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ABSTRACT
The performance of various vectorizable discrete random-sampling
methods, along with the commonly used inverse sampling method,
is assessed on a vector machine, Monte Carlo applications involving,
one-dimensional, two-dimensional and multi-dimensional probability
tables are used in the investigation. Various forms of the weighted
sampling method and methods that transform the original proba-
bility table are examined. It is found that some form of weighted
sampling is efficient, when the original probability distribution is
not far from uniform or can be approximated analytically. Table
transformation methods, though require additional memory storage,
are best suited in applications where multi-dimensional tables are

involved.
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1. Introduction. Monte Carlo applications often involve sampling based .
on probability tables. Most of the distributions based on experimental data |
are of this category. Sampling from a probability table, i.e. generation of an
arbitrary random variable from the table, requires a considerable amount of
computing time as it involves a table lookup computation.

The commonly used inverse method [4] samples from a cumulative prob-
ability table. It requires a DO-loop involving conditional IF and GOTO

statements, which present an obstacle to high speed vector processing. Brown

et al. [1] attempted to overcome this problem by devising a generation table
with mass points transformed into equiprobable mixture of distributions.
This is similar to the alias method [3] and requires large memory storage
and a relatively complex procedure. In order to overcome these difficulties,
we introduced the weighted sampling method [6]. This method was applied
to sampling from one-dimensional tables, where it occasionally resulted in
large sample variances.

The objective of this paper is to examine the performance of the above
sampling methods in two- and multi-dimensional sampling problems on a
vector computer. In addition, variants of the weighted sampling method are
introduced to reduce the sample variance in some applications.

The paper is organized as follows. First, the weighted sampling method
is briefly reviewed and two variants are introduced. In Section 3, the perfor-
mance of the two variants is assessed for a one-dimensional table to examine
their effect in reducing sample variance. The inverse and Brown et al. meth-
ods are chosen for comparison with the weighted sampling methods. Appli-
cation of various sampling methods to a two-dimensional probability table

encountered in the Monte Carlo solution of linear equations is presented in




Section 4. Section 5 considers the application of the sampling methods in
a particle transport code, which involves multidimensional tables. All com-
putational studies are carried out on an IBM 3090-180 mainframe computer

with a vector facility.
2, Weighted Sampling Methods.

2.1. Direct Method. The weighted sampling method was introduced
by the authors [6]. This method, is referred to here as direct weighted
sampling. It utilizes a discrete uniform distribution to construct samples
from a probability table. In direct weighted sampling (DWS), samples are
constructed by randomly drawing mass points, z;, from a probability table
based on the associated probabilities p;, for j = 1,2,.+-,n, with 3"7_, p; =
1. For the i-th sample, the mass point #; , where z; € {2;,j = 1,2,---,n},
is selected from the probability table according to auniform distfibution in
the interval {1,n]. Subsequently, the sampled mass point is multiplied by
an adjustment factor, which is defined as np;, where n is the table length
and p; is the probability of the selected mass point (p;), where p; € {p;, 7 =
1,2,---,n}. This method may not preserve the original mass points. It
results in, however, unhiased estimates of the mean and variance of the
original distribution.

It was previously shown [6] that the direct weighted sampling method
requires the least scalar and vector computing times, in comparison to the
inverse, alias and Brown et al. methods. This is due to the fact that the
uniform random variables used in weighted sampling are faster to generate
in scalar as well as in vector processing. However, this method may result in
large sample variances in distributions that are far from being uniform {6, 7].
In order.to reduce sample variance, two variants of weighted sampling are

introduced below.




TABLE 1

A prebability table

x| 19 20 30 | 40 50
p 040|020 |0.30)0.08|0.02

2.2. Stretched Table Method. In this method the given probability
table is stretched so that the adjustment factors exhibit low variability. The
generation table is constructed by dividing bins with associated large prob-
abilities such that the probabilities are close to being uniform, while keeping
the memory requirements as low as possible. The sample variance of an esti-
mated quantity may then be reduced. It should be noted that this method is
in effect a table transformation method, not unlike that of Brown et al. [1].
This weighted sampling with a stretched table (WSST) employ.s the same
sardp]ing procedure as that of the direct weighted sampling method.

For example, for Table 1, the WSST generation table is shown in Table 2.
This is constructed by subdividing the first four bins. Each of these bins is
expanded into two bins, and the corresponding probability is divided evenly.
The length of this generation table (n) is equal to 9. Array w stores the
new mass points, which are equal to «;p;n, for j = 1,2,---,n. Since the
stretched distribution is closer to a uniform distribution, the variation of the

adjustment factors in weighted sampling is reduced.

