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ABSTRACT

This thesis contains the results of an investigation into the design and
implementation of spatial data structures for marine seismic data. An index
| structure, for marine seismic data in SEG-Y format, was designed using a
modified PR quadtree data sfructure and implemented in the C++ computer
language.

To test the software and to evaluate the implementation of the structures,
experiments were carried out with data from a seismic survey in the Mid Pacific
Ocean. The section of the survey used spanned 6 days and consisted of 8
seismic lines. The total amount of data is 335.8 Mbytes ;vith a total of 39752 shot
points.

It was shown that the modified PR quadtree structure was superior to the
standard PR quadtree with an increase in 2D X/Y range searchihg speed varying
from approximately 8% for the third 10 percent cover test to 67% for the 100
percent cover test. The modified PR quadtree structure groups the seismid shots
into objects thus allowing pruning operations to be performed on the structure
during a seérch. This pruning, in some cases, can result in large sections of the

tree being accepted sooner during the search.
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CHAPTER 1
INTRODUCTION

1.1 Background

Methods for capturing multi-dimensional data have changed dramatically
in recent years. This has resulted in a substantial increase in the volume of multi-
dimensional data that is captured. Every time the resolution doubles, the data
volume, on average, will increase by a factor of four. In response to this
increase, new data structures to orgénize, store, retrieve, generate and distribute
spatial data efficiently continue to be developed. This thesis looks at data

structures for handling queries for marine seismic data.

Seismic data are used extensively in oil exploration and related
geophysical applications to determine the earth’s subsurface structure. This
information is then used to determine the location and extent of ore bodies or
petroleum de.posits. For engineering applications, the information is used to
determine where infrastructure such as bridge supporis, pipelines,
communication fines and roads are to be located. The data that were studied for
this thesis were from marine sources but the work is also applicable to terrestrial

applications.

Modern swath sounding instrumehts can produce bathymetric data sets
covering the entire seabed. These data are normally processed and represented

as an evenly spaced grid of depth values [Ware et al, 1992].




1.2 Seismic Exploration

Exploration seismology is based on earthquake seismblogy. With
earthquakes, when the earth fractures, large amounts of energy are released.
This energy produces seismic waves which travel outward from the epicenter of
the quake. The waves are recorded at remote sites and the information is used
to deduce the nature of the portion of the crust through which the seismic waves
traveled [Telford, 1985].

Exploration seismology uses the same principles except that the location,
the number of sources and the size .of the energy emitted by the sources are
carefully regulated. Much of the seismic data consists of continuous coverage of
the survey area, i.e. successive portions of the crust are sampled aiong specific
survey lines at distinct intervals.

Marine seismic data are normally obtained from a specially equipped
geophysical survey vessel. The data collected include the seismic data and core
samples which are used to verify the seismic results. The energy sources are
devices such as air guns, imploders, sleeve exploder, Aquapulsers or chirp
sonars. These devices create an energy pulse called a "shot" which is emitted at
discrete time intervals. The shot interval depends on the depth of the water and
the instrumentation being used. |

The seismic wave travels down through the seafloor subsurface structure.
At each interface boundary between the various seafloor sediment layers, the
seismic energy wave is split intb two components. The first component is
reflected back to the surface while the second component is transmitted through
to the next layer (see figure 1.1). The arrival of the reflected wave fronts is then

detected at the sea surface by detectors called hydrophones. These




hydrophones (also called marine pressure geophones), are piezoelectric devices
which depend on the fact that application of pressure to certain substances
produces an electric potential difference between the two surfaces of the
material. Hydrophones are often arranged in pairs so that their output is
canceled for translation accelerations (due to sensor motion), but added for

‘pressure pulses.
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Figure 1-1. Refraction and reflection of seismic waves.

The hydrophones are mounted in long streamers towed behind the
seismic ship at a depth often between 10 and 20 metres. The first group of
hydrophones is usually spaced at least 100 metres behind the vessel and trailing
the last group is a buoy which is used to determine the position of the individual

hydrophones (see figure 1.2).
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The information that is recorded for each shot inciude:

—

the travel time for the seismic wave

2. the position of the vessel

3. the position of the individual hydrophones

4. the time deléy from the instant that the shot was emitted until

the recording of the data started -

o

the intensity of the reflected waves.

The shot information from the individual hydrophones can then be used to
reduce the raw data and, if required, collapse the trace (see section 2.1), down
to one trace per shot. The final data are then stored on tape using one of the
standard formats for seismic data. A typical seismic tape can store about 30
MBytes of raw data. One of the standard tape formats for seismic data is called
the SEG-Y tape format. The SEG-Y format is generally accepted as a common

format for both marine and land seismic data.

Cable reet on stern of ship

Tail buoy with radar rcﬂcctor\\

|
Towing bnd]ej %‘
Lead-in section \J\
Depressor paravane Dead secti
Dq:th controller section Group2 \ Group24 Tail section

Section to isolate streamer Live section containing
from shocks from ship ~20-100 hydrophones in Depth controtler
30-100 metres length,
Group |

Figure 1-2. Marine seismic survey, from Sheriff [1973].



1.3 Literature Review

Spatial data stfuc:tures have been studied for many years and numerous
data structures have been developed to store point, line, polygon, surface and
volume primitives. In some cases complex -objects can be decomposed by
mathematical methods into points or approximated by point primitives. In these
cases point spatial operations can then be used on the decomposed
representation of the object.

In order to speed up oberations such as queries on GIS’s, advanced
indexing mechanisms have been developed using various spatial data structures
such as grid methods, tree structures and linear encoding. Sections 1.3.1 to
1.3.4 contain discussions of several of the hierarchical tree structures such as

the quadtree.

1.3.1 AVL Binary Search Tree

A tree is a collection of # nodes (one of which is called the root node),
and n -1 edges. in a binary tree, a node can have 0, 1 or 2 children, and every
node except the root node has one parent ( see figure 1.3). In a binary tree the
average depth is O(logn ) but in thé worst case the depth can be 8(n) (vine
tree){Weiss, 1992]. A binary search tree has the property that the data values
stored at all nodes in the right subtree of a node P are greater than the data
value stored at node P. Similarly ali data values in this left subtree of P are less
than the data value storéd at P. An AVL JAdelson-Velski and Landis, 1962] tree
is a binary search tree with a balance condition which ensures that the depth of
the tree is Oflog n). The balance condition requires that for every node in the

tree the height of the left and right subtrees can differ by at most 1. This enables
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tree operations such as insert, delete and find fo be performed in

o( log n ) time.

Figure 1-3. An example of an AVL binary search tree.

1.3.2 Quadtrees

The term guadtree is used to describe the class of structures that is based
on the principle of recursive decomposition of space into four quadrants {Samet,
1990]. The decomposition may be regular (i.e. the quadrants at each level are of
equal size), or irregular. In the irregular type, the order and the type of data
govern the nature of the decomposition. Quadtrees can be used to store point,
area, and curvilinear data. Another factor which distinguishes the various types
of quadtrees is whether the resolution is fixed or variable. Sbme_ of the different

types of quadtrees are:



:
4
;

21

21 ) | 24 ]

22 23

Figure 1-4. Region quadtree.

. region quadtree: a bounded image array is subdivided into four equal

sized quadrants.

. point quadiree: points divide the space into quadrants as they are

inserted. The dividing lines go through the points.

. MX quadtree (Matrix quadtree); data poinis are treated as nonzero
. elements in a square matrix.

. PR guadtree: an adaptation of the region quadtree for points [Samet,

1990]. As each point is inserted into the quadtree the quadrant into
which the point falls is determined. If the target quadrant is already
occupied then the quadrant is recursively subdivided until each
quadrant contains only one point (See figure 1.5). The quadrant

labeling that will be used throughout this thesis is NW (north west), NE



(north east), SW (south west) and SE (south east). The quadrants are

labeled in a Z pattern starting at the NW quadrant.

(1, 19)

NW__)

Quadrant

(7,12

{16, 11 NE

Quadrant

SWot

Quadrant

-

(12,2

f— sE
Quadrant

1,19

white

white

7,12

Figure 1-5. An example of a PR quadtree.




1.3.3 Range Trees

A range tree is a structure developed by Bently and Maurer [1975] that is |
designe.d to retrieve all points that fall within a given range. This structure is
asymptotically faster than the point quadtree and the k-d tree but has an
9( n log n ) storage requirement due {o its structure [Samet, 1990].

A two dimensional range tree is constructed by first sorting all the points in
one direction, say x and storing the sorted points in the leaf nodes of a balanced
binary search tree T. Attached at each non-leaf node P is another balanced
binary search tree T’ with its external nodes housing all the points in the subtree
rooted at P. In the tree T’, the points are ordered by the second dimension y

(see figure 1.6).

NAME X Y
CHICAGO 33 40
MOBILE : 50 10
TORONTO 60 75
BUFFALO 80 | 65
DENVER 5 45
OMAHA 25 35
ATLANTA 85 15
MIAMI 920 5

Figure 1-6. Sample list of cities with their x and y coordinate values,

from Samet [1990].

For a given query ( [Xsw, Xne], [Ysw, Yne]), the search is started by
searching for Xsw and Xne. The path to Xsw is ascended from the closest
common non-leaf node Q of the two paths. If a non-leaf node P’s left child is also
in the path, search its right child’s binary tree T’ sorted on y. On the other path to

Xne from Q, if P’s right child is also in the path, search its left child’s binary tree

9



binary tree 7. A two-dimensional range tree of n points requires O{(n log n )
storage and a range search returning m points takes O ( log% n + m ) time

[Samet, 1990].

m
{80,5}(50, 10){85, 15}{25,35)(35, 4.}{545!055}{60:/\

B c

SVAVAVA

{50, 10)(25,35) (35,40} (5,46} D E  90,$)(85,15)(00.65){60.75) F G :
5.45) {535 {I5.40) {50,10) 4\(3355) 4\(“3.5)
o E F . G’

(25235) (5.45) (50,10) (3540} (80.66) (60.75) (80,5} {85,15)

Figure 1-7. Example of a 2D range tree for the data of Figure 1-8, from
Samet [1993].

1.3.4 Qctrees

An octree is a three-dimensional extension of the region quadtree [Samet
,1990]. The octree is based on the successive decomposition of a 2n by 2n by
2n object array into octants and suboctants until each cube consists of a single

data element. The decomposition process is representéd by a tree of degree 8 in

10




to those cubes that contain only one data element. Leaf nddes are said to be
black if they contain a data object and white if they do not. interior nodes (non-
leaf nodes), are termed grey (see figure 1.8). The octree can contain region,
point, edge, surface and volume data. Work by Navazo and Brunet [1990] and
others have developed the extended octree which is capable of storing

boundary information.

0

1
2 | 3 5/
5 62 |63| 7 / .

0 1 2 3 4 5 o

60 61 62| |83 o] N L8] RN

65 67

Figure 1-8. Representation of a region octree.
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1.4 Thesis Objectives and Outline

This thesis investigates. multi-dimensional data structures for efficient
storage and retrieval of marine seismic data. The objectives of the thesis are:
1. To develop a data structure and algorithms for the storage and.
retrieval of seismic data.
2. To implement and test the data structures and algorithms on actual
seismic data.
3. To compare the new data structures with the original data structures

used for the seismic data.

The thesis is divided into 7 parts. Chapter 2 describes the data, methods
of obtaining the data and the format that is used to store the data. Chapter 3
describes the seismic index objects. Chapter 4 describes the data structures
used for the thesis. Chapter & outlines the modified PR quadtree algorithm
developed here. Chapter 6 describes the implementation of the seismic index
data structurés. Chapter 7 describes the experimental testing that was done, and
compares rangé search execution times of the modified and standard data
structures. Chapter 8 contains the conclusions and areas where future research

can be performed.

12



CHAPTER 2

SEISMIC DATA

2.1 Geophysical Data

The experimental data used in this thesis dealt only with marine seismic
data but the data structures and algorithms developed here can also bé used for
terrestrial seismic data. The data structures can also be used to index other
geophysical data such as gravity data and magnetic data that are point based

and that can be grouped as objects.

As outlined in section 1.2, seismic data are obtained from a seismic
survey. The energy pulse from a "shot" is received at the hydrophones in the
form of a harmonic wave which can be expressed using sine and cosine
expressions [Telford, 1985]. These harmonic waves can be recorded and
stored uéing' either analogue or digital recording. Analogue devices represent the
signal by a voltage which varies continuously over time. Analogue recording
| produces two sources of data. The first is the signal from the hydrophones. The
signal after it has been processed by appropriate filtters and amplifiers is then
stored on magnetic tapes or disk. At the same time, the processed signal is sent
to either a photographic camera or a camera based on electrostatic printing, to

produce a graph on photographic paper. The graph is used for monitoring and

13



for interpretation. Each individual graph represents the motion of a hydrophone
( or the average of a group of hydrophones) and is defined as a trace.
Analogue recording has been superseded by digital recording. This _
method repfesents the signal by a series of numbers which denote the output of
the hydrophones at discrete intervals (see figures 2-1 to 2-3). The sampling
interval, for the test data, ranged frorﬁ 2 to 4 msec. Digital recording allows
higher fidelity and permits numerical processing of the data without adding
appreciably to the distortion. Figure 2-4 shows an example of a seismic line from

tape 32 of the seismic test data discussed in chapter 7.

Ne g~ g G

Figure 2-1. Example of a seismic trace from Landmark [1992].
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Figure 2-3. Digital samples of a seismic trace from Landmark [1992].
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2.2 SEG-Y Seismic Data Format

The SEG-Y tape format was developed between 1973 and 1975 and was
established as one of the tape standards for capturing seismic data [Barry et al,

1975]. It was based on prior work and on the SEG Exchange Tape Format

[Northwood et al, 1967]. The tape format was deve!oped for application to

computer field equipment and in the then present data processing centres with -
flexibility for expansion as new ideas Were introduced. The SEG-Y format breaks
the tape into 8 separate regions, with several of the regions being repeated as

required (see figure 2-5).

Header records Seismic trace records (repeated for sach

trace)

1 2 3 4 5 6 5 6 71 8

12 BOT 3200 400 240 seismic 240 seismic EOF

feet | mark byte byte bytes | amplitude bytes | amplitude { marks

empty - EBCDIC | Binary | seismic | samples | seismic | samples
tape ' header | header | trace trace

record record | header header

Figure 2-5. Parts of an SEG-Y formatted tape from Landmark [1992].

The first 12 feet of the tape are empty. The BOT (beginning of tape)

marker is a silver stripe on the tape. This is read by the tape drive as the

17



beginning of the tape write area. For the SEG-Y file stored on disk these two
fields are irrelevant. .

The third field is the EBCDIC header record. This is a text header that
contains information such as the shooting parameters and processing history.

This is an opticnal field and may be empty.

The fdurth field is the binary reel identification. header record. This
record contains information about how the seismic data are stored on the tape or
disk and includes the following information:

+ the sample rate of the data

» the sample format of the data (floating pbint, 32 bit integer, 16 bit

integer or 8 bit integer)

» the length of the seismic trace.

Appendix A gives a detailed description of the fields in the header record.
In the following lists of the fields in the SEG-Y records, from which data were
retrieved for this thesis, the symbol “|R]" indicates that it is strongly
recommended that the fields contain the required information, while an ‘o)
means the field is optional and may not contain valid information. For the header
record, the required fields that were accessed are:

1. bytes 21 - 22 [R] : number of samples per data trace

2. bytes 25 - 26 [R] : data sample format code

3. bytes 55 - 56 [R] : measurement units (metres or feet).

The fifth and sixth fields, the trace header and the seismic amplitude

samples, make up the seismic trace records. These fields are repeated for each
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trace in the seismic line. The trace header contains the trace number, possibly

the line number, the reference position for the trace, the coordinate units

(whether meters, feet or seconds of arc) and various other information. Appendix

B gives a complete description of the fields in the trace identification header.

The required data fields for this research are:

4.

bytes 1 - 4 [R] : trace sequence number within the line

5. bytes 65 - 68 [O] : water depth at group
B.
7

bytes 69 -70 [O}] : scale to be applied to the depth

. bytes 71 - 72 {0} : scale to be applied to the coordinates fo give the

real values {one of 1, 10, 100, 1000 or 10000)
bytes 81 - 84 [O] : x coordinate for the group (see note below)
bytes 85 - 88 [O] : y coordinate for the group (see note below)

(note: the coordinates are stored as a 4 byte signed integer)

10.bytes 89 - 90 [O} : coordinate units (1= length {(metres or feet)

2 = seconds of arc)

11.bytes 115 - 116 [R] : number of samples in the trace

12.bytes 167 - 158 [O] : year data were recorded
13.bytes 159 - 160 [O] : day of year

14.bytes 161 - 162 [O] : hour of day ( 24-hour clock)
15.bytes 163 - 164 [O] : minute of hour

16. bytes 165 - 166 [O] : seconds of minute.

The seismic amplitude sample fields were not directly accessed as this

information was not stored in the index data structures. The index data structure

does, however, contain a pointer to the trace header record for the seismic
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amplitude data. These pointers are used for retrieving the amplitude data for

viewing the selected seismic lines (see section 6.2).

The last two sections are the end of tape marks (EOF). One EOF marker
indicates the end of a seismic line (there may be part of, one, or more than one
seismic line on a tape). Two EOF markers indicate the end of volume. For lines

stored on disk these sections do not exist.

2.3 Constraints

The SEG-Y format specifies whether the ﬁel&s in the various sections of
the data are required, recommended or are optional. This means that the SEG-Y
files have to be préprocessed in order to make sure that all the fields accessed
for building the spatial index are populated with valid data. This preprocessing
includes:

1. Storing the reference coordinates for the traces in the trace headers. -

The navigation data are normally collected and stored in a separate
 file in latitude and longitude format.

2. The method for storing the reference positions of the coordinates in
arc seéonds did not allow the navigation coordinates, which were
recorded in decimal degrees and with 6 digits of precision after the
decimal point, to be stored so that the full precision of the original
navigation was retained. For this thesis the coordinates, in decimal

" degrees, were transformed so that the maximum latitude (+/-90

degrees), and the maximum longitude (+/- 180 degrees) could be
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stored in a 32 bit signed integer. The coordinates were transformed as
follows:
scaled_longitude =(long int) ( longitude * largest_32 bit_integer )/ 180.0
scaled_latitnde = (long int) (latitude * largest_32_bit_integer )/90.0
and the.results stored as a 32 bit signed integer. This allowed the full
accuracy of the original navigation data to be maintained.

