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Abstract

- Artificial neural networks (ANﬁs) involve large amount of inter-node communications. To
reduce the communication cost as well as time of learning process in ANNs, we have earlier
proposed incremenfa.] intér—node communication method. In the incremental communication
method, instead of communicating the full magnitude of the output value of a node, only the

- _inére_.-ment or decrement to its previous value is sent on a communication link. In this paper,
the effects of limited .precision. incremental communication method on the convergence behav-
“ior and performance of ni_ultila.yer neural netwofks are investigated. The nonlinear aspects of
iep'resenting the incremental values with reduced (]imiied) .prgcision on the commonly used er-
" ror backpropagation training algorithm are analyzed. 1t is shown that the nonlinear eﬂ'éct of
 small pérturba.tion in the input(s)/output of a node does not enforce instability. The ana.lyéis is

_ supporﬁed by simulation studies of two problems.

I. INTRODUCTION

We have earlier proposed the incremental inter-node communication method for inter-

- node communication in the Artificial Neural Networks(ANNs)[10]. In the incremental

communication method, instead of communicating the whole value of a variable, only
the increment or decrement to its previous value is sent on a communication link. The
incremental communication, when implemented by limiting the precision used for the

incremental values that are communicated between various nodes, reduces the communi-

. cation complexity of ANNs by limiting the node’s input/output bandwidth requirements.

Note that in the incremental communication method all the operations imside a node may

be carried out using either full precision or other limited precision strategies suggested in

literature 2], [12], [13], [14], [24]. It has been shown through simulation that for some

problems even 4-bit precision for incremental values in fixed- and/or floating- point rep-

- resentations is sufficient for the network to converge. With 8-12 bit precisions almost
thesa.me resulis are obtained as that with the conirenﬁonal communication using 32-bit -
' 'pré%:isi_on_. |
- ‘The use of limii_;éd precision i.ncre_menta,l values rédﬁces the accuracy and may degrade

thé'pcrfo_rmanc_e of an ANN learning algorithm; in other words, it may lead $o deviations in
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the performance of the learning algerithm compared to the full precision implementatioﬁ of
incremental communication. .In some circumstances, the limited precision of incremental
' values may even cause _smaller output error than that of the full precision (see the parity
problem in [10]). This is due to the fact that the errors that are caused by the limited
_."preci'sion representa.tion are sigﬁed ma.gnitude values and can assume both positive and
'negatlve va,lues and therefore they can have both positive a.nd negative impact on the size
' of the ﬁnel error (i.e., some of the errors may cancel each other). |

The price paid in u51_ng reduced precision for the incremental values may be a degradation
in the performance of learning a,lgorithme due to the truncation and/or round off errors.
' __These errors contaminate almost all computations, thus, some analysis of their effects
' -.ie-.req.uired in order to judge the reliability of the results obtained. The degradation
may primarily be the result of tivo factors Firstly, when reduced-precision is used, the
'lea‘rmng algorithm may yield a larger output error than the case where full precision is
used i in the representation of 1ncrementa,l values. Secondly, the hmited precision errors
may accumulate and increase with time, until they desfrey the normal operation of the
lea.rnjﬁg algorithm (i.e., the overall error may become so large that the final result obtained .
o ma.y be una.ccepta'ble) | |
The beha.v1or of least squares and stochastm gradlent based a.da.ptwe filtering algonthms _

_in 11m1ted precasmn env1ronment where the adjustable parameters as well as all internal

: vana.bles are quantlzed to W1th1n a least mgmﬁca.nt digit (LSD), has attra.cted alot of atten-

tion (see for example [3], [4], [11]). The i issue of the precision required by a threshold gate

' _:1n order to implement a linear threshold function is also addressed by few researchers[16].

) . :_ _The finite word leﬁgth arithme_tic effects on the least-mean-square (LMS) adaptive weights

-I.i.s .i.nvestigeted in [1] and other researchers {see for example references in [1]). However, in
the. case of ANNSI and various learning algorithms, the issue of reduced precision effects
on t}ie ieafning behavior has been largely ignored until recently(2], [7], [12], [13], [14], .[25}..
) The_ main objective of this pdpei_’ is to an§1Yze the nonlinear effect of the reduced preci-

-sion input/output incremental values ef nodes on the learning behavior of the commonly
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‘used multilayer 'percef)t'ron.s (MLPs). In our analysis, we assume th#t the internal pro-
 cessing within a node is carried out using full precision. We use both mathematical and
~ statistical models to carry out the error analysis and investigate the relationships between
the precisions of the incremental values and the convergence of the multilayer neural net-
works. In other words,. the main focus is to analyze effects of small i)erturbations in
_ the input/ ouﬁput of the interna,llx_lodes. - The resulfs from mathematical and statistical

~ evaluations are supported by analyzing the effects of the limited precision incremental

.cbmmunica.tion method on two learning pro.biems through computer simulation.

' = : _This.'pa.per is organized as follows. In thé next section the incremental communication
method is briefly reviewed. Various sources of errors in ANNs using limited precision are
" discussed in Section 3. For a chain of nodes with linear and nonlinear activation functions, -
| généra_l. gqua.ti.ons of limited precision error é,re derived in Section 4. In Section 5, these
.équ_a.ﬁio.ns are used to estimate the error a,;'isihg in the. forward and backward passes of the
bé_.ckpfopaga_tioﬁ learning algorithm. The simulation results for two learning problems are

~ given in Section 6. Finally, the conclusions of the pa,pef are given.

I1. INCREMENTAL COMMUNICATION

Genefally, a no.de behaves in .a continuous manner, in other words its output, y, changes
.by':I:Ay which is typically of smaller range than. the range of the actual oﬁtput y. An
.import:.mt decision in communicating a continuous signal from a source node to a destina-
tion node is whether to send the full niagnitude of the signal, ¥, over the interconnection
;._:.I;. @r_'t}ie amount of change, Ay, that has taken place in the unit time interval from step ¢
| fd_éﬁeﬁ t+1. We ha,v.e. shown that the incremental value, Ay,.which is typically small
_ in Iﬁagnitude as well as range, Woulci be a better candidate for communication betweeﬁ
nodes [10]. | - |
o In _iﬁci‘ementé.l intércommunicatioﬁ, inété.ad of commﬁnica.ting the full magnitude of a
variable, iny_tﬁe increment o.r decrement of its previous value is sent on a communication

...-ii_nk. | Fbr_examﬁlé, assume that node 7 has to communicate the signal y; to node % at

