REDUCING SEARCH
WITH
MINIMAL CLAUSE TREES

by
J. D. Horton
Bruce Spencer

TR95-099, November 1995

Faculty of Computer Science

University of New Brunswick

Fredericton, N.B. E3B 5A3
Canada

Phone: (506) 453-4566
Fax: (506) 453-3566
E-mail: fcs@unb.ca

Reducing Search with Minimal Clause Trees

J. D. Horton and Bruce Spencer
Faculty of Computer Science
University of New Brunswick

P.O. Box 4400, Fredericton, New Brunswick
E3B 5A3
Phone 506-453-4566
Fax 506-453-3566
email {jdh,bspencer}@unb.ca

Abstract

The smallest and most efficient resolution based proof of a theorem is represented by a
minimal clause tree, proposed by Horton and Spencer, A clause tree T is minimal if and
only if it contains no legal tautology paths and no legal unchosen merge paths. A
characterization of minimal clanse trees is given in terms of derivations. A subsumption
relationship between resolution based procedures is defined and all such procedures are
shown to be subsumed by clause tree procedures. Three classes of procedures are
proposed which produce only minimal clause trees. The first performs surgery on any
clause tree that is produced to reduce it to a minimal clause tree. The second avoids any
resolution that produces a clause free on which surgery can be performed, but leaf to
internal node paths are allowed to be chosen. The third, and most restrictive, avoids any
resolution that produces a non-minimal clause tree.

Key words: theorem proving, reasoning (resolution), search,

Reducing Search with Minimal Clause Trees

1. An intuitive exposition of clause trees

When one uses binary resolution, one starts with a set of elauses, each of which is the
disjunction of a set of literals, and applies resolution to them until the clause that one
wants is found. This clause is the empty clause if one is looking for a contradiction.
Usually a clause is represented as a set of literals, but in this paper a clause is represented
by a tree in graph theory terms. An input clause is represented by a clause node
connected to atom nodes each of which is labeled by an atom, A + (9 sign labels the
edge joining the atom node to the clause node if the atom appears positively (negatively)
in the clause. Figure 1(A) shows the tree representing the clause {a,b,~c,~d}. Such a tree
is called a clause tree.

Clauses can be combined using resolution. For example, the clause {a,5,~c,~d} can
resolve with the clause {~b, ~d, ¢, ~g} to form the new clause {a, ~c, ~d, e, ~g}. Clause
trees are resolved by identifying the nodes that represent complementary literals from two
different clauses, as shown in Figure 1(B). The leaves of the resulting tree are the literals
of the resulting clause. But two of the leaves are labeled by ~d. The merging of the two
literals ~d that occurs when the union of two sets occurs, is not handled automatically by
the clause trees. Instead the two atom nodes that correspond to the same literal can be
joined with a merge path as in Figure 1{C1). The literal at the tail of a merge path is no
longer considered to be a literal of the corresponding clause. Finally a resolution between
Figure 1{(C1) with the clause tree for the clause {d} is done, resulting in the clause tree in
Figure 1(D) whose clause is {a, ~c, ~g!. The operation of resolving two clause trees
followed by the insertion of all leaf-to-leaf merge paths is analogous to a resolution
operation.

With clause trees, the merge path does not need to be added between open leaves; it can
also be added from an open leaf to an internal node (under the conditions to be given in
Section 2.) Suppose that the clause tree in Figure 1(B) were resolved against the clause
tree for {d} before the merge path for & were inserted. This result is shown in Figure
1{C2). The clause for this clause tree is {a, ~c¢, ~d, ¢, ~g}. Inserting the merge path for d
yields the clause tree in Figure 1{D3). Thus clause tree allow us to use the internal node in
the tree to remove a literal from the clause.

If the clause tree were much bigger, with many internal nodes, more literals might be
removed from the clause. This shows one advantage of using resolution with clause trees
over resolution with clauses.