3. Forthe experimental data used here, none of the seismic lines had the
line humber field set. Within the index data structure, each seismic line
is identified by the address of the structure containing the data for the

line (see section 3.2).
This preprocessing ensures that the recommended and optional fields in

SEG-Y files are set to valid values. This reduces the chance of having problems

when the data are loaded into the index data structures.
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CHAPTER 3

SEISMIC INDEX DATA OBJECTS

3.1 Information Used in the Spatial Index

The index structures were designed to allow searching both in time and
2D space. In order to allow for these searches, the time that the trace was
captured and the position-of the trace were extracted from the SEG-Y file. Other
extracted information includes the data necessary"to determine the trace

positions in the file and the format of the trace data.

3.2 Index Objects and Functional Diagrams

The SEISMIC INDEX data structure was designed and implemented using
object oriented methods. A list of the operations that would be required to
interact with the data was developed. The operations that were identified are as

follows:
1) Initialize: set the data structure parameters to the initial settings.

Project data SeisIndex
> X/Y limits

> Time limits Initialization ———TSegy_index Object

> Project filename

Figure 3-1. Function diagram for initialization of structure.
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2) Insert seismic line: add a seismic line to the current structure.

Seislndex
line information
> SEG-Y file name T Line Object
> Line number .
> Start & end times
> # samples per trace

> sample data type
> Coordinate units

Figure 3-2. Insért line functional diagram.

3) Insert trace: add one trace of a seismic line {o the current structure.

Seislndex
F
Trace information : Trace Object
> Trace # '
> Byte Offset ﬂ-n_sert
> Pointer to line object "\ Trace

> Reference coordinates
> Acquisition time

Figure 3-3. Insert trace functional diagram.

4) Delete: remove the specified seismic line from the data structure.

Seisindex
* Line Object

Line # to delete
*( Delete Line

Figure 3-4. Delete line functional diagram.
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5) 2D_Range_Search: return the lines that cross the specified region.

Seislndex

X/Y Search limits
>lower left X coord. Line Object(s)
>lower left y coord.

>upper right x coord.
>upper right y coord.

2D Range
Search

line(s) found during search

Figure 3-5. 2D range search functional diagram.

B) Time_Search: return the lines that were surveyed during the

specified time period.

Seisindex
Time Limits Line Object (s)
> start yy:dd:h:min:sec Time

> finish yy:dd:h:min:sec Range Search/ Line(s) found during search

Figure 3-6. Time range search functional diagram.

7) Display Lines: display the specified line position data in a separate

window from the trace data.

Seisindex

l Line Object data
Line(s) found Display > X-Windows

o

during search Lines Polyline data

Figure 3-7. Display line objects functional diagram.
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8) Display Traces: outputs the traces for the specified line to a TDR
type file so the selected data can be displayed using the

FLEDERMAUS 3D viewer [Paton, 1995].

Seisindex

y __ Line Object Data '
Line(s) found Dispgh . Trace Data in
during search Traces Trace data ~ TDR format

Figure 3-8. Display trace objects functional diagram.

Figure 3-9 shows the functional diagram for all the operations. The next
sections define the objects within the "seismic index" data structure. The
objects that will be covered in this chapter include the Seismic Line object, the
Seismic Trace object, and the Seismic Index object. Sections 3.2.1 to 3.2.3

define these objects.
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Line number

SEG-Y FILE

User "request

' Y
ecode selected  f Display
USER equest ines Traces

Yy
Seisindex
£ | Line # 1splay
rvere—r———-

Feedback

Delete
Line
Trace # Delete
> Trace

X/Y limits - 2D Range |
Search found lines
: —-
Time limits ]
- »{{'ime Range Search

found lines

3

Figure 3-9. Functional diagram for the seismic index operations.
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3.2.1 Seismic Line Object

The seismic line object contains general attributes and methods to store
and manipulate the data for an instance of a line. As each line is loaded into the -
"seismic index" data structure the line object is created and the object attributes
are updated until all the traces for the line have been loaded. The atiributes that
the object contains are as follows:

1. the seismic line filename complete with its path

2. an internally generated line number for the seismic line

3. the format for the trace amplitude data

4. the coordinate units

5. the time for the first trace in the line

6. the time for the last trace in the line.

The methods associated with the line object are.
1. Methods to store and return the filename for the seismic line
2. Methods to store and return the time for the first trace in the line
3. Methods to store and return the time for the last trace in the line
4. Methods to store and retrieve the data units
5. Methods to store and retrieve the coordinate type.
Figure 3—10 shows the object model for the seismic line class. Appendix C shows

the complete C++ class definition.
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SEISMIC LINE

Filename : char*

Firstrace : Seis_trace *

Line_number :long

Data_type : long

Units > long

First_time : unsigned long

First_year : short

lLast_time : unsigned long

‘Last_year : short

Xsouthwest : double

Ysouthwest : double

Xnortheast : double

Ynortheast : double

Add_fname // add complete UNIX path name.

Get_fname i/ return the complete UNIX path name.

Gef_linum // return the line number assigned to the line object.
Set_linum /f add the line number.

Get_units // return the coordinate units.

Set_units // add the coordinate units.

Get_Dtype // return the trace amplitude data type.

Set_Dtype /l add the trace amplitude data type.

Add_Ftime // add time for the first trace in yy:dd:hh:min:sec format.
Get_Ftime /I return time for the first trace in yy:dd:hh:min:sec format.
Add_Ltime // add time for the last trace in yy:dd:hh:min:sec format.
Get_Ltime / return time for the last trace in yy:dd:hh:min:sec format.
Drawline !/ draw the seismic lines polyline in an X window.
Set_cover /{ add the trace coordinates and update the line's cover
Get_cover // return the seismic line’s trace data cover.

Figure 3-10. Seismic line object class model.

3.2.2 Seismic Trace Object

The seismic trace object contains specific attributes and methods to store and

manipulate the data for an instance of a trace. As e.ach trace is loaded into the
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seismic index data structure, the trace object is created and the object aftribute
values are set. The attributes that the object contains are as follows: |
1. a pointer to the seismic line object with which this trace is associated
2. the trace number that the trace was assigned within the SEG-Y file
3. the trace number that the trace was assigned within the “seismic index”

structure

4. the byte offset from the beginning of the SEG-Y file to the beginning of
the trace header record

5. the trace capture time expressed in seconds from 1800

6. the reference coordinates for the trace.

The methods associated with the line object are:
1. Methods to store and return the seismic line object pointer
2. Methods to store and return the trace’s SEG-Y trace number
3. Methods to store and return the trace’s “seismic.index“ trace number
4. Methods to store and retrieve the byte offset
5. Methods to store and retrieve the trace’s coordinates.

6. Methods to store and retrieve the trace capture time.

Figure 3-11 shows the object class model for the seismic trace class and

Appendix D shows the complete C++ class definition.
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Seismic Trace Class

line_obj : Seis_line *

Trace_number ' long

traceld > unsigned long

Byteoffset . streampos

year - int

Trace_time > unsigned long

Xcord . double

Ycord . double

Zcord : double

next : Seis_trac ™ y

Add_line_num
Add_trace_num
Add_byte_pos
Add_xyz
Add_time
SetiraceCounter
Get_line_num
Get_trace_num
Get_byte pos
Get xyz
Get_time
GettraceCounter

// add the pointer to the trace’s seismic line object.

/{ add the trace’s number within the seismic line.

{{ add the byte offset to the trace header in the SEG-Y file.
/l add the frace’s reference coordinates.

// add the trace’s time in yy:dd:hh:min:sec format.

// add the trace’s seismic index trace number.

// return the line pointer to the trace’s seismic line object.
I/ return the trace’s number within the seismic line.

// return the byte offset to the trace header in the SEG-Y file
// return the trace's reference coordinates.

// return the trace's time in yy:dd:hh:min:sec format.

// return the trace’s seismic index trace number.

Figure 3-11. Seismic trace object class model.

3.2.3 Seismic index Object

The seismic index object is the main class for the seismic index data
structure. This object contains, as children, all the classes necessary to load the

required SEG-Y files and perform the query operations to return the selected
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lines. As the data are loaded into the seismic index data structure, the line and

~ the trace objects are created and the data are inserted into the structures. At the

same time, the seismic index atfribute values are updated. The attributes that the

object contains are as follows:

1.
2.

o =~ O O,

The file name of the Project Index file
The cover for the seismic index. This is the extent used by the PR

quadtree (see section 4.3)

. The tight cover for the fines that have been loaded from the project files

. The maximum and minimum time for the data contained in the seismic

index

. Pointers to the AVL Time Tree (see section 4.1)
. Pointer to the PR Quadtree (see sections 4.2 and 4.3)
. Pointer to the Project file list class

. An instance of the SGX class.

The Project and SGX classes are described in chapter 6. The methods

associated with the seismic index object are:

1.
2.
3.

Methods to insert and delete a seismic line from the structure
Method to perform the initialization of the class

Method to set and return the cover

. Method to set, update and return the tight cover for the inserted seismic

lines

. Methods to set, update and return the time for the inserted seismic

lines .

. Methods to display a seismic line or the results of a query

. Method to perform a 2D range search or a time range search
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8. Method to load a project or to create a project file

9. Method to save or read the seismic index structure to/ from disk.

Figures 3-12 and 3-13 show the object class model for the seismic index class

and Appendix E shows the complete C++ class definitions.

Seismic index Class
Filename . char * |
Xswindex : double
Xnelndex : double
Yswindex : double
Ynelndex : double
Depthmin : double
Depthmax : double
lLineXsw : double
LineXne : double
LineYsw : double
LineYne - : doublie
Timestart : unsigned long
Timeend . unsigned long
Number_of lines :int
Projectnames : Index_Project_List
PruneTree :int
Quadtree » PR_Quadiree *
SearchTree . Time_tree
SGX=IndexFi!e : SGX=DiskIO

Figure 3-12. Object model for the seismic index class.
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Seismic Index Class (cont.)

Add_min_time
Add_max_time
Add_line_cover
cover.
UpdateLineCover
UpdateTimeCover
Set_proj_cov
Set_proj_tim
Incrm_hum_line
UpdateindexCover
RinindexCover
Get_proj_cov
Get_proj_tim
DisplayLINES
DisplaySHOTS
LoadProject
LoadSeismicindex
SaveProject
SaveSeismicindex
Initialize

Insert

Delete

/I add the minimum time for all the inserted data.
/i add the maximum time for all the inserted data.

/1 11 add the cover for a seismic line and update the

/I add and update the cover for the seismic fine data.
/l update the time data cover for the inserted data.
/I set the cover for seismic index.

/I set the minimum and maximum project times.

J/ increment the number of lines that have been inserted.

// update the cover for the seismic ir}dex.

Jf return the current seismic index data cover.

/f return the current project data cover.

/I return the minimum and maximum project times.-
// display in an X window the selected line(s).

J/ write the selected trace data to a TDR file.

/! load the information specified in a project file.

// \oad and build the seismic index from the SGX file.
/I create a seismic index project file.

/f create and save the seismic index in an SGX file.
/1 initialize the seismic index environment.

/l insert a seismic index line.

/f delete a seismic index line.

Range_Search_2D // perform a 2D range search on the PR quadtree.

Time_Search

/f perform a time range search on the AVL time tree.

Figure 3-13. Object model for the seismic index class (cont.).
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3.2.4 Object Hierarchy

Figure 3-14 is an OMT [Rumbaugh et al, 1991] class diagram which

shows the relationships among the seismic index objects.

Lines Linked List o

search result

L
Grey Node Black Node White Node

PR Quadtree

Quadtree node
LN

: Regular omsion Tist type
Trace collision list

Seismic Trace

: &
Figure 3-14. Object model for the SEG-Y seismic index object.
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CHAPTER 4

SEISMIC INDEX DATA
STRUCTURES

4.1 Seismic Index Data Structures

In chapter 3 the object classes that are used to index the raw SEG-Y
seismic files were described. The data structures, which are used to index these
objects so that time and 2D range gqueries can be performed, are described in
this chapter. There are four types of structures used. The first is the pointer
array which is used to store the address of the objects as they are created in the
process of building the index from an SGX file (see section 6.4).

The second type is the linked list. These are used in several places. The
first is to link all the traces together and bind thém to the seismic line to which
they belong. The second is in the quadtree structure which is used to store the
traces. As duplicate coordinates are possible for the trace data at each node, a
collision list is maintained of traces which fall within a cell. Section 4.3 describes
this structure in more detail.

The other two basic types of structures used are the AVL binary search
tree and the PR quadtree [Samet, 1990]. Section 4.2 describes the exact
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structure of the AVL tree that was used. Section 4.3 describes the standard PR
quadtree and section 4.4 describes the modified PR quadtree.

4.2 AVL Time Tree

The AVL time tree class was designed from an AVL binary search tree. -
This structure is used to organize the seismic line object class so that time range
queries can be performed. The time of the first trace, in seconds from 1900, was

used as the discriminator at a node to determine into which subtree the seismic

line object should be placed. As there was a possibility that line objects could

have duplicate first times, a policy that the duplicate time should be placed in the
left subtree was adopted. The two classes which comprise the AVL Time Tree

structure are described in sections 4.2.1 and 4.2.2.

421 Time Tree Object Class

The first object class is the container class, called the Time Tree class,
through which requests to insert, modify or retrieve data are sent. This cléss only
has one attribute, this being a pointer to the root of the AVL Time Tree. This
class supports the following operations: .

1. insert and remove a seismic line object from the tree

2. perform time range searches

3. read and write the structure to an SGX disk file (see section 6.4).

Figure 4-1 shows the object model for the Time Tree class and Appendix F

shows the complete C++ class definition.
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Time Tree Object Class

tree_node AvI_node *

Insert : // insert a seismic line object into the AVL Time Tree.

RemoveAVL // delete a seismic line object into the AVL Time Tree.

Time_search  // search the Time Tree using time for valid seismic line
-objects.
Remove // delete the entite AVL Time Tree.

Range search_2D // perform a 2D range search on all the line objects in the tree.
Writefilenames  // write the seismic line UNIX path names to a project file.
ReDrawlLines // update an X windows display from all the seismic line
objects.

WriteSeismicIndex // write the AVL Timé Tree to a seismic index file (SGX).
ReadSeismiclndex // build the AVL Time Tree from a seismic index file (SGX).

Figure 4-1. Object model for the Time Tree object class.

4.2.2 AVL Node Object Class

The second object class of the time tree is the AVL node object class.
This class contains the line object and forms the nodes within the AVL Time
Tree. The class contains the following attributes:

1. a pointer to the left and right children

2. a pointer to the seismic line object.
The class supports the following operations:

1. 2D range search

2. read from and write to an SGX file (see section 6.4)
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3. write data to a project file _
4. return line object address, start and end times and line number.
Figure 4-2 shows the object model for this class. Appendix F shows the complete

C++ class definition for these objects.

AVL Time Tree Node Object Class

Teft Avl node *
Right Avl node *
B Height int
lineobj Seis_line * -
; Avl node // create a Time Tree Node. o
Get_linum // return the seismic line object’s line number.
Get_stime // return the minimum time in seconds for the line object.
Get_etime // return the maximum time in seconds for the line object.

Range_search 2D // perform a 2D range search on the seismic line object.
Writefilenames ~ // write the node information to the project file.
ReDrawLines // redraw the seismic line object in an X window.
WriteSeismicindex ff- write the node information to an SGX file.

ReadSeismicIndex // create a node from the data read from an SGX file.

Figure 4-2. Object model for the AVL Time Tree node object class.

4.3 Standard PR Quadtree

The third data structure is the standard PR quadtree. This data structure
is used to store the data for each instance of a trace. The reference coordinates

for the traces, in double format, are used to determine into which subquadrant a
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trace is to be inserted. The extent for the quadtree is set when an instance of the
object is created. Once set, the extent cannot be changed without rebuilding the

quadfree.

4.3.1 PR_Quadtree Object Class

The PR quadiree is built from two object classes. The first is the
PR_Quadtree object class. This class is a container class through which all
requests to insert, modify or retrieve data are sent. The attributes that this class
supports are.

1. centre and the extent of the PR quadtreé

2. bounding coordinates for the PR quadtree's cover. This is used to

determine if a point falls outside the limits.of the quadtree and to
prevent infinite recursive splitting of the quadrants during the insertion
of points that are outside the bounds of the quadtree.

3. pointer to the root of the PR quadtree.

This class supports the following operations:
1. insert and delete a trace
2. perform a 2D range search
3. read from and write the .PR quadtree structure from-an SGX file (see
section 6.4).
Figure 4-3 shows the object model for this class and Appendix G shows the

complete C++ class definition.
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4.3.2 PR_Quadtree Node Object Class

The second class is the PR_QTnode class. This class forms the nodes
within the PR quadtree. The nodes contain a pointer to the trace or traces which
have been inserted into a quadrant. With seismic data there is a possibility that
there may be duplicate coordinates due to the nature by which the seismic data
are coliected. To accommodate duplicate coordinates, a collision list is
maintained at each leaf node into which muitiple trace objects are inserted. This

list is built from the NodePoint class.

PR Quaditree Object class
Rootnode : PR _QTnode * '
Xcentre : double

Ycentre : double
Xrange : double
Yrange : double

southWestX : double
southWestY : double
northEastX : double
northEastY : double

PR_Quadtree // initialize the PR quadtree.

PR _QTcompare // compare the inserted trace to the current cell.

PR_QTinsert // insert a trace into the quadtree.

PR _QTdelete // delete a trace from the quadtree.

PRQTsearch // search the quadtree for lines safisfying the query.

Remove // remove the contents of the entire quadtree.

CQUAD // determine the next quadrant in a clockwise direction.
CCQUAD // determine the next quadrant in a counter clockwise direction.

WriteSeismicindex  // write the quadtree to an SGX file.
ReadSeismicindex  // create the quadtree from the SGX file data.

Figure 4-3. Object model for the PR_Quadtree object class.

The NodePoint class contains two fields. The first is a pointer to an

instance of a trace object. The second is a pointer which points to the next
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instance of a NodePoint object or NULL if there are no more traces with
identical coordinates in the collision list.
The PR quadtree node class contains t.he following attn'butes:'
1. pointers to the four children
2. the node type (grey or black; white is implied by nil pointers in a grey
node)
3. pointer to the NodePoint class object.
The op.erations that this class support are:
1. 2D range search
2. functions to determine the pointer to a child given the quadrant
3. return the pointer to the seismic line object .
4. return the coordinates of the trace
5. add a trace's line to the list of valid lines for the 2D range search
6. write to and read the node information from an‘SGX file.
Figure 4-4 shows the object model for the PR quadiree node class and Appendix

H shows the complete C++ class definition.

