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Abstract

This thesis investigates the capability of Ultra-Wide Band (UWB) communication

technology to be used for indoor real-time positioning. The integration of an inertial

measurement unit (IMU) to increase positioning accuracy was also evaluated. We

designed and implemented a novel evaluation method for positioning systems that

compares each of the position estimates with the ground truth position at the same

moment.

We experimentally verified the accuracy of an UWB positioning system in line-of-

sight (LOS) conditions to be, on average, 10.97 cm for a robot moving at around 0.16

m/s on a track of length 6.7 m. In the case of non-line-of-sight (NLOS) conditions,

accuracy on a track of length 9.7 m for the same moving robot was, on average, 58.47

cm. Data fusion of IMU and UWB measurements using an extended Kalman filter

increased average positioning accuracy to 51.96 cm, an 18.8% increase over UWB

measurements alone, in NLOS conditions. In LOS conditions, we observed that data

fusion of IMU and UWB measurements decreases the average positioning accuracy

(from 10.97 cm to 14.17 cm) compared to use of UWB only position estimation.
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Dedication

To those striving for peace for the sake of God.

“The Believers are but a single Brotherhood: So make peace and rec-

onciliation between your brothers and be careful of Allah that mercy

may be had on you.” The Holy Quran, Chapter 49, Verse 10
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Chapter 1

Introduction

1.1 Background

Indoor positioning and navigation of moving objects, also called localization in the

communication networks community, is an extensive research area with many ap-

plications. Applications based on object position, from advertising to security, are

widening rapidly. The Global Positioning System (GPS) and other satellite posi-

tioning systems work well with a direct line of sight to their satellites. Due to the

very low level of energy of received satellite signals, satellite positioning systems

can’t normally be used inside buildings and indoor places. Consequently, there is

significant research aimed at finding a substitute for satellite positioning which sat-

isfies demands of indoor positioning applications. Wireless technologies which are

offered for indoor positioning include infrared used in the active badges by AT&T

Cambridge [54], ultrasonic energy used in active bats by AT&T Cambridge [21] and

optical used in CLIPS by Tilch [49]. A wide variety of wireless solutions for indoor

positioning are discussed in e.g. [6] [29] [31] [17]. Ultra wide-band (UWB) wire-

less communication has some characteristics which makes UWB a good candidate

for indoor wireless positioning. UWB technology is described in more detail in sec-
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tion 2.2.1. In this thesis, we investigate an indoor positioning system using UWB

technology, and evaluate its performance as a stand-alone system compared to its

performance aided by an inertial measurement unit (IMU).

1.2 Literature Review

As mentioned in the previous section, UWB wireless communication is a good choice

for indoor positioning systems. Some commercial UWB positioning systems offer

±10cm positioning accuracy which is more than sufficient for many applications.

This accuracy is, however, only in line of sight (LOS) conditions. In LOS conditions

there is a direct unblocked path of communication between the target node (TN),

the position of which is unknown, and all source nodes (SNs), which have a known

position. Indoor positioning systems are normally used in a factory, office or urban

area where LOS conditions are rare; the communication path is usually blocked by an

obstacle. These conditions are called non-line-of-sight (NLOS). In NLOS conditions

the accuracy of UWB positioning systems decrease significantly. Our experiments

discussed in chapter 6 demonstrate this significant change in accuracy due to NLOS

conditions. There are a variety of approaches suggested for handling NLOS error in

the literature (see e.g. [27]). These approaches can be categorized in two groups; the

first group [8, 19, 22, 50, 48, 35, 25] try to detect a NLOS condition and simply don’t

use a measurement coming from the NLOS communication path. This approach

works only if the number of LOS SNs available equals or exceeds the minimum

number needed for positioning. The second group (see e.g. [22, 11, 57, 24, 59, 51, 53,

42, 39, 30]) are those that try to identify the NLOS condition, and then mitigate the

error of positioning due to NLOS conditions. We use Kalman filtering for mitigating

the NLOS error in this thesis. Some of the NLOS error mitigation algorithms need

a priori knowledge of the statistical distribution of the NLOS errors [22], and some

2



others are computationally intensive [11] or are based on the assumption of having

more than enough measurements [24]. Others suggest more applicable approaches

such as applying a filter to the output of the trilateration algorithm (see e.g. [53, 42]).

With all of these mitigation approaches in hand, NLOS error is still the major source

of error for wireless positioning systems including those using UWB communication.

Another solution is to use a second positioning system which is not affected by

NLOS conditions to provide additional location information. The common choices

for a secondary positioning system are computer vision, laser or ultrasound ranging,

GPS and inertial measurement units (IMUs). IMU is a good match for indoor low-

cost applications. We reviewed a significant number of papers on UWB positioning

aided by IMU (see e.g. [44, 41, 7, 14, 16, 64, 23, 15, 63, 36, 26, 9, 61]), and found

the most important characteristics of this type of positioning system are as follows:

• Loose vs tight coupling: There are two groups of data fusion algorithms, loosely

coupled and tightly coupled. In the loosely coupled approach, each positioning

system is first used to make an estimate of the position, and then the two es-

timates are coupled to reduce the error. In contrast, tightly coupled methods

use the output from both UWB and IMU sensors, and make the final estimate

directly from all information. One advantage of tight coupling is that we are

able to estimate the position even when it is not possible for one of the posi-

tioning systems to do it alone (e.g. just two range measurements available for

positioning). Most of the investigated researches use tightly coupled methods.

We use an extended Kalman filter to make a tightly coupled system.

• On-board vs stand-alone processor: To the best of our knowledge, all research

on IMU-UWB positioning integration available in the literature use a stand-

alone processor carried by the target node (TN) to process the measurements

and execute the positioning algorithm. While this approach gives a good eval-

uation of the positioning system, it may not touch details such as time syn-

3



chronization and processor, space and power restrictions. We performed all

implementations on the processor of the UWB ranging board, with the IMU

sensors connected to the same processor via an Inter-Integrated Circuit (I2C)

interface [45]. So, all of the processes are in real-time and on-board to be as

close as possible to an industrial experience.

• Real-time vs off-line evaluation: Most of the research in the literature evaluates

the accuracy of the positioning system by comparing the predefined path with

the path estimated by the positioning algorithm. We proposed a new real-

time evaluation approach to measure the accuracy of our positioning system

using precisely positioned ground truth nodes placed along the path. A more

detailed description of our evaluation system is in section 5.2.

• IEEE 802.15.4-2011 standard: We use UWB modules produced by the De-

cawave company which are compliant with the IEEE 802.15.4-2011 standard.

1.3 Research Objectives

The main objective of this thesis is to implement a real-time, indoor positioning

system using UWB technology. The main research questions addressed by this thesis

are as follows:

• What is the accuracy of Decawave UWB positioning in LOS and NLOS con-

ditions?

• How much can NLOS error be mitigated by methods proposed in the literature?

• How much can an inertial measurement unit (IMU) and Kalman filter increase

the LOS and NLOS accuracy of UWB systems?

4



• Is it possible to have a communication channel operating simultaneously with

the positioning system?

1.4 Thesis outline

We continue this thesis by discussing different range estimation approaches and pro-

tocols in chapter 2. Chapter 3 covers positioning algorithms based on range mea-

surements by UWB radios. Then, in chapter 4, we describe how to use an IMU to

increase the positioning accuracy. Experimental setup and results are discussed in

chapters 5 and 6, respectively. Chapter 7, finally, is devoted to the summary and

conclusion with an eye towards future work.
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Chapter 2

Range Estimation Using Wireless

Radio Signals - A Review

2.1 Wireless Range Estimation Parameters

In this section a discussion of time-based signal parameters used for ranging is pre-

sented. A description of using received signal strength (RSS) and angle of arrival

(AOA) parameters is given in [58].

2.1.1 Time Of Arrival (TOA)

Time of arrival (TOA) gives us information about the distance between the TN and

a SN for which the position is known. The TN’s position is on a circle of radius

d = cτ , for c = speed of light and τ = time of arrival. The prerequisite of this

information is synchronization between the TN and SN. The received signal at the

TN is represented by

r(t) = αs(t− τ) + n(t), (2.1)

where τ is the TOA, α is the channel coefficient and n(t) is white Gaussian noise

with zero mean and a spectral density of N0/2 watts per hertz for N =normal
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distribution. In order to extract TOA from the received signal, we search for the

maximum correlation between shifted versions of the template signal (s(t− τ̂)) and

the received signal. The τ̂ which gives the peak correlation provides an estimate of

the TOA. For signal model (2.1), the Cramer-Rao lower bound (CRLB) is

√
V ar{τ̂} ≥ 1

2
√

2π
√
SNRβ

, (2.2)

where τ̂ is the estimated TOA, SNR = α2E/N0 is the signal to noise ratio, β is

the effective signal bandwidth and E is the signal energy. One important property

of TOA is that, unlike the received signal strength (RSS), its accuracy is heavily

dependent on the bandwidth of the signal. Consequently, UWB systems can reach

very precise ranging on the order of a few centimeters. Figure 2.1 shows the effect

of signal to noise ratio (SNR) and bandwidth on the accuracy of TOA estimation.

Figure 2.1: Minimum standard deviation of TOA versus SNR for various pulse widths
(from [60]).
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2.1.2 Time Difference Of Arrival (TDOA)

In this approach, the extracted parameter is the difference between arrival time of

transmitted signal (from the TN) to two SNs. This parameter, by multiplying TDOA

by the speed of light, gives us an uncertainty of the TN’s position in the shape of a

hyperbola as shown in Figure 2.2.

Figure 2.2: The hyperbola indicated by TDOA (from [60]).

The merit of TDOA in comparison with TOA is that there is no need for synchro-

nization between SNs and the TN. SNs however, do need to be synchronized. In

the TOA-based approach for measuring TDOA, TOA is measured at two SNs which

we call τ1 and τ2. As SNs and TN are not synchronized, there is a time offset in τ1

and τ2. Since sources are synchronized with themselves, this offset is equal in both

measurements. Consequently, we can measure the TDOA as

τTDOA = τ1 − τ2, (2.3)

where τTDOA is the estimate of TDOA. In this approach there is the same effect of

bandwidth as in TOA measurements.

