
Secure Interval Skyline Queries over Encrypted
Time Series Data

By

Songnian Zhang, Suprio Ray, Rongxing Lu, Yandong Zheng, Yunguo Guan and Jun Shao

Technique Report TR21-242
July 20, 2021

Faculty of Computer Science
University of New Brunswick
Fredericton, N.B. E3B 5A3

Canada

Phone: (506) 453-4566
Fax: (506) 453-3566
E-mail: fcs@unb.ca
http://www.cs.unb.ca

Secure Interval Skyline Queries over Encrypted
Time Series Data

Songnian Zhang†, Suprio Ray†, Rongxing Lu†, Yandong Zheng†, Yunguo Guan†, Jun Shao‡
† University of New Brunswick, Fredericton, Canada. Email:{szhang17, sray, rlu1, yzheng8, yguan4}@unb.ca

‡ Zhejiang Gongshang University, Hangzhou, 310018, China. Email: chn.junshao@gmail.com

Abstract—As interval skyline queries can find time series with
dominating advantages, it is practically useful in real-world ap-
plications for supporting analytics over time series data. Recently,
outsourcing the encrypted time series data has been widely
adopted by the data owner for economic considerations. However,
it inevitably lowers data utility and query efficiency. Existing
secure skyline query schemes either leak critical information or
are inefficient. In this paper, we propose an efficient and privacy-
preserving interval skyline query scheme based on symmetric
homomorphic encryption (SHE) to cope with the above issues.
Specifically, we first design two secure subprotocols for basic op-
erations: big than comparison and equality test, and the propose
two privacy-preserving logic gates to achieve quick permutation
and hide access patterns. Using the above subprotocols and gates,
we devise secure sort and secure dominance check protocols to
securely sort time series data and determine dominance relations,
respectively. With these protocols, we finally propose our secure
skyline computation protocol that can ensure both security and
efficiency. To deal with the characteristics of time series data, we
design a secure high-dimensional dominance check protocol to
improve performance and a look-up table to index time series for
quick query response. Detailed security analysis shows that our
proposed scheme is indeed privacy-preserving. With extensive
experiments, we evaluate our proposed scheme and compare the
core components of our scheme with the state-of-the-art solution.
The results show that our protocols outperform the compared
solution by two orders of magnitude in the computational cost
and at least 23× in the communication cost.

I. INTRODUCTION

T IME series data occurs ubiquitously across human en-
deavors and has a wide range of applications, includ-

ing medical and biological experimental observations, social
activity mining, electricity consumption monitoring, and so
forth [1]–[3]. Consequently, analyzing time series data has
attracted extensive investigations [1]–[7]. Among them, inter-
val skyline over time series data, i.e., segments of time series
that show dominating advantages over others, is of particular
interest [5]–[7] since it can capture the time series that have
highest time series value in a query interval. A real-world
example is illustrated as follows.

Example 1 (Motivation). A hospital provides online medical
monitoring for patients, and a patient’s heart rate can be
captured by a time series. Fig. 1 shows four time series (four
patients) with the value of beats per minute (bpm) in a period
from t1 to t8. Assume a doctor would like to analyze the
heart rate of different patients by asking “which patients have
high bpm in the time interval from t2 to t7?”. s1 and s3 are
interesting to the doctor. That is because s1 has the highest

average bpm, while s3 has the highest bps at t5. Regarding
s2 and s4, they are ignored since s1 is higher than both of
them at each timestamp of the query interval t2-t7.

70

74

78

82

86

!! 81 80 84 82 79 83 80 81
!" 76 79 80 77 76 80 75 77
!# 74 76 75 80 85 81 79 82
!$ 75 75 77 74 75 75 76 74

#% #$ #& #/ #0 #1 #2
!!
!#
!"
!$

t' t(t) t* t+ t, t- t.
Fig. 1. An example of the interval skyline query over time series data.

In the practical example, finding interesting time series
{s1, s3} can be achieved by performing an interval skyline
query. Technically, a time series s is returned if, in the query
interval, there does not exist another time series s′ that is not
worse than s at each timestamp and is better than s at least
one timestamp [5]. See the formal definition of interval skyline
query in Section III-A.

One of the characteristics of the time series data is that
it involves continuous updates over time, which indicates the
service providers should keep online at all times to receive the
reported data from entities. With the data volume growing,
the service providers may pay a great price to stay online
and maintain the data. Accordingly, they tend to outsource
their data and the corresponding services, i.e., interval skyline
query in this paper, to a third-party cloud for reaping economic
benefits. However, it inevitably raises privacy issues since the
real-world time series data, e.g., the medical data in the above
example, may often contain sensitive information. A promising
solution is to encrypt outsourced data and perform queries over
encrypted time series data.

However, existing privacy-preserving skyline schemes in-
vestigate the encrypted multi-dimensional data rather than
time series data [8]–[11]. Although their core component, i.e.,
securely determining dominance relation (whether one data
record dominates another one), can be used in the privacy-
preserving interval skyline scheme, they are either leaking
critical information or inefficient. For example, the solution
in [11] leaks the order relations of each dimension, while the
solution in [9] is expensive though it is secure (see detailed
analysis and other solutions in Section VIII). Therefore, in
this paper, our goal is to propose a privacy-preserving interval
skyline query scheme while ensuring efficiency.

Challenges. i) Privacy preservation. In addition to the secu-
rity of time series data, our proposed scheme should preserve
single-dimensional privacy and hide access patterns. That is

because revealing these information may incur inference at-
tacks [12], [13]. Here, single-dimensional privacy indicates the
order or equality relation of values in each dimension (times-
tamp). However, in skyline computation, it is essential for an
operator to determine the dominance relation by obtaining the
order relation of each dimension. Therefore, it is challenging to
compute skyline without leaking single-dimensional privacy.
For the access pattern, it is required for the operator to
select skyline points without knowing which ones are selected.
As a result, ensuring these privacy is challenging in per-
forming interval skyline queries. ii) Efficiency. To determine
dominance relation without leaking privacy, the state-of-the-
art solution [9] employs two cloud servers to cooperatively
determine the order relation of dimensions one by one, which
is expensive in the communication overhead. Therefore, it
raises the question “is there a more efficient solution to de-
termine dominance relation without compromising privacy?”;
iii) Time series data. The characteristics of time series data
elicit new challenges for computing interval skyline. First, time
series data usually involves many timestamps. It indicates that
we need to process high-dimensional data if we treat each
timestamp as a dimension, which deteriorates the performance
of the existing solutions. Second, time series data usually
continues updates over time. It is not easy to dynamically
index these time series data as little storage cost as possible
to quickly respond to interval skyline queries.

Aiming at the above challenges, in this paper, we propose a
novel interval skyline computation scheme over encrypted time
series data, in which a lightweight symmetric homomorphic
encryption (SHE) scheme is adopted as the cryptographic
primitive. Our proposed scheme can preserve the privacy
of plaintexts, single-dimensional privacy, and access patterns
while ensuring efficiency. Specifically, the main contributions
of this paper are four-fold as follows.
• First, we propose Secure Bigger Than (SBT) and Secure

Equal (SEQ) subprotocols to securely and efficiently determine
the bigger than and equal to relations, respectively. Besides,
we observe a good property of XOR and XNOR gates, i.e.,
one can quickly obtain the encrypted output of the gates
without leaking it if one input is a plaintext, and the other
is a ciphertext. Based on the observation, we propose privacy-
preserving XOR and XNOR gates. The former can be used in
quick permutation, while the latter can be used to hide access
patterns. All of them will serve as the building blocks of our
proposed scheme.
• Second, we design a Secure Sort (SS) and Secure Dom-

inance Check (SDC) protocols to securely sort time series
data according to their sum values and determine domi-
nance relations, respectively. In the SS protocol, the privacy-
preserving XOR gate is used to achieve a lightweight position
permutation. As the core component in skyline computation,
our SDC protocol adopts an efficient approach to determine
dominance relations without checking order relations for all
dimensions one by one. Meanwhile, a flip-coin mechanism is
adopted in the SDC protocol to ensure single-dimensional pri-
vacy. Further, we carefully devise a Secure High-dimensional

Dominance Check (SHDC) protocol to deal with the high-
dimensional time series data, in which a dominance check tree,
denoted as DC-tree, is presented to improve performance.
• Third, based on the SS, SDC, and SHDC protocols, we

propose a secure skyline computation protocol to compute
skyline over high-dimensional time series data, in which we
employ a new algorithm by modifying the sort-filter-skyline
(SFS) algorithm [14]. In addition, to quickly respond to the
interval skyline query, we design a two-dimensional look-up
table to index the time series data. It balances the storage costs
and computational costs to cope with continuous updates of
time series data.
• Finally, we conduct extensive experiments to evaluate

the performance of our proposed scheme and compare the
core component: SDC and SHDC protocols, with the state-of-
the-art solution [9]. The results show that our protocols are
much more efficient than the compared solution two orders of
magnitude in the computational cost and at least 23× in the
communication cost.

This paper is organized as follows. In Section II, we intro-
duce our system model and security model. Then, we review
our preliminaries in Section III. After that, we introduce the
building blocks in Section IV and present our proposed scheme
in Section V, followed by security analysis and performance
evaluation in Section VI and Section VII, respectively. Finally,
we discuss some related works in Section VIII and draw our
conclusion in Section IX.

II. MODELS AND DESIGN GOAL

In this section, we formalize our system and security
models.

Cloud

!"! !""

Service ProviderData providers Data users

!!!"#"!, @$#bpm'

(((

!!!"#"", @&#bpm'
!!""#"!, AB#bpm'

!!""#"", AC#bpm'

1. Report Time Series Data

Timestamp #$ #% #& ……
$$ 81 80 84 ……
$% 76 79 80 ……

2. Interval Skyline Queries
!"!"#"#'

3. Query Response.
!"#$%&'#()"'*"%("*'p! #+,#'
(*','*-./(&"'%"01%2'

3"#4""&'(&#"%5,/'6t"7't#8

0. Assign Keys

0.Registration

0. Authorized Keys 0. Authorized Keys

0.Registration

Fig. 2. System model under consideration

A. System Model

In our system model, we consider a typical cloud-based
interval skyline query model, which mainly consists of four
types of entities: a service provider SP , a set of data providers
P = {p1, p2, · · · }, a cloud C with two servers {CS1, CS2},
and multiple data users U={u1, u2, · · · }, as shown in Fig. 2.

Service Provider SP: In our system model, SP is an ini-
tiator for the whole system. On the one hand, SP offers
registration services to other entities. On the other hand, SP
is responsible for providing interval skyline query services to
registered data users. However, since SP has limited storage
and computing resources, it outsources the time series data to a
cloud and employs the cloud to offer the interval skyline query

services to users. Before offering these services, SP generates
secret keys and securely distributes them to different entities.

Data Providers P={p1, p2, · · · }: We consider a registered
smart device as a data provider. A data provider pi can collect
data and report it to the cloud at a certain time interval. The
format of the reported data is: 〈id, timestamp, value〉. Taking
a patient with the chronic heart disease as an example, the
implanted sensor of the patient reports the heart rate, i.e., beats
per minute (bpm), to the cloud as the format 〈p1, ti, bpm〉,
where p1 is id of the sensor, and ti (i = 1, 2, · · ·) denotes
the timestamp. For the reported values, we assume all of them
are integers. It is reasonable since we can easily convert non-
integer data into integers [15].

Cloud C: In our system, SP employs two cloud servers
C = {CS1, CS2} from different cloud server providers. Both
of them are considered as powerful in storage and computing
resources. They will manage the reported time series data and
cooperatively offer reliable interval skyline query services to
data users.

Data users U={u1, u2, ...}: In the system, only the autho-
rized data users can enjoy the interval skyline query services
from the cloud C. That is, in order to obtain desired results
from C, data users must register to SP before launching the
interval skyline query requests.