4.4 Seismic index PR Quadtree

The seismic index PR quadtree, also known as the modified PR quadtree,
is derived from the standard PR quadtree. Within this quadtree a mechanism
has been added to keep track of which line a trace or group of traces are
associated with. By using this association, pruning can be performed on portions
of the tree within which all traces belong to the same seismic line. At the interior
(grey) nodes, a field is set depending on whether the node subtrees contain
traces that belong to one or more seismic lines. If the traces in the subtrees
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belong to one and only one line, then the unigue line number is inserted into this
field. If the traces belong to more than one line, then an invalid value is inserted

into this field so that pruning will not be performed.

PR Quadtree Node Class
SWnode :PR_QTnode *
NWnode : PR_QTnode *
NEnode : PR_QTnode *
SEnode : PR_QTnode *
Nodetype : short
Xcoord : :double
Ycoord : double
DataPTR : PrToData _ .
AddAllchildren // add all the line objects in the current subtree to the search line list.
Addchild // add the trace’s line object to the search line list.
Addnode // add a new node at the specified quadrant.
ADJQUAD  // determine the adjacent quadrant from the current quadrant.
CQUAD // determine the quadrant clockwise from the current quadrant.

CCQUAD // determine the quadrant counter clockwise from the current quadrant.
ChildType // determine node type for the specified child.
CreateNode  // create a new node of the specified type.

RtnChild // return a pointer to the specified child.

RtnType  // returns the nodes type (grey or black).

RTNxcord // returns the nodes X coordinate.

RTNycord // retumns the nodes Y coordinate.

RtnSeisLine  // returns a pointer to the seismic line object.
SetChild // inserts a new node in the specified quadrant.
RangeSearch  // recursively perform a 2D range search. |
WriteSeismicIndex // write the quadtree node’s data to an SGX file.
ReadSeismiclndex // read the nodes data from an SGX file.

Figure 4-4. Object model for the PR guadtree node object class.
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In the modified PR quadtree class, no additional attributes have been
added. The existing data pointer field is used to store the additional information.
This additional information is a pointer to the address of the trace's line object.
The class requires several new methods to set and update the line object pointer
field for the interior nodes during insertion. The pruning operations are handled
in the PR quadtree node object class. Figure 4-5 shows the object model for the
modified PR quadtree class. The modified PR quadtree node class is the same
as the PR quadiree node class, except that the AddAIIChildren method has been

changed so that pruning is performed.

Modified PR_Quadtree Object class

Rootnode PR _QTnode *
Xcentre : double
Ycentre : double
Xrange : double
Yrange : double
southWestX : double
southWestY : double
northEastX : double
northEastY : double
PR _QTcompare // compare the trace being inserted with the current node.
| PR_QTinsert // insert a trace into the PR quadtree.
| PRQTsearch // perform a 2D range search.
Remove // delete the entire PR quadtree.
EqualKey // determine if two coordinates are the same.
CQUAD // determine the adjacent quadrant in a clockwise direction.
CCQUAD / determine the adjacent quadrant in a counter clockwise direction.

WriteSeismiclndex // write the PR quadtree out to an SGX file.
‘ReadSeismicIndex // build the PR quadtree from the data in an SGX file.
CheckLinelD /f determine if the current node and the new trace belong to the
/! same seismic line.
VerifyLinelD // update the seismic line pointer field for the current node.

Figure 4-5. Object model for the modified PR_Quadtree object class.

43




Figure 4-6 shows an example of three seismic lines. Figure 4-7 shows the
modified PR quadtree for figure 4-6. In figure 4-7, the subtrees of tﬁe northeast
quadrant all contain traces that belong to line A, so the interior node line object
field has been set to line A. In the southwest quadrant the subtree contains

" traces that belong to lines B and C. In this case, the interior nodes in this portion
- of the quadtree are all set to null.
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Figure 4-6. Example of 3 seismic lines.

The use of the modified PR quadtree object class allows, in some cases,

extensive pruning of large sections of the quadtree thus improving the search
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times. Chapter 5 describes the insert and search algorithms that use the

modified PR quadtree while chapter 7 shows tests using the standard and the

modified PR quadtree structures.
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Figure 4-7. Example of the modified PR quadtree.
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CHAPTER 5

SEISMIC INDEX PR QUADTREE
ALGORITHMS

5.1 Insertion

The insert aigorithm for the modified seismic index PR quadtree keeps
track of when and if the seismic line object pointer field in the grey nodes of the
quadtree needs to be set or modified. This algorithm is very similar to the
standard PR quadtreé insertion [Samet, 1990], except-for keeping track of the
line pointers. Figure 5-1 is a top level overview of the insertion algorithm. The
input argument for PR_QTinsert is a trace object as discussed in section 3.2.
The variables Xcentre, Ycenire, Xrange, Yrange, southWestX, southWesty,
northEastX and northEastY apply to the entire PR quadtree. They are defined
when an instance of the modified quadtree object class is created (see figure 4-
9). In figures 5-1 to 5-4, the pseudocode follows the style used by Samet [1990]
which is a variant of ALGOL [Naur, 1960].

There are three cases that can occur. In the base case, where the
“quadtree is empty, a black leaf node is created and the address of the trace
object is placed in the data pointer field. In figure 5-2, lines 43 to 46 show the

pseudocode for the base case.
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preload real array XF [‘'NW’, ‘NE’, ‘SW’, ‘SE’] with -0.25, 0.25,-0.25, 0.25;
preload real array YF ['NW’, ‘NE’, ‘SW’, ‘SE’] with 0.25, 0.25, -0.25,-0.25 ;
procedure PR_QTinsert(Seis_trac * newtrace )
// PR quadtree insertion algorithm.
/f Xcent and Ycent are the centroid of the current cell in the quadtree
/{ LengthX and LengthY are the length of the sides of the current quadtree node.
// TmpParent is the pointer to the current node in the quadtree that is being evaluated.
/1 childnode is a pointer to the next node in the tree that will be traversed.
// Unode is the temporary node used in splitting a quadrant during the insertion.
begin ' '
value double Xcent, Ycent, LengthX, LengthY;
value pointer PR_QTnode TmpParent;
value boolean rincode ;

. // initialize the quadrant centre and quadrant length to the PR quadtree class values.

Xcent < Xcentre;

Ycent «Ycentre;

LengthX « Xrange;

LengthY « Yrange;

/1 test to see if the trace falls outside the PR quadtrees extent

if XCOORD(newtrace) < southWestX or YCOORD(newtrace) < southWestY or
XCOORD(newtrace) > northEastX or YCOORD(newtrace) > northEastY
then return;

/1 call the base case method if the tree is empty or only one leaf node in the tree.
if null (Rootnode) or mot (GREY (Rootnode) ) then

rtncode < RootNodeBaseCase(Rootnode , newtrace);

if rtncode = FALSE then return ;
end if -

. // copy the root node and pass this variable to the function that walks the tree.
TmpParent < Rootnode ; // copy the current parent node

// call the method to walk the tree and determine the quadrant should be placed.
// The method will split nodes if required.
. PR_QTWalk(TmpParent, Xcent, Ycent, LengthX, LengthY );

end

Figure 5-1. Top level overview of the insert algorithm.
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! 35 boolean procedure RootNodeBaseCase (Rootnode * PR_QTnode , newtrace *Seis_trace) ;
- 36 // this method handles the base case where the tree is initially empty and the case where the
37 //tree contains only one leaf node. The input arguments are pointers to the rootnode which is
38 // modified as required and the trace to be inserted into the tree.. '
39  begin .
40 . wvalue integer quad ;
41 . wvalue pointer Seis_line LinelD;
42 . value pointer PR_QTnode Unode;
43 . if null (Rootnode) // if the tree is initially empty the create the root node.
44 . . Rootnode +PR_QTnode(Black, newtrace); / call the node constructor.
45 . return FALSE;
46 . '
47 else if not (GREY (Rootnode) ) then // if the tree contains one node leaf node
48 . begin
49 . . ifEqualKey( (XCOORD(newtrace), YCOORD(newtrace), XCOORD(Rootnode),
j 50 . YCOORD(Rootnode) Ythen // if this is a duplicate point
| 51 . . begin
52 . . Rootnode < Addnode(newtrace); // Add the node to the list of traces at this
: node. :
53 . . return FALSE;
: 54 . . emd
55 . else // else process the input node
; 56 . . begin
= 57 . . . /Call the function to determine if the traces are from the same line.
58 . . . LinelD <« CheckLineID(Rootnode, newnode);
59 . . . Unode <« Rootnode;
; 60 . . . if not null (LineID) then // line ID's are the same add the line ID to the data
: : field.
61 . . . . Rootnode « PR_QTnode(Grey, Xcentre, Ycentre, LinelD);
: 62 . . . else // create the new root with line ID field set to nul}.
- 63 . . . . Rootnode < PR_QTnode(Grey, Xcentre, Ycentre);
64 . . . end if
65 . . . //determine the quadrant that the original parent falls in
; 66 . . . quad < PR QTcompare(Unode, Xcent, Ycent );
' 67 . . . /[ Assign the original parent to the correct child of the root based on the
quadrant.
68 . . . Rootnode « SetChild(quad, Unode);
: 69 . . end if _
; 70 . end if
- 71 . return TRUE ;
72 end
. Figure 5-2. RootNodeBaseCase procedure for the insertion algorithm.
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procedure PR_QTWalk(TmpParent, Xcent, Ycent, LengthX, LengthY );

74 // this procedure accepts a pointer to the-root node and the centre and extent of the entire
75 // modified PR quadtree. The tree will then be walked untill the quadrant that the new trace
76 //should be inserted is determined. The trace is then inserted into the tree. As the tree is

77 // traversed the line pointer field at the current grey node is set to NULL if the new trace an
78 //the trace at the current node belong to different lines,

79 begin

80 . value pointer Seis_fine LineID;

81 . value pointer PR_QTnode Cntnode, childnode

82 . value integer quad, quadUnode;

83 . // if the new trace and the trace at the current node are from different lines then set the

84 . VerifyLineID(CntNode, newnode); // current nodes line pointer feild to null.

85 . quad « PR_QTcompare(newnode, Xcent, Ycent) : // determine the newnode’s quadrant
86 . //In a loop walk the tree until the correct place for the node is determined.

87 . childnode <-CntNode.RtnChild(quad,); '

88 . if not null(childnode) Type « childnode.RtnType(); / determine the node type for the
child. -

89 . // while the child node is not null and it is an interior node walk the tree.

90 . while not null{childnode ) and GREY(childrode) do // locate the new traces quadrant.
91 . begin

92 . . CntfNode « CntNode RinChild(quad); // Step to the next node in the quadtree.

93 .. // Update the value of the centre and the extent for the new current node.

94 . . Xcent <« Xcent + XF[quad] * LengthX; LengthX <~ LengthX /2.0,

95 Ycent <~ Ycent + YF[quad] * LengthY; LengthY « LengthY /2.0;

96 .. quad=PR_QTcompare(newnode, Xcent, Ycent ); // get next the quadrant for the trace.
97 . . childnode < CntNode, RtnChild(quad); // Update the child pointer and the type
98 . . if not null{childnode) Type < childnode.RtnType(); :

99 . . VerifyLinelD(TmpParent, newnode); // Update the line object pointer field.

100 . end while

101 . // if the child pointer is null insert the node in the current node’s specified child.

102 . if null (childnode ) then

103 .  newnode «PR_QTnode(Black, newtrace);  // call the node constructor.

104 . CntNode <SetChild(quad, newnode}), :

105 . // else if the node is already occupied with a trace with duplicate coordinates then add the
106 . else if XCOORD(newtrace) = XCOORD{(childnode) and // trace the collision list.

107 . YCOORD(newtrace) = XCOORD(childnode) then

108 . childnode « Addnode(newtrace};

109 .  return;

Figure 5-3. Procedure to handle case 3 of the modified PR quadtree insertion

algorithm.
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110 . else // the node is already occupied so subdivide it until the node can be placed in the tree.’
111 . begin
112 . CnfNode,RtnChild(quad, Unode ); _
113 . LinelD « CheckLineID(Unode, newnode); // determine the LineID variable.
114 . newnode «-PR_QTnode(Black, newtrace);  // call the node constructor.
115 . do // repeatedly subdivide quadrant until Unode and newnode are in different
quadrants.
116 .  begin
17 .- if null ( LineID) then // create a node with line object field set to null.
118 . Cntnode « CreateNode(quad, Grey, Xcent + XF[quad] * LengthX,
119 . Ycent + YF[quad] * LengthY);
120 . else
121 . Cntnode < CreateNode(quad, Grey, Xcent + XF[quad] * LengthX,
122 . . Ycent + YF[quad] * LengthY, LineID};
123 . end if
124 . CntNode « RinChild(quad, CntNode);// update the parent pointer.
125 . Xcent « Xcent + XF[quad] * LengthX; LengthX «LengthX /2.0,
126 . Ycent < Ycent + YF[quad] * LengthY; LengthY « LengthY /2.0;
127 .. // determine the quadrant for the new node and the existing free node.
128 . quad < PR_QTcompare(newnode, Xcent, Ycent ); determine next quadrant,
126 . quadUnode «PR_QTcompare(Unode, Xcent, Ycent );
130 . until not {(quad = quadUnode )
131 ./ reinsert the existing node and the new node.
132 . CatNode «- SetChild(quad, newnode); // insert the children in the correct positions
133 . CntNode « SetChild(quadUnode, Unode);
134 . end if
135 end PR_QTinsertLine

Figure 5-4. Procedure to handle case 3 of the modified PR quadtree insertion

algorithm (cont.).

In the second case only the root node is occupied. If the traces have

duplicate reference positions, then the new frace is inserted in the collision list for

the root node. Otherwise, a grey node is created and this becomes the root

node. If the trace in the previous root and the new trace belong to the same
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seismic line, the seismic line pointer is set to the address of the line object. The
quadrant into which the previous root node should be placed is determined, and
the node is assigned to the appropriate child in the new root. The trace to be
inserted is then processed using the third case of the insertion algorithm. In
figure 5-2, lines 47 to 72 show the pseudocode for case two of the insertion
algorithm.

In the third case the tree has to be walked to determine which cell within
the PR quadtree the trace is to be inserted. As the path from the root to the
target cell is traversed, each grey node for which the seismic line pointer field
has been defined is checked to determine if the seismic line objects from the
current node and the trace being inserted are the same.'-.lf they are the same, no
action is taken. If they are different, the data pointer field is set to its invalid state.

Once the target cell has been reached, the trace is inserted. !f the new
trace has duplicate reference coordinates, then the trace is placed in the collision
list. If the target quadrant is vacant, then the trace is inserted into the new child.
If the target quadrant is occupied, then the quadrant is recursively split until the
new trace c.an be placed in a separate cell. As the splitting is being performed,
the split node’s seismic line object pointer field is set as required. Figure 5-3
shows the pseudocode for case 3 of the insertion algorithm. Appendix | shows

the complete C++ implementation of the insertion algorithm.

5.2 Search

The search algorithm is expected to be faster because in some cases it
allows pruning of large sections of the PR quadtree. A rectangular query window

defines the search region. The quadtree is then traversed and at each node in
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the search path, the four children are tested to determine if all or part of the child
falls within the query window. If a child does not overlap the search window, the
search of that path is terminated.

in the case where a child intersects or is enclosed by the query window,
the seismic line pointer field is checked. If the field is undefined, then searching
continues down thé child’s subtree. If the seismic Iine'pointer field is set, then the
seismic line is added to the list of lines that satisfy the query. At this point,
searching of this node's children is terminated and the search is continued at the
las’i previous level in the quadtree. Another feature of the search algorithm is that
it terminates the search testing when a cell is completely within the search
window, and picks up the seismic lines that are contained in the cuirent subtree.
The search algorithm for searching the modified PR quadtree is shown in figure

5-5 and the C++ implementation is shown in Appendix J.
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procedure PRQTsearch (line_list *line, XYZpnt SWcorner, XYZpnt NEcorner)
begin
if not nulli(Rootnode)then .
Root.RangeSearch(line, SWcorner, NEcorner, Xcentre, Ycentre, Xrange, Yrange );
end if '
return;
end
procedure RangeSearch(line, SWcorner, NEcorner, Xcent, Ycent, Xlen, Ylen); // method to
// recursively perform the 2D range search on the node. Inputs are the query window corners
// and the centroid and length of the current node.
value XYZpnt SWcomer, NEcomner;
value double Xcent, Ycent, Xlen, Yien;
begin _
value integer code;
value double xmin, xmax, ymin, ymax, Qxsw, Qysw, Qxne, Qyne, Z;
value pointer chiid;
if BLACK(Nodetype) // if this is a leaf node then add the line to the list
begin -
if Xcoord >= XCOORD(SWcorner) and Xcoord <= XCOORD(NEcorner) and
. Ycoord >= YCOORD(SWcorner) and Ycoord <= YCOORD(NEcorner) then
Addchild(line); // add the line to the list of selected lines.
return '
else
return // point falls outside the query window so return.
end if
end
xmin < Xcent - Xlen/2.0;  ymin « Ycent - Ylen / 2.0; // determine the extent of
xmax <- Xcent + Xlen/2.0; ymax «Ycent+ Ylen/2.0; // the quadrant;
for child « (NW, NE, SWand SE) // for the four children
if not null (child)
./ if the query window overlaps the quadrant then recursively check the children
code «- child.checkquad(xmin, Ycent, Xcent, ymax, SWcorner, NEcorner),
// if the quadrant is inside the query window, then return all children
if (code = INSIDE ) then
child. AddAllchildren(SWcorner, NEcorner, line);
else if (code = OVERLAP) then // if the query window overlaps then walk the subtree.
child.RangeSearch(line, SWcorner, Necorner, Xcent + XF[child] * Xlen,
Yceent + YF{child] * Ylen, Xlen /2.0, Yien/2.0};
end if
end if
end for
return
end RangeSearch

Figure 5-5. Modified PR quadtree search aigorithm.

93




Figure 5-6 shows an example of three seismic lines each with severéi
traces. Figure 5-7 shows the modified seismic index PR quadtree for Figure 5-6.
In this exampie, the grey nodes in the north east quadrant and its subtree have
the seismic line pointer fields pointing to fine A. If the query window
encompassed this quadrant then only the first level would have to be checked.
The remaining subtree would be eliminated from the search by the pruning
operation. For example, if a search was performed with a query window ([50,50],
[100,100]), the pruning would result in the search being terminated at level 1 with
line A being returned. If a search was performed with a query window of ([5,5],

[45,45]) pruning would not occur at all and the search would continue to the

leaves.
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Figure 5-6. Example of seismic lines.
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where A, 8 and C are pointers to lines A, B and C, respectively.
- indicate the line pointer field is set to null.

Figure 5-7. Modified seismic index PR quadtree for lines in figure 5-6.

