
A Fault Tolerant Data Structure for
Peer-to-Peer Range Query Processing

by

Zahra Mirikharaji

TR15-237, August 2015

This is an unaltered version of the author’s MCS thesis
Supervisor: Bradford G. Nickerson

Faculty of Computer Science
University of New Brunswick
Fredericton, N.B. E3B 5A3

Canada

Phone: (506) 453-4566
Fax: (506) 453-3566
E-mail: fcs@unb.ca

http://www.cs.unb.ca

Copyright © 2015 Zahra Mirikharaji

Abstract

We present a fault tolerant dynamic data structure based on a constant-degree Dis-

tributed Hash Table called FissionE that supports orthogonal range search in d-

dimensional space. A publication algorithm, which distributes data objects among

all nodes in the network is described, along with a search algorithm that processes

range queries and reports all objects in range to the query issuer. The worst case

orthogonal range search cost in our data structure with n nodes is O(log n + m)

messages plus reporting cost, where m is the minimum number of nodes intersecting

the query. We have proved that in our data structure the cost of reporting data in

range to the query issuer is
∑m

i=1d
Ki

B
eO(log n) ∈ O((K

B
+ m) log n) messages, where

K is the number points in range, Ki is the number of points in range stored in node

i, and B is the number of points fitting in one message. Storing d copies of each data

objects on d different nodes provides redundancy for our scheme. This redundancy

permits completely answering a query in the case of simultaneous failure of d − 1

nodes. Results of our experimental simulation with up to 12,288 nodes show the

practical application of our data structure.

ii

Dedication

This thesis is dedicated to my beloved spouse, Mohammadreza, without whose love

and support I would never have made it this far. I also wish to dedicate this thesis

to my parents who have supported me in each step of my life.

iii

Acknowledgements

I would like to express my special appreciation and thanks to my supervisor, Dr.

Bradford Nickerson for his continuous support and encouragement throughout this

thesis. Without his supervision and constant guidance this dissertation would not

have been possible. I take this opportunity to express gratitude to all of the Faculty

of Computer Science faculty members for their help and support. Also, I would

like to acknowledge the support of the Natural Sciences and Engineering Research

Council (NSERC) of Canada and the UNB Faculty of Computer Science.

iv

Table of Contents

Abstract ii

Dedication iii

Acknowledgments iv

Table of Contents vi

List of Tables vii

List of Figures ix

Abbreviations xi

1 Introduction 1

1.1 Range Searching . 1

1.2 Motivation and Applications . 4

1.3 Computing Models . 5

1.4 Objectives . 7

2 Background 9

2.1 Peer-To-Peer Networks . 9

2.2 Peer-To-Peer Indexing Data Structures 9

2.3 Armada . 13

2.3.1 Multiple hash Algorithm . 14

v

2.3.2 MIRA Algorithm . 16

2.3.3 Performance of Armada . 21

2.4 Distributed Spatial Data Structure (DSDS) 22

3 Data Structure 26

3.1 Overview . 26

3.2 Introduction to FissionE . 27

3.3 Data Distribution . 31

3.4 Search Algorithms . 37

3.4.1 Point Search Algorithm . 37

3.4.2 Range Search Algorithm . 38

3.5 Theoretical Analysis . 41

3.6 Dynamic Operations . 44

3.7 Load Balancing . 48

4 Experimental Validation 51

5 Summary and Conclusion 66

Bibliography 71

A Kautz Network Code 72

B Routing Messages Code 86

C Query Generation Code 93

Vita

vi

List of Tables

4.1 Actual number of messages counted vs. the theoretical number of

messages required for reporting data back to the query issuer in 2-

dimensional space. 58

4.2 Actual number of messages counted vs. the theoretical number of

messages required for reporting data back to the query issuer in 6-

dimensional space. 58

4.3 The range search cost in messages vs. the number of nodes in range

in 2-dimensional space. 61

4.4 The range search cost in messages vs. the number of nodes in range

in 6-dimensional space. 61

4.5 Actual number of messages counted vs. the theoretical number of

messages required for range search of constant volume queries. 64

4.6 Actual number of messages counted vs. the theoretical number of

messages required for range search of cubic queries. 65

5.1 Performance comparison of our data structure and DSDS. 68

vii

List of Figures

1.1 Examples of range queries in two dimensions. 2

1.2 2-dimensional rectangular rangess (from [1]). 2

1.3 3-dimensional rectangular range (from [1]). 3

1.4 Orthogonal range in 3-dimensional space (from [9]). 4

2.1 A peer-to-peer network. 10

2.2 An example of partition tree P (2, 4) for 2-dimensional space< [0, 6], [0, 8] >

(from [15]). 16

2.3 An example of the FRT and MIRA search path (from [15]). 20

2.4 Three different types of lists in a non-redundant rainbow skip graph.

Six level lists (two in level 1 and four in level 2), eight tower lists and

one core list in level 0 are shown in the figure. 23

2.5 distribution of a 2D space among 5 nodes (adapted from [7]). 24

3.1 Kautz graph K(2, 3) (from [16]). 28

3.2 An example of FissionE topology (from [16]). 29

3.3 An overview of 2-dimensional data distribution in our data structure. 34

3.4 Kautz graph K(2, 2). 34

3.5 A Hamiltonian path on Kautz graph K(2, 2). 34

3.6 Example of a distribution tree. 37

viii

4.1 Variation of network size and its impact for 2-dimensional random

queries on (a) the average search cost K̄Q and average no. of nodes

intersecting a query n̄Q, and (b) RM =
K̄Q

n̄Q
. 54

4.2 Variation of network size and its impact for 6-dimensional random

queries on (a) the average search cost K̄Q and average no. of nodes

intersecting a query n̄Q, and (b) RM =
K̄Q

n̄Q
. 55

4.3 Variation of network size and its impact on reporting cost T̄ of (a)

2-dimensional and (b) 6-dimensional rectangular range queries. 57

4.4 Variation of query volume and its impact the query cost K̄Q and n̄Q for

(a) 2-dimensional space, and (b) 6-dimensional space with n =6,144

nodes. 62

4.5 Variation of network size and its impact on the query cost K̄Q for

6-dimensional space. 64

ix

List of Algorithms

1 The pseudocode of the Multiple hash algorithm. 17

2 The pseudocode of the MIRA algorithm. 18

3 FissionE Routing Algorithm. 30

4 Publish data object O on a network with n nodes. 35

5 Point Search Algorithm. 38

6 Report data objects in a range query to its issuer node. 40

7 Insertion of a new node to our data structure. 45

8 Deletion of a node from our data structure. 46

9 The test harness algorithm. 53

10 Two-dimensional random side query rectangle generation algorithm. . 53

11 Constant volume query rectangle generation algorithm in d-dimensional

space. 59

12 The test harness algorithm for generation of constant volume range

queries. 60

13 Cubic query rectangle generation algorithm in d-dimensional space. . 63

x

List of Symbols, Nomenclature or

Abbreviations

B The number of points that fit in one message

d Number of data dimensions

DHT Distributed Hash Table

DSDS Distributed Spatial Data Structure

K Number of points reported in range query Q

Ki The number of points in range on node i

K(b, k)
A Kautz graph whose nodes identifiers are Kautz strings with base b

and length k

K̄Q Average search cost in messages

Li The lowerbound of the entire space in dimension i

m minimum number of nodes intersecting a range query Q

n Number of nodes in the network

n̄Q Average number of nodes intersecting queries

N Number of data points in the data structure

O An object in d-dimensional space

P The set of all points in the data structure

P2P Peer-to-peer

Q Range query

QjL The lower bound of the query in dimension j

xi

QjU The upper bound of the query in dimension j

r A range

R The set of all ranges

R(d, k)
A rectangular range in d-dimensional space with k dimensions having

finite interval where 0 ≤ k ≤ d

RM Message cost ratio

RSG non-redundant rainbow skip graph

Si The set of points on node i

T̄ Average reporting cost in messages

Ui The upperbound of the entire space in dimension i

w a subspace in d-dimensional space

xii

Chapter 1

Introduction

1.1 Range Searching

Range searching is an algorithmic problem in the area of computational geometry

with applications in geographic information systems (GIS), data bases, graphics and

subroutines of other problems related to range queries. Before presenting a formal

definition of the range search problem, we need to speak about range and its various

types.

Let Rd be d-dimensional Euclidean space and R be a group of subsets of Rd. Each

member of R is called a range. Some typical kinds of ranges are as follows:

1. Orthogonal ranges (Rorthog) are axis parallel boxes which all sets are in the form

of
∏d

i=1[ai, bi] where a1, b1, ..., ad, bd ∈ R.

2. Half space range (Rhalf) is the set of all halfspaces in Rd space.

3. Simplex range is the set of all simplices in Rd where a d-simplex is a d-dimensional

polytope which is the convex hull of its d+ 1 vertices.

4. Ball range (Rball) is the set of all balls in Rd [18].

1

Y

X

(a) Rectangular

Y

X

(b) Half-space

Y

X

(c) Simplex

Y

X

(d) Ball

Figure 1.1: Examples of range queries in two dimensions.

Figure 1.1 shows examples of R for these cases in 2-dimensional space. Figure

1.1(a) shows a specific example of rectangular ranges. To define a general form, let

R(d, k) be a rectangular range in d-dimensional space with k dimensions having a

finite interval where 0 ≤ k ≤ d [1]. According to this definition, Figure 1.1(a) shows

a rectangular range R(2, 2). Figures 1.2 and 1.3 show various rectangular ranges

respectively in 2-d and 3-d space.

Figure 1.2: 2-dimensional rectangular rangess (from [1]).

2

Figure 1.3: 3-dimensional rectangular range (from [1]).

Let P be a set of N points in Rd and r be a range ∈ R. The range searching

problem is to design an efficient algorithm which reports all points of P lying in r.

Reporting points of the set P which intersect with range r (a range-reporting

query) is just one of the possible range search problems. Counting points lying in

a given range is called a range-counting query. Sometimes we just want to check

the emptiness of P ∩ r (range emptiness query). Another case of range searching

problems is optimization range query. In this case, we are looking for a specific point

with certain properties among points intersecting r [19].

In reality, spatial data objects usually occupy areas in multi-dimensional space. In

2-dimensional space, these objects are represented by points, triangles or polygons.

In range searching, when objects are represented by triangles or polygons, we want

to determine all the objects intersecting a given range. For example, on a map, we

may want to find all counties within 20 km of our location. Different representations

of objects use various approaches for solving range search problems. In this work,

we assume that all objects are represented by points.

3

1.2 Motivation and Applications

Different types of range-search problems are motivated by different practical ap-

plications. In the following, we give a simple example which is presented in many

range search references for explaining the application of point range search.

Consider a Company employees data table. In this table, each record is related to

one employee and can be interpreted as a point in d-dimensional space where each

dimension corresponds to one field of the table. For example, if we want to report

all employee born between 1950 and 1955 who earn between $3,000 and $4,000 per

month and have 2, 3 or 4 children, we can use a 3-dimensional space where each

point represents an employee. Figure 1.4 shows this example. We can see that one

coordinate is devoted to date of birth, the second one to salary and the last one to

number of children. All points lying in the grey parallel-sided box are the answer to

this orthogonal range query [9].

Figure 1.4: Orthogonal range in 3-dimensional space (from [9]).

4

Locating an airport nearby a defective airplane in emergency conditions can be

an application of ball range search. In ball range search, all the ranges are in the

form of a ball range, and we are looking for all points within distance r from one

specific point that is moving. More important than direct applications, range search

has applications as subroutines in other geometric algorithms. For example, in the

facility location problem, we are looking for optimal placement of facilities in an

area to minimize some distances and costs like transportation cost. Range searching

algorithms may be used as subroutines in optimal placement of facilities algorithms.

In computational geometry, the range searching problem can be generalized to

merge all kinds of range searching and making a unified problem. Given a set of

points P , we assign a weight w(p) ∈ S to each point p ∈ P . If (S,+) is a commutative

semigroup, for any subset P ′ ⊆ P , w(P ′) = Σp∈P′w(p). For each query r, our purpose

is computing w(P ∩ r) = Σp∈P∩rw(p) by this definition all types of range searching

problems can be defined. For example, for range counting queries, S is the set of

integers Z and + is the standard integer addition. By setting w(p) = 1 for each

p ∈ P , the range counting problem has been defined. For emptiness query, the

semigroup is ({0, 1}, or) and w(p) = 1 for each p ∈ P [2].

1.3 Computing Models

Assuming a Random Access Machine (RAM) model, the set of all points, P and the

range r are available in main memory at the same time. The simplest range search

algorithm goes through all points of P one by one and reports points intersecting r.

This ”linear search” algorithm uses Θ(N) space and Θ(N) time. Typically, however,

the point set P is given in advance and we want to preprocess points into a data

structure to answer different queries as efficiently as possible.

5

The performance of a data structure is affected by three elements with different

levels of importance. The first one is the preprocessing cost, the cost that we need for

constructing a data structure. Preprocessing time is less important than the search

cost and storage space. The size of the data structure or storage space includes the

original data size N plus auxiliary information required to create the data structure.

The search cost of a range-reporting query on any reasonable machine depends on

the output size, so the search cost consists of two parts. The first part depends on

the data structure and the second part is the output sensitive part, and is a function

of K, the number of points found in range.

Under the RAM model of computation, the run time of an algorithm is measured

by counting the number of steps. Addition, multiplication, subtraction, division and

comparison are considered simple operations which take exactly one time step, and

each memory cell is accessible in constant time [2]. In the RAM model, range search

cost is the time spent to answer a query and depends on the number of points, N

and d, the number of dimensions.

In the Pointer Machine (PM) model of computation, each memory cell can be

accessed through a set of pointers. The RAM and pointer machine models take no

notice of whether an item is in cache or on the disk, which simplifies the analysis. If

data is too large to fit into main memory, data must be stored in secondary memory

and portions of it must be moved into main memory when needed. The model is

known as the I/O model, and query complexity measures only the number of I/Os

[2]. The I/O model is important as the time for one disk access is approximately

1×106 more than the time for one memory access. In the I/O efficient model, search

cost is measured by the number of disk blocks accessed during the search process

and depends on N , d and B, where B is the number of points in one disk block.

6

When secondary memory does not have enough space to store data, a distributed

computing model is used to spread out data among different nodes of a network.

Another motivation behind the distributed model are scalability and increasing reli-

ability of data access by having multiple copies of data stored at different locations.

In addition, different organizations of data at different locations can provide flexi-

bility in distributed data structures. Two popular types distributed systems are the

client-server or hierarchical model and peer-to-peer (P2P) networks. Peer-to-peer

networks are a class of networks without any central point that use distributed re-

sources to achieve a specific purpose. Each node, called a peer in the network, is

a consumer and supplier of data. Furthermore, they are more reliable and scalable

in comparison with client-server systems, since there is no single point of failure

in peer-to-peer systems and every node can issue a query. Such characteristics of

peer-to-peer networks make them a natural choice for use in our research on the

distributed range search problem.

In the distributed computing model, it is assumed that the cost of sending a

message is higher than the cost of an I/O, so the search cost is the number of

required messages exchanged between nodes to answer a query. For range reporting,

query cost also depends on the number of reported points, K, in addition to other

parameters. It should be mentioned that for dynamic data structures, the cost to

update the data structure (insertion and deletion) may be important [14].

1.4 Objectives

In this thesis, we investigate a spatial data structure supporting efficient orthogonal

range search of d-dimensional points using a distributed computing model. Other

desired features of such a data structure include:

• Node size and high efficiency: Can the use of a constant-degree graph rep-

7

resenting the network topology achieve the lower bound range search cost of

Ω(log n) + m − 1 messages, where m is the number of nodes intersecting the

query [15], for general range search schemes on constant-degree networks?

• Fault tolerance: are we able to automatically adjust to the failure of some

nodes and repair the structure at relatively small cost?

• Dynamic P2P networks: can we achieve dynamic updates to our data structure

to permit addition or deletion of nodes or points as needed?

8

Chapter 2

Background

2.1 Peer-To-Peer Networks

Peer-to-peer (P2P) networks are a class of networks without any central point or

hierarchical organization that uses distributed resources to achieve a specific pur-

pose. Various applications exchange information among a set of distributed ma-

chines. Advantages of peer-to-peer applications such as self organization, redundant

data storage, scalability, fault tolerance and efficient search have attracted signifi-

cant attention in recent years. Communication in peer-to-peer networks is done in

a distributed manner and all the participants are peers. A peer-to-peer network is

illustrated in Figure 2.1.

2.2 Peer-To-Peer Indexing Data Structures

Lua et al. in A Survey and Comparison of Peer-to-Peer Overlay Network Schemes

[17] classify peer-to-peer overlay networks into two classes; Structured and Unstruc-

tured. In structured peer-to-peer networks, the topology of nodes in the network

and data placement are specifically organized to be able to efficiently search for

data. In comparison, in unstructured peer-to-peer networks there is no control on

9

Interconnection
Network

Figure 2.1: A peer-to-peer network.

the network topology and data placement, and the connections between nodes are

arbitrarily formed. To search an unstructured peer-to-peer network for a piece of

data, the query is flooded over the network.

Many structured P2P systems like Chord [26], Tapestry [31], Pastry [22], CAN

[20] and FissionE [16] use the Distributed Hash Table (DHT) [21] to distribute data

objects deterministically at the peers and look them up with the data object’s unique

key. DHT-based systems use hashing to assign IDs to the peers and each peer is

responsible for a small specific segment of the data namespace. Peer-to-peer networks

support routing of a key/value pair to a particular peer with certain guarantees (e.g.,

logarithmic number of hops for searching on average). When peers join or leave the

network, the distribution of data to nodes is reassigned among the peers.

10

DHT schemes are normally capable of processing exact match searches. More

complex searches such as orthogonal range search have vast applications in areas like

data management systems and computer aided design. A number of recent papers

has investigated DHTs to process range queries. Zhang et al. [30] classify DHT-

based techniques for range queries into two groups; layered indexing and customized

indexing. The layered indexing techniques use DHTs for the underlying topology

and message routing algorithm without any modification to answer range queries.