B. Security Model

In our security model, since SP is the service organizer and
has no motivation to deviate from it, he/she is considered as
fully trusted. That is, SP will honestly generate and distribute
secret keys and sincerely provide registration services to other
entities. For data providers P and data users U , we consider the
authorized ones are honest, i.e., they will honestly report time
series data and launch the interval skyline queries, respectively.
However, in our model, the cloud services CS1 and CS2 are
considered as honest-but-curious. They will faithfully follow
the designed protocols and schemes but may be curious to
learn the private information. For example, the cloud servers
may be interested in the reported heart rate to determine
whether the owner of the sensor has heart disease. As a result,
to ensure privacy, the data providers report the encrypted time
series data: 〈id, timestamp, encrypted value〉. Nonetheless, the
cloud still attempts to obtain the private information, including
the plaintexts of the encrypted values and query results, in the
process of interval skyline queries. Note that we assume there
is no collusion between CS1 and CS2, as well as no collusion
between the cloud and other entities. It is reasonable since
the cloud should maintain its reputation and interests. Note
that, since we focus on the privacy preservation, the external
attacks, e.g., Denial of Service (DoS) attacks, are beyond the
scope of this paper and will be discussed in our future work.

III. PRELIMINARIES

In this section, we first formally define the interval skyline
query. Then, we introduce the symmetric homomorphic en-
cryption (SHE) scheme, which is the cryptographic primitive
employed in our proposed scheme.

A. Interval Skyline Query

The interval skyline query is used to compute skyline on
time series data, which was first introduced in [5]. Before
delving into the details, we first present the time series data.

A time series s is composed of a sequence of pairs
〈ti, value〉 ordered by ti, where ti (i = 1, 2, · · ·) are times-
tamps. We denote the value of s at timestamp ti as s[ti]. Fol-
lowing the assumption in [5], all time series are synchronized,
i.e., each time series s holds a value s[ti] on a timestamp
ti > 0.

Definition 1 (Time Interval). A time interval [ti : tj] in-
dicates a range in time that contains the set of timestamps
existing between ti and tj (ti < tj). We say that s[ti, tj] =
(s[ti], s[ti+1], · · · , s[tj]) is a subsequence of time series s in
the time interval [ti : tj].

With the above definition, here we formally define the
interval skyline query as follows.

Definition 2 (Interval dominance). Given two time series s1

and s2, s1 is said to dominate s2 in a time interval [ti : tj],
denoted as s1 �[ti:tj] s2, if ∀tk ∈ [ti, tj], s1[tk] ≥ s2[tk] and
∃tl ∈ [ti, tj], s1[tl] > s2[tl].

Definition 3 (Interval Skyline Query). Given a set S with n
time series and a time interval [ti : tj], the interval skyline
query returns a set Ssky ⊆ S, in which the time series are
not dominated by any other time series in S. That is, Ssky =
{sk ∈ S | 6 ∃sl ∈ S such that sl �[ti:tj] sk}. Note that each
time series in Ssky only contains values between ti and tj .

B. Symmetric Homomorphic Encryption

SHE is an efficient symmetric homomorphic encryption
scheme that can support homomorphic addition and multi-
plication. It was first proposed in [16] and then proved to
be IND-CPA secure in [17]. Concretely, SHE includes three
algorithms, namely i) key generation KeyGen(); ii) encryption
Enc(); and iii) decryption Dec(), as follows:
• KeyGen(k0, k1, k2): Given three security parameters

{k0, k1, k2} satisfying k1 � k2 < k0, the algorithm first
chooses two large prime numbers p, q with |p| = |q| = k0 and
sets N = pq. Then, it generates the secret key sk = (p,L),
where L is a random number with |L| = k2, and the public
parameter pp = (k0, k1, k2,N). Besides, the algorithm sets
the basic message space M = [−2k1−1, 2k1−1).
• Enc(sk,m): On input of a secret key sk and a message

m ∈ M, the encryption algorithm outputs the ciphertext
E(m) = (rL + m)(1 + r′p) mod N , where r ∈ {0, 1}k2
and r′ ∈ {0, 1}k0 are random numbers.
• Dec(sk,E(m)): Taking the secret key sk and a ciphertext

E(m) as inputs, the algorithm recovers a message m′ = (E(m)
mod p) mod L = (rL+m) mod L. If m′ < L

2 , it indicates
m ≥ 0 and m = m′. Otherwise, m < 0 and m = m′ − L.

SHE satisfies the homomorphic addition and multipli-
cation properties as follows: i) Homomorphic addition-I:
E(m1) + E(m2) mod N → E(m1 + m2); ii) Homomorphic
multiplication-I: E(m1) · E(m2) mod N → E(m1 · m2);

iii) Homomorphic addition-II: E(m1) + m2 mod N →
E(m1 +m2); iv) Homomorphic multiplication-II: E(m1) ·m2

mod N → E(m1 ·m2) when m2 > 0.
Encryption with public key. In order to realize the SHE

encryption under public key setting, we take sk = (p,L) as
the private key and use it to generate two ciphertexts E(0)1,
E(0)2 of 0 with different random numbers. Then, the public
key is set as pk = {E(0)1,E(0)2, pp}. In such a way, one can
use the above homomorphic properties to encrypt a message
m by the following

E(m) = m+ r1 · E(0)1 + r2 · E(0)2 mod N (1)

where r1 and r2 ∈ {0, 1}k2 are two random numbers. This
approach has been proven to be IND-CPA secure in [18].

SHE is a leveled fully homomorphic encryption scheme,
since it has limited number of operation of Homomorphic
multiplication-I. To tackle it, we adopt a bootstrapping pro-
tocol [17] to support an infinite number of Homomorphic
multiplication-I. We refer the readers to [17] for more details.

IV. BUILDING BLOCKS

In this section, we introduce our designed secure subpro-
tocols and privacy-preserving logic gates, which serve as the
building blocks for constructing more complex protocols.

A. Secure Subprotocols

To achieve our privacy-preserving interval skyline query
scheme, we need to compute some basic functions on en-
crypted data. Here, we design Secure Bigger Than (SBT) and
Secure Equal (SEQ) subprotocols to determine whether two
given encrypted inputs (messages) have the bigger than and
equal to relations, respectively. Both of them are deployed in a
two-server model, where CS1 holds encrypted inputs and pk,
and CS2 has the secret key sk. Our goal is to leak nothing
to the cloud {CS1, CS2} while ensuring efficiency of these
subprotocols.

1) Secure Bigger Than (SBT) Subprotocol: Given two en-
crypted messages E(m1) and E(m2), the SBT subprotocol
is to determine whether m1 > m2 without leaking any
m1,m2 related information to CS1 or CS2. If m1 > m2,
the subprotocol outputs E(1), otherwise E(0).
• Step-1: CS1 flips a coin s ∈ {−1, 1} and chooses two

random numbers r1, r2 ∈ {0, 1}k1 satisfying r1 > r2 > 0.
Then, CS1 computes:

E(θ) =E(s · r1) · (E(m1) + E(m2) · E(−1)) + E(s · r2) · E(−1)

=E(s · r1 · (m1 −m2)− s · r2).

After that, CS1 sends E(θ) to CS2.
• Step-2: On receiving E(θ), CS2 uses sk to recover θ and

checks whether θ > 0. If yes, CS2 makes µ = 1 and encrypts
it into E(µ). Otherwise, CS2 generates E(µ) = E(0). Next,
CS2 returns E(µ) to CS1.
• Step-3: If s = 1, CS1 lets E(δ) = E(µ). If s = −1, CS1

computes E(δ) = E(1) + E(µ) · E(−1) = E(1 − µ). Finally,
E(δ) is the output of our SBT subprotocol.

Correctness. If s = 1, we have E(θ) = E(r1 · (m1−m2)−
r2). When m1 > m2, θ > 0. As a result, E(δ) = E(µ) = E(1).
When m1 ≤ m2, θ < 0. In this case, E(δ) = E(µ) = E(0).
Therefore, when s = 1, iff m1 > m2, the SBT subprotocol
outputs E(δ) = E(1). On the one hand, if s = −1, we have
E(θ) = E(r1 · (m2−m1) + r2). When m1 > m2, θ < 0. As a
result, E(δ) = E(1− µ) = E(1− 0) = E(1). When m1 ≤ m2,
θ > 0. In this case, E(δ) = E(1 − µ) = E(1 − 1) = E(0).
Therefore, when s = −1, iff m1 > m2, the SBT subprotocol
outputs E(δ) = E(1). Thus, our SBT subprotocol is correct.

2) Secure Equal (SEQ) Subprotocol: Given two encrypted
messages E(m1) and E(m2), the subprotocol is to determine
whether m1 = m2 without leaking any m1,m2 related
information to CS1 or CS2. If m1 = m2, the subprotocol
outputs E(1), otherwise E(0).
• Step-1: CS1 flips a coin s ∈ {−1, 1} and chooses two

random numbers r1, r2 ∈ {0, 1}k1 satisfying r1 > r2 > 0.
Then, CS1 computes:

E(θ) =E(s · r1) · E((m1 −m2)2) + E(s · r2) · E(−1)

=E(s · r1 · (m1 −m2)2 − s · r2).

After that, CS1 sends E(θ) to CS2.
• Step-2: On receiving E(θ), CS2 uses sk to recover θ and

checks whether θ < 0. If yes, CS2 makes µ = 1 and encrypts
it into E(µ). Otherwise, CS2 generates E(µ) = E(0). Next,
CS2 returns E(µ) to CS1.
• Step-3: If s = 1, CS1 lets E(δ) = E(µ). If s = −1, CS1

computes E(δ) = E(1) + E(µ) · E(−1) = E(1 − µ). Finally,
E(δ) is the output of our SEQ subprotocol.

Correctness. If s = 1, we have E(θ) = E(r1 ·(m1−m2)2−
r2). When m1 = m2, θ < 0. As a result, E(δ) = E(µ) = E(1).
When m1 6= m2, θ > 0. In this case, E(δ) = E(µ) = E(0).
Therefore, when s = 1, iff m1 = m2, the SEQ subprotocol
outputs E(δ) = E(1). On the other hand, if s = −1, we have
E(θ) = E(−r1·(m1−m2)2+r2). When m1 = m2, θ > 0. As a
result, E(δ) = E(1− µ) = E(1− 0) = E(1). When m1 6= m2,
θ < 0. In this case, E(δ) = E(1 − µ) = E(1 − 1) = E(0).
Therefore, when s = −1, iff m1 = m2, the SEQ subprotocol
outputs E(δ) = E(1). Thus, our SEQ subprotocol is correct.

B. Privacy-Preserving Logic Gates

In addition to the secure subprotocols, we also need some
digital logic gates as building blocks to construct our proposed
scheme. Here, we introduce two simple privacy-preserving
logic gates: XOR and XNOR, to securely produce an en-
crypted output.

Input Output
a b out

0 0 0
0 1 1
1 0 1
1 1 0

XOR
a
b

out = a⊕b

(a) XOR gate

Input Output
a b out

0 0 1
0 1 0
1 0 0
1 1 1

XNOR
a
b

out = a⊙b

(b) XNOR gate
Fig. 3. Gate symbol, boolean expression, and truth table of logic gates.

1) Privacy-Preserving XOR Gate: The XOR gate works by
receiving two inputs, each designated with either 1 or 0. It
outputs 0 if the two inputs are the same. Otherwise, the gate
produces 1. Fig. 3(a) shows the gate symbol, boolean expres-
sion, and truth table of XOR gate, in which we observed: i)
if a = 0, out = b; ii) if a = 1, out = 1− b. If the input a is in
plaintext, and b is in ciphertext, one can obtain the privacy-
preserving XOR gate by using the observation as follows.

E(out) = a⊕ E(b) =

{
E(b) if a = 0

E(1− b) if a = 1,
(2)

where E(1−b) = E(1)+E(b) ·E(−1). The privacy-preserving
XOR gate has the same truth table as the original gate, but can
securely and efficiently compute the encrypted output E(out).
Although the input a is in plaintext, the output E(out) is kept
secret, since the input b is encrypted.

2) Privacy-Preserving XNOR Gate: The XNOR gate is the
opposite of the XOR gate, i.e., it outputs 1 if the two inputs
are the same. We demonstrate the gate symbol, boolean
expression, and truth table of XNOR gate in Fig. 3(b). With an
opposite observation of the XOR gate, our privacy-preserving
XNOR gate can obtain the encrypted output as follows.