5.3 Persistence

During the development of the seismic index structure, the requirement
that a format be developed for storing in-memory data structures on disk was
identified. The format adopted was to use keyed records in which each record

within the stored data structure is delimited by a unique integer key. The
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SGX_MANAGER object was created to read and write the current structure fo
and from disk. The current implementation uses an ASCHI format for storing the

data on disk.

5.3.1 8GX File Format

The structure on disk is broken up into 5 major b!ocks_as shown in figure
5-8. Each of the blocks and sub-sections within the blocks are identified using
special key tags. Table 5.1 shows the list of key tags which are used to identify
each block and sub-block. The following sections describe the various blocks

and records within the SGX file format.

ASCII HEADER BLOCK

INDEX FILE BLOCK

TIME TREE BLOCK

PR QUADTREE BLOCK

END OF FILE BLOCK

Figure 5-8. The basic format of the SGX file.
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Table 5-1. Index for the SGX file major blocks.

Block Name Index Key

HEADER BLOCK %%SGX
PROJECT INDEX BLOCK 1010

PROJECT FILE RECORD | 1020
AVL TIME TREE BLOCK ‘ 1030

AVL NODE RECORD 1040

TRACE RECORD 1045
PR QUADTREE BLOCK 1050

GREY QUADTREE NODE RECORD 1060

BLACK QUADTREE NODE 1070
RECORD

WHITE QUADTREE NODE RECORD 1080
SGX END OF FILE BLOCK 999999999

5.3.2 SGX ASCII Header

The first block in the SGX file is the header block. The header is used to
verify that the file is a valid SGX file and that the file version is compatible with
the current version of the software. The header section contains threé sections
with the second section being repeated n times. Figure 5-9 shows the layout of .
the header block and figure 5-10 shows an example. The first line of this section
contains the information that identifies the file as an SGX file. This line contains
4 fields and these are:

1. “%%SGX": the SGX file identifier
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2. the format version number

3. the format for the data in the main body of the SGX file (this field is

either ‘ASCIV or ‘BINARY’)

4. the last field is a count n of the number of comment lines in section fwo

of the header biock.

The second section contains comment information about the data
contained in the file. This information is not used and is ignored by the
application. Comments are ASCII text that end with a carriage return at the end
of each line.

-

| SGX tag | ['Version | [ File Format | { # of Comments n

ASCII Comment Information

End of Header Delimiter

L

Figure 5-9. Format of the ASCI header block.

%%SGX 1.0 ASCII 3

Tue May 12 15:20:10 1995

Seismic index file for the marine seismic survey lines
recorded on leg138 at site 846 on the 10 June 1989.
%%

Figure 5-10. Example header block for an SGX file,
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The last line in the header block contains the end of header delimiter. It
consists of the three characters ‘%%"L’. The control-L character represents a
page break. This prevents garbage from being printed on the screen when UNIX
utilities such as ‘more’ are used to view the SGX file when the main part of the

file is in binary format.

5.3.3 Project Index Block

The second block in the SGX file is a project index block. This section of
the ﬁ.le lists the project index file and the list of project files that are contained in
the seismic index. Figure 5-11 shows the format of this block and figure 5-12
shows an example. The first line of this block contains the project index file key.
On the second line the first field contains the number of project files. The second
field contains the number of characters in the project index file name. The third
field ié. the project index filename., The next two lines are repeated for every
project that the seismic index contains. The first line in the sub-section is the
project.ﬁ!e key. The second line contains 2 fields. The first is the tength of the

project filename and the second field contains the name of the project file.

[ PROJECT INDEX BLOCK KEY |

| # Project Files n | [ Filename Length || Project Index Filename
| PROJECT FILE KEY ;

[ Filename Length | 1 Project Filename 1

PROJECT FILE KEY

| Filename Length | | Project Filename n |

Figure 5-11. Format of the project index block in an SGX file.
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1010
2 26 /home/segyfiles/leg138.idx
1020 '
12 leg138_A prj
1020
12 leg138_B.pij

Figure 5-12. Example of the project index block in an SGX file.

5.3.4 AVL Time Tree Block

The third block in the SGX file contains several sub-sections of
information. Within this block there are several sections. These include:

¢ a section for the structure of the AVL time tree

e a section for each seismic line object’s data

¢ a section for each seismic trace object’s data for a seismic line.

Figure 5-13 shows the format c;f the AVL time tree block and figure 5-14
shows an example. A pre-order traversal of the AVL time tree is performed
during the processing of the tree. For each node visited, the seismic line object’s
data and the associated trace data are output to the SGX file. The first line of the
block contains the SGX_AVL_TREE key “1030°. The second line contains the
number of nodes in the time tree written to the SGX file. |

The third line starts the sub-block which contains the information for the

root node. This sub-block is repeated for every node in the tree.
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SGX AVL TIME TREE key

# nodes in the time tree.

SGX AVL TIME TREE NODE key

: . [Node Type || height || ine # ||data type ||coordinate units

Time for the first trace in the line year/day/hour/min/sec

Time for the last trace in the line year/day/hour/min/sec

minimum X (IminimumY - || maximum X maximum Y

filename length full SEG-Y filename

SGX TRACE key

Line#|| Trace # byte longitude | trace time
in the offset _ year/ day/
SGX file gEG_Y latitude hour/ min/

file depth sec

SGX TRACE key

Line# || Trace # || Trace # longitudd | trace time

in the in the year/ day/

SGX file SEG.Y latitude | | o ming

file depth sec

|

Figure 5-13. Format of the AVL time tree block in an SGX file.

61




1030
I
1040
100 0121
1989 268 23 25 43
1989 268 23 46 23
-91.1799573 7.4448751 -91.1377834 7.4688359
52 /home/atlantic/pjudd/segy_data/processed/tw32_23.sgy
1045 o
111879 3600 -91.1377452 7.4688327 3586 1989 268 23 25 43
1045
12 1880 11840 -91.1381735 7.4686457 3586 1989 268 23 25 53
1045
13 1881 20080 -91.1384341 7.4684461 3586 1989 268 23 26 3
1045 :
14188228320 -91.1388126 7.4682582 3586 1989 268 23 26'13
1045 .
15 1883 36560 -91.1391677 7.4680561 3584 1989 268 23 26 23
1045
1 6 1884 44800 -91.1394953 7.4678628 3584 1989 268 23 26 33
1045
17 1885 53040 -91.1398499 7.4676738 3584 1989 268 23 26 43

Figure 5-14. Example of the AVL time tree block in an SGX file.

5.3.4.1 AVL Time Tree Node Sub-Section

This sub-section begins with the key 1040’ on the first line. The second
line contains 5 fields. These are:

1. node type: this field indicates whether the node is an internal node or a
leaf node. The valid values for this field are ROOT (100), LEAF_LEFT
(12), LEAF_RIGHT (14), GREY_LEFT (22) and GREY_RIGHT (24).

2. height: this indicates the height of the node in the tree

3. line number: the line number assigned to the SEG-Y line

4. data type: the format for the trace data

5. coordinate units.
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The third line contains the time for the first trace in the seismic line. The
format is year, days, hours (24 hour clock), minutes and seconds. The fourth line
contains the time for the last trace in the seismic line. The format is the same as
for the first trace. The fifth line has 4 fields and contains the covering rectangle
for the traces contained in the seismic line. The format is minimum X/ longitude,
minimum Y/ latitude, maximum X/ longitude and maximum Y/ latitude. For
latitude and longitude coordinafes, the format is degrees and decimal degrees.
The sixth line contains the SEG-Y filename information. There are two fields. The

first contains the length of the SEG-Y filename and the second is the filename.

5.3.4.2 SGX Trace Records

The next section, which contains two lines, has the information for each
individual trace within the SEG-Y line. The section is repeated once for each
trace. The first line contains the SGX TRACE key. The second contains the trace
information and 12 fields. These are:

+ field 1, SEG-Y line number.

o field 2, the SGX trace number: As each trace is written out to the SGX
file it is assigned a unique sequential number. The number is used to
reduce duplication of data and for linking the trace object to the correct
cell within the PR quadtree when rebuilding the seismic index structure
from the SGX file.

o field 3, SEG-Y file trace number: This is the trace’s number within the
SEG-Y file. Within the SEG-Y files these numbers are unique but may
be duplicated in other SEG-Y files.
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» field 4, byte offset: This gives the position of a trace’s record within an
SEG-Y file.

+ fields 5 and 6, trace’s reference position: These fields contain the
coordinates for the frace.

» field 7, water depth: This field contains the water depth for the trace.

+ fields 8 to 12, shot time: These fields contain the time that the trace
was recorded. The time is in year, days, hours, minutes and seconds

format.

5.3.5 PR Quadtree Block

The fourth block in the SGX file contains the data for the PR quadtree.
This block contains two sections, the first containing the header information for
the quadtree and the second contains the data for each node in the quadtree
(see figures 5-15 and 5-16). For the leaf nodes, only the trace number (that was
generated when the trace was written out as part of the AVL time tree block) is
output.

The first line of this block contains the SGX_QUAD_TREE key ‘1050’
The second fine contains 5 fields. These are:

+ field 1, # nodes: The total number of nodes in the PR quadtree.

» fields 2 to 5, quadtree limits: These fields contain the bounding

coordinates for the quadtree. The format is minimum X/ longitude,

minimum Y/ latitude, maximum X/ fongitude, maximum Y/ latitude.
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[ SGX Quadtree key B |

| # nodes ] [ Minimum X | [ Minimum Y | | Maximum Y i Maximum X |
[[SGX Quadiree Node key |

[ Line # | | trace # 1 ] } for black nodes

. 1 for grey nodes

Figure 5-15. Format of the SGX PR quadtrée block in the SGX file.

51351 SGX Quadiree Node Section

The second section in this block contains the. quadtree node records.
Three types of nodes are output using a preorder tra\fersal.. These are grey or
interior nodes, black leaf nodes and white leaf nodes. For the black nodes there
are three different types which are output to the SGX file. The first is a black
node that contains only one trace. The second type indicates that there is a
collision list associated with the node and that at least the following traces
belong to the current hode. The third type indicates that the trace belongs in the
collision list for the curren{ biack node. If there is a collision list ata node then the
first trace will be output as a type two black node. The remaining traces in the
collision list will be output as type three black nodes. For each type, different
information is recorded. Each node record begins on the first line of the record
with the key. The keys are as follows:

« GREY NODE 1060

« BLACK NODE 1070

s BLACK NODE with collision list 1072
continuation BLACK NODE 1074
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o WHITE NODE 1080

For the grey node record, the second line contains 4 fields. The first field
contains line object pointer field information. If valid, this field contains a line
number or -1 if it is invalid. The second line for all the black node records
contains two fields. The first field contains the line number of the seismic line
object that the trace(s) belong to, while the second field contains the SGX frace
number'. These trace numbers are used to determine the memory location of the
trace object that is to be inserted into the quadiree node. A dynamically
generated list is created when the time tree is loaded that links the SGX trace
number to the memory which contains the addresses of the trace objects. The

white node record only contains the key field and is used only for reconstructing

the quadiree.

1050

521 -91.4448624 7.2911465 -90.4079751 8.000000
1060

1

1080
1060
1
1060
1
1070
12
1070
13
1070
11
1060
1
1080

Figure 5-16. Example of the PR quadtree block in an SGX file.
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5.3.6 SGX EOF Block

This is the last block in the file. it is used to indicate that there are no more

valid data in the file. The SGX key for this block is ‘999999998,

5.3.7 Loading an SGX File

| During the loading of the SGX file, the building of the structures is
pérformed in linear time with each object being created as it is read from the
SGX file. The fields in the objects are set once and do not need to be updated
during the recreation of the seismic index, AVL time tree and the PR quadtree
data structures. When the data are read in from the AVL time tree block, the
seismic line and seismic trace objects are created and addresses for each object
are stored in an array indexed by the SGX seismic line number and SGX trace
number which were assigned to the objects when they were written out to the
SGX file. When rebuilding the PR quadtree, which is built in linear time, the
address for the trace and line objects are obtained from the address arrays in
constant time. The loading of the index is therefore expected to require O(n)

time, for n = number of traces in the data.
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CHAPTER 6

SEISMIC INDEX IMPLEMENTATION

6.1 Implementation

The data structures that were discussed in the preceding chapters were
implemented using the C++ ianguagé on a Siliéon Graphics workstation which
runs the IRIX 5.2 operating system. The previously defined objects became the
C++ classes upon which thé application was based. The application was
designed to run in three modes. The first is batch mode where all the commands
are input from a file and the results are written out to a log file. The second is
nongraphics/ text mode, where text based prompts are used and the output of
the queries is a list of selected SEG-Y files. The third mode is graphics mode.
" This mode uses a graphical user interface built using the Motif X-Windows
environment. The commands are selected by activating buttons and entering the
query information into a dialog box. The results of the searches can be

displayed graphically or written outto a file.

6.1.1 Project Index Supp.ort Files

The segyindex application is built around two groups of files. The first is the:
seismic line file group of files. These are organized in a three-level hierarchy of
files. These files progressively contain more detail about the seismic data as you

move level 1 to level 3. Figuré 6-1 shows an example of organization of these
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files which are described in sections 6.1.2 t0 6.1.4. The other group of files are

the application files and these are discussed in section 6.1.5,

leg138.idx  (project index file).

region205:prj region206.prj region255.prj (project files)
(SEG-Y files

—> |ine205_1.sgy > 1ine206_1.sgy [> Iline255_1.sgy)

— [ine205_2.sgy [=> line206_4.sgy |-> line255_2.sqy

- line205_3.Sgy = line206_S5.sgy = Iiné255_3.sgy

— line205_4.sgy [ [ine206_7.sgy > line255_4.sgy

-2 line205_5.sgy |-—> |ine206_8.sgy |= line255 9.sgy

—> line205_6.sgy [—> [ine206_10.sgy > line255 11.sgy

— line205_7.sgy L 1ine206_11.sgy “> line255_12.sgy

Figure 6-1. Hierarchy for the SEG-Y seismic data file.

8.1.2 Seismic index Project File

The root of the hierarchy is thé seismic index project file. This file contains
general information about all-the. projects that are to be loaded into the seismic
index data structure. This includes the index cover which is used to define the
PR quadtree structure. This cover must encompass all the traces that are to be
loaded into the seismic index; otherwise traces whidh fall outside this cover will

fail to be inserted into the PR quadtree and thus will not be picked up during a
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range search. This file also contains a list of the project files that will be used to |

build the search structure. The data records in this file begin with one of two
character keys. These are: |

. %INDEX_COVER  minimum X /Y, maximum X /Y in (degrees) and
minimum and maximum depth (in metres).

¢ %PROJECT_FILE the name of the project file.

Lines beginning with the character "1” are considered comments and are ignored.
Figure 6-2 shows an example of a project index file which points to four project

files.

.

! PROJECT INDEX FILE for leg138 survey
!

o eiimeo e e e P et e Ao o el et o o bt ot

ettt oo P el e e e ol e 1)

I bounding coordinates

%INDEX_COVER -96.5000 -3.5000 -89.7500 0.5000 2953 3774
-
! Project list file
%PROJECT_FILE linel7.prj
%PROJECT_FILE linel8.prj
%PROJECT_FILE linel9.prj
% PROJECT_FILE line20.prj

et mPboemec et o e e B b e o P ot

Figure 6-2. Example of a project index file.

6.1.3 Project Files

The project files form the second level in the hierafchy. These ASCII files
point to a group of SEG-Y files which have been grouped by vessel, location,

acquisition time or some another attribute. The project file contains the cover for
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the files, the minimum and maximum time and the list of SEG-Y files. The data
records begin with one of four character keys. These are:
e %PROJECT_COVER minimum X /Y, maximum X 1Y and minimum
and maximum depth
o %MINIMUM_TIME  the minimum time in year/ day/ hour/
minute/second format
o %MAXIMUM TIME the maximum time in year/ day/ hour/
minute/second format

e %SEGY_FILE the name of the SEG-Y file.

Lines in the project file beginning with the character "1” are considered comments
and are ignored. Figure 6-3 shows an example of a project file which points to 3

SEG-Y lines.

b ittt
1 Example PROJECT FILE

! File contains the following information.

t  a) the coordinates of the bounding rectangle for the project.

% PROJECT_COVER -96.1945 -0.4699 -95. 2328 0.2428 3060 3369
1 b)the upper and lower time limits for the project.

! start time

°%MINIMUM_TIME 1989 258 20 20 16

I endtime

%MAXIMUM_TIME 1989 259 8 26 4

! ¢)the filenames of the SEG-Y files

%SEGY _FILE linel7A.sgy

%SEGY_FILE linel 7B.sgy

%SEGY_FILE linel7C.sgy

Figure 6-3. Example of a project file.
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_6.1 4 SEG-Y Files

The seismic data files form the third level in the hierarchy. The structure of
these files and the data which are extracted from these files are described in

chapter 2.

6.1.5 Application Fiies

There are two files that directly affect the graphical component of the
application and the initial values for the dialogue boxes and prompts for various
input. The first is the segyindex X-Windows resource file. This file contains the
information for defining the colours, positions, sizes énd text for the various
widgets within the interface.

The second fi !e the segyindex initialization file, contains initial values
for prompts and default sizes for graphic objects used to display the resulis. The
data records begin with one of seven character keys. These are:

o X_LABEL_OFFSET selected line label's X offset in pixels

e Y_LABEL_OFFSET selected line label's Y offset in pixels
LABEL__MARKER_S!ZE size of a selected line’s label in pixels
DRAWING_LINE_WIDTH line width in pixels for drawing lines
START_QUERY_TIMES the start query time in year/ day/ hour/

minute/second format

END_QUERY_TIMES the end query time in year/ day/ hour/

minute/second format
o RANGE_SEARCH2D_XY 2D range search coordinate cover.

Figure 6-4 shows an example of the segyindex initialization file.
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1ISEISMIC INDEX PROGRAM GRAPHICS AND VARIABLE INITIALIZATION FILE. !
The file contains the definitions for the current session of the SEISMIC index

I program. When the program is started the values from the previous session will be

I loaded and used as initial values in the prompts and for displaying the values.

'

[ Format : All lines beginning with a'I" are treated as comments. Keywords must begin in
I the left most column, and there must be at least one blank space separating the keyword
| from the value. If no value is present the defauit value will be used.

X _LABEL_OFFSET 5 :

Y LABEL_OFFSET -5

LABEL_MARKER SIZE 10

DRAWING LINE_WIDTH 2

START QUERY_TIMES 1989 262 16 0 0

END_QUERY_TIMES 198926222 0 0

RANGE_SEARCH2D_XY -95.1749-23 0084 -94.4361 -1.87465

Figure 6-4. Example of the segyindex applications initialization file.

