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Abstract

Clause trees provide a basis for reasoning procedures that use binary
resolution. In this paper binary resolution trees are used as the data structure
for implementing these procedures. Several properties of these procedures are
explored: size, stages, minimality, disequalities, activity and rank. Procedures
for uniquely building all minimal clause trees are introduced. Ordinary .
subsumption within these procedures does not preserve completeness, but
contracting subsumption, a new restricted form of subsumption that relates to
clause trees, can be integrated. The minimal restiction and unique construction
address the problem of redundancy with binary resolution. |

1. Introduction

A clause tree [1] is an abstract data structure which represents a proof of a resulting
clause, using resolution [5] on a set of input clauses. One clause tree represents possibly
many such proofs; two proofs which consist of the same resolution steps but done in a
different order are represented by the same clause tree. A clause tree does not specify the
order in which resolutions are done, except when necessary, to allow a merge (or
factoring) of two different occurrences of a literal (or unifiable literals).

* A minimal clause tree is one in which no reordering of the resolutions can produce either a
merge that was not applied, or a tautology. If a merge is missed, or a tautology created in
a resolution-based proof, then a shorter resolution proof exists and its result subsumes the




original result. Finding such a smaller proof corresponds to a process of removing pieces
from the clause tree, called clause tree surgery [1]. Thus any procedure that resolves pairs
of clause trees to construct all minimal clause trees on a set of input clauses is
refutationally complete for first order logic. Three classes of such proccdui‘es have been
proposed {3].

Two different clause trees can represent the same proof if the proof contains a merge; a
merge path is reversed. Such clause trees are called reversal equivalent. However we
can restrict all clause trees so that only one of any set of reversal equivalent trees is
generated. For example, Spencer's foothold restriction can be applied [6]. Such a clause
tree is said to be representative. The procedures mentioned above can be restricted to
produce only representative minimal clause trees.

Only the most restrictive, and probably the most efficient of the three classes of
procedures is considered in this paper. In this class of procedures, if a resolution is going
to produce a non-minimal tree, the resolution is not aliowed. In Section 3 we describe a
data structure that allows one to determine quickly whether the new clause tree is minimal.

In Section 4 we describe properties for clause free procedures. Besides mintmality, we
show how to restrict the set of permissible resolutions further, so that no representative
minimal clause tree is produced more than once. At any point in the procedure, literals are
in one of two states: active or inactive. An inactive literal is not allowed to resolve. The
proofs of completeness and uniqueness are in Section 5. By greatly reducing the number
of clauses produced, this technique reduces the use and hence the cost of subsumption.

Subsumption cannot be simply integrated into our procedures. However in Section 6 we

- define contracting subsumption, a form of subsumption that relates only to clause trees. It

does not preserve minimality or uniqueness, but we beleive that a system combining all
these properties will improve our ability to perform binary resolution.

2. D_eﬁnitions

A path path(v,,v,) in a graph from v, to v, is an alternating sequence (v, &; v; ... € V)
where each v; is a node and each ¢;is an edge. The first node vo is the #ail of the path, and
the final node v, is the head.



Definition ] T=(N,E,LM)) is a clause tree on a set S of input clauses if:

(a) (N,E) is a(n unrooted) tree.

(b) L is a labeling of the nodes and edges of the tree. L:N WV E-> S* U A4 v {+-}, ‘where
S*is the set of instances of clauses in S and A is the set of instances of atoms in S.
Each node is labeled either by a clause in §* and called a clause node, or by an atom
in A and called an atom node. Each edge is labeled + or—

(¢} No atom node is incident with two edges labeled the same.

(d) Each edge e={a,c} joins an atom node a and a clause node c; it is associated with the
literal L(e)L(a).

(e} For each clause node ¢, L{c) = {L({a,c}}L(a) | {fac}e E}. A path {v €1 Vi ... € V)
where 0< i< n, v € Nand ¢; € E where 1< J< n is a merge path if L(e)L(ve) =
Lie,)L(v,). Path {v, ...'v,,) precedes (=) path {(w; ... Wn) if v, = w; for some i=1,...,.
m—I.

() M is the set of merge paths called chosen merge paths such that:

(i} the tail of each is a leaf (called a closed leaf), .
(ii} the tails are all distinct and different from the heads, and

(iii)the relation ~ on M can be extended to a partial order.

