

Supporting Visual Search and Spatial Memory in a
Mobile Application Launcher

by

Scott Bateman, Carl Gutwin, Manasi Shah and Nathaniel Brewer

Technical Report TR18-240

October 10, 2018

Faculty of Computer Science
University of New Brunswick
Fredericton, N.B. E3B 5A3

Canada

Phone: (506) 453-4566
Fax: (506) 453-3566
E-mail: fcs@unb.ca
http://www.cs.unb.ca

Copyright © 2018 Scott Bateman, Carl Gutwin, Manasi Shah and Nathaniel Brewer

Supporting Visual Search and Spatial Memory in a
Mobile Application Launcher

Scott Bateman

University of New Brunswick

Fredericton, New Brunswick

scottb@unb.ca

Carl Gutwin

University of Saskatchewan

Saskatoon, Saskatchewan

scottb@unb.ca

Manasi Shah

Nathaniel Brewer

University of New Brunswick

Fredericton, New Brunswick

mshah1@unb.ca

nathaniel.brewer@unb.ca

ABSTRACT

App launchers—the interfaces used to navigate, find and

open apps on mobile phones—were originally designed for

a small set of apps that fit on a single screen. However,

current app launchers, based on horizontally arranged

screens and folders that hide apps, make it difficult to find

apps at a glance or to remember their location. This work

presents SpaceLaunch, an app launcher that couples support

for rapid visual search with interactions and layouts that

support the development of spatial memory. In two studies,

participants worked with more than 200 apps presented with

three alternative interfaces, we show that visual search is fast

for novices, and that the transition to expertise is better

supported by SpaceLaunch’s flat hierarchy and zoom-based

interactions. SpaceLaunch provides a novel interaction for an

extremely common task, demonstrating that zoomable

interfaces on smaller mobile screens are a promising

direction for the design of fast and efficient interactions.

Author Keywords

Spatial interfaces; zooming; app launchers; mobile.

ACM Classification Keywords

H.5.m. Information interfaces and presentation (e.g., HCI).

INTRODUCTION

The number of apps people have on their mobile phone is

steadily increasing. This increase coincides with the amount

of time they spend on their devices and the amount of storage

they have for installing apps [1]. The basic model for app

launchers – the interface used for locating and starting up

applications – places apps in a grid of a fixed size (typically,

20-24 apps per screen). When the grid on a screen is full,

apps are distributed across multiple pages.

While this layout strategy worked well for the original

iPhone, when all available apps could be placed on a single

screen, a recent survey found people typically have between

60 and 100 apps installed [1]. To display 100 apps with the

current page-based layouts, the default launchers on iOS 10

or Android 8 would require at least five pages. This can make

it cumbersome and inefficient to find a particular app,

because it can be difficult to remember which page contains

an app. While folders can be used to reduce the number of

pages needed (by creating a shallow hierarchy), folders may

hide app icons (either partially or completely), making it

difficult to know what apps are in a folder.

People can opt to search if they have difficulty finding an app

using navigation. However, navigation is still preferred

because search is less efficient for several reasons: search can

be slower requiring more keystrokes, people can forget the

name of the app they are looking for, and people often prefer

navigation over search because it requires less cognitive

effort [40]. As a result, search is often a ‘method of last

resort’ for graphical representations of information [8].

At least part of the problem is that even though apps are laid

out in a spatial fashion, current app launchers can work

against spatial memory (e.g., by failing to maintain spatial

stability) and require interactions that are less efficient than

they could be (e.g., searching through folders).

In this work, we propose a new model for app launchers

(called SpaceLaunch). SpaceLaunch is based on the

principles of supporting visual search and the development

of spatial memory, in order to provide rapid access to content

and a smoother transition to expert modes of interaction

[8,9]. SpaceLaunch demonstrates a novel app launcher

design by including a flat hierarchy of apps [36], providing a

spatial overview [10], providing groupings that act as

landmarks [43], and supporting rapid visual search [8]. We

also provide a tap-to-zoom interaction that allows accurate

and rapid selections, while allowing users to rapidly build

expertise through supporting their spatial memory.

Through two studies, we demonstrate that SpaceLaunch

allows interactions that are faster than traditional app

launcher layouts (either page-based or folder-based) for

novices, and that it better supports a transition to expertise.

Despite app launchers being a daily interaction for most

people around the world, very little work has investigated

how they can be better designed. Our work contributes new

model for app launchers that allows target apps to be rapidly

located when users are novice and allow them to transition

to expertise more rapidly. Our findings provide further

evidence for the use of spatial memory as a guiding principle

in the design of interactive systems, and highlights several

new directions for further research into visual search and

spatial memory for improved interface design.

RELATED WORK

Hierarchical vs. Flat Organization of Commands

A common method for organizing content in graphical user

interfaces is to arrange items into a hierarchy – such as multi-

level menus or the hierarchical toolbars of Microsoft’s

Ribbon. This allows items to be grouped in categories (e.g.,

the standard File, Edit, and View menus), which can improve

novices’ ability to find items [36]. However, there are two

problems with hierarchical navigation.

First, once users are familiar with command locations,

hierarchies impose an additional cost on execution because

the user must still navigate through the hierarchy to get to the

command. Several prior projects have proposed flattening

command hierarchies as a way to reduce the added cost for

experts (e.g., [16,34,36]). For example, the ListMap system

[16] presented 225 fonts in a single visible grid, and showed

that selection for experts was faster than a standard listbox

presentation; similarly, the CommandMap interface [36]

flattened the command hierarchies for Microsoft Word, and

showed performance improvements over the Ribbon.

Second, hierarchies that are built by the user (such as folder

hierarchies) may not be an optimal representation of

semantics for purposes of finding and retrieval [21,24,25].

People may choose inappropriate categories (e.g., that are

semantically ambiguous, such as a “Stuff” folder), often fail

to realize that information may be needed in the future, and

do not keep hierarchies and contents up to date [21,24]. In

addition, items often have multiple semantics (e.g., should

the Facebook app be filed into “Communication” or

“Social”?) or semantics that change over time (e.g., from a

“Current Tasks” group to a content-based group). Malone’s

early study of personal organizational schemes demonstrates

how often these groupings can be misaligned: in two-thirds

of the cases, documents were not filed under the category that

the person used to describe them [24].

The problems associated with hierarchical structures (both

misclassification and navigation depth) are a fundamental

part of the study we describe below. One of our main

principles in this work is that although flattened command

structures can be intimidating for novices, they can prevent

incorrect category selection, and reduce the number of

actions required for expert users [36].

Spatial Memory as an Organizing Principle for UIs

Flattening a command hierarchy implies that all items are

presented at the same level – leading to questions about how

users will be able to find and remember specific commands.

Previous research suggests that the main mechanisms are

visual search (when users are inexperienced) and spatial

memory (after users become familiar with the items) [9,36].

If a command’s location is randomly chosen (and not based

on some underlying principle such as alphabetic ordering), a

novice will have to search the entire set for the desired

command (with performance proportional to the linear

number of items). Once the user is experienced, however,

they can memorize the item’s location, as long as the data

remains spatially stable. Once learned, retrieval of the

location is much faster than visual search – i.e., proportional

to the base-2 log of the number of items memorized [8].

Several previous systems have used spatial organizations of

information in order to flatten command hierarchies and

improve expert performance. For example, the Data

Mountain system [32] enabled fast memory-based retrieval

of more than 100 web-page thumbnails (and the memories

persisted over several months). Scarr and colleagues’

CommandMaps system was tested both in a laboratory study

and in a realistic field experiment, and showed that spatial

memory is extremely effective once users have learned the

locations of common items [34]. Similarly, the FastTap grid-

menu technique [9] was developed for tablet interfaces, and

a study of this system showed significant performance

improvements both over standard menus and the well-known

Marking Menu gesture technique [23].