The second approach to measure the TDOA is using cross-correlation between two

8



received signals. We know that there is some amount of offset between received

signals so the cross-correlation will reach a maximum when one of the signals is

shifted with correct offset. The cross-correlation equation is

φ1,2(τ) =
1

T

∫ T

0

r1(t)r2(t+ τ)dt (2.4)

where r1(t) and r2(t) are the received signals and T is the observation interval. Then

we estimate TDOA, τ̂TDOA by

τ̂TDOA = arg max
τ

|φ1,2(τ)| (2.5)

where

arg max
x

f(x) := {x|∀y : f(y) ≤ f(x)} (2.6)

The cross-correlation approach works well for white noise and single path channels

but in the case of multi-path channel or colored noise its performance decreases

significantly [60].

2.2 IEEE 802.15.4-2011 Range Estimation

Range estimation gives an estimate of the distance between two nodes. Ranging

protocols are based on TOA which was discussed in section 2.1.1. TOA gives us the

time of flight (TOF) of the signal at the TN. To compute the range between the TN

and the SN we need to know the departure time of the signal. Then the distance

is computed by multiplying TOF by the speed of light. Ranging protocols extract

the TOF by different methods. The IEEE 802.15.4-2011 is the first international

standard that provides a specific physical layer capable of wireless ranging. IEEE

802.15.4-2011 standard has two formats of communication signal; the first one is
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impulse radio ultra wide-band (IR-UWB) signals and the second one is chirp spread

spectrum (CSS) signals. The second one, CSS, is suitable for data communication

purposes while the IR-UWB has the capability of precise ranging. In this chapter

we consider the IR signal format.

2.2.1 Ultra Wide-Band Communication

2.2.1.1 Definition of Ultra Wide-Band system

The U.S. Federal Communication Commission (FCC) [13] has defined UWB systems

as those which have an absolute bandwidth larger than 500 MHz and central fre-

quency (fc) larger than 2.5 GHz, or have a fractional bandwith (Bfrac) larger than

0.2 for systems with fc lower than 2.5 GHz. The fc is the frequency in which the

system has the maximum power density (shown in Figure 2.3) and the frequencies

fH and fL determine the location where the power spectral density is 10 dB below

the fc. Bfrac is defined as

Bfrac =
B

fc
(2.7)

where B is the bandwidth of the system.

In terms of high and low frequencies, we have

fc =
fH + fL

2
(2.8)

so

Bfrac =
2(fH − fL)

fH + fL
. (2.9)

2.2.1.2 Important features and applications of UWB

The following are some important features of ultra wide-band systems:
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Figure 2.3: Low, central and high frequencies of an UWB system (from [60]).

• The most important characteristic of UWB is large bandwidth in comparison

with prevalent narrow-band systems.

• One result of the large bandwidth of UWB is that due to the inverse relationship

of time and frequency, the life-time of UWB signals is very short. Consequently,

the time resolution of UWB signals is high and UWB is a good candidate for

positioning systems.

• UWB systems are suitable for high speed communication due to their high

bandwidth.

• Another useful property of UWB is that it is permitted to occupy low carrier

frequencies, where signals can more easily pass through obstacles.

• UWB signals can be transmitted in base band so there is no need for Interme-

diate Frequency (IF) multipliers in transceivers. This property can lead to less

expensive simpler hardware.

• The high time resolution and short wavelength of UWB signals strengthen it

against multi-path interference and fading.

• UWB signals’ shape is similar to noise so there is a lower chance of eavesdrop-

ping.
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2.2.1.3 Relationship of bandwidth with data rate and power consump-

tion

As indicated by the Shannon-Hartley theorem [47], there is a direct relationship

between capacity and bandwidth and an inverse relationship between bandwidth

and power consumption. Their theorem states

C = B log2(1 +
S

N
) (2.10)

where C is the capacity (bits/second), B is the bandwidth, S is the average received

signal power over B and N is the average noise over B. We observe that for a specific

capacity we consume less power with a larger bandwidth. Secondly, because S
N

is

under a logarithm, it is easier to increase the capacity by increasing of the bandwidth

instead of S
N

. It is common to refer to S
N

as SNR, the signal to noise ratio. Figure

2.4 shows the relationship between the bandwidth and the capacity for five different

SNRs.

2.2.1.4 Impulse Radio (IR), one method of using UWB

In this method, data is transmitted by low duty UWB signals and information of the

symbol is conveyed by position and/or polarity of the signals. Each symbol corre-

sponds to one or more signals. In the following example (Figure 2.5), two consecutive

IR signals represent one symbol. The IR signal can occupy one of the chip-intervals

(Tc) within a frame (Tf ). A time-hopping (TH) code is used for determining the

accurate position of a signal in dedicated time frame to decrease the chance of in-

terference between UWB systems. In the following example, the TH codes for the

symbols are {2, 1}, {2, 3} and {1, 0} respectively, so the first and second signals are

shifted by two and one chip-intervals respectively and so on. In this example the

information corresponds to the polarity of signals, so the IR stream represents the
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Figure 2.4: Relationship between capacity, bandwidth and SNR (from [60]).

binary data “101”. This technique is commonly called Binary Phase Shift Keying

(BPSK).

Figure 2.5: IR UWB signals (from [60]).

2.2.1.5 Regulation of UWB

Although it is a very useful property of UWB that it has a large bandwidth, this

large bandwidth can lead to interference with narrow band systems. In order to
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solve this problem some regulations are enforced by several organizations. One of

the pioneer organizations in this field is the FCC. Figure 2.6 demonstrates the FCC’s

regulation [13] for UWB systems. For UWB radio communication indoors, the FCC

part 15.517 requires following equivalent isotropically radiated power (EIRP) limits

(2.1). There are many other restrictions for operating of UWB systems in the USA

(see [13]). The general approach of all regulations is to restrict the power of signals

to avoid collision with other systems. In spite of this restriction, it is an important

advantage that UWB is license-free and benefits from co-existence which means that

anyone can implement UWB communications without any license in a dedicated

range of power at a variety of frequencies.

Table 2.1: Limitation of indoor UWB systems radiating between 960MHz and
10,600MHz (from [13]).

Frequency in MHz EIRP in dBm
960-1610 -75.3
1610-1990 -53.3
1990-3100 -51.3
3100-10600 -41.3
Above 10600 -51.3

Figure 2.6: FCC regulation for UWB systems (adapted from [43]).
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2.2.1.6 IEEE 802.15.4-2011 packet structure

In this section we give a brief overview of packet structure of the IEEE 802.15.4-2011

standard. Figure 2.7 depicts different parts of the packet which is explained in next

subsections.

Figure 2.7: IEEE 802.15.4-2011 packet (from [60]).

Preamble: The network protocols preamble is used to synchronize entities with

informing arrival of a packet. In IEEE 802.15.4-2011, the length of the preamble is

on of 16, 64, 1024 or 4096 symbols. The symbols used in the preamble part of a

packet is one of the eight symbols cited in table 2.2.

Table 2.2: Different choices for the symbols comprising the preamble.

Index Symbol
1 -1000010-1011101-10001-111100-110-100
2 0101-10101000-1110-11-1-1-10010011000
3 -11011000-11-11100110100-10000-1010-1
4 00001-100-100-1111101-1100010-10110-1
5 -101-100111-11000-1101110-1010000-00
6 1100100-1-1-11-1011-10001010-11010000
7 100001-101010010001011-1-1-10-1100-11
8 0100-10-10110000-1-1100-11011-1110100

The symbols in Table 2.2 all have an important property, called perfect periodic auto-

correlation, which reduce the error in ranging caused by multi-path propagation.

The details of this property are out of the scope of this report and are given in [60].

The length of the preamble is chosen regarding the positioning system demands

and performance. For example, a larger packet size helps low quality receivers to
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gain higher SNRs while a smaller packet size reduces the channel occupancy. Lower

channel occupancy leads to more efficient energy consumption, and capability of

more devices using the same channel. The IEEE 802.15.4-2011 standard includes a

parameter, called figure of merit (FOM), which represents the accuracy of the range

measurement. It is suggested by the standard [40] for positioning systems to start

with the length of 1024 and then adjust the length of the preamble by keeping track

of the FOMs.

start of frame delimiter (SFD): The SFD is a short sequence with 8 or 64

symbols which signals the end of the preamble and start the of the physical layer

header. In the ranging protocols the arrival time of the signal and the process time

between arrival and sending back an ACK packet should be measured precisely. The

SFD is a narrow signal to trigger starting and stopping of time counting which is

necessary for a precise timing.

2.2.2 Ranging protocols

IEEE 802.15.4-2011 has three different ranging protocols. The basic mandatory

protocol is two way ranging (TWR). The second one, which is more precise and

optional, is the symmetric double sided (SDS) TWR. The third protocol, called

private ranging, is designed for systems in which the position information is sensitive

and should be kept private. These three ranging protocols are discussed in the next

subsections respectively. In this thesis we used the SDS-TWR protocol (discussed in

section 2.2.2.2) implemented by Decawave Ltd. on EVB1000 boards.

2.2.2.1 TWR protocol

In the pure TOA system, the SN reports the departure time of the signal; hence

the TN is able to compute the TOF of the signal. This TOA approach dedicates a
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necessary synchronization between the TN and the SN; since the departure time is

measured by the SN and is used by the TN. The main advantage of TWR over the

TOA approach is its independence from the synchronization. Figure 2.8 depicts the

TWR protocol. The TWR protocol consists of the following steps:

1. The TN sends a ranging request, RFRAMEreq, to the SN, and records the

departure time of the frame, T1.

2. The SN replies to the ranging request after arrival with the RFRAMErep.

3. The TN records the arrival time of the RFRAMErep, T2.

The TN computes the round-trip time Tr as

Tr = T2 − T1 (2.11)

and then the TOF between the TN and the SN, called TTW , is given by

TTW = Tr/2 (2.12)

and the distance between two nodes is given by

d = cTTW (2.13)

where c is the speed of light. With three distances from three SNs, the TN can

determine its position based on the known positions of the SNs. In practice, as

is depicted in Figure 2.8, there is a delay on the SN side between receiving of the

RFRAMEreq and sending RFRAMErep called the turn around time TBta . Due to

the high speed of the light, a TBta of nano-seconds causes a ranging error of tens of

centimeters. Consequently, it is important to have an accurate estimate of the TBta .
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Figure 2.8: TWR ranging protocol (from [60]).