A set M of paths in a clause tree is legal if the ~ relation on M can be extended to a partial
order. A path P islegalin T’ = (NE.L M) if M U P is legal. If the path joining # to / is
legal in 7, we say that % is visible from ¢.

A path (vpe; vr ... e, v,) where v; € N and ¢; € E is a tautology path if L(vy) = L(v,) and
L{ey) = L(e,). A path is a unifiable tautology path if L(e;) = L(e,) and there exists a
substitution 6 such that L(vy)® = L(v,)0. A path is a unifiable merge path if there exists a
substltunon 9 such that L(e;)L(v¢)0 = L{e,)L(v,)6.

A clause tree with a single clause node is said to be elementary. An open leaf is an atom
node leaf that is not the tail of any chosen merge path. The disjunction of the literals at the
open leaves of a clause tree T is called the clause of T, cl(T).




There are various operations on clause trees: creating an elementary clause tree from an
input clause, resolving two clause trees, adding a merge path to the set of chosen paths
and instantiation. Each of these operations results in a clause tree.

Operation 1. Creating an elementary clause tree from an input clause

Given a clause C in S and a substitution © for variables in C, the elementary clause tree

T= (N,E,L, o) representing CO = {a,,...,a,} satisfies the following:

1} N consists of a clause node and n atom nodes, where L labels the atom nodes with
a;,....a, and labels the clause node with C0.

2) E consists of n undirected edges, each of which joins the clause node to one of the
atom nodes and is labeled by L positively or negatively according to whether the atom

is positive or negative in the clause.

Operation 2. Resolving two clause trees _

Let Ty = (NLE;,Li,Myy and T, = (N5,E; Ly, M; ) be two clause trees with no nodes in
common such that n; is an atom node leaf of T) and n; is an atom node leaf of T, No
variable may occur in a label of both an atom node in T and an atom node in T,. Let L,
label n; with some atom a; and label the edge {n;, m;} negatively, and L, label ny with
the atom a; but label the edge {n,, my} positively. Further let a, and a, be unifiable with
a substitution 6. Let N = N UN>— {m)}. Let E = EpOE; — {{npmi}} © {{n,m;}} where
fnom;f is a new edge. Let L be a new Iabeh‘ng. relation that results from two
modifications to Ly \ L;: the new edge {nam;} is labeled negatively, and 0 is applied to
the label of each atom node. Let M be the set of merge paths that results from M; U M;
by replacing each occurrence of n; in each path of M; with n;. Then T = (N.E,LM) is a
clause tree.

We write T; res T» to refer to the clause tree that results from Operation 2. We use a
similar notation for resolving two clauses together.

Operation 3. Adding a leaf-to-leaf unifiable merge path

Let T = (N.E,L M) and let n; and n; be two open leaves in T such that P=path(n;n) is a
unifiable merge path of (N.E,L,b), with n; not being the tail of any chosen merge path in
M and n; not being the head or tail of any chosen merge path. Let 0 be a substitution
such that L(n))0=L{ny)0. Let L8 be the labeling relation that results from applying 8 to
the label of each atom node, and otherwise leaving L the same. Then T; = (N.E,LO.M U
{P}) is a clause tree. '




Operation 4. Instance of a clause tree

A clause tree T' = (N,E,L'\M) is an instance of a clause tree T = (NE,.LM) if L' and L
are identical on the clause nodes, atom nodes and edges, and there is a substitution 0
such that for each atom node n, L'(n) = (L{n})8.

Theorem 1. [1] Closure of Clause Tree Operations
Each of Operation I, Operation 2, Operation 3 and Operation 4 applied to a clause
tree(s) generates a clause tree.

A sequence of these operations which results in a single clause tree is called a derivation
of that clause tree. See [2] for the complete definition or a derivation.

Theorem 2. [1]Soundness and completeness of clause trees _
Let C be a clause and S be a set of clauses. Then S {= C iff there is a clause tree T on S
such that cl(T) < C.

Definition 2 A clause tree (N,E, L M) is minimal if it contains no legal merge path not in
M and no legal tautology path.

A clause tree that is not minimal can be made minimal by applying surgery on all legal
tautology and legal unchosen merge paths. Surgery is an operation that involves cutting
out parts of the tree, if necessary, and rearranging the remaii_ider, possibly adding a new
merge path, so that the resulting structure is a clause tree. Surgery is discussed in [1].

