AN IMPLEMENTATION OF A
MULTIDIMENSIONAL DYNAMIC RANGE
TREE BASED ON AN AVL TREE

by
Michael G. Lamoureux

TR95-100, November 1995

Faculty of Computer Science

University of New Brunswick

Fredericton, N.B. E3B 5A3
Canada

Phone: (506) 453-4566
Fax: (506) 453-3566
E-mail: fcs@unb.ca

An Implementaﬁon of a Multidimensional Dynamic Range
Tree Based on an AVL Tree

Faculty of Computer Science Technical Report TR95-100
by

Michael G. Lamoureux

University of New Brunswick
Faculty of Computer Science
P.O. Box 4400
Fredericton, N.B., Canada
E3B 5A3

phone: (506) 453-4566 fax: (506) 453-3566
e-mail: y320@unb.ca (Michael G. Lamoureux)

ABSTRACT

In this paper we develop a dynamic multidimensional range tree data structure
based on the AVL tree. The range tree was originally defined as a static data structure
which is optimal (O(lg"n + t) for t points in range), in a worst case analysis, for answering
k-dimensional range queries on k-dimensional data when only O(nlg"'n) space is used.
Theoretical modifications to the structure do exist such that the structure can be used in a
dynamic environment and maintain both its low range search time and storage
requirements (in fact, the structure is optimally balanced), but, to the extent of the author's
knowledge, a detailed specification of the structure along with a corresponding
implementation does not yet exist in the literature,

This paper defines the necessary transformations that are needed to transform the
AVL tree into a 1-d dynamic range tree and the necessary modifications that are needed to
extend this structure into a k-dimensional structure that can handle k-dimensional data.
The resulting structure satisfies the specifications for a dynamic range tree and is optimally
balanced. It is implemented in Pascal with complete code being provided in the
appendices. This structure is important as it provides us with a baseline structure against
which other structures, and their implementations, designed to handle multidimensional
range queries on multidimensional data can be compared.

Keywords: range tree, AVL tree, range query, multidimensional data, dynamic data
structures, optimally balanced data structures

1 "An Implementation of a Multidimensional Bynamic Range Tree Based On an AVL Tree"

Table of Contents

TABLE OF CONTENTS 2

1 INTRODUCTION | 3
2 RANGE SEARCH | | o | 4
3 AVL TREES - o | 5
4 THE RANGE TREE | 7
5 THE AVL TREE AS A RANGE TREE 8
6 THE K-D RANGE TREE STRUCTURE 12

7 ANALYSIS OF THE K-D RANGE TREE STRUCTURE 14

8 CONCLUSIONS 21
9 REFERENCES 22
APPENDIX 1 The 1-d dynamic range AVL tree 24

APPENDIX 2 The 1-d dynamic range AVL tree in Pascal 29
APPENDIX 3 The k-d dynamic range AVL tree 41
APPENDIX 4 The k-d dynamic range AVL tree in Pascal 44

2 "An Implementation of a Multidimensional Dynami¢ Range Tree Based On an AVE Tree”

1 INTRODUCTION

The problem of k-d range search has long been of inferest to computer science.
Efficient access to large volumes of multi-attribute data is a fundamental requirement of
most large-scale computer information systems. This is precisely where the k-d range
search problem is applicable.

However, the problem is not as clear cut as it may seem. In order to have rapid
execution of queries, the data must be organized such that range search is very fast but we
must also insure that the storage requirements of the underlying structure are kept minimal
in order to feasibly store the structure for use. Also, today’s information systems require a
dynamically updatable database so any index structure for the database must also allow
dynamic updates, which must also be fast to ensure feasibility. These interdependent
requirements imply that the design of a dynamic data structure for efficient k-d range
search is difficulf and often unintuitive.

Although range search is commonly provided by relational algebra operations on
index structures based on the B-Tree [Come79] and permitted by a large number of other
data structures, we find that, with respect to range search, many of these structures are
either inefficient, difficult to implement, or unable to handle k-dimensional data efficiently
without extensive modifications. Other structures that permit range search include binary
search trees and their multidimensional equivalents (the k-d trees of [Bent75]), point
quadtrees (see [Same90]), and priority search tree based data structures (see [McCr83]
and [Edel81]). However, except for the RT-Tree of [Edel81] which, in fact, is based ont a
modification of the range tree of Bentley, none are as efficient, using a worst-case
analysis, as the range tree in answering k-d range queries when the overall balance of the
structure is taken into account (see [Lamo95b]).

The range tree was first introduced by Bentley ([Bent80]) as a static data structure
which was designed to answer k-d range queries quickly. It had worst-case cost functions
of O(nlg*"n) for storage, O(nlg""n) for preprocessing, and O(Ig"n +t), to Iocate t points in
range, for k-d range search. Willard and Lueker ([Will85], [Will85b], [Luek78], and
[Luek82]) have since, independently and jointly, defined modifications on the structure to
dynamize it, but their modifications were mostly theoretical and, as far as the author is
aware, a detailed description of a dynamic range tree data structure has not yet been laid
down nor has a k-dimensional implementation appeared in the literature,

The dynamic range tree permits update operations (insertions and deletions) in
worst case time complexity of O(Ig"n) when an amortized analysis is used and the
structure is optimal for the execution of k-dimensional range queries in a dynamic
environment when the underlying structure is optimally balanced.

The purpose of this paper is to cleatly define a 1-d dynamic range tree as a
modified AVL tree and then extend the structure such that it is able to handle and
efficiently process k-dimensional data according to the above cost functions. This
structure is important as it provides us with a baseline structure against which future
structures, and their implementations, designed to handle multidimensional range queries
on multidimensional data, can be compared.

3 "An Implementation of a Multidimensional Dynamic Range Tree Based On an AVL Tree"

2 RANGE SEARCH

Using the definition of [Knut73], we define a range query as a query that asks for
records (in a File F containing n records) whose attributes fall within a specific range of
values (e.g. height > 6’2" or $23,000 <= annuval income <= $65,000). We will call these
limits L for low and H for high. Boolean combinations of range queries over different
attributes are called orthogonal range queries. When the conjunction of range queries is
required, we can view each separate attribute as one dimension of a k-dimensional space,
and the orthogonal range query corresponds to asking for all records (points) that lie
within a k-dimensional (hyper) rectangular box. A range search is performed to retrieve
all records which satisfy the query. When specifying the limits of an orthogonal range
query, we will use the limit vectors L, for lower limits, and H, for upper limits, and use the
notation L; to correspond to the ith lower limit (and, similarly, Hj corresponds to the ith
upper limit).

We generally use five cost functions to portray and analyze the cost of range
search on a specific data structure G that supports range search on F. The three basic cost
functions (pertaining to those found in [Bent79]) are '

P(n,k) = preprocessing time required to build G,

S{n,k) = storage space required by G,

Qr(n,k} = time required to perform a range search on G,
and, in addition, we must consider the time required to insert a point into or delete a point
from G as we are permitting dynamic updates on our structure. The cost of these dynamic
operations are represented as

I(n,k) = time required to insert a new record into G, and

D(n,k) = time required to delete a record from G.

Following the example of [Will85] we will use U(n,k) to refer to the update cost
function when the cost function for insertion, I(n.k), is of the same order of complexity 4s
the cost function for deletion, D(n,k). This is often the case when the insertion and
deletion operations are dependent upon the search operation. Also, we are often
concerned with the time to locate a single record in our data structure GG as a member
query on some data structures designed for range queries is often of a lower order of
complexity than range query. We thus use Qu(n k) to denote the time required to answer
a member query on G. (For example, in the k-d range tree of Bentley ([Bent801) and in
the k-d Range DSL of Lamoureux and Nickerson ([Lamo95a] and [Lamo9%5b]), one can
perform a member query, Qu(n k), in O(lg n) time. This is true since a record is indexed
by the substructure in the first dimension if it appears in the structure.)

The convention in this paper, as in [Lamo95a] and [Lamo95b], is that, unless
otherwise stated, we are performing a worst case Big-Oh analysis (which, by definition, is
accurate to within a constant factor).

4 "An Implementation of a Multidimensional Dynamic Range Tree Based On an AVL Tree"

3 AVL TREES

In this section we give a brief overview of the AVL tree of [Avel62]. Our
discussion is similar to that found in [Krus94] and we refer the reader to that reference for
a more complete overview of this well known structure.

AVL trees achieve the goal that searches, insertions, and deletions in a search tree
with 1 nodes can all be achieved in O(lg n) time, even in the worst case, while maintaining
a minimum storage requirement of O{n). The AVL tree is a height balanced binary search
tree structure whose height can never exceed 1.44 Ig n, and thus, even in the worst case
structure, the performance of AVL trees is comparable to that of the completely balanced
binary search tree.

The height restriction is imposed by the definition of an AVL tree, which is as
follows. An AVL tree is a binary search tree in which the heights of the left and right
subtrees of the root differ by at most 1 and in which the left and right subtrees are again
AVL trees.

The node structure is essentially that of a binary search tree with an additional field
for the balance factor which is set either left high (/” ot -1}, equal (*-’ or 0}, or right high
(\’ or 1) to indicate that either the left subtree is higher than the right subtree, the two
subtrees are of equal height, or that the right subtree is higher than the left subtree,
respectively.

Insertion and deletion proceed analogously to insertion and deletion in binary
search trees, with the major difference being that a rotation is used to restore the balance
criterion (the two subtrees of a node cannot differ in height by more than 1) whenever an
ingertion or deletion causes the balance criterion to be violated.

There are four basic rotations that are used to restore the balance in AVL trees.
They are called either single rotations (two) or double rotations (two), depending on the
number of pointer variables that change, These are displayed in Figure 1. We note that
the double rotations are actually a concatenation of two single rotations and that the
rotations are applied to the first node (on the insertion/deletion path} encountered on the
way back up to the root that violates the balance criterion.

We illustrate the basic rotations now as they are used in the modified AVL Tree
which we use to implement our basic 1-d dynamic range tree structure. They are
straightforward and we refer the reader to [Krus34] for a more detailed exposition of the
dynamic update algorithms which includes working Pascal code. We define the nodes 1, X,
and w as the primary nodes of the rotation as the rotation is centered on these nodes and
we designate the primary node r as the root node of the rotation. We also note that for a
double rotation, one of the subtrees B and C must have a height of h.

5 "An Implementation of a Multidimensional Dynamic Range Tree Based On an AVL Tree”

Rotate Left
—>

hiA| h|B

Rotate Right
h

h+1

Dbl. Rot. Left

h
b h
hor
B C
h-1
h Dbl. Rot. Right
-
h h b
B h or C h-1
h-1

Figure 1. AVL tree rotations used to restore the balance criterion.

6 "An Implementation of 2 Multidimensional Dynamic Range Tree Based On an AVL Tree"

4 THE RANGE TREE

The range tree of Bentley ([Bent80]), like a binary search tree, stores datapoints
and is designed to detect all points that lie in a given range (i.e. it was designed with range
queries in mind). We will briefly review the range tree structure and refer the reader to
[Same90] for a good overview.

A one dimensional range tree is a balanced binary search tree where the data points
are stored in the leaf nodes and the leaf nodes are linked in sorted order by a linked list
(.e. the leaf nodes are threaded). A range search for [LL:H] is performed by searching the
tree for the node with the smallest key = L and then following the links until reaching a
leaf node with a key that is greater than or equal to H. For n points, we see that this
procedure takes O(lg n + t) time and uses G(n) storage.

A two dimensional range tree is simply a range tree of range trees. We build a
two-dimensional range tree as follows: We first sort all of the points along one of the
attributes, say x, and then store them in a balanced one-dimensional range tree, say T. We
thent append to each non-leaf node, 1, of the range tree T a range tree Tr of the points in
the sub-tree rooted at I where these points are now sorted along the other attribute, say y.

A range search for ([LH,].[Ly:H,]) is catried out as follows. It starts by
searching the tree T for the smallest key that is = Ly, say L', and the largest key that is
< Hs, say Hy'. It then finds the common ancestor of Ly and Hy', Q, that is closest to them
and assigns {PL;} and {PH;} to be the sequences of nodes, excluding Q, that form the
paths in T from Q to L, and H;', respectively.

Let LEFT(P) and RIGHT(P) denote the left and right children, respectively, of
non-leaf node P and Range_Tree(P) be the one-dimensional range tree for v that is stored
at non-leaf node P. Then, for each P that is an element of {PL;} such that LEFT{P) is also
in {PL;}, we perform a one-dimensional range search for [L,:H,] in the one-dimensional
range tree rooted at node RIGHT(P) {Range_Tree(RIGHT(P))}. For each P thatis an
element of {PH;} such that RIGHT(P) is also in {PH;}, we perform a one-dimensional
range search for [L,:H,] in the one-dimensional range tree for y rooted at node LEFT(P)
{Range_Tree(LEFT(P))}. We also check to see if Lx" and Hx' are in the given range.

It should be clear that the above search algorithm runs in O(lg’n + t) time and that
the general search algorithm for k-dimensional range queries, which is extended in a
manner that is analogous to the extension from the 1-d case to the 2-d case, runs in
O(lg"n + t) time.

The recursively defined k-dimensional range tree requires P(n,k) of O(nlg"'n) and
S(n%) of O(nlg""'n) in the static case, and P(n k) = Oulg"n), S(n,k) = O@lg " n), and
Unk) = O(ngn) in the dynamic case (see [Will85], [Will85b], [Luek78], and [Luek82])
where an amortized worst case analysis is used.

The range tree is an optimally balanced data structure (see [Lamo95b]) and
optimal for the execution of range queries in the class of optimally balanced structures.

7 "An Implementation of a Multidimenstonal Dynamic Range Tree Based On an AVL Tree"

5 THE AVL TREE AS A RANGE TREE

There are two major differences between the AVL Tree and the range tree. The
first difference is that the AVL tree stores key values corresponding to data records (data
points}) in all of its nodes, both internal and leaf, while the range tree only stores key values
corresponding to data records in it's leaf nodes. The second major difference is that the
leaf nodes of the range tree are threaded in sorted order whereas the AVL tree does not
have any of its nodes threaded.

Thus, to use the AVL Tree as a range tree we must impose modifications that
restrict key values corresponding to actnal data records to the leaf nodes and modify the
insertion and deletion algorithms so that the leaf nodes are threaded. Although these
modifications may initially seem difficult to impose at first glance, they are very
straightforward and very effective.

We accomplish the first modification by noting that we can maintain the existence
of our key values only at the leaf level by inserting (deleting) two nodes instead of one at
each insertion (deletion). The procedures one uses to accomplish this are essentially the
normal AVL tree insertion and deletion procedures with the modifications outlined below.
We call an AVL tree with this modification a range AVL tree.

One of the two nodes corresponds to the key value being (inserted / deleted), and
thus is a leaf node, and the other node is an internal node that (takes the place of / is
replaced by) an existing leaf node which must (drop down / move up) a level to allow for
the (insertion / deletion) of a leaf node. This is illustrated in Figure 2.

In Figure 2(a) we are inserting a key value y corresponding to a new data record
and, using the normal AVL tree insertion algorithm, we find that the last node on our
insertion path is x. We replace node x with a new internal node, i, and drop x down into
the left or right subiree of i, depending on whether y is greater than x or less than x,
respectively. The node corresponding to the new key value y is then placed in the empty
subtree and the remainder of the normal AVL tree insertion algorithm is used to ensure
that the balance criterion is maintained.