E(out) = a� E(b) =

{
E(1− b) if a = 0

E(b) if a = 1,
(3)

Similarly, E(out) can be quickly computed from E(b) and is
kept secret due to the encrypted input E(b).

V. OUR PROPOSED SCHEME

In this section, based on the above building blocks, we
first propose three novel secure protocols, which are key
components in computing skylines. Then, we introduce two
secure skyline computation protocols, in which one is the
basic solution, and the other is the secure solution. Finally, we
present our privacy-preserving interval skyline query scheme.

A. Secure Protocols

Due to the high efficiency of the sort-based skyline compu-
tation algorithm, e.g., Sort Filter Skyline (SFS) [14], we design
our efficient and privacy-preserving skyline computation pro-
tocols based on such an algorithm. However, as we know, it
is challenging to protect the privacy of plaintexts and access
patterns if we adopt the sort-based algorithm. It is because we
have to sort the given dataset and check the dominance rela-
tions over the sorted dataset, which leaks the order relations
and access patterns. To tackle it, we devise secure sort (SS)
and secure dominance check (SDC) protocols to make the sort-
based algorithm available while ensuring both efficiency and
security. Furthermore, if we treat a timestamp as a dimension,
the time series data usually has high-dimensional. To improve
the efficiency, we design a secure high-dimensional dominance
check (SHDC) protocol to specially determine the dominance
relation for high-dimensional data.

1) Secure Sort (SS) Protocol: Assume CS1 has a set of d-
dimensional data {E(~xi) = (E(x1

i),E(x2
i), · · · ,E(xdi)) | x

j
i ∈

M, i ∈ [1, n], j ∈ [1, d]} and their sum values E(σi) =

E(
∑d
j=1 x

j
i), and CS2 holds sk. We also suppose that CS1

has randomly assigned a unique binary sequence {bi =

b1i b
2
i · · · b

ρ
i · · · b

dlog2 ne
i | bρi ∈ {0, 1}, ρ ∈ [1, dlog2 ne]} to each

data record, as shown in Fig. 4. The goal of the SS protocol
is to sort the encrypted dataset in descending order according
to the sum values {σi | i ∈ [1, n]} without leaking underlying
plaintexts and access patterns to the cloud. That is, neither CS1

nor CS2 knows the plaintexts {(x1
i , x

2
i , · · · , xdi ,

∑d
j=1 x

j
i) | i ∈

[1, n]} or the link between the sorted dataset and the original
dataset. We depict our SS protocol as follows.
• Step-1. First, CS1 generates dlog2 ne random bits
{rρ | ρ ∈ [1, dlog2 ne], rρ ∈ {0, 1}}. After that, CS1 computes
a new bit sequence for each data record, denoted as b̂ρi ,
by performing the XOR gate b̂ρi = bρi ⊕ rρ (not privacy-
preserving XOR gate). Next, CS1 chooses n + 1 random
numbers {r0, r1, · · · , rn} satisfying r0 > ri, i ∈ [1, n].
Finally, CS1 constructs a pair 〈E(σ̂i), b̂i〉 for each data record
and sends n pairs to CS2, where E(σ̂i) = E(r0 · σi + ri) and
b̂i = b̂1i b̂

2
i · · · b̂

ρ
i · · · b̂

dlog2 ne
i .

• Step-2: On receiving these pairs {〈E(σ̂i), b̂i〉 | i ∈ [1, n]},
CS2 first uses sk to recover σ̂i and sorts the bit sequences
{b̂i | i ∈ [1, n]} in a descending order according to the
corresponding σ̂i. After sorting, CS2 encrypts each bit us-
ing SHE scheme: {E(b̂ρi) | ρ ∈ [1, dlog2 ne]}. Next, CS2

returns the sorted and encrypted bit sequences {E(b̂ρi) | ρ ∈
[1, dlog2 ne], i ∈ [1, n]} to CS1.
• Step-3: With the random bits {rρ | ρ ∈ [1, dlog2 ne], rρ ∈

{0, 1}} and the received bit sequences, CS1 adopts the
privacy-preserving XOR gate, i.e., Eq. (2), to compute a set of
new bit sequences {E(δρi) = rρ⊕E(b̂ρi) | ρ ∈ [1, dlog2 ne], i ∈
[1, n]}, which indicates the sorted index of original dataset and
is the output of our SS protocol.

Note that we can further use the privacy-preserving XNOR
gate to compute the sorted dataset. For the k-th data record,
i.e., whose sum value is the k-th largest, one can obtain
{E(xjk) | j ∈ [1, d]} as follows.

E(xjk) =
∑n

i=1
E(xji) ·

∏dlog2 ne

ρ=1
(bρi � E(δρk)) (4)

Fig. 4 demonstrates an example of our secure sort protocol,
in which there are four time series from Fig. 1. It is essential
for CS1 to send bit sequences b̂i to CS2 in our SS protocol,
which guarantees the correctness when the number of data
records n < 2dlog2 ne.

Correctness. We say our SS protocol is correct if the en-
crypted bit sequence set {E(δρi) | ρ ∈ [1, dlog2 ne], i ∈ [1, n]}
represents the sorted indexes {bρi | ρ ∈ [1, dlog2 ne], i ∈ [1, n]}
according to the corresponding sum value σi. In our SS pro-
tocol, CS2 sorts the bit sequences {b̂ρi | ρ ∈ [1, dlog2 ne], i ∈
[1, n]} according to their sum values {σ̂i | i ∈ [1, n]}. Since
r0 > ri and σ̂i = r0 ·σi + ri, {σ̂i | i ∈ [1, n]} keeps the order
of {σi | i ∈ [1, n]}. Meanwhile, since the privacy-preserving
XOR gate has the same truth table as the original XOR gate
and b̂ρi = bρi ⊕ rρ, we have δρi = rρ⊕ b̂ρi = rρ⊕ bρi ⊕ rρ = bρi .
Besides, the sorted {b̂ρi | ρ ∈ [1, dlog2 ne], i ∈ [1, n]} means
the set {E(δρi) | ρ ∈ [1, dlog2 ne], i ∈ [1, n]} is sorted. Thus,

Time series Sum
!! E("") = E(650)

!# E("$) = E(620)

!% E("&) = E(632)

!' E("() = E(601)

Bits Seq.
#! = 01
= 11
#% = 00
#' = 10

Randomly	generate	two	bits,	3!,	3", e. g., 3! =1,	3" =	0

1).	Use AB to	recover		 DE$

Privacy-Preserving	XOR	gate
!! =1,	!" =	0

E(89') E(89#) E(89%) E(89!)

<=#
! ==#

! ⨁ 3!,		<=#
" ==#

" ⨁ 3"

:#! = 11
:## = 01
:#% = 10
:#' = 00

E("") = E(650)

E("$) = E(620)

E("&) = E(632)

E("() = E(601)

:#' = 00
:## = 01
:#% = 10
:#! = 11

E(;"() = E(<) = 601 + <()

E(;"$) = E(<) = 620 + <$)

E(;"&) = E(<) = 632 + <&)

E(;"") = E(<) = 650 + <")

00 01 10 11

;""
;"&
;"$
;"(

E(1), E(1)
E(1), E(0)
E(0), E(1)
E(0), E(0)E(>!) = (E(0), E(1))

E(>#) = (E(0), E(0))
E(>%) = (E(1), E(1))
E(>') = (E(1), E(0))

!"' !"(

E(1), E(1)
E(1), E(0)
E(0), E(1)
E(0), E(0)

E(1), E(1)
E(1), E(0)
E(0), E(1)
E(0), E(0)

2).	Sort bit	sequences	
according	to	 DE$

3).	Encrypt the	sorted	
bit	sequences

Fig. 4. Our Secure Sort Protocol.

{bρi | ρ ∈ [1, dlog2 ne], i ∈ [1, n]} is sorted according to the
corresponding sum value σi.

2) Secure Dominance Check (SDC) Protocol: Assume CS1

has two encrypted d-dimensional data records E(~x1),E(~x2)
and pk of SHE, while CS2 holds sk. The SDC protocol is
to determine whether ~x1 dominates ~x2 without leaking the
underlying plaintexts and the single-dimensional privacy to the
cloud. If ~x1 dominates ~x2, our SDC protocol outputs E(1),
otherwise E(0). Note that, since the d-dimensional data record
can be treated as extracting a d length time interval from the
time series data, here the dominance relation between ~x1 and
~x2 is equivalent to the interval dominance (Definition 2) with
any d length time interval. We show the details of our SDC
protocol as follows.
• Step-1. First, for the ith-dimension, CS1 flips a coin si ∈

{−1, 1} and chooses two random numbers ri1, r
i
2 ∈ {0, 1}k1

satisfying ri1 > ri2 > 0. Then, CS1 computes E(θi) = E(si ·ri1 ·
(xi1 − xi2) + si · ri2). If si = 1, let αi = 2i, otherwise αi = 0.
Next, CS1 computes α =

∑d
i=1 α

i and sends {E(θi) | i ∈
[1, d]} to CS2.
• Step-2. On receiving {E(θi) | i ∈ [1, d]}, CS2 first uses

sk to recover θi. If θi > 0, CS2 computes βi = 2i. Otherwise
βi = 0. Afterward, CS2 computes β =

∑d
i=1 β

i and encrypts
it into E(β). Next, CS2 sends E(β) to CS1.
• Step-3. With pk, CS1 encrypts α into E(α). Then, CS1

runs the SEQ subprotocol, where the inputs are E(α) and E(β),
to test whether α = β. If yes, the SEQ subprotocol returns
E(δ1) = E(1), otherwise E(δ1) = E(0).
• Step-4: CS2 first adds up all dimensions of E(~x1) and

E(~x2), i.e., E(σ1) = E(
∑d
i=1 x

i
1) and E(σ2) = E(

∑d
i=1 x

i
2).

Next, CS1 runs the SBT subprotocol to determine whether
σ1 > σ2. If yes, the SBT subprotocol returns E(δ2) = E(1),
otherwise E(δ2) = E(0).
• Step-5: With E(δ1) and E(δ2), CS1 computes E(δ) =

E(δ1) · E(δ2) = E(δ1 · δ2) as the output of our SDC protocol.
Correctness. If si = 1, we have αi = 2i. When xi1 ≥ xi2,

θi = ri1 · (xi1 − xi2) + ri2 > 0, leading to βi = 2i. As a
result, αi = βi. When xi1 < xi2, it means θi < 0, leading
to βi = 0. In this case, αi 6= βi. Thus, when si = 1, iff
∀i ∈ [1, d]: xi1 − xi2 ≥ 0, we have α = β and E(δ1) = E(1).
Similarly, we can prove that, when si = −1, iff ∀i ∈ [1, d]:
xi1 ≥ xi2, we have E(δ1) = E(1). Further, under the condition
of ∀i, xi1 ≥ xi2, ∃i, xi1 > xi2 indicates that s1 > s2. In this

case, the STB subprotocol returns E(δ2) = E(1). Thus, E(δ) =
E(1 · 1) = E(1), iff ~x1 dominates ~x2.

3) Secure High-dimensional Dominance Check (SHDC)
Protocol: With the same assumption as that of the SDC pro-
tocol, the SHDC protocol is to deal with the high-dimensional
data, i.e., d is large. The stricter assumption of the SHDC
protocol is that the sum value of E(~x1) is no less than that of
E(~x2), namely, E(σ1) ≥ E(σ2). In fact, it is easy to answer
the assumption by applying our SS protocol. The main idea of
our SHDC protocol is to convert the high-dimensional data to
low dimensions and then apply our SDC protocol. To achieve
it, we design a dominance check tree, denoted as DC-tree, in
our SHDC protocol, which improves the performance when
checking the dominance relation for high-dimensional data.

