EXPERIMENTS WITH THE.
ALPOC THEOREM PROVER

~ B. Spencer, J.D. Horton and K. Francis

TR95-094, June 1995

Faculty of Computer Science

University of New Brunswick

Fredericton, N.B. E3B 5A3
Canada :

June 1995

Phone: (506) 453-4566
Fax: (506) 453-3566

Experiments with the ALPOC Theorem Prover

Bruce Spencer, J. D. Horton and Kelsey Francis
email: bspencer@unb.ca, jdh@unb.ca
http:/fwww.cs.unb.ca

Abstract
A system for selecting and preparing a baich of data files, and running a
selected computer program with each data file is described. Another
facility collects the experimental results from several different batches and
summarizes the results in a tabular form.

A theorem prover, ALPOC, is implemented that combines Shostak's C—
literal resolution steps with Stickel's PTTP compiler, and uses Spencer's
Ordered Clause set restriction, A series of experiments is run that
compares ALPOC with PTTP, using the batch system. The results are
summarized and compared with Stickel's PTTP implemented in Prolog.
The results show that ALPOC is slower than PTTP by a factor of at most
4, but frequently is much faster, On the problems where ALPOC is faster
the number of extension steps in the ALPOC proof is less than the PTTP
proof, which leads the iterative deepening search method to explore fewer
levels,

1. Introduction

Clause trees provide a new methodology/data structure for resolution[Rob65]. They are
developed extensively in [HS94,HS95]. In this paper we describe an implementation of
the ALPOC procedure for building rooted clause trees, This is an adaptation of the
procedure described by Shostak [Sho76], and the ordered clause set restriction [Spe9],
Spe93] to the clause tree framework. The implementation is based on the technique
proposed by Stickel [Sti92] in the Prolog Technology Theorem Prover, PTTP. In fact the
code for PTTP formed the basis of the ALPOC program. Most of the problems on which
the system was run were provided by the Thousands of Problems for Theorem Provers
library, TPTP {SSY94]. We have included as many of the problems as we could that were
reported by Stickel in [Sti88].

Some of the empirical results in this report differ from previously reported work [HS94].
There are two major differences between the two ALPOC programs. Some of the proofs
that were rejected in the previous implementation contained unifiable tautology paths, but
did not contain tautology paths. Therefore they should not have been rejected. This made
the procedure incomplete.

The second major difference was to eliminate left merge paths to atom nodes that were
proved by a unit input clause. This is accomplished by nof putting these atom nodes in the
list of atom nodes to the left of the current node that are visible from the current node.

The effect of this is to decrease the number of inferences, since both types of proof would
be tried at the same level of the search, but only one is needed. In addition, keeping the
visible list smaller speeds up the other operations that use the visible list.

2. Description of the Batch System

The batch system described here allows the user to conveniently perform three successive

tasks on a given set of input files. These tasks are

1. Convert an input file inio a data file with a given suffix.

2. Run a given program with a UNIX command line that takes its input from the data file
and writes its output to an output file with another given suffix. This command line is
given to the UNIX batch processor, so that the program can be run in the background.

3. Summarize the data from a number of different output files with the same suffix.,

4, Compare the summaries of the output files with one suffix against those with another
suffix.

The user specifies (in any order) the following information in a file to be read by Prolog:

1. each name of the data sets of interest select_data_set/1

2. the command that generates the data generate_data file/1

3. the command that processes the data process _command/1

4. the file suffix of the data file data_file suffix/1

5. other command-line parameters of item 3 command_line parameter/2

specified one at a time
also specifies the data set of interest
6. a cpu time limit on the batch file cpu_time limit/1
7. the directory from which the input for item 2 comes
path_data_file directory/2
8. the suffix of the output files from item 3 output_file suffix/]
9. the path to where the output file is written output_file_path/1

The data sets of interest can be specified by the enumeration of individual problem names,
and/or by accessing a list of problems asserted from a file as facts.

1. Individual problems can be specified using the problem name:
ex. select data_set('COMO01-1).
select_data_set(MSC007-1.003").

2. Collections of problems may be specified from a file, possibly based upon certain
selection criteria.
ex. All of Stickel's problems are selected with the following:
select_data_set(DataSet):-

ensure_loaded('/aild/kfrancis/Process/stickels.qof),

stickels{DataSet).

3. Problems may be selected using properties as specified in the "ProblemSynopsis' file
accompanying tptp problems. In the following lines, only propositional problems with at
least 20% non-Horn clauses and no more than 4 literals-per-clause (L_C) will be selected:
select_data_set(DataSet):-
ensure_loaded(/aild/kfrancis/Process/problem._synopsis.qof’),
problem_synopsis(DataSet, Number_of_clauses, Percent NonHorn,
Percent_Unit, Percent_Equality, Prop_or NP,
Lit_per_clause),
Prop_or NP ="Pr,
Percent_NonHorn >= 20.0,
Lit_per_clause =< 4.0.