IEEE 802.15.4-2011 uses a more advanced TWR approach which gives an estimate

of the Tta to the TN for more accurate ranging. Figure 2.9 depicts this approach. A

counter in the SN starts when detecting the first symbol of the SFD of RFRAMEreq

and stops when the first symbol of SFD in RFRAMErep is sent. Then, after sending

RFRAMErep, the SN sends a time stamp report including the stop and start value

of the counter. Finally, the TN sends an ACK back to the SN. Using this approach,

the TOF is computed as

TTW =
Tr − TBta

2
(2.14)
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Figure 2.9: More accurate TWR (from [60]).
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2.2.2.2 SDS-TWR protocol

One of the error sources in the TWR approach is the clock offset. The crystal oscil-

lators used in sensor devices (TN or SN) are not working exactly with the nominal

frequency, so there is a small positive or negative offset in the time measurements.

With the high speed of light, this small offset may cause a significant error in rang-

ing. The SDS protocol is designed to mitigate the clock offset error. In the SDS

protocol, depicted in Figure 2.10, after the TN receives the RFRAMErep, it sends

a second RFRAMEreq to the SN. Consequently, each of the nodes has an estimate

of the round trip time, Tr, and turnaround time, Tta. Finally, the SN sends a time

stamp including measured Tr and Tta to the TN.

Then the TN estimates the TOF as

TSDS =
(TAr − TAta) + (TBr − TBta)

4
(2.15)

To observe the merit of the SDS protocol over the TWR protocol, we define the

frequency offsets of the TN and SN eA and eB as

eA =
RfA −NfA

NfA
(2.16)

eB =
RfB −NfB

NfB
(2.17)

where Rfx and Nfx are the real frequency and nominal frequency of the node x.

Then estimates of the TOF given by the TWR protocol and the SDS protocol are

represented as

T̂TW =
TAr (1 + eA)− TBta(1 + eB)

2
(2.18)
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Figure 2.10: SDS ranging protocol (from [60]).
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T̂SDS =
(TAr − TAta)(1 + eA) + (TBr − TBta)(1 + eB)

4
(2.19)

Note that in indoor positioning systems, measured distances are not much more than

30 meters, therefore the maximum of TTW and TSDS, which are the time it takes

for light to travel about 30 meters, are in the order of 0.1µs. Another point is that

the Tta is not just the response time of the device but also includes the duration of

packet, and is on the order of milliseconds. Consequently, TTW and TSDS are much

smaller than Tta. The error of each estimation is represented as

T̂TW − TTW = TTW eA +
eA − eB

2
TBta (2.20)

TTW � TBta ⇒ T̂TW − TTW ≈
eA − eB

2
TBta (2.21)

T̂SDS − TSDS =
TSDS

2
(eA + eB) +

TBta − TAta
4

(eA − eB) (2.22)

TSDS � TBta − TAta ⇒ T̂SDS − TSDS =
TBta − TAta

4
(eA − eB) (2.23)

We observe that the clock offset error is mitigated in the SDS protocol since the TBta

is significantly larger than TBta − TAta. Tables 2.3 and 2.4 show some typical results

for the frequency offset error computed by equation (2.21) and (2.23). We see that

the SDS protocol mitigates the frequency offset error significantly.

Table 2.3: Frequency offset error using the TWR protocol (from [4]).

eA − eB
TBta 2ppm 20ppm 40ppm 80ppm

100µs 0.1 ns 1 ns 2 ns 4 ns
5ms 5 ns 50 ns 100 ns 200 ns
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Table 2.4: Frequency offset error using the SDS protocol (from [4]).

eA − eB
TBta − TAta 2ppm 20ppm 40ppm 80ppm

1µs 0.0005 ns 0.005 ns 0.01 ns 0.02 ns
10µs 0.005 ns 0.05 ns 0.1 ns 0.2 ns
100µs 0.05 ns 0.5 ns 1 ns 2 ns

2.2.2.3 Private ranging protocol

In some cases the ranging information is sensitive. A hacker may perform different

attacks. He may just eavesdrop to determine the range and consequently position

information. He may also try to disturb the ranging protocol by sending a fake re-

sponse. The IEEE802.15.4-2011 standard has an optional private ranging protocol

which provides some security services. The first technique used in the private ranging

protocol is encrypting the time stamps before sending them. The rationale of this

technique is that having all information but the time stamp the hostile is not able

to compute the range between two nodes. Note that this encryption is performed

before sending the time stamp and after time measurements so it is not time sensi-

tive. The second method used in the private ranging protocol is dynamic preamble

selection (DPS). Through this approach, ranging nodes use a longer preamble with

127 symbols. The TN and the SN agree on the preamble sequence, among eight

different choices, by passing encrypted messages in the beginning of the ranging pro-

tocol. The preambles must change for each ranging process to protect the system

against replay attacks.
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Chapter 3

Position Estimation Using UWB

Radios

Using SDS-TWR ranging protocol, equation (2.19) gives us an estimation of the

TOF of the signal between a SN and the TN. We compute the distance between

these two nodes as follows:

d = cT̂SDS (3.1)

where c is the speed of light. We use the measured distance in positioning algorithms

to find the position of the TN.

3.1 Statistical Positioning Algorithms

In this section we discuss methods of position estimation based on the parameters

we cited in the last section. There are two main categories of positioning meth-

ods.The mapping category uses a calibration table which includes any of the above

measurements corresponding to known positions. This calibration table is produced

prior to the positioning in a training phase. One important consideration in map-

ping category methods is updating the calibration table of known positions which is
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challenging, especially in outdoor positioning systems. Consequently, mapping cat-

egory methods are not prevalent in outdoor applications. In this report, our focus

is on the non-mapping category which uses parameters extracted directly from the

signal instead of a pre-computed calibration table. The non-mapping category of

positioning approaches has two sub-categories; geometric approaches and statistical

approaches. Statistical approaches are more practical and discussed in this section.

Please refer to [58] for discussion on the geometric approach.

Since geometric approaches cannot cope with practical noisy environments, usually

statistical approaches are used in practice. In this noisy framework, we define a

model (adapted from [60]) for noisy measurements as

z = f(x, y) + η, (3.2)

where z is the result of a noisy measurement, f(x, y) is the true value of this mea-

surement which is a function of TN’s position and η is the noise of this measurement.

For the techniques discussed in this section, f(x, y) is as follows (adapted from [60])

:

f(x, y) =



√
(x− xs)2 + (y − ys)2 TOA/RSS

arctan((y − ys)/(x− ys)) AOA√
(x− xs)2 + (y − ys)2 −

√
(x− xcs)2 + (y − ycs)2 TDOA

(3.3)

where (xs, ys) is the known position of the SN, and (xcs, ycs) is the position of the

common SN for the TDOA technique. In vector-space notation, the cited model is

changed to (from [60])

z = f(x, y) + η, (3.4)

where z = [z1...zNm ]T , f(x, y) = [f1(x, y)....fNm(x, y)]T and η = [η1...ηNm ]T . Nm is
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equal to the number of SNs in TOA, RSS and AOA approaches, and one less than

the number of SNs in the TDOA approach. Assume that the noise which affects our

measurement is known except for a set of parameters, λ. So, we have a vector of

unknown parameters, θ, as (from [60])

θ = [x, y,λ]T (3.5)

where (x, y) is the position of the TN. In such problems, we can use parametric

approaches to estimate the true value of θ. Two prevalent parametric approaches are

Bayesian and Maximum-Likelihood Estimator (MLE) [5]. The Bayesian approach is

useful in the case that some a prior information about θ is available. In this thesis,

we assume no such a prior information, so, we focus on the MLE approach. The

MLE approach finds θ which gives the maximum probability for the observations.

Formally, we can define θ estimated by the MLE, θ̂MLE, as

θ̂MLE = arg max
θ

p(z|θ). (3.6)

Since the function f(x, y) is deterministic, we can express the likelihood function,

p(z|θ) as

p(z|θ) = pη(z− f(x, y)|θ), (3.7)

where p(.|θ) is the conditional probability density function of the noise for a given

parameter vector θ.

3.1.1 Positioning under LOS conditions

The statistical solution for positioning differs if we have independent noise in mea-

surements or dependent noise. In this section we discuss the case of independent

noise; [58] gives a description of statistical positioning in the presence of dependent
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noise. In the case of independent noise, we can express equation (3.7) as

p(z|θ) =
Nm∏
i=1

pηi(zi − fi(x, y)|θ) (3.8)

where zi is the ith measurement, fi(x, y) is the true value of the ith measurement

and the pηi is the conditional probability density function of the ith measurement.

The independent noise assumption is reasonable for the AOA, TOA and RSS ap-

proaches. However, in the case of TDOA, we have correlated noise for several SNs’

measurements due to the presence of the common SN. For systems working under

LOS conditions, the majority of the noise is thermal noise. We can model the noise

of these environments as a Gaussian zero mean random variable as

pηi(u) =
1√

2πσi
exp(− u2

2σ2
i

). (3.9)

The unknown variables vector θ, reduces to [x, y]T . Then the likelihood function in

(3.8) is expressed as

p(z|θ) =
1

2πNm/2
∏Nm

i=1 σi
exp

(
−

Nm∑
i=1

(zi − fi(x, y))2

2σ2
i

)
. (3.10)

With this expression of the p(z|θ), the MLE for (3.6) is calculated by (from [60])

θ̂MLE = arg min
[x,y]T

(
Nm∑
i=1

(zi − fi(x, y))2

σ2
i

)
(3.11)

where

arg min
(x,y)

f(x, y) := {(x, y)|∀(w, z) : f(w, z) ≥ f(x, y)}. (3.12)

Equation (3.11) is a commonly used non-linear least squares (NLS) estimator [52].

In the case of sufficiently large effective bandwidth and SNR the standard deviation
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Figure 3.1: NLOS and LOS propagations (from [60]).

of thermal noise, σi, is given by 1
8π2β2SNR

, where β is the effective bandwidth of the

signal and SNR is the signal to noise ratio [37]. We observe that the variance of the

noise in each measurement weights the measurement in an inverse manner, which

matches our intuition that stronger noise implies less accurate measurement. Several

approaches are cited in literature to solve (3.11) equation including gradient descent

algorithms and linearization techniques using Taylor expansion [10][28].