(o))

a ; a . D)

c’-’_ c*-’\))ye €2 e
- a . < -
T Ny < \+

c = \\OJ/E g/\,+
g Ny

o8

+

o

Figure 1 Example Clause trees

Figure 1 also illustrates how clause trees distinguish between the order in which the
resolutions must be performed in a binary resolution proof, and the order in which the
clause tree operations are performed. The two sequences of operation in Figure 1 are
(A,B,C1,D) and (A,B,C2,D). The first sequence is also a binary resolution sequence since
it corresponds to binary resolution steps. The second sequence is not a binary resolution
sequence since the third step does not correspond to any binary resolution step. The final
clause tree could be built using the second sequence of operations, but is justified by the
first sequence,

Thus if clause trees are used, it may not matter in which order resolutions are done while
searching for proofs, as the resulting clause tree can be made the same as the best result.
A proof procedure that uses clause trees instead of sets to represent clauses can take
advantage of this redundancy and use fewer resolutions to search for proofs than other
resolution-based procedures. Moreover, since a clause tree really represents several
distinct proofs, we can detect if any one of those proofs contains a clause that contains a
literal and its negation. Such a clause is a tautology and we know that it cannot be useful.
We can safely discontinue work on this clause tree, and hence we can cut this branch of
the search. This is one of the restrictions used below.

2. Definitions

The definition of clause tree in this paper differs from that in [1]. There the definition is
procedural, in that operations that construct clause trees are given. Here, as in [2] the
defimtion is structural.

A path path{v,v,} in a graph from v, to v, is an alternating sequence (Vs €; V... €, V)
where each v; is a node and each e;is an edge. The first node vy is the fail of the path, and
the final node v, is the head.

Definition 1 T=(N,E,L M) is a clause tree on a set S of input clauses if:

(@) (N,E) is a(n unrooted) tree.

(b) L is a labeling of the nodes and edges of the tree. L:N'\U E—> S* U A U {+—}, where
S*is the set of instances of clauses in S and A is the set of instances of atoms in S.
Each node is labeled either by a clause in S* and called a clause node, or by an atom
in 4 and called an atom node. Each edge is labeled + or —.

(c) No atom node is incident with two edges labeled the same.

(d} Each edge e={a,c} joins an atom node a and a clause node c; it is associated with the
literal L{e)L(a).

(e) For each clause node c, L(c) = {L{{a,c})L(a) | {fa,c}e E}. Apath{vpei V... enVn)
where 0< i< n, v; € N and ¢; € E where 1<j< n is a merge path if L(e;)L(vy) =
L(ey)L(vy). Path{vs...v,) precedes (=) path Wy ... Wu) if Vo =W for some i=1,...,
m—1.

() M is the set of merge paths called chosen merge paths such that:

(i) the tail of each is a leaf (called a closed leaf),
(ii) the tails are all distinct and different from the heads, and
{tii)the relation ~ on M can be extended to a partial order.

A set M of paths in a clause tree is legal if the < relation on M can be extended to a partial
order. A path Pislegalin T =(NELM)if M U P is legal. Ifthe path joining f to % is
legal in 7, we say that 4 is visible from ¢,

A path {vs e; v; ... e, vo) Where v € Nand ¢; € Eis a tautology path if L(vy) = L(v,) and
L{ey) # L(e,). A pathis a unifiable tautology path if L(e;) # L(e,) and there exists a
substitution 0 such that L(v)0 = L(v,)0. ‘A path is a unifiable merge path if there exists a
substitution 6 such that L{e,)L(vo)8 = L{e,)L(v,)0.

A clause tree with a single clause node is said to be elementary. An open leaf is an atom
node leaf that is not the tail of any chosen merge path. The disjunction of the literals at the
open leaves of a clause tree T'is called the elause of T, cl(T).

There are various operations on clause trees: creating an elementary clause tree from an
input clause, resolving two clause trees, adding a merge path to the set of chosen paths
and instantiation. Each of these operations results in a clause tree.

Operation 1. Creating an elementary clause tree from an input clause

Given a clause C in S and a substitution O for variables in C, the elementary clause tree

T={(N,E, L) representing CO = {a,....a,} satisfies the following:

1} N consists of a clause node and n atom nodes, where L labels the atom nodes with
au....as and labels the clause node with C9.