Here, we first introduce the basic information of the DC-
tree. In our DC-tree, each non-leaf node has two chil-
dren: left child and right child, and contains three fields:
〈[j1, j2],E(σ

[j1,j2]
1),E(σ

[j1,j2]
2)〉. For the leaf node, it also

has three fields 〈[j1, j2],E(~x
[j1,j2]
1),E(~x

[j1,j2]
2)〉. We list the

detailed description of these fields in Table I.
TABLE I

FIELDS OF LEAF AND NON-LEAF NODES

Field Description

[j1, j2] a dimension range, [j1, j2] ⊆ [1, d]

E(σ
[j1,j2]
i) (i = 1, 2) the encrypted sum value of E(~xi) in the

dimension range [j1, j2]. E(σ
[j1,j2]
i) =∑j2

j=j1
E(xji)

E(~x
[j1,j2]
i) (i = 1, 2) the sub vector of E(~xi) extracting from j1

to j2 dimension.

Unlike the traditional tree-based data structure used to
retrieve data, our DC-tree is used to navigate and facilitate the
dominance check. Specifically, the process of tree building is
the running of our SHDC protocol. When the building process
stops, our SHDC protocol outputs the dominance relation
between E(~x1) and E(~x2). Next, we depict the process of our
SHDC protocol as follows.
• Step-1. CS1 first uses the permutation π to per-

mute these two data records (E(x1
i),E(x2

i), · · · ,E(xdi)) as
(E(x

π(1)
i),E(x

π(2)
i), · · · ,E(x

π(d)
i)), where i = 1, 2. To sim-

plify the description, we ignore the permutation symbol π
in the protocol. Then, CS1 constructs the root node. Since
E(σ

[1,d]
1) must be no less than E(σ

[1,d]
2), we mark the root node

as 〈[1, d],⊥,⊥〉. After that, CS1 divides the d dimensional data
records E(~x1) and E(~x2) into two parts, respectively, in which
the left part is E(~xli) = (E(x1

i),E(x2
i), · · · ,E(x

dd/2e
i)) and the

right part is E(~xri) = (E(x
dd/2e+1
i),E(x

dd/2e+2
i), · · · ,E(xdi)).

Next, CS1 computes the sum value of these two parts

E(σli) = E(σ
[1,dd/2e]
i) =

∑dd/2e

j=1
E(xji)

E(σri) = E(σ
[dd/2e+1,d]
i) =

∑d

j=dd/2e+1
E(xji),

and generates 〈[1, dd/2e],E(σl1),E(σl2)〉 and 〈[dd/2e +
1, d],E(σr1),E(σr2)〉 as the root node’s left and right child
nodes, respectively. After choosing random numbers r1, r2 ∈

E(327)[1,4]

⏊

! " = E(r! % −88 + r")
+,! " ----> !

Since " < 0, return 2 = 022 = 0⟹ !(s!) ⊁[$,)] !(s()⟹ Stop!

!"" !"#

E(305) E(323)[5,8] E(327)

[1,8] ⏊

E(327)[1,4]

⏊

E(312)

[1,8] ⏊

E(81),
E(80)[1,2]

E(323)[5,8] E(308)
! " = E(r! % 225 + r") +,! " ----> !

Since " > 0, return 2 = 12
2 = 1⟹ 89:;<:=>

E(76),
E(79)

E(84),
E(82)[3,4] E(80),

E(77)
E(79),
E(83)[5,6] E(76),

E(80)
E(80),
E(81)[7,8] E(75),

E(77)

SDC

!(M$)

SDC

!(M+)

SDC

!(M,)

SDC

!(M-) #($)∧ ∧ ∧ =

H>;>IJ<:> KL>;L>I
E(s!) ≻[!,$] E(s&)?

H>;>IJ<:> KL>;L>I
E(s!) ≻[!,$] E(s')?

Fig. 5. Examples of DC-tree. Assume τ = 4.

{0, 1}k1 satisfying r1 > r2 > 0, CS1 computes E(θ) =
E(r1 · (σl2 − σl1) · (σr2 − σr1) + r2) and sends it to CS2.
• Step-2. On receiving E(θ), CS2 first uses sk to recover

θ. If θ > 0, CS2 makes µ = 1. Otherwise µ = 0. Then, CS2

sends µ to CS1.
• Step-3. If the received µ = 0, CS1 will stop the SHDC

protocol (stop building DC-tree) and make δ = 0 as the output,
which means E(~x1) does not dominate E(~x2). If µ = 1,
it indicates we cannot determine whether E(~x1) dominates
E(~x2). As a result, CS1 makes E(~xl1) and E(~xr2) as new
inputs and recursively performs Step-1 and Step-2. If the
number of dimension of E(~xli) and E(~xri) is less than τ
(usually τ ≥ 4), CS1 will not divide them and will treat
them as leaf nodes: 〈dimension range of E(~xli),E(~xl1),E(~xl2)〉
and 〈dimension range of E(~xri),E(~xr1),E(~xr2)〉. When all leaf
nodes are generated, CS1 performs the modified SDC protocol
for each leaf node, where the inputs are the second and third
fields. The modified SDC protocol does not run Step-4 and
Step-5 in the original SDC protocol, and outputs E(δ1) (in
Step-3 of SDC protocol) as the result. We suppose there are
totally p leaf nodes and denote the output of the modified
SDC protocol at each leaf node as E(δ′i), where i ∈ [1, p].
Afterward, CS1 computes E(δ′) = E(δ′1)∧E(δ′2)∧· · ·∧E(δ′p) =∏p
i=1 E(δ′i). Next, CS1 obtains E(δ′′) by performing SBT

subprotocol, in which the inputs are E(σ1) and E(σ2). Finally,
E(δ) = E(δ′) · E(δ′′) = E(δ′ · δ′′) will be the output of our
SHDC protocol.

Fig. 5 illustrates two examples of DC-tree. The first one is to
determine whether s1 dominates s3, and the second one is to
determine whether s1 dominates s2, in which si (i = 1 to 4)
are from Fig. 1. For the first example, since one of the children
of root node shows that the partial sum of s2 is larger than s1,
it is definite that s1 does not dominates s2. Thus, we stop the
tree building and output the result. For the second example,
since µ = 1, CS1 cannot determine whether s1 dominates s2.
As the number of dimensions of the third level’s nodes is less
than 4, they are treated as leaf nodes and run the modified
SDC protocol to determine the dominance relation.

Correctness. Since we assume that E(σ1) ≥ E(σ2), E(~x2)
certainly does not dominate E(~x1). As a result, the SHDC
protocol determines whether E(~x1) dominates E(~x2). We say
our SHDC protocol is correct if it outputs E(1) when E(~x1)
dominates E(~x2) and outputs E(0) or 0 when E(~x1) does
not dominate E(~x2). First, we show that when δ = 0, it is

Algorithm 1 Basic Skyline Computation Protocol
Input: An encrypted dataset {E(~xi) | i ∈ [1, n]}. Assigned bit sequences

for each data record, {bi | i ∈ [1, n]}.
Output: A set containing encrypted skyline data records, Ssky.
1: for i = 1 to n do
2: E(σi) = E(i+ (n+ 1) ·

∑d
j=1 x

j
i);

3: {E(δρi)}=SS({E(~xi,E(σi))}), i ∈ [1, n], ρ ∈ [1, dlog2 ne];
4: E(tj1) =

∑n
i=1 E(x

j
i) ·

∏dlog2 ne
ρ=1 (bρi � E(δρ1)), j ∈ [1, d];

5: Ssky.add(E(~t1));
6: for i = 2 to n do
7: E(pji) =

∑n
l=1 E(x

j
l) ·

∏dlog2 ne
ρ=1 (bρl � E(δρi)), j ∈ [1, d];

8: flag = true;
9: for each data record E(~t) in Ssky do

10: δ= WSHDC(E(~t), E(~pi));
11: if δ == 1 then
12: flag = false;
13: break;
14: if flag == true then Ssky.add(E(~pi)).
15: return Ssky.

equivalent to E(~x1) does not dominate E(~x2). From Step-3,
we can see that when µ = 0, we have δ = 0. In this case,
θ = r1 · (σl2 − σl1) · (σr2 − σr1) + r2 < 0 (θ is never equal to
0). As a result, there must exist σl2 − σl1 > 0 or σr2 − σr1 > 0.
Consequently, ∃j ∈ [1, d], E(~xj2) > E(~xj1). Thus, E(~xj1)
does not dominate E(~xj2). Then, we prove only E(δ) = E(1)
indicates E(~x1) dominates E(~x2). Since E(δ′) =

∏p
i=1 E(δ′i),

when E(δ′) = E(1), it means ∀j ∈ [1, d],E(~xj1) ≥ E(~xj2).
Further, E(δ′′) = E(1) indicates ∃j ∈ [1, d],E(~xj1) > E(~xj2).
Therefore, only when E(δ) = E(1), E(~x1) dominates E(~x2).

In our SHDC protocol, although CS1 knows E(~x1) does
not dominate E(~x2) in some cases, it only knows there exists
one dimension j that E(~xj2) > E(~xj1). Since we limit the
leaf node to have at least 2 (τ/2 > 2) dimensions, and they
will be checked as a whole in the modified SDC protocol,
it guarantees the single-dimensional privacy, i.e., CS1 cannot
infer the order relations of each dimension. Thus, our SHDC
protocol can guarantee the privacy of underlying plaintexts and
single-dimensional privacy. In fact, in our proposed scheme,
we will use SS protocol to break the link between the sorted set
and the original set so that the cloud cannot know which two
data records have the no dominance relation. We will formally
prove the security of our SHDC protocol in Section VI. For
efficiency, our SHDC protocol will stop if the non-leaf node
offers the no dominance relation, which significantly improves
the performance in dealing with high-dimensional data. See
Section VII-B for performance evaluations.

B. Privacy-Preserving Skyline Computation

Based on the above secure protocols, we present our
privacy-preserving skyline computation protocols. First, we
introduce a basic protocol that is efficient but leaks single-
dimensional privacy in some cases. Then, we introduce a
secure protocol without leaking plaintexts, single-dimensional
privacy, and access patterns.

1) Basic Skyline Computation Protocol: The main idea of
the straw-man protocol is to leak the dominance relations to
CS1 so that it can directly adopt the SFS algorithm to compute
skyline. See Algorithm 1 for the protocol. CS1 first adds up

the value of all dimensions E(σi) = E(
∑d
j=1 x

j
i) for each data

record. To ensure the same data record holding different sum
values, CS1 updates E(σi) by E(σi) = E(σi · (n + 1) + i)
showing in lines 1-2. Then, CS1 uses the SS protocol to sort
the original dataset, which not only sorts the dataset but also
breaks the link between the sorted dataset and the original
dataset. Next, the first data record in the sorted dataset must
be a skyline point, as shown in lines 3-5. In this protocol,
we weaken our SHDC protocol, denoted as WSHDC (see line
10), by returning a plaintext δ to CS1. In this way, CS1 can
know E(~x1) dominates E(~x2) if δ = 1, and E(~x1) does not
dominate E(~x2) if δ = 0. After checking dominance relation
of each data record, CS1 obtains a skyline set, in which data
records are not dominated with each other.

In the basic protocol, if there is no dominance relation
between two data records, CS1 cannot know the actual order
relation of each dimension, i.e., the basic protocol can ensure
the single-dimensional privacy. Only when there is dominance
relation between them, CS1 knows that ∀j,~xj1 > (or ≥) ~xj2,
which is determined by the definition of dominance. However,
the SS protocol is adopted to sort the original dataset, which
makes CS1 learn nothing about which two data records (in
original dataset) have the dominance relation.

2) Secure Skyline Computation Protocol: To obtain high
efficiency, the basic protocol leaks single-dimensional privacy
in some cases. In order to preserve this privacy, the intuitive
approach is to use our SHDC protocol and output encrypted
value E(δ). However, it makes Algorithm 1 unavailable, since
CS1 cannot determine whether one data record dominates
the other one with the encrypted value. To tackle this issue,
we design a secure skyline computation protocol that can
find skylines in a secure manner, i.e., protecting underlying
plaintexts, single-dimensional privacy, and access patterns.
Meanwhile, in the protocol, we would like to achieve security
purposes with less performance.