. _"diﬁ.‘cf_ent time instants. If y;(t) is the output of node j at time ¢ and y;(¢+1) is its output
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_at time ¢ + 1,in conventiona.l communication the communication link wiil carry the value

| yj(t +1). In contrast in the incremental commumca,tlon the communication link will carry

_ the value ij(t + 1), where Ay;(t+1) = y;( + 1) — y;(¢). At the receiving end, the value

| y'j(t .+ 1) will be obtained by updating the previous.va.lue y(1) stored at ¢ with Ay;(t+1).
" We have found that for some problems even four-bit precision for Ay in fixed- and/or

'.ﬂoa.tlng— point representa,tions is suﬁiczent for the network to converge With the 8-12 bit

- _ 'precas1_ons almost the same resu_li_;s ate obtained as that with the conventional communica-

_' tjoﬁ using 32-bit precision. In these cases, the increase in the number of epochs is found to
~ be ema,ll; in fact', in some cases with a,n appropriate number of bits for incremental values,
which is found to be much smailer than for the full-orecision values, the number of epochs
18 v_ery. close fo and sometimes even better or the same as in conventional communication
(see Table II in [10]).
" The concept of incremental inter-node communication is applicable to many other classes

of ANNs. It can also be used along with the other limited precision strategies for repre-

. sentmg va.r1a.bles suggested in the 11t.era.ture The proposed method of communication can

be a,pplled for pa,ra,llel Jmplementa.tmns of the ANNS (see 8] for detalls)

III.’ SOURCES OF LIMITED PRECISION ERRORS

In this section we define several basic concepts of limited precision error analysis and
~ show how these concepts can be used in the limited precision error analysis of a node,

“with single and multiple inputs, coﬁi':'e,ining' linear and/or nonlinear activation functions.

T __In' the next section we carry out the limited precision error analysis of the incremental

commumca.tmn method usmg most of the 1dea.s that are developed in this section.

G1ven the followmg general case
y=1f), = v =1(20), G

‘where z, ¥, and f are input. outpﬁt and activation function of a node, respectively, there

. ‘are at least two basic sources of errors in the output y. First, there is an error ¢, in the

1nput argument z, which stems from hmzted precision approximation ®(.) of z. Second,
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fhére is a propagated error, é:y', ﬁhich is geﬁerated_from applying f to erroneous input.
The propagated error grows with the number of operations. For our case we a.ssume. f()
_ s a noﬁ_liﬁear function that generates propagated error, ¢,, and ®(.) is an approximation
funttion; that produces the limited precision error _5:5..
The gﬁect of propagating the limited precision error through functions such as sums,
differences, producfs, and quotient can be calculated very easily (see [23]); however, many
ideﬁa.il'e;d calculations are required for more complicated operations, such as nonlinear func-
tions. _ |
- B Based on the Taylor series, for any différéntia.bie function f(z) and any sufficiently small |
; _5.,' we li.;a.ve o o ' .
| et = flote) -~ f(a) = Te, | @)
. T .
. .. _L_emma, III_.I:'_If'logis'ti.c function, ¢, is used as the activation fﬁnction of a node and
1f the input z fo_a. node is represented in fized-point 2’s-complement representation with
binary point to the right of the.mos.t significant bit and z is a.pproxirna.ted using {runcation
- with b-bst precision, then the output error of the node (i-e., the output error, ., of the
.no_n]i_a;e.a.r logistic function) is bounded by the open-closed interval (—~2“(b"'"2), O], whereas
if rquﬁdz'ng is ﬁsed the error, 5¢(;,), in the output of a node is bounded by the open-closed
interval (~—2'(1’+3) ,_2‘(""‘3)]. : |

- Proof. ‘The first derivative of the logistic function ¢ is found to be
#(@) = ple)(1 - 0(a)).
For () & [0,1], then ¢/(z) € [0,0.25]. Since

-(—2"",0] , ' for tfunca.f.ion

Ex € - : . _
(-—2"([’“) , 2‘(5"'1)] , for rounding

B ._w_e can conclude that

-(H_2-(5'F2) , (]] for truncation

(—2‘(5*'3) ) 2‘("'1'3_)} for rounding

(3)

Ep(z) =_'(p’(m)€3 €

Maxch 4, 1596
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" From the above lemma, it is seen that the range of the propagated error caused by
-tlie ldgi_stic function._is always less than the limited precision error generated by.imposing
limited precision on the input value of the function. |
. 'Fc_;r the éigmoid functions sﬁch as the hyperbolic tangent function, the propagated limited
~ precision error can be easily found to be hounded by the open-closed interval (—2“!’,0],
wh1ch is the same as the truhcation_ error of the input of a node. Thus, the propagated
eﬁor caused by a Sig_nﬁoid function dées not enforce instability. This could be one of the
co'ntributing factors 4o the stability of the learning process Whén the input(s)/output of
the. nodes are pe.rturbed due to limited preciéion representation strategies. |
.Figﬁre 1 shows the discrepancy between the actual error generated by representing the
 input value of the logistic function with limited precision and the analytical error computed
by using Equation 2. The results of our experiments with other limited precisions show
a SIight difference between the output _of the logistic function sought from full precision
| and that of the limited precision. The discrepancy becomes smaller as the precision gets
l.a..:ge.r. With 4-bit and 8-bit precisions, the errors aar.e under +0.1 and £0.01, respectively.
With_12-bit precision, the propagated error is small and may be discarded.
In the ensui.n'g é,nalysis of the limited precision incremental communication eITor, We
. ;_.:o_nsi'de'r the limited precision error to be a discfe_te random variable distributed over a
| ra.nge determined by the number of trunca.te_d bité. Further, we assume (as given in [14],
[25]) that the l_imited precision errors hafe the following properties;
N @() is a stationary random limited precision process.
: .11m1ted précisi_on €rrors ai_‘e in'depenéent of each other.
e lixﬁited precision er.rors'a.re uncorrelated with the inputs/outputs.