2) E consists of n undirected edges, each of which joins the clause node to one of the
atom nodes and is labeled by L positively or negatively according to whether the atom
is positive or negative in the clause.

Operation 2. Resolving two mergeless clause trees

Let Ty = (NLEL L, My and T = (N5, E;, L, M,) be two clause trees with no nodes in
common such that n; is an atom node leaf of T; and n, is an atom node leaf of T». No
variable may occur in a label of both an atom node in T; and an atom node in Ty, Let L,
label n; with some atom a; and label the edge {n;, m,;} negatively, and L, label ny with
the atom a; but label the edge {n,, my} positively. Further let a; and a; be unifiable with
a substitution 0. Let N = N;UN>— {ny}. Let E = EfOE; — {{n,mi}} U {{ny,m)} where
{nam;} is a new edge. Let L be a new labeling relation that results from two
modifications to L; L L;: the new edge {n,m;} is labeled negatively, and 0 is applied to
the label of each atom node. Let M be the set of merge paths that results from M; W M,
by replacing each occurrence of n; in each path of M, with ny. Then T = (NELM) isa
clause tree.

We write 7; res T to refer to the clause tree that results from Operation 2. We use a
similar notation for resolving two clauses together.

Operation 3. Adding a leaf-to-leaf unifiable merge path

Let T = (N,E,L,M) and let n; and n; be two open leaves in T such that P=path(n,ny) is a
unifiable merge path of (N,E,L,4), with n; not being the tail of any chosen merge path in
M and n; not being the head or tail of any chosen merge path. Let O be a substitution
such that L(n))0=L(n)0. Let LO be the labeling relation that results from applying 0 to
the label of each atom node, and otherwise leaving L the same. Then T; = (N E, L8, M
{P}) is a clause tree.

Operation 4. Instance of a clause tree _

A clause tree T = (N,E,L' M) is an instance of a clause tree T = (N.ELM) if L' and L
are identical on the clause nodes, atom nodes and edges, and there is a substitution 0
such that for each atom node n, L'(n) = (L(n))0.

Theorem 1. Closure of Clause Tree Operations
Each of Operation 1, Operation 2, Operation 3 and Operation 4 applied to a clause
tree(s) generates a clause tree.

3. Clause tree derivations

Definition 2. Derivation of a clause tree

Given a set S of clauses, a derivation of T, from S is a sequence {T%,...,T,) of clause trees

such that each T; fori = I, ..., n (exactly) one of Al, A2, A3 or A4 holds and B holds.

Al. T, is an elementary clause tree from an input clause Cin §

A2, T;is the result of resolving 7; and T; where j<i and k<i, In this case 7;depends on T,
and T; &

A3. Tiis the result of choosing a leaf-to-leaf merge path in 7; where j<i, In this case T;
depends on T

A4, T;is an instance of 7; for j<i. In this case 7:depends on T;.

B. T, transitively dependson T; fori = 1, ..., n.

Because T, depends on all previous 7; a derivation must not have unused clause trees.
This condition does not change the essential nature of clanse frees, but is added in order to
make certain conditions easier to ensure.

Definition 3 A derivation (Ty,...,T,) where T; = (N;, E;, Ly M;) is admissible if for each
Pe M, such that P is a path in T;but P¢ M; then Pe M; forsomej > i and for all
i <k<j, Tidepends on T;.; and Ty is the not the result of resolving clause trees.

Thus a derivation is admissible if all leaf-to-leaf paths that appear in T, are chosen as soon
as possible in the derivation and before the next resolution step.