Here is a sample of a complete command file:

select_data set {'RNGO01-2').
path_data_file_directory('/aild/bspencer/tptp/TPTP-vl.1.1/Problems'}.
generate data_file{'prolog +1 /aild/kfrancis/batch/convert').
processor command {'prolog +1 /faild/kfrancis/pttp/pttp_alpoc.gof').
command_line parameter {_, count_inferences).

command_line parameter(_, print proof}.

command_line_ parameter (_, prove this).

command_line_parameter (_, halt}).

cpu_time_limit{30000}). %seconds

data_ file_suffix('.pttp').

output_file suffix('.alpocV1l.1'}.
output_file_path{'/aild/kfrancis/tptp/TPTP-v1l.1.1/Infer/").

2.1 A Tree Drawing Package

In addition to the batch system, a separate system has been developed by David Sharpe for
displaying proofs generated by PTTP, and related systems like ALPOC. It displays the
proof in ASCII text as a rooted clause tree, and spaces the nodes on the page for ease of
reading. Merge paths are indicated by labeis next to the closed leaves.

3. Experimental Conditions and Resuits

All programs were written in Prolog using Quintus Prolog 3.1.1, and run on & Sun
SPARCStation 2. A total of 112 problems were run using ALPOC. A complete set of
measurements is found in Appendix B. Of these, 7 did not run on PTTP because they ran
over the time limit of 20,000 seconds. Every problem that PTTP ran, was run by ALPOC.
Twenty-four problems took ALPOC more than one second, and 7 more took PTTP more
“than one second. The results on these 31 problems are listed in the table below, Time is
measured in seconds. These times are not very accurate; a second run was done for some,
and the times often varied by about 10% either way. Therefore the time listed in the table
have been truncated to two significant digits, and the second of these is suspect.

NAME Time in seconds Inferences Proof
(Ratio) . Size
ALPOC PTTP ALPQC PTTP A P
EX6 -T2 9.1 50. (5.5) 31868 556894 10 14
GRPOO1-1 32. (2.7) 12. 100839 98881 9
GRPO08-1 640 12000 {18.) 1260198 NA 10 12
GRP009-1 3.6 {2.5) 1.4 13204 13008 8
GRPO12-2 570 (3.0} 190 1504607 1421095 11
GRPO13-1 2.9 (2.4) 1.2 9300 3191 7
GRP029-1 .27 13, (49.} 1134 138528
GRP030-1 .08 1.9 {23.) 402 20332 6 9
GRP0O37-3 7.3 (2.4) 3.0 23898 23549 7
MSC001-1 35. 61. (1.8) 104203 328492 12 13
MSC0G4-1 .48 77. (160} 1032 260936 12 23
MSC007-1(5) .23 Na NA 674 NA prop'l
MSC007-1(6) 2.1 NA NA 4975 - NA prop'l
MSC007-1(7) 20. NA NA 40527 NA prop‘l
MSC007-1(8) 260 NA NA 365330 NA prop'l
NUMO24 - 1 14. (2.2} 6.4 27869 27555 7
NUM027 -1 25. (2.2} 11. 47128 48418 8
PRV001-1 19. 8100 (420) 47723 NA 13 19
PUZ023-1 2.6 21. (8.1} 5419 109233 g 12
PUZ025-1 63. 4400 (70.) 125247 21363017 | 13 17
RNGQ01-2 3300 NA NA NA NA 14 Na
RNG0O1-3 1.9 14. {7.5) 6230 131224 14 18
RNGOO1-5 2200 (3.8) 570 5529364 4777282 11
RNG040 -2 70. (2.3) 30. 162762 165983 7
RNG041-1 3.5 (2.5) 1.5 8791 8828 6
SET009-1 8.8 {2.2) 3.4 16628 23409 11
SYNGO1-14{5} 0.07 1100 {17000) 465 26790196 | prop'l
SYN038-1 24000 NA NA NA NA 21 WA
SYN082-1 0.05 25 {500) 79 131071 5 13
TOPO05-2 75. NA NA 90740 NA 16 NA
stark035 0.18 7.6 {41.) 399 50089 g8 12

Table 1. Comparison of ALPOC and PTTP on selected problems

The ratio of the times is listed in parentheses beside the larger value in Table 1. PTTP was
faster for 11 problems, and ALPOC for 20. The largest ratio by which ALPOC was worse
than PTTP was 3.8 for RNG005-1. All of the other ratios were between 2.2 and 3.0. The
ratios by which ALPOC was better than PTTP varied much more. Only one of these

ratios was less than 4; the other 19 were greater. The largest known ratio was 17,000 for
SYN001-1.003; the ratios for the pigeon-hole problems would be even greater (if we
could have measured PTTP on these).

The table also contains the number of inferences required by each procedure to search for
a proof, and the size of the proof (number of atom nodes minus one and not counting the
query node). One can check that PTTP does two to three times more inferences per
second than ALPOC. The number of inferences per second varied more among the
problems than it did between the theorem provers. For PTTP the inference rate varied
from about 3,000 for MSC004-1 to 24,000 for SYN001-1.005; most fell in the range
4,000-10,000. For ALPOC the inference rate for most problems ranged from somewhat
below 2,000 to somewhat above 3,000 inferences per second.