3. Binary resolution trees

In this section we apply the ideas developed using clause trees to a well-known data
structure: a binary tree of clauses generated by binary resolution. As will be seen,
derivations, visibility and minimality carry over in a natural way. This exercise illustrates
that these concepts are fundamental to binary resolution. A prototype is bein impleemnted
that uses a variation of binary resolution trees, called binary resolution dags (directed
acyclic graphs) which allow structure sharing to enhance space efficiency.

Definition 3. A binary resolution tree on an input set S of clauses is a tree with the

Jfollowing properties.

¢ FEqch directed edge points from a parent node to a child node.

® FEach node has either zero or two parents. A node with zero parents is called a leaf
and one with two parents is called an internal node.
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e Each node is labeled with a clause called its clause label. A leaf is labeled with a
clause from S, whereas an internal node is labeled with the resolvent of the clause
labels of its parents. Each internal node also has an atom label, which is the atom of
the literal resolved upon. This node is the resolution node for this atom, and for the
occurences of the literals resolved upon.

The root of a binary resolution tree is the internal node with no descendants, which must
be unique if the tree is connected. The clause label of the root is the reswlt of the proof
consisting of the resolution steps in the tree.

Every occurrence of a literal in a clause label has a history. The history path for an
occurrence of a literal starts at a leaf whose clause label contains that literal, goes through
its descendants and ends at either the root of the binary resolution tree or at the resolution
node for this occurence. A merge node for a literal g in a binary resolution tree is a node
whose parents both have @ in their clause labels. A merge free for an occurrence of a
- literal & in a binary resolution tree is the union of all initial segments of the history paths of
a from a leaf to the last merge node for 2 on each path.

In Figure 1, a binary resolution tree is shown with its clause labels. Atom labels of internal
nodes are also shown, to the left of the colon. The merge tree for a is circled with a
dashed line, and the resolution node for a is underlined with a dashed line. The merge tree
for £ is circled with a dotted line and the resolution node for £, the root, is underlined with
a dotted line.

merge tree for a
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Figure 1 A non-minimal resolution tree




In a binary resolution tree, a node u can see a node v unless there exists a resolution node
for an occurrence of a literal @ on the path from  to v, and v is in the merge tree for that
occurrence of 2. We say that v is visible from u when u can see v. A binary resolution
tree is mon-minimal if there exist two nodes that have the same atom label and one can

see the other, or if there is a literal in the clause label of the root and its atom appears as

the atom label of some node in the tree. Otherwise the tree is minimal. In Figure 1, there
are two nodes with the atom label ¢ and neither one can see the other. There are also two
nodes with the atom label ¢. Since the one on the left can see the one on the right, this
tree is non-minimal.

Theorem 3. B is a binary resolution tree and T is a corresponding clause tree. B is a

minimal binary resolution tree iff T is a minimal clause tree.
Proof Omitted. I

A non-minimal binary resolution tree 7 is redundant in that there exists a smaller binary

‘resolution tree T on the same set of input clauses such that the clause label of the root of

T, is a subset of an instance of the clause label of the root of T;, Thus it is necessary only
to construct minimal binary resolution trees. In Figure 2, the same set of clauses are used
as in Figure 1, but the result of the tree in Figure 2 is {}, which subsumes the result {~d}
from Figure 1. The tree in Figure 2 is easily seen to be minimal since no two atom nodes
are labeled the same and there are no literals in the clause label of the root.

merge tree for -

fa, c} {~a,~f} .,

S :{e’{ ﬁe,f} ',_

T
Se] o)

Figure 2 A minimal binary resolution tree

There is a natural construction of a binary resolution tree .S from a given clause tree T
For each clause node in T construct a leaf node for § with this clause as its label. Extend
the partial order on the internal atom nodes of 7" to a total order, 4,,...,4,. Consider the
atom nodes in this order. For each A; create a new internal node B; for S and use the label
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of 4; as its atom label. 4, represents the attachment of two clause frees whose atom nodes
have already been considered. The clause of each of these clause trees is the clause label
of a node already inserted into S. Label B; with the clause that results from resolving these
two clauses, and make it the child of these two nodes in §. When this process finishes, S is
a binary resolution tree and its root is labeled with the clause ¢/(7).