3.1.2 Positioning under NLOS conditions

In most practical systems there are some obstacles between the TN and SNs. There-

fore, signals transmitted by the TN have to travel a longer indirect path to reach the

SN. Figure 3.1 depicts the difference between NLOS propagation and LOS propaga-

tion.

NLOS propagation acts as a noise source for signal parameters such as TOA, RSS and

AOA; we call this noise NLOS noise. For example, the TOA of the signal increases

since it has to follow a longer path and the time of arrival is affected by a positive

noise. Due to NLOS propagation (commonly called multipath), the noise model in

equation (3.9) is not accurate for NLOS cases. The NLOS noise is commonly modeled

by a Gamma probability distribution [38]. NLOS noise dominates the background

noise modeled by equation (3.9). In section 3.4 we discuss an approach for mitigating

NLOS noise by using a Kalman filter.

28



3.2 Least Squares Algorithm Linearized by Tay-

lor’s Series

As described in section 3.1.1, equation (3.11), the statistical approach for trilatera-

tion leads to solving a non-linear least squares (NLS) problem. One of the common

approaches to face this problem is linearization of the non-linear function, f(x), by

using Taylor’s series [18] [62] as follows:

fi(x) ≈ fi(x̂j−1) + A(x− x̂j−1) (3.13)

where state vector, x̂j−1, is the last estimated position:

x̂j−1 =

 x̂j−1

ŷj−1

 (3.14)

and

A =


∂f1(x)
∂x
|x̂j−1

∂f1(x)
∂y
|x̂j−1

∂f2(x)
∂x
|x̂j−1

∂f2(x)
∂y
|x̂j−1

∂f3(x)
∂x
|x̂j−1

∂f3(x)
∂y
|x̂j−1

 =


x̂j−1−xs,1

d1

ŷj−1−ys,1
d1

x̂j−1−xs,2
d2

ŷj−1−ys,2
d2

x̂j−1−xs,3
d3

ŷj−1−ys,3
d3

 (3.15)

To find the best estimate of the position from this linear equation, we compute a

correction vector, ∆x, as described in equation (3.16),

∆x = (ATPA)−1ATPw (3.16)

where the measurement closure vector, w, is defined as follows:

w =


d̂1 − d1

d̂2 − d2

d̂3 − d3

 (3.17)
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d̂i is the estimated distance from the SNi computed as:

d̂i =
√

(x̂j−1 − xs,i)2 + (ŷj−1 − ys,i)2 (3.18)

and the measurement weight matrix, P, is defined as follows:

P =


1
σ2
1

0 0

0 1
σ2
2

0

0 0 1
σ2
3

 (3.19)

where σ2
i is the variance of the measurement from SN i.

The correction vector ∆x is the error of our estimation so we add it to the current

estimation and try to minimize it in an iterative manner as follows:

x̂j = x̂j−1 + ∆x (3.20)

We stop the iteration when |∆x| ≤ ε.

The advantage of this algorithm is its low mathematical complexity. On the other

hand, this algorithm needs a good estimate of the start position of the TN and takes

some iterations to converge to an accurate estimate. We implemented this positioning

algorithm on the Decawave EVB1000 board. The results and comparison with the

other positioning algorithms are discussed in chapter 6.

3.3 Enhanced Linearized Least Squares Algorithm

Cheung et al. [12] proposed a matrix representation of the non-linear least squares

(NLS) problem in equation (3.11). With three SNs the matrix representation is as

follows:

Ax = b (3.21)
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where, A =


xs,1 ys,1 −0.5

xs,2 ys,2 −0.5

xs,3 ys,3 −0.5

,b =
1

2


x2
s,1 + y2

s,1 − d2
1

x2
s,2 + y2

s,2 − d2
2

x2
s,3 + y2

s,3 − d2
3

 , and

x =


x

y

s

with s = x2 + y2.

The solution for this equation is [12]:

x̂ = (ATA)−1ATb (3.22)

which includes the non-linear term, s. Guvenc et al. [20] presented a new linearized

version of the equation (3.21), called LLS, by choosing a reference SN and sub-

tracting the corresponding terms from other rows of the equation’s matrices. After

rearranging the terms, we have the following linear model:

A2x = b2 (3.23)

where

A2=

 xs,i − xs,r ys,i − ys,r

xs,j − xs,r ys,j − ys,r

,b2 =
1

2

 (d2
r − d2

i )− ki

(d2
r − d2

j)− kj


kn = (x2

s,r + y2
s,r)− (x2

s,n + y2
s,n)

r is the index of the reference SN and i and j are indexes of the other two SNs. The

geometric representation of LLS is depicted in Figure 3.2. The range measurements

by the SNs provide the circles as the potential position of the TN and so the non-

linear least squares problem is to find the intersection of the three circles. The LLS

algorithm chooses one of the SNs as the reference, and connects intersections of the

reference node’s circle with each of two other circles by a line. Therefore, instead of
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the circles, we have two lines as the potential position of the TN. The linear equation

(3.23) is used to find the intersection of these two lines as follows:

x = A−1
2 b2 (3.24)

Figure 3.2: Geometric representation of the linearization method described by (3.23).

It is proven [18] that the distance of the TN from the reference SN has a significant

impact on the error of the LLS algorithm. To increase the accuracy of LLS it is

suggested to choose the closest SN as the reference node; we call this algorithm LLS-

RS. By subtracting the reference node’s term from the others we make the noise of

the system correlated. It is shown in [46] that the optimum estimator in the presence

of correlated noise is the Maximum Likelihood Estimator (MLE). The MLE solution

for LLS-RS is given in [46] as follows:

x̂ = (AT
2 C−1A2)−1AT

2 C−1b2 (3.25)

where covariance matrix C is defined as follows:
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C =


4d2

rσ
2 + 4σ4 + 4σ2d2

1 4d2
rσ

2 + 2σ4 4d2
rσ

2 + 2σ4

4d2
rσ

2 + 2σ4 4d2
rσ

2 + 4σ4 + 4σ2d2
2 4d2

rσ
2 + 2σ4

4d2
rσ

2 + 2σ4 4d2
rσ

2 + 2σ4 4d2
rσ

2 + 4σ4 + 4σ2d2
3

 (3.26)

and σ is the standard deviation of the range measurements.

We implemented the LLS-RS algorithm using the MLE solution on the EVB1000

board for trilateration. In the next chapters we call the LLS-RS algorithm using

MLE the LRM algorithm. Figure 3.3 depicts the architecture of this positioning al-

gorithm. The results and comparison with other positioning algorithms are discussed

in chapter 6.

Figure 3.3: Algorithm architecture for LLS-RS with MLE solution (LRM) (modified
from [20]).
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3.4 Kalman Filter

A Kalman filter estimates the new state of a process in two steps. In the first

step, prediction, the new state of the process is estimated by previous information

in the absence of a new measurement. The second step, correction, uses new noisy

measurements as feedback to correct estimated values at the prediction step.

3.4.1 Process model

A Kalman filter describes the process using two linear models. The first model,

called the transition model, represents the relation between the new state and the

previous state in the presence of optional control commands and transition noise.

The transition model is expressed as

xk = Axk−1 + Buk + wk (3.27)

where xk is the state vector of the process in the kth time interval. For example, the

state matrix may include the position of a TN in two dimensions. Matrix A describes

the relation of two successive states in absence of the control command and transition

noise. uk is the optional control command of the system in the kth time interval

and B describes the effect of control commands (e.g. steering or throttle changes)

on the state. Finally, wK is a zero mean white Gaussian noise with covariance Q.

The second model, called the observation model, describes the relation between the

measurement and the new state as

zk = Hxk + vk (3.28)

where zk is the noisy measurement vector in the kth time interval, H describes

the relation between state and measurement in the absence of noise, and vk is the
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measurement noise which is assumed to be zero mean white Gaussian noise with

covariance R.

There are two essential assumptions of the Kalman filter: (1) two linear relations

describe the state transitions and the observation vectors, and (2) the transition

noise and measurement noise are zero mean white Gaussian.

3.4.2 Kalman Filter Equations

Kalman filter has two steps: prediction and correction. The prediction step gives

an a priori estimate of the new state, x̃k, based on information prior to the kth

measurement. The prediction step is represented as (adapted from [55]):

x̃k = Ax̂k−1 + Buk (3.29)

where x̂k−1 is the final estimate (a posteriori estimate) at the (k−1)th time interval.

In the correction step, the a posteriori estimate is computed as

x̂k = x̃k + Mk(zk −Hx̃k) (3.30)

where

Mk = P̃kH
T(HP̃KHT + R)−1 (3.31)

P̃k = AP̂k−1A
T + Q (3.32)

P̂k = (1−MkH)P̃k (3.33)

A good introduction to the Kalman filter including more details is given in [55]. A

useful observation from equation (3.30) is that the a posteriori estimate is the addi-

tion of the a priori estimate and a weighted difference between the measurement and

predicted measurement. Note that in equation (3.31) for Mk we observe that if the
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measurement error R approaches zero, Mk becomes H−1, and the a posteriori esti-

mate, X̂k, is H−1zk. In other words, due to the high accuracy of the measurement,

we do not use the a priori estimate. On the other hand, if R becomes significantly

larger, Mk approaches zero and the a posteriori estimate is equal to the a priori

estimate. In this case, due to large measurement noise, we do not trust the new

measurement and just use a prior information. We give an example (from [60]) to

illustrate the usability of the Kalman filter. Assume that there are four SNs measur-

ing the TOA of a TN which moves with a constant velocity of 1m/s . Each SN makes

four measurements per second. The noise of measurement is modeled by a zero mean

normal distribution with variance of 0.5m2. At each measurement, the position of

the TN is estimated by the MLE algorithm represented by equation (3.11), and then

the Kalman filter is applied to the result of the MLE algorithm. In this example,

the state vector of the Kalman filter is

xk = [xk, yk, ẋk, ẏk]
T (3.34)

where (xk, yk) and (ẋk, ẏk) are the position of the TN and its velocity at the kth

measurement. Also the measurement vector is the output of the MLE estimator

represented as:

zk = [xzk , yzk ]T (3.35)

The matrix A in equation (3.27) is

A =



1 0 ∆t 0

0 1 0 ∆t

0 0 1 0

0 0 0 1


(3.36)

where ∆t is the time interval between successive measurements. This definition for
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matrix A is based on the assumption that the TN is moving with a constant speed;

so, for example, our estimate for the new position of the TN and its velocity in the

x dimension are

x̂k = xk−1 + ∆tẋk−1 (3.37)

and

ˆ̇xk = ẋk (3.38)

respectively. The noise matrix in the transition model, equation (3.30) is

Wk =



N (0, 0)

N (0, 0)

N (0, (∆t)2)

N (0, (∆t)2)


(3.39)

which applies a random acceleration in order to compensate for possible changes of

the TN’s speed in practice.