..__ limited precision errors are ﬁniformly distributed. .
- A Error Generation by Single node
: Let z and (% = ®(z)) represent the full precision and limited precision values of a single

input o a 'node,. respectively. Let £ denote the error caused by representing the output of -

a node with reduced precision, and w represent a full precision error free argument(weight).
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Using the first order Ta,ylor'. series, the output of a node whose input is represented with

. limited precision is given as

Y =0(f(@) = flwle+e)) tes
~  flwz +we,) + &5
~ f(ws) + (wea)f (we) + e5. (4)

; Assuming all arithmetic operations are carried out using full precision representation and
furthermore, a.ssummg that the round off errors which ma.y occur as the result of multi-

phca.tmns are Jgnored the total error is,

Ey =.‘y* —y =~ flwz) + wea(f/{wz)) + e — flwz) |
| = weaf'(wz) +ep § (5)

Note. _tha,t' the magnitude of we, is directly dependent on the magnitude of w (i.e., the -
error .increases as w increases). However, notice that the relative error is independent of
- the mo,gnitude of w and is equal to

|  we &

wT

=
=
‘Therefore, in linear systems, when rnultiplying a reduced precision nonzero value by weight

- factor w, the relative limited precision error remains unchanged, while the absolute limited

precision error is increased |w|-fold.

B. Single Node with Multiple Inputs

The output of a function with » input variables, 1, z,,. .., Za, where each input variable
L is a.ppfo_xima.ted by limited precisioﬁ, is approximated as

o o i S 8 b;) 8
. (m1+6315$2.+5$z}"' mn'i'szn) — ($13m2)'°‘ mn)‘i“""f'“am “l“""'.'f"smg +—--+_i5:r:“°
: . 6332 6&,,,

. Thus fora node with n mputs, the upper bound for the propagated error in the output of

'. the node, sy, is given as,

of
B2,

of . (6)

£y = l Egy

++]
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. When the limited precision errors in the input variables are independent and random,

- then the magnitude of the propagated error can be calculated as

[ 8 8 | |
cr= | gea 4+ (e )

‘Note _tl_lat whether or not the errors are independent and random, the Equation 6:a,1wa.ys
givéé an upper bound on &,,. ..

Consider a node with a differentiable function

y_=.f(a1,ag,...,dﬂ).“ (8)
i,ét't;a; = w,;‘i)(é:,;),.i =1,2,...,n. After the .substitutions we have
y* = f(wliﬂ(xl),wgfb(#:g),'. s wn®(zs)), | (9)
le., : | . | _ | -
y* = £ (wi(21 + €2, ) 0a(22 + Ean)s ., a2 + £0n)).- (0

~ In Equation 10, Wi€z,y ¢ = 1,2,...,n, represent the weighted limited precision errors of
| the.inputs of the node.

" The absolute limited precision error of the node is,
. . ]5y| =ly* —y|= |f(w1(9:1 + &z )50y Wn(®n + ém“))_* flwnzy,. .., wpzs,)]. (11)

_ The limited precision errors of input variables, €z;, are ordinarily small quantities whose "

__ prpdu'cts, sqﬁ_a.res and higher powers may be neglected. Therefore

o

i1 6:::,-

gy <

IA

|Ea;ws] - (12)

- Substituting 8 f by dy*, for small values of ¢g,, we get

syﬁz 0

=1 3&:,:

*

Jwies, | . _ (13)

Maxch 4, 1996
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.The relative propagated error of y can be calculated as

2f

< = WiEg, | = E::c. . 14
" ; . lwigs,| = ; 52 (14)
o Thus,
i=1

- IV. CHAIN OF LINEAR/NONLINEAR NODES

In this section, general equations of limited precision error of & chain of nodes with
~linear and nonlinear activation functions are derived. In Section 5, these equations are
- used in the error estimates of the limited precision incremental communication method of

the ba.ckpropagafion learning algorithm.
A. Linear Nodes -
- Assuming that all the .functions applied at the nodes are linear, the bound for the final

'. error for a chain of » linear nodes is the sum of ihe individual bounds. Thus, the bound

. of the _ﬁnal error can be expressed as follows:

ey =y —y = ey + g'fn(fn-l () (16)

w_he're;
AT f1(5$)°

From Equa,tron 16, it is obv1ous that the Ina.gmtude of ey depends on the number of

operatlons in the evaluation of y.

B. N onl’inea‘r N odes

In the case where all or eome of the functions f; used are nonlinear functions, the partial
derlvatlve approach glves a reasonable approxzma.tmn [18, p. 213]
Let 'y, represent the result of the a.pphcatlon of the first ¢ successive operators on an

erroneous 1nput zand ¥y = yn represent the exact result of applying n successive opera.tors.

7. March 4, 1996




' Then, |

W = Alhlete) ten) e,
= fz(fl(??)) + (eafi(z) + e ) o fi(2)) + €5,
= a2+ g1 (2)f3(fi(=)) +'.5f1f§(f1(_$)) tep-

L : 5 392 6'9'2
= Y2+ Sz + Z f; o ' _ (17)
L . Ti=1

‘where the derivative 8y, /8y; is an approximation of the derivative 8yy/8y}. Similarly,

v = Flfea( - (alfile + ) Fon) +ep) ) +en) +eg
= flyi)+ene |
=.Mfdwiﬂ+€mﬂ+ék
= MFaWia) + e filfinia) Ten

. ; i 6,, . - o .
= ya'i'so:aay +Z .f;p / _ ' (18)

- The bo_ﬁnd for the propagated error a.fter_ applying ¢ consecutive nonlinear operators on

thf:__inpui: x is given as
o 63,"1

. 5yiEy:_yi:.sw ‘I‘Z f:,- yt

(18)

. '._:T]:L_efeff;-re, the final error boiind for n successive nonlmear functions can be defined as
- _."follbws, ; | _ : '
' Ey—syn—-y _%"_Ez‘a‘;"FZ £ H

i=1 J=+16y -1

I tegy, o (20)

To in_cdrporaté the 1mpa.ct of multiple erroneous inputs, N, on the ﬁr_la,l incremental com-
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: mumcatlon error of successwe nonlinear functlons we can revise Equation 20 as follows

| " gy :
sy—zsz,a +Zf,H i (21)