Algorithm 2 shows our secure skyline computation protocol.
Compared with the basic protocol, this protocol uses the
SHDC instead of WSHDC to check dominance relations.
Consequently, there are two cases:

Case 1: When the non-leaf node shows there is no dom-
inance relation between two tested data records, the SHDC
protocol returns 0. If the candidate data record is not dom-
inated by all skyline points, it will be directly added to the
skyline set. See lines 13-22 for details.

Case 2: When all leaf nodes are checked by the modified
SDC protocol, the SHDC protocol returns E(δ). In this case,
CS1 computes skyline by the fact that the data record that has
the maximum sum value must be a skyline point, as shown in
lines 24-30 and lines 11-12. The main idea is to maintain a
dominance flag set F = {E(fi) | i ∈ [1, n]} and an encrypted
sum set S = {E(σi) | i ∈ [1, n]}. Once the SHDC protocol
outputs an encrypted dominance flag for the input data record,
CS1 updates the following data records’ (note that we have
sorted the dataset by our SS protocol) dominance flags and
sum values, as shown in Algorithm 3.

Update dominance flag: Suppose a data record already has

Dataset
!(#!)=!(%")
!(##)=!(%$)
!(#%)=!(%&)
!(#')=!(%()

Sorted index
E(0), E(1)
E(0), E(0)
E(1), E(1)
E(1), E(0)

Sorted Data
!(#1)
!(#&)
!(#$)
!(#()

Eq.	(4)

Sum
E(650)
E(620)
E(632)
E(601)

SS

Skyline Set
!(#!)
!(#&)

Must	be a skyline	point

SHDC,	; =	0

Since	SHDC(E(x!),	E(x"))	=	E(1)	

Updated flag
E(1)
E(1)

Updated sum
E(600 − .!)
E(600 − .#)

Eq.	(6) SS
Sorted index

E(0)
E(1)

600 − M" <	MIN	=	600

⟹ New	Dataset

New Dataset
!(#$)
!(#')

Eq.	(5)
⟹ Stop!

Bit Seq.
01
11
00
10

Bit Seq.
1
0

Fig. 6. Secure Skyline Computation Protocol. Assume r2 < r1 ∈ Zn

Algorithm 2 Secure Skyline Computation Protocol
Input: An encrypted dataset {E(~xi) | i ∈ [1, n]}. Assigned bit sequences

for each data record, {bi | i ∈ [1, n]}.
Output: A set containing encrypted skyline data records, Ssky.
1: X ← ∅,S ← ∅,F ← ∅;
2: for i = 1 to n do
3: E(σi) = E(i+ n+ (n+ 1) ·

∑d
j=1 x

j
i);

4: X .add(E(~xi)); S.add(E(σi)); F .add(E(0));
5: {E(δρi)}=SS({E(~xi)}, {E(σi)}), i ∈ [1, n], ρ ∈ [1, dlog2 ne];
6: E(σmax) =

∑n
i=1 E(σi) ·

∏dlog2 ne
ρ=1 (bρi � E(δρ1));

7: E(σmin) =
∑n
i=1 E(σi) ·

∏dlog2 ne
ρ=1 (bρi � E(δρn));

8: E(MIN) = E(σmin) + E(−1) = E(σmin − 1);
9: cnt = 1, N = n;

10: do
11: E(tj1) =

∑n
i=1 X [i] ·

∏dlog2 ne
ρ=1 (bρi � E(δρ1)), j ∈ [1, d];

12: Ssky.add(E(~t1));
13: for l = 2 to n do
14: E(pjl) =

∑n
i=1 X [i] ·

∏dlog2 ne
ρ=1 (bρi � E(δρl)), j ∈ [1, d];

15: flag = true;
16: for each data record E(~t) in Ssky do
17: E(δ)= SHDC(E(~t), E(~pl));
18: if E(δ) 6= 0 then
19: flag = false;
20: break;
21: if flag == true then
22: Ssky.add(E(~pl)).
23: else
24: Define {E(δρi), bi}, i ∈ [1, n], ρ ∈ [1, dlog2 ne] as a set I;
25: (X , S, F) = updateSets(X , S, F , l, cnt, I, E(MIN), Ssky);
26: n = X .size, cnt = Ssky.size;
27: Assign new bit sequences {bi | i ∈ [1, n]}.
28: {E(δρi)}=SS(X ,S), i ∈ [1, n], ρ ∈ [1, dlog2 ne];
29: E(σmax) =

∑n
i=1 S[i] ·

∏dlog2 ne
ρ=1 (bρi � E(δρ1));

30: break;
31: while BIG(E(σmax), E(MIN)) && Ssky.size < N
32: return Ssky.

a dominance flag E(fold), fold ∈ {0, 1}. For the data record,
our SHDC protocol outputs an encrypted dominance flag E(δ),
δ ∈ {0, 1}. With these two encrypted data, CS1 updates the
dominance flag as follows:

E(fnew) = E(fold) ∨ E(δ)

= E(fold) + E(δ) + E(fold) · E(δ) · E(−1)

= E(fold + δ − fold · δ).
(5)

It indicates that once the data record is dominated by one
skyline point, its final dominance flag must be E(1). This
updating process is illustrated in lines 7-12 of Algorithm 3.

Update sum value: Suppose a data record already has an
encrypted sum value E(σold), and the data record’s up-to-
date dominance flag is E(f). Meanwhile, we assume CS1

has already computed a minimum sum value E(MIN) (lines
7-8 in Algorithm 2), which guarantees that all sum values
of the original dataset must be larger than MIN. First, CS1

Algorithm 3 Update Sets
Input: Three encrypted sets, X , S, F . A start point, l. A counter, cnt. A

sorted index set, I. An encrypted minimum sum, E(MIN). A skyline set,
Ssky.

Output: Three new encrypted sets, Xnew,Snew,Fnew.
1: Xnew ← ∅,Snew ← ∅,Fnew ← ∅, n = X .size, {E(δ̂ρi), bi} = I;
2: for k = l to n do
3: E(pjk) =

∑n
i=1 X [i] ·

∏dlog2 ne
ρ=1 (bρi � E(δρk)), j ∈ [1, d];

4: E(σk) =
∑n
i=1 S[i] ·

∏dlog2 ne
ρ=1 (bρi � E(δρk));

5: E(fk) =
∑n
i=1 F [i] ·

∏dlog2 ne
ρ=1 (bρi � E(δρk));

6: Xnew.add(E(~pk)), Snew.add(E(σk)), Fnew.add(E(fk));
7: for m = cnt to Ssky.size do
8: E(~tm) = Ssky[m];
9: for k = l to n do

10: E(δ)= SHDC(E(~tm), Xnew[k − l + 1]);
11: if E(δ) == 0 then E(δ) = E(0);
12: Fnew.update(k − l + 1, Fnew[k − l + 1] ∨ E(δ));
13: for k = l to n do
14: randomly choose r ∈ Zn and generate E(r);
15: E(σmin) = E(MIN) + E(r) · E(−1) = E(MIN− r);
16: E(σold) = Snew[k − l + 1];
17: E(σ) = Fnew[k − l + 1] · (E(σmin)− E(σold)) + E(σold);
18: Snew.update(k − l + 1, E(σ));
19: return (Xnew,Snew,Fnew).

chooses a random number r ∈ Zn and generates E(r) by
Eq. (1). Then, CS1 obtains a new minimum sum value:
E(σmin) = E(MIN) + E(r) · E(−1) = E(MIN − r). Next, CS1

updates the data record’s sum value as follows:

E(σnew) = E(f) · (E(σmin − σold)) + E(σold)

= E(f · (σmin − σold) + σold).
(6)

If f = 0, the new sum value will keep the original sum value
E(σnew) = E(σold). If f = 1, E(σnew) will be E(σmin). In
this case, E(σnew) must be less than E(MIN) due to E(σmin) =
E(MIN−r). Besides, since MIN > n+1 and r ∈ Zn, MIN−r >
0. See details of updating sum values from line 13 to line 18
in Algorithm 3.

If all sum values are updated, CS1 checks whether the
largest sum value is bigger than E(MIN) (line 29 and line 31
in Algorithm 2). If yes, CS1 launches a new round to find
new skyline points. Otherwise, CS1 stops the protocol. When
all sum values are less than E(MIN), it means all data records
in the current set are dominated. Here, the BIG protocol can
be achieved by making CS2 return plaintext µ in our SBT
subprotocol. Note that, since the updated values (dominates
flags and sum values) usually involve several homomorphic
multiplications in each round, we adopt the bootstrapping
protocol (Section III-B) to refresh these ciphertexts.

Fig. 6 shows an example of our secure skyline computation
protocol, in which there are four time series from Fig. 1. The
sorted index are computed by our SS protocol, seeing Fig. 4
for details. In the example, E(~x1) must be a skyline point, as it
has the largest sum value. With SHDC protocol, we can obtain
that E(~x1) does not dominate E(~x3) (see the first example in
Fig. 5). Therefore, E(~x3) is a skyline point.

C. Description of Our Proposed Scheme

In this subsection, we present our privacy-preserving inter-
val skyline query scheme, which is comprised of four phases:

1) system initialization; 2) data report and organization; 3)
interval skyline search; and 4) data recovery.

1) System Initialization: In our scheme, the service
provider SP initializes the entire system. First, given security
parameters (k0, k1, k2), SP calls KeyGen(k0, k1, k2) of SHE
to generate the secret key sk and pp. Meanwhile, SP generates
pk = {E(0)1,E(0)2, pp} and a public parameter E(−1). Then,
SP chooses a secure hash function H(), e.g., SHA-256, and
generates two master keys kp, ku for data providers and data
users, respectively.
• When a data provider pi with its identity IDpi registers

to the system, SP authorizes kpi = H(IDpi, kp) to pi.
• When a data user ui with the identity IDui registers to

the system, SP authorizes kui = H(IDui, ku) to ui.
Besides, since the recent data is often considered more

important in time series data, it is practical to maintain the
most recent timestamps. As a result, SP needs to determine
the size w (sliding window) for the most recent timestamps [5].
Finally, SP publishes {H(), w, pk,E(−1)}, sends {kp, ku} to
CS1, and authorizes sk to CS2.

2) Data Report and Organization: If a data provider
pi has a sensed data x

j
i at a time stamp tj , it will en-

crypt x
j
i into E(xji) by using Eq. (1). Then, pi com-

putes H(E(xji), kpi) with the authorized key kpi and sends
〈pi, tj ,E(xji)〉||IDpi||H(E(xji), kpi) to CS1.

Upon receiving it, CS1 first computes kpi = H(IDpi, kp)
with the authorized kp and then calculates H(E(xji), kpi).
Next, CS1 extracts H(E(xji), kpi) from the received message
and checks whether the calculated H(E(xji), kpi) is the same
as the extracted one. If yes, CS1 accepts the reported data,
otherwise rejects. Afterward, CS1 randomly generates a unique
bit sequence {bi = b1i b

2
i · · · b

ρ
i · · · b

dlog2 ne
i } for pi, where n is

the number of data providers, and bρi ∈ {0, 1}. Finally, CS1

organizes the reported time series data as follows.
TABLE II

TIME SERIES DATA

Bit Seq. t1 t2 ... tj ... tw

p1 b1 E(x11) E(x21) ... E(xj1) ... E(xw1)

p2 b2 E(x12) E(x22) ... E(xj2) ... E(xw2)

pi bi E(x1i) E(x2i) ... E(xji) ... E(xwi)

If a new data is reported, the data in t1 column will be
expired, and a new column tw+1 will be added into Table II.
Note that, similar to [5], we assume all time series are
synchronized.