Matrix H in equation (3.30) is

H =

1 0 0 0

0 1 0 0

 (3.40)

Note that the measurement includes just the position but not the velocity of the TN.

Matrix vk, noise of the measurement, is

vk =

N (0, 0.5)

N (0, 0.5)

 (3.41)

which applies a zero mean normal random noise with 0.5m2 variance to the position

measurement.

Figure 3.4 depicts the result of this example. The black line is the true path of the
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TN, crosses are positions estimated by the MLE algorithm, and the heavy solid line

is the result of applying the Kalman filter.

Figure 3.4: Kalman filter example (from [60]).
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Chapter 4

Positioning with IMU

4.1 IMU Sensors

4.1.1 Accelerometer

An accelerometer is an electromechanical device measuring both static and dynamic

acceleration in the three orthogonal axes of a reference frame mounted on the sensor.

An example of static acceleration is gravity. An accelerometer measures approxi-

mately 9.8 m
s2

in a stationary position when no external force is applied and measures

zero if it is in a free-fall condition. Dynamic acceleration is made by external forces

such as moving or tapping the accelerometer. The direction of the gravity vector

g measured by the accelerometer can be used to determine the orientation of the

sensor. Also, the dynamic acceleration measurements can be used to compute the ve-

locity of a moving sensor, and subsequently its position change over time. Nowadays,

microelectromechanical system (MEMS) accelerometers are widely used in gaming

consoles and smart-phones to provide a movement-based interface to users. MEMS

accelerometers’ dimensions are as small as a few millimeters as depicted in Figure

4.1. In addition, these types of accelerometers are very power efficient, as low as tens

of µA in measurement mode and less than 5 µA in standby mode at 3− 5V .
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4.1.2 Gyroscope

A gyroscope is a device measuring the rotational velocity around three axes of a

reference frame. The output of gyroscope is a vector composed of the rotational

speed around three orthogonal axes in degrees per second (deg
s

). The gyroscope was

invented in 1852 [2]; at the beginning it was a purely mechanical gyroscope with

three gimbals, a frame, a spin axis and rotor as depicted in Figure (4.2).

Modern gyroscopes are usually based on MEMS (microelectromechanical system).

Figure 4.1: An example of accelerometer dimensions (from [3]).

Figure 4.2: Mechanical gyroscope (from Wikipedia).
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Two common applications of gyroscopes are development of inertial navigation sys-

tems and stabilization control for aerial vehicles or boats. A gyroscope combined

with an accelerometer is used for direction and motion detection in many modern

smart-phones and gaming consoles.

In this thesis, a gyroscope is used to measure the rotational velocity and then com-

pute the orientation of the moving robot in the navigation frame by integrating the

angular velocities.

4.2 Reference Frames and Rotation

Each navigation system needs a reference frame to represent position, velocity and

orientation. The frame used to represent the final results of positioning is called

“Navigation Frame”. The measurements reported by the accelerometer and gyro-

scope sensors are represented in frames mounted on each sensor. The data sheet of

the sensors describes the orientation of the frame axes. For simplicity of the math-

ematical equations, we assume the reference frames of the two sensors are aligned

together. In addition, we assume the sensor boards are mounted in the center of the

robot frame. So, the measurement from both sensors are represented in a reference

frame mounted on the center of the robot frame called the “body frame”. Figure

(4.3) depicts the relation between the navigation frame and the body frame.

The gyroscope is used to compute the orientation of the body frame corresponding

to the navigation frame, θ, as follows:

θ = gz∆t (4.1)

where ∆t is the time interval for one position update and gz is the angular velocity

measured by the gyroscope around the z axis.
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Acceleration measurement by the accelerometer is represented as follows:

ab = [ax, ay]
T (4.2)

where ax and ay are the measured accelerations in the X and Y axis directions. The

ab vector is in the body frame, while an is the equivalent representation of ab in the

navigation frame. We use a rotation matrix Tn
b to rotate ab and compute an, as

follows:

an = abTn
b (4.3)

where

Tn
b =

 cos θ sin θ

− sin θ cos θ

 (4.4)

We use a low-pass filter to reduce the noise of accelerometer measurements as follows:

ān = anα + (ān−1(1.0− α)) (4.5)

where ān is the output of the filter for the nth measurement and α is the constant

value of 0.2. The value of 0.2 determined experimentally to give reasonably smooth

Figure 4.3: Navigation and body reference frames.
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values for the accelerometer used in our experiments (see Chapter 5).
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4.3 Data Fusion Using Extended Kalman Filter

A prerequisite for the standard Kalman Filter described in section 3.4 is linear tran-

sition and observation models as shown in equations (3.27) and (3.28), respectively.

In the positioning system the state and measurement vectors are:

x =



x

y

vx

vy


(4.6)

and

z =


d1

d2

d3

 (4.7)

where [vx, vy]
T is the velocity vector, [x, y]T is the position vector and d1, d2 and

d3 are distances measured by the UWB nodes. The observation equation for this

system is defined as follows:

zk = f(xk) + w (4.8)

f(xk) =


√

(xk − sx,1)2 + (yk − sy,1)2√
(xk − sx,2)2 + (yk − sy,2)2√
(xk − sx,3)2 + (yk − sy,3)2

 (4.9)

where si = [sx,i, sy,i]
T is the position of the UWB stationary node with ID i. This

observation model is not linear for the positioning system, so the standard Kalman

filter can’t be used. The extended Kalman filter is a modified version of the Kalman

filter which works for non-linear models.
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4.3.1 Extended Kalman Filter

The main idea of the extended Kalman filter is to linearize the nonlinear models

around the current value of the state vector. The general equations for nonlinear

process and observation models are as follows [56]:

xk = f(xk−1,uk,w) (4.10)

zk = h(xk,v) (4.11)

where w is the process noise with covariance matrix Q, v is the measurement noise

with covariance matrix R and uk is the input to the system. The extended Kalman

filter uses the Jacobian matrix of each nonlinear function to linearize the model at

a specific point as follows:

xk ≈ x̃k + A(xk−1 − x̂k−1) + w (4.12)

zk = z̃k + H(xk − x̃k) + v (4.13)

x̃k = f(x̂k−1,uk,0) (4.14)

z̃k = h(x̃k,0) (4.15)

where x̂k−1 is the a posteriori estimate of the state vector computed in the last

iteration, x̃k is the a priori estimate of the state vector in the current iteration, H

and A are the Jacobian matrices of h and f functions as follows:

A[i,j] =
∂f[i]

∂x[j]

(x̂k−1,uk,0) (4.16)

H[i,j] =
∂h[i]

∂x[j]

h(x̃k,0) (4.17)
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In the positioning system the observation model is not linear as was shown in equa-

tion (4.9). Therefore we compute matrix H as follows:

Hk =
∂h(x̃k)

∂xk

=


x̃k−sx,1√

(x̃k−sx,1)2+(ỹk−sy,1)2

ỹk−sy,1√
(x̃k−sx,1)2+(ỹk−sy,1)2

x̃k−sx,2√
(x̃k−sx,2)2+(ỹk−sy,2)2

ỹk−sy,2√
(x̃k−sx,2)2+(ỹk−sy,2)2

x̃k−sx,3√
(x̃k−sx,3)2+(ỹk−sy,3)2

ỹk−sy,3√
(x̃k−sx,3)2+(ỹk−sy,3)2

 (4.18)

where

x̃k = [x̃k, ỹk]
T (4.19)

The process model for the positioning system is linear. Matrices A and B are defined

as follows:

A =



1 0 ∆t 0

0 1 0 ∆t

0 0 1 0

0 0 0 1


(4.20)

B =



∆t2

2
0

0 ∆t2

2

∆t 0

0 ∆t


(4.21)

The B matrix describes the effect of the TN’s acceleration on the state vector (see

equations (3.29) and (4.6)). The input to the positioning system are the acceleration

measurements made by the accelerometer. The input matrix, u, is defined as follows:

u =

 ax

ay

 (4.22)

where ax and ay are the acceleration measurements along the X and Y axes by
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the accelerometer in the navigation frame, and after applying the low pass filter ā

explained by equation (4.5).

The a posteriori estimation of the state vector is computed as follows:

x̂k = x̃k + Kk(zk − f(x̃k,0)) (4.23)

where the Kalman gain matrix, Kk, is computed as follows:

Kk = P̃kH
T
k (HkP̃kH

T
k + R)−1 (4.24)

the error covariance matrix, P is defined as follows:

P̃k = AP̂k−1A
T + BQBT (4.25)

and

P̂k = (I−KkHk)P̃k (4.26)

The process noise covariance matrix Q in the positioning system is determined by the

error variance of the accelerometer measurements in each axis. The measurement

noise covariance matrix R is computed by the error variance of the UWB range

measurements. Error variances were measured for both the UWB and IMU sensors

in experiments as discussed in the next section.