Theorem 2. Every clause tree has an admissible derivation,

Proof. Let T = (N,E,L M) be a clause tree with n, atom nodes, #,. clause nodes, n,, merge
paths and n, open leaf atom nodes. The constructed admissible derivation has n,+ n, + n,,
—n, clause trees. For each clause node ¢ in 7, construct an elementary clause tree with
atom nodes labeled the same as the atom nodes adjacent to ¢ in T, Place these as the first
r. clause frees in the derivation. Thus all remaining clause trees in the derivation will be
the result of applications of Operation 2 or Operation 3. Extend ~< to a total order on M.
Process the paths (Py,...) in this order. For each internal atom node of the path P; not
already considered, construct the clause tree corresponding to the resolution step
involving this atom node on the two clause trees already in the derivation, and insert the
result next into the derivation. After every step if any path P; for 2 i is in the current
clause tree then insert a clause tree with that path chosen into the derivation before the
next resolution step. Note that P; is a path in some tree in the derivation and that no
resolution steps have been done since this tree was constructed, and that all operations
done since have depended on this tree so the derivation so far is admissible. Continue
until all paths are processed and then do all remaining resolutions. The resulting
derivation is admissible. O :

Theorem 3. [1]Soundness and completeness of clause trees
S |= C iff there is a clause tree T on S such that cl(T) c C.

Deﬁnitfon 4 A derivation(T,,...,T,) is minimal if, for i = 1,....n, T: has two leaves with
the same label then a merge path joining these leaves is among the chosen paths in T,
and for any other pair of nodes of T:labeled the same, neither node is a leaf.

Definition 5 A clause tree (N,E,L M) is minimal if it contains no legal merge path not in
M and no legal tautology path.

A clause tree that is not minimal can be made minimal by applying surgery on all legal
tautology and legal unchosen merge paths. Surgery is an operation that involves cutting
out parts of the tree, if necessary, and rearranging the remainder, possibly adding a new
merge path, so that the resulting structure is a clause tree. Surgery will not be discussed
much in this paper. See [1].

Theorem 4. A clause tree is minimal iff all admissible derivations of it are minimal.

Proof. Let clause tree T, have a derivation (T7,..., T,,) which is admissible but not minimal,
where 7; = (N, E, L, M;). Then there is a clause tree 7; which has two identically labeled
leaves n; and #; but the path P joining these leaves is not in M,. Let 7}’ = (N, E;, L;,
MU{P}), and let ' = (Ng, E, L;;, MgU{P}) for any T which depends onT, I;'=1T,
otherwise. Then the sequence (7},..., T}, T3%..., T, is a derivation. But 7, has M, {P} as
its set of chosen paths, which implies that P is legal in 7,. Hence T, is not minimal.

Conversely, assume that 7 = (N, E, L, M) is non-minimal. Then there is a legal path P ¢ M
between atom nodes in T. Let Py,....P;, P, Pyy,,..., P, be an ordering of M © {P} thatis an
extension of the precedes relation. Then construct an admissible derivation as follows. Build a
derivation of T as in the construction in Theorem 1 according to this sequence except do not insert
the path P, Note that the tree in the derivation in which P could be first added as a merge path
breaks the minimality condition on the admissible derivation.[J

4, Comparing resolution-based procedures
Consider any resolution-based procedure, 4, working with a set I of input clauses. 4
produces in order the clauses ¢ =(C..C5...,C;...) where
a) Cel
b) C; = G res G where j<i and k<i, or
¢) CP c C wherej<i, and @ is a substitution.

This sequence is called the generated clause sequence of A oninputI. A refutation
procedure 4 stops with success if C; = ¢ for some i; otherwise it fails. Note that the
generated sequences determine the procedure if they are known for all inputs.

Let the generated clause sequence of the procedure B on input be 8 =(D,,D,,...,D,...).
B is said to subsume A on I if for all i there is an f{7), f{1)< i and Dyg; subsumes C;.
Procedure B strictly subsumes procedure 4 if B subsumes 4 and 4 does not subsume B.

Lemma 1. Let ¢ =(C1,C),...,Cy,...) be a generated clause sequence. If § =(D,Ds,....D,) is
a generated clause sequence of finite length, n<m, and 8 subsumes {C,C,....Cy), then d
can be extended to a sequence which subsumes C, and this extension is either an infinile
sequence or contains ¢ .