Given a binary resolution tree S, a corresponding clause tree T can be constructed. Order
the nodes of the S so that for all nodes, all of its ancestors precede it. A postorder
traversal suffices. Let B,,...,B, be this ordering. If B, is a leaf, construct T; the elementary
clause tree of the input clause label of B;, If B;is an internal node, then the clause trees for
both of its parents have already been built. Construct a new clause tree T; by a clause tree
resolution operation on these clause trees. If any literals from the parents of B; are merged
by the clause resolution operation at B; then both of these identical literals correspond to
edges of open leaves in 7;. Join these open leaves with a merge path. When this
procedure finishes, c/(7T,} is the clause label of B, '

Note that the correspondence between binary resolution trees and clause trees is many to
many. However the mapping from binary resolution trees to a representative clause tree is
many to one. The procedures introduced in this paper construct one binary resolution tree
for each clause tree. Thus for our purposes, the relation is one-to-one.

As examples, clause trees that correspond to the binary resolution trees in Figure 1 and
Figure 2 are shown in Figure 3.
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Figure 3 Clause trees corresponding to Figure 1 and Figure 2

4. Properties

The procedures we discuss in this paper have many' properties in common which are
described in this section.

4.1 Size and stages

In the procedures considered here, each binary resolution tree has an integer associated
with it, called its size. The size function is used to control the procedure. We say that a
size function is stable if, for each clause tree 7T, all binary resolution trees that correspond
to T have the same size. In this case the size of T, written as size(T) is defined as the size
of any of these binary resolution trees.

A size function is increasing if size(T; res T3) > max(size(T)), size(T3)). 1t is additive if
size(T, ves Ty) = size(T,) + size(T,). 1t is superadditive if size(T; res Ty} > size(T) +
size(Ty). '



We propose some examples of possible size functions.

a) the height of 7. |
size(T) = \1 : if T is an elementary clause tree,
1 + max(size(T;),size(T5)) U T=TiresT;

Example (a) gives the minimum possible size function that is increasing.

b) the number of clause nodes of T.

size(T) = 1 if T'is an elementary clause tree,
size(T}+size(Ts) fT=TrresT;
¢) the number of edgesin T
size(T) = (size of input clause if T is an elementary clause tree,
size(Ty)+size(T;) ifT=Tres T,

d) the weight of the clause tree. All input clauses are assigned a weight.
size(T) = {weight of input clause if T is an elementary clause tree,
size(T;}+size(Ty} UIr=TiresT,

Example (d) generalizes both (b) and (c).

e) A subset S of the input clauses is specified and all clauses are given a weight.
weight of input clause if 7 is an elementary clause tree,
size(T) = ] size(T)+size(T,) if T = T, res T, and no clause from
- Soccursin T
I + max(size(T,),size(T>))  otherwise

Example (e) is similar to a set of support restriction, but small clause trees without
‘support are allowed to be used in resolutions. A strict set of support restriction is not
compatible with the minimal clause tree restriction because it is not always possible to
build a given minimal clause tree from a given set of support such that all intermediate
trees are minimal.

f) the number of predicate symbols, function symbols and variables in all the atom node
labels of T. '

Example (f) is perhaps too strict and penalizes complicated substitutions more than is
desirable. It is also expensive to calculate. Thus we could weaken it to
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g) number of symbols in the clause if 7 is an elementary clause tree,
size(T) = 2 size(T)+size(Ty) +increase in the iT=TiresT,
| number of symbols in the open leaves '

h) sizé(D = size(cl(T)) a size function that is commonly used

In the above list, only (h) is not increasing; (a), (g) and (h) are not stable. We can avoid

the problem of an unstable size function in several ways. First we could define the size of
a clause tree as the minimum over all the size of all of its derivations. This gives a unique
size function, but still all derivations must be considered when calculating it. The second
alternative, which is what we choose here, is to use procedures that allow each clause tree
to be derived in only one way. Thus the size becomes dependent on the procedure used,
which in turn is dependent on the size function.

Lemma 4. For any increasing size function, there are a finite number of clause trees of

Size .