3) Interval Skyline Search: When a data user ui would
like to use the interval skyline query services, he/she can first
define a time interval [tj1 : tj2] ⊂ [t1 : tw], tj1 < tj2 , and
computes H(tj1 ||tj2 , kui) with the authorized key kui. Then,
ui sends [tj1 : tj2]||IDui||H(tj1 ||tj2 , kui) to CS1. Using the
same approach introduced in the data report and organization
phase, CS1 checks whether H(tj1 ||tj2 , kui) is correct. If yes,
CS1 first extracts the encrypted data from tj1 to tj2 for all
data provides and generates an encrypted dataset {E(~xi) =
(E(x1

i),E(x2
i), · · · ,E(xj2−j1+1

i)) | i ∈ [1, n]}. Then, CS1 runs

(!!, #) (!!, $) (!!, %) (!!, &)

(!", #) (!", $) (!", %)

(!#, #) (!#, $)

(!$, #)

E('%%), E('%&)
E('&%), E('&&)

……
E(''%), E(''&)

E(t%%), E(t%&)
E(t&%), E(t&&)

……
E(t(%), E(t(&)

(a) 2-dimensional table

(!!, #) (!!, $) (!!, %) (!!, &)

(!#, #) (!#, $) (!#, %)

(!$, #) (!$, $)

(!%, #)

(!", #) (!", $) (!", %) (!", &)

(b) Update
Fig. 7. 2-dimensional look-up table

our secure skyline computation protocol (Section V-B2) to
obtain the desired interval skyline points {E(~ti) | i ∈ [1, k]},
where k is the number of skyline points.

To quickly respond to the interval skyline query, we design
a 2-dimensional look-up table, as shown in Fig. 7(a), to index
the interval skyline points. In Fig. 7(a), we assume the sliding
window w = 5 ranges from t1 to t5. First, CS1 generates the 2-
dimensional table, in which each cell is a pair: 〈start time, time
step〉. For example, 〈t2, 3〉 indicates the time interval [t2, t5].
If a data user launches an interval skyline query [t2, t5], CS1

will store the computed results under the cell after responding
to the query:
• If the time step is less than log2 n, CS1 directly stores

the computed skyline set Ssky under the cell.
• If the time step is larger than or equal to log2 n, CS1

stores the sorted index {E(δρi)}, i ∈ [1, n], ρ ∈ [1, dlog2 ne].
This strategy can balance the storage costs and computa-

tional costs. When another query request falls in the cell (the
time complexity of locating cell is O(1)), CS1 can directly
obtain the interval skyline or skip the SS protocol to compute
the interval skyline. In the example of Fig. 7(a), if we suppose
there are 4 time series, i.e., n = 4, all the cells, whose time
step is 1, will store the skyline set. Others will store the
sorted index. Meanwhile, it is simple and efficient for the 2-
dimensional table to support the continuous updates over time.
Fig. 7(b) shows that t1 is expired, while t6 is added. It is worth
noting that only the cell (time interval) has been queried, the
computed results would be stored under the cell. Otherwise,
the cell is empty. This mechanism is built according to the
following facts: i) some cells may be queried frequently. ii)
some cells may be expired before being queried.

After obtaining the encrypted skyline set, CS1 will generate
a random number r and compute {rji = H(i||j, r) | i ∈
[1, k], j ∈ [1, d], rji ∈ {0, 1}k1}. Then, CS1 adds these random
noises to the corresponding skyline point: E(tji + rji). Next,
CS1 transfers {E(tji + rji) | i ∈ [1, k], j ∈ [1, d]} to CS2 and
sends r to the data user ui via a secure channel. For CS2, it
will recover {tji + rji | i ∈ [1, k], j ∈ [1, d]} with the secret
key sk of SHE and returns them to ui.

4) Data Recovery: Upon receiving r from CS1 and {tji +
rji | i ∈ [1, k], j ∈ [1, d]} from CS2, ui first computes {rji =
H(i||j, r) | i ∈ [1, k], j ∈ [1, d]}. Then, ui removes the random
noises rji from {tji +rji | i ∈ [1, k], j ∈ [1, d]}. Finally, ui can
obtain the skyline point {tji | i ∈ [1, k], j ∈ [1, d]} of the time
interval [tj1 : tj2]. This approach does not need to authorize
sk to data users for recovering plaintexts, and thus avoids the
risk brought from over authorization.

VI. SECURITY ANALYSIS

In this section, we analyze the security of our proposed
scheme. Since the core part of our proposed scheme is to
perform the interval skyline search, we will prove that our
secure skyline computation protocol can protect the plaintext
of data records and query results, single-dimensional privacy,
and access patterns. Before analyzing the security of our
scheme, we first introduce a composition theorem.

Theorem 1. (Composition Theorem) [9], [19]. If a protocol
consists of several subprotocols, the protocol is secure as long
as the subprotocols are secure and all the intermediate results
are random or pseudo-random.

We refer readers to [19] for the detailed proof. In Fig. 8,
we present the structure of our secure skyline computation
protocol. It is clear that we should first prove that the SBT
and SEQ subprotocols are secure, which can demonstrate the
security of SDC and SHDC protocols according to Theorem 1.
After analyzing the security of SS, SDC, and SHDC, we can
obtain the security of our secure skyline computation protocol.

SBT SEQ

SDC SS

Fully	Secure	Skyline	
Computation	protocol

SHDC

Fig. 8. Structure of our proposed scheme

Next, we briefly review the security model for securely re-
alizing an ideal functionality in the presence of non-colluding
semi-honest adversaries [19], [20].

Real-world execution. The real-world execution of a pro-
tocol Π takes place between {CS1, CS2} and adversaries
{A1,A2}, who corrupt CS1 and CS2, respectively. With the
input xi and auxiliary input zi (i = 1, 2), e.g., the length of
ciphertexts, the view of each party in the real-world execution
protocol Π in the presence of adversary A1 (A2) is defined as

REALΠ,Ai,zi(xi)
def
= OUTΠ

i , i = 1, 2.
Ideal-world execution. In the ideal world execution, there

is an ideal functionality F for a function f , and the servers
interact only with F . Here, the view of each party in an ideal-
world execution in the presence of independent simulators
{Sim1, Sim2} is defined as

IDEALF,Simi,zi(xi)
def
= OUTFi , i = 1, 2.

In the above definitions, OUTi denotes the output of parties.

Definition 4 (Security against semi-honest adversaries). Let F
be a deterministic functionality and Π be a protocol between
two parties (servers). We say that Π securely realizes F if there
exists {Sim1, Sim2} of PPT (Probabilistic Polynomial Time)
transformations (where Simi = Simi(Ai), i = 1, 2) such that
for semi-honest PPT adversaries {A1,A2}, for all xi and zi,
for each party holds:

REALΠ,Ai,zi(xi)
c
≈ IDEALF,Simi,zi(xi)

where
c
≈ compactly denotes computational indistinguishability.

A. The SBT and SEQ subprotocols are privacy-preserving.

First, we use Definition 4 to show that our SBT subprotocol
is secure, i.e., it can preserve the privacy of plaintexts.

Theorem 2. The SBT subprotocol securely determines the
bigger than relation in the presence of semi-honest (non-
colluding) adversaries {A1,A2}.

Proof. Here, we show how to construct the independent sim-
ulators: {Sim1, Sim2}.
Sim1 randomly chooses {m′1,m′2, δ′} and simulates A1 as

follows. It first generates ciphertexts {E(m′1), E(m′2),E(δ′)}
by the encryption algorithm of SHE. Then, it outputs A1’s
entire view. In the real execution, A1 receives the ciphertext
of {m1,m2, δ} whereas Sim1 gives {E(m′1), E(m′2),E(δ′)} to
A1 in the ideal execution. The semantic security of SHE [17]
guarantees that the views of A1 in the real and the ideal
executions are indistinguishable.
Sim2 runs A2 by randomly choosing θ′ and sending it to

A2, which is the view of A2 in the ideal execution. In the real
execution, A2 receives θ = s · r1 · (m1 −m2)− s · r2. Since
r1, r2 and s are randomly generated, the views of A2 in the
real and the ideal executions are indistinguishable. Note that,
since θ′ is randomly chosen, it means µ′ will also be randomly
generated. A2 cannot distinguish the views in µ′ and µ.

From the above proof, we can see that our SBT subprotocol
ensures the security of the plaintext of {m1,m2} and the result
δ, i.e., preserving the privacy of inputs and order relations.
In our SBT subprotocol, since r2 < r1, and s is randomly
generated, CS2 cannot infer whether m1 = m2 when m1 =
m2. Therefore, our SBT subprotocol is privacy-preserving.

Theorem 3. The SEQ subprotocol securely determines
the equality relation in the presence of semi-honest (non-
colluding) adversaries {A1,A2}.

Proof. Similar to the proof of Theorem 2, we can adopt
Definition 4 to show that our SEQ subprotocol is secure.
That is, it can preserve the privacy of plaintexts and equality
relations.

B. The SS, SDC, and SHDC protocols are privacy-preserving.

First, we show that our SS protocol is secure, i.e., it can
preserve the privacy of plaintexts.

Theorem 4. The SS protocol securely sorts {E(~xi) =
(E(x1

i),E(x2
i), · · · ,E(xdi)) | x

j
i ∈ M, i ∈ [1, n], j ∈ [1, d]}

in the presence of semi-honest (non-colluding) adversaries
{A1,A2}.

Proof. Since CS1 always processes data records over their
ciphertexts, A1 receives encrypted data in both views. Similar
to A1’s views in the SBT subprotocol, the semantic security
of SHE guarantees that the views of A1 in the real and the
ideal executions are indistinguishable.
Sim2 runs A2 as follows. First, Sim2 randomly chooses

{~x′i = (x′
1
i , x
′2
i , · · · , x′

d
i) | x′

j
i ∈ M, i ∈ [1, n], j ∈ [1, d]},

and calculates σ′i =
∑d
j=1 x

′j
i , i ∈ [1, n]. After choosing

n+1 random numbers {r0, r1, · · · , rn} satisfying r0 > ri, i ∈
[1, n], it computes {σ̂′i = r0 · σ′i + ri | i ∈ [1, n]} and sends
them to A2, which is the view of A2 in the ideal execution. In
the real execution, A2 receives {σ̂i = r0 ·σi + ri | i ∈ [1, n]},
where σi =

∑d
j=1 x

j
i . Since both x

j
i and x′

j
i ∈ M, and

n + 1 random numbers are chosen to perturb σi and σ′i,
the views of A2 in the real and the ideal executions are
indistinguishable.

The above proof shows that our SS protocol can preserve
the privacy of plaintexts {~xi = (x1

i , x
2
i , · · · , xdi) | x

j
i ∈M, i ∈

[1, n], j ∈ [1, d]} and results {E(δ̂ρi) | 1 ≤ ρ ≤ dlog2 ne, i ∈
[1, n]} (proved in A1’s views).

Next, we prove that our SDC and SHDC protocols are
secure, i.e., they can protect inputs, results, and single-
dimensional privacy.

Theorem 5. The SDC and SDHC protocols securely deter-
mine dominance relations without leaking inputs, the protocol
results, and the single-dimensional privacy.

Proof. SDC: As shown in Fig. 8, the SDC protocol consists
of the SBT and SEQ subprotocols. Recalling Section V-A2,
before running SEQ and SBT subprotocols, the SDC protocol
generates {θi | i ∈ [1, d]}, α, and β (see Section V-A2). Since
all of these values are random, and SBT and SEQ subprotocols
are secure (Theorem 2 and Theorem 3), we can prove that our
SDC protocol is secure according to the composition theorem
given in Theorem 1. That is, our SDC protocol can protect
the plaintext of data records and protocol result from leaking.
Besides, our SDC protocol uses the flip-coin mechanism to
randomly adjust the order relation of two values. Therefore,
it can protect the single-dimensional privacy, i.e, the order or
equality relation of each dimension’s values. Thus, our SDC
protocol is privacy-preserving.

SHDC: If our SHDC protocol determines the dominance
relation of two data records by leaf nodes, it has the same
security as the SDC protocol. On the other hand, if the
dominance relation is determined by non-leaf nodes, CS1 and
CS2 can know whether one data record does not dominate
the other one. It is a trivial leakage, denoted as L = {xi1 6�
xi2 | i1 6= i2}, because CS1 and CS2 only know there exists
one dimension j ∈ [1, d] that xji1 < x

j
i2

. Since neither CS1 nor
CS2 knows which dimension has such the order relation, the
single-dimensional privacy is protected in our SHDC protocol.
Thus, our SHDC protocol is privacy-preserving.