Researchers have also looked at different aspects of how

spatial memory is used in UIs, including work on how spatial

transformations of the data (e.g., rotation or scaling) affects

spatial retrieval [35], the role of effort in spatial learning

[11], and the value of adding artificial landmarks in order to

provide a stronger reference frame for spatial recall [43].

There is some evidence from work in desktop environments

that suggest that spatial stability can support rapid app

access. Tak et al. redesigned the desktop task switcher to

provide a spatially stable layout that makes the most

commonly accessed applications more salient, showing that

it outperforms status quo task switching interfaces [39].

Zoom-based Interactions

When there are a large number of items in the dataset, a non-

hierarchical presentation means that individual items may be

too small for easy selection. This is particularly true on

mobile touch devices where screens are smaller and where

selection uses a finger rather than a mouse cursor. In these

situations, changing the visual scale of the display may be

necessary in order to allow visual confirmation and accurate

touch targeting. Researchers have explored several types of

zoom-based interaction to address these problems (e.g.,

[2,4,29]). The Pad system [29] and its successor Pad++ [4]

were influential early investigations into the use of zooming

as an alternative to hierarchical organization, and this work

showed that if content layout is semantic (i.e., related things

are close together), then zooming in on a group is similar to

opening a hierarchical folder.

Zoom interactions have more recently been used as a

navigation mechanism for large visual datasets such as photo

collections [2,13] or document overviews [12]. For example,

users of the PhotoMesa [2,22] and MediaFrame [13] systems

visually search through a set of photo thumbnails, and then

zoom in as a way to specialize and refine their search. In the

Space-Filling Thumbnails system [12], page thumbnails are

collected to form an overview of the entire document; users

can zoom in and out from the page view to the overview.

Zoomboard applied a tap-to-zoom interaction to enable fast

and accurate text entry on small smartwatch screens. An

initial touch zooms into an area of the keyboard while the

second tap, selects a key from the now larger subset [27]. In

addition, researchers have looked at several types of zoom,

including versions that maintain the context of the overview

(e.g., fisheye lenses [37,38] or overview+detail views [30]),

different kinds of animation between zoom levels (e.g.,

[3,41]), and zoom level that is dependent upon user actions

such as scrolling speed [19].

Studies of Mobile Usage and Improving App Launching

Recent work has investigated how people organized apps and

other functionality on their mobile phones [6,17,18]. This

work has found people most frequently launch applications

using app launchers as opposed to other means (including

using notifications or from within other apps) [17]. Upon

receiving a new mobile phone, customization of the app

displays on the homescreen is one of the first activities that

people do [18]; people arrange their icons by frequency of

access, their relatedness to other apps, and even aesthetics [6,

17]. However, the most common motivation for customizing

item placement is to make access as quick as possible [17].

Even though studies have suggested that people customize to

support rapid app access, other researchers have recognized

that organizing apps is not something that people like to do,

and that many people do not take the time to do it [26]. In

recognition of this tension, most work motivated by rapid

access has focused on the related ideas of app

recommendation [7,28], adaptive organization of apps [26],

and adaptive placement [7,15] or visual highlighting [31].

These approaches are typically based on histories of access

[28], contextual information (e.g., time of day) [5,28], and

predictive models [28,42]. Very little work has shown that

these adaptive approaches will work well in realistic usage,

and that a potential limitation for such adaptive movement of

apps is that people have a strong preference for easily

understandable placement or rankings of apps [26].

Even though research clearly supports the idea that rapid

access to apps is something that people would like, very little

research has investigated how it can be supported through an

improved mobile app launcher design.

CURRENT LAUNCHERS

Here we briefly describe current app launcher behaviour in

iOS and Android, as they respectively account for 14.7% and

85% of the global market share in smartphones (Q1, 2017)

[20]. Our description focuses on the use of general

navigation mechanisms, and does not include search

functionality and other interface widgets (e.g., weather

forecasts) that are also common in modern launchers. It

should be noted that Android devices often have custom

launchers (either installed by the phone vendors, or installed

from an app store by the user). We focus on versions of the

app launchers that are present with the original version of

Android 8 and iOS 10 (see Figure 1).

iOS App Launcher

iOS 10 displays up to twenty apps or folders in a 4x5 grid

using a flow layout approach on each page. With iOS, all

apps are placed in the launcher and can exist in only one

place. Apps and folders are sized and labeled in the same

way, occupying a specific location in the grid. When one

page's grid is full, additional apps and folders are placed in

the grid on a subsequent page (users can also manually move

folders to other pages before the grid is full). The placement

of pages is linear and stable. A small series of circles appear

near the bottom of the page, where a page is represented by

a single circle. To navigate, users can swipe (left or right) or

touch the circles at the bottom of the page, which provides

an animated transition advancing to the chosen page. A

quick-launch bar with static content places four apps at the

bottom of the page.

Folders can contain an unlimited number of apps (folders

cannot be placed inside other folders). When the user opens

an iOS folder, they see a folder page that shows the apps

inside the folder – iOS folders can contain nine apps per

folder page. Navigating to different pages within a folder can

be achieved using the same circle and swipe metaphors as on

the root-level pages. From the root level, folders display the

first page of apps in miniature (i.e., up to nine apps).

Selecting a folder from the main page switches to the folder

page (with an animated zoom transition).

Figure 1. From left: iOS homescreen, iOS folder screen,

Android home screen (enlarged to show a folder preview icon;

top, center), and an Android folder screen.

Android App Launcher

The default launcher in Android 8 uses many of the same

interactions as iOS. However, with Android, apps are not

displayed in the main launcher by default. Instead an app

drawer is provided with an alphabetical listing of apps. Apps

can be selectively placed on the launcher page from the app

drawer, where the basic iOS organization applies with a few

minor differences. In Android, apps are organized in a 4x5

grid (on the home screen) or 5x5 grid (on subsequent pages).

Items can be placed arbitrarily on the grid (i.e., not using a

flow layout), and the quick launch bar at the bottom of the

page contains 5 items (and can be dragged upwards to reveal

the app drawer). Folders at the root level only show four

items (i.e., all other items in folders are hidden). When

folders are opened, a folder page shows a 4x4 grid of apps;

if there are more than 16 apps in the folder, the behaviour of

the folders is the same as iOS (including the use of circles to

indicate and navigate pages).

Why Current App Launchers are Slow

Based on our review of the literature and description of how

leading app launchers work, we identify three main problems

that make finding apps slower and more cumbersome than

necessary. Current app launchers:

1. Hide icons in folders which slows visual search and

requires more interactions to perform search tasks;

2. Use page-based layouts which impose a deep hierarchy

with a 1D arrangement of pages, requiring an increased

number of interactions to navigate; and,

3. Increase the number of memory conflicts, because of the

segmentation of the spaces (i.e., each page location can

be occupied by multiple apps, but on different pages).

Hiding icons in folders and only showing a small subset of

apps on the folder icons slows visual search, as users can not

directly recognize a target unless it happens to be visible (see

Figure 1). This causes problems for novices, who do not

know the location of icons – to find an item, they must adopt

a multi-step hunt and search strategy:

• The user must perform a visual search to see if the

desired app is visible, and if so, select it.

• If the app is not visible, the user must reason about the

potential location of an app within a folder, and consider

whether they have missed the target during visual

search.

• If a folder is opened, the user must return to step 1,

continuing the visual search within the folder page.

