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1 Introduction

The extension principle provides a general method for extending nonfuzzy
mathematical concepts in order to deal with fuzzy quantities. It was intro-
duced by Zadeh in 1975 [6]. With this principle, it is possible to fuzzify any
domain of mathematical reasoning based on set theory. As in Gaines [3] or
[1, P.38], “the fundamental change is to replace the precise concept that a
variable has a value with the fuzzy concept that a variable has a degree of
merﬁbership to each possible value.”

Let’s introduce the idea of this principle. Let X be a Cartesian product
~of universes, X = Xy x X x --- x X, and A;, 4,,..., A, be r fuzzy sets
in X;,X,,...,X,, respectively. The Cartesian product of A;, 4,,..., A, s

defined as

Ar X oo X Ar = / min(a, (21, - -, o, () (@1, - -, ).
Xix--xX,

Let f be a mapping from X to a universe ¥ such that y = f(zy,...,2.).
The extension priciple allows us to induce from » fuzzy sets A; a fuzzy set B

on Y through f such that

pe(y) = sup  min(pg(z1),- ., pa. () (1)

y=F{T1,....Zr)




p8(y) =0, if f7(y) =8,

where f~'(y) is the inverse image of y. up(y) is the greatest among the
membership values pa;y..x4,(%1,...,2,) of y using r—tuples (zy,...,z,).

Zadeh usually writes (1) as

B=f(AneyA)= [ min(us, (@), s (@) F a0,

where the sup operation is indicated by union (i.e. by the [ sign).

The compatibility of the extension principie with a — cuts can be stated

a8

Theorem 1

[f(Ala DR Ar)]a = f(Alon A A‘}"O{)
if and only ifVy € Y, 3xy,..., x5, such that

*

)U'B(y) = lu'Alx'"XAr(xic? s 33:7‘)*
i.e., the upper bound in (1} is attained.

By changing sup or min in (1) into other operations, we can get other
extension principles. For example, Jain [4] proposed replacing sup in (1) by

the probabilistic sum + (utv = u + v — uv). The nationale behind this




operator is that the membership of y in f(A,,..., A,) should depend on the
number of r—tuples (z1,...,z,) such that y = f(z4,...,2,). This extension
principle sounds more probabilistic than fuzzy, particularly if we also replace
min by product. It has been pointed out by Dubois and Prade [2] that, in
general, f(Ai,...,A;) is a classical subset of y when X = R (with min or
product) and continuous membership functions are considered. So the result
depends only on the supports of the A;, which invalidates this principle as
one of fuzzy extension. Another extension principle is discu.s‘sed in [1], which
can be obtained by just replacing min by product in (1). This principle
implicitly assumes some “interactiviiy” or possible “compensation” between
the A;. The problem of interactivity is considered in [1, pp. 277 - 296]. It
does not seem that this latter principle has the same drawbacks as does that
of Jain.

In this reﬁort, we will discuss the applications of the extension principle
- to the normal plane €. We will give four definitions of fuzzy points in the
second part. Let € be the set of all the fuzzy points. We will discuss some
geometric properties of € in the third part and some analytic and topological
properties of this set in the fourth part. Before going into our work, we’d like
to introduce the concept of fuzzy distance d of two fuzzy sets A and B (see
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[1]): Let X be a metric space equipped with the pseudometric d, and A, B
be two fuzzy sets on X, then the fuzzy distance between A and B is defined

using (1) as

vé 2 0, Hi(a,m)(8) = P min(g4 (), £a{v)).

2 Definitions of Fuzzy Points

The first definition of fuzzy point is a generalization of the single point in

the plane.

Definition 1 For g fuzzy set A C C, if there exists u € A, such that ps(u) =
A for some A € [0,1], and pa(v) = 0 for v # u, then we call the fuzzy set A
a fuzzy point, we can express it as Ay. (Do not make confusion with o— cuts

of a fuzzy set, we do not discuss a—cuts here.)

When A = 1, the fuzzy point is really a crisp point.

We can introduce fuzzy point from the concept of fuzzy number.

Definition 2 If A is the Cartesian product of two fuzzy numbers, then we

call A a fuzzy point on the plane.

More generally, we can define a fuzzy point as
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Definition 3 A fuzzy point is a conver normalized fuzzy set A of the plane
C such that

{a) 3 ezactly one ¢y € C satisfying pa(ca) = 1, co is called the mean value
of A),

(b} pa is piecewise continuous.
The following theorem states the relations between these three definitions:

Theorem 2 (o) Fuzzy points defined by Definition 1 with A = 1 are fuzey
points in the meaning of Definition 2 and Definition 3.

(b) Fuzzy points given by Definition 2 satisfy the conditions in Definition 3.

Proof. (a) is obvious, we only prove (b} here.