The size of the proof obtained seems to be a determining factor of performance. If the
size of the proofs for ALPOC and PTTP are the same, the number of inferences are about
the same, so ALPOC runs two to three times slower. But if the ALPOC proof is smaller
(and it can never be larger) then ALPOC takes many fewer inferences, and much less time
than PTTP, often by a big factor,

The size of the proof was not discovered by the system if the problem was purely
propositional. The size of the proof was discovered by counting the number of levels the
search took using iterative deepening. But the propositional problems did not use iterative
deepening.

4, Conclusions

The batch system is a general purpose program for preparing, running and summarizing
experiments. It has been used to compare ALPOC and PTTP in this paper.

The ALPOC procedure runs a small set of these problems dramatically faster than PTTP.
Usually this happéns becausc the ALPOC proof is smaller than the PTTP proof, because
of left merge paths (resolutions with C—literals). In cases where the proof sizes are the
same, PTTP runs between 2 and 4 times faster than ALPOC. The number of inferences
that ALPOC uses to search for a proof is never greater than PTTP by 20%, but is
frequently less by significant factors, up to 50,000 in the table.

References
[HS94] J. D. Horton and Bruce Spencer, Clause Trees and Factor Paths, TR94-088,
Faculty of Computer Science, University of New Brunswick, 1994.

[HS95] . D. Horton and Bruce Spencer, Clause Trees: A Tool for Understanding and
Implementing Resolution in Automated Reasoning, TR95-095, Faculty of Computer
Science, University of New Brunswick, 1993, submitted for publication.

[Rob65] J. A. Robinson. A machine-oriented logic based on the resolution principle
J ACM, 12: 23-41, 1965.

[Sho76] R. E. Shostak, Refutation Graphs, Artificial Intelligence, 7{1) 51-64, 1976.

{Spe91] B. Spencer, Linear resolution with ordered clauses. In J. Lobo, D. Loveland and
A. Rajasckar, ed., Proceedings ILPS Workshop — Disjunctive Logic Programming
(1991).

[Spe93] B. Spencer, The ordered clause restriction of model elimination and S1.I
resolution. In Dale Miller, editor, Proceedings of the International Symposium of
Logic Programming, Vancouver, Canada (MIT Press, 1993) 678.

[Sti88] M. Stickel, A prolog technology theorem prover: implemented by an extended
prolog compiler, J. of Automated Reasoning, 1 (4) 353-380, 1988.

[St192] M. Stickel, A Prolog technology theorem prover: implementation by an extended
Prolog compiler, Theoretical Computer Science, 104, 109-128, 1992,

[SSY94] G. Sutcliffe, C. Suttner and T. Yemenis, The TPTP problem library. In
Proceedings of the International Conference on Automated Deduction, 1994.

Appendix A

Automated Theorem Proving (ATP)} Batch System

File Name Directory
batch.pl aild/kfrancis/batch
command_file aild/kfrancis/batch
convert.pl aild/kfrancis/batch
do_arg_list.pl aild/kfrancig/batch
Makefile aild/kfrancis/batch
summarize.pl aild/kfrancis/batch
hour_min_sec.pl aild/kfrancis/pttp
process_id.c aild/kfrancis/pttp
pttp_alpoc.pl aild/kfrancis/pttp
pttp.pl aild/kfrancis/pttp
treedraw aild/sharpe/treedraw
extract_problem.pl ail4d/kfrancis/Process
problem_synopsis.pl aild/kfrancis/Process
stickels.pl aild/kfrancis/Process

How to use the ATP Batch System

Syvstem Set-Up

Makefile:
The 'Makefile' updates all parts of the batch system
{ie. recompiles or creates filesg, as necessary). It can
be invoked from within the directory in which it is
located (specified above), by typing the word 'make’
(without the qoutes).

Command f£ile:
Each job or task is presented to the ATP batch system
as an individual command file. The command file specifies
system information (such as the name of the processor) in the
form of prolog facts.

Only one command file can be sent to the gystem. Multiple
command files can be created, but the system must be invoked
separately for each one. The actual filename of a command file
can be anything.

The command file specified in the file list above can
serve as a guide. Creating a new command file can be made
easier by copving the file '/ail4/kfrancis/batch/command file!
to a directory with appropriate read-write file permissions,
and modifyving the copy to suit individual regquirements.

The prolog facts that must be present in the command file
are listed below (the lines beginning with '%' are comments
for explanation purposes and do not have to be present in
command files used in the system).

gselect_data set ('PRV0O01-1°%}.

Thegse linesg gpecify the name of problems to be processed

by the system. One or more problemg can be specified in

a command file; there must be a fact such as above for each

problem.

Collections of problems may be specified from certaln files.