Further, when apps are hidden in folders it is more difficult

to build spatial memory, because a complete overview of the

space is not available for viewing. This slows the ability to

transition to more expert and rapid memory-based access.

Second, arranging apps in groups of pages imposes a deep

hierarchy where pages must be accessed serially to navigate

to a particular location. At each step through the hierarchy, a

user may need to slow down to perform a visual search to

look for the target icon and/or to orient themselves within the

sequence of pages. This serial mode of access is slow and

requires more interactions than even a folder-based access

(where the 2D hierarchy allows direct, rather than serial,

access to groups of apps). While some launchers do allow

jumping ahead through the hierarchy (through a navigation

bar), these typically lack semantic labels or visual cues,

making recognition more difficult and error prone.

Third, the hierarchies of both pages and folders make it more

difficult for users to learn spatial locations, because each

location on the page is re-used multiple times. This means

that valuable landmarks such as “the top left corner of the

screen” become less useful, since the user must also maintain

memory about which page or folder the landmark refers to.

SPACELAUNCH: A SPATIAL APP LAUNCHER

SpaceLaunch (see Figure 2) addresses the main short-

comings of current app launchers (as described above), by

displaying a single flat, zoomable space for all apps. Our

simple approach eliminates hierarchies and better supports

rapid visual search and building spatial memory.

Figure 2. The main page of SpaceLaunch (left), and a zoomed

in view of an app group (right).

To allow rapid navigation and simple interactions within the

space, we adopt a two-stage selection process (like [27]). The

main SpaceLaunch page initially provides and overview of

the entire app space. When an area of the space is touched, a

rapid, smooth transition zooms the view to a preset level

centered around the point of the touch. Once zoomed, a

second touch on an app icon selects the app icon. Returning

to the zoomed out (overview) can be achieved through a

pinch (or spreading fingers).

Further, our design maintains the spatial metaphor and

allows exploration of the space while zoomed through

panning. This allows fine adjustments to be rapidly made if

a user misses an intended target or if they desire to view app

icons at a larger size. Additionally, SpaceLaunch supports

current conventions, by organizing apps into groups and

providing semantic labels. Importantly, these groups do not

hide any icons, and provide two main advantages. Groupings

facilitate search for novices by providing semantics labels

[33], and the groupings shapes and arrangement themselves

act as landmarks that support spatial memory [43].

The size of the icons when zoomed out were carefully

selected (based upon the size of app icons in folders on the

iPhone 6s with iOS 10) to allow people with normal or

corrected-to-normal vision to easily recognize the icons. The

goal was to ensure that visual search is possible without the

need to zoom in.

While there is much unused space in SpaceLaunch (as can be

seen in Figure 2), we originally designed SpaceLaunch to

accommodate a higher number of icons. By packing groups

more closely together our design can comfortably display

over 400 apps at the current icon size.

COMPARISON STUDIES OF SPACELAUNCH

We designed SpaceLaunch to address many of the

shortcomings that exist with current app launchers.

However, it was uncertain whether or not our design would

lead to faster, easier and more efficient app selection when

compared to status quo app launchers.

While our SpaceLaunch was informed by the design of

several previous spatial interfaces, there were three main

questions about our SpaceLaunch implementation that led us

to question whether it would outperform current app

launcher designs. First, SpaceLaunch uses small icons, and

people need to visually search these icons quickly for our

design to be effective. If the icons are too small or

uncomfortable to use this would greatly slow search times.

Second, with SpaceLaunch we will be showing over 200

icons at once (see Icon Sets, below), this substantial number

of icons might be overwhelming and unusable because visual

search and recognition of icons would be too difficult; 200

icons is towards the upper end of what has previously been

explored for spatial interfaces. Finally, current app launcher

designs that are built on app icons distributed across multiple

pages and placed in folders, are already well entrenched

interactions. It could be that the familiarity of these and

expertise people have already developed with these

interactions are too much to overcome.

Apparatus

We developed an experimental system using Unity 5.6 that

provided 3 interfaces: SpaceLaunch (which worked as

described above), a folder-based layout and a page-based

layout (both described below). In place of the home bar, we

placed a black bar that displayed the target icon that

participants would search for during each trial. The

experimental system was deployed on an LG G4 phone (5.5

inches; 2,560 x 1,440 pixels) for both studies.

Folder-based

We based our design of the folder-based layout on the way

that Android 8 currently works (as described above; see

Figure 3). In folder-based, all apps were placed in folders,

which were arranged in a 4x4 grid. Folder icons, show only

four apps. When a folder is touched all icons in the group are

shown. Icons sets were purposively designed so that no more

than 16 icons existed with the folders, to prevent the need for

the use of multiple pages within folders. Once a folder was

opened it could be closed using a pinch or spread gesture.

Page-based

The design of page-based was like the designs of Android 8

and iOS 10 (as described above; see Figure 3). App icons are

arranged in a 4x4 grid on a series of pages laid out from left

to right, and swipe motions changed pages. Page location

indicator is shown as a series of circles below the apps, the

highlighted circles indicate the current location in the extent

of all pages. Individual circles could be touched to move to

the corresponding page immediately.

Icon Sets

For study 1, we developed 3 icon sets for our experiment

using the icons from Font Awesome (fontawesome.io/). We

started by creating a set of black and white icons (to avoid

visual pop-out effects caused by color) from all icons. We

initially eliminated duplicates and icons that had little

noticeable difference. This resulted in a set of 622 icons. We

then grouped these icons into 14 groups that we judged to be

most semantically similar. We then divided the larger set into

3 separate smaller sets of 207 icons in 14 groups each group

having its own unique label, containing between 11 and 16

icons each. This meant that our 3 sets were distinct but were

balanced in terms of their contents. These set were reviewed

by the authors for consistency between groupings. Any

unused icons were placed in our practice set.

It should be noted that we focused a great deal of effort on

providing control and consistency for these icon sets;

however, as described in our related work, there is no perfect

grouping of items that would satisfy all uses cases and all

individuals. We believe the variation of item placements that

might still exist in our groups is likely a good rough

approximation of what would exist in real world settings.

Figure 3. Images from the testing system. From left to right:

the home page (in folder-based layout), an opened folder (in

folder-based layout), and a single page (in page-based layout).

STUDY 1: COMPARISON WITH FOLDERS AND PAGES

In study 1, we were initially interested in whether

SpaceLaunch could work at all and how it's performance

might compare to existing launchers. We designed study 1 to

determine if SpaceLaunch could be faster, easier and more

efficient for accessing apps.

Participants

We recruited 9 participants (4 female) from a local university

population. Average age 28.3 (sd: 12.6; min: 21; max: 61), 7

were students, 2 worked in full-time positions off-campus.

Participants averaged 5.4 years of smartphone ownership.

When asked how they organize and find app 6 participants

used icons distributed across multiple pages (i.e., no folders)

and 3 used a combination of folders and multiple pages. Only

one participant used search frequently to find apps, 4 never

use search, and 4 sometimes use search.

http://fontawesome.io/

Procedure

Participants were explained the study procedure, and asked

to complete an informed consent form and a short

demographics questionnaire (focusing on their mobile

usage). The study contained 3 interface conditions (page-

based, folder-based and SpaceLaunch), whose presentation

was fully counter-balanced with the three icon sets. Before

starting the experimental tasks with each interface, the

experimenter demonstrated each interface with the practice

icon set, asking participants to practice until they were

comfortable. Participants then started the experimental trials,

finding 13 preselected icons in 10 blocks (130 trials per

condition). The 13 stimulus icons were selected so that only

two icons were in the same group and that only two icons

would appear in the folder-based preview. The system

paused after each block, so participants could take a break.