Our work falls into this category. In contrast, customized indexing uses a custom-

designed P2P overlay or modifies an existing P2P overlay network to support range

search.

In layered indexing, Gupta et al. [12] use a probabilistic scheme that relies on

locality sensitive hashing to ensure that, with high probability, similar ranges are

mapped to the same node. However, these methods can only help to get approximate

answers for one dimensional range queries on Chord [26]. Squid [23] and DCF-CAN

[3] use space-filling curves (SFC) to map multi-dimensional keys to the peers. Space-

filling curves are locality preserving, but they provide less efficient range queries,

because a single range query may cover several parts of the curve, which have to be

queried separately.

Network routing table size or degree is an important measure in peer-to-peer net-

works. Most distributed indexing structures supporting range search don’t work on

a constant-degree graph. Among the existing schemes in layered indexing supporting

range queries, Armada [15] and Distributed Spatial Data Structure (DSDS) [7] work

on top of a constant-degree graph.

Armada [15] provides a higher efficiency in terms of query delay and number of

required messages. Armada is a range query scheme for d-dimensional space running

11

on top of a constant degree FissionE [16] DHT. For Armada, Li et al. [15] have proven

that the average message cost of one dimensional queries in PIRA (PrunIng Routing

Algorithm) is about log n+ 2m− 2 where m is the number of nodes intersecting the

query. This average cost assumes the data is distributed in a uniform random fashion.

For multi-dimensional indexing, Li et al. [15] have not presented any guarantee

on the number of messages required to answer a d-dimensional orthogonal range.

They present a simulation to show that the average message cost of MIRA is about

log n + 4m − 1 messages. Since Armada is the most similar work to our proposed

research, in section 2.3, we present an overview of data distribution and searching in

Armada.

Bisadi et al. in [7] present a peer-to-peer distributed spatial data structure (DSDS)

that employs a non-redundant rainbow skip graph [10] to route the messages. The

worst case orthogonal range search cost in a 2-dimensional DSDS with n nodes is

O(n) messages plus reporting cost. A complete backup copy of data points stored

in the other nodes of network provides redundancy for DSDS. A routing recovery

algorithm for DSDS is presented in [6] that requires O(log n) messages to recover

the routing information after failure of one node . The backup copy and the routing

recovery algorithm permit completely answering a query in the case of single node

failure. Since our data distribution algorithm is inspired from the slab partitioning

of space in DSDS, in section 2.4 we further explain the DSDS.

In customized indexing, the skip graph [4] and SkipNet [13] are P2P networks

having O(log n) degree that can just support one dimensional orthogonal indexing.

Family trees [29] and rainbow skip graph [10] both are constant degree. They also

support just one dimensional range queries. The P-tree proposed in [8] uses the

distributed version of a B+-tree to build an indexing structure for range queries.

The P-tree requires O(b logb n) space in each peer where b is the order or branching

12

factor of tree.

Mercury [5], Znet [24] and MIDAS [27] provide indexing schemes for multi-dimensional

space. Mercury [5] provides multi-dimensional range queries by indexing the data

set along each dimension. The latency of the message routing algorithm in Mercury

[5] is log2 n
k

when each node maintains k links to other nodes. MIDAS [27] resolves

the request in O(log n) hops when each peer’s degree is O(log n). In Znet [24], SFCs

(Space Filling Curves) are used to map multi-dimensional space to 1-dimensional

space, and skip graphs [4] are extended for query routing, with each node maintain-

ing O(log n) states.

2.3 Armada

Armada [15] is a delay bounded structured peer-to-peer network that uses FissionE

[16] as an underlying DHT to organize nodes in an overlay network. FissionE is a

constant degree peer-to-peer network with an average degree of 4 and an average

path length of about log n. Since FissionE only supports exact-match queries of

distributed objects on nodes, Armada which is built on top of FissionE is designed

to provide support range queries in 1 and d-dimensional space. In this section, we

first give an overview of FissionE and then we discuss the components of Armada.

In the next chapter, the FissionE distributed hash table (DHT) scheme is explained

in detail as the base of our proposed method.

The topology of FissionE is based on the topology of Kautz graphs. The Kautz

graph K(b, k) is a directed graph with bk−1(b + 1) vertices whose identifiers are

Kautz strings. The string u1u2...uk of length k and base b is a Kautz string where

ui ∈ {0, 1, 2, ..., b} and ui 6= ui+1 (1 ≤ i ≤ k − 1). The connection of nodes in a

Kautz graph is dependent on each node’s Kautz string. Each node U = u1u2...uk of

13

a graph has an out-degree b to the nodes V = u2u3...ukα where α ∈ {0, 1, ..., b} and

α 6= uk.

Li et al. in [15] have proposed two main components for Armada. The first

part is an order-preserving naming algorithm to assign objectIDs from the Kautz

namespace to the objects and then distribute them on corresponding nodes in such

a way that data locality is preserved. The second part is a range query processing

algorithm that efficiently forwards queries to the nodes intersecting a range query.

In the following, we discuss order-preserving naming and range query processing

algorithms for d-dimensional range queries.

2.3.1 Multiple hash Algorithm

In order to support range query, naming algorithms that generate IDs for ob-

jects must keep the locality of data values in different dimensions (attribute values).

Order-preserving algorithms in Armada assign adjoining objectIDs in Kautz names-

pace to objects with close attribute values.

Before discussing the order-preserving naming algorithm, Multiple hash for d-

dimensional objects, we give some definitions. In addition, we assume that the ≺

symbol provides the ”no more than” relation between Kautz strings in lexicograph-

ical order. We assume that each object has d attributes, A0, A1, ..., Ad−1 and the

values of objects are in d-dimensional subspace w = <r0, r1, ..., ri, ..., rd−1> where ri

is the domain of values of attribute Ai.

Definition 2.3.1. The Kautz region Jα, βK is the subset of KautzSpace(2, k) which

includes all strings s that are in KautzSpace(2, k) and α ≺ s and s ≺ β.

14

Definition 2.3.2. For two objects in d-dimensional subspace w, δ1 = <u0,

u1, ..., ud−1> and δ2 = <v0, v1, ..., vd−1>, δ1 / δ2 if for each 0 ≤ i < d− 1, ui ≤ vi.

Definition 2.3.3. Subjective function F from multiple dimensional space D to Kautz

namespace V is multiple attribute partial order preserving iff for any δ1 and δ2 in D,

if δ1 / δ2 then F (δ1) ≺ F (δ2).

The partition tree presented in [15] describes the Multiple hash algorithm to

assign partial order preserving objectIDs to objects. Partition tree P (2, k) partitions

the entire d-dimensional space w into smaller subspaces and maps the subspace in

each leaf node to a specific Kautz string. A Partition tree has k + 1 levels and the

root node represents the entire space w. The root node has three children while other

intermediate nodes have two children. The label of edges in a partition tree depends

on the label of the parent node. Edge labels can be 0, 1 or 2, increasing from left to

right. All nodes have a specific label at level j of the partition tree, and the space

covered by each node is divided into two subspaces along the ith attribute where

i = j mod d with d the number of attributes for each object. Figure 2.2 illustrates

an example of a partition tree P (2, 4) for 2-dimensional space < [0, 6], [0, 8] >.

It is worth noting that in the Multiple hash algorithm, we don’t need to con-

struct the partition tree. In other words, each node of a partition tree doesn’t corre-

spond to any node of a network. The partition tree is a model presented to describe

the Multiple hash algorithm. As explained, the Multiple hash algorithm maps

the multiple dimensional space to Kautz strings in KautzSpace(2, k). So to publish

objects in Armada, we first provide the ObjectID using Multiple hash algorithm.

Then we use the FissionE routing approach to find the unique node whose nodeID

is the prefix of the ObjectID. The pseudocode of the Multiple hash algorithm is

15

Figure 2.2: An example of partition tree P (2, 4) for 2-dimensional space
< [0, 6], [0, 8] > (from [15]).

shown in Algorithm 1.

2.3.2 MIRA Algorithm

It is straightforward to prove that the Multiple hash algorithm is a multiple

attribute partial order preserving function from multiple attribute space to the

KautzSpace(2, k). When a node publishes a range query Q = <[x0, y0],

..., [xi, yi], ..., [xd−1, yd−1]>, Armada uses a multiple attribute range query processing

algorithm called MIRA to forward queries to the nodes in range. Suppose that δ1 =

<x0, x1, ..., xd−1> and δ2 = <y0, y1, ..., yd−1>. We use the Multiple hash algo-

rithm to find the Kautz strings corresponding to objects δ1 and δ2, and call them

LowT and HighT, respectively. It is clear that for each object O in range Q, δ1 / O

and O / δ2.

16

Algorithm 1 The pseudocode of the Multiple hash algorithm.

1: procedure Multiple hash

(ObjectVal O, Lowerbound L, Upperbound

U , Length k)

// Generate an ObjectID (a Kautz string S

of length k)

// O is a multiple dimensional object and

Oi is the attribute value of object in

dimension i.

// Li and Ui are the lowerbound and the

upperbound of the entire space in

dimension i.

2: left← 0; right← 1;

d← Numofdimension(O);

// Initialize the vector nextID

3: nextID[0][left]← 1;

nextID[0][right]← 2;

4: nextID[1][left]← 0;

nextID[1][right]← 2;

5: nextID[2][left]← 0;

nextID[2][right]← 1;

6: for (i← 0, d− 1) do

7: A[i]← L[i]; B[i]← U [i];

8: end for

// value O lies in the subspace represented

by the first child of the root node

9: if

(O[0] ∈ [L[0], L[0] + 1/3 ∗ (U [0]− L[0])])

then

10: S[0]← 0;

11: A[0]← L[0];

B[0]← L[0] + 1/3 ∗ (U [0]− L[0]);

12: end if

// value O lies in the second child of the

root node

13: if (O[0] ∈ [L[0] + 1/3 ∗ (U [0]−
L[0]), L[0] + 2/3 ∗ (U [0]− L[0])]) then

14: S[0]← 1;

15: A[0]← L[0] + 1/3 ∗ (U [0]− L[0]);

B[0]← L[0] + 2/3 ∗ (U [0]− L[0]);

16: end if

// value O lies in the third child of the root

node

17: if

(O[0] ∈ [L[0] + 2/3 ∗ (U [0]− L[0]), U [0]])

then

18: S[0]← 2;

19: A[0]← L[0] + 2/3 ∗ (U [0]− L[0]);

B[0]← U [0];

20: end if

// Determine whether value O is in the

subspace represented by the left or right

child

21: for (i← 1, k − 1) do

22: j ← i mod d;

23: if (O(j) > (A[j] + B[j])/2) then

24: direction← 1;

25: A[j]← (A[j] + B[j])/2;

26: else

27: direction← 0;

28: B[j]← (A[j] + B[j])/2;

29: end if

30: S[j]← nextID[S[j − 1]][direction];

31: end for

32: return S;

33: end procedure

The Multiple hash algorithm is a multiple attribute partial order preserving

function. So the range Q is a subset of the Kautz region JLowT,HighT K. For

example, if Q = <[1.2, 1.8], [1, 5]> is the range query, then δ1 = <1.2, 1> and δ2 =

<1.8, 5>. We use the partition tree shown in Figure 2.2 to obtain Kautz strings

corresponding to δ1 and δ2. Thus, JLowT,HighT K = J0120, 0210K. This Kautz region

17

contains five leaf nodes P,R,W, S and M . Based on the partial order preserving

property of the Multiple hash algorithm, all the nodes that intersect a query are

among five Kautz region nodes, but they may not be adjoining leaf nodes. Figure

2.2 shows that W and S leaf nodes don’t intersect the query. So to process a range

query, we need an algorithm to forward the query to only those nodes which intersect

the query. MIRA is the algorithm proposed in [15] to forward a range query to the

appropriate nodes. Algorithm 2 shows the pseudocode of MIRA.

Algorithm 2 The pseudocode of the MIRA algorithm.

1: procedure P.MIRA(RangeQuery Q)

// Node P invokes a multiple dimensional

range query

Q =< [QL0, QU0], ..., [QLi, QUi], ...

, [QL(d−1), QU(d−1)] >

// Q.L =< QL0, ..., QLi, ..., QL(d−1) >

// Q.U =< QU0, ..., QUi, ..., QU(d−1) >

2: LowT ← Multiple hash(Q.L,L, U, k);

3: HighT ←
Multiple hash(Q.U,L, U, k);

4: ComT ←
CommonPrefix(LowT,HighT);

5: if ComT = null then

6: Rangeset←DivideRange

(LowT,HighT);

// Divide Kautz region JLowT,HighT K
into several sub-regions (Rangei)

// parallel search for each Rangei

7: for (eachRangei ∈ Rangeset) do

8: P.MulSearch (Q,

rangei.LowT, rangei.HighT);

9: end for

10: else

11: P.MulSearch(Q,LowT,HighT);

12: end if

13: end procedure

14: procedure P.MulSearch(RangeQuery

Q,String T1,String T2)

// Node P invokes a pruning search for the

multiple dimensional range query Q

// The destination nodes take charge of a

part of the Kautz region JT1, T2K
15: CommonPrefix(T1, T2);

// If node P ’s nodeID is a prefix of ComT ,

the destination peer is P and the search is

finished

16: if (IsPrefix(P,ComT)) then

17: query(P);

18: return ;

19: end if

// ComS is the longest Kautz string that

both a prefix of ComT and the suffix of P ’s

nodeID

20: ComS ←
SufficPrefix(NodeID(P), ComT);

21: MaxLevel←
LengthofString(NodeID(P))-

LengthofString(ComS);

22: P.MultiplePruning(Q,MaxLevel);

23: end procedure

24: procedure U.MultiplePruning

(RangeQuery Q,LeftDepth h)

// Node U = a1...ahX deals with the

pruning search message for the multiple

dimensional range query Q

// The level of node U is h higher than

that of destination nodes in the FRT

18

25: if (h = 0) then // reach a destination

peer

26: query(U);

27: return ;

28: else

29: for (eachR ∈ outneighbors(U)) do

// R = a2...ahXY

30: if (InterSection(XY,Q)) then

31:

R.MultiplePruning(Q, h− 1);

32: end if

33: end for

34: end if

35: end procedure

36: procedure InterSection(String S,

RangeQuery Q)

// Determine whether the subspace Q′

represented by the Kautz string S in the

partition tree intersect with Q

// Q =< [QL0, QU0], ..., [QLi, QUi], ...,

[QL(d−1), QU(d−1)] >

// The entire value interval of dimension i

is [L[i], U [i]]

37: left← 0 right← 1;

// vector direct presents the branch

corresponding to the next symbol for

different current symbol in Kautz string

38: direct[0][1]← left; direct[0][2]← right;

39: direct[1][0]← left; direct[1][2]← right;

40: direct[2][0]← left; direct[2][1]← right;

// Calculate the subspace

Q′ =< [A[0], B[0]], ..., [A[i], B[i]], ..., [A[d−

1], B[d− 1]] >

41: if (S[0] = 0) then

42: A[0]← L[0];

B[0]← L[0] + 1/3 ∗ (U [0]− L[0]);

43: end if

44: if (S[0] = 1) then

45: A[0]← L[0] + 1/3 ∗ (U [0]− L[0]);

46: B[0]← L[0] + 2/3 ∗ (U [0]− L[0]);

47: end if

48: if (S[0] = 2) then

49: A[0]← L[0] + 2/3 ∗ (U [0]− L[0]);

B[0]← U [0];

50: end if

51: for (i← 1, d− 1) do

52: A[i]← L[i]; B[i]← U [i];

53: end for

54: lenk ← LengthofString(S);

55: for (i← 1, lenk − 1) do

56: j ← i mod d;

57: if direct[S[i− 1]S[i]] = left then

58: B[j]← (A[j] + B[j])/2;

59: elseA[j]← (A[j] + B[j])/2;

60: end if

61: end for

// Determine whether there is overlap

between subspace Q′ and Q

62: if isOverlap(A,B,Q) then

63: return 1;

64: else

65: return 0;

66: end if

67: end procedure

In FissionE, the out-neighbours of node P = u1u2...ut are in the form of P =

u2u3...utv1...vq with 0 ≤ q ≤ 2. For demonstrating the routing path from a query

issuer to a destination peer, the forward routing tree (FRT) is defined in [15]. Each

node of the FRT is a peer of FissionE. The root node is a query issuer. Children

of each node are its out-neighbours which are sorted in increasing order from left to

right. The number of levels in a FRT is t + 1. Figure 2.3 shows an example of the

19

FRT.

Figure 2.3: An example of the FRT and MIRA search path (from [15]).

To process a range query, we first obtain the Kautz region JLowT,HighT K. If

the Kautz string LowT and HighT don’t have a common prefix, we need to divide

the Kautz region into several subregions. In the case that LowT and HighT have

a common prefix, we consider ComT as the longest common prefix of LowT and

HighT . Then we get ComS with length f as the longest Kautz string which is

both the prefix of ComT and the root nodeID (see line 20 of Algorithm 2). All

the nodes that intersect query Q are at the level of t − f of the FRT. At level i of

the FRT, the node B = ui+1ui+2...ut−fX have some children in the form of C =

ui+2ui+3...ut−fXY . When B receives the query, it forwards the query to the children

with their corresponding XY having an intersection with range query Q. Line 30

of algorithm 2 (which calls the InterSection algorithm) handles the sending of

query messages only to nodes intersecting the query range.

20

In Figure 2.3, an example of processing a range query by MIRA is shown. The

dashed arrows shows the search path. The root node 212 issues the range query

Q = <[1.2, 1.8], [1, 5]>. As explained before, for this query LowT = 0120 and

HighT = 0210. So ComT = 0, ComS = ”null” and f = 0. In the result, all the

destination nodes are in level 3. In the node 120 of FRT, we calculate the subspace

stored in node 2020 and find that the subspace does not intersect with Q. Therefore

the query is not forwarded to 2020.