4.3.2 Variable Covariance Matrices

Our observations show high accuracy of the UWB range measurements in LOS con-

ditions while acceleration measurements are relatively noisy. Therefore, it is wise to

choose a smaller value for the measurement noise covariance matrix R in relation to

the process noise covariance Q in LOS conditions. On the other hand, in NLOS con-

ditions, UWB measurement accuracy is decreased significantly by errors arising from
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NLOS conditions. In NLOS conditions it is wise to trust IMU measurements more

by increasing values in the measurement noise covariance matrix R. This change

increases the accuracy of positioning in NLOS conditions. To handle these two dif-

ferent situations we use a variable covariance approach. Decawave has suggested a

method to distinguish between LOS and NLOS conditions using the total received

power, called RXPOWER, and the first path received power, called FPPOWER as

follows:

Algorithm 1 NLOS condition detection algorithm

1: input: i, source node number
2: procedure IsNlos
3: RXPOWER = GetRXPOWER(i)
4: FPPOWER = GetFPPOWER(i)
5: d = RXPOWER - FPPOWER
6: if d > 6 then
7: return True
8: else
9: return False

Refer to [33] section 4.6 for a detailed description of this method. If a NLOS condition

is detected by Algorithm 1, R is increased 30 times to make the UWB measurements

less trusted. Experiments were run with different coefficient values instead of 30,

including 2, 5, 10 and 50 to reach the best result. Finally, we chose 30 as it gave the

best positioning accuracy. To the best of our knowledge, there is no suggestion in

the literature about the relative weight of UWB vs IMU measurements.
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Chapter 5

Experimental Setup

The architecture of our positioning and evaluation system is depicted in Figure 5.1.
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Figure 5.1: Experimental positioning and evaluation system architecture.
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5.1 Hardware

5.1.1 Decawave

The Decawave company has an IEEE802.15.4-2011 compliant sensor which is able

to perform positioning by TOA or TDOA approaches. The producer claims that the

accuracy of this sensor working with 1.3 GHz bandwidth is ±10 cm. According to the

producer website, the key benefits of this sensor, called DW1000, are precise ranging,

long LOS and NLOS communication range (up to 290 m), high data rate (up to 6.8

Mbit/s) and low power consumption. The EVB1000 Evaluation Board is a complete

device including the DW1000 IC, ARM Cortex M3 programmable microprocessor,

LCD, USB connection and antenna. The ranging protocol SDS-TWR discussed in

section (2.2.2.2) is implemented on the EVB1000, but not on the DW1000. The

dimensions of the EVB1000 are 7 × 7 cm excluding the off-board antenna and the

range of the center frequency of six available UWB channels is 3.5 to 6.5 GHz. The

Decawave EVB1000 device is suitable for research and development because it is

programmable and smaller and it has an embedded LCD and USB connections. The

price of a kit of two EVB1000 boards is approximately CAD$850.

Figure 5.2: Decawave real time location technology (from [1]). (a) DW1000, (b)
DWM1000, (c) EVB1000.

We used four EVB1000 boards in this thesis, one for the moving node and three for

the stationary nodes.

51



5.1.2 ADXL345

The ADXL345 is a MEMS digital accelerometer produced by the Analog Devices

company. The major features of this sensor are as follows:

• Ultra-low power consumption, as low as 40 µA in measurement mode and 0.1

µA in standby mode.

• Up to 13 bits measurement resolution in ±16 g range of acceleration.

• Embedded FIFO queue to store up to 32 measurements.

• tap and double-tap detection options.

We connected the IMU sensor containing the accelerometer to the ARM processor

of the EVB1000 board through an I2C connection. The embedded FIFO queue of

this sensor is valuable for our positioning system as the highest acceleration sample

frequency we can achieve is 7 Hz. A maximum 7 Hz sampling frequency is due to the

time required to perform UWB range estimation and due to the lack of threading

capability on the ARM microprocessor without an operating system.

5.1.3 ITG-3200

The ITG-3200 is a MEMS 3-axis gyro produced by InvenSense Inc. This gyro offers

16-bit digital measurement of angular velocity around each of the three axes. The

operating current consumption of this gyro is 6.5 mA and it needs a voltage supply in

range of 2.1 V to 3.6 V. The ITG-3200 features an embedded, configurable low-pass

filter as well as an I2C interface.

We use this gyro to compute the orientation of the robot in the navigation frame;

then this angle is used to compute the rotation matrix described in equation (4.4).

In this thesis we use the six degrees of freedom IMU produced by SparkFun Elec-

tronics which is composed of an ITG-3200 gyro and ADXL345 accelerometer, along
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with the circuits needed for driving the sensors and I2C connection. The breakout

board is depicted in Figure 5.3.

Figure 5.3: The 6DOF IMU model SEN-10121 produced by SparkFun Electronics
and used in our experimental evaluation.

5.1.4 TelosB

The TelosB is a low power wireless sensor module developed by UC Berkeley. This

module features 250 kbps data communication compliant with the IEEE802.15.4

standard. We use the embedded light sensor of the TelosB module in our real-time

evaluation system, as discussed in section 5.2. We programmed this module using

the TinyOS operating system. Figure 5.4 depicts the TelosB module.
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Figure 5.4: TelosB low-power sensor module.
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5.1.5 Pololu 3pi Robot

The Pololu 3pi is a robot produced by the Pololu company that is optimized for line

following. This robot is equipped with two micro metal gear-motors, five reflectance

sensors, an LCD, a buzzer and push buttons connected to an ATmega328 micorcon-

troller. We used this robot to carry the target node EVB1000 board as well as the

IMU board over the defined experimental route. We used black electrical tape to

mark the route on the floor tiles of the IB214 wireless sensor network lab at UNB.

Figure 5.5 shows the Pololu 3pi with EVB1000 and IMU.

Figure 5.5: Pololu 3pi with EVB1000 and IMU sitting next to the line following
route marked in black electrical tape.
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5.2 Evaluation approaches

5.2.1 Off-line Evaluation

The most common approach, suggested in the literature, for evaluating positioning

systems is using a predefined reference trajectory. In this method, the robot or

human carrying the positioning system moves along the reference trajectory; then

the computed positions by the positioning system provide an estimated trajectory.

Accuracy of the positioning system is determined by the difference between the

reference trajectory and the estimated trajectory. This approach can underestimate

the error of the estimated positions compared to the reference trajectory. Figure 5.6

illustrates how this inaccurate estimate of the actual error can occur.

Figure 5.6: Potential error in off-line evaluation of the error in the estimated position.

Point A is reported by the positioning system when point C was the actual position

of the moving node at time t. The off-line evaluation approach is not aware of the

real-time actual position at time t, and computes the minimum distance between the

estimated and the reference trajectory. Therefore, d2 is the estimated error while the

real error is d1. The off-line evaluation method thus computes the minimum possible

error of the system.

We implemented the off-line evaluation using C# language program called “Moni-

tor.cs”. Figure 5.7 depicts two possible cases. If the estimated position is in the gray
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area, such as point B, the positioning error is the distance between the estimated

position and the closest vertex as follows:

e = min
i∈{1,3,5,7}

√
(x̂− xci)2 + (ŷ − yci)2 (5.1)

where (x̂, ŷ) is the estimated position and (xci , yci) is position of the ith vertex of the

route. If the estimated position is in the white area, such as point A, the positioning

error is the distance between the estimated position and the closest edge as follows:

e = min
i,1...4


x̂− ri i = 1, 3

ŷ − ri i = 2, 4

(5.2)

where r1, r2, r3 and r4 are the route’s left vertices’ x coordinate, top vertices’ y coor-

dinate, right vertices’ x coordinate and bottom vertices’ y coordinate, respectively.

Appendix B contains the source code used for the off-line evaluation algorithm.
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Figure 5.7: Illustration of off-line evaluation of the difference between an estimated
position and a reference trajectory.
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5.2.2 Real-Time Evaluation

We designed and implemented a second positioning system to determine the ground-

truth position of the moving node in real time. This second positioning system is

independent of the position estimation system, and takes advantage of our rectangu-

lar track layout. Figure 5.8 depicts the innovative real-time evaluation system used

in this thesis.

Figure 5.8: Real-time evaluation system.

We placed two TelosBs near each end of the route’s edges (G1,...,G8 in Figure 5.8).

The output of the light sensor embedded in the TelosB mote was used to determine

when the 3pi robot passed by each TelosB along the route. Figure 5.9 shows a photo

taken from the experimental setup.
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Figure 5.9: A picture of the real-time evaluation system for determining the ground
truth position of the moving 3pi robot.

When the 3pi robot passes in front of the TelosB mote, it blocks the light reaching the

light sensor on the TelosB mote Gn, and the light sensor output drops significantly.

At this instant of time ti, we create a synchronized time stamp event that is sent to

the DataLogger.java program on the base station. Using two time-stamps from two

consecutive ground truth motes on an edge, tGn and tGn+1 , and the distance between

two sensors, d, we compute the constant speed v of the 3pi robot on this edge. Using

the speed of the robot and the time of passing a specific point on the edge where a

ground truth mote is located, we are able to compute the position of the robot at

any moment it was on this edge, using the following equations:

v = d/(tGn+1 − tGn) (5.3)

tcn = tGn − (0.30/v) , tcn+2 = tGn+1 + (0.30/v) (5.4)

δ = v(ti − tcn) (5.5)

Horizontal edge: if(n ∈ {1, 5}) : x′ti = xcn + δ, y′ti = ycn (5.6)
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Figure 5.10: Real-time evaluation example.

Vertical edge: if(n ∈ {3, 7}) : y′ti = ycn + δ, x′ti = xcn (5.7)

The position error e is then computed as follows:

e =
√

(x̂ti − x′ti)2 + (ŷti − y′ti)2 (5.8)

Figure 5.10 depicts an example of real-time evaluation. We repeat this procedure

for all positions of the robot for the entire duration of the experiment using the

Monitor.cs program, as illustrated in Figure 5.1. Appendix A contains the source

code for the program used to compute the errors each second as the 3pi traversed

the line following route.

The time synchronization protocol used to guarantee that all eight ground truth

motes use the same time base is the Flooding Time Synchronization Protocol (FTSP).

An implementation of FTSP is provided by TinyOS, and is described in more detail

in [34].
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5.3 Positioning Module

The positioning algorithm is implemented on the EVB1000. Decawave ships this

module with sample source code for ranging between two EVB1000 modules. This

range measurement was used as the input to the positioning algorithm. In the

ranging implementation there are two roles, “Anchor” and “Tag”. According to the

terminology used here, all stationary nodes are anchors and the moving node is a

tag. Figure 5.11 depicts the architecture of Decawave UWB ranging implementation.