Proof Use induction on the size of the clanse tree to show that any clause tree of size i has
at most 2 clause nodes. 0

The proéedure proceeds through a series of stages in which many resolutions are
performed. Initially all distinct, most general factors of the input clauses are constructed.
In stage i, all the clause trees of size i are constructed. This can be accomplished at the
very least by resolving all clause trees of size less than i with all clause trees of size less
than ;. If the resulting clause tree is of size i, it belongs in stage i. Otherwise one can
throw it away. Of course one can do better. If a produced clause tree has size j>i it
should be stored and considered at stage j. Secondly if all clauses of size less than i-/
have already been computed, one need only resolve those of size i-/ with all clause trees
of size less than i to produce clause trees of size greater than or equal to i. This must be
done if the size function is height, for example. If the size function is additive or
superadditive, as (b), (c), (d), (f) and (g) are, one can resolve all clause trees of size k£ with

Reference source not found..
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4.2 Minimality and disequalities

Only minimal clause trees are constructed. It is not necessary to construct the clause tree
to recognize that it is non-minimal. Assume that T} is to be resolved with 7> at open leaves
n; and n; respectively. Let vis(n;) be the internal atoms visible from beyond n; in T, and
let vis(n,) be the internal atoms visible from beyond n; in T>. Let int(T) be the set of all
interior atom nodes in T, and let leaves(T) be the set of all open leaf atoms nodes in T.
Then in propositional logic T; res T is not minimal if and only if 7; and 7> are not minimal
and

a) (vis(ny) \w leaves(T;)) N ini(T;) = &

b) (vis(ny) U leaves(Ty))} M int(T;) = &

¢) cl(T;} and cl(T,) have no complementary literals other than @ and ~a.

We must be able to calculate vis(n) and inf(n) quickly in order for the above to be
effective. The cost of these calculations is linear in the size of the trees involved. The
intersections can be checked in linear time using hash tables. An alternative way to
remove non-minimal results is to apply subsumption, but the cost of subsumption depends
on the number of retained results, which may be large. '

The above condition does not guarantee that T, res T is minimal in first order logic. A
path in 7) or 7T, that was not a legal merge or tautology, could become one when one
applies the substitution arising from the resolution. The following example shows this. A
clause node is shown as » and an edge is represented by its label, either — or +. The clause
tree '
e —eta—e ), |

is minimal. When it is resolved with the clause tree

* + fic)
the clause tree

»+ flc)—e +a—e +tfic)

is produced. This has a tautology path between the f{c} atoms, and so is non-minimal.

To prevent such unifiable paths from becoming legal merge/tautology paths, one can keep
a list of pairs of atoms that are the ends of the unifiable paths. Such unifiable paths can be
identified when legal merge/tautology paths are checked for. Instead of checking pairs of
atoms just for identity, also check for unifiability. If such a pair of unifiable atoms is
found, add the pair to the list of disequalities for the clause tree.

12



When the clause trees T; and T are to be resolved at the open leaves n; of T; and n; of
T,, the above check for minimality is done. If it fails there is no addition to the set of
retained clauses. Otherwise the clause tree 7, res T is contructed and the most general
unifying substitution of the labels of n; and . is applied to all of the atom labels. If there
are n unifiable leaf-to-leaf merge paths in T; res 7>, then consider each subset of these
paths. For each subset, the substitutions are applied that make the unifiable merge paths
into merge paths and choose all leaf-to-leaf merge paths. The number of distinct clause
trees that result will be bounded by 2". For each of these, the list of disequalities is
checked,; if any disequality in 7; or in 7, now refers to a pair of atom nodes with identical
labels, the clause tree is non-minimal and so is rejected. For each tree that remains the
new set of disequalities is constructed. It contains the disequalities derived from 77, those |
from T, and the new disequalities (#,v) where u and v are atom nodes with labels that are
unifible but not equal and either

» u e vis(n;) U leaves(T;) and v eint(Ty),

v ue vis(ny) \J leaves(T,) and v €int(T;), or

e uisan open leaf of T and v is an open leaf of 7).

As the labels of a given disequality becomes further specialized, they may become
impossible to unify, so they can be removed from the disequality list.

Even an elementary clause tree may have disequalities arising from its factors. For
example the input clause {p(Xb), p(a, ¥} has the factor {p(a,b}}. The factor corresponds
to a single atom elementary clause tree, while the clause tree for the original input clause
would have two atom nodes and the disequality between them. If X were later bound to c,
this disequality could be discarded.

4.3 Rank and activity of open leaves

For each clause tree, each leaf 1s given an arbitrary distinct renk. For an elementary clause
tree of n edges, the ranks are from / to n. Consider two clause trees 7; and 7, to be
resolved and assume, without loss of generality, that 7; is considered first. For an atom
node of T; res T> which 1s an open leafin 7}, its rank in T; res T; is the same as its rank in
T,. For an atom node in T3, its rank in T; res T, is its rank in T increased by the number
of edges in 7). Thus the open leaves of any clause tree have ranks between / and the
number of edges of that clause tree.