2.3.3 Performance of Armada

The performance of Armada is evaluated by analysis and simulation in [15]. Ar-

mada is built on top of FissionE which is a constant degree DHT. That means we

need to store a constant number of pointers per node. Li et al. [15] have proven that

the average message cost of 1-dimensional queries in PIRA (PrunIng Routing Algo-

rithm) is log n+2m−2 where m is the number of nodes intersecting the query. This

average cost assumes the data is distributed in a uniform random fashion. For multi-

dimensional indexing, Li et al. [15] have not presented any guarantee on the number

of messages required to answer a d-dimensional orthogonal range. They present a

simulation to show that the average message cost of MIRA is about log n+ 4m− 1

messages.

In addition, Armada uses the failure recovery mechanisms of the underlying DHT

structure, FissionE [16] to accommodate routing recovery, but they don’t provide

data recovery. In addition, the maximum query delay for single and multiple at-

tribute queries is less than 2 logN hops in Armada. Query delay is the number of

hops we need to traverse from the query issuer to detect the first node containing

query results.

21

2.4 Distributed Spatial Data Structure (DSDS)

Distributed Spatial Data Structure (DSDS) [7] is a peer-to-peer spatial data structure

supporting range search in 2-dimensional space. DSDS is a layered range query

scheme that uses a non-redundant rainbow skip graph for the network topology and

routing algorithm. A non-redundant rainbow skip graph [11] is a constant-degree

peer-to-peer network originating from the idea of a skip graph [4]. Non-redundant

rainbow skip graphs support exact match queries and range queries for ordered data

in 1-dimensional space. In a non-redundant rainbow skip graph, each data point is

assigned to a different node in the network. In other words, the number of nodes in

the network is equal to the number of points stored on the distributed data structure.

This approach of storing one point per node is the main disadvantage of the rainbow

skip graph. To use a rainbow skip graph for range searching on spatial data, Bisadi

et al. [7] proposed a data distribution algorithm that assigns a group of data to

each node in such a way that closer points are stored in neighbouring node. In this

section, we first introduce the topology of rainbow skip graphs and then discuss the

data distribution and range search algorithm in DSDS.

In the topology of a non-redundant rainbow skip graph, the connection of nodes

is based on defining a skip graph on Θ(n
logn

) supernodes of size Θ(log n), where n

is the network size. To construct the structure of a non-redundant rainbow skip

graph, first all nodes are ordered based on their keys in a core list which is a doubly

linked list. Then the ordered nodes are partitioned into Θ(n
logn

) supernodes where

each supernode consists of a consecutive order of keys. The smallest node key in the

node list of a supernode is the supernode key. A non-redundant rainbow skip graph

has Θ(log n) levels. Each supernode of a non-redundant rainbow skip graph has a

representative in each level of graph. A tower list representative of supernode V in

level i is connected to representatives of supernode V in levels i−1 and i+1. As each

22

level of a skip graph contains different level lists, the same notion of level lists in a

skip graph is used for a non-redundant rainbow skip graph to connect representatives

of different supernodes in one level to each other. Figure 2.4 shows an example of a

non-redundant rainbow skip graph. Three different types of lists of a non-redundant

rainbow skip graph are shown in this figure.

Figure 2.4: Three different types of lists in a non-redundant rainbow skip graph.
Six level lists (two in level 1 and four in level 2), eight tower lists and one core list

in level 0 are shown in the figure.

To distribute the data on nodes of a non-redundant rainbow skip graph in DSDS,

a slab partitioning of the space along one of the axes is used. In this approach, we

assign the keys of nodes in the non-redundant rainbow skip graph network to the

slabs of data in an increasing order, and store the data of slab i on the node with key

i. The core list of the non-redundant rainbow skip graph contains the data ordered

by the chosen slab partitioning axis. Figure 2.5 shows a distribution of 2-dimensional

points among the non-redundant rainbow skip graph nodes. In this figure, n2L and

n2U are the lower and upper bounds of the second node region, respectively and

QxL, QyL, QxU , QyU are the range query bounds.

23

Figure 2.5: distribution of a 2D space among 5 nodes (adapted from [7]).

Searching the non-redundant rainbow skip graph for range query Q with QL =

[QxL, QyL] and QU = [QxU , QyU] requires two steps. In the first step, if we assume

that data is partitioned based on the x coordinate, we need to find the node whose

data contains the x coordinate of the lower left point of query QxL. This node

reports a part of data in range to the query issuer node, and checks whether the

query intersects with the next node in the core list or not. If QxU is greater than

the upper bound of its region, the node updates the query and forwards it to the

successor node. This step is continued until all the nodes intersecting with the query

report the points in range to the query issuer node.

DSDS is proposed for range query processing in 2-dimensional space and doesn’t

support range query processing in d-dimensional space. Since the non-redundant

rainbow skip graph is a constant-degree graph and two copies of data are stored in

DSDS, the required storage space for DSDS is O(n+N). The average range search

message cost for DSDS in 2-dimensional space is Θ(log n + n
√
α) messages, where

24

n is the number of nodes in the network and α is the area ∈ [0, 1) of a rectangular

query Q. The DSDS worst case query in [0, 1]2 is a rectangular query with the side

length 1 in the dimension that is used for slab partitioning of the space, and arbitrary

side length in another dimension. To answer this query, DSDS needs to forward the

query to all the nodes of the network, so the number of required messages to answer

a range query Q in DSDS in the worst case is O(n) plus reporting cost.

25

Chapter 3

Data Structure

3.1 Overview

In this chapter, we propose our new fault tolerant dynamic distributed data structure

that operates on top of FissionE [16], a constant-degree peer-to-peer network. Our

data structure supports both point and range query processing in d-dimensional

space. In addition, range search cost in our data structure is close to the lower

bound on message cost of range search on distributed peer-to-peer networks using

a topology index based on constant-degree distributed hash tables (DHTs). A low

congestion routing algorithm in a Kautz graph is used for message routing, and d−1

backup copies of data is stored in our data structure to provide redundancy. This

redundancy permits completely answering a query in the case of simultaneous failure

of d− 1 nodes.

We first introduce FissionE, a distributed hash table that our data structure is built

on, in section 3.2. Sections 3.3 and 3.4 give a detailed description of how distribution

of data among network nodes are done, and how orthogonal range search is carried

out. Section 3.5 gives the theoretical analysis of our data structure. In section 3.6,

we explain dynamic operations and fault tolerance on FissionE and finally, in section

26

3.7, load balancing is discussed.

3.2 Introduction to FissionE

In this section we explain FissionE, a constant-degree distributed hash table based

on the Kautz graph [16]. A Kautz graph is a directed graph with static topology that

uses Kautz strings as node identifiers. In the following, we present related definitions

to understand Kautz graph topology.

Definition 3.2.1. The string u1u2...uk of length k and base b is a Kautz string where

ui ∈ {0, 1, 2, ..., b} and ui 6= ui+1 (1 ≤ i ≤ k − 1).

Definition 3.2.2. All Kautz strings of length k and base b create the KautzSpace(b, k)

of size bk + bk−1.

To show the size of KautzSpace(b, k), we know that the first symbol in a Kautz

string has b + 1 possibilities. Because two consecutive symbols in a Kautz string

must be different, all other symbols have b possibilities.

The Kautz graph K(b, k) is a directed graph of degree b with bk + bk−1 nodes

labelled by strings in KautzSpace(b, k). Each node U = u1u2...uk of a Kautz graph

has the same out-degree and in-degree b. There is an outgoing edge from U to V

if and only if V = u2u3...ukα where α ∈ {0, 1, ..., b} and α 6= uk. Figure 3.1 shows

Kautz graph K(2, 3) with out-degree 2 and 12 nodes.

A Kautz graph has desirable properties, like optimal diameter, that are important

in peer-to-peer networks. Diameter is the longest shortest path between any two

vertices of a graph and is always in trade-off with the degree of a graph. For a graph

with n = bk + bk−1 nodes and degree b, the Kautz graph has the smallest diameter of

27

Figure 3.1: Kautz graph K(2, 3) (from [16]).

any possible directed graph. In addition, in Kautz graph K(b, k), there are b disjoint

paths between any two nodes.

FissionE uses a Kautz graph K(2, k). Because a Kautz graph is a static topology, it

needs some adjustment to be used for dynamic peer-to-peer networks. Li et al. in [16]

propose a new topology called approximate Kautz graph. To achieve an approximate

Kautz graph, first the network topology is initiated with a Kautz graph, and then

in dynamic operations (addition and deletion of nodes) a topological rule called the

neighbourhood invariant rule is adopted. Based on this rule, the length of identifiers

may be different for different peers and the difference in length of node identifiers of

any two neighbours must be one or zero.

Figure 3.2 shows an example of neighbourhoods in FissionE topology. This topol-

ogy is first initiated with Kautz graph K(2, 3). Node 202 is split to permit node

2021 to join the network with existing node 202 becoming node 2020. Data in nodes

101 and 102 are merged to provide one less node which results in node 101 being

relabelled to to node 10, and node 102 departing from the network. In section 3.6,

28

Figure 3.2: An example of FissionE topology (from [16]).

dynamic operations and their influence on the length of node identifiers are further

explained.

To distribute objects among nodes in the FissionE scheme, the Kautz hash algo-

rithm is proposed in [16]. The Kautz hash algorithm maps an object’s unique key (of

any length) to the destination Kautz string of length l consisting of digits vi ∈ 0, 1, 2,

where consecutive digits must be different. Li et al. [16] show that when l = 100,

the Kautz hash algorithm uniformly distributes the Kautz strings it generates in

Kautz namespace KautzSpace(2,100). As mentioned in Algorithm 1.2.2 of [16], this

namespace has size 2100 + 299 ' 1.9 × 1030. To publish an object on FissionE by

node p, the Kautz string V of the object is first computed. Next, node p routes the

generated Kautz string V to place the object in the node whose identifier is a prefix

of V . To locate an object in the network, the same process is performed.

The long path routing algorithm in a Kautz graph is chosen as the Routing algo-

rithm in FissionE. Algorithm 3 from [16] shows the FissionE routing algorithm. In

this algorithm, routing from node U to the node where destination Kautz string V

29

Algorithm 3 FissionE Routing Algorithm.

1: procedure FissionE.Route(srcNode U , dstString V)

// routing from source node U = u1u2...uk to node where destination Kautz

string V = v1v2...vm is placed.

// SP = sp1sp2...spt the longest Kautz string that is the prefix of V and the

suffix of U

2: SP ←SuffixPrefix(U, V)

3: U.Routing(V, k − t, SP)

4: end procedure

5: procedure W.Routing(dstString V , pathLen L, prefix S)

// node W = w1w2...wk routes message to the node that destination Kautz

string V = v1v2...vm must be stored on.

6: if (L = 0) then return

// reached destination node.

7: else if ∃Q ∈ Outneighbors(W) & Q = w2...wkX & IsPrefix(SX, V)

then

8: S ← SX

9: Q.Routing(V, L− 1, S)

// Routing messages is forwarded to Q

10: end if

11: end procedure

resides is performed by left shifting the symbols of U and adding the symbols of V

from left to right at the end of U . For example, if U = 021 and V = 12010, the

longest common prefix of V and suffix of U is equal to 1. So the length of path from

node U to the node whose identifier is a prefix of V is 2 and the routing path is

021→ 212→ 120.

It is proven in [16] that the average degree of vertices in a FissionE network is

4 and its Kautz graph diameter is less than 2 log n. These desirable characteristics

motivate us to use FissionE as our overlay network to route messages between nodes

and provide dynamic operations of node arrival and departure.

30

3.3 Data Distribution

DHT-based peer-to-peer networks usually use consistent hashing functions to map

data objects and peers to a namespace. In the namespace, each node takes the

responsibility of storing values with the IDs close to its own ID. In the case of or-

thogonal range query, as a peer-to-peer network requires data ordering, the hash

function used to map values into the namespace is replaced by a locality preserving

mapping function. Although the FissionE scheme is a high performance distributed

peer-to-peer network and achieves optimal diameter on a constant-degree graph, it

only supports processing of exact match queries (point queries). Since in FissionE,

the Kautz hash algorithm is based on the hash algorithm SHA-1, range query pro-

cessing is not supported.

In this work, we present a general range query scheme that uses FissionE for

routing messages. Two main components of our work are the data distribution

algorithm and range query processing. Our data distribution algorithm publishes

d copies of each object on d different nodes in a way that preserves data locality.

Our range search algorithm, efficiently forwards queries to the appropriate nodes in

range. We first give a formal definition of a total order relation, and then explain our

data distribution algorithm. To efficiently perform orthogonal range search over a

peer-to-peer network, it is required to define a total order relation on the dataset to

keep the order of data in each dimension. A total order relation is a binary relation

on set X denoted by ≤ which has the following properties for all a, b and c ∈ X :

1. Antisymmetry: If a ≤ b and b ≤ a then a = b.

2. Transitivity: if a ≤ b and b ≤ c then a ≤ c.

3. Totality: a ≤ b or b ≤ a.

31

A total order relation on data provides propagation of objects on FissionE nodes in

such a way that objects with close values are placed on the same or neighbouring

nodes. In our data structure, we define a total order relation for each dimension i

as follows:

For two points P (p1, p2, ..., pd) and Q(q1, q2, ..., qd), P ≤ Q in dimension i if pi ≤ qi.

As we explained in section 3.2, in FissionE the identifier of nodes are Kautz strings

and the network node is initiated to a Kautz graph. All Kautz graphs have a Hamil-

tonian path. A Hamiltonian path in a graph is a path that visits each node of a

graph exactly one time. In our work, we use the Hamiltonian path in the underlying

Kautz graph of FissionE, and assign the index of each node in the Hamiltonian path

as the key to each node.

To preserve data locality along all dimensions, we distribute data objects among

nodes by partitioning the space based on point coordinates. In d-dimensional space,

we assign d set of points to each node i on the network, each set corresponding to

one dimension. Set Sji is the data stored in node i based on the total order relation

in dimension j. For example, in 2-dimensional space, if we denote dimension 0 with

x coordinates, and dimension 1 with y coordinates, we assign two set of points Sxi

and Syi to every FissionE node i.

The distribution of points based on each dimension over nodes is a noncrossing

partition NC(S) = {Sj1, Sj2, ..., Sjn} [25]. A partition over set S on dimension j has

the following properties:

• The union of the sets of NC(S) = {Sj1, Sj2, ..., Sjn} is equal to S. The elements

of NC(S) are said to cover S; i.e. For any j, 0 ≤ j ≤ d− 1, ∪ni=1Sji = S where

d is the number of dimensions in data structure.

32

• The intersection of any two distinct sets of NC(S) is empty; i.e. the elements of

NC(S) are pairwise disjoint. Thus Sji∩Sjk = ∅ if Sji ∈ NC(S), Sjk ∈ NC(S),

i 6= k.

In 2-dimensional space, our data structure provides one backup copy of data pub-

lished on all nodes to achieve search cost near the lower bound, in addition to provid-

ing data recovery. A copy of data stored in node i is stored in all n− 1 other nodes

except node i. Figure 3.3 shows an overview of data distribution in 2-dimensional

space over the Kautz graph K(2, 2) shown in Figure 3.4. The Hamiltonian path A,

B, C, D, E for the Kautz graph K(2, 2) in Figure 3.4 is shown in Figure 3.5. In Figure

3.3, if the data is distributed in a uniform random fashion in space, a balanced load

for each node results. The horizontal colour bar in each cell indicates the place of

the first copy of data in that cell based on dimension 0 (X), and the vertical colour

bar indicates the place of the second copy of data in that cell based on dimension

1 (Y). For example, assume L = [0, 0] and U = [12, 12] are the lower and upper

bound of the entire 2-dimensional space, and P = [0.8, 1.2] is a point. By uniformly

partitioning the space among the six nodes in Figure 3.4, point P is placed in the

lower left cell with red and orange bars. The red and orange bars show that the first

and second copies of point P are stored in nodes 12 and 20, respectively.

33

12

10

02

21

01

20

X

Y

𝑳𝟎

𝑳𝟏
𝑼𝟎

𝑼𝟏

Figure 3.3: An overview of 2-dimensional data distribution in our data structure.

01

12

0210

21

20

Figure 3.4:
Kautz graph K(2, 2).

01

12

0210

21

20

A

BC
D

E
0 1

2

3 4

5

Figure 3.5:
A Hamiltonian path on Kautz graph

K(2, 2).

34

Algorithm 4 shows how data objects are distributed on network nodes. This

algorithm publishes d copies of object O on d different nodes. The place of the ith

copy of object O depends on Oi and the place of the other i − 1 copies of O that

are already specified. [Li, Ui] in this algorithm is the entire interval of all N object

values in dimension i.

Algorithm 4 Publish data object O on a network with n nodes.

1: procedure DataDistribution(ObjectVal O, NumofNodes n, NumofDims d,

LowerBound L, UpperBound U , HamiltonianPath P)

// O = [O0, O1, ..., Od−1] is the coordinate of a point that should be published

on d nodes.

// L = [L0, L1, ..., Ld−1] and U = [U0, U1, ..., Ud−1] are the lower and upper

bounds, respectively, of the entire space.

2: if (O < L‖O > H) then

3: return (O is not in range.)

4: end if

5: NodeIndex← null // NodeIndex is an array of size d showing the indices

of nodes that O will be published on.

6: for i← 0, d− 1 do

7: node = dOi − Li
Ui − Li

(n)e − 1

8: for j ← 0, i do

9: if NodeIndex[j] == node then

10: node = (node+ 1) mod n

11: j ← 0

12: end if

13: end for

14: NodeIndex[i]← node

15: end for

16: NodeID ← null // NodeID is an array of size d showing the Kautz string

of nodes where O is stored.

17: for i← 0, d− 1 do

18: NodeID[i]← P [NodeIndex[i]]

19: end for

20: return(NodeID)

21: end procedure

35

To describe the data distribution algorithm in our data structure, we propose a

distribution tree DT (d, n) where d is the number of dimensions and n is the network

size. The distribution tree DT (d, n) has d+1 levels and n children for each interior or

root node. The label of a node is chosen to give a unique integer path from the root

to any leaf node. This label is decided by the loop from lines 6 to 15 in Algorithm 4.