In Figure 2(b) we are deleting a key value y corresponding to an existing node in
the tree. Using the normal AVL tree deletion algorithm, modified such that a key value
only matches the target key value if it is in a leaf node, we arrive at the target node at the
deepest level of recursion. We make the modification that we don't remove the node
when we return to the parent node (as we unfold the recursion) but wait until we return to
the grandparent node to process the deletion. At this point the parent node is replaced by
the sibling of the node we are removing and the remainder of the normal AVL tree
deletion algorithm is used to ensure that the balance criterion is maintained.

8 "An Implementation of a Multidimensional Dynamic Range Tree Based On an AVL Tree"

Figure 2(a). Insertion of key value y into a range AVL Tree.

y“,/l\

y

Figure 2(b). Deletion of key value y from a range AVL Tree.

9 "An Implementation of a Multidimensional Dynamic Range Tree Based On an AVL Tree"

We would like 1o note that the additional restriction that every node must have 0
or 2 children (maintained by inserting/deleting two nodes at a time) implies that we have
to define two additional single rotations to handle the two new special cases that arise in
the delete procedure. These are illustrated in Figure 3. They are essentially the same as
the two standard single rotations with the only difference being that the primary node of
the rotation which is a child of the root node has a balance factor of equal height (-' or 0).

X
h Rotate Left !
 ——— C
nla h+1
h+l | B C B
hel h+l
Rotate Right
—.»
htl nle
A B B
h+1 h+1
h+1

Figure 3. Additional rotations needed (in delete procedure) for range AVL tree.

The second modification we must make is that all the leaf level nodes appear in a
doubly-linked linked list in sorted order, i.e. the leaf nodes are threaded in sorted order.
This modification is fairly simple both to impose and maintain as a leaf node can never be a
primary node of a rotation.

Leaf nodes can never be primary nodes of rotations because we are dealing with a
restricted class of AVL trees. This class is partially illustrated in Figure 4. The fact that
we insert two nodes every time we add a record to and delete two nodes every time we
remove a record from our data set implies that we are working with a restricted class of
AVL trees where every interior node must have both a left child and a right child. This
implies that the root node of the rotation is at least the third interior node up from the leaf
Ievel and, since the primary nodes of an AVL tree rotation, as seen in Figure 1, can span at
most three levels, the primary nodes, obviously, can not be leaf level nodes.

We thus correctly deduce that the threaded linked list at the leaf level only changes
when a node is inserted or deleted and this implies that maintenance of a doubly linked list
is not only simple but efficient as well. In order to insert a node we must first locate that
node which is to be its sibling (which then becomes its predecessor or successor in the
doubly linked list) and this allows us to quickly insert the node into the doubly linked ist

10 "An Implementation of a Multidimensional Dynamic Range Tree Based On an AVL Tree"

(in fact, we do 8o in constant time). Every node at the leaf level in the tree is in the doubly
linked list so deleting a node is quite simple as well as the location of the node also
determines its position in the doubly linked list. Thus we can maintain the doubly linked
list in a time bounded by the normal AVL tree insertion and deletion tirhes. '

We refer the reader to Appendix 1 for the complete insertion and deletion
algorithms and corresponding type definitions and Appendix 2 for the complete Pascal
code. We point out that a data set of one record is a special case where we have a tree
which consists solely of one leaf node and we also leave a detailed analysis to the reader
pointing out that since we have an AVL tree structure, our worst case cost functions must
be as follows:

P(n) = O(n 1g n}, S(n) = O(n), U(n) = O(Ig n), and Qr(n} = O(lgn + 1).

Figure 4. Some range AVL trees,

11 "An Implementation of a Multidimensional Dynamic Range Tree Based On an AVL Tree”

6 THE K-D RANGE TREE STRUCTURE

If we return to the definition of our k-d range tree, we find that at each interior
node, I, of our tree, T*, in dimension k we have a pointer to a range tree, TX* in

dimension k+1 which contains the points of the subtree rooted at I sorted along the k+1
coordinate value. Therefore, at each interior node of our range AVL tree in dimension k
we must have a pointer to an range AVL tree in dimension (k+1) which contains copies of
the points in the subtree rooted at I ordered on the next coordinate value.

H we ignore rotations for the moment, this condition is straightforward to
maintain. As we progress down the tree, in dimension k, searching for the place where we
perform the actual insertion or deletion, we insert the appropriate nodes into or delete the
appropriate nodes from the range AVL tree structures in the next dimension associated
with each node that we encounter along our search path. We add a second level of
recursion to our existing insertion and deletion algorithms so that the algorithms recuise
both through a 1-d range AVL tree structure and through the dimensions of the structure
to give us our dynamic k-d range tree data structure. _

Complications arise when we need a rotation to restore balance. The existing
AVL tree rotations are not adequate when a tree structure becomes unbalanced in one
dimension as each node has a pointer to a corresponding range AVL tree structure in the
next dimension which would become invalid for ptimary nodes of the rotation. This
complication is illustrated in Figure 5 where we use w, 1, and x to label the primary nodes
and (a), (b), and (c) for the associated range AVL tree structures in the next dimension,

Dbl. Rot. Left

. h or

B hor C h-1

h-1

Figure 5. An illustration of the complications of normal AVL tree rotations in k-d space
that result in an invalid range AVL tree.

Before the rotation: (a) contains the points in A, B, C, and D, (b) contains the
points in B, C, and D, and (¢} contains the points in B and C; and after the rotation: (a)
contains the points in A and B, (b) contains the points in C and D, and (¢) contains the
points in A, B, C, and D.

This tells us that partial rebuilding is required. However, it is rather inefficient to
rebuild all three range AVL tree substructures, especially when we only have to partially
rebuild two. When we rotate the nodes, we exchange their pointers to the range AVL tree
substructures in the next dimension as well. For instance, if we let node w get (a), node x
get (¢}, and node r get (b), as illustrated in 6{c), then we only have to rebuild (b) and {c).

12 "An Implementation of a Multidiménsional Dynamic Range Tree Based On an AVL Tree"

The reason that we let node x get (¢) while node r gets (b) and not the other way
around is that a double rotation is two single rotations and this is the result of a single
rotation right on x followed by a single rotation left on r. Also, assigning (b) to node x
and (¢) to node r, as illustrated in 6(d}, still results in (b} and (¢) being invalid.

One might argue that assigning node (b} to x and node (¢} to r is a better idea as
we would then have only approximately 3/4 n update operations as compared to
approximately 5/4 n update operations to validate (b} and (c), but we argue that this is
irrelevant. Both assignments require O(nlg*"'n) work to validate the substructures (b) and
(c} and thus it is faster to rebuild the substructures using partial rebuilding which requires
O(nlg*?n) time rather than choose one pointer assignment over another.

The rotations that we will use are illustrated in Figure 6 where w, r, and x remain
the primary nodes and (a), (b), and (c} remain pointers to range AVL tree substructures in
the next dimension. Note that, for the double rotations, on¢ of B or C must be of height
h. The reader is referred to Appendix 3 for the complete insertion and deletion algorithms
and type definitions and Appendix 4 for the corresponding Pascal code.

X

r - (a)
WA /gﬁD\ Rotate Left N C

rebuild: b h|A| h|B{ h+l
h+1 Fig. 6(a)

I X
/C_'{;_D‘\ Rotate Right @ r
h —/———™ |A (b)

h rebuild: b hl B C
Fig. 6(b) h b
Dbl. Rot. Left
h ~ rebuild: b & ¢
h .
| h‘gr Fig. 6(c) b
h-1
w
% (@) r
D |h Dbl. Rot. Right . /&)
h (C) rebuild: b & ¢ nlA Blhor[C D h
B thor|C Fig. 6(d) h-1
h-1

Figure 6. Rotations fora k-d dynamic range AVL tree.

13 "An Implementation of a Multidiménsional Dynamic Range Tree Based On an AVL Tree”

7 ANALYSIS OF THE K-D RANGE TREE STRUCTURE

In this section we prove that the cost functions of our data structure are those of
the k-d dynamic range tree and that our structure is optimally balanced (see [Lamo95b]).

Theorem 1: The time, Qr(n,k), required to perform a k-d range search on a k-d dynamic
range AVL tree is O(g"n + t), for t the number of datapoints found in the specified range.

Proof:

The 1-d case is equivalent to performing a range search in both an AVL tree (if we
use recursion) and a I-d range tree (if we use the doubly linked list at the leaf level) and
we know that both of these procedures require O¢lg n + t) time.

The 2-d case is slightly more involved. The worst case is when the nearest
common ancestor is the root and we have to search two range AVL tree structures in the
next dimension at each level of our AVL tree except for the level that consists of the root
alone, the last level of interior nodes on our way down to the nodes L' and Hy', and the
leaf level. This can be visualized by observing the following diagram:

We see that for each of Ly, Ls, ..., Ly and for each of H,, Hs, ..., Hyy we must search a
range AVL tree structure in the next dimension (given by Range_Tree(RIGHT(L;)) and
Range_Tree(LEFT(H;))). We thus search at most G(lg n) range AVL tree structures in
the next dimension (we search two per level on O(lg n) levels) at a search time bounded by
O(lg n) per structure to give us the required search time of Q(Ig?n + t).

We now prove by induction that Qr(n,k) = O(lg"n + t). We have our base case of
Qr(n,1) = O(lg n) and we assume that Qr(n,k} = O(Ig"n + t). We now show that
Qr(nk+1) =00g " n + t). In the worst case, we need to search one range AVL tree
structure in the last dimension, k, corresponding to each of the interior nodes in our node
sequences {PL;} and {PH;} except for the last two nodes, Ly, and H., of the O(1g""n)
range AVL tree structures we are searching in dimension k. We search at most 2 range
AVL tree structures per level of a range AVL tree structure and, as there are only O(lg nj
levels in a range AVL tree structure, we compute the upper bound of O(1g"'n + t) as it
only takes O{lg n +t) time to search a single range AVL tree structure and we are
searching O(lg*n) range AVL tree structures in dimension (k+1). [|

14 "An Implementation of a Multidimensional Dynamic Range Tree Based On an AVL Tree"

We will prove our worst case bound for insertion in two steps. Defining a simple
insertion as an insertion which does not cause a rotation to be performed; we first prove
that the time required for a simple insertion, Is(n,k), is bounded by O(Ig“n) and then prove
that the time required for any necessary rebuilding over a sequence of n insertions,
Ra(n,k), is of O(nlg"'n). This will give us our amortized insertion cost, l(n,k), of Og"n).
We will then go on to prove our worst case bound for deletion, which is equivalent,
analogously, Note that the definition of a simple deletion is analogous to the definition of
a simple insertion and that our definitions are in agreement with [Lamo93a).

However, before we can determine our rebuilding costs, and therefore our
insertion cost, along with our storage requirement and static preprocessing cost, we must
state and prove the following lemma which gives us the number of nodes in dimension k.

Lemma 1: The number of nodes in dimension k is O(nlg*'n).
Proof:

This result is obvious for dimension one. If we have n datapoints it is clear that
our range AVL tree has exactly 2n-1 nodes, one interior node for every leaf node except
for the first leaf node inserted. This gives us O(n) nodes, as required.

The k-d case turns out to be slightly more difficult to calculate, but not much, We

find that we have 2° Cﬁfg ~2 structures of n/2% points in dimension k or

lgn-1
- x+k 2)) 1

O(n Z (C -
nodes in dimension k as the number of nodes is bounded by twice the number of points.
We won't go into the specifics of the derivation or evaluation of equation (1) as a
balanced range AVL tree structure is structurally equivalent to a worst case (1-3) k-d
Range DSL structure and we use the proof found in [Lamo95a] to justify our result.
An asymptotic approximation on equation (1) evaluates to O(nl £'n) and this gives
us O(nlg*"'n) nodes in dimension k, as we set out to prove. |

Theorem 2: The time, Is(n,k), required for a simple insertion in a range AVL Tree is

O(g"n).
Proof:

The proof depends on the observation that the time required to insert a point into a
1-d range AVL tree depends on the time required to find the location where the new point
is to be inserted as the operations of creating the new nodes (one interior, one leaf) and
changing the necessary pointers to accomplish the insertion take only constant time. This
gives us Is(n,1) = O(lg n} as expected.

15 "An Implementation of a Multidimensional Dynamic Range Tree Based On an AVL Tree"

The proof that Is(n,k) = O(ngn) follows from the proof that Qgr(n,k) = O(lgkn + 1)
In dimension k we must insert the new point into a total of O(g*'n) range AVL tree
structures associated with the range AVL tree structures we inserted the new point into in
dimension (k-1). As it takes O(lg n) time to insert the point into a single range AVL tree
structure, we see that it takes O(lg"n) time to insert the point into a k-d range AVL tree. W

Iemma 2: The time, Ry(n.k), to do necessary rebuilding for a single insertion is O(ntg"n).
Proof:

In the worst case insertion, a rotation occurs at the root node of the tree in
dimension 1. We then find that we have to do rebuilding of two (k-1) d range AVL tree
structures in the dimension 2 that consist of roughly n/2 nodes each. The worst case
insertion is illustrated in Figure 7. Using the trick of presorting found in [Bent80] we can
rebuild a k dimensional range tree structure of n nodes in O(nlg*'n) time as we are
working with a well defined data set which we can assume to be static for the duration of
the necessary rebuilding. This tells us that a single insertion can cause at most O(nlg"n)
rebuilding to take place (as we must rebuild two k-1 dimensional range tree structures
which contain n points combined), as desired. [|

Lemma 3: The time, Rg(n k), required to do any necessary rebuilding over a sequence of n
insertions is given by O(nlg""n).

The worst case insertion is guaranteed to occur once, and only once, in a sequence
of O(n) insertions when we start with n datapoints in the range AVL tree (see [Fred81]
and [Will83]). Likewise, the second worst case insertion (when we have to do rebuilding
at depth 2) is guaranteed to occur twice, and only twice in a sequence of O(n) insertions.
In general, the ith worst case insertion is guaranteed to occur 2 times, and only 2'
times, in a sequence of O(n) insertions.

The work involved in rebuilding over a sequence of n insertions is given by

1gn—1
3 207187 @)
i=1 2t
and the summation is bounded by O(nlg 'n) (see [Lamo95a]). This completes our proof
that the time, Rg(n,k), to do any necessary rebuilding over a sequence of n insertions is

given by O(nlg*'n). n

Theorem 3: The time, I{n,k) required to perform a normal insertion into a range AVL free
is O(lg"n).

Proof:
This proof follows directly from Theorem 2 and Lemma 3. A simple insertion is

bounded by O(g*n) and the time to do any necessary rebuilding is bounded by O(1g"*n)
where we use an amortized rebuilding cost. Thus, an insettion requires O(ngn) time. M

16 "An Implementation of a Multidimensional Dynamic Range Tree Based On an AVL Tree"

Figure 7(a). 2-d range AVL tree before the worst case insertion of (67,127).

17 "An Implementation of a Multi(ﬁménsional Dynamic Range Tree Based On an AVL Tree"

' 5
A) @‘@

Figure 7(b). 2-d range AVL tree after the worst case insertion of (67,127).

18 "An Implementation of a Multidimensional Dynamic Range Tree Based On an AVL Tree"

Theorem 4: The time, Ds(n k), to perform a simple deletion of a point in a range AVL tree
is O(lg*n).

Proof:

The proof depends on the observation that the time required for deletion of a node
in a 1-d range AVL tree depends on the time required to find the location of the point
being deleted as the operations of removing the corresponding nodes (one internal and one
leaf) and changing the necessary pointers require constant time. This gives us D(n,1) =
O(lg n), as expected.

The proof that Ds(n,k) = O(lg"n) follows from the proof that Qr(n.k) =
O(g*n + t). In dimension k we must remove the point from a total of O(lg""'n) range
AVL wree structures. It takes O(lg n) time to remove the point from one range AVL tree
structure and thus it takes O(lg"n) time to remove the point from a k-d range AVL tree.