2.3. Nonuniform Distribution Method. In this method, the time
for constructing samples is minimized by employing a discrete nonuniform
distribution, which has a closed form mathematical expression. Hence, the
inverse function of the probability distribution function can be used to gen-
erate discrete random numbers in the interval {1,n], which are subsequently

used to select mass points and associated probabilities from the probabil-



TABLE 2

The generation table of WSST for Table 1

x| 10 10 20 | 20 30 30 | 40 40 50
p (0200206010} 0.16(0.15(0.15} 0.04 | 0.04 | 0.02
w([18.0 | 18.0 | 18.0 | 18.0 [ 40.5 | 40.5 | 144 | 144 | 9.0

ity table. Therefore, this weighted sampling with nonuniform distribution
(WSNU) method does not involve any comparison. In order to reduce the
sample variance, the probability mass function of the nonuniform distribu-
tion should have a similar shape to that of the z;p; distribution. The closer
the shape the smaller sample variance will be.

For the example of Table 1, the WSNU method may involve the use of

a binomial distribution with the probability mass function given as

(2 1) p; = j![,ﬂj)iaj(l _G)n—j ifje {0’ 1’...,”}},
. ;=
0 OtherWiSE,

while ¢ is the shape parameter. The value of ¢ is chosen such that the
binomial distribution closely approximates the original distribution.
Alternatively, the WSNU method may employ a geometric distribution.

Its probability mass function is given as

a(l-a) ifje{0,1,--},

(2.2) p; =
0 otherwise,

where @ is the shape parameter. The geometrically distributed random
numbers can be generated using the algorithm given on page 266 of refer-
ence [4).

The above three weighted sampling methods .(DWS, WSST and WSNU)

render themselves to vectorization. The programs for these methods are




TABLE 3

A probability table with large variance (mean = 87.431, variance = 555.99)

Mass points § 100 ¢ 90 70 50 20 15 10 5 2 1

Probabilities | 600 | .200 | .10G | .030 | .025 | .016 | .013 | .010 | .005 | .001

TasLE 4
Generation table of WSST for Table

x | 100(12x) | 90(4x) | 70(2x) | 50 | 20 { 15 | 10 | 5 | 2 | 1

p | 05(12x) | .05(4x) | .05(2x) | .030 | .025 | 016 | .013 | .010 | .005 | .001

(mx) denotes that the corresponding mass point is repeated m times.

given in reference [7].

3. One-Dimensional Sampling. The methods discussed in the pre-
vious section are used to estimate the mean of an arbitrary distribution,
given in Table 3. This distribution is designed so that it challenges the
weighted sampling method by exhibiting a relatively large variance.

The inverse and Brown et al. methods are chosen for comparison with
the DWS, WSST and WSNU methods. Scalar codes for the various sam-
pling methods are developed for assessing the performance of corresponding
vectorized codes. The various codes are referred to in the ensuing discussion
as follows: INVER (inverse method), BROWN (Brown et al.}, DWS (direct
weighted sampling), WSST (weighted sampling with a stretched table), and
WSNU (weighted sampling employing a geometric distribution). The details
of INVER, BROWN and DWS are presented elsewhere [6]. For WSST, the
generation table used is giver in Table 4. The shape parameter () for the
geometric distribution in Eq. (2.2) is chosen to be equal to 0.68, to closely

approximate the original distribution.



TABLE 5

Results of 100,000 samples for Table &

Code Mean (%fsd} | Processing time, ms | Speedup w.r.t. | Performance index
Scalar Vector Scalar INVER (Speedup /fsd)
INVER 87.43(0.09) | 504.30 90.94 5.545 61
BROWN | 87.50(0.08) | 491.25 54.53 9.248 116
DWS | 87.49(0.65) | 416.58 | 34.80 14491 | 223
WSST | 87.48(0.18) | 41658 |  34.80 14.491 81
WSNU | 87.43(0.02) | 691.00 | 179.93 2.803 150

Table 5 reports the estimates of the distribution mean and the associ-
ated standard deviation normalised with respect to the mean, the so-called
percentage fractional standard deviation (%fsd). The estimated va.lues by all
sampling methods agree within the one standard deviation. For the selected
sample size, the fsd produced by WSST is lower than that of DWS. This
fsd is still higher than that of INVER and BROWN. However, WSNU gives
the smallest fsd. Thus, for the example, the WSNTU method reduces signif-
icantly the sample variance of the direct weighted sampling method. The
least scalar processing time is obtained with the DWS and WSST codes.
The difference in the processing time of DWS and WSST is of the order of
microseconds and therefor is not seen in the table.