The label of the root node is null and the label of a node is the concatenation of the

labels of the nodes on the path from the root node to node, separated by commas.

The distribution tree shows how all N objects, both primary and all d− 1 backup

copies, defined in space [L,H] are distributed among the n nodes of the network.

L = [L0, L1, ..., Ld−1] and U = [U0, U1, ..., Ud−1] are the lower and upper bounds,

respectively, of the entire space. The root node represents the entire space [L,H]

and other nodes represent subintervals of [L,H]. The label of each leaf node is the

path of unique comma separated integers ∈ 0, 1, ..., n−1. Note that no integer repeats

in the path due to the d− 1 backup copies being stored in different dimensions.

Figure 3.6 shows an example of the distribution tree DT (2, 6) correspondence to

the data in Figure 3.3. In the example shown in Figure 3.6, the entire interval is

[L,H], where L = [0, 0] and H = [12, 12]. The first leaf node in Figure 3.6 represents

the rectangle with the lower left [0, 0] and the upper right [2, 2] and its label is

0, 1. The label indicates that nodes 12 and 20 (the first and second nodes in the

Hamiltonian path A, B, C, D, E shown in Figure 3.5) contain the primary and

backup copies of points in the space [0, 2] × [0, 2]. The green integers in Figure 3.5

indicate the node index used in Algorithm 4.

36

Figure 3.6: Example of a distribution tree.

3.4 Search Algorithms

3.4.1 Point Search Algorithm

We initially assume that the query Q is searching for one specific object O in our

data structure. The query can be issued at any one of the nodes. Routing starts

at the query issuer node. The query issuer uses Algorithm 4 to find the NodeID

list corresponding to object O which contains d distinct addresses of O. The query

issuer then determines which of the object’s addresses to use. To do that, the longest

Kautz string SPi which is a suffix of the query issuer ID and a prefix of NodeID[i] is

calculated for each i, 0 ≤ i ≤ d−1. Then, the query issuer uses the FissionE routing

algorithm 3 to pass the query to the NodeID[j], where SPj has the maximum length

among all elements of list SP . The point search algorithm is shown in Algorithm 5.

37

Algorithm 5 Point Search Algorithm.

1: procedure PointSearch(ObjectVal O, NumofNodes n, NumofDims d,

LowerBound L, UpperBound U , HamiltonianPath P)

// Find a list NodeID of size d that shows the Kautz string of d nodes that

each one stores one copy of the queried Object O.

// O = [O0, O1, ..., Od−1] is the coordinate of a point that should be published

on d nodes.

// L = [L0, L1, ..., Ld−1] and U = [U0, U1, ..., Ud−1] are the lower and upper

bounds, respectively, of the entire space.

2: if (O < L‖O > H) then

3: return (O is not in range.)

4: end if

5: j ← −1

6: NodeID ← DataDistribution(O, n, d, L, U, P)

7: for i← 0 to d− 1 do

8: SP ←SuffixPrefix(ThisNode.ID,NodeID[i])

9: if j < SP [i].length then

10: j ← i

11: end if

12: end for

13: FissionE.Route(ThisNode,NodeID[j])

14: end procedure

3.4.2 Range Search Algorithm

Algorithm 6 answers a d-dimensional range query Q in a network of n nodes,

utilizing point search. Our range search algorithm has two main parts: First, it

determines which dimension is the most appropriate to process a query in terms of

minimizing the number of required messages. Second, the potential node i, the first

node in range is found, and the first portion of data in range is reported. The node

i checks if the query upper bound is greater than node i’s upper bound. If so, the

rest of the query result might be in the next node and an updated query is sent to

the next node in range. The new query rectangle is the result of subtraction of the

range covered with node i from the old query rectangle. The same process continues

38

until the last node intersecting the query reports the last part of the result to the

query issuer node.

For example, assume that j is the dimension intersecting the fewest nodes. Node

i is the first node that sends the result back to the query issuer if ThisNodejL <

QjL < ThisNodejU where ThisNodejL and ThisNodejU are node i’s lower bound

and upper bound respectively, in dimension j and QjL is the lower bound of the

query in dimension j. Then, if the upper bound QjU of the query in dimension j is

greater than ThisNodejU , the query is passed to the next node in range. Node i+ 1

receives an updated query, where the query upper bound QjU remains unchanged,

and the query lower bound QjL is changed to ThisNodejU .

39

Algorithm 6 Report data objects in a range query to its issuer node.

1: procedure IssueQuery(rangeQuery Q)

// Find the dimension j with minimum range QjU −QjL in query Q

// Lj and Uj are the lower bound and upper bound, respectively, of all possible

values for dimension j.

2: j ← MinRangeDim(Q) // Proper dimension for query processing

3: dstIndex← dQjL − Lj
Uj − Lj

(n)e − 1

4: dstID ← HamiltonianPath[dstIndex]

5: FissionERouting(thisNode, dstID,Q, j)

6: end procedure

7: procedure FissionERouting(srcNode src, dstNode dst, RangeQuery Q,

properD j)

// Assume that src = src1src2...srck and dst = dst1dst2...dstm.

8: SP ←SuffixPrefix(src, dst)

// SP = SP 1SP 2...SP t the longest Kautz string that is a prefix of dst and a

suffix of src.

9: src.Routing(dst, k − t, SP,Q, j)
10: end procedure

11: procedure V.Routing(dstNode dst, pathLen L, sufPre SP , rangeQuery Q,

properD j)

12: if (L = 0) then

13: if (QjL > ThisNodejL) and (QjL < ThisNodejU) then

// Report all objects in range where Oj < ThisNodejU .

14: ReportAnswer(LocalSearch(Q), Q.issuer)

// If not the last node in range

15: if (QjU > ThisNodejU) then

16: QjL ← ThisNodejU

// Route updated query to the next node in Hamiltonian path

17: FissionERouting(thisNode, thisNode.next,Q, j)

18: end if

19: end if

40

20: else if ∃Q ∈ Outneighbors(V) & Q = V2...VkX & IsPrefix(SX, dst)

then

// Routing method has been called i times.

21: S ← SX

22: Q.Routing(dst, L− 1, S,Q, j)

23: end if

24: end procedure

3.5 Theoretical Analysis

Storage space and search cost are two important elements that affect the performance

of a data structure. In this section, we show and prove some theorems about the

performance of our data structure and compare the performance of our data structure

with distributed spatial data structure (DSDS) [6].

Theorem 3.5.1. The cost of searching for an object in our data structure is O(log n)

messages.

Proof. Our point search algorithm (Algorithm 5) is based on the routing algorithm

of FissionE (Algorithm 3). In [16], it has proven that the diameter of Fissione is

O(log n). Since the diameter is the longest shortest path between any two vertices

of a graph, we have the claimed point search cost.

Theorem 3.5.2. The worst case orthogonal range search cost in our fault toler-

ant data structure for any data distribution in d-dimensional space with n nodes is

O(log n+m) messages plus reporting cost, where m is the minimum number of nodes

intersecting the query on d dimensions.

Proof. Since the most efficient dimension for the issued query is selected at the

beginning of the range search algorithm, the worst case search cost occurs when

the query is an equal-sided box. Li et al. have proven in [16] that the diameter of

41

FissionE is O(log n). So, in the worst case, the cost of finding the node containing

the lower bound QjL of the orthogonal range query is O(log n). After that we need

O(m) messages to pass the updated query to the following nodes in range using the

current Hamiltonian path to find data objects intersecting the query.

Bisadi et al. in [6] have proven that the cost of point search in DSDS is O(log n)

messages. So based on Theorem 3.5.1, the point search cost in DSDS is equal to the

point search cost in our data structure. However, different ways of space partitioning

result in different range search cost. In DSDS, the cost of range search in the worst

case is different from the average search cost. As space in DSDS is partitioned among

nodes in a rectangular slab fashion across one dimension (Figure 2.5), the worst case

query may intersect all the nodes in the network while having no data in range. It

is proven that the worst case orthogonal range search cost in DSDS with n nodes

is O(n) messages plus reporting cost. The expected orthogonal range search cost of

query Q in DSDS is Θ(log n+n
√
α) messages plus reporting cost where α is the area

∈ [0, 1) of a query square Q.

Theorem 3.5.3. In our data structure, assuming B points fit in one message, the

cost of reporting K points found in range back to the query issuer node in a d-

dimensional space with n nodes is
∑m

i=1d
Ki

B
eO(log n) ∈ O((K

B
+m) log n) where m is

the minimum number of nodes in range and n is the number of peer-to-peer network

nodes.

Proof. The size of the reporting set is K points that are stored in m different nodes

in range. If each node i in range stores Ki points, it requires to send dKi

B
e messages

to report the data. Since the diameter of FissionE network is O(log n), the total

reporting cost is
∑m

i=1d
Ki

B
eO(log n) messages.

42

To find the upper bound of
∑m

i=1d
Ki

B
e, we consider the worst case that:

∀1 ≤ i ≤ m, dKi

B
e = bKi

B
c+ 1 (3.1)

Since
∑m

i=1b
Ki

B
c ≤ K

B
, we have

∑m
i=1d

Ki

B
e ≤ K

B
+m. As

∑m
i=1d

Ki

B
e ∈ O((K

B
+m)), we

have the claimed reporting cost O((K
B

+m) log n) .

Theorem 3.5.4. The required storage space for our data structure is O(dN + n),

where d is the number of dimensions, n is the number of nodes in the network and

N is the number of objects stored in the data structure.

Proof. It was proven in [16] that the average degree of FissionE is 4. So if the network

contains n nodes, the required space for storage of routing tables on the nodes is

O(n). To store d complete copies of data in our data structure, we need dN space.

So the overall required space is O(dN + n).

DSDS is designed for data in 2-dimensional space and uses a non-redundant rain-

bow skip graph [10] to route messages among nodes. Since the non-redundant rain-

bow skip graph is a constant-degree graph and 2 complete copies of data is stored

in DSDS, the required storage space in DSDS is O(n+N). In comparison, our data

structure supports range query processing in d-dimensional space. We store d copies

of data in our data structure to be able to achieve the worst case range search cost

close to its lower bound proved in [15]. In addition, storing d copies of data in our

data structure permits supporting simultaneous failure of d−1 nodes. This compar-

ison confirms the trade-off between storage space and message cost in peer-to-peer

networks.

43

3.6 Dynamic Operations

Dynamic operations such as node failure, insertion and deletion of points and inser-

tion and deletion of node are important. Since our data structure is built on top

of the FissionE scheme, it uses the maintenance mechanisms of FissionE to handle

dynamic operations.

In FissionE [16], split large and merge small policies are used to support dynamic

joining and departure of nodes. When we delete a node from a FissionE network,

another node in the network takes the responsibility of deleted node data. When a

node fails, data replication in our data structure is used to provide complete answers

to queries. In this section, we explain the procedures of dynamic operations in our

data structure.

When node A receives a message to add node B to the network, if A has a neigh-

bour node with more data stored in it, A forwards the add node message to the

neighbour node. If there is more than one neighbour with more data, one of them

is selected randomly to forward the add node message to. This process continues

until the add node message reaches a node C which has no neighbour with more

data and the message cannot be forwarded any more. The data stored in node C

is split into two sets. One set is assigned to node B and another set remains on

node C. In this step, the Kautz string identifier of C is changed and the Kautz

string identifier of B is generated. Assume that the identifier of C is c1c2...ck.

The new identifier of C is c1c2...ckx0 and the identifier of B is c1c2...ckx1 where

0 ≤ x0, x1 ≤ 2, x1 6= x2, x1 6= ck, ck 6= x2. After generation of new identifiers, the

routing table of nodes B and C and their neighbours are updated. Algorithm 7,

adapted from [16], shows the complete process for inserting a new node.

44

Algorithm 7 Insertion of a new node to our data structure.

1: procedure InsertNewNode(NewNode B)

// node A receives a message to add node B to the network

2: while ∃C ∈ neighbors(A) & |SC | > |SA| do

3: A← C

4: end while

5: Split(SA)

// split data of node A into two sets

6: assign newidentifiers(A,B)

// assign new identifiers for nodes A and B

7: Update routingtables

// update the routing table of A, B and their neighbours

8: end procedure

The above split large procedure shows that the longer the identifier of a node is,

the smaller the amount of data stored in it. So, determining the neighbour with

more data to forward an add node message to is performed using the length of a

node’s identifier. In addition, our data structure stores d copies of the data.

If we want to delete node A from the network, node A produces a delete node

message. The delete node message is forwarded continuously to a neighbour node

with less data until two nodes B1 = b1b2...bk−1bk and B2 = b1b2...bk−1b̃k in the

network are found which have no neighbour node with less data where 0 ≤ bk, b̃k ≤

2, bk 6= b̃k, bk 6= bk−1, bk−1 6= b̃k. Nodes B1 and B2 are merged into a new node

B = b1b2...bk−1 and the neighbour list of B and related nodes are updated. We now

have one extra node (B1 or B2) to get the NodeID of the deleted node A and be

responsible for its data. Algorithm 8, adapted from [16], shows the complete process

for deleting a node from our distributed spatial data structure.

When failure of a node occurs, problems arise due to an outdated routing table

and the fact that the data set assigned to the failed node will be unavailable. To

enhance fault tolerance, most distributed data indexing schemes use replication based

45

Algorithm 8 Deletion of a node from our data structure.

1: procedure DeleteNode(Node A)

// node A generates a message in order to be deleted from network.

2: U ← A

3: flag ← 1

4: repeat

5: while ∃Q ∈ neighbors(U) & |SQ| < |SU | do

6: U ← Q

7: end while

8: get neighbour R = au1...ui (k − 2 ≤ i ≤ k − 1) of node U = u1...uk−1uk

9: get neighbour W = u1...uk−1ũkq1...qm (0 ≤ m ≤ 1) of node R

10: if m = 0 then

11: if ∃T ∈ neighbors(W) & |ST | < |SW | then

12: U ← T

13: else

14: B1 ← U

15: B2 ← W

16: flag ← 0

17: end if

18: else

19: get neighbours W ′ = u1...uk−1ũkq̃1 of R

20: if ∃T ∈ neighbors(W,W ′) & |ST | < |SW | then

21: U ← T

22: else

23: B1 ← W

24: B2 ← W ′

25: flag ← 0

26: end if

27: end if

28: until flag=0

29: B ←Merge(B1, B2)

// merge two nodes B1 and B2

30: assign newidentifiers(B)

31: Update routingtables

// update the routing table of B and its neighbours

32: end procedure

46

mechanisms. Data redundancy is part of our distributed spatial data structure as

explained in section 3.3. In d-dimensional space, our data structure stores d copies

of data on d different nodes.

If one node in the network fails, we use the involuntary departure of nodes methods

in FissionE. Each node periodically checks whether its neighbours are alive. When

the failure of node F is detected by its neighbour A, A generates a deletion message

for node F . The remaining process is similar to the node deletion procedure. After

a recovery procedure all queries can be processed completely. Since the network

retrieves the data of the failed nodes whenever failure of one or more (up to d − 1)

nodes occurs, our data structure can support simultaneous failure of d− 1 nodes.

Theorem 3.6.1. Assuming a load balanced peer-to-peer network of n nodes storing

N points, the cost of recovering network topology and data after failure of one node

in our data structure, in d-dimensional space is O(
dN

nB
log n) messages, where B is

the number of points that fit in one message.

Proof. It has been proven in [16] that when one node fails, deletion messages are

propagated less than log n hops. So, the cost of merging two nodes and maintenance

of the overlay network is O(log n). After that, each node finds which parts of its own

data were stored in the failed node, and sends this data to the replacement node. If

we assume that B points can fit in one message, the data recovery process requires

O(dN
nB

log n) messages since when one node fails, dN
n

points residing on the failed node

are lost. So, O(dN
nB

) messages are forwarded at most O(log n) hops to send back the

lost data to the replacement node. The overall cost is thus O(log n + dN
nB

log n) =

O(dN
nB

log n) messages.

In [6], a network recovery algorithm is proposed to support failure of one node.

Using DSDS network recovery algorithm and the backup copy of data stored in

47

the network, DSDS requires O(N
nB

+ log n) messages to recover a failed node. In

comparison to DSDS, our data structure requires more messages to recover failure of

one node. The reason for this cost is that DSDS stores the backup copy of data on

its neighbouring nodes but in our data structure data is distributed on d − 1 other

nodes.

3.7 Load Balancing

Load Balancing is another important issue of efficient operations in peer-to-peer net-

works. Load balancing distributes computation and storage resources across nodes

in a network. In a distributed hash table (DHT), in order to map objects to network

node, a hash function is implemented. Most DHT schemes use a ”good enough”

hash function randomizing the placement of objects and ensuring a balanced load

for each node in the network.

For FissionE, as explained in section 3.2, the Kautz hash algorithm is used to

uniformly distribute the objects among nodes. For some applications like range

searching, the randomization of data addresses cannot be used, and the objects

must be placed on nodes with a specific order.

Armada [15] presents a Probability-based lOad Balancing Mechanism (POBM) to

generate uniform Kautz strings as ObjectIDs. The main idea of POBM is to use the

probability density function (PDF) of attribute values. In this method, instead of

equally partitioning each interval of the partition tree (in Figure 2.2), the probability

distribution of attribute values is used to guarantee the number of points in each

subinterval of a node are balanced. For example, assume ρ(x) is the Probability

Density Function (PDF) of attribute values in 1-dimensional space. At node A

with f children and interval [a, b], subinterval [ai, bi] for each child satisfies equation

48

∫ bi
ai
ρ(x) =

∫ b
a ρ(x)

f
. This mechanism of load balancing has two disadvantages; first

we need to know the distribution of objects in advance. Second, if the distribution

of objects is changed due to dynamic operations, the objects are not uniformly

distributed among nodes any more.

In our data structure, the DataDistribution algorithm produces a load balanced

network only if the data is uniformly distributed in d-dimensional space. If the

distribution of data is skewed, the load across the nodes may become unbalanced.

We present a mechanism to distribute objects evenly among nodes and keep load

balancing after dynamic operations.