= e DY

V. _ TRAINING MULTILAYER FEEDFORWARD NETWORKS

Layered feediorward networks are networks made of layers of nodes with nonlinear acti-
va.tion.functions stacked one on top of the other. The outputs of one layer feed the inputs
. of the followir_lg layer through weighted connections. Thus, errors in the in?ut patterns
are propagated through the layers. This means that, node’s generated errors in layei‘ £ be-
come input.error. to the nodes-of the layer £+ 1. In thi§ network, the desired input/output
' fnabping is accomplished through a (possibly large) number of iterations where each it-
. era.tion consists of a forward pass and a backward error prﬁpa.ga.tion Figure 2 shows the
-._Iforwa.rd pass of the backpropagation learnlng a.lgorlthrn using the 1ncremental commum—

ca.tlon method
A.-Epror Analysis of Forward Pass
- Figﬁxje 2 shows i_iow to ca.lcuia.te the activation of a given node in hidden or output layer
using the incremental comm_ur_lica.tidn method. Let vector y represent the act_ivation values
_ __of.node_s in a given layer and the vector 'Zy represent the corresponding limited precision
incremental activation values. Then an element of Ay is a couple equation (Ay, an)
. where Ay, eay € R, The value Eay is a..reai number representing an error on Ay. Thus,
Ay i is an approximation of the Ay with error eay. The eay is generally an unknown
qua.ntlty which can be con31dered as a random vanable approximated by its mean value
and standard dev1a.t10n
To 111ustra.te the 1n1pa.ct of the incremental commumca.tmn method a.nd calculate the
N :'genera.ted and pi_'opaga.ted errors, we consider a two-layer MLP network. Let vectors &, h,
. and y represent the input pa’éterns, hidden layer activation values, and network’s Quﬁput .'
.vél_ﬁes.,.resped';ively. The subscr_ipts' i, 7, aﬁd k are used to refer to the nodes in the nput,
.' h1dden, and output lé.yefs, :éspectively. - | |

Using the incremental communication method, the net input of the _hiddén node_ g 1s
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computed as
net}(t) = Zw,,(t);c,(t ij, £)(:(t) + £mite), (22)

_ where, £;,(;) is the result of the reduced-precision approximation of Az;(t) and is calculated

iy = camy = B(ailt) - ailt —1)) = (=:(t) - @t - 1))
= 3(Aw(t) - Axy). (23)

Therefore, the total error received by the hidden node J 1s,

Enet;(t) = D Wit} (Enmm)- - (24) -

The time step £ is dropped from all equations hereafter, unless it is absolutely necessary.
" The output of the node is computed by applying a nonlinear activation function (usually

the sigmoid functaon) to the net;.

ki = p(net}) = Zw,,mj | (25)

Note that the threshold can be taken care of by using an extra input unit clamped to —1
- a.nd is connected to all units in the network.
-~ The followiﬁg pa.ﬂ:ia.l derivative can be used to measure the effects of the changes in the
. igpﬁt variables (z;) on the output of the hidden node j
Ok Oh? anet;-‘.
O%; 3net§ 0%;
- B¢} Onet}
Onet} 0%;

= (so;)’wje;_ N | (26)

whefe for the logistic sigmoid function ((p;)’ = ¢'(net}) = p(net]) (1 - (,a(net;-‘)) .

E‘rqin the Taylor’s theoreni, the error genei‘a.ted by function w is calculated as follows:

' ' e
p(net]) = p{net; + emtJ) = cp(net_.,) + Enet; @' (met;) + amt‘, ( ) (27)

. March 4, 1996
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._fbr 8 € [’netj,n..e't;]. Assuming that énﬁj%ﬂ is small enough to be ignored, and fur-

| 'thermore, assuming that the multiply-add op}erations- involved in the inner product of

Welght and activation vectors can be carried out without generating significant error, the

genera.ted limited precision error for the hldden node j is

Ep(net}) = £ng:,-<p'(net_.,-). | (28)

" Since all activation values (z;) received by the hidden node j are approximated values

(i.e., erroneous inputs) and since

E:netj Z aAm,th ' (29)

using the n-dimensional Taylor series, we can conclude that,

- dp(net?
Eh; _dﬁff Eonet;) = Z EAz; é& i)

= Zeﬁm net*)w,, (30)

- _I_f we adopt the's_tan_dard deviation 0'(8;,;_) as our measure of the ﬁncerta.inty in g, then
: .eq.i:aﬂ.:ion 30 is really the upper limit on the error. Regardless of whether the errors in @
a.re 'i'nde.pende_nt or not, and regardless of whether théy are normally distributed or not,
the' error will not exceed the right-hand side of Equation 30.

_ Equat_ion 30 yields the maximum possible error if and only if the error of all the terms
of nét_.} are the largest possible terms and they have the same signs. The chance of both
conditions to happen at the same time is negligible. Mo.reover, given a large number of
t’érnis, the errors in.separa,te terms could be. of opposite sign and consequently, partially -
..;.1¢utra1ize:'one another. This is the main reason why the performance of the reduced
pi‘ecisioﬂ incremental communication method is problem dependent.
B The practical limited precisi_on en‘dr, e, of the Weighted input of node ;7 at time n can

' be caléulated using prbbability theory as follows[6],
e, <&Mo, | (31)

"March 4, 1996
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" - where N is the number of nodes sendihg their outputs to node j and the absolute errors
~ in the terms of net“ do not exceed the value § with a probability, P, exceeding the value

. _'w tha.t is,
| P(lesnwisl <€) > @ (32)

'Therefore if b bits are used to represent 1ncremental values of full precision values of B bits,

the la,rgest possible absolute trunca.tlon error is 27°, a.nd the practical hrmted precision _.

e, < 2t 2,/N, 2(3-”),/
ey < YN (33)
where b is the number of bits that is being truncated from the incremental values (ie,

- b=B- b). The practzca.l error of the hidden node 7 at step m is given as

e < 2P/ Nog (met;) - (34)

_ Thus when the Iog:stm s1gm01d function is used to compute the output of the hidden node

eg’? c [0 : ,/Noz_‘?%] . (35)

From this we can conclude that the generated error with the outj;)ut of any nonlinear

7, we _have

_._logistic function is bdunded by the closed interval [0 [ VN 23"“} where a depends on the
: propertles of the function and its first derlva.tzve For example a is 0 for tanh and 2 for
- loglstlc sigmoid functions (see Lemma III 1).

It is known tha.t all the values of the truncation error are equa,lly hkely, up to the

o _ma.leum value maz(e) (1 e. 11; is a random variable with uniform distribution) [21]. The

: assumptmn of randomness s justifiable only when z; and wj; are both random. Assuzmng

' -tha.t the Va.rla,bles z; and wy; are mdependent of each other and uniformly dlstnbuted in

.: | [ 2B -1 23 1] we have - |
:u'ﬂAa; = E[S&ih] = 0
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3

o) :E_[eg?] = No2b3
o . 223
Bl =[] = %

2 N 223—4
(o _ 0
E [(S%‘-)) ] T T3

N.o2b-6
O'j(,? = ¢ 3 (36)

5

where i and o2 represent the mean and variance, respectively. The distribution of the

- . practical error of the hi&de_n node j with high confidence is uniform in the ra.ngé, H, may.