All of stickels problems are selected with the following:

select_data_set {DataSet):-
ensure_loaded('/aild/kfrancis/Process/stickels.qgof') .,
stickels {DataSet).

Problems may be selected using properties as specified in
the 'ProblemSynopsis' file accompanving tptp problems., In
the following example, only propositicnal problems with at
least 20% non-Horn clauses and no more than 4 literals-per-
clause (L_C) will be selected:
select_data set {DataSet) : -
ensure_loaded{'/aild/kfrancis/Process/problem synopsis.gof'),
problem svnopsis (DataSet, Number of_clauses, Percent NonHorn,
Percent_Unit, Percent_Fquality, Prop _or NP,
Lit _per clause),
Prop_or NP = 'Pr',
Percent_NonHorn >= 20.0,
Lit_per clause =< 4.0.

d° 0P gf P gf P P f o P P P g0 P P IR O° P oP d° oOf of oP

path_data_file directoryl(

'/aild /bspencer/tptp/TPTP-v1.1.1/Problems') .
% This specifies the name of the directory containing the
% problem fileg, in their original form. The directory
% given as an example is the location of the tptp problem
% filesg, versgsion 1.1.1.

generate data file{'prolog +1 /aild/kfrancis/batch/convert').
The original problem files may have to be converted into

a particular form acceptable to the processcr. For example,
tptp problem files must be converted into pttp format before
they can be processed by pttp or alpoc. The command given
in this prolog fact causes a convert program to run; this
program takes the original problem file and creates a new
file. This new file is based upon the original problem
file, but is in pttp format.

P gf of of of of oP oF

processor_command { 'prolog +1 /aild/kfrancis/pttp/pttp_alpoc.gof'}.
This prolog fact must contain the command used to invoke the
system processor. There are currently two processors in use
within the ATP batch gvstem: pttp and alpoc, theorem provers.
To process the problem using the alpoc theorem prover, use

the command exactly as given, To process the problem using
pttp, replace 'pttp alpoc' with 'pttp' in the command above.

P gf of dF P of

command line_parameter{_, count inferences).

command_line parameter{_, dont print_proof}.,

The information given in the ‘'command_line parameter'® facts
ig used by the system when the processgor is invoked. This
information controls certain aspects of how the processor
functions. The underscore in each command line parameter
fact must be present {it was originally intended that
certain information would be given in place of the
underscore, but the svstem has not vet been set up to
handle this). '

P of g P df of o of

O of dP gf P P oFf P oP of oP I of of P

command_line parameter({_, prove_this).

These first two parameters determine whether or not
inferences will be counted during processing, and whether

or not a proof will be printed. Thesge two parameters MUST
precede all other parameters given; but it doesn't matter
whether the inference count parameter precedes the print
proof parameter or vice versa.

To cause the processor to print the proof, use 'print_proof!
{without the goutes) in the fact. Using 'dont_print proof'
{without the qguotes) will direct the processor NOT to print
the procf. Similarily, to count inferences, use
'eount_inferences' (without guotes), or use
tdont_count_inferences' (without quotes) to prevent inference
counting.

There should be only one prolog fact for inference count, and
one for printing the proof.

command_line parameter{_, halt].

gf of P of gf 9P P o P gP gf of of P

These two facts MUST always be in this order ('prove_this'
must be first, followed by 'halt'}), and must be the last
command_line parameter facts given (print proof and count
inference information must come before these facts).

The first parameter is the command which causes processor
execution to begin., In the case of the theorem provers
alpoc and pttp, 'prove_this' is the command which beging
execution.

The second parameter is the command to stop the execution
of the processor after the desired output has been produced.
For the theorem provers alpoc and pttp (both written in
prolog), 'halt' is the command which stops the execution

cf the processor {'halt' is the command te leave the prolog
environment} .

cpu_time_limit (20000). %seconds

el P 9 oOf P of P

AP P O 9P OP P OF oP df P of dP IF P oF

Any batch job may be given a time limit; if the job

is not complete when the time limit has been reached,
processing will halt and a mail megsage will be sent
by the system, saying that the time limit was reached.
Thig prolog fact specifies a time limit, in seconds,
for the processing of each individual problem.

ata_file suffix{'.pttp').

This fact specifies the file suffix to be used for

the problem files c¢reated by the conversion program.
Recall from above that the conversion program converts
the original problem file into a form compatible with

the processor being used. If theorem provers pttp and
alpo¢ are used, the problem is converted into pttp

format {pttp format iz used by both alpoc and pttp theorem
provers); thus the suffix '.pttp' was chosen. The
original problem name is concatenated to this suffix

to give the name of the new problem file used by the
processor.

any file suffix can be used here, but care should be
taken to choose a file suffix which will prevent naming
conflicts with other files in the chosen ocutput directory
(gee below) .

output_file suffix('.alpocvl.1l').

%

The ATP batch system will concatenate this file suffix

toc the name of the problem being processed to get a
filename. A file with this filename will be created
and used for system output.