6.2 Running the segyindex Application

The application is started by typing segyindex on the command line along
with any of the command line arguments (see figure 6-3). in graphics mode, the
GU! in figure 6-6 will be displayed on the screen while in text mode the menu in
figure 6-7 will be d}splayed. The next step is to select the INITIALIZATION
command and to select the project index file to load. The INITIALIZATION
menu (see figure 6-8 ) allows projects to be added or removed from the list which'
will be used to build the index, to create the SEISMIC INDEX, to create a project
index file from the listed projects or build the index for an SGX file. Once the

index structures have been built, the time and range searches can be performed.
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Command Description Example

-ba batch file mode -ba leg138_test.sh
-gr graphic mode | -gr
-ti used for timing operations -ti
Figure 6-5. Segyindex command line arguments.
e ¥ de e de ok ek ok MAIN SELECTION MENU fehkhkkktdhiRkdRikR
- =1}« EXIT
0) :: INITIALIZE THE DATA STRUCTURE
2) :: INSERT A LINE INTO THE DATA STRUCTURE
3) :: INSERT A TRACE INTO THE DATA STRUCTURE
4) :: DELETE A LINE FROM THE DATA STRUCTURE
5) :: 2D RANGE SEARCH FOR LINES IN THE DPATA STRUCTURE
6) :: TIME RANGE SEARCH FOR LINES IN THE DATA STRUCTURE
7y :: DISPLAY SELECTED LINES
8) :: DISPLAY THE SHOT INFORMATION FOR THE SELECTION
9) :: DISPLAY THE LINE TIME TREE
10) :: ACTIVATE/ DEACTIVATE THE SETTINGS SWITCHES
12} :: LOAD A PROJECT FILE
13) :: SAVE THE CURRENT PROJECT TO DISK
14) :: SAVE ALL THE SEISMIC INDEX DATA STRUCTURES ON DISK

Figure 8-6. Segyindex main menu for nongraphics mode.
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Figure 6-7. Graphical user interface for the SEGYINDEX app!
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(-1) EXIT

( 1) Add ancther project to the list

( 2) Delete a project from the list

( 3) Create the Seismic index from the project files
( 4) Write the project to the Project index file

( 5) Load the Seismic index from the Index file

Enter the option number :>

Figure 6-8. Segyindex initialization menu for nongraphics mode.

6.3 Output and Display of Query Data

Once the SEG-Y data have been loaded into the data structures, two
types of queries can be performed. The first are gueries based on a time interval.
The second are queries based on a user defined query rectangle. The results of
the search can be listed, displayed graphically or written to a TDR file so that the
resuits of the query can be viewed in 3D using the FLEDERMAUS application
[Paton, 1995] on an SGI workstation. The following sections describe the two

types of searches and the types of outputs.

6.3.1 Time Range Searches

The data structures aliow searching to be performed on the frace's time
component. From the main menu, the Time Range Search command is selected.
The minimum and maximum times for the search interval are then entered.

Using these values, a search is then performed on the AVL time tree. Once the
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search has been completed, the number of lines and the covering rectangle for
alt the data contained in the selected lines will be displayed in the Search
Information panel or on the screen. |

The resuits of the query can then be viewed by selecting the Display Shot
Polylines command. For nongraphics mode, the list of selected lines are
displayed on the screen. In graphics mode the selected lines are displayed in the
Selected SEISMIC LINES window (see figure 6-8). When the selected lines are
displayed, the data are transformed so that the seismic data covers the entire
drawing area. |

The selected lines are identified in two ways. The first is that the lines are
drawn using the same colour as was used {o display it'i’n the overview window.
Secondly, the beginning of each line is identified by a large dot and a label. The
label is a real number which represents the Julian date, from 1900, for the first
trace in the line.

There are several drawing parameters that can be changed to vary the
appearance of the displayed lines. These include:

« the width of the line which represents the path of the seismic line

o the size of the dot which marks the beginning of the line

» the offset of the text from the beginning of line marker

¢ whether the seismic line is represented by a polyline or whether the

traces are drawn as dots.

The second method for outputting the results of the query is to create a
TDR file. The TDR file cdntains all the data from the SEG-Y data files. The TDR
file can then be loaded into the FLEDERMAUS program and the seismic profiles
viewed in 3D.
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Pct Information

1989, 258, 26, 20, 16
1989, 259, 8,26, 4

: SELECTED SEISMIC LINES®

o

-096*90 ~085°4%5*

2744 0811

T44. 6477

144 . 4426

-08&°00" -095°45*

Figure 6-9. Graphical interface for displaying the selected lines.

78




6.3.2 2D Range Searches

2D range séarching is the sebond supported searching method. The 2D
range search command is selected from the main menu. The limits for the query
can then be entered. in graphics mode, the fimits can be input via a dialog box or
by defining the search area using the mouse in the project overview area. The
PR quadtree is then searched to determine which, if any, lines satisfy the query.
The results of the guery can then be displayed by selecting the Display Shot
Polylines command. For nongraphics mode, the list of selected lines are
displayed on the screen. In graphics mode the selected lines are displayed in the
Selected SEISMIC LINES window (see figure 6-9). The results of the query can
also be output to a TDR file. The TDR file contains all tﬁe data from the SEG-Y
data files. The TDR file can then be loaded into the FLEDERMAUS program and

the seismic profiles viewed in 3D.
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CHAPTER 7
RESULTS

7.1 Test Data

The data used for testing the data structures developed for this thesis
were obtained from a geological survey that was perfdrmed in the eastern
equatorial Pacific Ocean in September 1989 (see figure 7-1). The 8800 km of
single channel digital seismic data were cbilected during a site survey on the
Thomas Washington from August to October 1989 [Bloofner, 1992]. The seismic
source consisted of two synchronized water guns. The receiver consisted of a
Teledyne streamer having 48 acceleration-cancelling hydrophones in a linear
array. Both the source and streamer were towed at a depth of approximately 5
metres. The data were recorded on nine-track magnetic tape at a 1-ms sampling

interval for the eastern transect and 2-ms for the western transect [Bloomer,
\ 1992). “The resultant shots contain 2000 samples with each line containing
approximately 4000 traces. |

The navigation information was collected using GPS at intervals of 1 and
5 minutes. These data were combined with the course-change and speed-
change information from the shipboard bridge log to give the reference position
for the shots in latitude and longitude format.

Seismic lines from tapes 17 to 24 were used for the testing. Table 7.1
shows the positional information for the lines and figures 7-2 and 7-3 show the

track information for the lines. The test was restricted to these eight lines due to
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disk space limitation and the limited coverage of the test data. In order to
increase the number of lines for the tests, each line was broken up so that each
partitioned SEG-Y line contained approximately 500 traces. This'partitioning
increased the number of ines to 68. Several additional lines were added by
modifying the reference positions for the traces in lines 23 and 24. This was
done to increase the number of lines to 85 and to increase the density of the
lines in the western section of the survey area. Appendix K lists the coordinate
coverage and times for lines 17 to 26; these are summarized in Table 7-1. The
data require 335.8 MBytes of disk storage and contains a total of 39752 shot
points.

e

5°

-

15

10

5°6 L
120°W 115* 110¢ 105° 100° a5 90° a5 BO® 75°

Figure 7-1. Leg 138 track line in the eastern equatorial Pacific Ocean.
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4" 00° \ o0 9515 95° 00'
‘:
1" 30 \ 430 3700 -3 00
oo \\ oo
-2° 30' -2° 30'
-3°15° -3' 15'
95° 15/ 95° 00"
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-3" 30’ -3° 30
95* 30" 94" 45'

Figure 7-2. 847 ship track [Bloomer, 1992].
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Figure 7-3. 846 ship track [Bloomer, 1992].
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7.2 Experiment Description

The tests were performed with all the 85 lines loaded into the SEISMIC
INDEX STRUCTURE. Each of the tests was run 10 times using the standard PR
Quadtree structure and the modified SE/SMIC INDEX PR QUADTREE. The
tests entailed building the indéx structures which took 34.6 seconds for the
standard structure and 34.8 seconds for the modified structure. A series of
searches were then performed using several differént—sized query windows
which ranged in size from 10 percent of the area covered by the data up to 90 -
percent. For each case a randomly generated query window was generated
which covered 10%, 25%, 50%, 75% and 90% of the -tange of the data. The
query windows were restricted so that they always fell within the limits of the data
and did not fall outside the data limits. For example, in case one (10% coverage), -
the origin for the query window was bounded by the lower limit of the seismic
data and 90% of the seismic data range in both latitude and longitude. Tables L-
1 to L-5 show the query windows that were used for the testing. Each of the tests
was run 10 times and the average times and their standard deviations were
calculated (see tables M-1 to M-11).

The modified structure storage requirements are as follows:
« the PR quadtree class requires 88 bytes.
 the PR quadtree node class requires 40 bytes. The quadtree built for
the experiment contained 157761 nodes and thus required 6,310,528

bytes to store the seismic line information.

85



Figure 7-4 shows the algorithm that was used to generate the random query
windows for the case where the query area is 10% of the total coverage area for

the seismic data.

set query_longitude_window size to 10% of longitude_range
set query_latitude_window size to 10% of latitude range
for I equal to 1 up to the number of trials
p_longitude = random () [value between 0 and 0.9]
p_latitude = random () {value between 0 and 0.9]
longitude_query__origin- = longitude origin +

p_longitude * longitude range

latitude_query_origin = latitude origin +

|| p_latitude * latitude range "
longitude_query_top = longitude_query_origin +

query_longitude_wiudow_size

latitude_query_top = Iatitude_query_origin +

query_latitude_window_size

end of for loop

O

Figure 7-4. Pseudocode for generating test query windows for case where

query area is 10%.

7.3 Range Query Search Tests

The tests were run a total of ten times on May 18, 1995 between
4 am and 10 am on the Ocean Mapping Group’s Silicon Graphics workstation

Aegean. This workstation has the following specifications:
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1) 33 MHz IP12 processor

2) operating system: IRIX 6.2

3) main memory: 48 MBytes

4) CPU: MIPS R2000A/ R3000 processor chip

5) FPU : MIPS R2010A/ R3010 VLS floating point chip.

Each search in each te_st was performed a total of 250 times so that non-
zero times could be dbtained. The times were recorded in microseconds using
the built in system time function “getfrusage” which returns the total amount of
time that was used. The times are returned in seconds and microseconds from
the time that the program began execution. The averagé for each query window
was calculated in microseconds and the results are shown in tables M-1 to M-11.

Figures 7-5 to 7-10 show the difference in the search times for the different query

"~ windows.

7.4 Comparison of Query Search Times |

The following graphs (figures 7-5 to 7-10) show the comparison of the
search timeé for both the existing and the modified data structures. Tables 7-2 to
7-4 and figures 7-11 to 7-13 show the relative difference in the query search
speeds between the standard and modified data structures. The difference is

expressed as follows:

% difference = (speed for existing structure - speed for modified structure) * 100

speed for modified structure
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The test numbers in Tables 7-3 to 7-5 correspond to the following guery

windows;
Table 7-2. Test number to query window mapping.
Test Numbers Test Query Window
1-10  10%,1-10
11-20 25%, 1-10
21-30 50%, 1 - 10
31-40 75%, 1-10
41-50 90%, 1-10
51 - 100%
0.1 ¥ Stancard[—
0.09 | [ Mockfied |—
0.08 |
)
e'III.IIIT ]
¢ (.06 ]
© 005 .
n
d 004 |
S 0.03 |
0.02 |
0.01 |
0 i . . .
GVl ON2 QW3 QN4 QN5 GVE  ON7 QN QWS QW10
Query Windows.

Figure 7-5. Comparison of search times for 10% coverage tests.
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Figure 7-8. Comparison of search times for 25% coverage tests.
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Figure 7-7. Comparison of search times for 50% coverage tests.
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Figure 7-8. Comparison of search times for 75% coverage tests.
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Figure 7-9. Comparison of search times for 90% coverage tests.
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Figure 7-10. Comparison of search times for 100% coverage tests.

Table 7-3. Percentage difference (standard - modified) in search speed for

10% and 25% coverage tests.

Test

3

4

5

6

7

8

9 .

16

13l

12

13

15

16

17

18

19

20

10

-3

5

-9

6

8

6

-5

11

20

-2

-4

-6

3

Table 7-4. Percentage difference (standard - modified )in search speed for 50%

and 75% coverage tests.

Test

21

22

23

24

25

26

27

28

25

30

31

32

33

34

35

36

37

38

39

40

26

21

16

20

-6

24
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Table 7-56. Percentage difference (standard - modified) in search speed for 90%

and 100% cbverage tests.
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Figure 7-11. Percentage difference (standard - modified) in search speed for

10% and 25% coverage tests.
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Figure 7-13. Percentage difference (standard - modified) in search speed for

90% and 100% coverage tests.
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7.5 Remarks on the Differences in the Search Query Times

The query windows that encompassed no seismic lines showed no
difference in search speed as expected. In the other cases the difference in _
search speed varied from approximately 9% for the third 10 percent cover test in
which only two lines were returned and 67% for the 100 percent cover test in

- which all the lines were returned. The greatest improvement in the search times
was obtained for the larger query windows within which most of the lines fell. For

the smaller query windows the search speed improvement averaged about 10%.

If the number of traces was increased up to the 4000 in the original lines,

then the search times would probably decrease in the modified data structure as

| the pruning of the sub-quadrants will occur closer to the root in the PR quadiree.
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CHAPTER 8

SUMMARY/ CONCLUSION

Spatial indexing is an important and active area of research in spatial data
structures. Spatial indexes for marine geophysical data are also areas of interest.
This thesis investigated spatial index data structures for marine seismic data in
SEG-Y format. Object modeling and functional modeling methods were used to
design the seismic index prototype and the prototype wéé impieménted and run
on an SG! workstation. The data structures developed allow for the creation of a
spatial index for marine seismic data and also allow for 2D range searches and

1D time searches to be performed.

8.1 Summary

The three objectives of this thesis will now be examined to determine what
was accomplished by this research and what contribution this work has made to

spatially indexing marine seismic data.

The first objective was: "To develop a data structure and algorithms for
the storage and retrieval of seismic data.” This objective was the main focal point
of the thesis. The standard PR quadtree was modified so that a hierarchical

structure could be maintained within the quadtree. This hierarchy allowed the
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data within a subtree to be grouped together as objects. Thus, in some cases
during a search, pruning of large sections of the guadtree can be performed
which reduces the number of paths that have fo be searched in order to

determine all the valid seismic lines.

The second objective was: "To implement and test the data structures and
algorithms on actual seismic data." Two data sets from the South Pacific survey
[Bloomer, 1992] were used to test the structures and algorithms. The data had to
be preprocessed to ensure that the fields that were accessed contained valid
data. Also, the reference coordinates for the traces had to be added to the SEG-
Y files from the navigation files. The data structurés and algorithms were
implemented using object ocriented C++ on an SGI workstation. The
implementation allowed the track lines of the loaded seismic data and the

selected seismic data {o be viewed graphically.

The final objective was: "To compare the new data structures with the
original data structures used for the seismic data.” Timing tests were performed
for building the data structures and performing 2D range searches on the data
structures. The build time for the modified PR quadtree data structure took
about 10% more time. The 2D range search tests entailed using different query
windows which ranged in size from 10% up to 100% of the area covered by the
seismic data. The modified structure generally showed faster times which ranged
from 10% for the smallest query windows up to 67% for query windows |

encompassing all the data.
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8.2 Conclusion

The data structures developed do not require any additional storage

space when compared to the standard PR quadtree.' The build times are slightly

slower by about 10% and the speed improvément for the search becomes more

noticeable with the increase in the number of nodes that have to be checked.

8.3 Future Work and Open Questions

'Some possible future work that would be beneficial to research includes

the following:

1.

allow the seismic index data structure to be saved in binary format
thus reducing the size of the SGX file.

investigate and develop a deletion algorithm for the modified PR
guadtree.

investigate and develop methods which wili allow the use of polygonal
query windows.

enhance the graphical interface to allow the information for individual
traces to be obtained by pointing at a segment of a seismic line.
enhance the 2D range search so that a second 2D range search can
be performed on the resultant seismic lines to return the list of traces
within the seismic lines that satisfy the second query.

design and develop methods which will allow the structure to support

depth range searches on the seismic data.
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Appendix A

SEG-Y BINARY HEADER RECORD
TECHNICAL

SPECIFICATIONS

100



400 Byte Binary Reel Identification Header
{Record 2, the Binary Coded Block) Binary Code. Right

Justified
Byte Should | Description
Numbers Record
3201 - 3204 Job identification number
3205 - 3208 Line number (only one line per reel)
3208 - 3212 | Reel number
3213 - 3214 Number of data traces per record (includes dummy and
zero fraces inserted to fill out the record or common
depth point)
3215 - 3216 Number of auxiliary traces per record (includes sweep,
timing, gain, sync, and all other nondata traces)
3217 - 3218 Sample interval in microseconds (for this reel of data)
3219 - 3220 Sample interval in microseconds for original field
recording (Intervals are designated in microseconds fo
accommodate intervals less than one millisecond.)
3221 - 3222 Number of samples per data trace (for this reel of data)
3223 - 3224 Number of samples per data trace (for original field
recording)
3225 - 3226 Data sample format code:
1 = floating point 4 bytes
2 = fixed point 4 bytes
3 = fixed point 2 bytes
4 = fixed point with gain code 4 bytes
Auxiliary traces use the same number of bytes per
sample.
3227 - 3228 CDP fold (expected number of data traces per CDP
: ensemble)
3229 - 3230 Trace sorting code:
1 = as recorded (no sorting)
2 = CDP ensemble
3 = single fold continuous profile
4 = horizontally stacked
3231 -3232 Vertical sum code:
1=no sum
2 =two sum
N =N sum (N < 32767)
3233 - 3234 Sweep frequency af start
3235 - 3236 Sweep frequency at end
3237 - 3238 Sweep length (milliseconds)
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Byte
Numbers

Should
Record

Description

3239 - 3240

Sweep type code:
1 =linear, 2 = parabolic
3 = exponential, 4 = other

3241 - 3242

Trace number of sweep channel

3243 - 3244

Sweep trace taper length in milliseconds at start if
tapered (the tape starts at zero time and is effective for
this length)

3245 - 3246

Sweep trace taper length in milliseconds at end (the
ending taper starts at sweep length minus the taper
length at end)

3247 - 3248

Taper type:
1=linear 2=cos2 3=other

3249 - 3250

Correlated data traces:
1=no 2=yes

3251 - 3252

Binary gain recovered
1=yes 2=no

3253 - 3254

Amplitude recovery method:
1 =none

2 = spherical divergence
3=AGC

4 = other

3255 - 3256

Measurement system
1=metres 2 =feet

3257- 3268

Impulse signal

1 = Increase in pressure or upward geophone case
movement gives negative number on tape Polarity.