Hs(é*).- déf P’s(p) + 1f302(?)]
Wj N | P; . sw;‘
[ R |3 N, 9266 \
) =. ‘!N02b_3 + §._,.?§,...__

= o, "N"z’?].

be givgn as [15],

: (37)

- In the incremental communication method the net} is computed without imposing any

o p:fecision restriction on the niultiply—add operations. Moreover, we assume that the accu-

" mulator used to store net} is large enough to hold a full precision value. Therefore, the
o coeflicient p;, which is an indication of the nonlinear effect of the propagated error of the

node j can be determined by the following ratio,

_E[(ngt;)zl =

= 2o (38)

iI&:

03

' Sihce the denomina.tof of Equa.tion 38 iﬁcrea.ses exponentially, the error ratio drops

- :"sha,rply towards zero. Figure 3 depicts the behavior of p; as a functmn of Ny and b. The

'pa.rtla.l denva.twes of p; with respect to b and Np are given as

Bo; _ (1112)No —2b _
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69_,' _ 9-2%
ON, 47

Therefore, with precision b, the slope of p; is negative and proportional to itself. The
- partial derivative with respect to b shows that g; decreases very fast as b increases.

.~ From Equation 38, the required precision b for fixed Ny can be approximated as follows,
L 1
b= Elogz Ny — (—2— log, p; + l) . (39)

Sincé the factor log, No grows rather slowly as We.increa.se N, the precision & also grows
slowly with an increase in the size of the network. Holt and Hwang report a similar finding
in their paper [14]
The net input of node & in the output la.yef that receives inci‘ementa.l activation values
j from all hidden nodes is calculated as |
nety, = ngj (h;) } A (40)
j ' .

where, kY= (h; + E‘P(,m;)) + EAG; +eppmern))- Fdr siinplicity let us denote

Eak; = Elhiteptney)) | (41)

' _Therefore from Equatwns 40 and 41, the totai error 1 received by the node & and the output

Cof thls node are computed as follows

Cnety = 3 Wki (6aF, + E_so(iwz;f)) (42)

| y; _ Q(ne;‘fZ):f (Ewkjaj) | | '(‘43)

' The effect of changes in the }11dden Ia.yer a.ctlva,tzon vector on the output of the node k is

o _determmed by usmg the pa,rtla,l denva.twes, _

Eyy = Z (6.% —f—sm.,) S?;k

J

> (e )3”*+Z(M,)6y’f-

2
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o Oyx
E (Z (EAa:, ) 8?:’ + E (EA],,J-) WB—% |
= Z(Bm;,) B, L Z( EAR; ) gik . | (44)

o To extend the error calculation of the forward pass to the networks with more than
' one hldden Iayer, let yy represent the activation value of the node & in the output Iayer

substifuting the results obtamed above into Equation 21, we get

L L N L ayr .
SUL E 52‘ 6 + Z E Ey; H a } (45)
.i=1 =2 =1 r—l-[-l Yr-1 .

whel_'e Ny is the number of nodes in layer £. Again, we assume that all arithmetic operations
) (addition, subfraction and inner .product operations) shown in the Figure 2 can be carried
out without generating any error. ' |
| - From Equa.tlons 37 and refchp6 e525 The pra.ctzca.l error with the net lnput of node &

a.t step 7 1s given as,

(p)

*
net,

IA -

;23 1(2 +‘/4{\_r°2)

< @23 (1 + @2_3) : | (46)
| When b bits are used te' send the.t\)utpﬁt of hidden nodes to the next (in this case output)
. " layer, it is statistiea.lly sefe to assume that the Iimited. precision error with the output of
| each h1dden node is not exceeding 27, This a.ssumptzon is partzcula,rly valid in the case of

the mcrementa.l commumcaﬁmn method where all operations inside a ‘node are carried out
in full preclsm_n. Therefore, assuming the logistic sigmoid activation function and using

. .t:he_' Eqﬂa.’fion_ 34 we find that, the practical imited precision error of the output node & at

step n is uniformly distributed in the range [0 ) 281 where N 1s the number of hidden _
nodes sendmg the1r output to the output node k. The expected practical error is given as -
| YELghy2 )28 |
= [\ T3 48" T ugom

- Since the denomma.tor 225 in Equa.tlon 47 increases very fast, it is seen that the expected

o _Ilmlted preczsmn error decrea.ses sha.rply as b increases.
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The expected output value of the node k with the conventional communication method,
assuming uniform distribution, is given as
. ' 22B
2 _—
Thus, the relative practical limited precision error is given as

c def D) E[(sgg)z]

Er = £ 4 =
k TR E [(yk)Z]
N
92(b4-1)

IR

for 0 <5< B. (48)

Figure 4 shows the rel.a,tive practical 1imi£ed precision error of an output node as function -

of both N; and b. This relative error may be interpreted from Equation 48 as

A_ network of 100 hidden nodes (N1 = 100), with 8-bit precision has less than one percent

_error with its output nodes. This is generally in agreement with our simulation results

- .(see.. Figures 9 and 15).

B. Evror Analysis of Backward Pass
.Th..é”b.a.ckwa.i‘d pass starts at the output lé,yer by passing the error signals backward,
layer by layer, and computiﬁg the locél.gradient _(learning. signal, § = %) for a node.
The erTor signa._l_bf the node k usi_rig the sigmoid a.ctiva,t_ioﬁ function is calculated as,
S = [d _—?):e] ¢ (nets)
= ye{l~ye) [de — vl | (49)

| ".'whe_:ﬂ_a'dk repre_s.énté the desired output of the output node k. The effect of the changes in -

yk on _'t.hé' ma,ghjtude' of §; is determined by the follbwing partial derivative,

06
6‘yk

. . . 6!,0’
oAt _ k
Pk + (dk yk) 6yk

| _=. —Yx (1 —ye) + {de —yx) (1 — 2us). (50)

i
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~ Therefore,
by
S et
= Fw (L —9) + (e — ) (1 208) e (51)

Siace the desired outputs for the hidden nodes are not available, the learning signal of

|  the hidden node j is calculated as,

. Ny
& =) Gwa, | (52)
k=1 -

Wh{ére N, is the number of nodes in the output layer.
The parameters that are involved in the calculation of §; are all contaminated by limited
~ precision error during the forward pass, therefore, the limited precision error of §; can be

" expressed as,

. . Ny . - N N :
ey =) s+ 0 Y BeL,, o) Y Swa, (53)
_ k=1 - k=1 ' k=1
where go;’ represents the second derivative of ;.
The limited precision error in &§; consists of two parts: (a) the genuine limited preci-
sion error which is the result of representing the & with reduced precision and {b) the