After each interface condition a questionnaire was given

soliciting subjective judgments via a desktop computer.

After the experiment, a final questionnaire was given asking

the user to choose their most preferred interface. The

experiment required approximately one hour to complete.

Data Collection

To assess if our system would be faster, easier and more

efficient for accessing apps we collected three sets of

metrics: for speed, we collected completion time of each

trial; for efficiency, we collected the number of interactions

required; and, for ease, we collected subjective measures

including responses to the NASA TLX questionnaire, ratings

of how "easy it was to remember app locations", and a forced

selection question on the best interface for finding apps.

For each trial, our experimental system collected completion

time and the touches needed to make a correct selection. The

number of touches counts how many interactions a

participant input up to and including the correct selection.

Touches were dependent on the interface being used, but

include selecting a folder, selecting an app, closing a folder,

swiping to the next page, zooming-in, or zooming-out.

Subjective data was collected after each interface condition

and after the experiment, using a 7-point Likert-scale-type

questions. Participants also had opportunities to provide

further insight into their judgments or other feedback via

free-form text questions.

Data Analysis

Performance data were analyzed using a 3×10 RM-ANOVA,

with interface (page-based, folder-based, SpaceLaunch) and

block (1-10) as factors. Violations to sphericity used

Greenhous-Geisser corrections to the degrees of freedom.

Only significant pairwise differences are reported for post-

hoc tests and only performed for interface conditions and not

block, since we were less interested in performance

differences between individual blocks. Post-hoc tests used

Bonneferoni corrections. Subjective responses were

analyzed using Friedman’s test, and Likert-scale responses

were recoded as numeric values (0-6, 3=neutral). Post hoc

comparisons used the Wilcoxon signed-rank test. Free-form

text answers are used to illustrate general trends in the

findings. Before analysis, outlier trials were removed that

were > 2 sd. away from the mean for completion time or

touches, this resulted in the removal of 148 trials (4.2%).

Results of Study 1

Completion Time: There was a main effect of interface on

completion time over all blocks (F2,16=42.77, p<.001; see

Figure 4). Pairwise comparisons showed that SpaceLaunch

(mean=4.6s., σ=2.54) was significantly faster than both

page-based (mean=8.00s., σ=3.49; p<.001) and folder-based

(mean=5.58s., σ=3.92; p<.05) layouts, and folder-based was

faster than page-based (p<.001). There was also a significant

effect of block on completion time (F9,72=59.20, p<.001).

The interaction effect between interface and block was not

significant (F18,144=1.53, p>.05).

Figure 4. Mean completion time (±SE) by block in Study 1.

Touches: There was a main effect of interface on touches

(F2,16=51.15, p<.001; see Figure 5). Pairwise comparisons

show that participants required significantly fewer touches to

find target apps with SpaceLaunch (mean=2.20, σ=.14) than

for folder-based (mean=9.85, σ=1.91; p<.005) and page-

based (mean=13.17, σ=2.60; p<.001). Folder-based require

significantly fewer touches than page-based (p<.001). There

was also a significant effect of block on touches (F9,72=59.20,

p<.001). The small number of touches required to find apps

with SpaceLaunch led to a significant interaction effect

between block and interface on touches (F18,144=4.64,

p<.001).

Figure 5. Mean touches(±SE) per selection by block in Study 1.

Subjective Data: When asked which of three systems was

best for finding apps, participants overwhelmingly chose

SpaceLaunch (8 chose SpaceLaunch, 1 chose folder-based,

0 chose page-based). When asked about their reasoning,

participants made comments along the lines of "… it was

easier (sic) as you can see all the app[s]… [P9]". However,

at least two participants commented that they preferred the

folder-based approach because of its familiarity: "Well, I felt

most comfortable with the folders because I'm very familiar

with them. However, the spatial felt like it had the most

potential [P4]".

There was significant difference between conditions for task

loading, based on the NASA TLX (χ2(2)=9.56, p<.01; see

Figure 6, left). Pairwise comparisons showed that

SpaceLaunch had a significantly lower task loading than

page-based (z=-2.67, p<.001), but there were no other

differences. There was a significant difference between

interfaces for 'ease of remembering app locations'

(χ2(2)=8.27, p<.05; see Figure 6, right). Participants found it

significantly easier to remember app locations with

SpaceLaunch then page-based (z=-2.37, p<.05), but there

were no other differences.

Figure 6. NASA TLX (left; lower is better), and ease to

remember app locations (right; higher is better); from study 1.

Discussion of Study 1 Results

The results of study 1 are strongly in favor of SpaceLaunch.

SpaceLaunch was fastest overall and most efficient.

Participants also seemed to find SpaceLaunch the easiest and

best interface for finding apps. The analysis provides

convincing evidence that SpaceLaunch functioned as

designed, and that the previously identified potential issues

(small icon size, large number of icons, and expertise with

alternatives) were not important factors.

It can be see that from Figure 4 and Figure 5 that participants

made use of visual search effectively with SpaceLaunch.

When users start out as novices, visually searching all app

icons seems to be faster than searching smaller groupings of

apps (which is required in folder-based and page-based), due

to the additional interactions required. Although the app

icons are relatively small in SpaceLaunch, they were still

large enough for participants to successfully use them in

visual search. If people needed to zoom, pan and inspect

icons at larger sizes, the number of touch interactions would

have been higher. However, the number of touch interactions

(Figure 5) participants required was close to the minimum

number of touches (a minimum of two touches are required

to make a selection), right from block 1.

Visual inspection of Figure 4 seems to show a plateau for

completion time around block 4 for completion time. This

occurred when spatial memory comes into play and

participants could rapidly recall the location of apps with a

reduced need to perform slower visual search. This is

evidenced by the performance floors in completion time

shown in Figure 4, and further illustrated by the rapid

decrease in the number of touches required by folder-based

(see Figure 5). By block 5 folder-based achieves a similar

plateau, indicating that participants were able to recall the

location of apps within folders, even when the apps were

hidden. However, the fact that SpaceLaunch could reach its

performance floor earlier suggests that the spatial layout of

SpaceLaunch supports a faster transition to expert behaviour.

STUDY 2: DIFFICULT LEARNING CONDITIONS

Our observations and conversations with participants in

study 1, indicated that SpaceLaunch was clearly the fastest

and most preferred method. However, the task in study 1 was

a relatively simple learning task. Participants were aware that

they were learning the location of a closed set of icons.

While SpaceLaunch outperformed folder-based and page-

based layouts, we were interested in better understanding

spatial learning and visual search performance in a more

challenging task that better approximated real-world

challenges. In real-world scenarios, people do not constantly

rehearse access of a small set of apps; apps can be accessed

infrequently, their interactions are separated by time and

people's attention is divided among other tasks. These real-

world conditions would cause issues including memory

interference and memory decay (forgetting) might be

particularly problematic for SpaceLaunch since it leverages

spatial memory to facilitate the transition to expert, memory-

based app selection.

To better approximate the difficulties for building memory

in real world scenarios, we designed a second study, with

only two interface conditions (SpaceLaunch and folder-

based) that randomly presented distractors between stimuli.

We opted to exclude page-based in Study 2, since it was the

worst performing and the least preferred in study 1, and it

would allow us to focus our study design on longer, more

difficult tasks with the two leading interfaces.

Procedure

Study 2 used a similar procedure to study 1, but added in (0,

1 or 2) random distractor app icons between each of 10

stimuli (weighted such that the expected number of

distractors was 5 per block), meaning on average participants

saw 15 icons per block. We reduced the number of target

icons to 10 per block to keep the total experiment time to one

hour (determined through piloting).