Any file suffix can be chosen, but care should be

taken to choose a suffix which, when used with the
problem name, will give a filename which is not already
in use in the output directory (see below).

df 3@ of of gf of of

cutput_file path{'/aild/kfrancis/tptp/TPTE-v1.1.1l/Infer/"').
This specifies the directory in which the system will place
output files. Any temporary files which are c¢reated, used,
and then deleted by the system will also be placed in this
this directery. (For example, the pttp versicon of the problem
file (preduced by conversion) is placed in this directory.}
WARNING: The system user should ensure that he/she has
read-write access in the directory specified as the output
directory.
NOTE: There must be a forward slash at the end of the cutput
file path. For illustration:

output_file path{'/aild/kfrancis"). % WRONG!

output_file_path{'/aild/kirancis/'}. % OK,

P P oF 9P of P P of of of P of

A gseparate batch job is created for each problem specified
in the command file. The information presented by the other prolog
facts in the command file applies to each and every problem.

Although multiple problems can be specified in a single
command file, only one progessor can be used with each command
file. Therefore, to run both theorem provers (pttp and alpoc)
on a given problem, the system would have to be used on two
geparate occasions; once with a command file specifying alpoc
as processgor, and once with a command file specifying pttp as
processor.

[ETEEE RS SRR Ss R R R R R R R RS RS AR EEEEE RS EEEEAELEREAEE LSRR ERE SR

Execution

10

Execution of the ATP batch gsyvstem begins when a command
file and the file 'batch.pl' are loaded with prolog by the
user, with the following command:

prolog +1 command_file name +1 bhatch.pl

The system can be executed from any directory. The only
two fileg loaded directly by the user are the command file and
the file 'batch.pl'. These files may be located in the directory
from which the system is invoked, or they may be in different
directories. If the files are not located in the same directory,
directory paths must be used.

ex, prolog +1 /ail4/com_file +1 /aild/kfrancis/batch/batch.pl

The command file must be loaded first, because the file
'batch.pl' uses information contained in the command file.

If the system is successful in setting up and sending the
batch job, several lines begimning with '%' will appear on the
standard output. The last line should give a job number, and

the date. The other lines simply indicate files loaded and
compiled in prolog as part of the system.

IF THERE IS AN ERROR...

If there is an error in the command file or in the command
line as typed, the system will stop in the prolog environment.
To return to the system prompt, type 'halt.' (without the quotes,
but including the period).

A mail message is sent by the gystem when the batch job is
complete., The mail message will list files loaded and compilled
by prolog as part of the system, and temporary files created and
used by the system. If there were no errors, and the problem
could be processed within the time limit specified, the output
files should be in the output directory as specified in the
command file (in prolog fact called 'output_file path').

If the problem could not be processed within the time limit
gspecified in the command file, the mail message will finish
with the following:

[Fault: CPU time limit exceeded 1

! Execution aborted :

There will still be an output file in the specified output
directory, but the file will not contaln a time or inference
count for the problem.

WARNING:

Problems may arise when several command files specify
the same 'input probklem - output suffix - output directory’
geta., If zuch command files were processed at nearly the
the same time, the resgsulting batch jobks cculd be executed
nearly concurrently. Several different batch jobs could be
writing to a single output file.

[EXEETET RS EXLE LR RS ER L RS RS RS2 X E S S 2R R R RS EE LR R EEELELESEEEE S S

Summary

A table summary of inference counts, timings, or level
numbers may be prepared based upon gelected groups of files,
using the proleog program 'summarize.pl'.

The program must be executed within the directory where
the files providing the data for the table are located. The
summary is created and sent to standard output by this command:

prolog +1 summarize +z Time .guffixl .suffix2

'"Time! may be replaced by 'Inference' or by 'Level'. Only
one kind of information appears in each table (ie. timings and
inference counts are not compared in a single table). ‘'.suffixl®

and '.suffix2' correspond to the suffixes of the data files to
be compared, ie. indicate the groups of files being summarized.
ex, Files are: CoM001-1.alpog COMO01-1.pttp

11

:
3
;
:

SET001-1.alpoc SETO01-1.pttp etc.

To compare times for a given problem, '.alpoc' group
versus '.pttp' group, type:
prolog +1 summarize +z Time .out_alpoc .oubt pttpe

ex. To create a table of inference counts for files ending
in '.outa' and '.outb', and to store this table in a
new file called 'MyTable', one would type the following:
prolog +1 summarize +z Inference .outa .outbk > MyTable

LA XEE LS RS S REEREE RS S SRR SRS SRR LR SRR L ERE LR EEELEREESE RS LS

Tree drawing

The C++ program 'treedraw' draws a tree diagram based upon
an input proof. Input is a text file containing a (Stickel
like) proof. The program is ilnvoked by:

/aild/sharpe/treedraw/treedraw input _file_name options
Options allow the user to modify the following defaults:

Top edge labelled {default value).
Bottem edge labelled.
page width, followed immeadiatly by number
{default is 80 columns}).
W : width per node, followed immeadiatly by number
(default depends on input tree data).
L : lines per predicate ncode, followed immeadiatly by number.
(0 means no predicate displayed, default depends on input tree).