: .propa,ga.ted error caused by various operations of the forward pass. The propagated error

assoclated with & is given as

8 = (d—(yr+eu)) (02 (54)

gk eyl - (58)

65;

.' where ¢} = (p}) is considered to be error free. From 55, we get

®) lﬂ | \/}TﬁB} | _ __ (56)

- and

KA 16 2
2 hﬁ 225
B |(e5)"} = 555w (57
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The weights of the network are ada.ptéd using .
wii{t) = wei(t—1)+nbeh;,  for the output layer (58)
wi(t) = wy(t— 1) + 5é;w, fo_r the hidden layer (59)
where 7 is the learning rate.
. The effect of the limited precision incremental cbmmunication method on the weights
o of the neitwork can be expressed as, |
Ehwy = néeny + nhjes;,  for the output layer o (60)
.' e.iji = qﬁ;sm + ?}{B,;Ea;,. for the hidden layer _ (61)

| Thus, the practical relative e:for_'with the incoming delta weights of the output nodes is

deﬁned 'aé |

(») (®)
Epw i
(p) hi Sk
o eAwk, hj 5.‘: (62)
“and similarly,
| o o e
Law; = Z + _éT (63)
The expected values of &2 wy; Can be approximated as follows
| B l(eg@) ] B[(:)]
_ 4
B[] = S+ o)
- B[k E[6)]
(N,/48)2% (N, /256) 2%
“@BJ1z T 22812
= 0.3N,27% | (64)

(P)

_ Flgure 5 shows the behav1or of Erm,, 88 @ function of Ny, and b. In general, the results of

theoretical findings are in a.greement with the simulation results.

VI SIMULATION RESULTS

The usefulness of the mcremental communlca.tlon method has been tested on various -
E learnmg problems [7] [9], [10], .wluch involve binary as well as real-va,l_ued inputs and out-

~ puts. In this section, we have chosen different benchmark problems, to serve as additional
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examples, with only real-valued inputs and outputs to illustrate the foregoing analysis. We
~ investigate the perfofmancs of the limited precision incremental communication method
and shov‘.ar the effect of error prspagation on the training behavior.

. To Sﬁpport the. results derived in the previous sections, simulations are performed for
- t\_a_vb learning pro'blems: (a) Fuzzy XOR problem and (b) Sine function. In both problems,
tlic primary goal is to study the effect of learning problem complexity and network struc-
ture on tl;le. error propagaﬁion and learning abilities of the limited precision incremental
communication method. The experiments consist of training the networks while varying -

the precision of the incremental values of activdtion, learning signal and delta weight in

- the fixed- or floating-point incremental communication. The results obtained from impos-

ing various limited precisions are compared with those of the conventional communication
method. The evolution of th_é network’s parameters (weights) during learning and the
_ c':l.o'seness of weighf vectors with those of the conventional communication method are
- examined. | | .

_ .Two measures of similarity or closeness between weight vectors of the incremental com-
.mﬁnication and the corresponding' weight vectors of the conventional communication are

used. The first measure of similarity is the Euchdea,n distance between weight vectors.

- _The Euchdea.n distance between two weight vectors w and v with cartesian coordinates

(wl,vl) (w2, v2), cee s (W, ) is obtained by

d(iv,'v) = \/(’wl - ‘_Ul).2 + (we — ve)2 4+ - + (wp — v ).

B .The'_ second measure of similarity is to measure how closely one vector points in the di-
- rection of another vector by calculating the angle (#) between two weight vectors w and
o . . .

cos(f) =

| |’w1 o]’
_Since two weight vectors may not have the same length, the dot product fails as a measure
of s1rn11a.r11:y However, when angle § between two weight vectors is accompanied Wlth their

' Euclldean dlstance one can clearly see their closeness or similarity.
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A. Puzay Baclusive-Or (XOR)

This problem is an example of nonlinear sepéra.ble problem with real-valued iflputs and
~ output. The Fu.zzy exclusive-or problem is presented to a network consisting of a layer of
) '. .i_;v.vo input nodes, a layer of one hidden node, and one butput node. Thére are two cross-
'. coﬁn.ections from input nodes to o_ufput node. We choose the training examples used in
[19]. and these are shown in Table I.
B T.h'c' netw'ofk is trained to genei'é.te a small outpuﬁ value when z; and %, are either both
- small or .large. The network is also trained to genera.té a large output value when one of
: the inputs is small and the other one is large. The standard backpropagation a,lgorithm.

with online-upda.te strategy is used to train this network. The network pa.rameters are set

B for n= 0.8, A =0.7, and 7 = +1. The nonlinear mgmo:d function is used with hidden node

. as Well as- output node 'The training is cons:dered complete when all training patterns are
_ learned to within 0.1 error. N
The'convergence behavior of the Fuzzy XOR f)roblém using incremental as well as con- | _
- ventional communication methods for a sample ruﬁ is depicted in Figure 6. In other words,
Figufe 6 répreseﬁts the error for varying precision .of ﬁxed- and floating-point re?fesenta.—
' t1ons as a function of the number of epochs. We have chosen a sample run with slightly
_ longer tramlng epochs than the average training epochs in order to examine the effect
of large number of iterations on the propa.ga.ted error. The average number of trammg
epo:ch:s: for this pfoblem using the above learning parameters is around 90 epochs. It is
- seen that as the precision of incremental values iﬁcr_eases, the number of epochs required
for _coﬁvergence .g.ets.closer to the number of epochs Irequired for convefgence with conven-
; t_iqnal_ commuﬁica.tioﬁ.-_Table I summarizes the results of training processes for fixed-and
.ﬂ.oa;_tirig-.point representatioﬁs__with varying precisions.
. 'Tlie.'effe.cts 6f ‘the limited precision manifest theméelves in the various sta.ges. of the
processmg, or even : before the actnal processing begins as is the case of representmg the
1ncrementa1 values of the input patterns with limited precision. Training results for con-

ventlonal a.nd the incrémental communication m_ethods_ are compared over the first 840
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presenta’.tions of the input pa.tterns Each trial of the limited precision incremental com-

'mumca.tlon method uses the same initial weights and learning parameters that are used

w11:h the conventional commumca.tlon method. The hidden node has 3 i incoming weights

o (2 welghts_ commg from 2 input nodes and one weight coming from bias node).