2 = Increase in pressure or upward geophone

movement gives positive number on tape.

3259 - 3260

Vibratory polarity code; seismic signal lags pilot signal
by:

1=337510225

2=2251t067.5

3=6751t0112.5

4=11251t0157.5

5=157.510202.5

6=2025t0247.5

7=2475102925

8 =292.5t0 337.5

3261 - 3600

Unassigned; for optional information
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Appendix B

SEG-Y TRACE HEADER
TECHNICAL

SPECIFICATIONS
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Trace Identification Header

Byte Should ~ Field Description
Numbers | Record _

1-4 Trace sequence number within line; numbers continue

to increase if additional reels are required on same line

5-8 Trace sequence number within reel; each reel starts

with trace number one

9-12 Original field record number
- 13-16 | Trace number within the original field record
17 - 20 : Energy source point number; used when more than one

record occurs at the same effective surface location

21-24 CDP ensemble number

25 - 28 Trace number

29-30 . Trace identification code: 1 = seismic data
2 = dead
3 = dummy

4 = time break
5 = uphole

6 = sweep

7 = timing

8 = water break

9 - N = optional use (N<32767)

31-32 Number of vertically summed traces yielding this trace

(1is one trace, 2 is 2 summed traces, efc.)

33 - 34 ' Number of horizontally stacked traces yielding this

trace (1 is one trace, 2 is two stacked traces, etc. )
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Byte Should Field Description
Numbers | Record

35-36 Data use: 1 = production 2 = test

37-40 Distance from source point to receiver group (negative
if oppossite to direction in which line is shot)

41-44 Receiver group elevation; éil elevations above sea level
are positive and below sea level are negative

45 - 48 Surface elevation at source

49 - 52 Source depth below surface (a positi\}e number)

53 - 56 Datum elevation at receiver group

57 - 60 Datum elevation at source

61 - 64 Water depth at source

65 - 68 Water depth at group

69 -70 Scaler to be applied to all elevations and depths
specified in bytes 41-68 to give the real value Scaler =
1, +10, +100, +1000, or +10,000. If positive, scaler is
used as a multiplier; if negative. scaler is used as a
divisor.

71-72 Scaler to be applied to all coordinates specified in bytes
73-88 to give the real value Scaler = 1, +10, +100,
+1000, or +10,000 If positive, scaler is used as a
multiplier; if negative, scaler is used as divisor.

73-76 Source coordinate X; see Note below

77 - 80 Source coordinate Y; see Note helow

81-84 Group coordinate X; see Note below
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Byte Should Field Description
Numbers | Record
85 - 88 Group coordinate Y; see Note below
Note: If the coordinate units are in seconds of arc, the X
values represent longitude and the Y values latitude. A .
positive value designates the number of seconds east of
Greenwich Meridian or north of the equator and a
negative value designates the number of seconds west
or south.
89 -90 Coordinate units: 1 = length (meters or feet)
2 = seconids of arc
g1 -92 Weathering velocity
93 - 94 Subweathering velocity
g5 - 96 Uphole time at source
97 - 98 Uphole time at group
99 - 100 Source static correction
101 - 102 Group static correction
103 - 104 | Total static applied (zero if no static has been applied)
105 - 106

Lag time A. Tune in.ms between end of 240-byte trace
identification header and time break. Positive if time |
break occurs after end of header, negative if time break
oceurs before end of header. Time break is defined as

the initiation pulse which may be recorded on an

| auxiliary trace or as otherwise specified by the recording

system.
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Byte Should Field Description
Numbers | Record
107-108 | Lag time B. Tune in ms between time break and the
initiation time of the energy source. May be positive or
negative.

108 - 110 Delay recording time. Tune in ms between initiation time
of energy source and time when recording of data
samples begins (for deep water work if data recording
does not start at zero time).

111 - 112 Mute time: start

113 - 114 Mute time: end

115-116. R Number of samples in this trace.'

117 - 118 R Sample interval in ms for this trace

119 -120 Gain type of field instruments: 1 = fixed

| 2 = binary
3 = floating point
4 - N = optional use

121 -122 Instrument gain

123 -124 | Instrument gain constant

123 - 124 Instrument early or initial gain (dB)

125 - 126 Correlated 1=vyes

2=no

127 - 128 Sweep frequency at start

129 - 130 Sweep frequency at end

131-132

Sweep length in ms.
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Byte Should Field Description
Numbers | Record :
133-134 | Sweep type:. | = linear
| 2 = parabolic
3 = exponential
4 = other
135-136 Sweep trace taper length at start in ms
137 - 138 Sweep trace taper length at end in ms
139 - 140 Taper type: 1 = linear
| | 2 = cos2
3 = other
141 - 142 Alias filter frequency. if used
143 - 144 Alias filter siope
149 - 150 Low cut frequency. if used
151 - 152 High cut frequency, if used
153 - 154 Low cut slope
165 - 156 High cut siope
157 - 158 Year data recorded
1589 - 160 Day of year
161 - 162 Hour of day (24-hour clock)
163 - 164 Minute of hour
165 - 166 Second of minute
167 - 168 Time basis code: 1 = local 2 = GMT 3 = other
169 - 170 Trace weighting factor; defines as 2-N volts for the least
significant bit (N = 0. 1 .... 32. 767)
171 -172

Geophone group number of roll switch position one
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Byte Should Field Description
Numbers | Record '
173-174 Geophone g.roup number of trace number one within
Original field record
175 -176 Geophone group number of last trace within original
field record
177 - 178 Gap size (total number of groups dropped)
179 - 180 Overtravel associated with taper at beginning or end of
line: 1 = down (or behind)
2 = up (or ahead)
181 - 240

Unassigned; for optional information
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Appendix C

SEISMIC LINE OBJECT
C++ CLASS

'DEFINITION
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#ifndef SEIS LINE
#inchude <fstream.h>

#include <Xm/Xm.h> R
class Seis_trac; // forward declaration for the seismic trace object.
class Seis_line
{
friend class Line list;
public:
ifstream Linefile; // input stream class object associated with the line file.
char  *Filename;  // pointer to the line file name
Seis_trac *Firstrace;  // pointer to the first trace.

// Function definitions.
Seis_line (); // constructor
~Seis_line (); // destructor :
void Add_fname(char *fname);  // set the seismic line file name.
void  Get_fname(char *fname);  // return the seismic line file name.
// set the seismic line number,
void  Get_linum(long & linenumb){linenumb = Line number;}
void  Set_linum(long linum ) {Line number = linum;}
int RtnLinNum( ) {return( Line_number); }
void Get_units (long &Units) {Units = units ; } // set the unit type.
void-  Set_units (long unt) {units = unt; } // get the unit type.
void  Get_Dtype (long &Dtype) {Dtype = Data_type ; } //set the data type
void Set Dtype(long data_type){Data_type = data_type;}//get the data type
// time cover methods for the seismic method.
void Add_Ftime(short Year,short Day,short Hour,short Min,short Sec);
void Get_Ftime(short & Year, short &Day, short &Hour; short &Min, short &Sec);
void ‘Set Ftime sec(unsigned long Sec) { First_time = Sec;}
void Get Ftime sec(unsigned long &secs) {secs = First_time;}
void Add_Ltime(short Year,short Day, short Hour,short Min,short Sec);
void Get_Ltime(short & Year, short & Day, short &Hour, short &Min, short &Sec);
void Set_Ltime_sec(unsigned long Sec) { Last_time = Sec ;}
void Get_Ltime_sec(unsigned long &secs) {secs = Last_time ;}
vold Drawline( Widget LineWindow, double xmin, double ymin,
GC ge, double scalex, double scaley, int label_line);
void  Get_colour(long &color) {color = Colour; }
void  Set_colour(long color ) { Colour = color; }
mt  RtnColour( } {return( Colour); }
void  Set_cover(double Xcoord, double Ycoord);
void - Get_cover(double &minx,double &miny,double &maxx,double &maxy);
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protected: i

variable definitions.

long Line_number; // the line number from the binary header,
long Colour; // colour used to display the seismic line
long Data_type;  // the trace data type. 1 = floating point 4 byte
/1 2 = fixed point 4 bytes, 3 = fixed point 2 bytes
/1 4 = fixed point with gain control 4 bytes
long units; // the type of coordinates used. 2 = feet; 1 = metres
unsigned long  First_time; // the time that the first trace was record.
short First year; _
unsigned long  Last_time ; // the time that the last trace was recorded.
short Last_year ;
double Xmin, Ymin;  // the SW comer of the cover.
double Xmax, Ymax; //the NE comner of the cover. -
IR |

#define SEIS_LINE
#endif
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SEISMIC TRACE OBJECT
| C++ CLASS

DEFINITION
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#include <fstream.h>
#ifndef SEIS_TRAC
#define SEIS TRAC
class Seis_line;

I INCLUDE Files:

/! forward declaration for the Seismic line -

object.

class Seis trac / Class definition

{

public:
Seis_trac (); // constructor.
Seis_trac(Seis_line *Iptr); // constructor.
Seis_trac(Seis_line *Iptr, long Trace num); // constructor. -
void Add line_num(Seis_line *Iptr);
void Add_trace_num(int trace_num);
void Add_byte pos(streampos bytepos);
void Add_xyz(double xpos, double ypos, double zpos);
void Add_time(int year, int day, int hour, int min, int sec);
void SettraceCounter(unsigned long Tracecnt) {traceld = Traceent; )
void Get_line_num(Seis_line *line);
Seis_line*  RtnLine ptr() {return(line_obj); }
long  Get_trace_num();
streampos  Get_byte pos();
void Get_xyz(double &xpos, double &ypos, double &zpos);
void Get_time(int &year, int &day, int &hour, int &min, int &sec),
unsigned long GetUnsignedLongTime(){return(Trace_time); }
void GettraceCounter(unsigned long &Tracecnt){ Tracecnt = traceld; }
void Display();
friend int Cmptraces(Seis_trac *traceRecl, Seis_trac *traceRec2);
Seis_trac *next;
protected: // variable definitions.

Seis_line *line_obj; // pointer to the line object.
long Trace_number; // the traces number.
unsigned long traceld; // seismic index trace ID
streampos  Byteoff: // the position of the start of the trace in SEGY file
int Tyear; // the year that the trace was recorded.
unsigned long Trace_time ; //the time that the last trace was record seconds
double Xcord, Yeord, Zcord; // trace’s reference coordinates.

55

#endif
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Appendix E

SEISMIC INDEX OBJECT
C++ CLASS

DEFINITION
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#include <Xm/Xm.h> // Widget definition.

#include "coords.h" // XYpnt and Zpnt objects,

#include "DAGraticule.h"  // graticule grid image.

#include "Project.h” // The project that are contained in the current INDEX.
#include "PRquadtree.h" // The PR quadtree class definition.

#include "Seis line.h" // pointer to the line object.

#include "Seis_trac.h" // pointer to the trace object.

#include "SGX Manager.h" // the Seismic index file IO class

#include "Time tree.h" // pointer to the time range search structure.

#include "Time_obj.h" // object to store the input time.

//Class definition
class Seisindex

{
public:

ifstream Projfile;
Seisindex(); // constructor.
Seisindex( char* Fname);  // constructor. -
int Graphics; // true if graphics are to be used.
int inputmode;  // defined the input mode for data.
GC  QueryGC,; // graphics content for the lines drawing.
GC  OverviewGC ; // graphics content for the lines drawing.
Widget shell; // the main widget for the graphics application.
Widget Querycanvas; /f drawing area for the selected lines.
Widget Overviewcanvas;  // drawing area for the inserted seismic lines.
Widget message; // message area for the application.
Pixmap QueryPixmap;

DAGraticule ProjectGrid, Grid,
Index Project_List Projectnames;

int Add min time(int year, int day, int hour, int min, int sec);

int Add_max_time(int year, int day, int hour, int min, inft sec);

int Add_line_cover(double Xmin, double Ymin, double Zmin,
double Xmax, double Ymax, double Zmax),

mt - UpdateLineCover(int Mode, double &Xmin, double & Ymin,
double &Xmax, double & Ymax);

int UpdateTimeCover(int Mode, short &Syear, short &Sday,

short &Shour, short &Smin, short &Ssec,
short &Eyear, short &Eday, short &Ehour,
. short &Emin, short &Esec),
int UpdateNumLines();
void  Set proj cov(double &xmin, double &ymin, double &zmin,
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void
int
int
int

int

double &xmax, double &ymax, double &zmax);
Set_proj_tim(Time_obj Stime, Time_obj Etime);
Incrm_npum_line(int mode); '
Display_query_boundary(XYant MinPT, XYZpnt MaxPT);
UpdateIndexCover(double swX, double swY, double neX,
double neY, double Mindepth, double Maxdepth);
RinindexCover(double &swX, double &swY, double &neX,
double &neY, double &Mindepth, double &Maxdepth);

void Get_proj_cov(double &sxmin, double &ymin, double &zmin,

double &xmax, double &ymax, double &zmax);

void Get_proj_tim(Time_obj &Stime, Time_obj &Etime);
int DisplayLINES(line_list lineptrs);
int DisplayLINES(Seis_line * SeisLineRecord);
int DisplaySHOTS(line_list lineptrs);
void DisplayQTOAQ(){Quadtree—>Disp1ayOAQ( ) }
void DisplayQT(){Quadtree->Display( ); }
void DisplayTtree() {SearchTree Display (Tree_node ); §
int LoadProject(char * filename); :
int LoadSeismicIndex();
int RedrawOverview ( };
int SaveProject( );
int SaveSeismicIndex( )
int Settings();
int SetQuadtree(void);
static void DefineBoundarydialogCB( Widget filewidget, XtPointer
clientdata, XtPointer calldata);
void SetWaitcursor();
void UnSetWaitcursor();
int Initialize();
int Insert(Seis_line *line};
- int Insert(Seis_trac *trace);
int Delete(Seis_line *line);
int Delete(Seis_trac *trace);
int Range_Search 2D(XYZpnt minxy, XYZpnt maxxy, line list *lineptrs);
int Time_Search(Time_obj mintime, Time_obj maxtime, line list *Qlines );
int SOQgetline(char *bufrec);
int Getcolourmap ( char * promptstg, char * colourMapName );
int Getfilename ( char * promptstg, char * FileName )
int Getnumber ( int & number );
int

Getboundary(XYZpnt & minxy, XYZpnt & maxxy, int Update),
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int GetTimes (Time_obj &mintime, Time_obj &maxtime);
int createcolourmap();

_ private:

int Load_list(char * buf);

int Reset();

char * Filename;

double Xswindex;  //the index’s X south west corner
double Yswindex;  //the index’s Y south west corner
double Depthmin;  // the index’s Z minimum depth
double Xnelndex;  // the index’s X south west corner
double. Ynelndex; /f the index’s Y south west corner
double Depthmax;  // the index’s Z minimum depth

// Current tight Index line cover.
double LineXsw, LineYsw, LineXne, LineYne; // tight line data cover
unsigned long LineStime, LineEtime;
unsigned long Timestart; // the start time for the project in seconds; for
: /{ day + hour + min + sec '
unsigned long Timeend; // the start time for the project in seconds; for
// day + hour + min + sec

int Num_lines; // the number of seismic lines that have been loaded.

int PruneTree;  // flag to indicate if the line ID's shiould be stored in
// the tree nodes. ‘

Avl node *Tree_node; // the root node for the tree.

PR_Quadtree  *Quadtree; // Pointer to the PR quadtree.

Time tree SearchTree; // pointer to the time search tree.

SGX DiskIO IndexFile; // seismic index disk IO class.

118




Appendix F

AVL TIME TREE
C++ CLASS

DEFINITION
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#ifndef TIME _TREE
#include <fstream.h>
#include "Time obj.h"
#include <stdio.h>
#include "coords.h"
#include "Line_list.h"
#include "Seis_line.h"
#include "SGX_ Manager h"
class Avl node

{
friend void SRleft(Avl_node *& K2); // Function to perform a single left rotation.
friend void DRleft(Avl_node *& K3); // Function to perform a double left rotation.
friend void SRright(Avl_node *& K2); // Function to perform a single right rotation.
friend void DRright(Avl_node *& K3); // Function to perform a double right rotation.
friend long MaxOf(long heightl, long height?); // function to determine the
maximum /!l of two numbers.

friend long Get_linum(void);

friend unsigned long Get_Ftime_sec(void);

friend unsigned long GetLtime sec(void);

public: '
Avl_node *Left; // pointer to the left child.
Avl_node *Right;  // pointer to the right child.
int  Height; // the height of the node.
Sets_line * lineobj; // pointer to the line object.

Avl_node( Seis_line *& Seismic line);  // constructors for the node.