Lemma 4: The time, Rp(n,k), to do necessary rebuilding for a single deletion is O(nlg"n).

In the worst case deletion, a rotation occurs at the root node of the tree in
dimension 1. We then find that we have to do rebuilding of two (k-1)-d range AVL tree
structures in the dimension (2) that consist of roughly n/2 nodes each. Using the trick of
presorting found in {Bent80] we can rebuild a k dimensional range tree structure of n
nodes in O(nlg®'n) time as we are working with a well defined data set which we can
assume to be static for the duration of the necessary rebuilding. This tells us that a single
deletion can cause at most O(nlgk'zn) rebuilding to take place (as we must rebuild two k-1
dimensional range tree structures which contain nt points combined), as desired. []

Lemma 5: The time, Rsp(n k), required to do any necessary rebuilding over a sequence of
n deletions is given by O(nlg* n).

The worst case deletion is guaranteed to occur once, and only once, in a sequence
of O(n) deletions when we stait with 2n datapoints in the range AVL tree (see [Fred81]
and [Will85]). Likewise, the second worst case deletion (when we have to do rebuilding
at depth 2) is guaranteed to occur twice, and only twice in a sequence of O(n) deletions.
In general, the ith worst case deletion is guaranteed to occur 2" times in a sequence of
O(n) deletions.

The work involved in rebuilding over a sequence of n deletions is given by

lgn-1 kg 7l
I 21D @
and we know that this summation is bounded by O(nlg*"'n) from Lemma 3. This
completes our proof that the time, Rsp(n k), to do any necessary rebuilding over a
sequence of n deletions is given by O(nlg"*n). |

19 "An Implementation of a Multidimensional Dynamic Range Tree Based On an AVL Tree"

Theorem 5: The time, D(n k) required to perform a normal deletion inn a range AVL tree is
O(lg™n).

Proof:

This proof follows directly from Theorem 4 and Lemma 5. A simple deletion is
bounded by O(lg“n) and the time to do any necessary rebuilding is bounded by O(g"'n)
when we use an amortized rebuilding cost. Thus, a deletion requires O(@g"n) time. [|

Theorem 6: The space, S(n,k), required for storage of a k-d range AVL tree is O(nlg"'n).
Proof:

Each node in the k-d range AVL tree has three pointers and a constant number of
data fields and thus requires O(1) space so we need only determine the maximum number
of nodes in the k-d range AVL tree to determine the space required. From Lemma 1, we
know that dimension k requires O(nlg"'n) space. As we are performing a Big-Oh
analysis, we see that this term is the dominant term in our expression for storage and we
thus correctly determine that we require O(nlg*'n) space for storage, S(nk). |

Theorem 7: The time, P(n k), to construct a k-d range AVL tree is O(nlg"n).

We construct a dynamic k-d range AVL tree by insertion of one point at a time.
We thus have to perform n insertions where each insertion is bounded by O(lg*n) time
when we used an amortized analysis. Thus, P(n,k) is O(nlg"n). |

Theorem 8: The k-d range AVL tree is an optimally balanced data structure.,

Proof

The balance cost, P(n,k) * S(n,k) * I{n,k) * D(n,k} * Qr(n k) =
O(n igkn) * O(n 1g5"'n) * Og"n) * Og“n) * OQg"n) =
O(1g"n * n1g""n * Ig¥n * Ign * 1g*n) = O(@*1g™ 'n) = O(n’lg"n)
and this is known to be optimal from Lamo93b. [

Theorem 9: Assuming an optimally balanced data structure, the k-d range AVL tree is
optimal for k-d range search.

Proof:

From [Lamo95b] we know that an optimally balanced data structure is optimal for
range search if it requires at most O(lg“n + t) time for range search using a worst case
analysis. Range search, Qr(n k), in the k-d range AVL tree requires at most O(lgkn + 1)
time in the worst case and therefore, since the structure is optimally balanced, the k-d
range AVL tree is optimal for k-d range search. |

20 "An Implementation of a Multidimensional Dynamic Range Tree Based On an AVL Tree”

8 CONCLUSIONS

This paper has provided us with an implementation of an optimally balanced data
structure which is optimal for k-d range search on point data in a completely dynamic
operating environment. It should provide a practical indexing mechanism to carry out
range searches in a dynamic environment along with providing us with a baseline structure
against which other structures, and their implementations, designed to handle
multidimensional range queries on multidimensional data can be compared.

The techniques used to transform, or map, the AVL tree into a dynamic range tree
provide insight into the similarities between different binary search tree structures and may
prove useful in transforming and dynamizing other tree structures for more complicated
tasks. The complete working Pascal code in the appendices provides us with a solid
definition for our structure and illustrates a recursive technique which may be useful for
defining and working with many other k-d data structures. The technique has already
proved useful in the creation of the k-d Range DSL of [Lamo952a] and [Lamo95b].

21 "An Implementation of a Multidimensional Dynamic Range Tree Based On an AVL Tree"

9 REFERENCES

[Adel62] Adel'son-Vel'skii, G.M., and Landis, E.M., "An Algorithm for the Organization
of Information", Soviet Mathematics Doklady, Vol. 3, 1962, pp. 1259 - 1262.

[Bent75] Bently, J.L., “Multidimensional Binary Search Trees Used For Associative
Searching”, Communications of the ACM, Vol. 18, No. 9, 1975, pp. 509 - 517.

[Bent79] Bently, I.L., and Friedman, Jerome H., “Data Structures for Range Searching”,
ACM Computing Surverys, Vol. 11, No. 4, December 1979, pp. 397 - 409.

[Bent80] Bently, J.L., “Multidimensional Divide-and-Conquer”, Communications of the
ACM, Vol. 23, No. 4, (April} 1980, pp. 214 - 229,

[Come79] Comer, D., “The Ubiquitous B-tree”, ACM Computing Surveys, Vol. 11, No.
2, 1979, pp. 121 - 137.

[Edel81] Edelsbrunner, H., “A Note on Dynamic Range Searching“',‘ Bulletin of the
EATCS, Number 15, October 1981, pp. 34 - 40.

[Fred81] Fredman, Michael L., “A Lower Bound on the Complexity of Orthogonal Range
Queries”, J. ACM, Vol. 28, No. 4, (October) 1981, pp. 696 - 705.

[Knut73] Knuth, D.E., The Art of Computer Programming: Volume 3 Searching and
Sorting, Addison-Wesley, Reading, MA, 1973, pp. 550 - 555.

[Krus94] Kruse, Robert L., Data Structures and Program Design, Third Edition, Prentice
Hall, Englewood Cliffs, New Jersey, 1994.

[Lamo95a) Lamoureux, Michael G., and Nickerson, Bradford G., "Deterministic Skip
Lists For K-Dimensional Range Search", University of New Brunswick Technical
~Report TR95-098, Revision 1, November 19935.

[Lamo95b] Lamoureux, Michael G., and Nickerson, Bradford G., "A Deterministic Skip
List For k-dimensional Range Search”, [submitted for publication], October 1995.

[Luek78] Lueker, George S., “A Data Structure for Orthogonal Range Queries”,
Proceedings of the 19th Annual Symposium on Foundations of Computer Science,
IEEE 78 CH1387-9 C, pp. 28 - 34.

[Luek82] Lueker, George S., and Willard Dan E., “A Data Structure for Dynamic Range

Queries”, Information Processing Letters, Vol. 15, No. 5, (December) 1982, pp. 209 -
213.

22 "An Implementation of a Multidimensional Dynamic Range Tree Based On an AVL Tree"

[McCr85] McCreight, Edward M., “Priorii;y Search Trees”, STAM J. Comput.,Vol. 14,
No.2, May 1985, pp 257 - 276.

[Same90] Samet, H., The Design and Analysi& of Spatial Data Structures, Addison-
Wesley, Reading, MA, 1990.

[Will85] Willard, Dan E. And Lueker, George S, “Adding Range Restriction Capability to
Dynamic Data Structures”, J. ACM, Vol. 32, No. 3, (July) 1985, pp. 597 - 617.

[Will85b] Willard, Dan E., “New Data Structures for Orthogonal Range Queries”, STAM
J. Comput., Vol. 14, No. 1, (February) 1985, pp. 232 -253.

23 "An Implementation of a Multidimensional Dynamic Range Tree Based On an AVL Tree"

APPENDIX 1

The 1-d dynamic range AVL tree

AVL trees are important as they achieve the goal that searches, insertions, and
deletions in a tree with n nodes can all be achieved in time that is O(lg n), even in the
worst case, with a minimal storage requirement of O(n). The height of an AVL tree can
never exceed 1.44 1g n, and thus, even in the worst case, the behavior of an AVL tree is
not far from that of a completely balanced binary search tree.

In a completely balanced binary search tree, the left and right subtrees of any node
would have the same height. Although this goal is not always achievable in practice as it
is difficult to maintain a uniformly balanced structure when we permit dynamic updates,
we can always ensuze that the heights of every left and right subtree never differ by more
than 1 if we build our search tree carefully. We thus define an AVL tree as a binary search
tree in which the heights of the left and right subtrees of the root differ by at most 1 and in
which the left and right subtrees are again AVL trees.

The 1-d range tree is a height balanced binary search tree where the data values are
stored only at the leaves which are threaded in sorted order by a doubly linked list. All
internal nodes contain a key value that is used to facilitate the search. This key value can
be set to be the maximum key value in the left subtree as this will maintain the search {ree
property when we use a <in our search.

Based on the above definitions, we define our 1-d dynamic range AVL tree as an
AVL tree where data values are stored only in the leaf nodes which are threaded in sorted
order by a doubly linked list. To facilitate our insertion and deletion algorithms we make
the further restriction that every internal node have 2 children and that it is assigned the
maximum data value in its left subtree as its key value. This implies that our search tree
property becomes: every node in the left subtree is less than or equal to the root which is
less than every node in the right subtree, and that we must use < when searching.

We define our node-structure as:
nodeptr = *range AVL_node;
range_AVL_node =
record
nt: nodetype; {interior or leaf}
key: keytype; {usually integer}
L, R: nodeptr; {pointers to left and right children}
bf: bf_type; {balance factor, usually char or integer}
p,n: nodeptr; {threads leaf nodes, nil at interior nodes}
da: nodeptr; {direct ancestor; nil at interior nodes; connects a leaf node
to the interior node with its key value}
end,;
bf_type=(-lor/,00r-, L or\;

In the following pages we describe the workings of the insertion, deletion, and
range search procedures which are found in their entirety in Appendix 2.

Insertion of a node

We insert the new node into the range AVL tree by first using the usual binary
search tree insertion algorithm which finds the location where the node is to be inserted by
searching for the key of the node we are about to insert. The search terminates at the leaf
level and once we reach a leaf node we have found the node that is to become the sibling
of the node we are inserting.

We complete the insertion by making a copy of the leaf node which then becomes
the right or left child of the node we end up at, depending on whether or not the new node
has a key value that is less than or greater than the leaf node we end up at, which is
converted into an interior node. After it is linked to the new interior node which is its
parent, the new node is inserted into the sorted doubly linked list of leaf nodes using the
standard linked list ingertion procedure,

‘We also connect the newly inserted node to what we call its direct ancestor which
is the interior node that "inherits” its key value. Note that, for a leaf that becomes a left
child, its direct ancestor is simply its parent node at the time of insertion. H a new node is
inserted as a right child, then it does not have a direct ancestor as a new node is only
inserted as a right child when it has a key value that is larger than any key value currently
in the tree. In this case, the leaf node that is its sibling, which used to contain the largest
key value in the tree, is assigned the parent node as its direct ancestor while the new node
acquires a nil link in its direct ancestor field.

The only special case that we must check for in our insertion procedure is that of a
nil tree. As all other insertions take place at an existing leaf node, there are no other
special cases. We also note that this data structure can support non-unigue keys, and that
they are always inserted as a left child, but that we vsually use unique keys in practice.

Since an insertion always replaces a leaf node with an interior node which gets the
old leaf node it replaced and the new node that is being inserted as its children, the height
of the subtree that the new node is inserted into always increases. Thus, we call the
procedures LeftBalance and RightBalance as appropriate, depending on whether the new
node was inserted in the left subtree or right subtree, to update the affected balance
factors and perform any necessary rotations needed to correct a height imbalance.,

The procedures LeftBalance and RightBalance, like the procedures RotateLeft and
RotateRight that they call, are identical to those used for the standard AVL tree and we
refer the reader to [Krus94] for more detail and Appendix 2 for the Pascal code.

Deletion of a node

Deletion of a node from a range AVL tree requires the same basic ideas, including
rotations, as deletion in a normal AVL tree but turns out 10 be much simpler as all the data
values are stored only at the leaf level. This implies that we don't have the difficulties
involved in normal AVL tree deletion where we have to recursively delete nodes from the
tree when we are trying to remove a non-leaf node with two children.

To accomplish the deletion, we perform a recursive search for the node that we
want to delete which is similar to the recutsive search we perform in the normal AVL tree.
The difference is that we must stop our search at the parent node as we must remove two
nodes, an interior node (which is the parent node we terminate our search at) and the
selected leaf node, to counterbalance the insertion procedure and maintain the search tree
properties. (Every node must have two children and we must have 2n-1 nodes if we have
n data points, i.e. n leaves and n-1 interior nodes.)

This implies that we have an additional two special cases to consider besides the
four cases that we have to consider when we process a deletion. The special cases are
that of an empty tree, from which no node can be deleied, and the tree with only one leaf
node, which is replaced by the empty tree if the leaf node is the node we wish to delete.

The four cases we have to consider are as follows:

Case 1 Case 2. Case 3 Case 4

Case 1: The leaf node is a left child and its sibling is a leaf node.
In this case we simply replace the parent node with its right child and remove both
the target node and the parent node from the tree. The direct ancestor is the
parent node so we don't change a key value in any interior node and all we have to
do to complete the deletion is remove the target node from the sorted linked list.

Case 2: The leaf node is a right child and its sibling is a leaf node.
Similar to case 1, but this time we replace the parent node with its left child and
remove both the target node and the parent node from the ree. However, as the
direct ancestor of the leaf node we are deleting is not the parent node, we must
change the key value in the target node's direct ancestor to be the key value of its
sibling. We also have to change the direct ancestor field of its sibling to point to
the node that was the direct ancestor of the node we are deleting. Of course, if the
node we are deleting happens to be that of the largest key value in the tree, then,
since it has no direct ancestor, we don't have to change a key value in an interior
node, However, we do have to change the direct ancestor field of its sibling to nil
as its sibling becomes the node with the largest key value in the tree.

Case 3: The leaf node is a left child and its sibling is an interior node.

This case is almost identical to case one. Again we replace the parent node with its right
child and remove both the node and the parent node from the tree. Again the direct
ancestor is the parent node so all we have to do to complete the deletion is remove the
target node from the sorted linked list.

Case 4: The leaf node is a right child and its sibling is an interior node.

This case is almost identical to case two. Again we replace the parent node with the its
left child and remove both the target node and the parent node from the tree. As in case
two, the direct ancestor, if it exists, is not the parent node and so we must change the key
value in the direct ancestor to be the key value of the right child of the target node's sibling
(which is an interior node). Also, we must change the direct ancestor field of the right
child of the target node's sibling to point to the node that was the direct ancestor of the
target node. Of course, as in case two, if the node we are deleting has the largest key
value in the tree and, as such, has no direct ancestor then we don't have to change any key
values and we simply replace the contents of the direct ancestor field of the right child of
the target node's sibling to nil.,

The Balancel. and BalanceR procedures which are called after every deletion are
essentially the standard AVL tree BalanceL and BalanceR procedures which are used to
change any affected balance factors and restore balance, if necessary, after a deletion,
They are always called because a deletion, being complementary to an insertion, always
decreases the height of a subtree.