Suppose A is the Cartesian product of two fuzzy numbers on R: A =
X xY, then by the definition of fuzzy number and Cartesian product of fuzzy
sets, dlu = (x,y) € C, such that px(z) = 1, py(y) = 1, hence pa(u) = 1,
i.e., A is normalized and satisfies (a) in Definition 3, where 3! means that
there exists one and oaly one. (b) of Definition 3 is satisfied obviously, we
only need to prove A is convex.

Vu = (a,b),v = (c,d) € C and « € [0,1],

palow+ (1 —aw) = min(px{ce+ (1 — a)e), py(ab+ {1 — a)d))
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= min(min{px{a), fx (b)), min{py(c), pr (d)))
= min{min{ux(a), uy(c)), min(px (b), py (d)))

= min(pa(w), pa(v)).

Hence A is a fuzzy point in the meaning of Definition 3.
The following results are about the fuzzy distance of the above fuzzy

points.

Lernma 1 If § C [0,1], then +.c5 € [sup,es,1]. Especially, if 1 € S, then

+s€S = 1.

Proof. Vz,y € S, aty =z+y—~2y = 2+ (1 — 2)y € [y,1] (convex
combination of y and 1). Similarly, 2ty =z +y -2y = y+{1 ~y)z €
[z,1]. Hence z+y € [max(x,y),1], i.e., Fses € [sup,cs,1]. The last result is

obvious.

Theorem 3 Let Ay, By, are two fuzzy points in Definition 1, py(u) = Ay,

pe(v) = Ag, then

0 if & # d(u,v)
#J(A,B)(é) =
min{Ay, A2) otherwise.



It also holds when sup is replaced by +. If min is replaced by product, then

0 if 6+ d(u,v)
ﬂé(A,B)(& =
A1As  otherwise.

The proof of this theorem is not difficult to obtain by using the above

Lemma, and is omitted here.

Theorem 4 If A and B satisfy the conditions in Definition 3, pal{u) =

pe(v) =1, then

4

=1 if & =d(u,v)

tias(6)3 =0 if 6>sup{d(w,2): we Sy,z€ Sz}

€ (0,1) otherwise,
where 54 and Sp are supports of A and B, respectively. It also holds when

sup is replaced by + or min is replaced by product. In the special case, when

A=B, P‘&{A,B)(O) = 1.
Proof. If § = d(u,v), then

1 = min{ga(u),ps(v))

> s min(sa(w), ()

> min(ﬂA(u)? pa(v)) =1,
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we have 54 5(6) = 1. It is obvious that these inequalities also hold when
min is replaced by product.

If 6§ > sup{d(w,z) : w € S4,2z € S}, then for any w and z satisfying
6 = d(w,z), at least one of pa(w) and pp(z) is zero, so tiap)(6) = 0 no
matter if min or product is used.

By noticing Lemma 1, it is not difficult to see that the resulis are also
true when sup is replaced by the probabilistic sum.

By noticing Theorem 2, we get

Corollary 1 The results in Theorem 4 are also true for points in Definition

2.

Fuzzy points can be considered as a fuzzy set of R. We illustrate this here
by an example. Let us consider the two dimensional normal density function
[5] (random variables are somewhat similar to fuzzy sets):

1
eLPL — 55—
27:'\/0'120‘3 — o3, { 2(ofof — oty)

[(i:f_})f P R T U #z)zl }

o} ciol ol

f(z,y)

where p1, g2 are the means, o2, o2

are the variances for the random variables
Z, 4, respectively, and oy, 18 the covariance.

9



Tz
TIO2

o 2 1

12

( 2 2) 2.2 <0,
T163 Tidy

Since o3 > 0, oy > 0, and < 1, we have

hence
e e BT RN
therefore
0 < flz,y) < ! .

If we let

9(2,9) = fo ) — e,

271'\/:7%0% — a3y

and

#‘A(m: y) = g(:c, y)a

then A is a fuzzy point satisfying Definition 3.

The projection of the intersection of any horizontal plane z = k£ (k €
(0,1]) with g(z,y) onto the zy—plane is an ellipse, all these ellipses are of
the same center (p1, #2), (when oy = o3, there are concentrical circles), the
membership function remains a constant on any such ellipse. This gives us

some hints that this fuzzy point A is no more than a fuzzy set on R.
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In fact, if we define the following function
p(d) =k, d>0,

where

k o d
=E€TPS o 5
P\ 2ot =02 [

so 0 < k <1, then for any (z,y) € C,

g(z,y) = p(d),

where

2

(2 o
d=(z—pm)? - ng(m — Py — )’ 4 2y — )™

et
%

Therefore we can write

| @)@y = [ sd/a

where

Rt ={z: 2 >0}.

The above horizontal-plane-cutting method can be generalized to any
fuZzy points.