The processing times of different vector codes are also shown in Table 5.
The DWS and WSST codes require the least processing time, which is only
about 38 % of scalar INVER’s processing time. In the scalar processing case,
however, their processing time is about 83 % of that of scalar INVER. This
indicates that the vectorizability of DWS and WSST is bet.ter than that
of INVER. The vector processing time progressively increases for BROWN,



INVER, and WSNU codes, respectively. This Table demonstrates that the
vector codes of DWS and WSST entail the highest speedups, while WSNTU
attains the lowest speedup. Thus, vector ﬁrocessing together with the right
choice of a sampling method can achieve significant processing speedups.
In order to fairly assess the performance of any of the above sampling
methods, one must consider two factors: the vectorization speedup and the
resulting fsd For this purpose, we define a performance index as the ratio
" of speedup to fsd Therefore, the higher the performance index, the better
is a method. As Table 5 shows, WSNTU has the highest performance index.
This is not surprising given the careful choice of the matching geometry

distribution, from which direct sampling was performed.

4. Linear Equations. The second application for assessing the per-
formance of the various sampling methods considers two-dimensional tables.
Such tables are encountered, for example, in the Monte Carlo solution of
linear equations arising from finite-difference approximation of partial dif-
ferential equations.

Consider a set of linear equations represented by the matrix equation
Ax=b with a solution given by x = A~'b. By introducing H = I — A,

where I is an identity matrix, one can write
(4.1) x = Hx + b,

When the speétral radius of H is less than one (p{(H) < 1), the Neumann
series expaasion
x = (I-H)'b
= I+H+H* +- - +H™+.- b

(4.2) i H™b
m=0

is absolutely convergent.




There are two approaches to solving this problem using the Monte Carlo
method. The first, suggested in reference 8], employs an absorbing Markov
chain whick has an absocrbing state, at which a random walk is terminated.
Another approach to solving Eq. (4.2) employs an ergodic Markov chain [9],
where the random walks are not terminated by an absorbing state, but their
lengths are predetermined. The implementation details of these two methods
are given in reference [7]. In each method, a state-transition probability
matrix is constructed to facilitate the random walk process.

We examine here the Monte Carlo solution of the linear equations as-
sociated with the finite-difference approximation of a Laplace’s equation. It
should be noted that many efficient techniques are available for solving this
problem. We are considering the problem only as an example to demon-
strate the speedup that can be achieved by employing vetorizable sampling
methods.

.Using the cartesian coordinate system, the problem for a continuous
function « in  and y is defined as:

u  O%u

@+-5_3}3=0'

(4.3)

The boundary conditions for a region 0 < 2 < 10, and 0 < y < 10 are
chosen as u(z,0) = u(z,10) = u(10,y) = =10 and =(0,y) = 10.

The finite difference method using the five point formula [2] is used to
approximate thé original problem. The z :as well as y axis is discretized
into 33 intervals. This discretization results in 1024 internal points. Each
point represents an unknown in the linear equation, Thus, the linear system
contains 1024 linear equations.

The transition probability matrices are chosen based on the resulting
set of linear equations. For the ergodic Monte Carlo method, we chose a

uniform distribution for the transition probability matrix; that is, each point




in a row has the same probability. In the absorbing Monte Carlo method,
the probability for each point is 0.25. Since the sum of the probabilities for a
row has to be equal to one, rows having two and three points have absorbing
probabilities 0.50 and 0.25, respectively.

The average values of the solution estimates for all unknowns and the
corresponding errors are presented in Table 6. The error is calculated here
as the mean-squared difference between Gauss-Siedel solutions (after 80 it-
erations) and the obtained estimates, for all unknowns. In this table, in
identifying the codes, the first three letters represent the ergodic (ERG)
or absorbing (ABS) Markov chain, while the last letters designate the sam-
pling methods: inverse (IN), Brown et al. (BR) and direct weighted sampling
(DWS). For estimating each unknown, 1,000 samples are used. For each sam-
ple size, the random walk length in the ergodic Markov chain is chosen to be
equal to 125, which also represents the maximum random walk length in the
absorbing Markov chain. As shown in this table, the Monte Carlo method
employing an absorbing Markov chain results in smaller errors. The scalar
and vector codes of various methods are given in reference [7]. The vector-
ized codes employing ergodic Markov chains require simpler codes than those
using absorbing markov chains since their random walk lengths for all sam-
ples are predetermined. Vectoriziation of the absorbing Monte Carlo codes
requires a stack processing scheme to efficiently vectorize the processing of
random walks of varying length[11].