Range Search in the 1-d range AVL tree

Range Search in the 1-d range AVL tree proceeds exactly like range search in the
standard range tree. A range search for [L:H] is performed by searching the tree for the
node with the smallest key = L and then following the links ontil reaching a leaf node with
a key that is greater than or equal to H. The procedure is quite succinct and can be found
in its entirety in Appendix 2. '

One advantage of the range AVL wree over the AVL tree is evident from the range
search procedure. Unlike the AVL tree, the range AVL tree allows for an iterative range
search procedure which allows for a slightly quicker range search as we lower the value of
the constant hidden in the big-oh analysis when we replace a recursive procedure with an
iterative one. Also, the above procedure is just as simple as the recursive one.

Summary of the 1-d range AVL tree

The 1-d dynamic range AVL tree is an alternative to the standard AVL tree and
standard range tree which also allows for insertion, deletion, and member query in O(g n)
time complexity while requiring minimal storage space of O(n), It supports range searches
in O(lg n + t) time, where t is the number of points found, and is as conceptually simple as
the two structures that it combines. It also has the additional advantages that it is
straightforward to extend it to handle k-d dimensional data and that it produces an
optimally balanced structure which is optimal for range search in the class it belongs in.
Generalized to k-d it provides an efficient alternative to B-trees as database indexes and
the recursive algorithms it employs are generalizable to other data structures.

APPENDIX 2

The 1-d dynamic range AVL tree in Pascal

Program One_Dimensional_Range AVI, Tree;

Type keytype = integer; {usually integer, but not necessary}
nodetype = (interior, leaf}:
bf_type = integer; {-1, 0, or 1} {LH, EQ, RH}
nodepty = “range_AVL_node;
range_AVL_node = record
nt: nodetype; {type of node: Interior or leaf}
key: kevtype: {usually integer}
L, R: nodeptr; {left and right children}
bf: bf_tvype; {balance factor: int or char}
p.n: nedeptr; {used to thread leaf nodes,
nil at interior ncdes}
da: nodeptr; {direct ancestor: nil at interior
nodes, points to interior node
that inherits the leaf node's
key value}

end;
Var T: nodeptr; {Our 1l-4 dvnamic range AVL trée}
L, H: keytype:; {8earch Range for Range Search}
nn: nodeptr; {new node to be inserted}

taller: boolean; {recursive control in Insert}
reduced: boolean; {recursive contrel in Delete}
cheice: char; {for interactive testing purposes}
key: Kkeytype; {a key value}

Procedure Copynode{T: nodepty; Var nl: nodeptr);
{This procedure makes an exact duplicate of the leaf node, T, that is
about te be converted te an interior node by the Insert procedure.}

Begin {Copynode}

new{nl); {allocate the new node}
nl~.nt:= T*.nt; {copy node type}

nl~.da:= T".da; {copy direct ancestor}
nl™~.key:= T".Key; {copy key value}

nl~.L:= ?.L; nl~.R:= T*.R; {copy pointers to chilidren}
nl>.bf:= T".bt; {copy balance factor}

nl*~.p:= T .p; nl~.n:= T".n; {copy pointers that maintain the thread}
End; {Copynocde}

Procedure Rotateleft (Var p: nodeptr);
{When the tLree is unbalanced to the right, this procedure is called to
perform a left rotation which is necessary to restore the balance.}

Var temp: nodeptr; {used as temp. var. for rotation}

Begin {RotateLeft}
IF p = nil Then {root node of reotation ig nil, can't rotate}
Begin {Errcr! Empty Subtree}
writeln{'Error in RotateLeft., Can''t rotate an empty subtree.'};
HALT; {do not continue, critical errer}
End {Error! Empty Subtree}

Elge {the root node of the rotation is not nil}
IF p~.R = nil then {a primary node of the rotation is nil}
Begin {Error! Empty subtree can't be root}
writeln{'Error in RotatelLeft., Can''t make empty subtree root.'};
HALT; {do not continue, c¢ritical error} ’
End {Error! Empty subtree can't be root}
Else {primary nodes are nect nil}
Iir {(p™.nt <> leaf} and (p*.R*.nt <> leaf}} Then
Begin {valid rotation}
{perform the reotation}

temp:= p~.R; {temp will be the root}

p*~.R:= temp™.L; {left subtree of x --> right subtree of root}
temp®.L:= p; {root —--» left subtree of x}

p:= temp; {root:= x}

End {valid rotation}
ELSE {primary nodesg are invalid asg one or more is a leaf node}

Begin {Error! Can't rotate on a leaf node!}
writeln('Invalid primary nodes in RotatelLeft.');
writeln({'Critical Error! Terminating Program.'}:
HALT; {Critical Errorti}

End; {Error! Can't rotate on a leaf node!}

End; {RotateLeft}

Procedure RotateRight (Var p: nodeptr); _
{When the tree is unbkalanced to the left, this procedure is called to
perform a right rotation which is necesgary to restore the balance.}

Var temp: nodeptr; {used as temp. var. for rotation}

Begin {RotateRight}
IF p = nil Then
Begin {EBrror! Empty Subtree}
writeln({'Error in RotateRight. Can''t rotate an empty subtree.'};
HALT; {do not continue, critical error}
End {Errori Empty Subtree}
Else {root nede of rotaticen is not nil}
IF p~.L = nil Then {primary node of rotation is nil}
Begin {Frror! Empty subtree can't become root}
writeln('Error in ReotateRight Can''t make empty subtree root.');
HALT; {do not continue, critical error}
End {Error! Enmpty subtree can't become root}
Else {primary nodes of rotation are not nil}
IF {{p"~.nt <> leaf) and (p~.L*.nt <> leaf}) Then
Begin {valid rotation}
{perform the rotation}

temp:= p*.L; {temp will be the root}

p*.L:= temp”~.R; {right subtree of x --> left subtree of root}
Cemp”.R:= p: {root --> right subtree of x}

pr= temp; {xroot:= X}

End {wvalid rotation}
ELSE {primary nodes are invalid as one or more is a leaf node}

Begin {Error! Can't rotate on a leaf node!}
writeln{'Invalid primary nodes in RotateRight.');
writeln{'Critical Error! Terminating Program.'};
HALT; {Critical Error!'}

End; {Error! Can't rotate on a leaf node!}

End; {RotateRight}

Procedure RightBalance (VAR T: nodeptr; Var taller: boolean);
{This procedure is called to correct an imbalance in the right subtree.}
{i.e. the tree is right high (BF = 2}

var X, {pointer to right subtree of T}
w: nodeptr; {pointer to left subtree of X}

Begin {RightBalance}
X:= T*.R;

Case x*.bf of
1: Begin {RH} {a single left rotation corrects this gituation}
T .bf:= 0 {after rotation, this node is balanced}
Xx*.bf:= 0; {after rotation, this node i= balanced}
RotatelLeft (T}; {perform single left rotation}
taller:= false; {gubtree hagn't increased in height}
End; {RH} {a single left rotation corrects the gituation}
0: Begin {EH} {By def'n of AVL trees, this casgse doegsn‘'t arise.}
writeln('Error in RightBalance. Condition of EH.*®);
HALT; {do not continue, critical error}
End; {EH} ({By def'n of AVL trees, this case doesn't arise.}
-1: Begin {LH} {we need a double rotation te correct the sgituation}
w:= Xx*.L; {will become the rocot}
Case w*.bf of {w determines balance factors of x and T}
0: Begin T*.bf:= 0; x*.bf:= 0; End;
~1: Begin T*.bf:= 0; x*.kf:= 1; End;

1l: Begin T*.bf:= -1; x*.bf:= 0; End;
End; {Came w*.bf of}
wr.kf:= 0; {w is always balanced after rotation}
RotateRight (x}; {first rotate right on x, w replaces X}
T .Ri= X; {reconnect x to right child of T}
RotatelLeft{T); {now rotate left on T}

taller:= false; {the subtree has not increased in height}
End; {LH} {we need a double rotation to correct the sgituation}
End; {Case x".bf of}
End; {RightBalance}

Procedure LeftBalance(Var T: nodeptr; Var taller: booclean);
{This procedure is called to correct an imbalance in the left subtree.}
{i.e. the tree is left high (BF = -2}}

Var X, {pointer to left subtree of T}
w: nodeptr; {pointer to right subtree of X}

Begin {LeftBalance}
X:= T*.L;

Caze X".bI of
-1: Begin {LH} {a single right rotation corrects the situation}

T~.bf:= 0; {after rotation, this node is balanced}
x*.bf:= 0; {after rotatiecn, this node is balanced}
RotateRight {T); {perform single right rotation}

taller:= falge; {subtree hasn't increased in height}

End; {LH} {a single right rotation corrects the situation}

0: Begin {EH} {By def'n of AVL treeg, this case doesn't arise.}
writeln('Error in LeftBalance. Condtion of BH.'};
~HALT; {do not continue, critical error}

End; {EH} {By def'n of AVL treesg, this case doesn't arise.}

1: Begin {RH} {we need a dcuble rotation teo correct the situation}
wi= X*.R; {will become the root}

3

Case w.bf of {w determines balance factors of x and T}

0: Begin T.bf:= 0; x~.bf:= 0; End;

1: Begin T".bf:= 0; x*.bf:= -1; End;

-1: Begin T*.bf:= 1; x*.bf:= 0; End;
End; {Case w".bf of}
wr.bf:= 0; {w iz balanced after the rotation}
Rotateleft (x}; {first rotate left on x, w replaces x}
T*.L:= X; {reconnect x to left child of T}
RotateRight {T); {now rotate right on T}
taller:= false; {the subtree has not increased in height}

End; {RH} {we need a double rotation Lo correct the situation}
End; ({Case x".bf of}

End; {LeftBalance}

Procedure Ingert{Var T: nodeptr; nn: ncdeptr; Var taller: boolean};
{Thig precedure inserts the node nn inte the dynamic range AVL tree T.
Taller ig true if the height of tree increases and is false cotherwigel

Var tallersubtree: boolean; {has height of the subtree increased?}
ni: nodeptr; {we need a new leaf during insertiocn as the
last leaf node found in our search is
converted to an interior nodel

Begin {Insert}
tallerzubtree:= falge; {only true when height of subtree increases}

IF T = nil Then {we are ingerting the first node}
T:= nn
ELSE {we are not inserting the first node}
Begin {tree iz not empty}
IF T*.nt = leaf Then {insertion occurs only at leaf level}
Begin {we have reached the leaf level, ingert}
taller:= true; {insertion increases height}
Copynode (T, nl}; ({before converting T te intericr node, <copyl
T~.nt:= interior; {T is now interior node}
{whatever points te T must now point to nl}
IF T".p <> nil Then T".p"~.n:= nl;
IF T*.n <> nil Then T*.n".p:= nl;
{Ingert nn asg left or right child of T as apprepriate}
IF nn“.key <= nl”®.key Then {new node ig left child}
Begin {Ingert new node asgs left child}
{Direct ancestor is new interior node T}
nn”.da:= T;
T~.da:= nil; {interior node has no direct ancestor}
T*.L:= nn; T".R:= nl; {connect leaves to intericr node T}
T .p:= nil; T*.n:= nil; {T is interior, remove from list}
T™.key:= nn".key; {T's key = max. key left subtree}
{ingert new leaf into linked list}
IF nl”.p <> nil Then {new ncde not first node in list}
Begin {make connection between new node and previocus}
nl*.p®.n:= nn; nn™.p:= nl*.p;
End {make connection between new node and previcus}
ELSE {new ncde is first node in list}
nn®.p:= nil;
{connect new node to sibling}
nn*.n:= nl;
nl*.p:= nn;
End {Insert new node as left child}
ELSE {new leaf ig right child, old leaf is left child}

32

Begin {Insert new node as right child}
{New node is only right child when its key is larger than
all keys currently in the tree. In this instance, new node
does not have a direct ancestor and its gibling gets the
parent node ag itg direct ancestor} '
nn*.da:= nil; {new node has no direct ancestor}
nl~.da:= T; {8ibling gets parent as direct ancestor}
T~.da:= nil; {interior node has no direct ancestor}
T~,L:= nl; T*.R:= nn; {connect leaves tCo interior node T}
T~.p:= nil; T*.n:= nil; {T is interior, remove from list}
T .key:= nl~.key; {T's key = max. key left subtree}
{insert new leaf into linked list}
IF nl™.n <> nil Then {new node is not last in list)
{Note that the next four lines should never fire!}
Begin {make connection between new node and next}
nl~.n*.p:= nn;
nn™.n:= nl”.n;
End {make connection between new ncde and next}
ELSE {new node ig last node in list}
nn~.n:= nil;
{connect new node to gibling?
nn*.p:= nl;
nl*.n:= nn;
End {Insert new node as right child}
End {we have reached the leaf level, insert}
ELSE {we are not yet at leaf level}
Begin {trace down to leaf level}
IF nn".key <= T~.key Then
Begin {Insert intec left subtree}
Insert (T*.1,, nn, tallersubtree);
IF tallersubtree Then
Cazse T*.bf of
-1: LeftBalance(T, taller};

0: Begin T*.bf:= -1; taller:= true; End;
1: Begin T~.bf:= 0; taller:= false; End;
End {Case T".bf}
ELSE
taller:= falge;
End {Insert into left subtree}

ELSE {nn~.key > T”.key}
Begin {Insert into right subtree}
Insert {T”.R, nn, tallersubtreej;
IF tallersubtree Then
Case T".bf of
-1: Begin T*.bf:= 0; taller:= falge; End;
0: Begin T~.bi:= 1; taller:= true; End;
1: RightBalance(T, taller};
End {Cagse T".bf}
ELSE
taller:= false;
End {Ingert inteo right subtree}
End; {trace down to leaf level}
Fnd; {tree iz not empty}
End; {Insert}

Procedure BalanceL{Var T: nodeptr; Var reduced: boclean);
{We have just reduced the height in the left subtree by 1. If the
balance criterion has been violated then we must restore it.}

Var X,w: nodeptr;

33

Begin {BalanceL}
Cage T".bf of
-1: T~.bf:= 0; {two subtrees are equal height} {reduced stays true}
0: Begin T*.bf:= 1; Reduced:= false; end;
1: Begin {must rotate T to the left}
IF ({(T*.R~.bf = 1} or {T*.R*.bf = 0}) Then
Begin {perform single rotation}
IF T*.R".bf = 1 Then
Begin {Perform a normal AVL tree sgingle left rotation}
{Reduced gtays true}
T .bf:= 0; T*.R*.bf:= 0;
EFnd {Perform a normal AVL tree single left rotation}
ELSE {T".R"~.bf = 0}
Begin {Single left rotation but change balance factors}
Reduced:= false;
T .bf:= 1; T*.R*.bf:= -1;
End; {8ingle left rotation but change balance factors}
Rotatel.eft (T} ;
End {perform single rotation}
ELSE {T".R*.bf = -1}
Begin {perform double rotation}
{Reduced stays true}
:= T™.R;
{procedure RightBalance double rotation case}
r= X™.L;
Case w*.bf of :
0: Begin T".bI:= 0; x".bf: ; End;
~1: Begin T"~.bf:= 0; x*.bf: + End;
1: Begin T .bf:= -1; x*.bf:= 0; End;
End; {Case}
wh.blf:= 0;
RotateRight {X) ;
TRz 3G
RotateLeft (T} ;
End {perform double rotation}
End; {must rotate T to the left}
End; {Casze}
End; {BalancelL}