- Figure 7 gives the plots of the angles and Euclidean distarices of the weight vectors
of ﬁxed— and floating-point representations for various precisions with the weight vector
. of the conventional communication. It is. seen that after 600 presentations the weight
. ﬁe_ctors with 6- and 8-bit fixed-point representations get closer to the conventional weight
vector. Thus, from this result we can .see that the dynamic range of the floating-point
' -Ifeo_reseﬁta_tion does not have significant effect in reducing the limited precision errors for
éome pfobl_ems. The other reaso.n behind the behavior is the use of a greater number of
loits to the right of the bina.ry; point (accuracy) in the ﬁxe_d-poin.t representation. The 6-bit
' .ﬁxod.-l.)oint répresedta.tion 1s implemented using 5 bits fraction whereds 4-bit float has only
4 bits for fhe fractional part. The 8-bit fixed precision value is represented as 1 bit to the
| left and and 7 blt to the nght of binary pom‘c On the other hand, the 6-bit float only
- uses 6 bits for the mantissa.
| There are 4 i incoming welghts for output node. Figure 8 shows the angles and Euclidean
dlstances of the incoming wmght vector of the output node in the incremental communica-
'tzon method with tha.t of the conventional cornrnumca.tmn method. The results shown in
' 't_h_ls figure also c_onﬁrm the above conclusion that the exponent of foating-point represen-

tation does not pla.y a major rule in reducing the limited precision error of this problem.

5 ."-'.Therefore 6-bit fixed-point reallza.tlon of this problem may not suffer from the relatively

:. small precision. ThlS problem can even be trained with as low as 4-bit fixed-point repre-
- sentatlon Wlthout any instability during the iraining period. However, the network tra.med
| 'wi.tld 4;bit ﬁxed-point fails to generate correct answers for all the test patterns. Our ex-

a perimeﬁts shows that t.he generalidation capability of a network is affected below a certain’
.prec1s1on level. For this problem it is 4-bit.

There are 7 de31red outputs for 7 input exa.mples The output node generates an output
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for each presentation and hence a vector of 7 outputs in each epoch.. The norm (length} -
~of the output vector of each epoch is used to compare the output vector generated by
‘the mcremental commumcatmn method with the output vector generated by the conven- .
t1ona.1 communication method. Figure 9 depicts the difference between the norm of the
output vector generated by the incremental communication method and the norm of the
“output vector geﬁerated by the conventional communication method. The bars in this fig-
-ure 'r_e}ﬁresent the _a.bs'olute deviations. This figure also confirms that the 6-bit fixed-point .
: ) .précision with 5 bits of accuracy has closer performance to that of the full précision coﬁven—

_'tional cqmrhunicatidﬁ than the 4-bit floating-point representation with 4 bits of accuracy.

" Therefore, once again we come to the conclusion that the realization of this network with

6-bit ﬁxed—poi.nt representa.ﬁ_ion is preferred over the 4-bit ﬂoa.ting-pdint representations.
More;ﬁrer, the communication cost with 4-bit ﬂoa.ting-point represéhtaﬁion is Inea,rly twice
. th_é cbmmunica.tion cost with 6-bit fixed-point fepresenfs_ation.
B. The Sih.e Function
In this problem a network is trained to learn the nonlinear mapping between the input
and desii‘éd oufput. A four-layered feedforward network, coﬁsisting of 1 .input node, 8
_nddés'i.n the ﬁrﬁt hiddgn layer, 3 nodes in the second hidden layer, and 1 output node, is
used. A network of one bjdden: layer is capable of learning this problem. The main reason
~ that we have chosen a larger network is to examine the effect of error propagation through
o .4 Iayers and larger number of nodes.
- The 1nput of this problem consists of 41 pomts of equal pa.rts in the range (£m) and the
outpu_t is the value of the sine function. The quickprop update strategy is used to train the
".Iietwo.r_k. In the éxperiment the weights were initialized with a uniform random number in
.tI.:Le 'raﬁge (-1,1). The nonlinear tanh functzon is used to compute the hidden nodes activity

. levels, whereas a 11nea.r function is used with the output layer to calculate the network’s

R output.:.-The termination criterion used was that either the sum of the squared error is

o below 0.01 or that the number of epochs éxpeeds 490 (20090 presentations), which ever

© . occurs first. For conventional communication as well as the incremental communication,
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we have set other network parameters as '.q = 0.25, g = 1.75. The weight decay is set to
- 0.00001. | |

Flgure 10 represents the error for varying precision of fixed- and floating-point represen-

» ta.txon as a function of the number of epochs. It is seen that for fixed number of epochs

| (i.e., 490 epochs) the 12-bit fixed-point exhibits better performance tha.n 4-bit floating-
point. This is expected because with 12-bit ﬁxed—point 3 bits are used to the left of binary

B ."pomt and 9 bits to the right of binary point, whereas with 4-bit floating point only 4 bits

. are used with the mantissa. Because of the range of the values that are used with this
problern, the 8-bit exponent of the floating-point representation does not play s signiﬁcant
- rule in preserving the.ma.gnitude of the values involved. Table III summarizes the training
results. |
There are 8 outgomg weights from the input unit. Figure 11 shows the evolutions of
. We1ghts wl, w3, wb, and w7 for different precision levels durmg the training phase. It
- is seen that the weights with 10- and 12-bit fixed-point precisions are evolving in close '
vici_r_lity. The floating-point precisions are exhibi_ting. almost the same behavior as that of
_ the ﬁxed—péint. The weight w7 is not evolving in close vicinity with 4- and 8-bit floating-
_ point i)recisibns. Thus, no definite conclusion can be drawn from the weights evolutions.
However, it is possibie to infer that, as the precision of the incremental values increases
| :thc éorresponding weight eﬁolutions getting closer to that of the full precision conventional
' ﬁlethqd. In Figure li we can see this from the weight evolutions with 8-bit floating-point
' precisi_oﬁ. | |
.F_igui_'e 12 s_howé the angles and Euclidean distances between the outgoing weight vector
of th_c input ﬁodé with varying precision incremental communication and the correspond-
ing Wéight véctor_ of the input node Wit_ii conventional éorﬁmunica.tion. | This is a more
| apprdprié,te way of representing the closeness properties of the weights. It is seen that the
' -welght a.d_]ustrnents are smaller with incremental communication method, however, the
Welghts with incremental a.nd conventlona.l communication methods are generally in the

same directions. Tt ma,y be noted that the weight adjustment rule corrects the weights in
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the sé.me direction as that of the conventional method. The size, or simply length, of the
ﬁeight correction vector is the main difference betweeﬁ the conventional and incremental
methbds. | |