W3

Note that options must occur contiguosly.
For example, valid options are : BWSL3.

12

Appendix B Empirical Results

All of the experimental results are collected in the following sections.

B.1 Timing Results

Problem
coM001-1
coMO02-2
EX6-T1
EX6-T2
GRAOCL-1
GRPOO1-1
GRPO02-1
GRPO04-1
GRPOO5S-1
GRPOOG-1
GRPO0O7-1
GRPO0O8-1
GRPG0S9-1
GRPG10-1
GRP(}12-1
GRPO12-2
GRP(O13-1
GRPQ22-1
GRP028-1
GRP029-1
GRPO30-1
GRP{)31-1
GRP031-2
GRPD3Z2-3
GRPD33-3
GRP034-3
GRP034-4
GRP(36-3
GRPQ37-3
GRP038-3
LCLi81-2
LCL230-2
MSCOD1-1
MSC002-1
MSC003-1
MSC004-1

MSC007-1.
MSC007-1.
MSC007-1.
MSCO07-1.
MSC007-1.
MSC007-1.
M3C007-1.

NUMOO01-1
NUMOG2-1
NUMD14-1
NUMO15-1
NUMO16-1
NUMO16-2
NUMO19-1
NUMO23-1
NUMGZ24 -1
NUMO025-1

002
003
004
005
006
Q07
008

o
[

wm

b

L

~1

T8
G OO0 00O O oO-IWNOOOOOoCOoOPR oMo OoOoOCoOooooOOoONWOoOOWWOoOOoOoDOoOOoOROWOo oo

%2

=

.alpocvl.l

.000
.300
.000
.100
. 017
.950
.017

017

.000
.017
.000
.433
.600
.083
.217
.033
. 883
.034
.000
.267
.083

167

L033
.000
.000
.033
.016
.383
.300
.000
.000
.000
.450
.800
.050
.483
.000
.017
.017
.233
.083
667
.083
.900
.333
.000
.917
.083
.134
.016
.000
.017
.000

(4,

(2

(2,
(1.
(1.
(3.
(2.
(2.

(2.
.94)

(1.

(2

{4

(1.
(1.

(1.
.52)
(4.

(2

(2.

48)

.89)
(1,
(1.

06)
06)

54)
66)
85)
01)
37)
00

49)

S4)

.09)
(2.

39)

.79}

86)
82)

28)

06)

18}

ptEpvl.l

0.016
0.067
6.000

50.266
0.000
11,883
0.016
0.016
0.000
0.017
0.000

11522.000
1.417
0.050
0.117

190.684
1.217
0.017
0.016

13.134
1.917
0.067
0.017
0.017
0.017
0.017
0.017
0.183
3.050
6.000
0.000
0.000
60.883
0.167
0.050
76.484
6.000
0.000
0.033
NA

NA

NA

NA
0.483
0.183
0.000
0.717
0.033
0.033
0.000
0.000
6.417
0.000

(5.52)

{18.02}

(49.19)
(23.19)

(1.06)

{1.77)

(158.35)

(too
(too
(too
{too

{1.94)

large)
large)
large)
large)

13

NuMOz27-1 25.117 (2.21) 11.384

PRV001-1 19.16¢6 8133.300 (424 .36)
PUZO0CS-1 0.000 0.000

PUZ013-1 G.000 _ 0.000

PUZ014-1 0.017 {(1.06) 0.016

PUZ023-1 2.550 20.733 (8.13)
PUZ024-1 0.183 (2.20) 0.083

PUZDZ25-1 63.250 4448,900 {(70.34)
PUZDZ29-1 0.800 (1.92) 0.417

PUZ033-1 0.017 0.000

RNGO01-2 3306.450 NA (OVER 30000}
RNGO01-3 1.900 14.284 {7.52}
RNGOQL1-5 2186.350 {3.82} 572.617

RNGO0O5-2 0.033 0.000

RNG(O06-2 0.083 {(4.88}) 0.017

RNG037-2 0.083 {2.52}) 0.033

RNG038-2 0.067 {3.94) 0.017

RNGG40-2 69.567 (2.29) 30.383

RNG(41-1 3.550 (2.45) 1.450

SET001-1 0.000 0.00Q

SETD02-1 0.750 (2.25) 0.333

SET003-1 0.017 0.000

SET004-1 0.016 0.000

SET006-1 0.017 0.000

SET008-1 ¢.100Q {2.00;} 8. 050

SET009-1 8.766 {2.20} 3.8983

SETN43-5 0.000 0.018

SET044-5 0.016 0.017 {1.06)
SET046-5 0.000 0.334
SYNOQ1-1.002 0.000 ¢.000
SYNOODL1-1.003 0.000 0.600
SYNQO01-1.004 0.033 0.117 {3.55)
SYNQOO1-1.005 0.066 1119.259 (16958.33)
SYNOOS-1 0.000 0.000