By varying the number of distractors, we tried to ensure that

participants were at least initially unsure which stimuli

would be repeated and when they would be presented.

Participants were not informed that there would be any

repeated icons. Although, this is a small manipulation to our

study 1 design, we found that it was extremely effective at

increasing the difficulty of learning app locations (which we

discuss more fully below).

Participants

We recruited 16 participants (4 female) from a local

university population. Average age 23.3 (sd:4.0; min: 19;

max: 37), 15 were graduate or undergraduate students (from

a variety of disciplines), 1 worked in a full-time position off-

campus. Participants averaged 6.0 years of smartphone

ownership. When asked how they organize and access their

apps, 8 participants use pages only, and 8 use a combination

of folders and pages. Only two participant used search

frequently to find apps, 7 never use search, and 7 sometimes

use search.

Apparatus, Data Collection and Analysis

We collected the same data and followed the same analysis

steps as in study 1, using a 2×10 RM-ANOVA, with interface

(folder-based and SpaceLaunch) and block (1-10) as factors.

However, we additionally split our analysis by whether a

target app was rehearsed (an app icon that was part of the

test set an was a repeated target 10 blocks) or non-rehearsed

(was one of the distractor icons, selected at random from the

icons outside of the test set). This allows us to better

understand how learning progresses during realistic

challenges to building memory. Before analysis, outlier trials

that were > 2 sd. away from the mean for either completion

time or touches were removed (227 trials = 4.3%).

Icon Set

Since there were only two interface conditions in study 2, we

need only two unique icon sets for our experiment. However,

we also increased the size of each of the two sets by creating

an additional icon group of 11 app icons (15 groups in study

2, instead of 14 groups in study 1). We did this to increase

the total number of distractors available and to increase the

difficulty of searching and in building memory.

Study 2: Results

We present our performance results for study 2, split by

whether the target was a rehearsed target (a stimulus,

rehearsed each block) or a non-rehearsed target (a distractor,

randomly presented). In this case, rehearsed targets is similar

to the analysis done in study 1, while our design of study 2

allows us to additionally look at the non-rehearsed distractor

targets.

Completion Time (Rehearsed Targets): There was a main

effect of interface on completion time over all blocks

(F1,15=4.95, p<.05) for rehearsed targets (see Figure 7).

SpaceLaunch (mean=5.5s., σ=3.74) was significantly faster

than folder-based (mean=6.9s., σ=4.66). There was also a

significant effect of block on completion time (F2.95,44.25=

138.91, p<.001). The interaction effect between interface

and block was not significant (F2.94,44.13= 2.54, p>.05).

Touches (Rehearsed Targets): There was a main effect of

interface on touches for rehearsed targets (F1,15=25.79,

p<.001; see Figure 8), SpaceLaunch (mean= 2.23, σ= 0.23)

required fewer touches to find target apps than folder-based

(mean= 4.63, σ=3.02). There was also a significant effect of

block on touches (F2.95,44.25= 39.73, p<.001). Again, the

small number of touches to find apps with SpaceLaunch over

all blocks led to a significant interaction effect between block

and interface on touches (F3.01,45.15=33.91, p<.001).

Figure 7. Rehearsed targets: mean completion time (±SE) by

block in Study 2.

Figure 8. Rehearsed targets: mean touches (±SE) before a

selection by block in Study 2.

Completion Time (Non-Rehearsed Targets): There was a

main effect of interface on completion time over all blocks

(F1,10=13.4, p<.005; see Figure 9) for non-rehearsed targets.

SpaceLaunch (mean=10.1s., σ=4.61) was significantly faster

than folder-based (mean= 11.8s., σ=4.93). There was also a

significant effect of block on completion time

(F4.26,42.57=2.90, p<.05). The interaction effect between

interface and block was not significant (F9,90= 0.62, p>.05).

While the general trend is downward for completion time (as

shown in Figure 9), this must be interpreted in light of the

fact that distractors can be presented as a target more than

once (based on random chance). In practice, this means that

by block 10, there was roughly a 15% chance that a distractor

had previously been presented as a distractor earlier in the

study. While this means that some 'rehearsal' was possible,

with our non-rehearsal targets we believe this has a much

smaller effect than building up expertise with the interfaces

through repeated interactions, and incidental learning (see

the discussion below).

Figure 9. Non-rehearsed targets: mean completion time (±SE)

by block in Study 2.

Touches (Non-Rehearsed Targets): There was a main effect

of interface on touches for non-rehearsed targets

(F1,10=152.9, p<.001; see Figure 10), SpaceLaunch

(mean=2.28, σ=.34) required fewer touches to find target

apps than folder-based (mean=7.69, σ=3.59). There was no

main effect of block on touches (F4.78,32.53=2.26, p>.05). The

small number of touches required to find apps with

SpaceLaunch led to a significant interaction effect between

block and interface (F9,90=11.02, p<.05).

Figure 10. Non-rehearsed targets: mean touches (±SE) by

block in Study 2.

Subjective Data: While SpaceLaunch continued to

outperform folder-based in terms of our collected metrics,

interestingly the subjective reports were more split. When

asked which of three systems was best for finding apps,

participants were split (9 chose SpaceLaunch, 7 chose folder-

based). Like in study 1, participants who chose SpaceLaunch

felt that the ability to visually search was a big plus: "I can

do a [visual] sweep of all the icons without having to 'open'

folders [P7]". Some participants simply felt remember

locations of apps was easy and that "… it seemed to come

more naturally. [P5]" However, participants who chose

folder-based would often identify issues that did not come up

in study 1: "Spatial-based screen too busy (sic), too much

stuff… [P16]," and some did feel that the "… icons [were]

too small in spatial [P15]."

Participant ratings of NASA TLX (z=-.958, p>.05) and "ease

of remembering app location" (z=-1.54, p>.05) did not show

significant differences (see Figure 11).

Figure 11. NASA TLX (left; lower is better), and ease to

remember app locations (right; higher is better); from study 2.

Discussion of Study 2 Results

The simple addition of randomly inserted distractors (non-

rehearsed) between repeated icons (rehearsed) resulted in a

much more challenging task. Overall, SpaceLaunch was still

the fastest and most efficient approach. This was true both

when targets were rehearsed (Figure 4 and Figure 5) or when

the targets were non-rehearsed (Figure 7). We discuss these

two situations in turn below.

SpaceLaunch: Faster & More Efficient for Rehearsed Targets

Due to the increased difficulty of the experimental task,

completion times show a more gradual learning curve for

rehearsed targets. Figure 7 shows that the flattening of the

learning curve that is reached by SpaceLaunch around block

8 is only reached for folder-based by block 10. The results

for touches (see Figure 8) clearly show that participants were

learning locations throughout the experiment, only

approaching the minimum number of touch interactions by

block 10 (two touches are required for folder-based

selections). These results provide further evidence that

SpaceLaunch better supports a quicker transition to expert

memory-based retrieval, and that this transition can occur

even under more challenging task conditions.

SpaceLaunch: Faster & More Efficient for Non-Rehearsed

SpaceLaunch is faster for non-rehearsed targets (see Figure

9), and is more efficient, with the number of touch

interactions (see Figure 10) remaining consistently low. This

means that even when participants were thrown back into a

beginner mode of access, based primarily on visual search,

SpaceLaunch was still fast and efficient. With folders,

unrehearsed targets required much more searching through

folders to find unknown targets, which explains the erratic

curve for touches and higher variances throughout.

Why didn't people find SpaceLaunch easiest?

Interestingly, even though participant performance was

clearly better using SpaceLaunch, participants seemed less

aware of this advantage than in study 1. Opinions were split

with regards to the ease of the approach. We often observed

participants in study 2 stopping to ponder which approach

was best at the end of the study. The reasons for the

uncertainty towards SpaceLaunch are not entirely clear.