Proof. Suppose Dy subsumes C;, f{i)<i. Then for each C;, k>m, we define D) where

f{k)is defined to be the next available index if the clause is not already in the sequence:

a) ifCyisan i]lpllt clause, Df(@ =y

b) if Ci = CP, j<k, C;issubsumed by Dy, that is f{k} = f1j);

¢) if G = Cires C; then C; is subsumed by one of Dy, Dy or Dy res Dy, where the
resolution is on the instance of the literal resolved upon in Cires C;,

There is no need to ever consider a sequence (C;, (5,...,C;, ...} in which step (¢) of the
definition is used, since omitting C; from the sequence leaves a sequence which can be
extended to a sequence which subsumes the original sequence. Similarly it is pointless
ever to do a resolution that does not use a most general unifier of the literals being
resolved. From now on we only consider procedures that use most general unifiers and
do not generate clause sequences using part (c) of the definition.

Any resolution based procedure can be considered to be a clause tree based procedure, by
substituting for each resolution of clauses, the equivalent resolution of clause trees. Thus
we can define a clause tree based procedure on the set of input clauses 7 as a sequence of
clause trees (7}, 75,...,T; ...) in which

a) 7:is an elementary clause tree from an input clause of I; or

b) T = T;res Ty, wherej<iand k<i.

where (cl(Ty),cl(Ty),....cl(T;),...) is an equivalent resolution based procedure.

Clause trees also allow the operations of surgery, including inserting merge paths. Thus
we can replace b) in the definition of the generated clause sequence with:

b") T = the result of surgery on T} res T, where j<i and k<i, and T; is a minimal clause
tree.

Generated clause sequences using steps a) and b”) define our first class of minimal clause
tree procedures. If the surgery in b') is performed and it removes an open leaf, then the
resulting sequence of clauses strictly subsumes the original sequence of clauses. However
the sequence of clauses may no longer be a resolution based sequence, because the clause
resulting from surgery may not be derivable from the preceding sequence in one step.

Theorem 5. Any resolution based procedure can be subsumed by a clause tree based
procedure. Moreover the subsumption can be made strict unless the equivalent clause
trees are all minimal.

We have shown how to compare resolution based procedures, using subsumption. A
subsuming sequence is never longer but leads to the same goal. Theorem 5 concludes that

there is no point in considering a generated sequence that does not come from clause trees
since some generated sequence of clause trees subsumes it,. We have defined a class of
clause tree procedures which generate only minimal clause trees by performing surgery
whenever possible. In the following section we propose some further resirictions on
generated sequences of clause trees.

5. Bottom up procedures

Most resolution based procedures do not allow just any two clauses to be resolved. For
instance top down procedures generally try either to extend the current clause with an
input clause, or, when backtracking, to extend a clanse on which the current clause
depends. No other resolutions are allowed. Let us say that a clause C; is retained by a
procedure if it can later be resolved with another clause to form C; j > I, otherwise C; is
rejected. Generally a bottom up procedure retains all clauses that it produces, unless they
are subsumed by another clause in the sequence. Consider a generated sequence
(C1Cs...., C;, ..}, I C;is subsumed by C;, j < i, then C; is rejected by forward
subsumption; if < j then C; is rejected by backward subsumption.

Suppose a bottom up procedure ordered the clause trees produced so that all subtrees of
the clause tree being produced were produced first. Then there would never be a need to
apply surgery because the result of the surgery would have been produced first. However
merge paths from leaves to internal nodes can still be chosen. Hence the resolution of two
clause trees 77 and 7, which would produce a clause tree to which surgery could be
applied, other than the chosing of a merge path, need never be done. This restricts the

- number of resolutions that need to be considered at any given step of the procedure, and
hence decreases the search required to maintain a compete procedure. In effect, a forward
subsumption check can be avoided in this way.

The above gives us our second class of minimal clause tree procedures. Two minimal
clause trees can be resolved if the result is minimal, or can be made minimal by choosing
merge paths whose tails are open leaves, which must be done. All other resolutions are
forbidden.

Many a bottom up resolution based procedure is subsumed by such a clause tree
procedure. A bottom up procedure generally proceeds in stages, in which all clauses of
one type are resolved with all possible retained clauses, avoiding any resolution step that
has been previously done. If the clauses are processed so that a clause C, whose
derivation is smaller than a clause D, is processed before D, then the equivalent clause tree
- procedure is possible, and will subsume the bottom up resolution based procedure.