C. The secure skyline computation protocol is privacy-
preserving.

In this subsection, we first prove that our secure skyline
computation protocol can preserve the privacy of inpputs, the
protocol results, and the single-dimensional privacy. Then, we
show that our secure skyline computation protocol can hide
access patterns.

Theorem 6. The secure skyline computation protocol securely
computes skyline points without leaking inputs, the protocol
results, and the single-dimensional privacy.

Proof. From Algorithm 2, we can see that all of the inter-
mediate results are random. According to Theorem 1, our
secure skyline computation protocol can ensure the plaintext of
data records and protocol results without leaking. For single-
dimensional privacy, it only involves the SHDC protocol.
Although there is a trivial leakage L, we have proved that
the single-dimensional privacy is preserved in our SHDC
protocol. Therefore, our secure skyline computation protocol
can preserve single-dimensional privacy.

Theorem 7. The secure skyline computation protocol can hide
the information about which data records in {E(~xi) | i ∈
[1, n]} are selected as skyline points.

Proof. We prove Theorem 7 by demonstrating neither CS1 nor
CS2 knows which data records are selected as skyline points.

For CS1. From Algorithm 2, there are two cases for a data
record to be added into the skyline set.

Case1: A data record that is not dominated by any skyline
point is a skyline point (line 22 in Algorithm 2). Since our
SS protocol returns the encrypted sort index {E(δρi)}, and the
data record is computed from

∑n
l=1 E(xjl) ·

∏dlog2 ne
ρ=1 (bρl �

E(δρi)), j ∈ [1, d], i ∈ [1, n], CS1 cannot link the computed
data record to the data record in the dataset {E(~xi) =
(E(x1

i),E(x2
i), · · · ,E(xdi)) | i ∈ [1, n]}. Therefore, CS1 does

not know which item is selected as skyline point in this case.
Case2: A data record that has the maximum sum value is a

skyline point (line 12 in Algorithm 2). Similarly, the data point
is calculated by

∑n
l=1 E(xjl) ·

∏dlog2 ne
ρ=1 (bρl �E(δρ1)), j ∈ [1, d]

(line 11). Consequently, CS1 does not know which item is
selected as skyline point in this case.

For CS2. From Algorithm 2, we can see that CS2 can get
information when running the SS and SHDC protocols.

SS: CS2 obtains the perturbed sum value of each data
record. Besides, before sending encrypted sum values to CS2,
CS1 randomly permutes them with XOR gate. Therefore, CS2

cannot link these sum values to the corresponding data record.
SHDC: For the non-leaf nodes, CS2 can learn the informa-

tion about one data record does not dominate the other one by
observing whether θ = r1 ·(σl2−σl1)·(σr2−σr1)+r2 > 0, where
σli and σri (i = 1, 2) are partial sum values (see details in Sec-
tion V-A3). However, CS2 cannot link the partial sum values
to the corresponding data record due to the perturbation and
permutation. When reaching leaf nodes, our SHDC protocol
will invoke the SDC protocol. However, Theorem 5 shows that
CS2 learns nothing from the SDC protocol. Therefore, CS2

does not know which items are selected as skyline points.

VII. PERFORMANCE EVALUATION

In this section, we evaluate the performance of our proposed
scheme. From Section V-C, we know that the data report and
data recovery phases only involve data encryption and noise
removal, respectively, which are efficient and intuitive in terms

of performance. Therefore, in this section, we focus on the
performance of the interval skyline search phase.

Experimental setting: We implemented our scheme in Java
and executed it on a machine with 16 GB memory, 3.4
GHz Intel(R) Core(TM) i7-3770 processors, and Ubuntu 16.04
OS. In our experiments, we adopt two real-world time series
datasets and illustrate the detailed information in Table III.
For simplicity sake, we denote these two datasets as Gas and
Electricity, respectively. It is worth noting there are around
100,000 time stamps in the Electricity dataset. We filter out
the missing values (the value of two consecutive time stamps
is 0), and the effective timestamps are 10,303.

TABLE III
REAL-WORLD DATASETS USED IN OUR EXPERIMENTS

Name Time series (n) Timestamps (d)

Greenhouse Gas Observing
Network Data Set [21]

2912 327

Electricity Load Diagrams
Data Set [22]

315 10303

To ensure privacy, we set τ = 4 in our SHDC protocol,
i.e., the number of dimensions of non-leaf nodes should be
larger than 4. For security parameters of SHE, we let k0 =
4096, k1 = 40, k2 = 160 in our evaluations.

A. Performance of Our Proposed Scheme

Since the performance of our skyline computation protocols
is related to the number of time series n and timestamps
(dimensions) d, in this subsection, we evaluate the computa-
tional cost and the communication cost of the basic and secure
skyline computation protocols by varying these two parameters
on Gas and Electricity datasets. Here, we respectively denote
these two protocols as basic protocol and secure protocol in
the following discussion.
• Computational cost of searching interval skyline. Fig. 9

depicts the search time varying with d, in which Fig. 9(a)
shows the evaluation over Gas dataset and n = 800, while
Fig. 9(b) shows the evaluation over Electricity dataset and n =
100. In Fig. 9(a), the search time of the secure protocol is more
than the basic protocol when d is small. It is reasonable since,
in the Gas dataset, the number of skyline points is not changed
when we vary d. When d is small, it means that CS1 has a
high probability of obtaining the dominance relations from the
leaf nodes, leading to more rounds to get the whole skyline
points. However, when d is large, CS1 may get the dominance
relation from non-leaf nodes, leading to fewer rounds. When
the number of rounds is 1, the computational cost of the secure
protocol is equivalent to using the SFS algorithm and has a
similar search time to the basic protocol. The trend of Fig. 9(b)
is also related to the number of rounds, which depends on the
dataset. To clearly show the reason, we plot the number of
rounds in the corresponding reduced figure.

Fig. 10 plots the search time varying with n, in which
Fig. 10(a) shows the evaluation over Gas dataset and d = 100,
while Fig. 10(b) shows the evaluation over Electricity dataset
and d = 1000. In both figures, since the secure protocol

50 100 150 200 250 300
Dimensions

0

200

400

600

800

1000
Se

ar
ch

 T
im

e
(m

s)
×105

Basic Protocol
Secure Protocol

0

20

40

60

Ro
un

ds

50

4 1 1 1 1

(a) Gas

1k 2k 3k 4k 5k 6k 7k 8k 9k 10k
Dimensions

0

50

100

150

200

250

300

Se
ar

ch
 T

im
e

(m
s)

×105

Basic Protocol
Secure Protocol

0

1

2

3

Ro
un

ds

1 1 1 1 1

2 2 2 2 2

(b) Electricity

Fig. 9. Computational costs of searching interval skyline varying with the
number of dimensions. (a) Over Gas dataset; (b) Over Electricity dataset.

200 400 600 800 1000 1200 1400 1600 1800 2000
Dataset size

0

100

200

300

400

500

600

Se
ar

ch
 T

im
e

(m
s)

×105

Basic Protocol
Secure Protocol

(a) Gas

50 100 150 200 250 300
Dataset size

0

25

50

75

100

125

150

Se
ar

ch
 T

im
e

(m
s)

×105

Basic Protocol
Secure Protocol

(b) Electricity

Fig. 10. Computational costs of searching interval skyline varying with the
number of data records. (a) Over Gas dataset; (b) Over Electricity dataset.

50 100 150 200 250 300
Dimensions

0

10

20

30

40

Tr
an

sf
er

re
d

cip
he

rte
xt

s

×105

Basic Protocol
Secure Protocol

(a) Gas

1k 2k 3k 4k 5k 6k 7k 8k 9k 10k
Dimensions

0

20

40

60

80

100

120

140

Tr
an

sf
er

re
d

ci
ph

er
te

xt
s

×105

Basic Protocol
Secure Protocol

(b) Electricity

Fig. 11. Communication costs of searching interval skyline varying with the
number of dimensions. (a) Over Gas dataset; (b) Over Electricity dataset.

200 400 600 800 1000 1200 1400 1600 1800 2000
Dataset size

0

20

40

60

80

Tr
an

sf
er

re
d

cip
he

rte
xt

s

×105

Basic Protocol
Secure Protocol

(a) Gas

50 100 150 200 250 300
Dataset size

0

5

10

15

20

Tr
an

sf
er

re
d

cip
he

rte
xt

s

×105

Basic Protocol
Secure Protocol

(b) Electricity

Fig. 12. Communication costs of searching interval skyline varying with the
number of data records. (a) Over Gas dataset; (b) Over Electricity dataset.

computes the skyline points with one round in the most
cases, it means that dominance relations are determined by the
non-leaf nodes of our SHDC protocol. Therefore, our secure
protocol has a similar search time as the basic protocol.
• Communication cost of searching interval skyline. Fig. 11

and Fig. 12 depict the communication cost of the secure and
basic protocols, in which we vary n and d, respectively. For
simplicity sake, we measure the communication cost by the

number of ciphertexts transferred between two servers: CS1

and CS2. Fig. 11(a) and Fig. 11(b) show the similar trends
to Fig. 9(a) and Fig. 9(b), respectively. That is because the
communication cost is also related to the number of rounds.
However, Fig. 12 shows a different trend. In Fig. 12(a), since
the numbers of skyline points and rounds are not changed
when n is increasing over the Gas dataset , the communication
cost of the secure and basic protocol is close. In Fig. 12(b),
the secure protocol has more communication cost than the
basic protocol. That is because the number of skyline points k
would affect the communication costs if k is relatively small
compared to the whole dataset. In our protocols, each skyline
point is used to check the dominance relation with non-skyline
points. Therefore, the more skyline points will result in the
more communication costs. In the experiment of Fig. 12(b),
the number of skyline points is {2, 6, 4, 1, 2, 2} for the dataset
size from 50 to 300. Thus, the trend in Fig. 12(b) is reasonable.
Note that, when n is 200, the number of skyline points is 1.
In this case, the communication cost of the secure protocol
should be similar to that of basic protocol (See Algorithms 1
and 2). Fig. 12(b) demonstrates the correctness of our analysis.

B. Comparing Dominance Check Protocols

In the process of skyline search, the core component is the
secure dominance check protocol that can determine whether
two encrypted data records have a dominance relation. In this
paper, we propose two secure dominance check protocols,
SDC and SHDC, in which SDC is the general version, and
SHDC is for high-dimensional data records. Both of them
can preserve the privacy of plaintexts and single-dimensional
privacy. In [9], Liu et al. also proposed a secure dominance
check protocol, hereafter we denote it as Liu’s SDOM, which
has the same security level as ours and can be used in our
scheme. As a result, in this subsection, we will compare
our SDC, SHDC, and Liu’s SDOM protocols in terms of
computational and communication costs.

However, Liu’s SDOM protocol employs the Paillier en-
cryption, which is more expensive than SHE scheme used in
our protocols. Thus, to be fair, we implemented Liu’s SDOM
protocol with SHE and compare these protocols based on the
same cryptographic primitive.

However, Liu’s SDOM protocol employs a different homo-
morphic encryption scheme, namely, Paillier encryption. In
Table IV, we list the computational cost of these two cryp-
tosystems in the operations of encryption (Enc), decryption
(Dec), homomorphic addition (Homo-Add), and homomorphic
multiplication (Homo-Mul) varying the security parameter
k = |q| = |p| from 512 to 2048. From Table IV, we can
see that the Paillier encryption is more expensive than the SHE
scheme used in our protocols. Thus, to be fair, we implemented
Liu’s SDOM protocol with SHE and compare these protocols
based on the same cryptographic primitive.
• Comparing computational costs. From Section V-A2,

V-A3, and [9], we know that the computational cost of these
three protocols is only related to the number of dimensions.
Accordingly, Fig. 13 depicts average execution costs of our

20 40 60 80 100
Dimensions

0

1000

2000

3000

4000
Av

er
ag

e
Ti

m
e

(m
s)

Liu's SDOM
Our SDC
Our SHDC

0

10

20

(a) Gas

20 40 60 80 100
Dimensions

0

1000

2000

3000

4000

Av
er

ag
e

Ti
m

e
(m

s)

Liu's SDOM
Our SDC
Our SHDC

10

20

(b) Electricity

Fig. 13. Computational costs of secure dominance check protocols. (a) Over
Gas dataset; (b) Over Electricity dataset.