Procedure BalanceR(Var T: nodeptr; Var reduced: boolean);
{We have just reduced the height in the right subtree by 1. If the
balance criterion has been viclated then we must restore it.}

Var ¥,w: nodeptr;
Begin {BalanceR}

Cage T~.bf of
1: T~.bf:= 0; {two subtrees equal height.} {Reduced gtays true}
0: Begin T~.bf:= -1; Reduced:= false; End;
-1: Begin {must rotate T tc the right}
IF {({(T~.L™".bf = -1) or {(T~.L”.bf = 0}) Then
Begin {perform single rotation}
IF T*.L~.bf = -1 Then
Begin {Perform a normal AVL tree single right rotation}
{Reduced stays true}
T .bf:= 0; T .L*.bf:= 0;
End {Perform a normal AVL {ree rotation teo the right}
ELSE T

Begin {Single right reotation but change balance factors}
Reduced:= false;
T .bf:= -1; T~.L*.bf:= 1;
Bnd; {Single right reotation but change balance factors}
RotateRight {T) ; :
End {perform single rotation}
ELSE {T".L"~.bf = 1}
Begin {perform double rotation}
{Reduced stays true}

X:i= T*.L;
{procedure LeftBalance double rotation case}
w:= X".R;
Case w*.bf of
0: Begin T~.kf:= 0; x*.bf:= 0; End;
1: Begin T*.,bf:= 0; x*.bf:= -1; End;
-1: Begin T".bf:= 1; x*.bf:= 0; End;

End; {Case}

w™.bf:= 0;

Rotateleft {X);

T*.L:= X;

RotateRight (T} ;

End {perform double rotaticn}
End; {must rotation T to the right}
End; {Casge}

End; {BalanceR}

Procedure Delete{x: kKeytype; Var T: nodeptr; Var reduced: boolean);
{Delete node from T that containz key x. If subtree height decreasesg,
reduced:= true.}

Var ¢: nodeptr; {temporary polinter}
Begin {Delete}

IF T <> nil Then
IF ?~.nt = leaf Then {one datapoint left in tree}
IF T*.key = x Then
"T:= nil {tree is now empty}
ELSE
writein{'key is not in tree'}
ELSE {more than one datapoint left in tree}
IF ({T~.L*.nt = leaf) and (T*.R".nt = leaf)} Then .
{two datapointg in tree}
IF T*.L~.Xey = X Then
Begin {delete left child}
{when deleting, we must change key value in direct ancestor}
{however, in this case direct ancestor ig parent node and it
ig replaced by right child sc we do nothing}
{we don't need to change direct ancestor in leaf that moves
up as it doesn't change}
T.R*.p:= T*.L™*.p; {remove T*.L from list}
IF *.R™~.p <> nil Then
T .R*.p~.n:= T™.R;

reduced:= true; {deletion alwayvs reduces height of subtree}

Q:= T; T:= T*.R;
Digpose{Q*~.L); Dispose(Q};
End {delete left child}
ELSE

IF T~.R*.Key = X Then

35

Begin {delete right child}
{when deleting, we change key value in direct ancestor}
IF T~.R~.da <> nil Then
Begin
T.R*.da™.key:= T*.L".key;
{we mugt change direct ancestor in leaf that moves up}
. L*.da:= T*.R*.da;
End
ELSE {we are deleting last node;it has no direct ancestor}
T*.L~.da:= nil;
T .L*.n:= T*.R*.n; {remove T*.R from list}
IF T*.L~.n <> nil Then
™ .L*.n™.p:= T".L;
reduced:= true; {deletion reduces height of subtreel
Q:= T; T:= T*.L;
Dispose(Q™.R}; Dispose{Q};
End {delete right child}
ELSE
writeln{'key 1ls not in tree')
ELSE {more than two datapoints in tree}
IF x <= T*.key Then {key, if present, ig in left subtree}
IF T.L".nt = leaf Then {three keys in tree}
IF T*~.L~.Key = x Then {process deletion}
Begin {delete left child} '
{when deleting, change key value in direct ancestor}
{again, direct ancestor is parent node which gets
replaced by right child so again we do nothing}
{we don't need to change direct ancestor as the node
that moves up is an interior}
T.R*.L*.p:= T*.L .p; {remove T from iist}
IF T*.R*.L*.p <> nil Then
T .R*.L"*.p".1i:= T".R™.L;
reduced:= true; {deletion reduces height of subtree}
Q:=T; T:= T.R;
Dispoge {0~ .L}; Digpose{Q);
End {delete left child}
ELSE {kevy not in tree}
writeln{'key is not in tree'}
ELSE {more than three keys in left subtree, normal deletion}
‘Begin {normal deletion in left subtree}
Delete{x, T*.L, reduced);
IF reduced Then BalanceL (T, reduced};
End {normal deletion in left =ubtree}
ELSE {key, if present, is in right subtree}
IF T*.R~.nt = leaf Then {three keys in tree}
iF T~.R".key = X Then {process deletion}
Begin {delete right child}
{when deleting, we change Xey value in direct ancestor}
I T .R™~.da <> nil Then
Begin
T~,R*.da’.key:= T°.L~.R".key;
{wechange direct anceztor in leafl that moves up}
T.L".R~.da:= T~.R".da;
End
ELSE
T™.L*.R*.da:= nil;
T™.L*.R*.n:= T .R*.n; {remove key from list}
IF T*.L~.R™.n <> nil Then
™.L*.R*.n".p:r= T*.L".R;
Q:= T; T:= T .L;

reduced:= true; {deletion reduces height of subtree}
Digpose(Q™.R); Dispege(Q);:
End {delete right child}
ELSE {key is not in tree}
writeln{'key iz not in tree'}
ELSE {more than three keys in right subtree, normal deletion}
Begin {normal deletion in right subtree}
Delete(x, T™.R, reduced};
IF reduced Then BalanceR({T, reduced);
End {normal deletion in right subtree}
ELSE {T = nil}
writeln('Enpty Tree. Deletion iz not possible.');

End; {Delete}

Procedure RangeSearch{T: nodeptr; L,H: keytype);
{We are gearching for all keys between L and H inclusive in the range
AVL Cree T.}

Var Q: nodeptr;

Function InRange{key, R: keytype}: boolean;
{key is automatically »>= L}

Begin {InRange}
'IF key <= R then
InRange:= true
ELSE
InRange:= false;
End; {ITnRange}

Procedure Report{key: keytype);

Begin {Report}
writelni{key):;
End; {Report}

Begin {RangeSearch}
Q:= T; {start at the root node}
IF Q <> nil Then {we can only search a tree that is not empty}
Begin {search not empty tree}
{find smallest key in range}
While Q°.nt <> leaf Do
IF ¢”.key < L Then

Q:= Q*.R
ELSE {Q".key >= L}
Q:= QO".L;

{We only go left when Q*.key is »= L. Therefore, at the leaf
level, we either have 0" .key>=L or an empty query as Q*.kKey = max
value in left subtree for an interior node.}

IF not{(Q".key < L} or ({".Xey > H})} Then

While {{Q <> nil} and InRange(Q™.key, H}} Do
Regin
Report (0" .kay) ;
Q:= 0*.n;
End

Elge {otherwise no keys are in range}

writeln{'No kevs satisfy querv.');
End; {search not empty tree}
End; {RangeSearch}

Procedure Getnode{Var nn: nodeptr; kKey: keytype);

Begin {Getnode}
newi{nn); {allocate the new node}
{zet all data values as appropriate for a not yet inserted leaf}
nn~.da:= nil;
nn®.nt:= leaf;
nn”~.key:= key;

on® . L= nil; nn*.R:= nil;
nn”.p:= nil; nn*.n:= nil;
on”™.bf:;= 0;

Fnd; {Getnode}
Procedure DisplayT{Var dfile: texXt; T: nodeptr);
Begin {DisplayT}

{Inorder Traversal is used to digplay tree}
IF T <> nil Then

Begin {T}
DigplayT(dfile, T".L};
write{dfile, 'key: ', T".key:3, ' bf: ', T*.bf:2);
IF T~.L <> nil Then
write{dfile, * LC: ', T*.L".key:3)
ELSE

write{dfile, * LC: nil'};
IF T*.R <> nil Then

write{dfile, * RC: ', T".R".Kevy:3)
ELSE

write{dfile, ' RC: nil'};
IF T~.p <» nil Then

write{dfile, *' p: ', T*.p".Key:3}
ELSE

write{dfile, ' p: nil');
IF T*.n <> nil Then

write{dfile, * n: ', T*.n".key:3)
ELSE

write{dfile, ' n: nil');
IF T*.da <> nil Then

writeln{dfile, ' da: ', T~.da".key:3}
ELSE

writeln{dfile);
DisplayT{dfile, T".R}:
End; {7}
CEnd; {DisplayT}

Procedure DisplayTree{T: nodeptr)};
Congt dtfilename = ‘avirt.dat';

Var dfile: text;
Q: nodeptyr;

Begin {DizplayTree}
asgign {dfile, dtfilename);
rewrite(dfile};

IF T <> nil Then

Begin
DigplayT(dfile, T};
write({dfile, 'linked list: '};

Q:= T;
While Q”.nt <> leaf Do
Q:= Q. L;
While Q <> nil Do
Begin
write{dfile, 0”.Xkey:3};
D:= Q*.n;
End;

writeln(dfile);
write(dfile, 'linked 1list: '};
Q:= T
While Q~.nt <> leaf Do
Q:= Q°.R;
While ¢ <> nil Do
Begin
write{dfile, Q".key:3};
Q:= Q™.p;
End;
writelni{dfile)
End
ELSE
writeln(dfile, 'Empty Tree.');

cloge {dfile};
End; {DisplayTree}

Procedure OutputFile;

Const dtfilename = 'avlrt.dat'; {from DisplayTree}

Var dfile: text;
aline: stringl[78];

Begin {Cutputfile}
assign(dfile, dtfilename};
reset (dfile);

While not {eof{dfile)) Do
Begin
readln{dfile, aline);
writeln{aline);
End;
cloge {dfile;};
End; {Outputfile}

Procedure ShowMenu;

Begin {Menu}
writeln('Pleage enter:'};

writeln{'I: for Insertion of a key'};
writeln('D: for Deletion of a key'};
writeln('S: to Display the current tree');

writeln('R: to Range Search the current tree');
End; {Menu}

Procedure GetChelice(Var cholce: char};

Begin {Getchoice}
writeln('Please enter character of your choice'};
readln{choice);

End; {Getchoice}

FProcedure GetKey (Var key: kaytype);

Begin {GetKey}
writeln('Please enter your chosen key.'};
readln{key) ;

End; {GetKey}

Procedure GetRange(Var L,H: Keytybe};

Begin {GeLRange}
writeln{'Please enter range in the form L, H:'};
readln(L,H);

End; {GetRange}

Begin {Main}
{Initiailize tree}
T:= nil;

{Test Driver}
Repeat
ShowMenu ;
GetCholice (choice) ;
Caze choice of
'I','i*: Begin
Getkey (key}:
Getnode {(nn, key};
taller:= false;
Ingert (T, nn, taller):
BEnd;
'g','s': Begin
DigplayTree{T);
OQutputFilel(T};
_ End;
‘R','r': Begin
Getrange (L, H};
RangeSearch(T, L, H);
End;
‘D, 'd': Begin
Getkey {key) ;
reduced:= false;
Delete{key, T, reduced};
End;
End; {Case}
Until (cheoice IN ['Q','g'l);
End. {Main}

APPENDIX 3

The k-d dynamic range AVL tree

The k-d dynamic range AVL tree 18 a dynamic k-dimensional range tree data
structure which is optimal (O(Igkn + t) for t points in range), using a worst case analysis,
for answering k-dimensional range queries on k-dimensional data when we assume that the
underlying structure is optimally balanced, which the k-d dynamic range AVL tree is. The
cost functions for the k-d dynamic range AVL tree are those of a k-d range tree, and, like
the range tree, the k-d dynamic range AVL tree uses the technique of multidimensional
divide and conquer [Bent&0].

The structure is important as it provides us with a baseline structure against which
other structures, and their implementations, designed to handle multidimensional range
queries on multidimensional data can be compared. It is straightforward to implement and
the complete code is provided in appendix 4. The k-d implementation can be achieved by
modifying the 1-d implementation so that the appropriate procedures have a second level
of recursion built in which traces through the dimensions.

The node structure is as follows and i$ essentially the same as the 1-d structure
with the addition of a field that keeps a pointer to the structure in the next dimension and a
field which, for a leaf node, stores the datapoint the key value is from.

range_AVL_node = record

nt: nodetype; {interior or leaf)}

key: keytvpe; {usually integer}

{key is coordinate of a dp in current dimension}

dp: coordinate;{actual datapoint}

L, R: nodeptr; {left and right children}

bf: bf_tvpe: {balance factor: char or integer}

p,n: nodeptr; {used to thread leaf nodes,
nil at interior nodes}

da: nodeptr; {direct ancesteor: nil at interior
nodes, points to intericr node that
inherits the leaf node's key value}

nd: nodeptr; {pointer to nextdim substructure}

end;

In the following pages we outline the insertion, deletion, and range search
procedures, focusing on the modifications that take the procedures from 1-d to k-d. We
also describe the technique used for partial rebuilding and the modifications needed by any
of the auxiliary procedures called by insertion, deletion, and range search. The complete
code can be found in Appendix 4.

41

Insertion of a node

Insertion proceeds similar to that of the 1-d range AVL tree with the only
modification being that for each interior node we visit on the way to the leaf level, we also
ingert the datapoint into the structure in the next dimension rooted at that node.

We find that we also have to modify the LeftBalance, RightBalance, RotateLeft,
and RotateRight procedures, As described in section 6, when we execute a (single)
rotation in a k-d range AVL tree, we must also exchange pointers to the tree structures in
the next dimension. This implies that we have to rebuild one tree structure in the next
dimension for a single rotation and two tree structures in the next dimension for a double
rotation (as it is executed as two single rotations).

In the RotateLeft and RotateRight procedures we just have to add three lines of
code to swap the nextdim pointers. In the LeftBalance and RightBalance procedures, we
add a line of code that calls a procedure to rebuild any tree structure which has become
unbalanced by a rotation.

Deletion of a node

Deletion proceeds similar to that of the 1-d range AVL tree with the only
modification being that for each interior node we visit on the way to the leaf level, we also
remove the datapoint from the structure in the next dimension at that node.

We find that we also have {0 modify the BalanceL and BalanceR procedures to call
the necessary procedure to rebuild a tree structure in the next dimension after a rotation
which invalidates the structure.

Range Search in the k-d range AVL tree

Range search proceeds similar to that of the k-d range tree. We progress down
the tree in dimension k looking for the common ancestor node, Q. Once we find it, we
iterate down the tree searching for the keys Ly’ and H,'. For each node, L, on the search
path down to L' whose left child is also on the search path, we search the range AVL tree
in the next dimension rooted at I's right child. For each node, J, on the search path down
to Hy' whose right child is also on the search path, we search the range AVL tree in the
next dimension rooted at J's left child, When we reach L, and Hy', we check to see if they
are in range. This completes the range search algorithm.

42

Rebuilding a k-d range AVL tree

To rebuild a k-d range AVL tree structure, we use the trick of presorting as
described in [Bent80] and rebuild the tree structure from the bottom up in a given
dimension, We rebuild all of dimension k before rebuilding dimension k+1. This
rebuilding can be done in O(nlg*"'n) time and we describe it below.