13



All open leaves of elementary clause trees are active. When two clause trees 7; and T are
resolved, then for i=1,2 the leaves of T; that have rank lower than the leaf resolved in T;
are deactivated or become inactive. An inactive leaf is not allowed to be resolved upon.
It will become reactivated if it is the bead of a leaf-to-leaf merge path. .

Note that if all open leaves of a clause tree become inactive, then the clause tree can never
be used in a future resolution. Hence it does not need to be retained, except perhaps to be
used in subsumption. It is, however, still a minimal clause tree on the set of input clauses.

5. Completeness and uniqiiene'ss

Any procedure that is defined using the properties of Section__l4 with an increasing size
function is refutationally complete. Since all unsatisfiable set of clauses admit a complete
minimal clause tree [1] we need to prove only that any minimal clause tree is reversal
equivalent to some tree constructed by the procedure. In addition we show that any

minimal clause tree is constructed only once, which shows that these procedures are
efficient. '

Theorem 5. Completeness

Any procedure that is defined using the properties of Section 4 with an increasing size
. function, is refutationally complete.

Proof. Let T be any minimal clause tree on the set I of input clauses. If T is an elementary
clause tree, it is produced by the procedure at initialization. Otherwise assume that T has
n clause nodes. Assume as an induction hypothesis that any minimal clause tree with

fewer than » nodes on any set of input clauses is constructed by the procedure given that
set of taput clauses.

Now T has n-7 internal atom nodes. At each clause node v define p(v) to be the internal
atom node adjacent to v that is not the head of a merge path that passes over v, and is of
lowest rank in the elementary clause tree of v. The clause node v is said to point at p(v).
The node p(v) must exist for if all of the atom nodes adjacent to v were the heads of
chosen merge paths passing over v, each would be preceded by some other nodes adjacent
to v which would imply a cycle in the precedes relation.

Because there are n clause nodes and only n-/ internal atom nodes, some atom node w is
pointed at by both of its neighbouring clause nodes, say v and . Let T, be the elementary

14
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clause tree consisting of v and its adjacent atom nodes, and similarly let 7, consist of » and
its adjacent atom nodes. Let Ty = T, res T, on node w. T; is constructed by the procedure
by stage size(T)). '

Let I © cl(T}) be a new set of input clauses in which the size and ranks of the elementary
clause trees for I are the same as were derived from the procedure when 7 is produced.
We define the size of any clause tree S which contains a clause node of ¢l(T;) to equal the
size of the clause tree with a clause node of ¢/(T)} replaced by the subtree 7;. There may
be more than one elementary clause tree to choose for 7; because there can be merge
paths produced non-deterministically when T, and T, are resolved, but recall that all of
these included among the initial elementary clause trees. Let 7" be the clause tree T with
the nodes #, v and w replaced by the appropriate elementary clause tree for cl(T;). Then
T' 1s constructed by the procedure on the input clauses I U c¢i(T;). Thus T and 7" are
produced in the same stage, because they are the same size. Now if one removes all the
resolutions in which elementary clause tree from c/(7;) or its descendants are resolved,

one gets exactly the clauses produced by the procedure acting on 1, and T is among these,
B

All the above proof shows is that at any stage in the construction of T there is always one
more resolution that can be done towards the construction of 7.

Theorem 6. Uniqueness

Any procedure that is defined using the properties of Section 4 with an increasing size
Junction, produces each minimal clause tree exactly once.

Proof. Let T be any minimal clause tree on a set / of input clauses. If 7 were an
elementary clause tree, then it is produced only at the initial stage. Thus we can assume 7
is not elementary.

‘We show by induction that T must contain a unique interior atom node which must be -

resolved after all other interior atom nodes in 7. This is clearly true if T has only one
interior atom node. As in the proof of Theorem 5 for each clause node v in T define p(v_)
as the atom node adjacent to v with the lowest rank in the clause of v that is not the head
of a chosen merge path that passes over v.