TABLE IV
THE EXECUTION TIME OF SHE AND PAILLIER

k Scheme Enc Dec Homo-Add Homo-Mul

512 SHE 0.03 ms 0.003 ms 0.002 ms 0.002 ms
Paillier 2.6 ms 2.4 ms 0.02 ms 0.05 ms

1024 SHE 0.04 ms 0.004 ms 0.004 ms 0.005 ms
Paillier 18 ms 17 ms 0.05 ms 0.17 ms

2048 SHE 0.8 ms 0.01 ms 0.01 ms 0.01 ms
Paillier 142 ms 142 ms 0.12 ms 0.62 ms

SDC, our SHDC, and Liu’s SDOM varying with the number
of dimensions from 10 to 100. Fig. 13(a) and 13(b) show the
evaluations over Gas and Electricity datasets, respectively.
Both of figures show that our protocols can improve the
efficiency of determining dominance relation by at least two
orders of magnitude compared to Liu’s SDOM protocol. That
is because: i) the secure comparison subprotocol (SBT) used
in our protocols is more efficient than that of Liu’s SDOM;
ii) our designed algorithm is more efficient. We determine
whether ∀j ∈ [1, d] xj1 ≥ x

j
2 by testing whether α = β (see

details in Section V-A2), while Liu’s SDOM protocol checks
all dimensions one by one.

It is interesting that the computational cost of our SHDC
protocol is much less than our SDC protocol in Fig. 13(a),
whereas it is slightly more computationally expensive in
Fig. 13(b). This is reasonable since most of the data records
in the Gas dataset have no dominance relation with each
other and thus make our SHDC protocol determine the dom-
inance relation by the non-leaf nodes of DC-tree instead of
leaf nodes. It can greatly improve performance and, it is
our intention to design such a high-dimensional protocol.
While for the Electricity dataset, there exist several data
records that can dominate others. As a result, our SHDC
protocol determines dominance relations by leaf nodes of
DC-tree, i.e., invoking SDC protocol, in most cases. There-
fore, the computational cost of SHDC protocol is approxi-
mately equivalent to time cost of checking non-leaf nodes +
time cost of SDC protocol. Thus, for the Electricity dataset,
our SHDC protocol takes more time than our SDC protocol.
• Comparing communication costs. Fig. 14 plots the number

of transferred ciphertexts of these three protocols varying with
the number of dimensions, in which Fig. 14(a) shows the
communication cost over the Gas dataset, while Fig. 14(b)
is over the Electricity dataset. Both figures show that our

20 40 60 80 100
Dimensions

0

500

1000

1500

2000

2500

3000

Tr
an

sf
er

re
d

ci
ph

er
te

xt
s Liu's SDOM

Our SDC
Our SHDC

0

50

100

(a) Gas

20 40 60 80 100
Dimensions

0

500

1000

1500

2000

2500

3000

Tr
an

sf
er

re
d

ci
ph

er
te

xt
s Liu's SDOM

Our SDC
Our SHDC

50

100

(b) Electricity

Fig. 14. Communication costs of secure dominance check protocols. (a) Over
Gas dataset; (b) Over Electricity dataset.

protocols entail at least 23× improvement in the communi-
cation cost. The reason is that it needs d + 5 ciphertexts to
achieve our SDC protocol, while it is 2(d + 1)(l + 1) for
Liu’s SDOM protocol, where d is the number of dimensions
and l is the largest bit length of values in the evaluated
dataset. Meanwhile, we can see that our SHDC protocol is
always better than our SDC protocol in both datasets. For the
Gas dataset, since checking dominance relation in non-leaf
nodes only needs to send one ciphertext to CS2, our SHDC
protocol is significantly more efficient in the communication
cost when determining dominance relations by non-leaf nodes.
For the Electricity dataset, although the dominance relation is
determined by leaf nodes, and additional communication costs,
i.e., the transferred ciphertexts of non-leaf nodes, are incurred,
the average transferred ciphertexts of our SHDC protocol are
slightly less than that of our SDC protocol. It is because the
benefits of determining dominance relations by non-leaf nodes
outweigh the incurred costs. This trend will be more obvious
when the number of dimensions is large, as shown in the
reduced figure in Fig. 14(b).

VIII. RELATED WORK

Privacy-preserving skyline queries have attracted consider-
able attention in the database community [8]–[11], [23], [24].
In 2013, Bothe et al. [8] mapped the problem of comput-
ing skyline into determining the non-descending series that
was computed with the scalar products among sub-vectors
of tuples. However, since the simple matrix encryption was
adopted to encrypt the sub-vectors of tuples, this scheme is
not semantically secure, and an adversary can launch a known
plaintext attack to infer the secret keys. Zaman et al. [23]
proposed a secure skyline computation scheme in MapReduce.
It aimed to support the multi-party secure computation and
assumed a trusted party: Coordinator, who can obtain the order
of data on each dimension. Since the Coordinator must know
the order relations of each dimension to compute skyline,
the skyline computation approach in [23] cannot be applied
to our scheme due to the security considerations. In 2017,
Liu et al. [9] proposed a fully secure skyline computation
scheme for dynamic skyline queries. This scheme can protect
the plaintexts, single-dimensional privacy, and access patterns
from leaking. However, it suffers from the performance issues
due to the inefficient basic protocols. Recently, Wang et
al. [11] also designed a secure scheme to deal with dynamic

skyline queries. This scheme adopted the order-revealing en-
cryption (ORE) as the cryptographic primitive, leading to
the information leakage in single-dimensional privacy. The
work in [24] proposed a secure skyline computation scheme
for user-defined skyline queries. It also has the problem in
performance due to the expensive encryption. Besides, it
extended a d-dimensional data record to 2d dimensions for
skyline computation, which is hard to be applied to high-
dimensional data. In 2019, Zheng et al. [10] designed a skyline
computation protocol by determining dominance relations over
encrypted data. However, their work focused on secure data
merging technique and did not consider the single-dimensional
privacy and access patterns.

IX. CONCLUSION

In this paper, we have proposed an efficient and privacy-
preserving interval skyline query scheme over encrypted time
series data, which can preserve the privacy of plaintexts,
single-dimensional privacy, and access patterns while ensuring
efficiency. Specifically, we first specified the interval skyline
query and introduced the symmetric homomorphic encryp-
tion (SHE). Then, we presented SBT and SEQ subprotocols
and privacy-preserving logic gates. Based on these building
blocks, we designed a secure sort (SS) protocol and a se-
cure dominance check (SDC) protocol. Further, to deal with
high-dimensional time series data, we designed a DC-tree
and proposed our SHDC protocol. With these protocols, we
proposed our secure skyline computation protocol. Finally, we
analyzed the security of our scheme and conducted extensive
experiments to evaluate it. The results show that our scheme
is efficient in both computation and communication.

REFERENCES

[1] P. Wang, H. Wang, and W. Wang, “Finding semantics in time series,”
in Proceedings of the 2011 ACM SIGMOD International Conference on
Management of data, 2011, pp. 385–396.

[2] Y. Sakurai, Y. Matsubara, and C. Faloutsos, “Mining and forecasting
of big time-series data,” in Proceedings of the 2015 ACM SIGMOD
International Conference on Management of Data, 2015, pp. 919–922.

[3] L. Zhang, N. Alghamdi, M. Y. Eltabakh, and E. A. Rundensteiner,
“Tardis: Distributed indexing framework for big time series data,” in
2019 IEEE 35th International Conference on Data Engineering (ICDE).
IEEE, 2019, pp. 1202–1213.

[4] N. Alghamdi, L. Zhang, H. Zhang, E. A. Rundensteiner, and M. Y.
Eltabakh, “Chainlink: indexing big time series data for long subsequence
matching,” in 2020 IEEE 36th International Conference on Data Engi-
neering (ICDE). IEEE, 2020, pp. 529–540.

[5] B. Jiang and J. Pei, “Online interval skyline queries on time series,” in
ICDE. IEEE, 2009, pp. 1036–1047.

[6] H. Wang, C.-K. Wang, Y.-J. Xu, and Y.-C. Ning, “Dominant skyline
query processing over multiple time series,” Journal of Computer
Science and Technology, vol. 28, no. 4, pp. 625–635, 2013.

[7] G. He, L. Chen, C. Zeng, Q. Zheng, and G. Zhou, “Probabilistic skyline
queries on uncertain time series,” Neurocomputing, vol. 191, pp. 224–
237, 2016.

[8] S. Bothe, P. Karras, and A. Vlachou, “eskyline: Processing skyline
queries over encrypted data,” Proceedings of the VLDB Endowment,
vol. 6, no. 12, pp. 1338–1341, 2013.

[9] J. Liu, J. Yang, L. Xiong, and J. Pei, “Secure skyline queries on
cloud platform,” in 2017 IEEE 33rd international conference on data
engineering (ICDE). IEEE, 2017, pp. 633–644.

[10] Y. Zheng, R. Lu, B. Li, J. Shao, H. Yang, and K.-K. R. Choo, “Efficient
privacy-preserving data merging and skyline computation over multi-
source encrypted data,” Information Sciences, vol. 498, pp. 91–105,
2019.

[11] W. Wang, H. Li, Y. Peng, S. S. Bhowmick, P. Chen, X. Chen, and
J. Cui, “Scale: An efficient framework for secure dynamic skyline
query processing in the cloud,” in International Conference on Database
Systems for Advanced Applications. Springer, 2020, pp. 288–305.

[12] M. Naveed, S. Kamara, and C. V. Wright, “Inference attacks on property-
preserving encrypted databases,” in SIGSAC, 2015, pp. 644–655.

[13] M. S. Islam, M. Kuzu, and M. Kantarcioglu, “Access pattern disclosure
on searchable encryption: ramification, attack and mitigation.” in NDSS.
Citeseer, 2012.

[14] J. Chomicki, P. Godfrey, J. Gryz, and D. Liang, “Skyline with presort-
ing,” in ICDE, vol. 3, 2003, pp. 717–719.

[15] R. Bost, R. A. Popa, S. Tu, and S. Goldwasser, “Machine learning
classification over encrypted data.” in NDSS, 2015, p. 4325.

[16] H. Mahdikhani, R. Lu, Y. Zheng, J. Shao, and A. A. Ghorbani,
“Achieving o (log3n) communication-efficient privacy-preserving range
query in fog-based iot,” IEEE Internet of Things Journal, pp. 5220–5232,
2020.

[17] Y. Zheng, R. Lu, Y. Guan, J. Shao, and H. Zhu, “Efficient and privacy-
preserving similarity range query over encrypted time series data,” IEEE
Transactions on Dependable and Secure Computing, 2021.

[18] Y. Guan, R. Lu, Y. Zheng, S. Zhang, J. Shao, and G. Wei, “Toward
privacy-preserving cybertwin-based spatio-temporal keyword query for
its in 6g era,” IEEE Internet of Things Journal, 2021.

[19] O. Goldreich, Foundations of cryptography: volume 2, basic applica-
tions. Cambridge university press, 2009.

[20] S. Kamara, P. Mohassel, and M. Raykova, “Outsourcing multi-party
computation.” IACR Cryptol. Eprint Arch., vol. 2011, p. 272, 2011.

[21] “Greenhouse gas observing network data set,”
https://archive.ics.uci.edu/ml/datasets/Greenhouse+Gas+Observing+Network,
2015.

[22] “Electricity load diagrams data set,”
https://archive.ics.uci.edu/ml/datasets/ElectricityLoadDiagrams20112014,
2015.

[23] A. Zaman, M. A. Siddique, and Y. Morimoto, “Secure computation of
skyline query in mapreduce,” in International Conference on Advanced
Data Mining and Applications. Springer, 2016, pp. 345–360.

[24] X. Liu, K.-K. R. Choo, R. H. Deng, Y. Yang, and Y. Zhang, “Pusc:
privacy-preserving user-centric skyline computation over multiple en-
crypted domains,” in TrustCom/BigDataSE. IEEE, 2018, pp. 958–963.