In the first step, we preprocess the data to set d lower bounds and d upper bounds

for every node, with each lower bound and upper bound corresponding to one di-

mension. In this preprocessing step, we ensure that Θ(N
n

) objects are placed between

Lji and Uji where Lji and Uji are the lower bound and upper bound of node i in

dimension j (0 ≤ i ≤ n − 1 and 0 ≤ j ≤ d − 1). To process queries in this scheme,

each node needs an extra nd space to store the boundaries of other nodes.

In the second step, for keeping the number of points stored in each node balanced,

we sometimes need to update the node boundaries and move some objects from one

node to another. For this reason, we periodically update the boundaries of nodes

in a random dimension. Let t be the length of an update period, N ′ an estimate of

the number of points stored in the network, and j a random dimension. This load

balancing procedure starts from the first node in the Hamiltonian path. For each

node this procedure checks whether c1
dN ′

n
≤ |Si| ≤ c2

dN ′

n
where |Si| is the number

of points stored in node i, c1 and c2 are two constant values , and c1 < c2. If this

inequality is true, the load on node i is balanced and if not, by changing the upper

bound of node i in dimension j the load on node i becomes balanced. Since d copies

49

of data are stored in our data structure, all d copies of points between the old and

the new boundaries need to be moved to new locations based on new boundaries.

The cost of these load balancing operations depend on the data distribution and the

number of updates made to insert and delete points or nodes. In the worst case, all

data points reside on one node, and these points need to be evenly distributed to

the other n− 1 nodes.

50

Chapter 4

Experimental Validation

Simulations of the our data structure were implemented using a machine with

3.10 GHz Intel(R) Core(TM) i5-2400 CPU with 8.00 GB RAM and running a C#

3.0 program on the .NET Framework 3.5. The program implementing Algorithms 4

and 6 consists of 573 lines of C# code. The code implementing the main test harness

simulation (Algorithm 9) is given in Appendices A, B and C. For this simulation,

points are distributed in a uniform random fashion in [0, 1]d. By equally partitioning

the entire interval of values in each dimension among n nodes, each node stores an

equal numbers of points dN
n

. We performed a simulation of the performance of our

data structure for n ∈ 24, 48, 96, 192, 384, 768, 1,536, 3,072, 6,144, 12,288; in each

case N =1,000n.

The reporting cost of
∑m

i=1d
Ki

B
eO(log n) messages proven in theorem 3.5.3 cannot

be avoided. In the following experiments, it is assumed that all points in range at

one node can be reported by one message. So, the number of points stored at each

node doesn’t affect the number of messages required to answer a query. For each

experiment, we average the result of c =1,000 randomly generated range queries such

that each query is issued by a random node. The test harness program executing

the data publication and searching algorithms is given in Algorithm 9.

51

The cost of answering a range query in our data structure consists of three parts:

the cost of finding the first node intersecting the query O(log n), the cost of passing

the query to every node that has intersection with the query and the cost of reporting

the data in range to the query issuer. In the following sections, we vary the network

size (number of nodes in the network n) and query range size, and measure the

following parameters:

1. Average search cost in messages K̄Q =
Σc

i=1KQi

c
, where KQi is the number of

messages to answer one query Qi.

2. Average number of nodes intersecting queries n̄Q =
Σc

i=1ni

c
, where ni is the

number nodes intersecting query Qi.

3. Message cost ratio RM =
K̄Q

n̄Q
which is the average number of required messages

per node intersecting the query.

4. Average reporting cost in messages T̄ =
Σc

i=1Ti
c

, where Ti is the reporting cost

for one query Qi.

Metrics 1, 2 and 3 were used by Li et al. [15] in reporting the simulation results for

Armada. Since the average search cost K̄Q doesn’t include the reporting cost, we

also define T̄ as explained above.

Figures 4.1 (a) and (b) show the impact of network size on average search cost

K̄Q, n̄Q and RM in 2-dimensional space. In the simulations, the query rectangle is

defined randomly as shown in Algorithm 10. In Algorithm 10, the query side length

∆ ∈ [0, 1]. Experimental results show that the average query side length of the c =

1,000 query rectangles is 0.497. The network size n varies from 24 to 12,288 nodes.

Figure 4.1 (a) shows that the average search cost K̄Q and n̄Q increasing linearly with

network size. From Figure 4.1 (b), we observe that when the network size increases,

RM is closer to one. In other words, the number of required messages to process

52

Algorithm 9 The test harness algorithm.

1: procedure TestHarness1(networkSize n, numofObjects N , numofDim d,

numofQueries c)

2: Kautznetwork K ← makeGraph(n)

// The Kautz network is made based on Kautz graph K(2, k).

3: Fill Nodes PointLists(N, d)

4: queries← GenerateRangeQueries(c, d,K)

// Each query is assigned to one of the nodes of network K to be its issuer

node.

5: for each QueryMessage Q in queries do

6: Q.Issuernode.IssueQuery(Q)

7: end for

8: end procedure

a randomly generated query is dominated by the number of messages required for

passing query Q to the nodes in range.

Algorithm 10 Two-dimensional random side query rectangle generation algorithm.

1: procedure 2dQueryRectangle(Kautz network K)

2: issuerIndex← a uniform random number in [0, K.Nodes.Count− 1]

3: Q.issuernode← K.Nodes[issuerIndex]

4: QL ← a uniform random point in [0, 1]2 as Q’s lower left corner

5: ∆x,∆y ← uniform random values ∈ [0, 1]

6: QxU ← min(1, QxL + ∆x)

7: QyU ← min(1, QyL + ∆y)

8: return Q

9: end procedure

Figures 4.2 (a) and (b) show the impact of network size on average search cost K̄Q,

n̄Q and RM in 6-dimensional space. An extended form of Algorithm 10 appropriate

for 6-dimensional space is used for generation of query rectangles. The network size n

varies from 24 to 12,288 nodes. Figures 4.2 (a) and (b) confirm that independent from

the number of dimensions, the number of required messages to process a randomly

53

(a)

(b)

Figure 4.1: Variation of network size and its impact for 2-dimensional random
queries on (a) the average search cost K̄Q and average no. of nodes intersecting a

query n̄Q, and (b) RM =
K̄Q

n̄Q
.

54

(a)

(b)

Figure 4.2: Variation of network size and its impact for 6-dimensional random
queries on (a) the average search cost K̄Q and average no. of nodes intersecting a

query n̄Q, and (b) RM =
K̄Q

n̄Q
.

55

generated query is dominated by the number of messages required for passing query

Q to the nodes in range. In addition, by comparing Figures 4.1 (a) and 4.2 (a), we

observe that when the number of dimensions d increases, for the same number of

nodes in the network and the same query generation algorithm, average search cost

K̄Q and n̄Q decrease. The rational behind this result is that in Algorithm 6, we find

the most proper dimension of a query with the minimum number of nodes in range

to process the query. When the number of dimensions increases, the probability of

having a smaller side in one of the dimensions of a query increases. Furthermore,

by comparing Figures 4.1 (b) and 4.2 (b), we observe that when the number of

dimensions increases, message cost ratio, RM , increases. Based on Theorem 3.5.2,

the difference of K̄Q and n̄Q is equal to O(log n). For a constant number of nodes

n, when the number of dimensions increases, K̄Q and n̄Q decrease and O(log n) is

constant. Since RM =
K̄Q

n̄Q
and n̄Q ≤ K̄Q, when the number of dimensions increases,

RM increases.

In Figures 4.3 (a) and (b), the cost of reporting data in range to the query issuer

node (T̄) are shown. Based on Theorem 3.5.3, the reporting cost in a network of n

nodes for a query that intersects m nodes is
∑m

i=1d
Ki

B
eO(log n) messages. Since we

assume that all the points in range at one node can be reported by one message,∑m
i=1d

Ki

B
e is equal to the number of nodes in range m. As explained before, in-

creasing the number of dimensions in our data structure results in a decrease in the

minimum number of nodes in range. So the number of required messages to report

data back to the query issuer node (T̄) decreases when the number of dimensions (d)

increases. Tables 4.1 and 4.2 compare the the experimental results of reporting cost

from Figures 4.3 (a) and (b) and the theoretical results from Theorem 3.5.3, respec-

tively, for 2 and 6-dimensional spaces. Since we have the assumption of reporting

56

(a)

(b)

Figure 4.3: Variation of network size and its impact on reporting cost T̄ of (a)
2-dimensional and (b) 6-dimensional rectangular range queries.

57

all the points in range at one node by one message, we can assume that Ki

B
= 1 and

the reporting cost is equal to mO(log n). Based on this assumption, the theoretical

results in Tables 4.1 and 4.2 are computed by n̄Q log2 n, where n̄Q is the average

number of nodes in range.

Table 4.1: Actual number of messages counted vs. the theoretical number of
messages required for reporting data back to the query issuer in 2-dimensional

space.

Network size
n

Experimental results
T̄

Theoretical results
n̄Q log2 n

24 17.14 25.92
48 42.98 60.82
96 95.9 129.69
192 214.83 279.09
384 534.03 674.55
768 1,180.8 1,451.37

1,532 2,651.23 3,195.47
3,072 6,004.05 7,085.68
6,144 13,381.08 15,595.55
12,288 28,805.9 33,173.49

Table 4.2: Actual number of messages counted vs. the theoretical number of
messages required for reporting data back to the query issuer in 6-dimensional

space.

Network size
n

Experimental results
T̄

Theoretical results
n̄Q log2 n

24 7.78 12.09
48 17.68 25.05
96 39.20 53.16
192 86.75 111.80
384 212.39 266.20
768 454.83 559.95

1,532 1,036.71 1,248.54
3,072 2,189.41 2,581.99
6,144 4,898.338 5,693.33
12,288 10,742.4 12,381.97

58

Algorithm 11 Constant volume query rectangle generation algorithm in d-
dimensional space.

1: procedure ContsantVQuery(Volume v, Number of dimensions d, Kautz

network K)

2: issuerIndex← a uniform random number in [0, K.Nodes.Count− 1]

3: Q.issuernode← K.Nodes[issuerIndex]

4: QL ← a uniform random point in [0, 1]d as Q’s lower corner.

5: v′ ← 1

6: for i← 1, d− 1 do

7: ∆i ← uniform random values ∈ [0, 1]

8: QiU ← QiL + ∆i

// QiU : query upper corner in dimension i

// QiL: query lower corner in dimension i

9: v′ ← v′ ∗∆i

10: end for

11: ∆d ← v
v′

12: QdU ← QdL + ∆d

// QdU : query upper corner in dimension d

// QdL: dimension d’s lower corner

13: if QdU > 1 then

14: Clear Q and go to line 2

15: end if

16: return Q

17: end procedure

59

Figures 4.4 (a) and (b) illustrate the impact of query volume variations on average

search cost K̄Q. The network size is 6,144 nodes and the query volume varies from

0.05d to 0.4d where in Figure 4.4 (a), d = 2 and in Figure 4.4 (b), d = 6. Test

harness Algorithm 12 shows how the volume of queries is changed and constant

volume queries (Algorithm 11) are generated. Algorithm 11 makes sure that a query

with constant volume v is generated while each query side length is between 0 and

1. From Figures 4.4 (a) and (b), it can be observed that an increase in query volume

increases the average range query cost K̄Q and the average number of nodes in range

n̄Q. In addition, when the number of dimensions d increases, K̄Q and n̄Q decrease.

The reason for this relationship is that in our range processing algorithm, the most

proper dimension of a query with the minimum number of nodes in range is chosen.

When the number of dimensions increases, the probability of having a smaller side

in one of the dimensions of a query increases. Tables 4.3 and 4.4 show the range

search cost in messages and the number of nodes in range , respectively, in 2 and

6-dimensional space. In Tables 4.3 and 4.4, it is shown that the difference of the

range search cost and the number of nodes intersecting the query is about 10. Based

on the theoretical analysis, the difference of the range search cost and the number of

nodes intersecting the query is O(log n). Since in the experiments of Tables 4.3 and

4.4 the network size is fixed to 6,144 nodes and log2 6, 144 = 12.58, the experimental

results match the theoretical results.

Algorithm 12 The test harness algorithm for generation of constant volume range
queries.

1: procedure TestHarness2(numofDim d, numofQueries c)

2: for s← 0.05, 0.4 do

3: v ← sd

4: for i← 1, c do

5: Q← ConstantVQuery(v, d)

6: end for

7: end for

8: end procedure

60

Table 4.3: The range search cost in messages vs. the number of nodes in range in
2-dimensional space.

Query volume
v

Range search cost
K̄Q

Number of nodes in range
n̄Q

0.052 61.52 51.71
0.12 181.44 171.53
0.152 336.48 326.69
0.22 504.8 495.03
0.252 696.94 687.13
0.32 895.05 885.12
0.352 1,143.71 1,134.00
0.42 1,319.128 1,309.349

Table 4.4: The range search cost in messages vs. the number of nodes in range in
6-dimensional space.

Query volume
v

Range search cost
K̄Q

Number of nodes in range
n̄Q

0.056 11.01 1.25
0.16 16.62 6.82
0.156 36.71 26.97
0.26 83.1 73.38
0.256 157.62 147.85
0.36 254.34 244.58
0.356 356.61 346.85
0.46 453.35 443.65

Figure 4.5 shows the average range query cost K̄Q in 6-dimensional space where

queries are generated by two different query generation algorithms ; i.e. constant

volume and cubic. The network size n varies from 24 to 12,288 nodes and the

volume of queries is fixed to (0.2)6 = 0.000064. It can be observed that K̄Q for

constant volume queries generated by Algorithm 11 is higher than K̄Q for cubic

queries generated by Algorithm 13. In Algorithm 11, queries are random side length

61

(a)

(b)

Figure 4.4: Variation of query volume and its impact the query cost K̄Q and n̄Q for
(a) 2-dimensional space, and (b) 6-dimensional space with n =6,144 nodes.

62

Algorithm 13 Cubic query rectangle generation algorithm in d-dimensional space.

1: procedure CubicQuery(Range Size ∆l , Number of dimensions d, Kautz

network K)

2: issuerIndex← a uniform random number in [0, K.Nodes.Count− 1]

3: Q.issuernode← K.Nodes[issuerIndex]

4: QL ← a uniform random point in [0, (1−∆l)]
d as Q’s lower corner

5: for i← 1, d do

6: QiU ← QiL + ∆l

// QiU : query upper corner in dimension i

// QiL: query lower corner in dimension i

7: end for

8: return Q

9: end procedure

but in Algorithm 13, queries are all boxes with equal side length. We have observed

in chapter 3 that query boxes with all sides of equal length are the worst case for our

data structure. Due to the rectangular slab space partitioning of our data structure,

and the processing of minimum query side length first, processing constant volume

queries with random side length is faster than processing cubic queries with equal

side length. Tables 4.5 and 4.6 show the actual number of messages counted versus

the theoretical number of messages required for constant volume queries and cubic

queries, respectively. For the theoretical results, we have computed log2 n for each

experiment as the number of nodes a query needs to pass through to find the first

node in range. In addition, we have used n̄Q in the experimental results as an

estimation of m, the number of nodes in range.

63

Figure 4.5: Variation of network size and its impact on the query cost K̄Q for
6-dimensional space.

Table 4.5: Actual number of messages counted vs. the theoretical number of
messages required for range search of constant volume queries.

Network size
n

Experimental results
K̄Q

Theoretical results
log2 n+ n̄Q

24 3.2 5.84
48 4.3 7.08
96 5.99 4.12
192 8.14 10.86
384 11.37 14.05
768 16.6 19.44

1,532 25.58 28.37
3,072 46 48.76
6,144 79.25 82
12,288 155.72 158.5

64

Table 4.6: Actual number of messages counted vs. the theoretical number of
messages required for range search of cubic queries.

Network size
n

Experimental results
K̄Q

Theoretical results
log2 n+ n̄Q

24 7.78 10.38
48 13.43 16.14
96 23.95 26.78
192 44.20 47
384 83.61 86.4
768 161.39 164.21

1,532 315.92 318.81
3,072 624.13 626.99
6,144 1,239.57 1,242.37
12,288 2,469.33 2,482.91

65

Chapter 5

Summary and Conclusion

We have designed and implemented a dynamic peer-to-peer data structure for d-

dimensional data that is capable of efficient orthogonal range search on a set of N

points. The aim of using a distributed model for orthogonal range search is to provide

increased reliability, flexibility and robustness to large scale data stores. FissionE

topology was used to coordinate message passing among nodes. In FissionE the

identifier of nodes are Kautz strings and network nodes are initiated to a Kautz

graph. All Kautz graphs have a Hamiltonian path. Our novel idea, as far as we are

aware, is to use the Hamiltonian path in the underlying Kautz graph of FissionE to

distribute the N points among the n nodes of the peer-to-peer network.

Two main components of our work are the data distribution algorithm and range

query processing. Our data distribution algorithm publishes d copies of each object

on d different nodes in a way that preserves data locality. To process a range query,

our range search algorithm efficiently forwards queries to the appropriate nodes in

range. In the IssueQuery algorithm, we first use the FissionE routing algorithm

to find the first node in range, and then this node sends the updated query to the

next node on the Hamiltonian path.

66

We have proved that the worst case orthogonal range search cost for any dis-

tribution in our data structure is O(log n + m) messages plus the reporting cost,

where n is the number of nodes in the peer-to-peer network and m is the mini-

mum number of nodes intersecting the query. In addition, we have proved that

in our data structure the cost of reporting data in range to the query issuer is∑m
i=1d

Ki

B
eO(log n) ∈ O((K

B
+ m) log n) messages, where K is the number points in

range, Ki is the number of points in range stored in node i, and B is the number of

points fitting in one message.

To the best of our knowledge, our data structure is the first distributed dynamic

spatial data structure to fully support orthogonal range search with simultaneous

failure of d− 1 nodes. In comparison with Armada, our work contains a theoretical

analysis for the cost of orthogonal range search in our data structure. In [28], it has

been shown the lower bound on the diameter of a constant-degree graph is Ω(log n).