SYN0O11-1 0.017 0.000

SYNQ14-2 0.166 {2.52} 0.066

SYNG28-1 0.017 0.000

SYNO29-1 0.000 0.800

SYNO3G-1 8.000 0.016

SYND31-1 G.017 0.083 (4,88}
SYNQ3z2-1 0.016 0.016

SYN033-1 0.000 0.0C0D

SYNQ34-1 0.016 0.650 (40.62)
SYNG35-1 0.000 0.000

SYNQ38-1 24272.200 Na (OQVER 30000)
8YND44-1 0.000 0.000

8YN045-1 0.000 0.000

8YNQ47-1 0.000 0.000

SYNO52-1 0.000 0.000

SYN0O55-1 0.033 {(1.94) 0.017

SYNQO&0-1 0.017 0.000

SYNQ61-1 8.000 0.000

S3YNO66-1 0.000 0.000

SYNG81-1 0.033 {1.94} 0.017

S8YN(082-1 0.050 25,267 {505.34}
TOPOGS5 -2 75,233 NAa {OVER 20000)
s03PRIME 0.867 {1.58) 0.550

s0bances?2 0.017 0.000

a0 7NUM1 0.017 0.017

stark035 0.184 7.600 {41,30)

14

B.2 Inference Counts

26-Aug-54

Problem .alpocvl.l pttpvl.1
COMG01-1 35 35

coMQ02-2 630 890

EX6-T1 4 4

EX6-T2 31868 556894 {17.48})
GRADO1-1 40 45 (1.23})
GRPCO1-1 100839 {(1.062}) 98881

GRPQ03-1 24 105 (4.38}
GRP004-1 24 24

GRP(O05-1 4 4

GRPOD6-1 17 (1.086) 16

GRP(Q7-1 12 12

GRP(08-1 1260188 NA {time 11522 sec.}
GRP0O09-1 13204 (1.02) 13008

GRPO10-1 378 378

GRPO12-1 856 856

GRPO12-2 1504907 (1.086) 1421095

GRP(O13-1 3300 (1.01) 9191

GRPO22-1 199 194

GRP028-1 5 5

GRP029-1 1134 138528 (122.16)
GRP030-1 402 : 20332 {50.58)
GRP031-1 736 (1.00) 733

GRP0O31-2 187 187

GRP032-3 6 &

GRP033-3 26 26

GRP034-3 113 {1.01; 112

GRP(034-4 26 {1.08} 24

GREG36-3 1297 {1.00} 1293

GRP(37-3 23898 {1.01) 23549

GRP0O38-3 12 12

ILLCL1ig1-2 & [

LCL230-2 3 3

MSCO01-1 104203 328492 {3.15}
MSCQ02-1 2059 {1.19}) 1729

MSC003-1 94 242 {2.57)
MSC004-1 1032 260936 {252.84}
M3C007-1.002 2 2
MSCO07-1.003 15 16 {1.07)
MSC007-1.004 99 491 (4.96}
MSC007-1.005 £74 NA (too large)
MSC007-1.006 4975 NA ({too large)
MSC007-1.007 40527 Na (tcoo large)
MSC007-1.008 365330 NA {too large)
NUMOOL1-1 1924 {1.00) 1923

RUM002-1 719 719

NUMO14-1 24 24

NUM015-1 1623 383¢ {2.36)
NUM(16-1 226 231 {1.02)
NUMO16-2 187 191 {1.02)
NUMD1S-1 9 S

NUM023-1 2 2

NuM024 -1 27869 (1.01) 27555

NUMO25-1 4 4

15

NUMO27-1
PRV(001-1
PUZ0QS -1
PUZ013-1
PUZ014-1
PUZ023-1
PUZG24-1
PUZ025-1
PUZ02G-1
PUZ033-1
RNGOO1-3
RNGQ01-5
RNGO05-2
RNGQ06 -2
RNG(037-2
RNG038-2
RNGQ040-2
RNG(041-1
SETQ01-1
SET002-1
SET003-1
SET004-1
SET006-1
SET008-1
SET0D9-1
SET043-5
SET044-5
SET046-5%
SYNOOL1-1.002
SYNQD1-1.003
SYNQD1-1.004
SYNQO01-1.005
SYN0O08-1
SYNO11-1
SYNQ14-2
SYNQ28-1
SYNO25-1
SYNO30-1
SYN(31-1
S¥YN032-1
S¥YN(Q33-1
S¥YN034-1
SYNO35-1
SYND44-1
SYNQ45-1
SYNQ47-1
SYNOGRZ2-1
SYN(55-1
SYNO6G-1
SYNQ&1-1
SYNQ66-1
SYN0O81-1
SYNOB2-1
TOPQO5-2
s03PRIME
s0fances2
g0 7NUML
gtarkD35