More generally, we can define a fuzzy point as
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Definition 4 A fuzzy point is a convex fuzzy set A of the plane C such that
(a) 3 a conver finite region & € C satisfying pa(Q) = A for some A €
[0,1],
(b) max(pa(Q2)) = A,

(¢} pa is continyous.

A method of specifying the membership function of a fuzzy point A sat-

isfying Definition 4 is via the truncated cone function; ie.

'S

=10 i rp<d

ﬁA(ma y) = )\ "2 T

if Ea | Sds 9
s — T

= A if d(T‘l,

where d = \/(m — 2,)% + (y — yp)? = distance from the centre (a,,y,) of the
fuzzy point A. The radii ry and ry are called the minimum and maximum
radius, respebtively, of the truncated cone, and ry > r;.

Figure 1 1s a plot of this function versus distance d. Figure 2 shows a
three dimensional plot of yi4(x,y) for two points, one with (z,,y,) = (3, 6),
and r; = 1.0, r; = 2.0, and the second one with (2,,y,) = (8, 7), and r; =

0.5, r3 = 1.5. For both points, A = 1.
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Figure 1. Truncated cone function.
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Figure 2. The membership functions of two fuzzy points.
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3 Geometric Properties

In this section, we will use the sup-min idea of extension principle to introduce
some geometrical properties on C. Fuzzy line, fuzzy line segment, fuzzy angle,
fuzzy perpendicular, fuzzy parallel, fuzzy circle and fuzzy area of fuzzy polygon
are introduced. First, we discuss how to determine a fuzzy line after two
different fuzzy points are given.

A fuzzy line determined by two fuzzy points A and B, f(_'A, B), is defined

as a fuzzy set on €:

#E(A,B)(C) = :}EP )min(ﬂA(u):#B(”)aﬂc(w))a

where w € I{u,v) means that w is on the crisp line passing through « and v.
A fuzzy line segment between two fuzzy points A and B can be expressed
as the set of fuzzy points: [A, B] = {aA+ (1 —a)B: «c [0,1]}, where the

membership function

Had+(-a)B = @ita + (1 — a)pp.

Figure 3 is an illustration of the membership function of the fuzzy line

segment between the two fuzzy points illustrated in Figure 2.
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Figure 3. The membership function of a fuzzy line segment.
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If A, B and (' are three fuzzy peints defined by Definition 1, u4(w) = Ay,

pB(v) = Ag, pe(w) = As, then

min()\l, )\2, A3) ifwe I(u, U)
NE(A,B}(C) =

0 otherwise

~

For a fuzzy line I(A, B), we can define its fuzzy slope, 3( A, B), as follows

:u’é(A,B)(m) = sup min(:u’A(u)a P"B(v)): m E R,

m=s(u,v)
where s(u,v) is the siope of the crisp line pass through v and v. Fuzzy slope
is a fuzzy set on R.
If A, B are two fuzzy points defined by Definition 1, p4(u) = Ay, pp(v) =

Az, then
IIliH()\l, /\2) if m = S(U, 'U)
pis(a,By(m) =
0 otherwise

After we .ha,ve fuzzy line, we can introduce the concept of fuzzy an-

gle formed by two fuzzy lines. The fuzzy angle from (A, B) to {(C, D),

< (A, B)I(C, D), can be defined as
Yo € 0,2x),

a‘*"d(A,B]?(O,D)(a) = sup min(ga(v), ps(v), pe(w), pp()),

a=<{u,v)l{w,2)
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where < l{u,v){(w, z) is the angle from the line {(u,v) to l{w, 2).
Given a fuzzy line i( A, B), we can define how it is perpendicular to other

fuzzy lines by

#f(A,B)J.( (C’D)):z( S)E )min(ﬂA(u)aﬂB(U)aHC(w)a#D(Z))- :

From the definition, if we have four crisp points 4, B, C, D, then

N 1 if {u,v) L i(w,z)
#f(A,B)i(z(Ca D)) = .
0 otherwise.

Similarly, we can introduce in what degree two fuzzy lines are parallel to

each other

#iamy ((C, D)) = o S )miﬂ(m(u), pB(v), po(w), up(#)).

From the definition, if we have four crisp points A, B, ', D, then

' . 1 if {u,v) || H{w,z)
#E(A.B}u(z(oa D)) =
0 otherwise.

We now would like to introduce the concept of fuzzy circle, O(A,r), with

a fuzzy point A as its center and a positive real number  as its radius:

£oay(C) = sup min(pa(u), pe(v)),

d{1s,w)=r

18



where (' is a fuzzy point. O(A,r) is a fuzzy set on €.