Based on this, it has been proven in [15] that the lower bound on the message cost

of general range query schemes on constant-degree distributed hash tables (DHTs)

is Ω(log n) +m− 1 where m is the number of peers intersecting the query. We have

achieved a search cost O(log n + m) messages which is close to the lower bound on

range search cost in d-dimensional space over a constant-degree DHT. Furthermore,

we use redundancy to completely process all queries when up to d − 1 nodes fail

simultaneously.

Table 5.1 shows the costs of our fault tolerant data structure compared to the

distributed spatial data structure (DSDS) [6].

Split large and merge small policies are used to support dynamic joining and

departure of nodes. When we delete a node from our network, another node in

the network takes the responsibility of deleted node data. When a node fails, data

67

Table 5.1: Performance comparison of our data structure and DSDS.

Parameters DSDS Our data structure
Number of dimensions supported 2 d

Point search cost O(log n) O(log n)
Range search cost in the worst case O(n) O(log n+m)

Expected range search cost Θ(log n+ n
√
α) Θ(log n+m)

Storage space n+N n+ dN
Cost of recovery

after failure of a single node
O(N

nB
+ log n) O(dN

nB
log n)

replication in our data structure is used to provide complete answers to queries.

A failure recovery method was introduced for the our data structure to support

simultaneous failure of d− 1 nodes. It is proven that the cost of recovering network

topology and data after failure of one node in d-dimensional space is O(
dN

nB
log n)

messages.

We also presented an experimental simulation with up to 12,288 nodes that demon-

strates the practical application of our data structure. The test data is drawn from

a uniform random distribution. In addition, we have performed our experiments

for 2 and 6-dimensional spaces and compared our results with our theoretical anal-

ysis. We used three different query generation algorithms to evaluate performance

of our data structure; random side length query generation algorithm, constant vol-

ume query generation algorithm and equal side length or cubic query generation

algorithm. The experimental results validate the claimed theoretical bounds on the

messages required for orthogonal range search and reporting data back to the query

issuer node.

68

References

[1] Peyman Afshani, Lars Arge, and Kasper Dalgaard Larsen, Orthogonal range
reporting in three and higher dimensions, Foundations of Computer Science,
2009. FOCS’09. 50th Annual IEEE Symposium on, IEEE, 2009, pp. 149–158.

[2] Pankaj K. Agarwal, Range searching, Handbook of Discrete Computational Ge-
ometry (1997).

[3] Artur Andrzejak and Zhichen Xu, Scalable, efficient range queries for grid infor-
mation services, Peer-to-Peer Computing, 2002.(P2P 2002). Proceedings. Sec-
ond International Conference on, IEEE, 2002, pp. 33–40.

[4] James Aspnes and Gauri Shah, Skip graphs, ACM Transactions on Algorithms
(TALG) 3 (2007), no. 4, 37.

[5] Ashwin R Bharambe, Mukesh Agrawal, and Srinivasan Seshan, Mercury: sup-
porting scalable multi-attribute range queries, ACM SIGCOMM Computer Com-
munication Review 34 (2004), no. 4, 353–366.

[6] Pouya Bisadi, A distributed spatial data structure, Master’s thesis, Universsity
of New Brunswick, 2012.

[7] Pouya Bisadi and Bradford G Nickerson, Orthogonal range search using a dis-
tributed computing model., CCCG, 2011.

[8] Adina Crainiceanu, Prakash Linga, Johannes Gehrke, and Jayavel Shanmuga-
sundaram, P-tree: a p2p index for resource discovery applications, Proceedings
of the 13th international World Wide Web conference on Alternate track papers
& posters, ACM, 2004, pp. 390–391.

[9] Mark De Berg, Otfried Cheong, Marc Van Kreveld, and Mark Overmars, Com-
putational geometry, 3rd ed., Springer, 2008.

[10] Michael T Goodrich, Michael J Nelson, and Jonathan Z Sun, The rainbow skip
graph: a fault-tolerant constant-degree distributed data structure, Proceedings of
the seventeenth annual ACM-SIAM symposium on Discrete algorithm, ACM,
2006, pp. 384–393.

[11] , The rainbow skip graph: A fault-tolerant constant-degree p2p relay
structure, arXiv preprint arXiv:0905.2214 (2009).

69

[12] Abhishek Gupta, Divyakant Agrawal, and Amr El Abbadi, Approximate range
selection queries in peer-to-peer systems., CIDR, vol. 3, 2003, pp. 141–151.

[13] Nicholas JA Harvey, Michael B Jones, Stefan Saroiu, Marvin Theimer, and Alec
Wolman, Skipnet: A scalable overlay network with practical locality properties.,
USENIX Symposium on Internet Technologies and Systems, vol. 274, Seattle,
WA, USA, 2003.

[14] Joseph O’Rourke Jacob E. Goodman (ed.), Handbook of discrete computational
geometry, 2nd ed., CRC Press, 2004.

[15] Dongsheng Li, Jiannong Cao, Xicheng Lu, and Kaixian Chan, Efficient range
query processing in peer-to-peer systems, IEEE Transactions on Knowledge and
Data Engineering 21 (2009), no. 1, 78–91.

[16] Dongsheng Li, Xicheng Lu, and Jie Wu, Fissione: A scalable constant degree
and low congestion dht scheme based on kautz graphs, INFOCOM 2005. 24th
Annual Joint Conference of the IEEE Computer and Communications Societies.
Proceedings IEEE, vol. 3, IEEE, 2005, pp. 1677–1688.

[17] Eng Keong Lua, Jon Crowcroft, Marcelo Pias, Ravi Sharma, Steven Lim, et al.,
A survey and comparison of peer-to-peer overlay network schemes., IEEE Com-
munications Surveys and Tutorials 7 (2005), no. 1-4, 72–93.

[18] Jǐŕı Matoušek, Geometric range searching, ACM Computing Surveys (CSUR)
26 (1994), no. 4, 422–461.

[19] J Erickson Pankaj K. Agarwal, Geometric range searching and its relatives,
Advances in Discrete and Computational Geometry, Citeseer, 1999.

[20] Sylvia Ratnasamy, Paul Francis, Mark Handley, Richard Karp, and Scott
Shenker, A scalable content-addressable network, vol. 31, ACM, 2001.

[21] Sylvia Ratnasamy, Ion Stoica, and Scott Shenker, Routing algorithms for dhts:
Some open questions, Peer-to-peer systems, Springer, 2002, pp. 45–52.

[22] Antony Rowstron and Peter Druschel, Pastry: Scalable, decentralized object
location, and routing for large-scale peer-to-peer systems, Middleware 2001,
Springer, 2001, pp. 329–350.

[23] Cristina Schmidt and Manish Parashar, Enabling flexible queries with guarantees
in p2p systems, IEEE Internet Computing 8 (2004), no. 3, 19–26.

[24] Yanfeng Shu, Beng Chin Ooi, K-L Tan, and Aoying Zhou, Supporting multi-
dimensional range queries in peer-to-peer systems, Peer-to-Peer Computing,
2005. P2P 2005. Fifth IEEE International Conference on, IEEE, 2005, pp. 173–
180.

[25] R. Simion, Noncrossing partitions, Discrete Mathematics 217 (2000), no. 1,
367–409.

70

[26] Ion Stoica, Robert Morris, David Karger, M Frans Kaashoek, and Hari Balakr-
ishnan, Chord: A scalable peer-to-peer lookup service for internet applications,
ACM SIGCOMM Computer Communication Review 31 (2001), no. 4, 149–160.

[27] George Tsatsanifos, Dimitris Sacharidis, and Timos Sellis, Midas: multi-
attribute indexing for distributed architecture systems, Advances in Spatial and
Temporal Databases, Springer, 2011, pp. 168–185.

[28] Jun Xu, Abhishek Kumar, and Xingxing Yu, On the fundamental tradeoffs be-
tween routing table size and network diameter in peer-to-peer networks, Selected
Areas in Communications, IEEE Journal on 22 (2004), no. 1, 151–163.

[29] Kevin C Zatloukal and Nicholas JA Harvey, Family trees: an ordered dictionary
with optimal congestion, locality, degree, and search time, Proceedings of the
fifteenth annual ACM-SIAM symposium on Discrete algorithms, Society for
Industrial and Applied Mathematics, 2004, pp. 308–317.

[30] Yiming Zhang, Xicheng Lu, and Dongsheng Li, Survey of dht topology construc-
tion techniques in virtual computing environments, Science China Information
sciences 54 (2011), no. 11, 2221–2235.

[31] Ben Y Zhao, Ling Huang, Jeremy Stribling, Sean C Rhea, Anthony D Joseph,
and John D Kubiatowicz, Tapestry: A resilient global-scale overlay for service
deployment, Selected Areas in Communications, IEEE Journal on 22 (2004),
no. 1, 41–53.

71

Appendix A

Kautz Network Code

This code corresponds to the makeGraph call in line 2 of Algorithm 9 in chapter
4.

1 pub l i c L i s t<Node> Nodes { get ; s e t ; }
pub l i c L i s t<List<int>> Conect ions = new List<List<int >>() ;

3 pub l i c KautzGraph (i n t nodecount , i n t nodeid length , i n t
pointcount , i n t d)

5 {
List<int> input = new List<int >() ;

7 Nodes=new List<Node>() ;
// gene ra t e ing n nodes o f network with t h e i r s p e c i f i c

kautz s t r i n g s as t h e i r i d e n t i f i e r s
9 nodeID (input , node id length) ;

// f i n d i n g a Hamiltonian path on the generated Kautz s t r i n g
11

List<int > [] graph = new List<int >[Nodes . Count] ;
13

f o r (i n t i = 0 ; i < Nodes . Count ; i++)
15 graph [i] = new List<int >() ;

17 f o r (i n t j = 0 ; j < Nodes . Count ; j++){
f o r each (s t r i n g s in Nodes [j] . outNeighbors)

19 {
f o r (i n t k=0;k<Nodes . Count ; k++)

21 {
i f (Nodes [k] . KautzStr ing . Equals (s))

23 {
graph [j] . Add(k) ;

25 break ;
}

27 }
}

29 }
List<int> HamiltonianCycle = Algorithm (graph) ;

31 // change the order o f nodes in Nodes l i s t
L i s t<Node> t emp l i s t = new List<Node>() ;

33 f o r (i n t m = 0 ; m < Nodes . Count ;m++)
{

72

35 t emp l i s t . Add(Nodes [HamiltonianCycle [m]]) ;

37 }
Nodes = temp l i s t ;

39

f o r (i n t n = 0 ; n < Nodes . Count ; n++)
41 {

Nodes [n] . HamPath = Nodes ;
43 Nodes [n] . PathIndex = n ;

}
45 // d i s t r i b u t i o n o f po in t s among nodes based on t h e i r

order on the Hamiltonian path .

47 i f (nodecount != (3∗Math .Pow(2 , nodeid length −1)))
{

49 i n t currentNum=(i n t) (3∗Math .Pow(2 , nodeid length −1)) ;
whi l e (currentNum < nodecount)

51 {
add i t i on () ;

53 currentNum++;
}

55 }
F i l l N o d e s P o i n t L i s t s (pointcount , d) ;

57

}
59

61

pub l i c void nodeID (List<int> input , i n t k)
63 {

i f (input . Count == 0)
65 {

input . Add(0) ;
67 nodeID (input , k − 1) ;

input . Add(1) ;
69 nodeID (input , k − 1) ;

input . Add(2) ;
71 nodeID (input , k − 1) ;

}
73 e l s e i f (k == 0)

{
75 s t r i n g ks=n u l l ;

// conver t ing an array l i s t input o f i n t s to an
i n t e g e r ks .

77 f o r (i n t j = 0 ; j< input . Count ; j++)
{

79

ks = ks + input [j] . ToString () ;
81 }

// i n s e r t a new node with nodeID ks .
83 Nodes . Add(new Node ()) ;

(Nodes [Nodes . Count − 1]) . KautzStr ing = ks ;
85 // updating outne ighbours o f new i n s e r t e d node .

switch ((input [input . Count − 1])) {

73

87

case (0) :
89 (Nodes [Nodes . Count −

1]) . outNeighbors . Add(ks . Substr ing (1 ,
ks . Length − 1) + ”1”) ;

(Nodes [Nodes . Count −
1]) . outNeighbors . Add(ks . Substr ing (1 ,
ks . Length − 1) + ”2”) ;

91 break ;

93 case (1) :
(Nodes [Nodes . Count −

1]) . outNeighbors . Add(ks . Substr ing (1 ,
ks . Length − 1) + ”0”) ;

95 (Nodes [Nodes . Count −
1]) . outNeighbors . Add(ks . Substr ing (1 ,
ks . Length − 1) + ”2”) ;

break ;
97

case (2) :
99 (Nodes [Nodes . Count −

1]) . outNeighbors . Add(ks . Substr ing (1 ,
ks . Length − 1) + ”0”) ;

(Nodes [Nodes . Count −
1]) . outNeighbors . Add(ks . Substr ing (1 ,
ks . Length − 1) + ”1”) ;

101 break ;
}

103

// updating inne ighbours o f new i n s e r t e d node .
105 switch ((input [0]))

{
107

case (0) :
109 (Nodes [Nodes . Count −

1]) . inNeighbors . Add(”1”+ks . Subst r ing (0 ,
ks . Length − 1)) ;

(Nodes [Nodes . Count − 1]) . inNeighbors . Add(”2” +
ks . Substr ing (0 , ks . Length − 1)) ;

111 break ;

113 case (1) :
(Nodes [Nodes . Count − 1]) . inNeighbors . Add(”0” +

ks . Substr ing (0 , ks . Length − 1)) ;
115 (Nodes [Nodes . Count − 1]) . inNeighbors . Add(”2” +

ks . Substr ing (0 , ks . Length − 1)) ;
break ;

117

case (2) :
119 (Nodes [Nodes . Count − 1]) . inNeighbors . Add(”0” +

ks . Substr ing (0 , ks . Length − 1)) ;
(Nodes [Nodes . Count − 1]) . inNeighbors . Add(”1” +

ks . Substr ing (0 , ks . Length − 1)) ;
121 break ;

74

}
123 input . RemoveAt(input . Count − 1) ;

r e turn ;
125 }

e l s e i f (input [input . Count − 1] == 0)
127 {

input . Add(1) ;
129 nodeID (input , k − 1) ;

input . Add(2) ;
131 nodeID (input , k − 1) ;

input . RemoveAt(input . Count − 1) ;
133

135 }
e l s e i f (input [input . Count − 1] == 1)

137 {
input . Add(0) ;

139 nodeID (input , k − 1) ;
input . Add(2) ;

141 nodeID (input , k − 1) ;
input . RemoveAt(input . Count − 1) ;

143

}
145 e l s e i f (input [input . Count − 1] == 2)

{
147 input . Add(0) ;

nodeID (input , k − 1) ;
149 input . Add(1) ;

nodeID (input , k − 1) ;
151 input . RemoveAt(input . Count − 1) ;

153 }

155 }
p r i v a t e void F i l l N o d e s P o i n t L i s t s (i n t pointCount , i n t d)

157 {
f l o a t s l ob = 1 / (f l o a t) Nodes . Count ; //The s i z e o f each

node range
159 Random r = new Random(0) ;

//number o f po in t s in each node
161 i n t count = pointCount / Nodes . Count ;

f o r (i n t index = 0 ; index < Nodes . Count ; index++)
163 {

f o r (i n t i = 0 ; i < d ; i++)
165 {

// we assume that the e n t i r e i n t e r v a l f o r each
dimension i s 1 . We can change that i f we want .

167 Nodes [index] . Lower . Add((f l o a t) (index ∗ s l ob)) ;

169 }
f o r (i n t i = 0 ; i < d ; i++)

171 {
Nodes [index] . Upper . Add((index + 1) ∗ s l ob) ;

173

75

}
175

}
177

f o r (i n t j =0; j<pointCount ; j++)
179 {

List<f l o a t > temp = new List<f l o a t >() ;
181 List<int> nodeIndex = new List<int >() ;

f o r (i n t i = 0 ; i < d ; i++)
183 {

temp . Add(((f l o a t) r . Next (0 , i n t . MaxValue) /
i n t . MaxValue)) ;

185 }
f o r (i n t l =0; l<d ; l++)

187 {
i n t node= (i n t) (Math . C e i l i n g (temp [l] ∗

(Nodes . Count)))−1;
189 f o r (i n t p = 0 ; p < l ; p++)

{
191 i f (nodeIndex [p] == node)

node = (node + 1) % Nodes . Count ;
193 }

nodeIndex . Add(node) ;
195 }

197 f o r (i n t m=0;m<d ;m++)
{

199 Nodes [nodeIndex [m]] . Points . Add(temp) ;
}

201 }

203 }

205 // add i t i on o f one node to the network
p r i v a t e void add i t i on ()

207 {
Node newnode = new Node () ;

209 i n t min l =1000;
i n t min l index = 0 ;

211 // f i n d i n g the node with minimum length o f Kautz St r ing
f o r (i n t i =0; i<Nodes . Count ; i++)

213 {
i f (Nodes [i] . KautzStr ing . Length < min l)

215 {
min l = Nodes [i] . KautzStr ing . Length ;

217 min l index = i ;
}

219 }

221 // changing the kautz s t i n g o f o ld and new nodes .
switch (Nodes [min l index] . KautzStr ing [Nodes [m in l index] .