As shown in Table 6, the ergodic algorithms result in larger errors than
the absorbing ones. This is caused by the ﬁxed lengths of the random walks
for estimating the solutions of all unknowns. When we choose a random
walk of length 50, good solutions of the boundary points are obtained, while
poor solutions results for the central points [7]. However, if the random walk

of length is 125, the solutions of the central points improve, but the solutions




TABLE 6
Average values of all solution estimates for Laplace’s equation, (Gauss-Siedel

(GS) average = —2.8664 after 80 iterations)

Code Solution Error Processing time, s Speedup Performance index
w.rt. GS | Scalar [ Vector | Scalar/Vector (Speedup/Ezror)
ERGIN | -2.3394 | 1.3967 | 618.42} 329,25 1.88 1.3
ERGBR | —2.3394 1.3967 | 621.02 141.43 4.39 3.1
ERGDWS | —2.3394 | 1.3967 | 485.23 | 86.03 5.64 4.0
ABSIN | —-2.7563 | 0.5505 | 644.35| 63.40 3.94 7.2
ABSBR | —-2.9611 | 0.5855 | 778.78 | 1178.48 4.36 7.4
ABSDWS | -2.7583 | 0.5587 | 601.56 | 147.21 4.09 7.3

of the boundary points become unacceptable. In conclusion, the absorbing
codes are more suitable for estimating all unknowns.

‘The scalar and vector processing times of Monte Carlo solutions for all
unknowns are also depicted in Table 6. In scalar processing, the ergodic
and absorbing codes incorporating the direct weighted sampling method
(ERGDWS and ABSDWS) require about 20 % less computing time than
those of the codes implementing the inverse method (ERGIN and ABSIN).
The ergodic and absorbing codes implementing Brown et al. method (ERGBR
and ABSBR) require larger processing time than those incorporating the in-
verse method. The performance of the inverse method is corﬂpa.ratively
good since the maximum number of required comparisons (conditional TF’s)
is only four; given the fact that there are at most four non-zero probabili-
ties in a row of the transition probability matrix. In the vector processing,
Table 6 shows that ERGIN requires four times more computing time than

that of ERGDWS. This means that weighted sampling can enhance the




vectorization of the ergodic algorithm; however, it is less successful in the
absorbing algorithm. The maximum speedup is achieved hy using the vector B
ERGDWS code. The ERGDWS can achieve the best speedup, because the
uniform sampling contains no loops and the random walk length is predeter-
mined. Thus, Monte Catlo codes employing the weighted sampling methods
result in faster execution in scalar as well as vector processing modes.

In Table 6, the performance is defired as the ratio of the vectorization
speedup to the error (with respect to the Gauss-Siedel method). As the table
shows, among the ergodic codes, direct weighted sampling has the highest
performance index, However, the Brown et al, method becomes competitive

with weighted sampling for the absorbing codes.

5. Particle Transport Problems. A more complex application of
random sampling is encountered in the solution of the particlé transport
(Boltzmann) equation. Here, multidimensional (in space, energy and angle)
probability tables are often involved. The MORSE [10] Monte Carlo code, is
one of the common codes used for performing neutron and gamma transport
problems. MORSE requires extensive table lookup, particularly to sample
the outgoing neutron energy and direction at every collision. This code uses
the inverse sampling method, but we modified it to include the Brown et al.
(BROWN), direct weighted sampling (DWS) method and a hybrid of DWS
with the inverse method, referred to as INWS. In INWS, the inverse method

is used for the first few mass points, and the weighed sampling method is

utilized for the rest, where the probability table tended to be more uniform
for the chosen problems discussed below. It should be noted that due to the
involvement of many different sampling tables with various characteristics,
the use of the W3ST and WSNU methods is not considered to be practical,

as they require some knowledge of the nature of the distributions involved




and they are many of such distributions in transport problems.

Three particle transport problems with different physical characteristics
are examined. In Problem I, the aeutron fluence is calculated at a radius of
200 meters from a point isotropic fission source ir an infinite air medium. A
cross-section (probability table) library consisting of thirteen neutron energy
groups with five Legendre coefficients (utilized in determining the angular
distribution) is employed. The neutron fluence is estimated using a boundary
crossing estimator,

In Problem IT, 2 fast neutron beam is directed towards a cylindrical body
of liquid (water), 200 mm in diameter and 250 kg/m® in density. A neutron
cross section consisting of 33 energy groups with nine Legendre coefficients
is used. Two point detectors are located perpendicular to both the neutron
beam and the axis of the cylindrical body. The next event estimaﬁ:or 1s used
to estimate the detector response. This estimator evaluates the probability
of the next collision being at the detector site, without altering th original
particle track. Problem III is identical to the second one, except that the
number of collisions is increased by raising artificially the liquid demnsity to
1000 kg/m3. Further details of these problems are given in reference [7].

