Plots

The box plot [30] [26] is a standardized way of displaying a data set, an example is

shown in Figure I.1. The box plot incorporates five important elements: the lower

and upper extremes (labelled in Figure I.1 with the letters F and B, respectively),

the median (labelled with the letter D in Figure I.1), and the first and third quartiles

(labelled in Figure I.1 with the letters E and C, respectively). The median splits the

data set in half, which means that 50% of the data is contained above the horizontal

line labelled D in Figure I.1, and the other 50% of the data is contained below.

The first quartile or lower quartile splits the lowest 25% of the data, and the

second quartile splits the lowest 75% of the data from the highest 25%. The inter-

quartile range (the rectangle in the box plot in Figure I.1) is defined as the range

from the first quartile to the third quartile, and it includes 50% of the samples.

The box plot is a powerful representation of a data set, since it shows the range of

the data set (from the lower extreme, labelled F in Figure I.1, to the upper extreme,

labelled B in Figure I.1), the likely range of the data set (the inter-quartile range,

from labels E to C in Figure I.1), and the typical value (the median, labelled D in

Figure I.1).

Label A in Figure I.1 indicates the outliers present in the data set. Outliers
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Figure I.1: Example of a box plot.

are defined as samples with statistically unexpected high or low values. There are

different methods for calculating outliers, for example values that are above three

times the inter-quartile range from the third quartile, and values that are below three

times the inter-quartile range from the first quartile. A high concentration of outliers

shows up in a box plot as a vertical thick line resulting from many overlapping circles.

Box plots in this thesis were generated using the R software [38].
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Appendix J

Jackdaw Sniffer Set-up

The Atmel RZUSBstick is a USB stick with a 2.4GHz transceiver and a USB connec-

tor. The Contiki Raven firmware was loaded to the RZUSBstick. This combination

of hardware and firmware is referred to as the Jackdaw.

The download site for the pre-compiled binaries for the Contiki Raven firmware

can be accesed at the following location:

http://cydanil.net/wiki/index.php?title=Flashing_Contiki_Jackdaw_onto_Raven

_USB_Stick

Once the pre-compiled binaries for the Contiki Raven firmware are downloaded

and unpacked at the contiki-raven-2.5 directory, the following commands load

the Contiki Raven firmware to the RZUSBstick:

>$ cd contiki-raven-2.5/

>$ avr-objcopy -R .eeprom -R .fuse -R .signature -O ihex ravenusbstick.elf

ravenusbstick.flash

>$ avr-objcopy -j .eeprom --set-section-flags=.eeprom="alloc,load"

--change-section-lma .eeprom=0 -O ihex ravenusbstick.elf

ravenusbstick.eeprom

>$ sudo avrdude -c jtagmkII -P usb -p usb1287 -Ueeprom:w:ravenstick.eeprom

-Uflash:w:ravenstick.flash
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Figure J.1: Jackdaw menu and configuration.

After running these commands, the RZUSBstick should be unplugged and plugged

again, so the firmware is rebooted. After plugging the RZUSBstick again, running

the dmesg command should show an output containing similar messages as the fol-

lowing:

[13538.905094] usb 2-1: New USB device found, idVendor=03eb, idProduct=2021

[13538.905102] usb 2-1: New USB device strings: Mfr=1, Product=2,

SerialNumber=3

[13538.905107] usb 2-1: Product: Jackdaw 6LoWPAN Adaptor

[13538.905112] usb 2-1: Manufacturer: Atmel

[13538.905116] usb 2-1: SerialNumber: 021213141516

Running the ifconfig command should show a usb0 network interface to access

6LoWPAN devices. This interface can be accessed from Wireshark to display the

messages captured by the Jackdaw. A terminal emulation progran, e.g. Minicom, can

be attached to serial port USB0 to access and configure the Jackdaw. A screenshot

of the Jackdaw menu and configuration is shown in Figure J.1.
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Appendix K

OpenWSN Medium Access

Figure K.1 shows a screenshot of a Wireshark window, where packets transmitted on

the OpenWSN network are captured. The address of the mobile mote ends in 6d11,

and the address of the DAG root mote ends in 6c49. The 4 packets highlighted in

red contain line positions sent from the mobile mote (source address ends in 6d11)

to the host via the DAG root mote. The acknowledgement for the first packet

highlighted in red is the following message captured, with the Info field starting with

Ack. Figure K.1 shows that the DAG root mote answers with the corresponding

acknowledgement to 3 of the 4 packets highlighted in red. For the third packet

highlighted in red, Wireshark does not display the expected acknowledgement, but

instead a beacon request is captured. This third packet is reported at the mobile

mote as a failed transmission. Wireshark does not display the source of the beacon

request, but the source is possibly the DAG root mote. The beacon request sender

seems to be transmitting when the mobile mote is waiting for an acknowledgement

from the DAG root mote, which indicates a conflict in the medium access. The

beacon request is a broadcast message, as shown in Figure K.1. Broadcast messages

should not be transmitted during guaranteed timeslots.
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