We argue that p(v) must be resolved before any other node x adjacent to v. If x is not the
head of a merge path that includes v, then rank(x) > rank(p(v)). Then p(») must be
resolved first because if x were resolved first, p(v) would become inactive. Since p(v)
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could never be reactivated it would remain inactive and could never be resolved. If x is
the head of a merge path, then it is preceded by some of the other nodes adjacent to v. At
least one of these nodes, y, must not be the head of a merge path, for otherwise some
subset of these nodes would precede each other. Naturally y must be resolved before x
because it precedes x. But either p(v)=y or p(v) must be resolved before y as previously
argued. Hence p(v) must be resolved before x.

As in the proof of Theorem 5, let w be an atom node pointed at by each of its neighbours,
vand u. Let T; = T, res T,, and let 7" be T with %, v and w replaced by a single clause
node corresponding to ¢/(Ty). Then T is a minimal clause tree on I\ cl(T;), with one
fewer interior atom node than 7. By the induction hypothesis, 7' has a unique interior
atom node z which must be resolved later than any other interior atom node in I". The
only node that is different in 7" from 7' is w. But w must be resolved before any of the
leaves of T;, which themselves must be resolved before z.

. Therefore T can be produced by the procedure only when the atom node z is resolved.
Hence T=T; res T;. By another induction, both T, and T are constructed exactly once by
the procedure. Hence T is also constructed exactly once by the procedure.[d

6. Subsumption

Non-minimality and activity both are properties that prevent the construction of clause
trees that would be removed by subsumption. Subsumption is an expensive check because
it depends on the set of retained clauses, which may be large. Non-minimality and
activivty depend only on the size of the clause tree. The question is, can these procedures
be used in conjunction with subsumption? The answer is, only partially. These different
techniques that are trying to do the same thing can interfere with éach other. An example
is given in Figure 4: In this example, size is defined as the number of clause nodes,
activities are indicated by numbers in superscript, and an inactive node is denoted by *.
The procedure builds all clause trees of size i at stage i. Thus stage 1 shows the input set
of clauses.
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Stage 1
1

pte )
lga—p’ subsumed in stage 3
a+e—p subsumed in stage 2
‘bt+e—p subsumed in stage 2
Stage 2
’pte —pte
2a+e —pts
Stage 3

*t@—e—pt+e—pte
‘b—e—qie —pte

No more non-minimal resolutions are possible

Figure 4 Example showing incompleteness when using subsumption

Definition 4 A clause tree T subsumes a clause tree T if c/(T) Sﬁbsumes c(T*). 1tis
called strict forward subsumption if size(T) < size(T*) as well.

Definition 5 A size function is consistent if size(T)<size(T,) implics that size(T; res T) <-
size(T> ves T).

Theorem 7. Let A be a procedure which has the properties described in Section 4, such
that A uses a size function that is stable, increasing and consistent, and A rejects clause
trees that are subsumed by strict forward subsumption. Then A is refutationally complete.

Proof. Let B be the same procedure as 4, but without strict forward subsumption. B
constructs all the clause trees the A constructs. If a newly constructed clause tree is
subsumed by a retained clause tree, 4 will reject it, but B will retain it.

Let T be any minimal clause tree on the set of input clauses . We wish to prove that some
T is constructed by 4 that subsumes 7. T is constructed by B, by Theorem 5. If T 1s an
elementary clause tree, then 7" = T is such a clause tree itself. Otherwise 7= T res 7>
where a is the atom resolved on, and T; and T; are minimal clause trees constructed by B.
We assume that ¢ is the literal of an active node of T; and ~a is a literal of an active node
of T, so that T is constructed in this way by B. We assume as an induction hypothesis
that for any minimal clause tree T* such that size(T*) < size(T), that there is a minimal
clause tree T** constructed by 4 which subsumes 7*.
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The hypothesis applies to 7; and T because size is increasing, so there are clause trees T
and T, constructed by 4 such that 7 subsumes 7; and 7, subsumes 7>, and size(T3) <
size(T;) unless T5=T, and size(Ty) < size(T) unless T.=T,. If both equalities are true, then
either T is constructed by 4 because the number of clause trees of any given size is finite,
or T is rejected because of strict forward subsumption. Thus we can assume that at Jeast
one of the equalities is false.