The second phase, labeled “Ranging Phase” in the figure, is the SDS-TWR protocol

of IEEE 802.15.4-2011 standard discussed in section 2.10. The first phase of the

implementation, called “Discovery Phase”, is designed by Decawave to pair tags and

anchors for ranging. In the case of positioning, we need the moving node to measure

its range from three stationary nodes. We observed that the moving node is likely

to pair with closer stationary nodes as they send the “Ranging init” message sooner.

It is a problem for positioning since we need range measurements from all stationary

nodes with the same frequency. We modified the implementation of the discovery

phase (see the source code in Appendix C) so that the moving node (tag) pairs with

the stationary nodes (anchors) sequentially using their unique ID.

We found calibration of the IMU sensor an essential part of the positioning system.

As a result of our observations, we skipped the first 2000 measurements and used

the next 1000 for calibration. Furthermore, we found calibration using the real

positioning iterations more effective than running a stand-alone calibration phase

without other procedures. So, we run the positioning algorithm and use the first

IMU measurement for calibration discarding the positioning results, then start the

real positioning phase using calibrated IMU measurements. Another implementation

issue for the integrated IMU-UWB positioning system is that the sampling frequency

of the IMU sensors is 100 Hz while the frequency of UWB ranging (with three

stationary nodes) is 7 Hz. According to our experiments, on average, we have ranging
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Figure 5.11: Ranging implementation by Decawave (from [32]).
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measurements every 0.143 s, and there are 14 IMU samples available between two

range measurements. There are three options to handle this problem:

• Reduce the frequency of the sensors’ sampling to 7 Hz. We performed ex-

periments applying this approach for both gyroscope and accelerometer. The

dynamic noise in the gyroscope measurements is not high so the samples are

pretty steady for 7 Hz with standard deviation σ < 0.054 deg /s. However,

the acceleration measurements have significant variations at the same 7 Hz

rate, and decreasing the acceleration sampling frequency makes significant er-

rors. Table 5.1 shows the standard deviation of gyroscope and accelerometer

measurements over the first 6000 samples, in deg /s and cm/s2 respectively.

Table 5.1: Standard Deviation of IMU measurements.

ax ay gz
6.98 cm/s2 6.4 cm/s2 0.054 deg /s

• Compute the process model of Kalman-filter using all 14 acceleration and angu-

lar velocity values available between two range measurements, and then use the

last output as the estimated position. In experiments, we found this approach

increased the positioning error. The IMU is not a good positioning system

by itself even for 14 iterations. It should be coupled with another positioning

system continuously.

• The third option, which gives the best results, is to make an average over

14 acceleration values and use the result as the input to the EKF. We used

the embedded FIFO buffer of the ADXL345 for collecting the acceleration

measurements between two range measurements.
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5.4 Test Procedure

Running an experiment is started by computing the time-offset between the target

node’s time stamps, made by the EVB1000 internal clock, and the UTC time. For

this purpose, we put the target node in synchronization mode using a toggle switch,

and connected it to the workstation using a USB cable. When the TN is in syn-

chronization mode, it transmits time-stamps via the USB port every 1s. On the

workstation we have Monitor.cs listening to the serial ports. Once a time-stamp

is received from the TN, the UTC time is retrieved from the global time server

(tick.usno.navy.mil) on the Internet, in milliseconds. The offset between these

two timestamps, called ∆TN , is computed as:

∆TN = tUTC − tTN (5.9)

and recorded on the workstation’s hard-drive. Then, the TN is returned to position-

ing mode to proceed with the main procedure described in Algorithm 2.

The second step is to install the light sensors (TelosB motes) on the determined

positions around the experiment’s route. There are 8 TelosB motes programmed to

report if the light sensor is blocked. In addition, one TelosB mote (the beacon node)

is programmed with the RadioCountToLeds example from the Tinyos distribution

as needed for the FTSP algorithm. A 10th TelosB mote is programmed with a mod-

ified BaseStation program. The modification adds the code necessary to synchronize

all TelosB motes using the FTSP algorithm [34]. The FTSP algorithm makes a

synchronized clock for all the light-sensor nodes and the base-station node. The

BaseStation node sends time-stamps made by this clock to the workstation (Ubuntu

virtual-machine), program DataLogger.java. This program retrieves the UTC time

from the same time-server on the Internet which is used by Monitor.cs. The re-

trieved UTC time-stamp is compared to the time stamps sent by the BaseStation
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node and the computed time-offset, called ∆BS, is computed as:

∆BS = tUTC − tBS (5.10)

and stored in memory. When a light-sensor reports light blockage by the Pololu 3pi

(TN) accompanied with a time-stamp, ∆BS is used to convert the time-stamp to

UTC time as:

tGn = tGn + ∆BS (5.11)

and writes the data to the ts.csv file.

The main procedure of the positioning module, programmed on the TN, starts with

the calibration of IMU sensors. Then, an infinite loop starts which calls the IMU-

UWB algorithm after a new set of distance measurements from all SNs is retrieved.

As shown in Algorithm 2, the TN sends the IMU-UWB position estimate accompa-

nied with a time-stamp and distance measurements to SN1, and the data is then sent

to Monitor.cs on the workstation. Time-stamps are converted to UTC time-stamps

as:

ti = ti + ∆TN (5.12)

and all the data is written to Log.xls file.

When TN finishes three loops moving around the route, it is manually turned off. The

file ts.csv is moved to the Windows OS (from the Ubuntu VM). The Monitor.cs

program includes the RLM and LLS algorithms’ implementation. It produces two

other estimates of the target node positions during the experiment using the recorded

distances in the Log.xls file. In addition, the time-stamps in ts.csv reported by the

light sensors are used to reach a very accurate estimate of the position of the target

node (as explained in equations (5.6) and (5.7)), called ground-truth position, related

to the time-stamps reported by stationary nodes. We calculate the real-time (RT)

error using equation (5.8) for each of LRM, LLS and IMU-UWB position estimates.
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The output of the RT evaluation is the average calculated error in cm. An off-line

(OL) evaluation is also computed for each of three position estimates using equation

(5.1) and (5.2).

Algorithm 2 Target Node Algorithm

1: procedure Main procedure
2: Counter = 0;
3: while True do
4: measureDistance();
5: if All three distances received then
6: read-Gyroscope();
7: read-Accelerometer();
8: UWB-IMU(); //Computes position estimate x̂k using equation (4.23)
9: if Counter < 3000 then
10: doCalib();// Calibrate IMU sensor using first 3000 samples
11: Counter++;
12: else
13: sendReport(); //send distances (d1, d2 and d3), x̂k and time-stamp

ti to SN1
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Chapter 6

Experimental Results

Two positioning algorithms are discussed in chapter 3. The first one is the linearized

least squares algorithm, equation (3.20), and the second one is the enhanced lin-

earized least squares by using MLE, equation (3.25); we call these two algorithms

LLS and LRM, respectively. We use these two algorithms as UWB-based approaches

to compare with the IMU-aided UWB positioning approach discussed in chapter 4,

denoted as IMU-UWB. To reach a more accurate comparison between these three al-

gorithms, we apply them to the same experimental data. The IMU-UWB algorithm

is implemented on the target node (EVB1000), while the LRM and LLS algorithms

are implemented on the PC using Monitor.cs. We ran two sets of experiments, one

in LOS and the one in NLOS conditions. Each of the sets is comprised of three clock-

wise and three counter-clockwise loops of the target node moving around a defined

route. In our experiments, the speed of Pololu 3pi robot which carries the target

node and IMU board, is 0.16 m/s.

6.1 LOS Experiments

In this section we discuss the results from experiments performed in LOS conditions.

Figure 6.1 depicts the positions of the stationary nodes and light sensors as well as

68



the route (of length 6.7 m) for the target node’s trajectory.

Figure 6.1: Detailed LOS experimental setup in the IB214 lab.
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Table 6.1 shows the position of the source nodes for the LOS experiments.

Table 6.1: Position of source nodes (in cm) for LOS experiments.

ID x y
1 61 0
2 364.5 91.5
3 122 213.5

Figure 6.2 depicts the output of each algorithm for one loop (experiment number 6)

in LOS conditions.

Figure 6.2: Positioning algorithms output in LOS conditions. (a) LRM, (b) LLS,
(c) ground-truth position and (d) IMU-UWB. Red dots indicate the position of the
source nodes.

We ran the experiments for three clockwise and three counter-clockwise loops com-

prising a total of 1737 points of positioning or around 386 points per loop. Table

6.2 shows the average real-time (RT) and off-line (OL) error of each positioning

algorithm in LOS conditions.

The first observation is that the RT error is always more than the OL error. It is
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Table 6.2: Results for LOS experiments. All results shown in cm.

ID Points Direction LRM OL LRM RT LLS OL LLS RT IMU-UWB OL IMU-UWB RT Duration(s)
1 292 CCW 7.61 13.20 6.43 12.31 4.77 15.61 43.25
2 296 CCW 7.57 13.39 6.64 12.89 7.30 20.83 43.66
3 300 CCW 7.32 10.87 6.11 10.00 6.65 17.60 43.74
4 282 CW 5.79 9.72 4.63 8.76 6.28 10.70 45.05
5 288 CW 5.77 12.15 4.59 10.99 5.82 11.69 46.12
6 279 CW 5.79 11.83 4.50 10.85 4.40 8.60 45.19

Avg 1737 - 6.64 11.86 5.48 10.97 5.87 14.17 -

consistent with the fact that it is not accurate to choose the closest point on the route

to the estimated position as ground-truth position as done for the OL evaluation.

Secondly, we observe that the addition of the IMU doesn’t increase the accuracy of

the UWB positioning system. The results are explained due to the high accuracy of

the UWB positioning system in LOS conditions and the relatively high noise of the

measurements from the inexpensive IMU sensors we used. Two other investigations

[15, 9] confirm the fact that inexpensive IMU systems are not able to increase the

accuracy of UWB positioning system in LOS conditions. De Angelis et al. [15]

suggest that IMU can improve positioning accuracy if the target node has speeds

higher than 1 m/s in LOS conditions.
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6.2 NLOS Experiments

To evaluate the positioning systems in NLOS conditions, we designed a second route

(of length 9.7 m) for the moving robot as depicted in Figure 6.3. Similar to the LOS

experiments, we ran the experiment for three clockwise (CW) and three counter-

clockwise (CCW) loops. A total of 2789 points of positioning were collected and

evaluated for NLOS conditions.