16

47128
47723
18

26

45
5419
458
125247
1654
19
6230
5529364
94
253
212
154
162762
8791
8
1794
35

34

35
247
16628
3

26

37

6

27
113
465

5

10
407

7

7

13

53

11

5

44

14

11

4

6

7

81

12

7

8

27

79
90740
1941
11

22
389

48418
NA

45

27

127
109233
482
21363017
4699

28
131224
4777282
94
{1.02} 249
212

154

165983

8828

8

2248

35

34

35

{1.186)

254
23409

8

60
2464
8

87
2892
26790196
5

14
422
7

7

36
550
27

5
4510
14
13

4

6

21
235
12

7

8

84
131071
NA
3853
19
22
50089

{1.03)
(tooc large)
(2.50)
(1.04)
(2.82)
{20.16)
(1.05)
{(170.57}
(2.84)
{1.47)
{21.06)

(1.02)
{1.00)

{1.25}

{1.03)
{1.41)
(2.67)
{2.31)
(66.59) -
{1.33)
{(3.22)
{25.5%)
(57613.32)

{1.40)
(1.04)

(2.77)
(10.38)
{2.45)

{102.50}
(1.18}

{(3.00)
(2.90)

{3.11)
{1659.13)
(too large)

{2.04)

{1.73)

{125.54)

B.3 Search Level Results

26 -Aug-94
Problem

CoMO01 -1
CoMO02-2
EX6-T1

EX6-T2

GRADO1-1
GRP(O01-1
GRPO03-1
GRPOO04-1
GRPCOO5-1
GRPO0G-1
GRP0OO07-1
GRPOCS8-1
GRPOQG-1
GRPO10-1
GRPD12-1
GRP012-2
GRPO13-1
GRPO22-1
GRP0OZ28-1
GRP029-1
GRP0O30C-1
GRP031-1
GRPO31-2
GRP(032-3
GRP033-3
GRPD34-3
GRP(Q34-4
GRP036-3
GRP037-3
GRP038-3
LCL181-2
LCL230-2
MSC001-1
MSCO02-1
MSC003-1
MSC004-1
MSC007-1.
MsC007-1.
MSC007-1.
MSC007-1.
MSC007-1.
MSCQ07-1.
Mscoeo7-1.
NUMOO1-1
NUMOO02-1
NUMO1l4-1
NUMO15-1
NUMO16-1
NUMO1l6-2
NUMO19-1
NUM023-1
NUMO024-1
NUMO25-1
NOMOZ27-1

002
003
004
005
006
007
008

.alpocvi.li

5
11
0

—
o

o

iy
ON-IFPN--ITMAoOUNGOoO OO N-LNOoONOOOWITON WU WLA LIPS WA W O

e

ned

)

[

a2=2a

=
M-SRV SN Y PO WO OoO WO oW RW WS DO WWNAP RO DWW D O o=

pttpvl.l

(1.40)

{1.50)

(1.20)

{1.50)
{1.50)

(1.08)

(1.29)
(1.92)

(1.10)

17

PRVO01-1 13
PUZ009-1 0
PUZ013-1 0
PUZ0G14-1 0
9
6

=
o

{1.46)

LI B o

PUZ023-1
PUZ024-1
PUZ025-1 13
PUZ029 -1 20
PUZ0O33-1 0
RNGO01-2 14
RRGOG1-3 14
RNGOO1-5 11
RNGO05-2
RNG0O0D6-2
RNG(037-2
RNGQ38-2
RNGQ40-2
RNGO41-1
SET001-1
SET002-1
SET003-1
SET004-1
SET006-1
SET008-1
SET0CS-1
SET043-5
SET044-5
SETD46-5
S¥YNDO01-1.002
8¥YN0O01-1.003
SYNOQ1-1.004
SYNOQGL1-1.005
SYNQO8-1
SYNQ11-1
SYN(O14-2
SYN0OZ28-1
SYNQ29-1
SYNO3(0-1
SYN(O31-1
SYNQ32-1
SYN0O33-1
8YNO34-1
3¥YNQ35-1
SYN038-1
SYND44-1
8YNQ45-1
SYND47-1
SYNO52-1
8YNOS5-1
SYN060-1
SYNQG1-1
S5YNO&66-1
SYNQ81-1
SYNQ82-1
TOP0ODS -2
s03PRIME
g0bances2
s07NUM1
stark035

=
b

{1.33)

=
=]

(1.31)
(1.20)

[o
o 5 o -

(1.29)

iy
’..J

=
Y

=
[y

(2.00)
(1.33)
(2.25)

{1.33)

{2.25)

ba
N oS MUVWWNIW-IP oo RRRWOWOOOoOUNOoOOoOoO OO EWEREROER R SR W DWW W e

=2
HWE WRWRNOCOONMPEQWOOOPROOOWNOoOO OO OO W RDNRPE O R R f W - W0R WAL

(2.00)
(1.57)

=

(1.33)
(2.60)

=
e

(1.10}

o -
IS I R]

{1.50)

18