Participant reactions after completing a series of rehearsed

targets and then a new non-rehearsed target suggested that

switching between expert and beginner mode seemed to be a

source of stress. Several participants seemed to be more

comfortable with being active, and preferred to perform

brute-force folder search over visual search (where they sat

idle looking for the icon). These experiences may have create

a paradoxical situation. With folders, participants always

needed to be interacting with the system (whether a target’s

location was known or unknown). However, with

SpaceLaunch the behaviour is very different for known

targets (where a user interacts with the system) and for

unknown targets (where a user must perform visual search).

More study is needed to investigate this idea more fully.

Fatigue may have also played a role in study 2, where the

length of the study and the higher number of repeated visual

search tasks may have fatigued users. The smaller icons sizes

of SpaceLaunch were not an issue for the shorter, easier tasks

in study 1. However, they may have been too small for

extended use. While fatigue did not show a detriment in

performance for SpaceLaunch, at least two participants did

indicate that they felt the app icons were too small. We leave

a fuller investigation of icon size and fatigue to future work.

OVERALL DISCUSSION

Our studies show that SpaceLaunch, with its zoomable

interface and flat hierarchy, supports rapid visual search and

a transition to expert memory-based app retrieval. In this

discussion, we explore some remaining questions of

generalization and research directions raised by the study.

Would people use SpaceLaunch?

To date there has been very little work exploring how app

launching, an extremely common task, can be improved. We

have articulated specific limitations with current app

launchers, and shown how a novel design can provide

substantial improvements in efficiency. However, there are

also several existing app launchers that would allow an

approximation of SpaceLaunch. For example, one could

manually arrange up to 180 apps on the iOS homescreen by

using the existing folder mechanism. The Apex Launcher for

Android [44] allows the number of apps to be increased on

the home screen by decreasing icon size. The Lens Launcher

for Android [45] displays all apps on a single page in

miniature, allowing zooming through a fish-eye lens

interaction. These examples provide further evidence that

there is interest in new app launcher designs. The fact that

many people download custom app launchers and customize

their mobile interfaces suggests that there is interest in

improving the user experience, even with transient

interactions such as app launching.

Would SpaceLaunch make a difference in real use?

While our experimental tasks are not highly realistic, we

believe our second study approximates some of the

difficulties that would be experienced under real world

conditions. In actual usage, apps are accessed less frequently,

and some degree of memory decay and memory interference

would occur (which study 2’s distractor targets also

induced). Our future plans for SpaceLaunch include

rebuilding it as a custom Android app launcher that we can

deploy on the app store and collect data from use in the wild.

There are further questions that need to be explored in

considering how our results generalize to real-world use. In

particular, people make their own folders of apps, which

would certainly play a role in anchoring app location in

memory. Comparing user-created organizations with both

pre-determined groups and a spatial interface like

SpaceLaunch would be an interesting direction for future

work. It is worth noting, however, that user control over app

grouping is unlikely to solve the problem of poor

organization: people are not particularly good at creating

organizations for their apps, nor do they show much interest

in doing it [24]. While our design of SpaceLaunch did

incorporate labeled groups, this was largely to provide useful

landmarks for navigation and to demonstrate that the design

can accommodate a familiar organization scheme. Because

spatial memory allows direct recall of item locations, it is

likely that SpaceLaunch would work equally as well without

any type of semantic grouping, and artificial landmarks [43]

could be used to provide anchors for spatial memory.

For mobile phone owners who have relatively few apps,

SpaceLaunch may provide little additional benefit. However,

as discussed above, many users already have between 60 and

100 apps, and many have more [1]. As mobile storage

continues to grow, people will have little reason to delete

their apps. Mobile apps are an example of a growing

information space, and SpaceLaunch shows another novel

application of spatial interfaces that addresses a growing

interaction need. It is also likely that SpaceLaunch could

have other applications, for example, as a file browser or a

way to manage browser windows or bookmarks.

Further Research on Spatial Interfaces

Past work has shown that for spatial memory to work, item

locations need to be stable [8]. While this can be partially

handled by affixing apps to a grid and not allowing them to

move (unless initiated by a user), adding new apps and

deleting old ones is relatively common. There is little work

on how to maintain spatial memory as information spaces

evolve, grow, and shrink, other than a few early studies [35].

This is a challenge for all spatial interfaces, and will be

particularly important for SpaceLaunch.

Further, most research into spatial interfaces has focused on

the use of visual search as the sole means of locating items.

Current app launchers typically return search results as a

simple ordered list, which does not support the acquisition of

expert access behaviour (i.e., the app’s location). We believe

a solution like “search driven navigation” [14], where a

search result highlights the path to the target app would assist

users in learning app locations. We plan to incorporate such

an idea into future versions of SpaceLaunch.

CONCLUSION

We present SpaceLaunch, a novel app launcher that supports

the rapid finding of apps through visual search and the

development of spatial memory. Through two studies, we

demonstrate that SpaceLaunch is faster than traditional app

launcher layouts (either page-based or folder-based) for

novices, and that it better supports a transition to expertise.

Further, our studies show that SpaceLaunch works in

challenging tasks where building spatial memory can be

more difficult. Our findings provide further evidence for the

use of spatial memory as a guiding principle in the design of

interactive systems, demonstrate that zoomable interfaces on

smaller mobile screens are a promising direction for the

design of fast and efficient interactions, and highlights

several new areas for further research into visual search and

spatial memory for improved interface design.

ACKNOWLEDGMENTS

Withheld for review.

REFERENCES

1. App Annie. Spotlight on Consumer App Usage: Part 1.

Online report. Accessed on: July 14, 2017.Accessed at:

http://files.appannie.com.s3.amazonaws.com/reports/17

05_Report_Consumer_App_Usage_EN.pdf

2. Benjamin B. Bederson. 2001. PhotoMesa: a zoomable

image browser using quantum treemaps and

bubblemaps. In Proceedings of the 14th annual ACM

symposium on User interface software and technology

(UIST '01). ACM, New York, NY, USA, 71-80.

http://dx.doi.org/10.1145/502348.502359

3. Benjamin B. Bederson and Angela Boltman. 1999.

Does Animation Help Users Build Mental Maps of

Spatial Information?. In Proceedings of the 1999 IEEE

Symposium on Information Visualization (INFOVIS

'99). IEEE Computer Society, Washington, DC, USA,

28-.

4. Benjamin B. Bederson and James D. Hollan. 1999.

Pad++: a zooming graphical interface for exploring

alternate interface physics. In Readings in information

visualization, Stuart K. Card, Jock D. Mackinlay, and

Ben Shneiderman (Eds.). Morgan Kaufmann

Publishers Inc., San Francisco, CA, USA 530-543.

5. Matthias Böhmer and Gernot Bauer. 2010. Exploiting

the icon arrangement on mobile devices as information

source for context-awareness. In Proceedings of the

12th international conference on Human computer

interaction with mobile devices and services

(MobileHCI '10). ACM, New York, NY, USA, 195-

198. DOI: https://doi.org/10.1145/1851600.1851633

6. Matthias Böhmer and Antonio Krüger. 2013. A study

on icon arrangement by smartphone users. In

Proceedings of the SIGCHI Conference on Human

Factors in Computing Systems (CHI '13). ACM, New

York, NY, USA, 2137-2146. DOI:

https://doi.org/10.1145/2470654.2481294

7. Matthias Böhmer and Antonio Krüger. 2014. A Case

Study of Research through the App Store: Leveraging

the System UI as a Playing Field for Improving the

Design of Smartphone Launchers. Int. J. Mob. Hum.