Avl _node(void); /1 constructors for the node.
unsigned long Get_stime(void);  // return start time in seconds

unsigned long Get_etime(void);  // return end time in seconds

void  Range_search 2D(Line Querywindow, line list * line);

void  Writefilenames(ofstream & PrjFile); // write the filenames to a project file.
void  ReDrawLines(); // redraw the line in an X window.

void  WalkAVLTree(long &numberNodes ); // count the # nodes in the tree
void  Display(int child, int height); // display the contents of the node

void  Remove(); /! delete the tree node.

int WriteSeismicIndex(int Nodepath, SGX_DiskIO &IndexFile );

int ReadSeismicIndex(SGX_DiskIO &IndexFile );
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class Time_tree : public Avl node

{ |
friend long MaxOf(long heightl, long height2);
friend Avl_node * Find_Min (Avl node * Treenode);
public:
void Insert(Seis_line *& LineData, Avl_node *& Tnode );
int RemoveAVL(Time_obj Start_time, Seis_line *& Sline, Avl node *&
Treenode, int CpLine); o
void  Time_search(Time_obj Stime, Time_obj Ftime, Avl_node *&
Treenode,
line_list * lines);
void  Display(Avl node * Tnode);
int Remove (Avl_node * & Tnode); )
- Time_tree(void){tree_node = NULL;} // constructor
void  Range search 2D(Line Querywindow,Av] node *& Tnode,
: line list * line);
void Writefilenames(Avl_node *& Tree_node, ofstream & PrjFile);
void ReDrawLines( Avl node *& Tree node);
int WriteSeismicindex(Avl_node *& AviTree_node, SGX_DiskIO
&IndexFile };
int ReadSeismicIndex(Avl_node *& AviTree node, SGX_DisklO
&IndexFile, long &ID_key), |
protected:
Av]_node * tree_node;
1 |
#define TIME_TREE
#endif
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Appendix G

PR QUADTREE
C++ CLASS

DEFINITION
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#ifndef PR_QUADTREE
#define PR_QUADTREE
#include <stdio.h>
#include "coords.h"
#include "Line list.h"
#include "QuadNode.h"
#include "Quadiree.h"
#include "Seis_trac.h"
#include "SGX_Manager.h"
class PR_Quadtree

{
public:
PR_Quadtree( ); // default constructor.
PR_Quadtree{double CentreX, double CentreY, double Xdist, double Ydist );
int PR_QTcompare(PR_QTnode * quadnode, double X, double Y};
int PR_QTcompare(double X, double Y, double Xcentre, double Ycenire);
void  PR_QTinsert{double Xpnt, double Ypnt);
void  PR_QTinsert(Seis_trac * traceobject);
void PR_QTinsertLine(Seis_trac * newtrace);
void PR _QTdelete(Seis_trac * traceobject);
void PR _QTdelete(PR_QTnode newnode, PR_QTnode parent, double
Xcentre, double Ycentre, double LengthX, double LengthY);
int PRQTsearch (line_list * line, XYZpnt SWcorner, XYZpnt NEcorner);
int RemoveNode(PR_QTnode * &Cntnode, Seis_trac * del trace);
int RemoveNode(PR_QTnode * &Cntnode);
void Remove( };
int EqualKey(double X1, double Y1, double X2, double Y2)
int CQUAD(int quadrant); // clockwise quadrant.
int’ CCQUAD(int quadrant); // counter clockwise quadrant.
Seis_line * CheckLineID(PR_QTnode * Rootnode, PR _QTnode * newnode);
void  VerifyLineID(PR_QTnode * &CurrentNode, PR _QTnode * newnode);
void  DisplayOAQ();
int WriteSeismicIndex(SGX_DiskIO &lIndexFile);
int ReadSeismicIndex(SGX_DiskIO &IndexFile);
private:

PR QTnode *Rootnode;
double Xcentre, Ycentre, Xrange, Yrange; // quadtree centroid and lengths
double QTolerence;
double southWestX, southWestY, northEastX, northEastY;

IR

#endif
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Appendix H

PR QUADTREE NODE
C++ CLASS

DEFINITION
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#ifndef QUADNODE
#define QUADNODE
#include <stdio.h>
#include "coords.h"
#include "Line list.h"
#include "Quadtree.h"
#include "Sets_trac.h"
#include "Seis_lineh"
#include "SGX Manager.h"
class NodePoint;
union PtrToData
{
- NodePoint * Pointrecord;  // record for each trace.
Seis_line * SeisLineClass; // pointer to the seismic line.

IR
class PR QTnode
{
public:
PR_QTnode(int NodeType);  // Constructors
PR_QTnode(int NodeType, double Xpnt, double Ypnt);
PR_QTnode(int NodeType,double Xpoint,double Ypoint,Seis_line * SeisLine);
PR_QTnode(int NodeType, Seis_trac * newtrace);
PR_QTnode(int NodeType, Seis_trac * newtrace, Seis_line * LinePtr);
// interface functions. :
int AddAllchildren(XYZpnt SWeorner, XYZpnt NEcorner, line_list *line
)
int Addchild(line list *line };
int - Addnode(Seis_trac * trace);
nt ADJQUAD(int quadrant);
nt CQUAD(int quadrant);
int CCQUAD(int guadrant);
int Checkchildren(int Quadrant);
int checkquad(doubie xsw, double ysw, double xne,
double yne, XYZpnt SWcorner, XYZpnt NEcorner);
int ChildType(int quadrant);
void CreateNode(int quadrant,int NodeType, double Xpnt, double Ypnt);
void CreateNode(int quadrant, int nodetype, double Xpnt,
_ double Ypnt, Seis_line * linelD);
void Display(int level );
void . Display_OAQ(FILE * filename, int &colent );
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#endif

void

int

double
double
Seis_line *
void

int

void
int

int
int

{// Public variables.

RtnChild(int quadrant, PR_QTnode * &childnode);

RinType( ) { return( (int) Nodetype) ; }

RTNxcord( ) { return (Xcoord); }

RTNycord( ) { return (Ycoord); }

RtnSeisLine();

SetChild(int quadrant, PR_QTnode * newchild);
RangeSearch(line_list *line, XYZpnt SWcorner, XYZpnt _
Necorner, double Xcent, double Ycent, double Xlen, double Ylen);
Walktree(int cntlevel, int &numlevels, int &numnodes,

int &numblack, int &numwhite, int &numgrey);

RemoveNode ( );

WriteSeismicIndex (SGX_DiskIO &SeismicIndex);
ReadSeismicIndex (SGX_DiskIO &SeismicIndex);

PtrToData DataPTR;

private :

// Define the pointers to the children.
PR_QTnode * SWnode;
PR_QTnode * NWnode;

PR _QTnode * NEnode;
PR_QTnode * SEnode;

short
double
double

Nodetype; // The node type. Black, White or Grey.
Xcoord; // The X coordinate of the data point.
Ycoord; // The Y coordinate of the data point.
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Appendix I

C++ CODE
FOR
PR QUADTREE
INSERTION ALGORITHM
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~ FUNCTION NAME :PRQTinsertLine.c++
This function performs the insertion into the PR quadtree for the shot points. The
function also keeps track of the lines that the shots in the nodes subtree belong to. i.e. If a
nodes subtree contains only one line then the node will point to the line that the shot in
the subtree belong. If the nodes subtree contain shot that belong to more than one line
then the line pointer is set to NULL. The line information will be used in the search
procedure to prune children from the search and thus improve the search time. The
improvement in time in the base case would be O(1) for the case where query area
ovetlaps the quadtree extent and the quadtree contains only one line. In the worst case the
search would still have to visit all node's which fall in the query rectangle as the tree is
traversed. The cases that have to be considered during the insertion are:
1) BASE case 1: the tree is empty; In this case the new node becomes the root node
and the data pointer field points to the linked list of the shot points.

2) Case only one node in the tree. The line identifier of the current node is checked
against the new node;

a) if they are the same then the line identifier is inserted in the newly created
root node,

b) if they are different then the root node data identifier field is set to NULL and

the new shot is placed in the appropriate quadrant.
3) Shot is being inserted in a tree with multiple nodes. In this case there are several
situations that can oceur.

a) The line identifier of the nodes that are walked are the same as the shot point
that is to be inserted. In this situation if new grey nodes are created as the
node is split then the data field will have to be set to point to the common
Iine identifier,

b) As the tree is traversed a node is encountered for which the data identifier
field points to a different line. In this case the data identifier at the current
node would be set to NULL and the traversal would continue repeating the
step as required. The data identifier of the children should already be set
properly from a previous insertion.

#include "PRquadtree.h"

#include "Quadtree.h"

#include "Seis trac.h"

#include "Writemsg h"

#include <iostream.h> // cout, cerr I/O streams.
#include <stdlib.h>

extern int DEBUG;

void PR_Quadtree::PR_QTinsertLine(Seis_trac * newtrace )

{
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int quad; // The pointer to the quadrant that a child is to go

int QuadUnode; // The pointer to the quadrant that a displaced child is to go.

int Type; // The node type GREY or BLACK. _

double Xnew, Ynew, Xparent, Yparent, Ztemp; / cell and trace reference positions.
PR_QTnode * TmpParent;

PR_QTnode * Unode;

PR_QTnode * childnode;

PR_QTnode * newnode;

double Xcent, Ycent, LengthX, LengthY; // centroid and length of a quadrant.
Seis_line * LinelD); /{ pointer to a seismic line object.

int Splitnode = 1;

// Set the initial root quadrant variables.

Xcent = Xcentre; Ycent = Ycentre; LengthX = Xrange; LengthY = Yrange:

LinelD =NULL;

// if the tree is empty then create the root node and insert the trace.
if NULL == Rootnode )
{

Rootnode = new PR_QTnode(Black, newtrace );

return

3

newtrace->Get_xyz(Xnew, Ynew, Ztemp) ;// get the traces coordinates.

if( (Xnew < southWestX ) || (Ynew < southWestY ) || // check to make sure that
(Xnew > northEastX ) || (Ynew > northEastY ))  // the trace in inside the quadtree
{ return; } -

Xparent = Rootnode->RTNxcord();  // get the centroid for the root node.
Yparent = Rootnode->RTNycord( );
newnode = new PR_QTnode(Black, newtrace ); // create a new node.

//if the tree contains one node (BLACK) then create a new root node.
if(( Type = Rootnode->RtnType()) != Grey) { -
/7 if this is a duplicate point then add the point to the collision list.
if( EqualKey(Xnew, Ynew, Xparent, Yparent) )
{
Rootnode->Addnode(newtrace);// Add the node to the collision list.
return;

}

else // else create a new root node. Copy the current root and create a new root.
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// Call the function to determine if the shots are from the same line.
LineID = CheckLineID(Rootnode, newnode);
Unode = Rootnode; // copy the address of the current root.

if(LineID !=NULL )/ line ID's are the same; create the new node with the
{ // line pointer field set.
Rootnode = new PR_QTnode(Grey, Xcentre, Yeentre, LinelD);

}
else // traces belong to different lines so do not set the line pointer field.
{ _
Rootnode = new PR_QTnode(Grey, Xcentre, Ycentre);
}

// determine the quadrant that the original parent falls in
quad = PR_QTcompare(Unode, Xcent, Ycent );
Rootnode->SetChild(quad, Unode);// Insert old root into a quadrant.

}
1 // end of if only root node

TmpParent = Rootnode ;  // copy the current parent node
VerifyLinelD(TmpParent, newnode);// Update the line object pointer field.

// determine the quadrant into which the newnode should be placed.

quad = PR_QTcompare(newnode, Xcent, Ycent ); _
TmpParent->RtnChild(quad, childnode);// get the address of the child and node type.
if(childnode = NULL) Type = childnode->RtnType();

// In a loop walk the tree until the correct place for the node is determined.

// ' While the child is not NULL and the child is an interior node traverse the tree.

while(childnode != NULL && Type == Grey )

{
TmpParent->RtnChild(quad, TmpParent);// traverse the tree to the next level.
Xcent = Xcent + XF{quad] * LengthX; // Update the X value of the centre.
Yeent = Ycent + YF[quad] * LengthY; // Update the Y value of the centre.
LengthX = LengthX / 2.0; LengthY =LengthY /2.0 ;

// Determine the next quadrant on the insertion path.

quad = PR_QTcompare(newnode, Xcent, Yeent );

TmpParent->RinChild(quad, childnode);// Update the child pointer and the type
if(childnode != NULL) Type = childnode->RnType();
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VerifyLineID(TmpParent, newnode);// Update the line pointer field.

} // End of while loop.
/1 If the child of the parent is NULL then assign the new node as the new child.
if( NULL == childnode ) { TmpParent->SetChild(quad, newnode); }

// Else if the node is already in the tree
else if( EqualKey(Xnew, Ynew,childnode->RTNxcord( ),childnode->RTNycord( ) ) )
{

childnode->Addnode(newtrace);

return ;
}
// node 1s already occupied so subdivide it until the node can be placed in the tree.
else

{
TmpParent->RinChild(quad, Unode );// Copy the address of node to split.

// determine if the line pointer field should be set in the split nodes.
LineID = CheckLineID(Unode, newnode);

while(Splitnode}  // split the nodes until the new node and the current child no

{ ' // longer occupy the same quacfrant.
if(LinelD == NULL)// create a new node with line pointer field set.
{ .
TmpParent->CreateNode(quad, Grey, Xcent + XF[quad] * LengthX,
Yeent + YF[quad] * LengthY);
}
else
{
‘TmpParent->CreateNode(quad, Grey, Xcent + XF[quad] * LengthX,
Yeent + YF[quad] * LengthY, LineID);
} .

TmpParent->RinChild(quad, TmpParent);// traverse to the next level .

Xcent = Xcent + XF[quad] * LengthX; // Update the centre value and the
LengthX = LengthX / 2.0; // length of the quadrants sides.
Ycent = Ycent + YF[quad] * LengthY;

LengthY = LengthY / 2.0;

quad = PR_QTcompare(newnode, Xcent, Ycent ); // get the next quadrant.
quadUnode = PR_QTcompare(Unode, Xcent, Ycent );
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}

I

if (quad != quadUnode )break;// If the quadrants are not the same the exit.
} // end of split loop.

// insert the children in the correct positions.

TmpParent->SetChild(quad, newnode);  // insert the new node.

TmpParent->SetChild(quadUnode, Unode); // reinsert the existing node.
3 // end of inserting the new node.

Function to compare the line ID fields for two nodes.

Seis_line * PR_Quadtree::CheckLineID(PR_QTnode * Rootnode, PR_QTnode * newnode)

{

}

i
i
#
1

{

Seis_line * LineID1, * LinelD2; // pointers to the two seismic lines.

LineID1 = Rootnode->RnSeisLine() ; // retrieve the Pointers to the two seismic
LinelD2 = newnode->RitnSeisLine() ; // line objects from the nodes.

if (LinelD1 == LinelD2 ) return (LineID1 );// compare the two line pointer
// \dentifiers.
else return (NULL), // line ID's are different; return NULL.

Function to determine if the current node's line ID is the same as the new nodes line
ID. If they are different the current nodes Line ID field is set to NULL. If the
current node is not grey then no change is made as the DataPTR value contains the
trace record link list class.

void PR_Quadtree::VerifyLineID(PR_QTnode * &CurrentNode, PR_QTnode * newnode)

int NodeType;
Seis_line * LineID1, * LineID2; // pointers to the two seismic lines.

/7 if the current node is not grey then change nothing and return.
NodeType = CurrentNode->RinType() ;
if (NodeType != Grey ) return;

// If the data pointer (SeisLineClass) field is NULL then return.
if (CurrentNode->DataPTR.SeisLineClass == NULL) return;

// retrieve the Pdinters to the two seismic line objects from the nodes.
LineID1 = CurrentNode->DataPTR.SeisLineClass;
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LinelID2 = newnode->RtnSeisLine() ;
if (LineID1 == LineID2 ) return; // if the same don't change anything.

// they are different so set the field to NULL and return.
CurrentNode->DataPTR.SeisLineClass = NULL:
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Appendix J

C++ CODE
FOR
PR QUADTREE

2D RANGE SEARCH ALGORITHM
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it FUNCTION NAME : PRQTsearch.c++

I DESCRIPTION :Modified PR quadtree search method.

#include "PRquadtree.h"

#include "coords.h"

#include "Line_list.h"

#include "segylib.h"

#include "QuadNode.h"

#include "Writemsg.h"

int PR_Quadtree::PRQTsearch (line_list *line, XYZpnt SWcorner, XYZpnt
NEcorner)

{

if (Rootnode != NULL)/ if the root is null then return after warning the user

{ .

// Resursively search the tree to find the target points.

line->Reset(); _

Rootnode->RangeSearch(line, SWcorner, NEcorner, Xcentre, Ycentre,
Xrange, Yrange );

return(TRUE);// return to the calling routine.

}

}

// FUNCTION NAME : QTRangeSearch.c++

/I DESCRIPTION : This module contains the methods for the PR_QTnode class

#include <iostream.h> 1 INCLUDE FILES.

#inciude <stdio.h>

#include <stdlib.h>

#include "Writemsg.h"

#include "QuadNode.h"

#include "Quadtree.h"

extern DEBUG;

int PR_QTnode::RangeSearch(line_list *line, XYZpnt SWeorner, XYZpnt
NEcorner,double Xcent, double Ycent, double Xlen, double Ylen)

{

{l Local variables
int code;
double xmin, xmax, ymin, ymax, Qxsw, Qysw, Qxne, Qyne, Z;
/1 if this is a leaf node then add the line to the list
if (Nodetype == Black)
{
SWecorner.Get_XYZ(Qxsw, Qysw, Z);
NEcorner.Get_XYZ(Qxne, Qyne, 2);
if{ Xcoord >= Qxsw && Xcoord <= Qxne && Ycoord >= Qysw && Ycoord <=
Qyne)
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A
Addchild(line);

{ return to the calling routine.
return (TRUE);

}
eise return (FALSE);

}
xmin = Xcent - Xlen / 2.0; ymin = Ycent - Yien / 2.0;
xmax = Xcent + Xlen / 2.0; ymax = Yeent + Ylen / 2.0;

/1 if the North west child is not NULL then check to see if it falls in the query window.

if (NWnode '=NULL)

{ /if the query window overlaps the quadrant then recursively check the chlldren |

code = NWnode->checkquad(xmin, Ycent, Xcent, ymax, SWcorner,
NEcorner);

/1 if the quadrant is inside the query window the return all children
if (code == INSIDE)NWnode->AddAlichildren(SWcorner, NEcorner, line);

/1 if the window overlaps the walk the subtree.

if (code == OVERLAP) NWnode->RangeSearch(line, SWcorner,
Necorner, Xcent+ XF[NWquad] * Xlen, Ycent + YF[Nunad] *
Ylen, Xlen/2.0, Ylen/2.0);

}

/1 if the North east child is not NULL then check to see if it falls in the
/f query window.
if (NEnode 1=NULL)
{ /1if the query window overlaps the quadrant then recursively check the children
code = NEnode->checkguad(Xcent, Ycent, xmax, ymax, SWcorner,
NEcorner);

/1 if the quadrant is inside the query window the return all children
if (code == INSIDE) NEnode->AddAlichildren(SWcorner, NEcorner, line);

/1 if the window overlaps the walk the subtree.

if (code == OVERLAP) NEnode->RangeSearch(line, SWcorner, NEcorner,
Xcent+ XF[NEquad] * Xlen, Ycent + YF[NEquad] * Ylen, Xlen/2.0,
Ylen/2.0);

}

/1 If the South west child is not NULL then check to see if it falls in the
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}

if (SWnode !=NULL) // query window.

{

}

/1'if the query window overlaps the quadrant then recursively check the children
code = SWnode->checkquad{xmin, ymin, Xcent, Ycent, SWcorner, NEcorner);

/I if the quadrant is ihside the query window the return all children
if (code == INSIDE) SWhnode->AddAllchildren(SWcorner, NEcorner, line);

// if the window overlaps the walk the subtree.
if (code == OVERLAP) SWhnode->RangeSearch(line, SWcorner, NEcomner,
Xcent+ XF[SWquad] * Xlen, Yeent + YF[SWgquad] * Ylen, Xlen/2.0,
Yien/2.0);

I/ If the South east child is not NULL then check to see if it falls in the
if (SEnode I=NULL)/ query window.