If a is not in ¢/(T3), then T subsumes 7, and size(T3) < size(T;) < size(T). Similatly if ~a is
not in ¢l(Ty), T, satisfies the conditions for 7". Otherwise we can consider 75 = 75 res T,
resolved on the atom a. Now T is not necessarily constructed by either procedure,
because g or ~ag may be inactive, or because T 1s not minimal. But Ts must have a subtree
that is a minimal clause tree, say Ts. Moreover, size(Ty) < size(T3 res Ty) < size(1; res Ty)
= size(T). By the induction hypothesis, 4 must construct 75 or a clause tree T’ 'whi(_:h
subsumes Ts and size(T") < size(Ts). But then T' subsumes 7 and size(T") < size(T).
Hence 4 is refutationally complete.[]

Any positive additive size function is increasing, stable and consistent, so that Theorem 7
applies with the size functions in Section 4.1 (b), (¢) and (d). In addition one can in
principle perturb the sizes of clause trees so that no two clause trees have the same size,
so that strict forward subsumption corresponds to ordinary forward subsumption.

We can extend any bottom up clause tree procedure to use subsumption fully and maintain
completeness, at the cost of losing some of the advantages of minimality and activity.
Whenever a clause tree T subsumes a clause tree 7", remove both T and 7", and replace
both with a new input clause c/(7T). Since this new clause was not used in previous stages
of the algorithm, it must be processed in the way it would have been if it had been present
from the beginning. Its size should be equal to the size of the smallest clause tree that it
subsumes. A literal must be deemed active in the new elementary clause tree if the
corresponding leaf in any clause tree subsumed by it, is active.. Other literals can be
deemed inactive. We call such elementary clause trees contracted and we call this
subsumption contracting subsumption. Figure 5 shows the same example as Figure 4,
but using contracting subsumption, and the refutation is found at stage 2.
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Stage ]

i

pte
‘a-e—b° subsumed in stage 3
‘ate—p’ subsumed in stage 2
’b+e—p' subsumed in stage 2

Stage 2
’p +o—p+e becomes ‘b+e by contracting subsumption
‘ate—pte becomes ‘a+e by contracting subsumption
¥ o —pbte
‘b—e—q+e becomes b ~e by contracting subsumption
e+ hHh—e

Figure 5 Example from Figure 4 using conﬁ'acting subsumption

If the size of the contracted clause tree were less than the size of eirery subsumed clause
tree, then the number of clause trees of some given size may become infinite, and the
completeness of the procedure may be lost. For example, consider the clauses {~a},
{#10)}, {(~(X),af(s(X))} of weight 1, and {b}, {~b} of weight 2 with the size function (d)
from Section 4.1. If the contracted clause trees all get weight 1, then the procedure goes
into an infinite loop in stage 3, and never produces the proof of size 4. On the other hand
if the size of the contracting clause tree T is larger than the size of the smallest subsumed
clause tree 77, then the smallest proof might use 7 " and the equivalent proof using 7' is now
bigger than the smallest proof. In this case the search may be is prolonged.

Wherever a subsumed clause tree is used in a proof, a contracted clause tree can be used
instead. Once a complete clause tree is found using the contracted clause tree, the original
subsuming clause tree can replace it to form another complete clause tree. Thus the
addition of subsumptibn does not affect the completeness of the pfocedure. The resulting
complete clause tree is not necessarily minimal even if the original procedure produced
only minimal clause trees, so uniqueness is lost. However the combined procedure should
produce in most cases fewer resolutions than either the minimal active procedure, or the
procedure without minimality or activity but with subsumption.

One can also note that one does not always need to use contracted clause trees in the case
of strict forward subsumption. If the conditions of Theorem 7 are met, then strict forward
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subsumption can be used without inserting a contracted clause tree, and the procedure
remains complete. Only when another type subsumption is used, does one have to add a
contracted clause tree to maintain completeness.

7. Conclusions

A family of bottom-up procedures are defined that produce each minimal clause tree
exactly once. These procedures have been integrated with subsumption at the cost of
losihg uniqueness and minimality under some conditions. A prototype implementation is
being developed. Preliminary experiments indicate that it often requires fewer inferences
than OTTER using binary resolution and subsumption. In addition, it is quicker to check
minimality and activity than to check for subsumption when the set of retained clauses is
large. '

The notion of a2 minimal clause tree has been expressed in terms of trees of clauses
generated with binary resolution, a standard proof format. This addresses the problem
with resolution of redundancy, Problem 6 [8].

The new technique of activity suggested here is very general and can be used with many of
the standard bottom-up techniques to improve their efﬁciency. It can be used with clauses

instead of clause trees, although the number of clauses produced will be greater than the
number of minimal clause trees.
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