If r is also a fuzzy number, then we define O(A4,r) as

foan(C) = LB min{je 4 (), po(v), (1)),

Consider a fuzzy polygon E, = [A1, Ay, ..., A,] formed by n fuzzy line seg-
ments [Ay, Az, [Ag, As), ..., [An, A1), we can define its fuzzy areq, area(E,),
by

Vo C R+, )u'area(En)(a) - sup min .U'A.-‘(as')a

a=area{{ar,...,an]) 1<i<n

where area{[ay, ..., a,]) means the area of the crisp polygon with vertexes
{a1,...,an}.

The definition here is a generalization of area. If the fuzzy points A;
satisfy pa(w) = 1, ¢ = 1,2,...,n, and a = area([ws, us,...,u,)), then

Harea(Ep) (a') =1.

4 Analytic and Topological Properties

In this section, we would like to introduce fuzzy limits of a sequence of fuzzy
points, limits of sequence of fuzzy poinis, closed, open, and compact subsels

of C, by using these concepts, we discuss some approximation properties in
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The fuzzy limits of a sequence of fuzzy points A, is defined as a fuzzy
subset on C:
Flim (4,)(A) = sup  supmin(pa,(un), pa(u))-

n—00 lim (u,) = w *#21 ™=
N0

H A, = Anfun, A= AJu, then

0 if lim,, oo 4, #u

" i (4n) ) = . .
SUPg>1 MiNnyk( e, A) otherwise.

In special case, if lim,, o, 4, = %, and lim, .. A, = A, then Ve > 0, AK, such

that {A, — A] <¢, (e, A —e < X, < A +¢), for any n > K. This implies

sup miil(/\n? A)= lim A, = A,

kZ 1 nZ Fh—+ O

A fuzzy point is uniquely determined by its characteristic function, so
we can consider a fuzzy point as a 2-dimensional function, and extend some

- properties of functions to fuzzy points.

Definition 5 Suppose f is @ function on C, its norm, ezpressed by |||} is

defined by

11l = sup | F(c}]-
ceC
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The limit of a sequence of fuzzy points is defined by
Jim Aw = ASE Jim s, — pall =
From this definition, we know if A, = A, /u., A = A\/u, then
T}LI&AR = Aiff ;-;ILIE“)A“ = A and ?}Ln;oun = u.

With the limit concept, we can introduce the following definition

Definition 6 (a) A subset E C € is called closed, if {Bn.}‘ cCE B,— B
implies B E:E.

(b) the complement, E°, of a subset E C C is defined by

ppe =1—pg.

(c) A subset E C C is called open if E° is closed.
(d) A subset E C € is called compact, if V{B,} C E, I{B,,} C {B,}, such

that B,, — By € F,
From the definition, we can see

Corollary 2 A compact subset is closed.

Now we want to contribute some approximation properties to this project.
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Definition 7 Let E C €, Ay € €. If there exists By € E, such that for any

B € E, we have
Heeas — pimo || < llpao — 5l

then we call By a best approzimant to Ay from E.

Theorem 5 If E is a compact subset of C, then YAy € C, 3By € E, such

that By is a best approzimant to Ay from E.
Proof. Let {B,} C F satisfy

lim [|p5, = paoll = b llus — paoll;

Te=—dCl

since K is compact, by definition, there exists a subsequent {B,,} C {B.},

such that lim, ,., B,, = By € E, hence
Hru’Ba ﬂ P“Aoll = klggo ”.“Bnk - FLAOH = élé%”#B — pals
1.e., By 1s a best approximant to Ay from E.

Theorem 6 Let E C €, Ay € C. If By € E is a best approzimant to Ay,
then By is also a best approzimant to any point on the fuzzy line segment

[Ae, Bol.
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Proof. If By is a best approximant to Ay, YA € [0,1], VB € E, then

||#AA0+(1_A)BU — usl|
= [|Apa, + (1 = A)pp, — psl
= [[Apae + (1 — Mg, — a0 + 14, — 8
2 e — pBll = A + (1 — App, — pa, ||
2 llrae — pooll = [Apas + (1= Nps, — 4|

= llkag = #Boll = (1 = Allea, — el

= AMlpa, — psoll-
That is
b lleaera-nme — ial = Allnas = ol
But
H#mﬁ(l—x)so —is|l = fApa, + (1= Nus, — pa||
= Allpay ~ paoll-

Therefore By is also a best approximant to AAg + (1 — A)Bp. The proof is

completed.

Definttion 8 Let By, E, be two subset of C, If there exists By € E,, such
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that
su - = inf su A— [B
$9p [lpa = sl = jof sup flwa — sl
then we call By a best simultaneous approzimant to E; from F,.

Similar to the best approximant case, we can prove the following theorem

Theorem 7 If E; is compact, then for any nonempty subset £, C €, the

best simultaneous approzimanis to FEy from E, exist.

The proof is similar to that of Theorem 5, and is omitted here.
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