223 KautzStr ing . Length − 1])
{

225 case (’ 0 ’) :

76

{
227 char [] a l l = new char [] { ’ 0 ’ , ’ 1 ’ , ’ 2 ’ } ;

char [] o the r s = new char [] { ’ 0 ’ ,
Nodes [min l index + 1] . KautzStr ing [min l −1]
} ;

229 List<char> l i s t = new
List<char>(a l l . Except (o the r s)) ;

newnode . KautzStr ing =
Nodes [min l index] . KautzStr ing + l i s t [0] ;

231 Nodes [min l index] . KautzStr ing =
Nodes [min l index] . KautzStr ing +
Nodes [min l index + 1] . KautzStr ing [min l −
1] ;

233 break ;
}

235

case (’ 1 ’) :
237 {

char [] a l l = new char [] { ’ 0 ’ , ’ 1 ’ , ’ 2 ’ } ;
239 char [] o the r s = new char [] { ’ 1 ’ ,

Nodes [min l index + 1] . KautzStr ing [min l −
1] } ;

L i s t<char> l i s t = new
List<char>(a l l . Except (o the r s)) ;

241 newnode . KautzStr ing =
Nodes [min l index] . KautzStr ing + l i s t [0] ;

Nodes [min l index] . KautzStr ing =
Nodes [min l index] . KautzStr ing +
Nodes [min l index + 1] . KautzStr ing [min l −
1] ;

243 break ;

245 }

247 case (’ 2 ’) :
{

249 char [] a l l = new char [] { ’ 0 ’ , ’ 1 ’ , ’ 2 ’ } ;
char [] o the r s = new char [] { ’ 2 ’ ,

Nodes [min l index + 1] . KautzStr ing [min l −
1] } ;

251 List<char> l i s t = new
List<char>(a l l . Except (o the r s)) ;

newnode . KautzStr ing =
Nodes [min l index] . KautzStr ing + l i s t [0] ;

253 Nodes [min l index] . KautzStr ing =
Nodes [min l index] . KautzStr ing +
Nodes [min l index + 1] . KautzStr ing [min l −
1] ;

break ;
255 }

}
257 // updating outne igbours o f nodes .

L i s t<s t r i ng> oldnodenewoutNeighbors = new List<s t r i ng >() ;

77

259 f o r each (s t r i n g s in Nodes [min l index] . outNeighbors)
{

261

i f (s [s . Length −
1] . Equals (newnode . KautzStr ing [newnode . KautzStr ing . Length−1]))

263 newnode . outNeighbors . Add(s) ;
i f (s [s . Length −

1] . Equals (Nodes [m in l index] . KautzStr ing [Nodes [m in l index]
265 . KautzStr ing . Length−1]))

oldnodenewoutNeighbors . Add(s) ;
267 }

// updating neghbours o f outnegbours o f s p l i t e d node .
269 f o r each (s t r i n g s in Nodes [min l index] . outNeighbors)

{
271 i n t i = 0 ;

f o r (i =0; i<Nodes . Count ; i++)
273 {

i f (Nodes [i] . KautzStr ing . Equals (s))
275 break ;

}
277 Nodes [i] . inNeighbors . Remove(Nodes [min l index] . KautzStr ing .

Substr ing (0 , min l)) ;
279 i f (s [s . Length −

1] . Equals (newnode . KautzStr ing [newnode . KautzStr ing . Length−1]))
{

281 Nodes [i] . inNeighbors . Add(newnode . KautzStr ing) ;
}

283 i f (s [s . Length −
1] . Equals (Nodes [m in l index] . KautzStr ing [Nodes [m in l index] .

KautzStr ing . Length − 1]))
285 Nodes [i] . inNeighbors . Add(Nodes [min l index] . KautzStr ing) ;

}
287

// updating neghbours o f innegbours o f s p l i t e d node .
289 f o r each (s t r i n g s in Nodes [min l index] . inNeighbors)

{
291 i n t i = 0 ;

f o r (i = 0 ; i < Nodes . Count ; i++)
293 {

i f (Nodes [i] . KautzStr ing . Equals (s))
295 break ;

}
297 Nodes [i] . outNeighbors . Remove(Nodes [min l index] . KautzStr ing .

Substr ing (0 , min l)) ;
299 Nodes [i] . outNeighbors . Add(newnode . KautzStr ing) ;

Nodes [i] . outNeighbors . Add(Nodes [m in l index] . KautzStr ing) ;
301 }

303 // updating inne ighbours o f new and s p l i t e d node
Nodes [min l index] . outNeighbors = oldnodenewoutNeighbors ;

305

newnode . inNeighbors = Nodes [min l index] . inNeighbors ;
307

// d e f i n i n g updated Hamiltonian path

78

309 List<Node> newHamPath = Nodes ;
newHamPath . I n s e r t (min l index + 1 , newnode) ;

311

f o r (i n t k=0;k<Nodes . Count ; k++)
313 {

Nodes [k] . HamPath = newHamPath ;
315 Nodes [k] . PathIndex = k ;

}
317

319

321 }

323

// Find the hami l tonian path o f a graph (Input : Conect ions)
325 s t a t i c L i s t<int > [] graph , oppositeGraph ;

s t a t i c L i s t<int> HamiltonianCycle ;
327 s t a t i c bool endOfAlgorithm ;

s t a t i c i n t l e v e l , v1 , v2 ;
329 s t a t i c L i s t<int> Algorithm (Lis t<int > [] graphArgument)

{
331 graph = SaveGraph (graphArgument) ;

HamiltonianCycle = new List<int >() ;
333 endOfAlgorithm = f a l s e ;

l e v e l = 0 ;
335 RemoveMultipleEdgesAndLoops (graph) ; // 3 .1

CreateOppositeGraph (graph) ;
337 bool HamiltonianCycleCantExist = AnalyzeGraph (new

List<Edge>()) ; // 6 . 1 . a
ReverseGraph () ;

339 i f (! HamiltonianCycleCantExist)
FindHamiltonianCycle (GetNextVertex ()) ; // 5 .3

341 HamiltonianCycle . Reverse () ;
r e turn HamiltonianCycle ;

343 }
s t a t i c void ReverseGraph ()

345 {
graph = SaveGraph (oppositeGraph) ;

347 CreateOppositeGraph (graph) ;
}

349 s t a t i c void FindHamiltonianCycle (i n t a)
{

351 i f (! endOfAlgorithm)
{

353 ++l e v e l ;
i f (HamiltonianCycleFound ())

355 endOfAlgorithm = true ;
S o r t L i s t (a) ; // 5 .4

357 whi le (graph [a] . Count > 0 && ! endOfAlgorithm)
{

359 List<Edge> removedEdges = new List<Edge>() ;
i n t chosenVertex = graph [a] [0] ;

361 graph [a] . Remove(chosenVertex) ;

79

List<int > [] currentGraph = SaveGraph (graph) ;
363 #reg ion 6 .2

f o r each (i n t b in graph [a])
365 {

removedEdges . Add(new Edge (a , b)) ;
367 oppositeGraph [b] . Remove(a) ;

}
369 graph [a] . Clear () ;

#endreg ion
371 graph [a] . Add(chosenVertex) ;

v1 = a ;
373 v2 = chosenVertex ;

bool HamiltonianCycleCantExist =
AnalyzeGraph (removedEdges) ; // 6 . 1 . b

375 i f (! HamiltonianCycleCantExist)
{

377 FindHamiltonianCycle (GetNextVertex ()) ; // 5 .5
RestoreGraphs (currentGraph) ; // 6 .4

379 }
e l s e

381 {
f o r each (Edge e in removedEdges) // 6 .3

383 {
graph [e . from] . Add(e . to) ;

385 oppositeGraph [e . to] . Add(e . from) ;
}

387 RemoveEdge (new Edge (a , chosenVertex) , graph ,
oppositeGraph) ;

}
389 }

i f (! endOfAlgorithm)
391 {

−− l e v e l ;
393 i f (l e v e l == 0)

endOfAlgorithm = true ;
395 }

}
397 }

s t a t i c bool HamiltonianCycleFound ()
399 {

f o r each (Lis t<int> l i s t in graph)
401 i f (l i s t . Count != 1)

re turn f a l s e ;
403 HamiltonianCycle = GetHamiltonianCycle (graph) ;

r e turn true ;
405 }

s t a t i c L i s t<int> GetHamiltonianCycle (L i s t<int > [] graphArgument)
407 {

List<int> c y c l e = new List<int >() { 0 } ;
409 whi le (t rue)

{
411 i f (c y c l e . Count == graphArgument . Length &&

graphArgument [c y c l e . Last ()] . Contains (c y c l e [0]))
r e turn c y c l e ;

80

413 i f (c y c l e . Contains (graphArgument [c y c l e . Last ()] [0]))
r e turn new List<int >() ;

415 e l s e
c y c l e . Add(graphArgument [c y c l e . Last ()] [0]) ;

417 }
}

419 s t a t i c i n t GetNextVertex ()
{

421 List<int> cor rec tOrder = GetCorrectOrder (graph) ;
f o r each (i n t a in cor rec tOrder)

423 i f (graph [a] . Count != 1)
re turn a ;

425 re turn 0 ;
}

427 s t a t i c bool AnalyzeGraph (Lis t<Edge> removedEdges)
{

429 bool HamiltonianCycleCantExist = f a l s e ;
i n t a ;

431 do
{

433 a = removedEdges . Count ;
HamiltonianCycleCantExist =

RemoveUnnecessaryEdges (graph , oppositeGraph ,
removedEdges , f a l s e) ;

435 i f (! HamiltonianCycleCantExist)
HamiltonianCycleCantExist =

RemoveUnnecessaryEdges (oppositeGraph , graph ,
removedEdges , t rue) ;

437 }
whi le (a != removedEdges . Count &&

! HamiltonianCycleCantExist) ;
439 i f (! HamiltonianCycleCantExist)

HamiltonianCycleCantExist = GraphIsDisconnected (graph) ;
441 re turn HamiltonianCycleCantExist ;

}
443 s t a t i c bool RemoveUnnecessaryEdges (Lis t<int > [] graphArgument ,

L i s t<int > [] oppositeGraphArgument , L i s t<Edge> removedEdges ,
bool oppositeGraph)

{
445 bool HamiltonianCycleCantExist = f a l s e ;

f o r (i n t a = 0 ; a < graphArgument . Length ; ++a)
447 {

i f (graphArgument [a] . Count == 0 // 4 .1
449 | | (graphArgument [a] . Count == 1 &&

SearchForCycleAmongVerticesOfDegreeEqual1 (graphArgument ,
a)) // 4 . 2 . 1

| | (graphArgument [a] . Count > 1 &&
SearchForCycleAmongVerticesOfDegreeGreaterThan1 (a ,
graphArgument , oppositeGraphArgument))) // 4 . 2 . 2

451 re turn true ;
L i s t<Edge> edges = new List<Edge>() ;

453 #reg ion 3 .2
i f (graphArgument [a] . Count == 1 &&

oppositeGraphArgument [graphArgument [a] [0]] . Count !=

81

1)
455 {

f o r each (i n t c in
oppositeGraphArgument [graphArgument [a] [0]])

457 i f (c != a)
i f (! oppositeGraph)

459 edges . Add(new Edge (c ,
graphArgument [a] [0])) ;

e l s e
461 edges . Add(new

Edge (graphArgument [a] [0] , c)) ;
}

463 #endreg ion
#reg i on 3 .4

465 i f (graphArgument [a] . Count == 1 &&
graphArgument [graphArgument [a] [0]] . Contains (a))

{
467 i f (! oppositeGraph)

edges . Add(new Edge (graphArgument [a] [0] , a)) ;
469 e l s e

edges . Add(new Edge (a , graphArgument [a] [0])) ;
471 }

#endreg ion
473 f o r each (Edge edge in edges)

{
475 removedEdges . Add(edge) ;

i f (! oppositeGraph)
477 RemoveEdge (edge , graphArgument ,

oppositeGraphArgument) ;
e l s e

479 RemoveEdge (edge , oppositeGraphArgument ,
graphArgument) ;

}
481 }

re turn HamiltonianCycleCantExist ;
483 }

s t a t i c bool
SearchForCycleAmongVerticesOfDegreeEqual1 (Lis t<int > []
graphArgument , i n t a)

485 {
i f (! (a==v1 | | a == v2))

487 re turn f a l s e ;
L i s t<int> c y c l e = new List<int >() { a } ;

489 whi le (t rue)
i f (graphArgument [c y c l e . Last ()] . Count == 1 &&

c y c l e . Count < graphArgument . Length)
491 i f (c y c l e . Contains (graphArgument [c y c l e . Last ()] [0]))

r e turn true ;
493 e l s e

c y c l e . Add(graphArgument [c y c l e . Last ()] [0]) ;
495 e l s e

re turn f a l s e ;
497 }

82

s t a t i c bool
SearchForCycleAmongVerticesOfDegreeGreaterThan1 (i n t a ,
L i s t<int > [] graphArgument , L i s t<int > []
oppossiteGraphArgument)

499 {
i f (! L istsAreEqual (graphArgument [a] ,

oppossiteGraphArgument [a] , t rue))
501 re turn f a l s e ;

i n t b = 1 ;
503 f o r (i n t c = 0 ; c < graphArgument . Length &&

graphArgument . Length − c > graphArgument [a] . Count − b ;
++c)

{
505 i f (c == a)

cont inue ;
507 i f (ListsAreEqual (graphArgument [c] , graphArgument [a] ,

f a l s e) && ListsAreEqual (graphArgument [c] ,
oppossiteGraphArgument [c] , t rue))
++b ;

509 i f (b == graphArgument [a] . Count)
re turn true ;

511 }
re turn f a l s e ;

513 }
s t a t i c bool ListsAreEqual (L i s t<int> f i r s t L i s t , L i s t<int>

secondList , bool EqualCount)
515 {

i f (EqualCount && f i r s t L i s t . Count != secondL i s t . Count)
517 re turn f a l s e ;

f o r each (i n t a in f i r s t L i s t)
519 i f (! s e condL i s t . Contains (a))

re turn f a l s e ;
521 re turn true ;

}
523 s t a t i c void S o r t L i s t (i n t a)

{
525 List<int> cor rec tOrder = GetCorrectOrder (oppositeGraph) ;

f o r (i n t b = 1 ; b < graph [a] . Count ; ++b)
527 f o r (i n t c = 0 ; c < graph [a] . Count − 1 ; ++c)

i f (cor rec tOrder . IndexOf (graph [a] [c]) >
cor rec tOrder . IndexOf (graph [a] [c + 1]))

529 {
i n t n = graph [a] [c] ;

531 graph [a] [c] = graph [a] [c + 1] ;
graph [a] [c + 1] = n ;

533 }
}

535 s t a t i c L i s t<int> GetCorrectOrder (Li s t<int > [] graphArgument)
// 5 .1

{
537 Dict ionary<int , int> v e r t i c e s = new Dict ionary<int , int >() ;

L i s t<int> order = new List<int >() ;
539 f o r (i n t a = 0 ; a < graphArgument . Length ; ++a)

v e r t i c e s . Add(a , graphArgument [a] . Count) ;

83

541 IEnumerable<int> v = from pa i r in v e r t i c e s orderby
pa i r . Value ascending s e l e c t pa i r . Key ;

f o r each (i n t a in v)
543 order . Add(a) ;

r e turn order ;
545 }

s t a t i c void RemoveEdge (Edge e , L i s t<int > [] graphArgument ,
L i s t<int > [] oppositeGraphArgument)

547 {
graphArgument [e . from] . Remove(e . to) ;

549 oppositeGraphArgument [e . to] . Remove(e . from) ;
}

551 s t a t i c void RemoveMultipleEdgesAndLoops (Lis t<int > []
graphArgument)

{
553 f o r (i n t a = 0 ; a < graphArgument . Length ; ++a)

{
555 graphArgument [a] =

graphArgument [a] . D i s t i n c t () . ToList () ;
graphArgument [a] . Remove(a) ;

557 }
}

559 s t a t i c void CreateOppositeGraph (Lis t<int > [] graphArgument)
{

561 oppositeGraph = new List<int >[graphArgument . Length] ;
f o r (i n t a = 0 ; a < graphArgument . Length ; ++a)

563 oppositeGraph [a] = new List<int >() ;
f o r (i n t a = 0 ; a < graphArgument . Length ; ++a)

565 f o r each (i n t b in graphArgument [a])
oppositeGraph [b] . Add(a) ;

567 }
s t a t i c void RestoreGraphs (Lis t<int > [] graphArgument)

569 {
graph = new List<int >[graphArgument . Length] ;

571 f o r (i n t a = 0 ; a < graphArgument . Length ; ++a)
{

573 graph [a] = new List<int >() ;
graph [a] . AddRange(graphArgument [a]) ;

575 }
CreateOppositeGraph (graph) ;

577 }
s t a t i c L i s t<int > [] SaveGraph (Lis t<int > [] graphArgument)

579 {
List<int > [] savedGraph = new

List<int >[graphArgument . Length] ;
581 f o r (i n t a = 0 ; a < graphArgument . Length ; ++a)

{
583 savedGraph [a] = new List<int >() ;

savedGraph [a] . AddRange(graphArgument [a]) ;
585 }

re turn savedGraph ;
587 }

s t a t i c bool GraphIsDisconnected (Lis t<int > [] graphArgument)
589 {

84

Stack<int> s tack = new Stack<int >() ;
591 Color [] c o l o r s = new Color [graphArgument . Length] ;

c o l o r s [0] = Color . Gray ;
593 s tack . Push (0) ;

whi l e (s tack . Count > 0)
595 {

i n t a = stack . Pop () ;
597 f o r each (i n t b in graphArgument [a])

{
599 i f (c o l o r s [b] == Color . White)

{
601 c o l o r s [b] = Color . Gray ;

s tack . Push (b) ;
603 }

}
605 c o l o r s [a] = Color . Black ;

}
607 f o r each (Color c in c o l o r s)

i f (c != Color . Black)
609 re turn true ;

r e turn f a l s e ;
611 }

}
613 c l a s s Edge

{
615 pub l i c i n t from , to ;

pub l i c Edge (i n t f , i n t t)
617 {

from = f ;
619 to = t ;

}

85

Appendix B

Routing Messages Code

This code corresponds to the IssueQuery call in line 6 of Algorithm 9 in chapter
4.