Given a sorted list, we can rebuild the first dimension in O(n) time, To rebuild the
structures in dimension 2, we rebuild the structures at the first non-leaf level first as these
can be built in linear time. (They all contain two datapoints and two datapoints can be
sorted with 1 comparison,) We then rebuild the next non-leaf level which, like successive
levels, can be built in linear time as well. At a given node, we rebuild the structure in the
next dimension by merging copies of the sorted lists found in the structures in the next
dimension which are attached to the children nodes. As a merge of two sorted lists can be
done in linear time, we can rebuild the structures in the next dimension attached to any
level in linear time. This says we can rebuild a two-dimensional structure in O(n Ig n) time
as there are only O(lg n) levels in a range AVL tree.

The generalization of this technique to k-dimensions extends analogously to the
extension of the technique from the first to the second dimension and it is straightforward
t0 see that this procedure allows us to rebuild a k-d range AVL tree in O(nlg"'n) time.

The details of the rebuilding procedure are to be found in the complete Pascal code
provided in Appendix 4.

Summary of the k-d range AVL tree

The k-d range AVL tree is an optimally balanced data structure which is optimal
for k-d range search on point data in a completely dynamic operating environment, It
should provide a practical indexing mechanism to carry out range searches in a dynamic
environment along with providing vs with a baseline structure against with other
structures, and their implementations, designed to handle multidimensional range queries
on multidimensional data can be compared.

The techniques used to transform, or map, the AVL tree into a dynamic range tree
provide insight into the similarities between different binary search tree structures and may
- prove useful in transforming and dynamizing other tree structures for more complicated
tasks. The transformation of the 1-d range AVL ftree to the k-d range AVL tree illustrates
a recursive technique which may be useful for defining and working with other k-d data
structures. The technique has already proved useful in the creation of the k-d Range DSL
of [Lamo95a] and [Lamo%5b] and should be readily applicable to other structuires.

APPENDIX 4

The k-d dynamic range AVL tree in Pascal

Program Dynamic_KD_Range AVL _Tree;
{This program imnplements a dynamic range tree with an AVL tree.}
{we use DRT as short for k-d dynamic range tree}

{5M 65520, 65536, 655360}
{max stack, min heap, max heap}

'dpoints3.dat'; {contains datapoints for testing}

Const dpointfilel H
‘dpointec.dat'; {contains datapoints for testing}

dpointfiled
cutfile = 'DRT.dat*; {datafile containing structure}
maxdim = 3; {max num dimensions of structure}

Type kevtype = integer;
coordinate = array [1..maxdim] of keytype;
nodetype = {interiocr, leaf);
bf_type = integer; {-1, 0, or 1}
nodeptry = “range_AVL_node;
- range_AVL_node = record
nt: nodetype; {interior or leaf}
key: keytype; {usually integer}
dp: coordinate; {actual datapoint}
L, R: nodeptry; {left and right children}
bf: bf_type; {balance factor: char or int}
p.n: nodeptr; {used to thread leaf nodes,
nil at interior nodes}
da: nodeptr; {direct ancegtor: nil at interior
nodes, points to interior node that
inherits the leaf ncde’'s key valuel

nd: nodeptr; {pointer to nextdim substructure}
end;
listptr = “~listnode; {ptr to a list ncde}
ligtnode = record {holds DRT nodes to be processed}
DRTnode: nodeptr; {ptr to a DRT node}
next: listptr; {next node in list}
end;

dfiletype = file of coordinate; {datafile type of datapoint file}
Const gv: coordinate = (0,0,0); {sentinel value stored in interior node}

Var T: nodeptr; {Tree}
nunpointg: integer; {how many datapoints for test run?}
dimensiong: integer:; {how many dimensgions for test run?}

Procedure Copvnode(T: nodeptr; Var nl: nedeptr; dim: integer;

flag: char); :
{Thigs procedure makes a copy of the leaf node, T, that is about to be
converted to an interior nede by the Ingert procedure with the exception
that the key is set to be the [dim]lth coordinate of the datapoint,
T~.dp. If the flag is get to 'y', all other fields are copied exactly,
otherwise, the previous (p)} and next {n) pointers are set to nil.}

Begin {Copynode}

new{nl}: : {allocate the new node}
nl”.nt:= T".nt; {copy node type}
nl~.da:= T".da; {copy direct ancestor}
nl”.key:= T*.dpldim]; {copy key value}
nl*.dp:= T*.dp; {copy datapoint}
nl~.L:= ™.5L; nl~.R:= T*.R; {copy pointers to children}
nl*.pf:= T.bL; {copy balance factor}
nl~.nd:= T*.nd; {copy nextdim pointer}
IF {((flag = 'y'} or {(flag = '¥'}) Then
Begin
nl~.p:= T .p; nl~.n:= T™.n; {copy pointers to maintain thread}
End
ELSE
Begin
nl~.p:= nil; nl*.n:= nil; {set the links to nil}
End;

End; {Copynode}

Procedure Disposeof (Var T: nodeptr);

{When we have determined that a range tree in the next dimension must be
rebuilt, we must first dispose of the invalid range tree and return all
avalaible memory tLo the gsystem} '

Begin {Dlgposeof}
{We dispose uging a medified postorder traversal where we remove a tree
in the next dimension attached to a node hefore we remove the node}
IF T <> nil Then
Begin {dispose of range tree}
Dispogeocf (T~.L); {dispogse of left child}
Digpozecf (T~ .R); {dispose of right child}
IF T~.nd <> nil Then
DisposeOF({T*.nd}; {digpose of nextdim tree, if applicable}
Digpose{T); {dispose of the node}
End; {dispese of range tree}
End; {Disposeof}

Procedure CreateMewTree (Var newtree:nodeptr; T:nodeptr:

_ dim:integer}; Forward;
{This procedure creates a new tree in dimension dim when we have
determined needs rebullding once the ©ld tree has been disposed}

Procedure CreateTreegNextDim{Var T: nodeptr; dim: integer);
{We have created a new range tree in dimension dim. We must now recurse
through dimensions and recreate range trees in dims (dim+l) to lastdim}

Begin {CreateTreesNextDim}
IF T <> nil Then
Begin {recurse through tree and create trees in next dim at all of
the intericr nodes})
CreateTreezNextDim(T~.L, dim}; {create tree in nextdim at L child}
IF T™~.nt = interiocr Then
CreateNewTree{T*.nd, T, (dim+l))};{create tree in nxtdim at node}
CreateTreecgNextDim (T .R, dim}; {create tree in nxtdim at R c¢hild}
End; {recurge through tree and create trees in next dim at all of
the interior nodes}
End; {CreateTreesiNextDim}

45

. Procedure CreateNewTreeg;
{Create a new range tree in dimension dim of the leaf nodes at the
subtree with root node T}

Var head, list: listptr; {somewhat misleading wvariable names here:
ligt ig ligt of nodes that will create the DRT
head is uzed to traverse through the list
while list points to the start of the list}
list2, 1ist3,
head2, head3: listptr; {gets nodes from nextdim treeg of children
{or leaves) which are merged in O{n} time
to rebuild range tree in minimal time}

cur: nodeptr; {cur is first node in linked list of nodesg in
tree T that is to go in the new tree}
nln: listptr; {thig is used to add a new node to the list}

Procedure Disposelist (Var list: listptr);
{After we have used a list to sort the nodes and removed the nodes
frem the list in building the tree structure, we dispose of the list}

Var cur: listptr; {used to trace through the list}
Begin {DisposeList}

While list <> nil Do
" Begin {dispose of next element}
cur:= list".next;
dispose(list);
list:= cur;
End; {dispoge of next element}

End; {DispogeList}
Procedure StaticBulldDRT {(Var newtree: nodeptr; list: listptr;
dim: integer);

{called to build a DRT from a static data set}

{when called, list contains AT LEAST two nodes}

Var current: listptr; {traverses through list to build leaf level}
prt: nodeptr; {used to keep track of head node at leaf level}
count: integer; {number of nodes at leaf level}

Procedure FinINode(Var nin: nodeptr; bfc: integer};
{we have just created an interior node. Initialize it's settings.}

Begin {FinINode}

nin®.nt:= interiocr; {interior node}

nin*.dp:= sv; {interiocr node}

nin®.bf:= bfc; {balance factor is passed in}

nin®.p:= nil; {interior nodes not linked across level}
nin®.n:= nil; {interior nodes not linked acroszs level}
nin*.nd:= nil; {we build nextdim after thig dim igs finished}

End; {FinINode}

Frocedure TopStruct {(Var nt: nodeptr; count: integer;
Var prt: nodeptr};
{We rebuild our structure from the bottom up using a top-down
recursgion. That is sure to give us a balanced DRT as the recursion
puts half of the datapointsg on each side in each call}
Var 1lc¢, rc: nodeptr; {used to create L & R c¢hild internal nodes}
bf: integer; {balance factor of interior node}

Function Powerof2{x: integer): boolean;

Const base: integer = 2;
Var prod: integer;

Begin {Powercofl}
prod:= 1;
While (prod < X} Do
prod:= prod * base;
IF prod = X Then
PowerofZ:= true
Else {prod > x}
Powerofl2:= false;
End; {Powerof2}

Begin {TopStruct}
IF count >= 4 Then
Begin {create two new interior nodes}

new{lc}; new(rc):;
nt*.L:= l¢; nt™.R:= ro;
TopStruct {1c, round(count / 2} , prt};
TopsStruct {r¢, trunc(count / 2} , prt};
IF (Powerof2(trunc{count/2}} and {{round(count/2} -
_ trunc{count/2}} = 1}) Then
bf:= -1
ELSE
bf:= 0,

FinINode(nt, bi);
End {create two new interlor nodes}
Else
IF count = 3 Then
Begin {create one new intericr node}
new(lc); nt*.L:= le;
{attach last three nodes}
nt™.L*.L:= prt; prt:= prt*.n;
nc~.L~.,R:= prt; prt:= prto.n;

nt*.R:=prt; prt:= prtt.n;
FinTNode{(nt~.I:, 0); FinINocde{nt, =-1);
End {create one new interior node}
Elge

IF count = 2 Then
Begin {insert leaf nodesz}
nt™.L:= prt; prt:= prt®.n;
nt~.R:= prt; pri:= prt-.n;
FinINode{nt, 0};
gnd {insert leaf nodes}
Else
Begin {count does not = 1 or ¢ when all is well}
writeln('Error in TopStruct. Count < 2!!1!');
Halt;
End; {count does not = 1 or 0 when all is well}
End; {TopStruct}

Procedure TreeBuild(Var nt: nodeptr; pri: nodeptr; count: integer);
{Intializes the new tree and calls the procedureg to build it}

var p: nodeptr;
Procedure FingStruct (T: nodeptr};

Begin {Finstruct}
IF T <> nil Then
Begin
IF T*.nt = interior Then
Begin
Finstruct {(T".L};
T~.Key:= p~.key;

pt.da:= T;
Fing8truct (T".R};
End
Else
p:=T;

End;
End; {FinsStruct}

Begin {TreeBuild}
New (nt) ; {we need to allocaté the root node}
nt”.L:= nil; nt~.R:= nil; {initialize it not to point to anything}
Topstruct {nt, count, prt}; {we build the structure}
p:= nil;
Finstruct {nt}; {we set keys of int. nodes and da's}
End; {Tre=Build}

Begin {StaticBuildDRT}

{we first build the leaf level}
count:= 1;
current:= list”.next; {remember, dummy header nocde}
current”~.DRTnode”™.p:= nil; {the L[irst node at leaf level in a DRY
has nec predecessor}
While current”.next <> nil Do
Begin {continue to thread nodes}
count:= count + 1;
current”.DRTnode”.n:= current”.next”®.DRTnode;
‘current”.next” .DRTnode™.p:= current”.DRTnode;
current:= current”.next;
End; {continue to thread nodes}

current” .DRTnode”.n:= nil; {last node at leaf level in a DRT
haz no successor}

prt:= ligt”™.next” .DRTnode; {first node at leaf level}
Digposelist{list); {nodes have been connected, no longer need list}

{we build top down - stop when one node}
TreeBuild {newtree, prt, count);

Fnd; {StaticBuildDRT}

Begin {CreatelNewlree}
{Ag we are going to create a perfectly balanced range tree, we first
need to get the nodeg to be inserted in order}
{initialize list with dummy header nocde}
new{lisgt}; head:= list;
list~.DRTnode:= nil; ligt*.next:= nil;
{remember that leaves are linked in sorted order}

{get lists from nextdim trees of children or leaf nodes}

new(ligt2); new(list3};
list2~ .DRTnode:= nil; list3*.DRTnode:= nil;
lisg2”.next:= nil; list3~.next:= nil;

IF T*.L~.nt = leaf Then
Begin
newi{nln) ; new{nln”.DRTnode) ;
Copynode (T .L, nln”.DRTnode, dim, *'n');
nln”.next:= nil;
ligt2” .next:= nln;
End
Else {T*.left = interior}
Begin
head2:= list2;
cur:= T*.L"*.nd;
While cur”.nt <> leaf Do
cur:= cur™.L;
While cur <> nil Do
Begin {get next node}
new{nln}; new{nln”.DRTnode) ;
Copyneode {cur, nln”®.DRTnode, dim, 'n'};
nln®.next:= nil;
“head2”™.next:= nln;
head2:= nin;
cur:= cur”™.n;
Fnd; {get next node}

End;
IF T*.R*.nt = leaf Then
Begin
new(nlnj} ;

new (nln”.DRTnode) ;
Copynode (T~.R, nln”.DRTnode, dim, ‘n');
nln®.next:= nil;
list3~.next:= nln;
End
Else {T*.right = Interior}
Begin
head3:= 1ist3;
cur:= T ,R*.nd;
While cur®.nt <> leaf Do
cur:= cur”™.L;
While cur <> nil Do
Begin {get next node}
new(nln) ; new (nln”.DRTnode} ;
Copynode (cur, nln”.DRTnode, dim, '‘n'};
nln®.next:= nil;
head3” . .next:= nln;
head3:= nln;
cur:= cur”.n;
End; {get next node}
End;

{we now merge list2 and list3 inte list in linear time}
head2:= ligt2”~.next; head3:= list3”.next;

While {(head2 <> nil) and {(head3 <> nil))} Do
IF head2”.DRTnede”.Key < head3”.DRTnode”.key Then
Begin
head” .next:= head2;
head?:= head2”.next;
head:= head”.next;
End
Else {head3”.DRTnode”.key < head2”.DRTnode”.key}
Begin '
head” .next:= head3;
head3:= head3”.next;
head:= head”.nexi;
End;

IF head2 = nil Then
head” .next:= head3

Else {head3 = nil}
head” .next:= headz;

{at this point, all of the nodes, except the dummy headers, have been
moved to list from list2 and list3 - dispose of 'dummy headers}

ligt2~.next:= nil; dispose(list2};
list3~.next:= nil; dispose(list3};

{we now build the tree}
gtaticBuilldDRT {hewtree, list, dim);
{this procedure disposes of list when it is finished}

{if not in last dimension, must rebuild next dimension}
IF dim <> dimensions Then

CreateTreesNextDim{newtree, dim)
Else

newtree”.nd:= nil;

End; {CreateNewTree}

Procedure Rebuild(Var T: nodeptr; reoot: nodeptr; dim: integer);
{Rebuild the range tree rooted at T in dimension dim ¢f the leaf nodes
in the subtyree of reoot neode root}