{

}

// if the query window overlaps the quadrant then recursively check the children
code = SEnode->checkquad(Xcent, ymin, xmax, Ycent, SWcorner
NEcorner)

/1 if the quadrant is inside the query window the return al! children
if (code == INSIDE) SEnode->AddAlichildren(SWcorner, NEcorner, line);

/1 if the window overfaps the walk the subtree.

if (code == OVERLAP) SEnode->RangeSearch(iine, SWcorner, NEcorner,
Xcent+ XF[SEquad] * Xlen, Ycent + YF[SEquad] * Ylen, Xlen/2.0,
Ylen/2.0);

// return to the calling routine.
return(TRUE);
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Appendix K
TIME AND COORDINATE CCVERS
FOR
PARTITIONED SEISMIC LINES

17A TO 26H.
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Appendix L

QUERY WINDOWS
FOR

THE EXPERIMENT

All query window bounding coordinates

are given in degrees and decimal degrees.
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Table L-1. Experiment query windows for 10 percent coverage.

Min. Longitude | Min. Latitude | Max. Longitude Max. Latitunde # Lines
-95.210385 -1.5923257 -04.588123 -1.2507693 2
-93.200943 -2.2232257 -92.578681 -1.8816693 0
-95.232775 -0.2589454 . -94.610513 0.0826109 2
-04.926496 -1.0133049 -94.304234 -0.6717484 0
-05.496154 -1.6510533 -94.873892 -1.3094969 2
-04,012445 -2.9140730 -93.390183 -2.5725166 0
-94.133282 -2.3197604 -93.511020 -1.9782040 2
-93.196158 -0.1488076 -92.573896 0.1927487 0
-92.574029 -0.8182652 -91.951767 -0.4767088 0
-91.824910 -0.8137622 -91.202648 -0.4’}'220581 0

Table |-2. Experiment query windows for 25 percent coverage.

Min. Longitude Min. Latitade Max. Longitude Max. Latitude # Lines
-95.485501 -1.0638081 203.929846 -0.20991714 6
-94.725928 -1.5697008 -93.170273 -0.71580984 0
-91.913957 -2.2833137 -90.358302 -1.4294227 0
-94.322285 -1.8405110 -92.766630 -0.9866199 1
-92.528964 -1.6176242 -90.973310 -0.7637332 0
-92.134579 -0.7856492 -90.578924 0.0682417 0
-93.046550 -0.9521693 -91.490896 -0.0982783 0
-93.478822 -1.22081555 -91.923167 -0.3752645 0
-94.534789 -2.1748802 -92.979134 -1.3209892 3
-92.335261 -90.779607 -1.8051482 0

- .2.6590392
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Table L-3. Experiment query windows for 50 percent coverage. "

Min. Longitude Min. Latitude | Max. Longitude Max. Latitude # Lines
94752372 -2.4616908 91.641063 -0.7539088 4
-95.801123 -1.4997311 -92.689814 0.2080508 20
-93.212432 -2.8088552 - =90.101123 -1.1010732 4
-94.921862 -1.9125133 -91.810553 -(.2047313 2
-03.836460 -1.8397031 -00.725151 -0.1319211 0
-96.107155 -1.5378822 -92.995846 0.1698997 21
-93.839404 - -2.6276376 --90.728095 -0.9198555 0
-94.360218 -2.7569968 -91.248909 -1.0492148 4
-93.219934 -3.0978548 -90.108625 -1 .3900728 21
—96i009828 -2.6269600 -92.898519 -0.9191780 21
Table L-4. Experiment guery windows for 75 percent coverage.

Min. Longitude Min. Latitude Max, Longitude Max, Latitude # Lines
-94.771030 -2.7946528 -90.104067 -0.23297978 10 |
-96.009638 -2.6833267 -01.342675 -0.12165368 29 .
-95.802405 -2.6854375 -91.135441 -0.12376450 28
-95.826238 -2.7485536 -91.159274 -0.18688056 28

| -05.562792 -2.7646844 -90.805828 -0.20301138 27
-95.530318 -2.4265105 -90.863355 0.13516250 30
-65.600298 -2.8660818 -90.933335 -0.30440882 27
-95.944691 -3.1351199 -91.277727 -0.57344689 54
-95.110865 -2.7259339 -90.443902 -0.16426093 18
-95.570958 -3.0890728 -90.903994 -0.52739979 52
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Table L-5. Experiment query windows for 90 percent coverage.

Min, Longitudé

Min. Latitade | Max. Longitude | Max. Latitude # Lines
-96.042169 -2.9077978 -90.441813 0.16620977 43
-96.051399 -3.0548775 -90.451042 0.01913005 | 56
-96.005005 -3.0702318 -90.404649 0.00377581 61
-96.171703 -2.8689379 -90.571347 0.20506966 43
-95.946476 -2.9495660 -90.346120 0.12444163 43
-95.738644 -2.9409768 -90.138288 0.13303084 42
-96.049348 -2.8516553 -90.448991 0.22235231 45
-95.592645 -2.8855743 -89.992289 0.18843329 45
-95.926004 -2.9060154 -90.325648 0.16799223 44
-95.690864 -2.9417273 -90.090508 0.13228032 42
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Appendix M

SEARCH TIMES
FOR

THE EXPERIMENT

All search times are given in microseconds.
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Table M-1. Search times for 10% coverage using modified data structures.

QW1 [ QW2 [ QW3 | QW4 | QW5 | QW6 [ QW7 | QWS | QW9 [ QW 10

| 83000 43000 86000 48000 89000 47000 90000 40000 35000 54000
-2 95000 40000 95000 44000 89000 41000 88000 37000 43000 32000
3 87000 33000 73000 43000 54000 43000 92000 39000 38000 50000
4 90000 44000 96000 | 42000 70000 39000 90000 34000 37000 37000
5 84000 39000 86000 39000 92000 40000 83000 33000 30000 36000
6 85000 37000 { 101000 48000 94000 45000 83000 38000 43000 33000
7 75000 39000 59000 45000 78000 38000 90000 42000 36000 | ~ 45000
8 98000 42000 81000 40000 84000 41000 { 100000 41000 49000 42000
9 85000 43000 94000 47000 96000 42000 84000 40000 43000 34000
10 103000 44000 86000 46000 83000 36000 86000 34000 36000 45000
AVG 88900 41000 89700 44200 86900 4!200 88600 37800 39400 40800
o 7148 2366 8343 3027 7790 3092 4883 -;3027 5004 6860

Table M-2. Search times for 10% coverage using standard data structures.

QW1 [ QW2 [ QW3 [ QW4 [ QWS | QW6 | QW7 | QWS | QW9 QW 10
1 101000 43000 85000 44000 97000 43000 96000 41000 35000 35000 )
2 87000 35000 93000 46000 98000 43000 | 109000 400600 39000 36000
3 102000 38000 90000 43000 87000 38000G | 100000 43000 34000 29000
4 96000 42000 | 100000 36000 95000 52000 86000 40000 42000 45000
s 97000 41000 93000 40000 88000 41000 95000 35000 37000 47000
6 98000 42000 82000 36060 88000 40000 90000 39000 45000 42000
7 97000 40000 93000 38000 88000 38000 86000 41000 39000 25000
8 97000 34000 | 102000 35000 88000 44000 | 101000 41000 30000 37000
9 105000 42000 | 101000 42000 96000 41000 | 101000 42000 35000 37000
10 99000 39000 95000 41000 99000 35600 91000 38000 34000 32000
AVG 97900 39600 93800 40100 92400 | - 41500 95500 40000 37400 36500
c 4504 2939 5810 3562 4716 4363 7032 2145 4128 6515
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Table M-3. Search times for 25% covérage using modified data structures.

oW 4

QW1 | QW2 | QW 3 QW S [QW 6 ([ QW 7 | QW B | QW 9 | OW 10

1 80000 43600 50000 87000 39000 50000 30000 39000 90000 43000
2 - 85000 40000°1 39000 86000 36000 36000 42000 46000 96000 37000
3 85000 47000 43000 83000 44000 36000 38000 42000 89000 53000
4 92000 34000 44000 75000 49000 37000 33000 42000 90060 40006
5 94000 39000 35000 81000 42000 31000 41000 | . 38000 96000 39000
6 88006 42000 45000 70000 40000 44000 36006 42000 88000 39000
7 71000 44000 42000 | 77000 37000 37000 33006 36000 96000 39000
8 94000 42000 44000 76000 26000 38000 27000 43000 86000 38000
9 85000 43000 43000 83000 43000 44000 44000 43000 92000 41000
10 84000 48000 42000 82000 51000 34000 33000 | 42000 97000 41000
AVG | 86200 42200 42700 80600 40700 | 38700 38700 41300 92000 41000
Fe] 6660 3789 3689 513 6694 5349 5216 2722 3768 4313

Table M-4. Search times for 25% coverage using standard data structures.

QW1 ([OW 2 ([QW 3 | QW4 |QW S I QW6 | QW T | QW S | QW 9 [ QW 10

1 102000 45000 46000 83000 35000 § 42000 37000 39000 92000 41000
2 104000 37000 35000 77000 41000 34006 46000 37000 89ﬁ00 38000
3 97000 41000 42000 86000 37000 47600 27000 36000 | 102000 34000
4 99000 41000 440400 91000 | 41000 34000 43000 42000 80000 35000
5 118000 39000 40000 | 70000 35000 45006 31000 44000 93000 37000
6 93000 39000 41000 74000 | 33000 | 32000 31006 39000 96000 39000
7 101000 42000 38000 82000 41000 47000 42000 37000 97000 43000
8 £05000 41000 44000 77000 43000 40000 17000 39000 91000 45000
9 116000 44000 40000 80000 40000 40000 42000 35000 S1000 43000
10 103000 47600 [ - 35000 70000 41000 35000 . 43000 400060 8?000 43000
AVG | 103800 41600 40500 79000 39100 35600 35900 38800 91800 36800
T 7414 2871 3081 6434 2982 5352 8734 2600 5671 3572
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Table M-5. Search times for 50% coverage using modified data structures.

QW1 ([ QW2 | QW3 QW4 QW S ([QW 6 [QW 7 [ QW S [ QW 91 QW 10

1 76000 73000 76000 77000 41000 84000 33000 78606 95000 - 99000
2 88000 | 111000 96000 79000 44000 97000 46000 93000 930060 101600
3 89006 97000 93000 82000 46000 92000 39000 79000 94000 86000
4 72000 98000 86000 84000 47000 104ﬁ00 1000 85000 | 105000 103000
5 81000 86000 92000 52000 41000 92000 36000 96000 87000 95000
6 77000 81000 76000 5700ﬁ 40000 80000 49000 95000 95000 106000
7 91000 89000 83000 92000 40000 96000 47000 84000 96000 94000
3 77000 78000 77000 81000 45000 94000 44000 89000 | 110000 167000
9 83000 87000 ; 87000 89000 43000 81000 50000 86000 97000 94000
10 81000 93000 78000 74000 37000 95000 46000 ;82000 92000 95000
AVG 81500 89300 84400 76700 42400 | - 91500 44600 87100 96400 98000
o 5937 10479 7172 12232 2973 7243 4984 6074 6232 6116

Table M-6. Search times for 50% coverage using standard data structures.

QW 1 ([OW 2 ([QW 3 | QW 4 |QW S IQW 6 | QW T | QW S | QW 9 [ QW 10

1 93000 | 114000 92000 91000 38000 { 106000 54000 | 104000 | 115000 100060
2 108000 95000 85000 90000 36000 | 119000 50000 [ 107000 | 107000 116000
3 98GOO 109000 96000 96000 38000 ; 105000 53000 82000 97000 114000
4 103000 | 111000 94000 | 110000 43000 [ 128000 51000 87000 | 124000 105000
5 IObOOO 110000 97000 | 82000 36000 § 110000 53000 92000 | 124000 126000
6 108000 | 115000 | 104000 74000 45000 | 109000 46000 99000 98000 98000
7 104000 98000 | 84000 93000 40000 | 113000 260600 98000 | 119000 100060
8 107000 | 111000 77000 | 100000 39000 | 112000 3100G 90000 | 114000 120000
9. 103000 108000 { 106000 95000 40000 | 120000 50000 | 100000 | 123000 117000
10 98000 | 105000 92000 93000 44000 | 110000 29000 95000 103000 121000
AVG | 102800 | 108000 |~ 93100 92400 39900 | 1313200 44300 95400 | 112800 112100
o 3763 5459 8191 9178 3015 6765 10508 7351 10157 9375
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Table M-7. Search times for 75% coverage using modified data structures.

QW1 [ QW2 | QW3 | QW4 [ QWS [ QW6 | QW T I QWS | QW 9 | QW 10

1 90000 | 103000 [ 102000 96000 | 104000 95000 89000 | 101000 | 113000 | 107000
2 96000 21000 | 106000 | 100000 | 101000 86000 99000 94000 | 107000 | 107000
3 59000 91000 | 103000 | 111000 97000 87000 | 108000 | 106000 | 109000 97000
4 895000 | 110000 | 101000 | 101000 98000 | 107000 95000 93000 92000 § 116000
5 §5000 [ 115000 | 112000 83000 | 111000 99000 95000 94000 | 113000 [ 100000
.6 96000 | 111000 99000 99000 | 104000 | 104000 98000 | 104000 83000 99000
7 90000 91000 98000 £9000 82000 | 102000 96000 92000 99000 [ 107000
8 86000 97000 | 103000 88000 88000 | EO8000 | 100000 | 106000 96000 91000
9 92000 § 113000 | 102000 [ 104000 97000 99000 98000 § 99000 | 102000 97000
10 97000 98000 | 105000 | 102000 | 104000 | 107000 86000 ..96000 95000 92000
AVG | 92000 | 102000 | 103100 97300 98600 99400 26400 98500 | 100900 | 101300
g | 4561 9165 3754 8001 8002 7552 5713 5182 9268 7417

Table M-8. Search times for 75% coverage using standard data structures.

QW 1 | QW 2 | QW3 | QW4 [ QWS [ QW6 | QW T | QWS | QW 9 Qw 10
1 97000 | 119000 | 131000 | 120000 { .118000 | 113000 | 130000 | 145000 | 109000 130000
2 102000 | 123000 94000 | 127000 | 137000 | 113000 | 110000 | 137000 96000 127000 é
3 84000 | 117000 | 109000 | 114000 ; 113000 [ 1E5000 | 118000 | 137000 91000 138000 é
4 97000 | 129000 | 118000 | 121000 ; 114000 | 121000 | 100000 | 139000 | 102000 125000 E
5 1020006 { 124000 | 106000 | 120000 94000 ( 113000 | 101000 | 148000 | 101000 126000 |
6 101000 | 112000 | 126000 [ 105000 | 133000 [ 102000 | 106000 | 135000 | 109000 128006
7 | 107000 | 114000 | 116000 [ 118000 | 106000 [ 1E5000 | 100060 | 142000 [ 107000 128000
8 97000 | 119000 | 115000 [ 116000 | 113000 92000 | 119000 | 146000 [ 107000 122000
9 100000 | 114000 | 118000 | 133000 | 111000 169000 | 118000 | 137000 | 121000 144000
10 103000 | 109000 [ 118000 | 127000 [ 115000 | 123000 | 109000 | 138000 98006 135000
AVG 99000 | 118000 | 115100 | 120100 115600 i 111600 | 111100 140400 104100 130700
o 5831 5779 9813 7409 11646 8546 9460 4294 7993 6149
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Table M-9.

Search times for 90% coverage using modified data structures.

QW1 [ QW2 [QW3 [ QW4 [ QW5 [ QW6 | QW7 | QW S | QW 9 | QW 10
1 102000 | 100000 | 91000 | 100000 | 94000 | 95000 | 101000 | 93000 | 104000 96000
2 95000 | 102000 | 110000 | 100000 | 86000 | 107000 | 97000 | 114000 | 107000 | 100000
3 106000 | 114000 | 85000 [ 99000 | 90000 | 81000 | 111000 | 94000 | 105000 | 113000
) 104000 ] 95000 | 105000 | 92000 | 98000 | 100000 | 98000 | 87000 | 95000 | 109000
5 92000 | 92000 | 107000 | 123000 | 111000 | 109000 [ 106000 | 117000 | 93000 | _ 105000
6 113000 | 103000 | 93000 | 96000 | 104000 | 101000 [ 112000 | 106000 | 99000 | 101000
7 99000 [ 98000 | 105000 | 98000 | 106000 | 87000 | 105000 | 92000 | 91000 95000
8 113000 [ 107000 | 121000 | 94000 | 92000 | 104000 | 115000 | 94000 | 106000 98000
9 52000 | 100000 | 99000 | 104000 | 93000 | 99000 | 116000 | 107000 | 87000 | 105000
10 | 100000 | 108000 | 110000 | 111000 | 98000 | 115000 | 109000 | 86000 | 93000 | 114000

AVG | 101600 | 101900 | 102000 | 101700 | 97200 | 99800 | 107000 | 99000 | 98000 | 103600
p 7228 | 6155 | 10040 | 8707 | 7400 | 9631 | 6419 | 10536 | 6752 6422
Table M-10. Search times for 90% coverage using standard data structures.

QW1 | QW2 ] QW3 | QW4 [ QW5 [ QW6 QW7 | QWS | QW9 | QW 10
1 138000 | 139000 { 123000 { 131000 | 111000 | 127000 | 123000 | 125000 | 133000 | 123000
2 ] 138000 | 122000 | 146000 { 120000 | 137000 | 128000 | 130000 | 121000 | 139000 | 113000
3 | 136000 | 129000 | 128000 | 133000 | 114000 | 110000 ] 122000 { 116000 | 134000 | 117000
4 | 125000 | 126000 | 131000 { 116000 | 117000 | 112000 | 134000 | 122000 | 117000 | 141000
5 | 137000 | 134000 | 147000 | 118000 | 131000 | 127000 | 123000 | 123000 | 128000 | 127000
6 | 115000 | 126000 | 164000 | 135000 | 118000 | 133000 { [37000 | 110000 | 128000 | 112000
7 | 1160007 139000 | 126000 | 126000 | 120000 | 115000 | 118000 | 119000 | 124000 | 115000
8 | 130000 | 139000 | 137000 | 103000 | 114000 | 119000 { 138000 | 123000 | 129000 | 116000
9 | 132000 | 137000 { 147000 | 134000 | 124000 | 113000 | 134000 | 110000 | 115000 | 133000
16 | 131000 | 132000 | 142000 | 123000 | 125000 | 113000 | 123000 | 129000 | 116000 | 119000

AVG | 129800 | 132300 | 139100 | 123900 | 121100 | 115700 | 135300 119800 | 126300 | 121600

S 8146 | 5967 | 11937 | 9555 | 7778 | 7862 | 6838 | 5879 | 7772 8980
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Table M-11. Range search times fdf 100% coverage.

QW for modified | QW for standard
1 54000 168000
2 93000 156000
3 108000 143000
3 110000 173000
5 88000 173000
5 94000 161000
7 35600 172000
8 57000 174000
5 112000 177000
10 103000 161000
AVG 59300 166000
p T 5560
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