1 pub l i c void IssueQuery (QueryMessage msg)
{

3 i n t dstIndex = (i n t) (Math . C e i l i n g (msg . Lower [msg . Dim best]
∗ (msg . I s s u e r . HamPath . Count)))−1;

i f (dstIndex == −1)
5 dstIndex = 0 ;

s t r i n g dstID = msg . I s s u e r . HamPath [dstIndex] . KautzStr ing ;
7 i n t n e t s i z e = msg . I s s u e r . HamPath . Count ;

i n t k = 1 ;
9 whi le (3 ∗ Math .Pow(2 , k − 1) <= n e t s i z e)

{
11 k++;

}
13 Boolean f i r s t o n e=f a l s e ;

s t r i n g secondID=”” ;
15 i f (dstID . Length == k)

{
17 i n t i = 0 ;

f o r (i = 0 ; i < msg . I s s u e r . HamPath . Count ; i++)
19 {

i f
(msg . I s s u e r . HamPath [i] . KautzStr ing . Equals (dstID))

21 break ;
}

23 i f (dstID . Substr ing (0 , k −
1) . Equals (msg . I s s u e r . HamPath [i +
1] . KautzStr ing . Substr ing (0 , k − 1)))

{
25 f i r s t o n e = true ;

secondID = msg . I s s u e r . HamPath [i + 1] . KautzStr ing ;
27 }

29

i f (f i r s t o n e)
31 {

f l o a t newupper = msg . Upper [msg . Dim best] ;

86

33 Fiss ionERouting (msg . I s s u e r . KautzString , dstID ,
msg , msg . Dim best) ;

// f i n d the node with ID equa l s to dstID
35 i n t j = 0 ;

f o r (j= 0 ; j < msg . I s s u e r . HamPath . Count ; j++)
37 {

i f
(msg . I s s u e r . HamPath [j] . KautzStr ing . Equals (dstID))

39 break ;
}

41

i f (newupper > msg . I s s u e r . HamPath [j +
1] . Lower [msg . Dim best])

43 {
msg . Lower [msg . Dim best] =

msg . I s s u e r . HamPath [j] . Upper [msg . Dim best] ;
45 msg . Upper [msg . Dim best] =

Math . Min(msg . I s s u e r . HamPath [j +
1] . Upper [msg . Dim best] , newupper) ;

Fiss ionERouting (msg . I s s u e r . KautzString ,
secondID , msg , msg . Dim best) ;

47 }
}

49

e l s e
51 {

f l o a t oldUpper = msg . Upper [msg . Dim best] ;
53 i n t j = 0 ;

f o r (j= 0 ; j < msg . I s s u e r . HamPath . Count ; j++)
55 {

i f
(msg . I s s u e r . HamPath [j] . KautzStr ing . Equals (dstID))

57 break ;
}

59 msg . Upper [msg . Dim best] =
msg . I s s u e r . HamPath [j] . Upper [msg . Dim best] ;

Fiss ionERouting (msg . I s s u e r . KautzString , dstID ,
msg , msg . Dim best) ;

61

msg . Lower [msg . Dim best] =
msg . I s s u e r . HamPath [j] . Upper [msg . Dim best] +
(f l o a t) 0 . 0 0 1 ;

63 msg . Upper [msg . Dim best] = oldUpper ;

65 msg . I s s u e r . IssueQuery (msg) ;

67 }
}

69 e l s e
Fiss ionERouting (msg . I s s u e r . KautzString , dstID , msg ,

msg . Dim best) ;
71

73 }

87

75

pub l i c void Fiss ionERouting (s t r i n g src , s t r i n g dst ,
QueryMessage msg , i n t Dim best)

77 {
Boolean done=f a l s e ;

79

s t r i n g SP=n u l l ;
81 s t r i n g p r e f i x=s r c ;

whi l e (! done)
83 {

i f (p r e f i x . Length==0)
85 done = true ;

e l s e
87 {

i f (dst . StartsWith (p r e f i x))
89 {

91 done = true ;
}

93 e l s e
{

95 p r e f i x=p r e f i x . Remove (0 , 1) ;
}

97 }

99 }

101 SP=p r e f i x ;
t h i s . Routing (dst , s r c . Length−SP . Length , SP , msg , Dim best) ;

103

}
105 pub l i c void Routing (s t r i n g dst , i n t PathLength , S t r ing SP ,

QueryMessage msg , i n t Dim best) {

107 i f (PathLength==0)
{

109 i f (t h i s . Lower [Dim best]<=msg . Lower [Dim best] &&
t h i s . Upper [Dim best]>=msg . Lower [Dim best])

{
111

i n t n e t s i z e = msg . I s s u e r . HamPath . Count ;
113 i n t k = 1 ;

whi l e (3 ∗ Math .Pow(2 , k − 1) <= n e t s i z e)
115 {

k++;
117 }

119 i f (t h i s . KautzStr ing . Length == k)
{

121 // check i f i t i s f i r s t node .
i f (t h i s . KautzStr ing . Subst r ing (0 , k − 1) .

123 Equals (t h i s . HamPath [t h i s . PathIndex +
1] . KautzStr ing . Substr ing (0 , k − 1)))

88

{
125

i f (t h i s . Upper [Dim best] < msg . Upper [Dim best])
127 {

129 i f (t h i s . HamPath [t h i s . PathIndex +
1] . Upper [Dim best] <
msg . Upper [Dim best]) // i n t e r s e c t

th i snode+2
131 {

133 i f (t h i s . HamPath [t h i s . PathIndex +
2] . KautzStr ing . Length == k)

{
135 f l o a t newupper =

msg . Upper [msg . Dim best] ;
msg . Lower [Dim best] =

137 t h i s . HamPath [t h i s . PathIndex +
2] . Lower [Dim best] ;

t h i s . Fiss ionERouting
139 (t h i s . KautzString ,

t h i s . HamPath [t h i s . PathIndex +
2] . KautzString , msg , Dim best) ;

141

143 i f (newupper >
msg . I s s u e r . HamPath [t h i s . PathIndex

+ 3] . Lower [msg . Dim best])
145 {

// makin a new query msg
147 msg . Lower [msg . Dim best] =

msg . I s s u e r . HamPath [t h i s . PathIndex
+ 3] . Lower [msg . Dim best] ;

149 msg . Upper [msg . Dim best] =
Math . Min(msg . I s s u e r . HamPath [t h i s . PathIndex

+ 3] . Upper [msg . Dim best]
151 , newupper) ;

153 t h i s . Fiss ionERouting (t h i s . KautzString ,
t h i s . HamPath [t h i s . PathIndex +

3] . KautzString , msg , Dim best) ;
155 }

}
157 e l s e // the l ength o f

pathindex+2 ==k−1
{

159 msg . Lower [Dim best] =
t h i s . HamPath [t h i s . PathIndex

+
2] . Lower [Dim best] ;

161 t h i s . Fiss ionERouting (t h i s .
KautzString ,

163 t h i s . HamPath [t h i s . PathIndex
+

89

2] . KautzString ,
msg ,

Dim best) ;
165 }

167 }

169 }

171 }
e l s e

173 {

175 i f (t h i s . Upper [Dim best] <
msg . Upper [Dim best])

{
177 msg . Lower [Dim best] =

t h i s . Upper [Dim best] ;

179 t h i s . Fiss ionERouting (t h i s . KautzString ,
t h i s . HamPath [t h i s . PathIndex +

1] . KautzString , msg , Dim best) ;
181 }

}
183

}
185 e l s e i f (t h i s . KautzStr ing . Length == k − 1)

{
187 i f (t h i s . PathIndex + 1 < t h i s . HamPath . Count)

// check whether t h i s the l a s t node in ham
path

189 {
i f (t h i s . HamPath [t h i s . PathIndex +

1] . KautzStr ing . Length == k)
191 {

i f (t h i s . Upper [Dim best] <
msg . Upper [Dim best])

193 {
msg . Lower [Dim best] =

t h i s . Upper [Dim best] ;
195

197 t h i s . Fiss ionERouting (t h i s . KautzString ,
t h i s . HamPath [t h i s . PathIndex +

1] . KautzString , msg , Dim best) ;
199 i f (t h i s . HamPath [t h i s . PathIndex +

1] . Upper [Dim best] <
msg . Upper [Dim best]) // check

i n t e r s e c t o n with a second node
201 {

i f (t h i s . PathIndex + 2 <
t h i s . HamPath . Count)

203 // check e x s i t i n g o f the second node
{

90

205 // makin a new query msg
msg . Lower [msg . Dim best] =

207 msg . I s s u e r . HamPath [t h i s . PathIndex] .
Upper [msg . Dim best] ;

209

msg . Upper [msg . Dim best] =
211 msg . I s s u e r . HamPath [t h i s . PathIndex

+
1] . Upper [msg . Dim best] ;

213 t h i s . Fiss ionERouting (t h i s . KautzString ,
t h i s . HamPath [t h i s . PathIndex

+ 2] . KautzString , msg ,
Dim best) ;

215 }
}

217 }
}

219 e l s e
{

221 // repor t
i f (t h i s . Upper [Dim best] <

msg . Upper [Dim best])
223 {

msg . Lower [Dim best] =
t h i s . Upper [Dim best] ;

225

t h i s . Fiss ionERouting (t h i s . KautzString ,
227 t h i s . HamPath [t h i s . PathIndex +

1] . KautzString , msg , Dim best) ;
}

229 }
}

231 }

233

}
235 }

e l s e
237 {

f o r (i n t j =0; j<t h i s . outNeighbors . Count ; j++)
239 {

St r ing X = t h i s . outNeighbors [j] .
241 Substr ing (t h i s . KautzStr ing . Length −1,

t h i s . outNeighbors [j] . Length−t h i s . KautzStr ing . Length
+1) ;

243

i f (dst . StartsWith (SP + X))
245 {

SP = SP + X;
247 f o r (i n t k = 0 ; k < t h i s . HamPath . Count ; k++)

{
249 i f (t h i s . HamPath [k] . KautzStr ing ==

t h i s . outNeighbors [j])

91

{
251

msg . HopCount++;
253 t h i s . HamPath [k] . Routing (dst ,

PathLength − 1 , SP , msg ,
Dim best) ;

break ;
255 }

}
257 break ;

}
259

}
261

}
263 }

92

Appendix C

Query Generation Code

This code corresponds to the GenerateRangeQueries call in line 4 of Algorithm
9 in chapter 4.

1 p r i v a t e Lis t<QueryMessage>
GenerateUniformRandomPointQueries (KautzGraph KG, i n t numofdim)

{
3

List<QueryMessage> r e s u l t = new List<QueryMessage>() ;
5 i n t nodeCount = KG. Nodes . Count () ;

7 f o r (i n t i = 0 ; i < nodeCount ; i++)
{

9 f o r (i n t j = 0 ; j < nodeCount ; j++)
{

11 QueryMessage Q = new QueryMessage (KG. Nodes [i]) ;
Q. I s s u e r = KG. Nodes [i] ;

13 Random rnd = new Random() ;
f o r (i n t k = 0 ; k < numofdim ; k++) {

15 f l o a t tmp = rnd . Next (1) ;
Q. Lower . Add(tmp) ;

17 Q. Upper . Add(tmp) ;
}

19 Q. ID = i ∗ nodeCount + j ;
r e s u l t . Add(Q) ;

21

23 }
}

25

re turn r e s u l t ;
27 }

29 p r i v a t e Lis t<QueryMessage>
GenerateUniformRandomRangeQueries ConstantV (KautzGraph KG,
i n t queryCount , i n t numofDim)

{
31

List<QueryMessage> r e s u l t = new List<QueryMessage>() ;
33 i n t nodeCount = KG. Nodes . Count () ;

93

35 Random R = new Random() ;
i n t k = 0 ;

37 whi le (k < queryCount)
{

39 i n t i = R. Next (0 , nodeCount) ;

41 QueryMessage Q = new QueryMessage (KG. Nodes [i]) ;
Q. I s s u e r = KG. Nodes [i] ;

43

double min = 1000 ;
45 f l o a t l e f t S i d e = 0 ;

f l o a t m u l t i p l i c a t o n = 1 ;
47 f o r (i n t d = 0 ; d < numofDim − 1 ; d++)

{
49 l e f t S i d e = (f l o a t)R. Next (0 , 1000) / 1000 ;

f l o a t s i z e = (f l o a t)R. Next (0 , 1000) / 1000 ;
51 Q. Lower . Add(l e f t S i d e) ;

Q. Upper . Add(Math . Min(l e f t S i d e + (f l o a t) s i z e , 1)) ;
53 m u l t i p l i c a t o n ∗= s i z e ;

min = Math . Min(min , Q. Upper [d] − Q. Lower [d]) ;
55 i f (min == (Q. Upper [d] − Q. Lower [d]))

Q. Dim best = d ;
57 }

l e f t S i d e = (f l o a t)R. Next (0 , 1000) / 1000 ;
59 Q. Lower . Add(l e f t S i d e) ;

f l o a t upper = ((f l o a t)Math .Pow(0 . 0 5 , numofDim)) /
m u l t i p l i c a t o n ;

61 i f (l e f t S i d e + (f l o a t) upper < 1)
{

63

Q. Upper . Add(Math . Min(l e f t S i d e + (f l o a t) upper , 1)) ;
65 min = Math . Min(min , Q. Upper [numofDim − 1] −

Q. Lower [numofDim − 1]) ;
i f (min == (Q. Upper [numofDim − 1] −

Q. Lower [numofDim − 1]))
67 Q. Dim best = numofDim − 1 ;

Q. ID = k ;
69

i n t f i r s t n o d e i n r a n g e I n d e x =
(i n t) (Math . C e i l i n g (Q. Lower [Q. Dim best] ∗
(Q. I s s u e r . HamPath . Count))) − 1 ;

71 i n t l a s tnode in range Index =
(i n t) (Math . C e i l i n g (Q. Upper [Q. Dim best] ∗
(Q. I s s u e r . HamPath . Count))) − 1 ;

Q. Nodesinrange = las tnode in range Index −
f i r s t n o d e i n r a n g e I n d e x + 1 ;

73

StreamWriter SW1 = new StreamWriter (path +
Q. ID . ToString () + ” i n f o . txt ” , f a l s e) ;

75 SW1. WriteLine (Q. ID . ToString () + ”\ t ” +
Q. Dim best . ToString () + ”\ t ” +

77 Q. Lower [0] . ToString () + ”\ t ” +
Q. Lower [1] . ToString () + ”\ t ” +

94

79 Q. Upper [0] . ToString () + ”\ t ” +
Q. Upper [1] . ToString () + ”\ t ” +

81 Q. I s s u e r . KautzStr ing) ;
SW1. Close () ;

83

r e s u l t . Add(Q) ;
85 k++;

}
87 }

89

re turn r e s u l t ;
91 }

93 p r i v a t e Lis t<QueryMessage>
GenerateUniformRandomRangeQueries (KautzGraph KG, i n t
queryCount , i n t numofDim)

{
95

List<QueryMessage> r e s u l t = new List<QueryMessage>() ;
97 i n t nodeCount = KG. Nodes . Count () ;

99 Random R = new Random() ;
i n t k = 0 ;

101 whi le (k < queryCount)
{

103 i n t i = R. Next (0 , nodeCount) ;

105 QueryMessage Q = new QueryMessage (KG. Nodes [i]) ;
Q. I s s u e r = KG. Nodes [i] ;

107

double min = 1000 ;
109 f l o a t l e f t S i d e = 0 ;

f o r (i n t d = 0 ; d < numofDim ; d++)
111 {

l e f t S i d e = (f l o a t)R. Next (0 , 600) / 1000 ;
113

// f l o a t s i z e = (f l o a t)R. Next (0 , 100) / 1000 ;
115 f l o a t s i z e =(f l o a t) 0 . 4 ;

Q. Lower . Add(l e f t S i d e) ;
117 Q. Upper . Add(Math . Min(l e f t S i d e + (f l o a t) s i z e , 1)) ;

i f ((Q. Upper [d] − Q. Lower [d]) < min)
119 {

min = Q. Upper [d] − Q. Lower [d] ;
121 Q. Dim best = d ;

}
123 }

125

Q. ID = k ;
127

i n t f i r s t n o d e i n r a n g e I n d e x =
(i n t) (Math . C e i l i n g (Q. Lower [Q. Dim best] ∗
(Q. I s s u e r . HamPath . Count))) − 1 ;

95

129 i n t l a s tnode in range Index =
(i n t) (Math . C e i l i n g (Q. Upper [Q. Dim best] ∗
(Q. I s s u e r . HamPath . Count))) − 1 ;

Q. Nodesinrange = las tnode in range Index −
f i r s t n o d e i n r a n g e I n d e x + 1 ;

131

StreamWriter SW1 = new StreamWriter (path +
Q. ID . ToString () + ” i n f o . txt ” , f a l s e) ;

133 SW1. WriteLine (Q. ID . ToString () + ”\ t ” +
Q. Dim best . ToString () + ”\ t ” +

135 Q. Lower [0] . ToString () + ”\ t ” +
Q. Lower [1] . ToString () + ”\ t ” +

137 Q. Upper [0] . ToString () + ”\ t ” +
Q. Upper [1] . ToString () + ”\ t ” +

139 Q. I s s u e r . KautzStr ing) ;
SW1. Close () ;

141

r e s u l t . Add(Q) ;
143 k++;

145 }

147

re turn r e s u l t ;
149 }

96

Vita

Candidate’s full name: Zahra Mirikharaji
University attended (with dates and degrees obtained):

• 2008-2013 Isfahan University of Technology (Isfahan, Iran) Bachelor of Science
in Electrical Engineering

• 2013-2015 University of New Brunswick (Fredericton, Canada) Master of Com-
puter Science

Publications:

• Zahra Mirikharaji and Bradford G. Nickerson, ”A Fault Tolerant Data Struc-
ture for Peer-to-Peer Range Query Processing”, 27th Canadian Conference on
Computational Geometry (CCCG 2015).

• Pouya Bisadi, Zahra Mirikharaji and Bradford G. Nickerson, ”A Fault Tolerant
Constant Degree Distributed Spatial Data Structure”, 2015, submitted to Peer-
to-Peer Networking and Applications journal paper.

Conference Presentations:

• ”Distributed Spatial Data Structures for Big Data”, Poster at UNB Research
Expo Conference 2014.

• ”Range Query Processing in Peer-to-Peer Networks”, Poster at UNB Research
Expo Conference 2015.

Other Documents:

• Zahra Mirikharaji and Bradford G. Nickerson, Distributed Spatial Data Struc-
tures, Technical Report TR14-231, Faculty of Computer Science, University of
New Brunswick, Fredericton, August 2014.