Begin {Rebuild}
{Rotation Procedures should not call this on a leaf node}
{They alsoc shouldn't call this procedure when dim = dimensicns!}
IF (T <> nil) and {dim <= dimensiocns} Then
Begin {rebuilding is posgible - do it}
Digpogeof (T)}; {dispose of the tree T}
CreateNewTree (T, root, dim}); {rebuild the tree T}
End {rebuilding is posgible - do it}
Else
Begin
writeln{*Error! Rebuild called with invalid conditions!'};
writeln{'Terminating program.'};
HALT;
End;
End; {Rebuild}

Procedure Rotateleft (Var p: nodepir);
{When the tree iz unbalanced teo the right, this procedure ig called to
perform a left rotation}

Var temp: nodeptr; {used ag temp. var. for rotation}
Begin {RotateLeft}

IF p = nil Then {root node of rotation iz nil, can't rotate}
Begin {Error! Empty Subtree}
writeln{'Error in RotateLeft. Can''t rotate an empty subtree.'};
HALT; {do not contimie, c¢ritical error}
End {Error! Empty Subtree}
Else {the root node of the rotation is not nil}
IF p~.R = nil then {a primary node of the rotation is nil}
Begin {Error! Empty subtree can‘t be root}
writeln{'Error in RotateLeft., Can''t make empty subtree root.'};
HALT; {do not continue, critical error}
End {Error! Empty subtree can't be root}
Else {primary nodes are not nil}
IF ({p™.nt <> leaf) and {p~.R".nt <> leaf))} Then
Begin {valid rotation}
{perform the rotation}

temp:= p*.R; {temp will be the root}

P~ .R:= temp~.L; {left subtree of x --» right subtree of roolt}
Cenp®.Li= p;. {root --> left subtree of x}

p:= temp; {root:= x}

{rotate trees in next dimension as well}

tenmp:= p~.nd; {temp:= B}

pr.nd:= pr. L .nd; {root™.nd:= A}
p*.L*.nd:= temp; {root”.left”.nd:= B}

End {valid rotation}

ELSE {primary nocdes are invalid as one or more ig a leaf node}

Begin {Error! Can't rotate on a leaf node!}
writeln('Invalid primary nodes in RotatelLeft.'):
writeln('Critical Error! Terminating Program.'};
HALT; {Critical Error!}

End; {Error! Can't rotate on a leaf node!}

Fnd; {Retateleft}

Procedure RotateRight (Var p: nodeptr}:
{When the tree ig unbalanced to the left, thig procedure is called to

perform a right rotation}
Var temp: nedeptr; {used ag temp. var. for rotation}
Begin {RotateRight}

IF p = nil Then
Begin {Erroxr! Bmpty Subtree}
writeln{'Error in RotateRight. Can'‘t rotate an empty subtree.');
HALT; {do not continue, critical error}
End {Error! Empty Subtree}
Else {root node of rotation is not nil}
IF p~.L = nil Then {primary ncde of rotation is nil}
Begin {Errer! Empty subtree can't become roct}
writeln('Error in R.Right. Can''t make empty subtree root.'};
HALT; {do not continue, critical error}
End {Error! FEmpty subtree can't become root}

51

Else {primary nodes of rotation are not nil}
IF {(p~.nt <> leaf) and (p~.L".nt <> leaf))} Then
Begin {valid rotation}
{perform the rotation}

temp:= p~.L; {temp will be the root}

pr.L:= temp”.R; {right subtree of X --> left subtree of zroot}
temp™.R:= p; {root --» right subtree of x}

p:= Ltemp; {reoct:= %}

{rotate treeg in next dimension}

temp:= p~.nd; {temp:= B}

p*t.nd:= p*.R*.nd; {root*.nd:= A}
p*.Re.nd:= temp; {root”.right~.nd:= B}
Fnd {valid rotation}
ELSE {primary nodes are invalid as one or more is a leaf node}
Begin {Error! Can't rotate on a leaf node!l}
writeln('Invalid primary nodes in RotateRight.'};
writeln('Critical Error! Terminating Program.']);
HALT; {Critical Error!}
End; {Errer! Can't rotate on a leaf node!}

End; {RotateRight}

Procedure RightBalance{VAR T: nodeptr; dim: integer;

Var taller: boolean); -
{This preocedure is called to correct an imbalance in the right subtree.}
{i.e, the tree is right high (BF = 2}

Var X, {pointer to right subtree of T}
w: nodeptr; {pointer to left subtree of x}

Begin {RightBalance}
= T.R;

Case xX*.bf of
1: Begin {RH} {a single left rotation corrects this situation)}
T .bf:= 0; fafter rotation, this node is balanced}
X*.pf:= 0; {after rotation, this node is balanced}
RotatelLeft (T}; {perform gingle left rotation}
taller:= false; {subtree hagn't increased in height}
IF dim <> dimensions Then
Rebuild{T~.L"*.nd, T*.L, {dim+1}};
End; {RH} {a single left rotatich c¢orrects the situation}
0: Begin {EH} {By def'n of AVL trees, this cagse doegn't arise.}
writeln('Error in RightBalance. Condition of EH.'};
HALT; {do not continue, c¢ritical error}
End; {EH} {By def'n of AVL trees, this casge doesn't arise.}
-1: Begin {LH} {we need a double rotation to correct the situation}
Wi:= X*.L; {will beccome the roof}
Cage w.bf of {w determines balance factors of x and T}
0: Begin T".bf:= 0; x*.bf:= ©0; End;

-1: Begin T*.bf:= 0; Xx*.bf:= 1; End;
1: Begin T*.bf:= -1; x*.bf:= 0; End;
Fnd; {Casge w™.bf of}
W bfL:= 0; {w ig always balanced after rotation}
RotateRight (x}; {first rotate right on x, w replaces X}
T, R:= X; {reconnect x to right child of T}
RotateLeft{T); {now rotate left on T}

taller:= false; {the subtree has not increased in height}

IF dim <> dimensions Then
Begin _
Rebuild(T~.L”~.nd, T~.L, (dim+1}
Rebuild(T*.R*.nd, T*.R, (dim+1)
End;
End; {LH} {we need a dcuble rotation to correct the situation}
End; {Case x".bf of}
End; {RightBalance}

):
)i

Procedure LeftBalance(Var T: nodeptr; dim: integer;

Var taller: boolean);
{This procedure ig called to correct an imbalance in the left subtree.}
{i.e. the tree is left high (BF = -2}}

var X, {pointer to left subtree of T}
w: nodeptr; {pointer to right subtree of x}

Begin {LeftBalance}
¥i= T™.L;

Case x~.bf of
-1: Begin {LH} {a single right rotaticn corrects the situation}

T~.bf:= 0; {after rotation, this node is balanced}
x~.bf:= 0; {after rotation, this node is balanced}
RotateRight {T); {perform single right rotation}

taller:= falge; {subtree hasn't increased in height}
IF dim <> dimensions Then
Rebuild{T".R*~.nd, T~.R, {dim+1)};
End; {LH} {a gsingle right rotation corrects the situation}
0: Begin {EH} {By def'n of AVL trees, thig case deesn't arise.}
writeln{'Error in LeftBalance. Condtion of EH.');
- HALT:; {do not continue, c¢ritical error}
End; {EH} {By def'n of AVL trees, this case dcoesn't arise.}
1: Begin {RH} {we need a double rotation teo correct the situation}
wi= Xx*.R; {will become the root}
Case Wwr.bf of {w determines balance factors of x and T}
0: Begin T~.bf:= 0; x*.bf:= 0; End;
1: Begin T™.bf:= 0; x*.bf:= -1; End;
-1: Begin T*.bf:= 1; x*.bf:= 0; End;
End; {Case w™.bf of}
wh.bf:= 0; {w iz balanced after the rotation}
Rotateleft (x}; {first rotate left on X, w replaces x}
T . L= X; {reconnect x to left c¢hild of T}
RotateRight {T); {now rotate right on T}
taller:= false; {the subtree has not increasged in height}
IF dim <> dimensicns Then
Begin
Rebuild{T”.L*.nd, T*.L, (Qim+1}};
Rebuild{T~.R"~.nd, T".R, (dim+l}):
End;
End; {RH} {we need a double rotation to correct thé situation}
End; {Case Xx".bf of}
End; {LeftBalance}

53

Procedure Insert{Var T: nodeptr; nn: nodeptr; Var taller: boolean;

dim: integer};
{This procedure inserts the node nn into the dynamic range AVL tree T.
Taller ig true if the height of tree increases and isg false otherwise}

Var tallersubtree: boolean; {hasg height of the subtree increased?}
nl: nodeptr; {we need a new lealf during insertion as the
last leaf node found in ocur search is
converted to an interior nede}
tmptaller: boolean; {init. False in recurgive call to nextdim}
newlree: nodeptr; {when we need a new range tree in the nextdim}
ndn: nodeptr; {copy node for ingertion in nextdim}

Begin {Insert}
tallersubtree:= false; {only true when height of subtree increases}

IF T = nil Then {we are inserting the first node}
T:= nn
ELSE {we are not inserting the first node}
Begin {tree is not empty}
IF T*.nt = leaf Then {insertion occurs only at leaf level}
Begin {we have reached the leaf level, insert}
taller:= true; {insertion increases height}
Copynode(T, nl,dim,'yv'}; {T becomes interior node so copy}
T~.nt:= interior; {T iz now interior node}
T~.dp:= 8V} {T is now interior node}
{whatever points to T must now point to nl}
IF T*.p <> nil Then T*.p"~.n:= nl;
IF T*.n <> nil Then T*.n".p:= nl;
{Insert nn as left or right child of T as appropriate}
IF nn~.key <= nl*.key Then {hew node is left child}
Begin {Insert new node as left child}
{Direct ancestor ls new interior node T}
nn*.da:= T;
T~.da:= nil; {interior node has no direct ancestor}
T .L:= nn; T".R:= nl; {connect leaves to interier node T}
T*.p:= nil; T*.n:= nil; {T is interior, remocve from list}
T~ .key:= nn*.key; {T's key = max. key left subtree}
{ingert new leaf into linked list}
IF nl“.p <> nil Then {new node not first node in list}
Begin {make connection between new node and previous}
nit.p®.n:= nn; nn™.p:= nl*.p;
End {make connection between new ncde and previous}
ELSE {new node is first node in list}
nn™.p:= nil;
{connect new node to sibling}
nn*.n:= nl;
nl”~.p:= nn;
End {Ingsert new node ag left child}

ELSE {new leaf is right child, old leaf iz left child}
Begin {Insert new node as right child}
{New node iz only right child when itsgs key ig larger than
all keys currently in the tree, In this instance, new node
does not have a direct ancester and its sibling gets the
parent node ag iteg direct ancestor}
nmm*.da:= nil; {new node has no direct ancestor}
nl~.da:= T; {gikling gets parent asg direct ancestor}
T~.da:= nil; {interior node has no direct ancestor}
T+.L:=nl; T*.R:= nn; {connect leaveg to interior node T}
T*.p:= nil; T*.n:= nil; {T is interior, remove from list}
T .key:= nl~.key; {T's kKey = max. Key left subtree}
{ingert new leaf into linked 1list}
IF nl*.n <> nil Then {new node iz not last in list}
{Note that the next four lines should never fire!}
Begin {make connection between new node and next}
nl~.n".p:= nn;
nn™.n:= nl*.n;
End {make connection between new node and next}
ELSE {new node iz last node in list}
nn*.n:= nil;
{connect new node to sibling}
nn*.p:= nl;
nl~.n:= nn;

End; {Insert new node as right child}'
IF dim <> dimensions Then
Begin

CreateNewTree{newtree, T, (dim+l1l)};
T*.nd:= newtree; {attach range tree in nextdim}

End
ELSE
T .nd:= nil;
End {we have reached the leaf level, insert}

ELSE {we are not yet at leaf level}
.Begin {trace down to leaf level}
IF nn”.key <= T”.key Then
Begin {Insert into left subtree}
Insert{T~.L, nn, tallersubtree, dim};
IF tallersubtree Then
Case T".bfL of
-1: LeftBalance{T, dim, taller);
0: Begin T~.bf:= -1; taller:= true; End;
1: Begin T .bf:= 0; taller:= false; End;
End {Case T*.bf}

ELSE
taller:= false;
End {Ingsert inte left subtree}

ELSE {nn™.key > T*.key}
Begin {Inzgert into right subtree}
Insert {T*.R, nn, tallersubtree, dim};
IF tallersubtree Then
Case T™.bf of

-1l: Begin T~.hf:= 0; taller:= false; End;
0: Begin T~.bf:= 1; taller:= true; End;
1: RightBalance(T, dim, taller);
End {Case T~.bf}
ELSE
taller:= false;
End; {Insert into right subtree}

IF dim <> dimensions Then

Begin
CopyNede (nn, ndn, {dim+l}, 'n'};
tmptaller:= false;
Insert (T*.nd, ndn, tmptaller, {dim+1});

Endg;

End; {trace down to leaf levell
End; {tree i not empty}
End; {Insert}

Procedure BalanceL({Var T: nodeptr; Var reduced: boolean; dim: integer);
{We have just reduced the height in the left subtree by 1. If the
balance c¢riterion has been violated then we must restore it.}

Var x,w: nodeptr:

Begin {BalanceL}
Cage T*.bf of
-1: T .bf:= 0; {two subtrees are equal height} {reduced stays true}
0: Begin T~.kf:= 1; Reduced:= false; end;
1: Begin {must rotate T to the left}
IF ({T*.R*.bf = 1) or {T~.R*.bf = 0}) Then
Begin {perform single rotation}
IF T”.R~.bf = 1 Then
Begin {Perform a normal AVL tree single left rotation}
{Reduced stays true) A
T.bf:= 0; T .R*.bf:= 0;
End {Perform a normal AVL tree single left rotation}
ELSE {T".R™.bf = 0}
Begin {Single left rotation but change balance factors}
Reduced:= false;
T .bf:= 1; T*".R*.bf:= -1;
End; {Single left rotation but change balance facteors}
RotateLeft (T);
IF dim <> dimensions Then
Rebulld{T™ .L*.nd, T*~.L, {dim+1l}};
End {perform single rotation}
ELSE {T~.R~.bf = -1}
Begin {perform doubkle rotation}
{Reduced stays true}

X:= T*.R;
{procedure RightBalance double rotaticn case}l
wWi= X*.L;
Cage w*.bf of
0: Begin T*.bf:= 0; x".bf:= 0; End;
-1; Begin T~.bf:= 0; x~.bf:=1; End;
1: Begin T .bf:= -1; x*.bf:= 0; End;

End; {Case}

wr.bf:= 0;
RotateRight (x};
T .R:= X;

Rotateleft {T);
IF dim <> dimensions Then
Begin
Rebuild{T~.L*.nd, T~.L, (dim+1)}
Rebuild{T~.R~.nd, T*.R, (dim+1l})}
End;
End {perform double rotation}
End; {must rotate T to the left}
End; {Case}
End; {BalancelL}

i
!