Comput. Interact. 6, 2 (April 2014), 32-45.

http://dx.doi.org/10.4018/ijmhci.2014040103

8. Cockburn, A., Gutwin, C., Scarr, J., & Malacria, S.

(2015). Supporting novice to expert transitions in user

interfaces. ACM Computing Surveys (CSUR), 47(2),

31.

9. Gutwin, C., Cockburn, A., Scarr, J., Malacria, S., &

Olson, S. C. (2014, April). Faster command selection

on tablets with FastTap. In Proceedings of the SIGCHI

Conference on Human Factors in Computing Systems

(pp. 2617-2626). ACM.

10. Andy Cockburn , Amy Karlson , Benjamin B.

Bederson, A review of overview+detail, zooming, and

focus+context interfaces, ACM Computing Surveys

(CSUR), v.41 n.1, p.1-31, December 2008.

11. Cockburn, A., Kristensson, P. O., Alexander, J., &

Zhai, S. (2007, April). Hard lessons: effort-inducing

interfaces benefit spatial learning. In Proceedings of

the SIGCHI Conference on Human Factors in

Computing Systems (pp. 1571-1580). ACM.

12. Cockburn, Andy, Carl Gutwin, and Jason Alexander.

"Faster document navigation with space-filling

thumbnails." Proceedings of the SIGCHI conference on

Human Factors in computing systems. ACM, 2006.

13. Drucker, S. M., Wong, C., Roseway, A., Glenner, S., &

De Mar, S. (2004, May). MediaBrowser: reclaiming

the shoebox. In Proceedings of the working conference

on Advanced visual interfaces (pp. 433-436). ACM.

14. Stephen Fitchett, Andy Cockburn, and Carl Gutwin.

2013. Improving navigation-based file retrieval. In

Proceedings of the SIGCHI Conference on Human

Factors in Computing Systems (CHI '13). ACM, New

York, NY, USA, 2329-2338.

https://doi.org/10.1145/2470654.2481323

15. Yusuke Fukazawa, Mirai Hara, Masashi Onogi, and

Hidetoshi Ueno. 2009. Automatic mobile menu

customization based on user operation history. In

Proceedings of the 11th International Conference on

Human-Computer Interaction with Mobile Devices and

Services (MobileHCI '09). ACM, New York, NY,

USA, , Article 50 , 4 pages.

http://dx.doi.org/10.1145/1613858.1613921

16. Gutwin, C., & Cockburn, A. (2006, May). Improving

list revisitation with ListMaps. In Proceedings of the

working conference on Advanced visual interfaces (pp.

396-403). ACM.

17. Alina Hang, Alexander De Luca, Jonas Hartmann, and

Heinrich Hussmann. 2013. Oh app, where art thou?: on

app launching habits of smartphone users. In

Proceedings of the 15th international conference on

Human-computer interaction with mobile devices and

services (MobileHCI '13). ACM, New York, NY,

USA, 392-395. DOI:

http://dx.doi.org/10.1145/2493190.2493219

18. Jonna Häkkilä and Craig Chatfield. 2006. Personal

customisation of mobile phones: a case study. In

Proceedings of the 4th Nordic conference on Human-

computer interaction: changing roles (NordiCHI '06),

Anders Mørch, Konrad Morgan, Tone Bratteteig,

Gautam Ghosh, and Dag Svanaes (Eds.). ACM, New

York, NY, USA, 409-412.

http://dx.doi.org/10.1145/1182475.1182524

19. Igarashi, Takeo, and Ken Hinckley. "Speed-dependent

automatic zooming for browsing large documents."

Proceedings of the 13th annual ACM symposium on

User interface software and technology. ACM, 2000.

20. International Data Corporation. Smartphone OS

Market Share, 2017 Q1.

https://www.idc.com/promo/smartphone-market-

http://files.appannie.com.s3.amazonaws.com/reports/1705_Report_Consumer_App_Usage_EN.pdf
http://files.appannie.com.s3.amazonaws.com/reports/1705_Report_Consumer_App_Usage_EN.pdf
https://doi.org/10.1145/1851600.1851633
https://doi.org/10.1145/2470654.2481294
http://dx.doi.org/10.4018/ijmhci.2014040103
https://doi.org/10.1145/2470654.2481323
http://dx.doi.org/10.1145/1613858.1613921
http://dx.doi.org/10.1145/2493190.2493219
http://dx.doi.org/10.1145/1182475.1182524

share/os. Accessed: 2017-09-10. Archived at

http://www.webcitation.org/6tNOwBzMs

21. Jones, W., Phuwanartnurak, A. J., Gill, R., and Bruce,

H. Don’t take my folders away!: organizing personal

information to get ghings done. In Ext. abstracts CHI

’05, ACM (2005), 1505–1508.

22. Amir Khella and Benjamin B. Bederson. 2004. Pocket

PhotoMesa: a Zoomable image browser for PDAs. In

Proceedings of the 3rd international conference on

Mobile and ubiquitous multimedia (MUM '04). ACM,

New York, NY, USA, 19-24.

http://dx.doi.org/10.1145/1052380.1052384

23. Gordon Kurtenbach and William Buxton. 1993. The

limits of expert performance using hierarchic marking

menus. In Proceedings of the INTERACT '93 and CHI

'93 Conference on Human Factors in Computing

Systems (CHI '93). ACM, New York, NY, USA, 482-

487. http://dx.doi.org/10.1145/169059.169426

24. Thomas W. Malone. 1983. How do people organize

their desks?: Implications for the design of office

information systems. ACM Trans. Inf. Syst. 1, 1

(January 1983), 99-112.

http://dx.doi.org/10.1145/357423.357430

25. Nardi, B., Anderson, K., and Erickson, T. Filing and

finding computer files. Proc. EWHCI (1995).

26. Lauren Norrie and Roderick Murray-Smith. 2016.

Investigating UI Displacements in an Adaptive Mobile

Homescreen. Int. J. Mob. Hum. Comput. Interact. 8, 3

(July 2016), 1-17. DOI:

http://dx.doi.org/10.4018/IJMHCI.2016070101.oa

27. Stephen Oney, Chris Harrison, Amy Ogan, and Jason

Wiese. 2013. ZoomBoard: a diminutive qwerty soft

keyboard using iterative zooming for ultra-small

devices. In Proceedings of the SIGCHI Conference on

Human Factors in Computing Systems (CHI '13).

ACM, New York, NY, USA, 2799-2802. DOI:

https://doi.org/10.1145/2470654.2481387

28. Abhinav Parate, Matthias Böhmer, David Chu, Deepak

Ganesan, and Benjamin M. Marlin. 2013. Practical

prediction and prefetch for faster access to applications

on mobile phones. In Proceedings of the 2013 ACM

international joint conference on Pervasive and

ubiquitous computing (UbiComp '13). ACM, New

York, NY, USA, 275-284.

http://dx.doi.org/10.1145/2493432.2493490

29. Ken Perlin and David Fox. 1993. Pad: an alternative

approach to the computer interface. In Proceedings of

the 20th annual conference on Computer graphics and

interactive techniques (SIGGRAPH '93). ACM, New

York, NY, USA, 57-64.

http://dx.doi.org/10.1145/166117.166125

30. Emmanuel Pietriga, Caroline Appert, and Michel

Beaudouin-Lafon. 2007. Pointing and beyond: an

operationalization and preliminary evaluation of multi-

scale searching. In Proceedings of the SIGCHI

Conference on Human Factors in Computing Systems

(CHI '07). ACM, New York, NY, USA, 1215-1224.