The sequential search in the probability table for air involves a small
number of energy groups, since the outgoing energy does not differ signifi-
cantly from the incoming energy. The search process for water may however
involve the entire energy range due to hydrogen scattering (the hydrogen
nucleus has a mass that is almost equal that of the neutron).

Table 7 shows the estimated fluence and other relevant information for
different sampling methods, using 60,000 source particles. It is seen that
the estimates, for a given problem, overlap each other within the confidence
intervals.

Only the time required for executing the sampling routines is measured




TABLE 7

Results for three neutron transport problems

Problem | Method | Flux & 99 % Confidence | Processing time, s | Speedup Performance index
(neutrons/cm?) Scalar | Vector (Speedup/Confidence)

INVER | (4.0774 0.155)10-1° | 379 1.10 3.5 23
BROWN (4.016+ 0.167)1010 4.00 0.45 8.4 50

!
DWS (3.707+ 0.537)10-1C 3.76 0.41 9.2 17
INWS (4.151+ 0.175)10-1® 3.76 1.11 34 19
INVER (9.439-£0.258)105 5.16 1.57 3.3 13
BROWN (9.230%0.259)10-% 5.14 0.58 8.9 34

II
DWS {9.970-£3.678)10~° 4.84 0.50 10.3 3
INWS (9.143+0.259)10-° 5.14 117 4.4 17
INVER (2.901£0.120)10~* 5.16 157 3.3 28
BROWN (2.90140.119)10~¢ h.14 0.58 8.9 75

111
DWS (2.428:0.463)10¢ 4.84 0.50 10.3 22
INWS (2.906+0.118)10¢ 5.14 1.17 44 37




to avoid the additional overhead of other routines in the MORSE code. The
vectorization speedup is calculated relative to the total computing time of
the scalar INVER routine.

The table shows that INVER results in the lowest speedups, since the
execution of the IF-statements is slow and the vectorization of its innermost
loop is not effective. DWS achieves the highest speedups, as it required
only simple calculations and is fully vectorizable. The speedups achieved by
INWS are lower than those of DWS. However, INWS compensates this by its
lower sample variance. Brown et al. method (BROWN) is fully vectorizable
and entailed high speedups. However, a significant amount of memory and
a complex procedure are required.

The performance index, reported in Table 7, is found by dividing the
vectorization speedup by the relative error (defined as the confidence interval
normalized with the estimated ﬂﬁx). It seen that Brown et al. method has
the highest performance index for all three problems. This comes however at
the expense of increased computer memory storage needed to accommodate
the transformed tables. In Brown et al. method, for a probability table of n
mass points, 3n extra storage locations are required [1].

The results of this work indicate that in problems involving a small num-
ber of energy groups, the inverse method should be employed. A hybrid of
the weighted sampling and inverse methods is most effective in problems with
high proba,bilitiés for the first few points.. The weighted sampling method is

most useful when a large number of collisions occur at low energy.

6. Conclusions. We have examined the performance of various dis-
crete sampling methods for one-, two- and multi-dimensional probability
tables. In the one-dimensional case, direct and stretched-table weighted

sampling methods achieve the highest vectorization speedups at the cost of



a relatively higher statistical variance. However, weighted-sampling with a
matching analytical distribution achieves the highest performance, taking
into account both speednp and variance. The weighted sampling methods
are also found to speedup the computations of the two-dimensional proba-
bility tables arising in Monte Carlo solutions of Laplace’s equation, without
significantly affecting the estimates. In Monte Carlo applications involving
multi-dimensional tables, direct weighted sampling provides the highest vec-
torization speedup. However, in terms of overall performance, Brown et al.
method is superior, as it results in smaller variances. If memory require-
ments are of concern, then a combination of inverse and weighted sampling
is an alternative. In conclusion, to take advantage of vector processing, one
should utilize either table transformation methods, such as that of Brown et
al., or a weighted sampling method. Though weighted sampling tends to in-
crease the statistical variance of the estimates, however, if devised carefully,

weighted sampling can provide attractive performance.
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