For example, one such procedure could produce all clauses whose derivations use &
clauses, and hence clause trees with £ clause nodes, in the & stage. As all subtrees of a
clause tree have fewer clause nodes than it has, no clause tree that admits surgery needs to
be produced.

Theorem 6. Any minimal clause tree based procedure of the first class that retains all
the subtrees of the tree being produced, is subsumed by a minimal clause tree procedure
of the second class.

6. A still more restrictive procedure

However merge paths to internal nodes can still be chosen in a new clause tree in this
second class of procedures that avoid surgery. Since we need to produce only minimal
clause trees, which can be produced using minimal derivations (Theorem 4), we do not
need to allow a resolution that produces a non-minimal clause tree. This means not only
clause trees to which surgery can be applied, but also clause trees which have an unchosen
merge path from a leaf to an internal node,

When two minimal clause trees 7; and 73 are resolved, the resulting tree T can only be
non-minimal if there is a merge/tautology path going from 7, to T, or from T to 7. The
only allowable merge/tantology paths in this third class of procedures are leaf to leaf
merge paths. Any tautology path causes 7 to be non-minimal, as does any internal node to
- leaf, or any internal node to internal node merge paths. Such frees are not retained by
these procedures. '

To implement such a procedure, one needs to be able to calculate, for any clause tree T
1. The literals at the open leaves, cl(7), and the corresponding set of atoms, atom(T).
2. The atoms labeling internal nodes, in#(7T).

3. The atoms visible from (outside) a given open leaf L, vis(T,1,).

For 7; and T to be resolved on open leaves L; of Ty and L; of T of each, it is necessary
that the following sets be empty:

1. (atom(T) O vis(T, L)) ™ int(Ty);

2. (atom(Ts) O vis(Ts,Ly) ing(T);
3. (T n~cl(T:).

The following procedure based on these ideas suggests itself. In stage k, all minimal

clause trees containing exactly k clause nodes are produced:

1. Instage /, all most general factors of the input clauses are produced.

2. Instagek, forall i = 1,...,k/2, all clause trees produced in stage i are resolved in all
ways possible with the clause trees produced in stage &-Z, but only minimal clause trees
are produced.

It is not yet clear the best way to use subsumption with this class of procedures. For
example in the above procedure, maybe one should not remove a smaller clause tree that is
subsumed by a larger clause tree. The smaller clause tree may be part of a derivation of
the smallest clause tree that proves the goal, in which case the goal may not be proved
until a later stage.

10

7. Conclusions

One way to make progress in automated reasoning 18 to define restrictions. In [1] the
 testricted space of minimal clause trees is identified. This paper proposes restrictions on
resolution based procedures that explore this space.,

We have defined three new classes of resolution based procedures based on clause trees,
each more restrictive than the previous. The first allows any clause tree to be produced,
but performs surgery on it if possible. Any resolution based procedure is subsumed by
some procedure in this category. The second allows any clause tree to be produced as
long as surgery cannot be applied to it. However trees requiring merge paths from open
leaves to internal nodes can still be retained, once these paths are chosen. A large class of
bottom up procedures are subsumed by this class of clause tree procedures. The third
class does not allow any non-minimal clause tree to be produced.

We are continuing the implementation and experimental evaluation of these procedures,
especially the third class which is the most restrictive,

References

[1] J. D.Horton and B. Spencer, Clause trees: a tool for doing and understanding
automated reasoning, TR95-095, Fac. Comp. Se¢., Univ. New Brunswick, June 1995,
available at hitp://www.cs.unb.ca/profs/bspencer/htm/clause_trees/TR95-095.ps.Z.

[2] J. D. Horton and Bruce Spencer, A top-down algorithm to find only minimal clause
trees, Proceedings of CPL-95, held in conjunction with KI-95, Bielefeld, Germany,
Sept.11-13, 1995, 77-78, available at _
http://www.cs.unb.ca/profs/bspencer/htm/clause_trees/ki95pr.ps.Z. -

[3] J. A.Robinson. A Machine-Oriented Logic Based on the Resolution Principle
Journal of the ACM, 12 (1965), 23-41.

11