DOI: https://doi.org/10.1145/1240624.1240808

31. Antoine Ponsard, Kamyar Ardekani, Kailun Zhang,

Frederic Ren, Matei Negulescu, and Joanna

McGrenere. 2015. Twist and pulse: ephemeral

adaptation to improve icon selection on smartphones.

In Proceedings of the 41st Graphics Interface

Conference (GI '15). Canadian Information Processing

Society, Toronto, Ont., Canada, Canada, 219-222.

32. George Robertson, Mary Czerwinski, Kevin Larson,

Daniel C. Robbins, David Thiel, and Maarten van

Dantzich. 1998. Data mountain: using spatial memory

for document management. In Proceedings of the 11th

annual ACM symposium on User interface software

and technology (UIST '98). ACM, New York, NY,

USA, 153-162.

http://dx.doi.org/10.1145/288392.288596

33. Joey Scarr, Andy Cockburn, and Carl Gutwin. 2013.

Supporting and Exploiting Spatial Memory in User

Interfaces. Now Publishers Inc., Hanover, MA, USA.

34. Joey Scarr, Andy Cockburn, Carl Gutwin, Andrea

Bunt, and Jared E. Cechanowicz. 2014. The usability

of CommandMaps in realistic tasks. In Proceedings of

the SIGCHI Conference on Human Factors in

Computing Systems (CHI '14). ACM, New York, NY,

USA, 2241-2250.

https://doi.org/10.1145/2556288.2556976

35. Joey Scarr, Andy Cockburn, Carl Gutwin, and Sylvain

Malacria. 2013. Testing the robustness and

performance of spatially consistent interfaces. In

Proceedings of the SIGCHI Conference on Human

Factors in Computing Systems (CHI '13). ACM, New

York, NY, USA, 3139-3148.

https://doi.org/10.1145/2470654.2466430

36. Joey Scarr, Andy Cockburn, Carl Gutwin, and Andrea

Bunt. 2012. Improving command selection with

CommandMaps. In Proceedings of the SIGCHI

Conference on Human Factors in Computing Systems

(CHI '12). ACM, New York, NY, USA, 257-266.

http://dx.doi.org/10.1145/2207676.2207713

37. Doug Schaffer, Zhengping Zuo, Saul Greenberg, Lyn

Bartram, John Dill, Shelli Dubs, and Mark Roseman.

1996. Navigating hierarchically clustered networks

through fisheye and full-zoom methods. ACM Trans.

Comput.-Hum. Interact. 3, 2 (June 1996), 162-188.

http://dx.doi.org/10.1145/230562.230577

38. Manojit Sarkar and Marc H. Brown. 1992. Graphical

fisheye views of graphs. In Proceedings of the SIGCHI

Conference on Human Factors in Computing Systems

(CHI '92), Penny Bauersfeld, John Bennett, and Gene

http://www.webcitation.org/6tNOwBzMs
http://dx.doi.org/10.4018/IJMHCI.2016070101.oa
https://doi.org/10.1145/2470654.2481387
http://dx.doi.org/10.1145/2493432.2493490
https://doi.org/10.1145/1240624.1240808

Lynch (Eds.). ACM, New York, NY, USA, 83-91.

http://dx.doi.org/10.1145/142750.142763

39. Susanne Tak, Andy Cockburn, Keith Humm, David

Ahlström, Carl Gutwin, and Joey Scarr. 2009.

Improving Window Switching Interfaces. In

Proceedings of the 12th IFIP TC 13 International

Conference on Human-Computer Interaction: Part II

(INTERACT '09), Tom Gross, Jan Gulliksen, Paula

Kotzé, Lars Oestreicher, Philippe Palanque, Raquel

Oliveira Prates, and Marco Winckler (Eds.). Springer-

Verlag, Berlin, Heidelberg, 187-200.

http://dx.doi.org/10.1007/978-3-642-03658-3_25

40. Jaime Teevan, Christine Alvarado, Mark S. Ackerman,

and David R. Karger. 2004. The perfect search engine

is not enough: a study of orienteering behavior in

directed search. In Proceedings of the SIGCHI

Conference on Human Factors in Computing Systems

(CHI '04). ACM, New York, NY, USA, 415-422.

http://dx.doi.org/10.1145/985692.985745

41. Barbara Tversky, Julie Bauer Morrison, and Mireille

Betrancourt. 2002. Animation: can it facilitate?. Int. J.

Hum.-Comput. Stud. 57, 4 (October 2002), 247-262.

http://dx.doi.org/10.1006/ijhc.2002.1017

42. Chunhui Zhang, Xiang Ding, Guanling Chen, Ke

Huang, Xiaoxiao Ma, and Bo Yan. 2013. Nihao: A

Predictive Smartphone Application Launcher. In

Mobile Computing, Applications, and Services: 4th

International Conference, MobiCASE 2012, Seattle,

WA, USA, October 11-12, 2012. Revised Selected

Papers, David Uhler, Khanjan Mehta and Jennifer L.

Wong (eds.). Springer Berlin Heidelberg, Berlin,

Heidelberg, 294–313. Retrieved from

https://doi.org/10.1007/978-3-642-36632-1_17

43. Uddin, M. S., Gutwin, C., & Cockburn, A. (2017,

May). The Effects of Artificial Landmarks on Learning

and Performance in Spatial-Memory Interfaces. In

Proceedings of the 2017 CHI Conference on Human

Factors in Computing Systems (pp. 3843-3855). ACM.

44. Apex Launcher:

https://play.google.com/store/apps/details?

id=com.anddoes.launcher&hl=en

45. Lens Launcher:

https://play.google.com/store/apps/details?

id=nickrout.lenslauncher&hl=en

http://dx.doi.org/10.1007/978-3-642-03658-3_25
http://dx.doi.org/10.1145/985692.985745
https://doi.org/10.1007/978-3-642-36632-1_17
https://play.google.com/store/apps/details?%20id=com.anddoes.launcher&hl=en
https://play.google.com/store/apps/details?%20id=com.anddoes.launcher&hl=en
https://play.google.com/store/apps/details?%20id=nickrout.lenslauncher&hl=en
https://play.google.com/store/apps/details?%20id=nickrout.lenslauncher&hl=en

	Supporting Visual Search and Spatial Memory in a Mobile Application Launcher
	ABSTRACT
	Author Keywords
	ACM Classification Keywords

	INTRODUCTION
	Related Work
	Hierarchical vs. Flat Organization of Commands
	Spatial Memory as an Organizing Principle for UIs
	Zoom-based Interactions
	Studies of Mobile Usage and Improving App Launching

	Current Launchers
	iOS App Launcher
	Android App Launcher
	Why Current App Launchers are Slow

	SpaceLaunch: A Spatial App Launcher
	Comparison Studies of SpaceLaunch
	Apparatus
	Folder-based
	Page-based
	Icon Sets

	Study 1: Comparison with Folders and Pages
	Participants
	Procedure
	Data Collection
	Data Analysis
	Results of Study 1
	Discussion of Study 1 Results

	Study 2: Difficult learning Conditions
	Procedure
	Participants
	Apparatus, Data Collection and Analysis
	Icon Set

	Study 2: Results
	Discussion of Study 2 Results
	SpaceLaunch: Faster & More Efficient for Rehearsed Targets
	SpaceLaunch: Faster & More Efficient for Non-Rehearsed
	Why didn't people find SpaceLaunch easiest?

	Overall Discussion
	Would people use SpaceLaunch?
	Would SpaceLaunch make a difference in real use?
	Further Research on Spatial Interfaces

	Conclusion
	ACKNOWLEDGMENTS
	REFERENCES