Procedure BalanceR({Var T: nodeptr; Var reduced: boolean; dim: integer};
{We have just reduced the height in the right subtree by 1. If the
balance criterion has been viclated then we mugt restore it.}

vVar ¥,w: nodeptr;
Begin {BalanceR}

Case T*.bf of
1: T~.bi:= 0; {two subtrees equal height.} {Reduced stays true}
0: Begin T~.bf:= -1; Reduced:= false; End;
-1: Begin {must rotate T to the right}
IF {{(T*.L".bf = -1} or {(T~.L~.bf = 0))} Then
Begin {perform single rotation}
IF ™.L~.bf = -1 Then
Begin {Perform a normal AVL tree single right rotation}
{Reduced stays true}
™ .bf:= 0; T~.L*.bf:= 0;
End {Perform a normal AVL tree rotation to the right}
ELSE
Begin {Single right rotation but change balance factors}
Reduced:= falsze;
T~ .bf:= -1; T .L~.bf:= 1;
End; {Single right rotation but change balance factors}
RotateRight {T) ;)
IF dim <> dimensions Then
Rebuild{(T*.R"~.nd, T".R, {dim+1)};
End {perform single rotation}
FELSE {T~.L™.bf = 1}
Begin {perform double rctaticn}
{Reduced stays true}

Xe= T, 1
{procedure LeftBalance double rotation case}
w:= X*.R;

Cage w.bf of
0: Begin T".bf:
1: Begin T*.bf:
-1: Begin T~.bf:
End; {Case}

; X*~.bf:= 0; End;
;7 X".bf:= -1; Eng;
;. xX~.bf:= 0; End;

w*r.bf:= 0;
RotateLeft {x);
T L= X;

RotateRight (T) ;
IF dim <> dimensicns Then
Begin
Rebuild{rT~.L".nd, T*.L, (dim+l)
Rebuild!{T”.R*.nd, T*.R, (dim+l)
End;
End {perform double rotation}
End; {must rotation T to the right}
End; {Casge}

}
}

4
.
I

End; {BalanceR}

Procedure Delete{dp: coordinate; Var T: nodeptr; Var reduced: boolean;

dim: integer):
{Delete node from T that contains key x. If subtree height decreases,
reduced:= true.} :

Var Q: nodeptr; {temporary pointer}

X: integer; {temp var}

Begin {Delete}

X:= dpldim];

IF T <> nil Then
IF T~.nt = leaf Then {one datapoint left in tree}
IF T".key = xX Then
T:= nil {tree iz now empty}
ELSE
writeln{'key is not in tree'}
ELSE {more than cne datapoint left in tree}
IF {{T~.L~.nt = leaf) and (T".R*~.nt = leaf)} Then
{two datapcints in tree}
IF T*.L*.key = X Then
Begin {delete left child}
{when deleting, we must change key value in direct ancestor}
{however, in this case direct ancestor is parent node and it
is replaced by right child so we do nothing} '
{we don't need to change direct ancestor in leaf that moves
up ag it doesn't change}
T*.R.p:= T*.L".p; {remove T~.L freom list}
IF T~.R*.p <> nil Then
T™.R*.p~.n:= T*.R;
reduced:= true; {deletion always reduces height of subtree}

Q= T, T:= T*.R;
Disposeof (0~.nd}; Dispose{0Q~.L}; Dispose(Q);
End {delete left child}
ELSE

IF T*.R~.Xkey = X Then
Begin {delete right child}
{when deleting, we change kKey value in direct ancestor}
IF T*.R"~.da <> nil Then
Begin
T .R*.da” . key:= T*.L*.Key;
{we must change direct ancestor in leaf that moves up!
™ .L*.da:= T*.R*.da;
End
BELSE {we are deleting last node;it has no direct ancestor}
T .L~.da:;= nii;
T™.L*.n:= T .R*.n; {remove T~.R from list}
IF T*.L~.n <> nil Then
T™.L*.n*.p:= T*.L; :
reduced:= true; {deletion reduces height ¢f subtree}

Q:= T; T:= T*.L;
Digposecf {Q~.nd); Dispoge(Q~.R); Dispose(Q};
End {delete right child}
ELSE

writeln{‘key is not in tree')

ELSE {more than two datapcints in tree}
IF x <= T*.key Then {key, if present, is in left subtree}
IF T*.L*.nt = leaf Then {three keys in tree}
IF T .L*.key = x Then {procegss deletion}
Begin {delete left child}
{when deleting, change key value in direct ancestor}
{again, direct ancestor ig parent node which gets
replaced by right <¢hild so again we do nothing}
{we don't need to change direct ancestor as the node
that moves up ig an interior}
T~ .R*.L*.p:= T*.L*.p; {remove T from list}
IF T*.R*.L".p <> nil Then
T .R*.L™~.p~.n:= T*.R*.L;
reduced:= true; {deletion reduces height of subtree}
Q:=T; T:= T*.R;
Digpose{0~.L}; Q*.L:= nil; Q*.R:= nil; Disposeci{Q);
End {delete left child}
ELSE {key not in tree}
writeln{'key ig not in tree')
ELSE {more than three keys in left subtree, normal deletion}
Begin {normal deletion in left subtree}
Delete(dp, T*.L, reduced, dim};
IF reduced Then BalanceL{T, reduced, dim);
IF dim <> dimensions Then _
Delete(dp, T*.nd, reduced, (dim+l)};
End {normal deletion in left subtree}
ELSE {key, if pregent, ig in right subtree}
IF T*.R”~.nt = leafl Then {three keys in tree}
IF T .R*.key = x Then {process deletion}
Begin {delete right child}
{when deleting, we change key value in direct ancestor}
IF T~.R*.da <> nil Then
Begin
T .R~.da” . key:= T".L".R*.key;
{wechange direct ancestor in leaf that movesg up}
T .L~.R*~.da:= T*.R".da;
End
ELSE
T .L*.R*.da:= nil;
T~.L*.R*.n:= T . R*.n; {remove key from list}
IF T.L"”.R*.n <> nil Then
T.L",R*.n".p:= T*.L".R;
Q:=T; T:= T".L;
reduced:= true; {deletion reducesg height of subtreel
Digpose(Q~.R}); 0~.L:= nil; Q~.R:= nil; Disposeof (Q}:;
End {delete right child}
ELSE {key ig not in tree}
writeln('key is not in tree'}
ELSE {more than three keys in right subtree, normal deletion}
Begin {normal deletion in right subtree}
Delete{dp, T".R, reduced, dim);
IF reduced Then BalanceR (T, reduced, dim};
IF dim <> dimensions Then
Delete{dp, T".nd, reduced, {dim+l});
End {normal deletion in right subtree}
ELSE {T = nil}
writeln{'Empty Tree. Deletion is not possible.'};

End; {Delete}

Procedure RangesSearch{T: nodeptr; L,R: coordinate;
i dim: integer); Forward;

Procedure ReportPoint{dp: coordinate);

Begin {ReportPoint}
writeln{dpiil, dpi2l, dpl31);
End; {ReportPeint}

Procedure CheckPoint{dp, L, R: coordinate; dim: integer}:

Var i: integer;
inrange: boolean;

Begin {CheckPoint}
i:= dim;
inrange:= true;
While {(i <= dimensicns} and (inrange)} Do

IF not ((L[i) <= dpli)) and {dpl[i] <= R[il}} Then
inrange:= falge
ELSE

ir= 1 + 1;
IF inrange Then
ReportPoint (dp};
End; {CheckPoint}

Procedure PerformRangeSearch{T: nodeptr; L,R: coordinate; dim: integer};

Begin {PRE&}
ir T~.nt = leaf Then
Checkpoint {T*.dp, L, R, dim}
ELSE
TIF dim <> dimensions Then
RangeSearch{T".nd, L,R, (dim+1)};
End; {PRS}

Procedure RangeSearch;
{We are gearching for all keyg between L and H inclusive in the range
AVL tree T.}

var Q: nodeptr; LC, RC: nodeptr;
Function NoOverlap{Q:nodeptr; L,R: coordinate; dim: integer): boolean;

Begin {NoCverlap}
IF @ <> nil Then
IF ({R[dim] <= Q*.key} or (L[dim] > Q~.key}) Then
NoOverlap:= true
ELSE
NeOverlap:= false
ELSE
NoOverlap:= false;
End; {NoOverlap}

Begin {RangeSearch}
Q:= T;

IF @ <> nil Then
Begin {range tree not empty}
While NoOverlap(Q,L,R,dim) Do
IF R[dim] <= Q*.key Then

Q:= 0~.L
ELSE {L > 0~.key}
Q:= Q*.R;

IF Q <> nil Then
Begin {normal range tree range search with common ancestor 0}
LC:= Q™.L; {left child}
RC:= Q*~.R; {right child}

{firgst deal with nodes in PLi}
WHILE LC <> nil DO
Begin {iterate to LX'}
IF LC”.nt <> leaf Then
IF L[dim] <= LC™.L".key Then
Begin
PerformRangeSearch(L.C*.R, L,R, dim);
LC:= LC™.L; '
End
ELSE
LC:= LC™.R
ELSE
Begin
CHECKPOINT {LC~.dp, L,R, dim);
ILC:= nil;
End;
End; {iterate to Lx'}

{now deal with nodes in PHi}
WHILE RC <> nil DO
Begin {iterate to Hx'}
IF RC™".nt <> leaf Then
IF R[{dim] > RC*.R™.key Then
Begin
PerformRangeSearch{RC~.L, L,R, dim);
RC:= RC™.R;
End
ELSE
RC:= RC™.L
ELSE
Begin
CHECKPOINT (RC”.dp, L,R, dim};
RC:= nil;
End;
End; {iterate to LX'}

End {normal range tree range gsearch with common ancestor Q}
End {range tree not empty}
ELSE
writeln {*Eupty Range Tree - Null Search Condition'};
End; {RangeSearch}

Procedure DisplayDRT{T: nodeptr);

{fused for debugging purposes, output DRT structure to a datafile}

{at present, we are limited to three dimensions. This could be medified
t£o output a k-dimensionsal tree}

var ofile: text; {output data structure to thig file}
Procedure DispDRT(T: nodeptr; dim: integer}; Forward;

Function GNodetype{x: nodetype): char;
{we ocutput node type - this function get's the nodetype}

Begin {Nodetype}

IF »x = leaf Then

GNodetype:= * ' {* ' = 'L'}
Elze

GNodetype:= 'I'

End; {Nodetvype}

Procedure InorderTrav(T: nodeptr);
{output the current tree via an inorder traversal}

Begin {InorderTrav}

IF T <> nil Then
Begin {keep outputin'}
Inordertrav{T".L};
write (ofile, 'key: ', T*.key:5, GNodetype(T~.nt}:3, ' '};
IF {{7T~.L <> nil) and {T".R <> nil}) Then

Begin
writeln{eofile, * T.L: ', T*.L*.key:4);
writein({cfile, * T.R: ', T*.R™.key:3};
End;

Else

writeln(ofile, ' T*~.L: nil T~.R: nil'};

IncrderTrav{T”.R};
End; {keep outputin'}

End; {InorderTrav}

Procedure InorderNext {T: Nodeptr; dim: integer};
{we must output trees in the nextdim attached te¢ current tree -
this procedure calls InorderTrav to output the tress 1 by 1}

Begin {InorderNeXxt}

IF T <> nil Then
Begin
InorderNext (T*.L, dim);
IF T*.nd <> nil Then
Begin {output tree in nextdim}
writeln{ofile, 'Next Structure attached to ', T".kKev:3);
InOrderTrav{T".nd);
End; {output tree in nextdim}
InorderNext (T*.R, dim);
End;

End; {IncrderNexi}

Procedure RecurseDim(T: nodeptr; dim: integer);
{uzed to trace through trees in dimension two to get to and output
Ltrees in dimensicn three}

Begin {Recurselim}
IF T <> nil Then
Begin {recurse through all trees in dimengion two to get to
CLrees in dimensicn three}
RecurseDim{T~.L, dim};
IF T™*.nd <> nil Then
InorderNext {(T*.nd, Jdim};
RecureeDim{T~.R, dim):
End; {recurse through all trees in dimension two to get to
trees in dimension three}
End; {RecurseDim}

Procedure DispDRT; {{T: ncdeptr; dim: integer};}
{doeg the recursion necesgary to display the DRT structure}

Begin {DispDRT}
writeln(ofile, 'Dimension One: '};
InorderTrav{T); {output tree in dimension 1}
IF T~.nd <> nil Then
Begin {output dimension two structures}
writeln{ofile, ‘'Dimension Two: '};
InorderNext {T, dim}; {cutput treesz in dimension 2}
writeln{ofile, 'Final Dimensicn Three: '};
IF T".nd*.nd <> nil Then
RecursebDim (T, dim); {output trees in dimension 3}
End; {output dimension two structures}
End; {DispDRT}

Begin {DisplayDRT}
{prepare the file for output}
assign {ofile, outfile};
rewrite{ofile};
writeln{' New Tree: '};
DispDRT{T, 1);
cloge {ofile};
{we have now output the structure}
End; {DisplayDRT}

Procedure CGetnoede (ndp: coordinate; Var nn: nodeptr; dim: integer);

Begin {Getnode}
new{nn); {allocate the new node}

{gset all data values as appropriate for a not yet inserted leaf}
nn”.da:= nil;

nn*.nt:= leaf;

nn”.key:= ndp[dim]};

nn*.dp:= ndp;

nn*.L:= nil; mn*.R:= nil;
nn™.p:= nil; nm*.n:= nil;
nn™.bf:= 0;

nn*.nd:= nil;

End; {Getnode}

Procedure BuildDRT (Var T: nodeptr};

Var ndp: coordinate; {the datapoint bkeling inserted}

nn: nodeptr; {the new node to be inserted}

taller: booclean; {used by InsertDRT; height of the tree increagsed?}
dim: integer; {current dimension in which to ingert new node}
dAfile: dfiletype;{file varaible pointing to datapoint file}

1: integer; {lcop contrecl variable}

Begin {BuildDRT}

{prepare the file for input}
asgign {dfile, dpeointfilei};
reset {dfile};

For i:= 1 to numpoints Do

Begin {insert next datapoint}
dim:= 1; {first ingert datapoint in the first dimension}
read{dfile, ndp); {read in the datapoint}
GetNode (ndp, nn, dim}; {get/init. the node to be inszerted}
taller:= false; {must insert a node for the height to increase}
{insert the new node into the DRT structure}
Insert (T, nn, taller, dim); _
DisplayDRT{T}; {output the DRT to file for debugging purposes}

End; {insert next datapoint} '

cloge (dfile);
{we have tested our structure}

End; {BuildDRT}

Procedure TestRS{T: nodeptr);

Const numsearches = 10;
maxval = 100;
Var dim: integer;
i,j: integer;
L,R: coordinate;
tmp: integer;
Begin {TestRS}
Randomize;
For i:= 1 te numsearches Do
Begin
For j:= 1 to dimensions Do
Begin
L[j]:= Random({maxval);
Rfjl := Random(maxval) ;
IF R[Jj] < L[j] Then
Begin
tmp:= R{]j];
Rijl:= LIj);
LIjl:= tmp; _ :
Bnd; ; :
End; : :
dim:= 1;
RangeSearch{T,L,R,dim)};
End;

End; {TestRs}

Procedure DestroyDRT{Var T: nodeptr);

Var dp: coordinate; {the datapocint being deleted}
dim: integer; {current dimension to delete node from}
dfile: dfiletype; {file variable pointing to datapoint}
i: integer; {loop control variable}
reduced: booclean; {recurgive control in Delete}

Begin {DestroyDRT}

{prepare file for input}
assign {dfile, dpointfiled);
regset {(dfile};

For 1:= 1 to numpolints Do
begin {delete next datapoint}

dim:= 1; {we firgt delete datapcint from dimension 1}
reduced:= falsge;

read{dfile, dp}; {read in the datapoint}
Delete{dp, T, reduced, dim}; {delete next point from the DRT}

DisplayDRT{T}; {output the DRT to a file for debugging purposes}
end; {delete the next datapcint}

close ({dfile);

{we have tested our sgtructure}
End; {DestroyDRT}
Begin {Main}

writeln{'Please enter dimengions and number of datapoints.'):
readlin {dimengionsg, numpointe);

T:= nil; {initialize tree as empty}
BuildDrt (T} ; {build a tree}
TastRS{T); {perform some range searches}

DestroyDRT (T} ; {destroy the Cree}

End. {Main}