Figure 6.3: Detailed layout for NLOS conditions experiments in the ITB214 lab.

Table 6.3 shows the position of the source nodes for the NLOS experiments.
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Table 6.3: Position of source nodes in NLOS experiments. All values are given in
cm.

ID x y
1 275 0
2 364.5 244
3 0 274

Figure 6.4 depicts the output of one loop (experiment number 6) of the NLOS ex-

periments for the four different positioning approaches. Table 6.4 shows the average

real-time (RT) and off-line (OL) error for each of the positioning approaches in NLOS

conditions.

Table 6.4: Average error for NLOS experiments. All results shown in cm.

ID Points Direction LRM OL LRM RT LLS OL LLS RT IMU-UWB OL IMU-UWB RT Duration(s)
1 459 CCW 57.71 109.10 33.53 60.82 27.18 46.50 71.63
2 462 CCW 59.66 98.91 33.98 49.88 31.54 61.69 71.47
3 459 CCW 57.49 126.67 33.02 80.1 28.15 73.18 70.81
4 465 CW 60.54 105.81 36.71 53.69 29.07 43.26 68.08
5 477 CW 59.14 101.93 36.35 53.28 30.71 44.78 69.54
6 467 CW 61.84 101.77 35.96 53.07 29.4 42.36 68.70

Avg 2789 - 59.40 107.37 34.93 58.47 29.34 51.96 -

According to the RT evaluation, IMU assistance increases the average accuracy of

UWB positioning by 60.24% and 18.78%, respectively, compared to the LRM and

LLS algorithms. It is notable that the LLS algorithm requires a known start position

x0 which here is always (0.0, 0.0). Also, LLS is an iterative algorithm; using 0.01 cm

as the convergence threshold for ∆x in equation (5.3) in our experiments, it takes

8 iterations on average for the LLS algorithm to conclude, with a maximum of 31

iterations. In our experiments when the LLS algorithm was implemented on the

EVB1000 with ARM Cortex-M3 processor and an UWB measurement rate of 7 Hz,

there was no slowdown detected by the iterative LLS algorithm. In order to have

a known initial position, every time that the TN restarts, it must be turned on at

a specific position or the initial position must be transmitted to the TN manually.

This might be a drawback if the initial position x0 cannot be estimated from known

conditions.
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Figure 6.4: Positioning algorithms output in NLOS conditions. (a) LRM, (b) LLS,
(c) ground-truth position and (d) IMU-UWB. Red dots indicate the position of the
source nodes.
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Chapter 7

Summary and Conclusion

To measure the accuracy of UWB indoor positioning we implemented two different

statistical positioning algorithms suggested in the literature on Decawave’s EVB1000

board. In addition, we used a Kalman filter to integrate an onboard IMU system

with the UWB system in an attempt to increase the positioning accuracy of the

UWB-only system. We performed experiments both in LOS and NLOS conditions.

Experimental validation mounted the moving target node on a 3pi robot that fol-

lowed two tracks at a velocity of approximately 0.16 m/s. The LOS track was 6.7 m

in length, and the NLOS track was 9.7 m in length.

We proposed a new evaluation approach which compares the estimated position of

the target node with an independent ground truth position estimation. A light sen-

sor was used to detect the existence of the target node at specific positions with a

precise time stamp that allowed accurate calculation of the target node velocity and

ground truth position. Results of our experiments indicate the average accuracy of

UWB positioning system to be 10.97 cm in LOS conditions and 58.47 cm in NLOS

conditions using a linearized least squares (LLS) algorithm and real-time evaluation

discussed in chapters 3 and 5, respectively. The IEEE.802.15.4-2011 ranging pro-

tocol permits packets to establish a communication channel simultaneously while

75



real-time range measurements are being observed. This feature is provided by the

Decawave company’s implementation of the IEEE.802.15.4-2011 standard. We used

this communication channel to send the positioning algorithm results as well as raw

measurements to a PC.

To evaluate the capability of IMU systems as an aid for UWB positioning systems, we

used a six degrees of freedom IMU, composed of a gyroscope and an accelerometer.

Extended Kalman filtering was used to fuse information retrieved from the UWB

nodes and the IMU board. Our experimental results show that the IMU system is

not able to increase UWB positioning accuracy in LOS conditions. In the case of

NLOS conditions, however, the IMU system increased average positioning accuracy

by 18.78% (from an average accuracy of 58.47 cm down to 51.96 cm) compared to

a linearized least squares algorithm using only the ranges provided by the UWB

system for computing real-time positions.

Future work could consider evaluation of the discussed positioning approaches with

a target node moving much faster. For example, average human walking speed is

1.4 m/s, which is about 10 times faster than the speed of the 3pi robot used in our

experiments. How accurate would UWB positioning be if used for even faster moving

objects such as quadcopters that can move at 14 m/s or faster?

In addition, it needs to be confirmed if the proposed IMU-UWB approach works for

multiple target nodes. The positioning approaches presented here are all capable of

three dimensional positioning. What accuracy is achieved for the third dimension

when using UWB real-time positioning?
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[34] Miklós Maróti, Branislav Kusy, Gyula Simon, and Ákos Lédeczi, The flooding
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Appendix A

Real-time evaluation source code

This algorithm computes ground truth position of the target node at an arbitrary
moment ti using equations (5.6) and (5.7). Function “trueParams” computes velocity
of the target node on each of the edges of the route v and time-stamps for the corners
of the route tcn . Function “getEdge” determines on which edge was the TN at time
ti. Finally, function “getGroundTruth” computes the ground position of the TN
(x′ti , y

′
ti

) at time ti.

1

2 private void trueParams()

3 {

4 vertexv[0] = Math.Abs((lightPoint[1][0] - lightPoint[0][0])) /

(lightTS[1] - lightTS[0]);

5 vertexv[1] = Math.Abs((lightPoint[3][1] - lightPoint[2][1])) /

(lightTS[3] - lightTS[2]);

6 vertexv[2] = Math.Abs((lightPoint[5][0] - lightPoint[4][0])) /

(lightTS[5] - lightTS[4]);

7 vertexv[3] = Math.Abs((lightPoint[7][1] - lightPoint[6][1])) /

(lightTS[7] - lightTS[6]);

8

9 vertexts[0] = lightTS[0] - (30.5 / vertexv[0]);

10 vertexts[1] = (lightTS[1] + lightTS[2]) / 2;

11 vertexts[2] = (lightTS[3] + lightTS[4]) / 2;

12 vertexts[3] = (lightTS[5] + lightTS[6]) / 2;

13 vertexts[4] = lightTS[7] + (30.5 / vertexv[3]);

14

15 }

16

17 private int getEdge(double posts)

18 {

19 int e = 0;

20

21 if ((vertexts[0] < posts && posts < vertexts[1]) || (vertexts[0] > posts

&& posts > vertexts[1]))

22 e = 1;
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23 if ((vertexts[1] < posts && posts < vertexts[2]) || (vertexts[1] > posts

&& posts > vertexts[2]))

24 e = 2;

25 if ((vertexts[2] < posts && posts < vertexts[3]) || (vertexts[2] > posts

&& posts > vertexts[3]))

26 e = 3;

27 if ((vertexts[3] < posts && posts < vertexts[4]) || (vertexts[3] > posts

&& posts > vertexts[4]))

28 e = 4;

29

30 if (e == 0)

31 throw new Exception("True position not found");

32

33 return e;

34 }

35 private double[] getGroundTruth(double posts)

36 {

37 double[] groundTruth = new double[2];

38 int e = getEdge(posts);

39 switch (e)

40 {

41 case 1:

42 groundTruth[1] = lightPoint[0][1];

43 groundTruth[0] = lightPoint[0][0] + (posts - lightTS[0]) * vertexv[0];

44 break;

45 case 2:

46 groundTruth[0] = lightPoint[2][0];

47 groundTruth[1] = lightPoint[2][1] + (posts - lightTS[2]) * vertexv[1];

48 break;

49 case 3:

50 groundTruth[1] = lightPoint[4][1];

51 groundTruth[0] = lightPoint[4][0] - (posts - lightTS[4]) * vertexv[2];

52 break;

53 case 4:

54 groundTruth[0] = lightPoint[6][0];

55 groundTruth[1] = lightPoint[6][1] - (posts - lightTS[6]) * vertexv[3];

56 break;

57 default:

58 throw new Exception("No true position!");

59 }

60 return groundTruth;

61 }
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Appendix B

Off-line evaluation source code

This algorithm computes the minimum distance between the position estimation x̂
and the route using equations (5.1) and (5.2).

1 double getOLerror(int[,] pos)

2 {

3 double err = 0;

4 double d;

5 double[] d4 = new double[4];

6 double left = rout_start.X;

7 double top = rout_start.Y;

8 double right = left + rout_width;

9 double bottom = top + rout_heigth;

10 for (int i = 0; i < posNum; i++)

11 {

12 if ((pos[i, 0] >= left & pos[i, 0] <= right) || (pos[i, 1] >= top &

pos[i, 1] <= bottom))

13 {

14 d4[0] = Math.Abs(top - pos[i, 1]);

15 d4[1] = Math.Abs(bottom - pos[i, 1]);

16 d4[2] = Math.Abs(pos[i, 0] - left);

17 d4[3] = Math.Abs(pos[i, 0] - right);

18 }

19 else

20 {

21 d4[0] = (int)Math.Sqrt(Math.Pow(pos[i, 0] - left, 2) + Math.Pow(pos[i,

1] - top, 2));

22 d4[1] = (int)Math.Sqrt(Math.Pow(pos[i, 0] - left, 2) + Math.Pow(pos[i,

1] - bottom, 2));

23 d4[2] = (int)Math.Sqrt(Math.Pow(pos[i, 0] - right, 2) +

Math.Pow(pos[i, 1] - top, 2));

24 d4[3] = (int)Math.Sqrt(Math.Pow(pos[i, 0] - right, 2) +

Math.Pow(pos[i, 1] - bottom, 2));

25 }

26
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27 d = d4.Min();

28 err = err + d;

29 }

30 err = err / posNum;

31 return err;

32 }
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