- In Figure 12 we can see that the weight vect.or of 10-bit fixed-point representation is
- _i_n_ closer vicinity (angle and Euclidean dista.née) to that of conventional weight vector.
It is known that with the. gradieﬁt descent opiimization method [23], all nearby negative
gradient paths lead to the same local minimum. ‘Thus, it is not necessary to be very
a.é_ci_:.rét_e_and follow .the negative gradient exactly; we can rather use smaller precision for
th.é'ﬁ.a,raméter_s and still expeci_; to get to the local minima.
o There are four nodes in layer 3 of thg network’. Figure 13 shows the evolution of weights
of thcsé nodes._. The output node hé.s a four elements incoming weight vector. Figure 14
' depmts the a.niglés' (closenesses) of weight vectors of various precision levels with that of
. the conventional method. Tt is seen ﬁha.t fhe 10- aﬁd 12-bit fixed-point precisions weight
ire'ct_o.rs. _a_fe in an'_ quad where as the conventiou.a,l and floating-point representation ﬁeight
_ vecté_rs_ are in the 1st quad.. This shows aga.in'anoth'exf prbperty of gradient descent method
- with which one can apﬁroa.ch the optimum point from various angles.
Figures 15 depicts the influence of the incremental communication with 4-bit floating-
'. ?Qiﬁt and 12-bit fixed-point precisions for incremental values on the outpﬁt of the netwﬁrk.
Tl.le. bars in this figure show the deviations of the outputs of the network using the incre-
menta.l communicatién and the outputs.c.)f the conventional communication. This figure
a.lso.shows the relative &evia.tions of the incremental outputs from the conventional out- |
| 'pﬁts for 41 input p.a.t'terns; .The plot of 4-bit float shows that still 2 patterns remain to
be learned, whereas .tl.1e plot of 12-bit fixed indicates that only one pattern is to learned.
_'__T_hﬁ'_s, ndtiping '__th.at the 4-bit float and 12;bit fixed have the same communication costs

' "_(i...e:.,_b_oth use 12 Bits) the appropriate choice would be 12-bit fixed-point representation.
VII. CONCLUSIONS

 Artificial ne;ifa.l networks can be'.in_lp.lemented by incorporating the incremental commu-

ni_c.:é_.t.ior_l method. The incremental communic__ation method is aimed at reducing the com-
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munication coml;lexity of artificial neural networks by limiting the node’s input/output
bandwidth requirements. In this paper, we have used mathematical models {o investigate
the effects of small perturbations in the input(s)/output of the internal nodes. These small
- perfﬁrbé.tioﬁs arise due to the reduced precision representation of incremental values that
are 'comm'unicate_d between nodes in the i'ncrement.al communication method. Since the
‘limited precision arithmetic is cémputa.tiona.ﬂy error prone, we have derived the required
formulas for the calculation of the propagated errors in fhe chain of linear and nonlinear
nb&es. ‘It has been shown that the raﬁ:e of gfovvth of the propagation etror is directly
proportional to the number of operations involved.

~The nonlinear effect of representing the input of thé sigmoid function with reduced
‘precision was analyzed. It has been shown that the propagation error caused by the -
- sigmoid function is always less than the limited precision error generated by imposing

liinited_precision on the input"vé,lue of the function.

_. The effect of represénting the in.crementa,l input/output values with reduced precision
“on the cqmmdnly used error Ba.ckpropa.ga.tion training algorithm of the multilayer neural
_ netwéi'ks was analyéed. The ma.themaiical derivations of the errors caused by the limited

: __'p'rtj-:'(.:i._sion' incremental communication have been supported by analyzing the results of
" our s_im_ﬁla.tion on two learning problems. The results obtained from the simulations, in

~ general, have been found to be in a,greemenf with the results of theoretical analysis.
. Iﬁ'_cd_nclusion, the incorporation of the incremental communication method in the mul-

tilayer perceptrons leads to convergence without enforcing e'xtra._ instability and excessive

5 i_nc':rca_'se_ in learning time. The results of the simulation studies given in this paper and

: :_oﬁ_r éa.rlie_r work.[S]., [9], {10] clearly indicate substantial savings in communication costs for
g implementation of m’ﬁltila.yer perceptrons on parallel computers; the incremental commu-

' .nica.t_i_on method is certainly attractive for VLSI realizations.
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Fig. 1. The actual and analytical errorbar with 8-bit precision fixed-point input for the logistic function.
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Fig. 2. Forward pass operations using incremental communication method.
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Fig. 5_.' The expected relative error with the incoming weights of the output nodes.

TABLE I

OR TRAINING EXAMPLES.

L e R T~ S ¥ SR T = S T
»2 e a2 8 &
[ R R - T T = T T
™ 9 = 1 M 15
g | ® &N o N o a <
(=T =T =~ I — = =1
— = o o D o 1D
gl ® 8 & @ & &
[T = T = T e S . T e T
— N M < a3y O =

Fuzzy EXCLUSIVE

" March 4, 1996




3

" TABLE II

. ._TRAINING RESULTS FOR THE Fuzzy XOR PROBLEM USING CONVENTIONAL AND THE INCREMENTAL

' COMMUNICATIONS.

After 100 Epochs || - Convergence

Representation || Success | Error || Epochs | Error

Conventional | 57.14% | 0.09816 || - 125 | 0.03077
6-bit float | 57.14% | 0.10974 | 126 | 0.03130
4-bit float 1 42.86% | 0.10409 || 132 | 0.03202
8-bit fixed | 57.14% | 0.09971 || 125 | 0.03106
6-bit fixed 57.14% | 0.10716 || 126 | 0.03145

o Conven| 7|
cod=Ric ) o
~e=hit-] -
B-blt

Fig. 6. Errors versus number of epochs with the fixed- and floating- pbint incremental communications

- for Fugzy XOR problem.
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Fig. 7. Angle and Euclidean distance of the hidden node’s incoming weight vector with fixed- and floating-

‘point incremental communications for Fuzzy Exclusive-Or problem.
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Fig. 8. A.ngle and Buclidean distance of output node incoming weight vector with fixed- and floating-

_ point incremental communications for Fuzzy Exclusive-Or problem.
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Fig..g. Absolute and relative deviations of output vector norms with fixed- and floating- point incremental

‘communications f@r Fuzzy Exclusive-Or problem.
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Fig. 10. Errors with the fixed- and floating- point commaunication for Sine function

TABLE III
TRAINING RESULTS FOR THE SINE FUNCTION USING CONVENTIONAL AND INCREMENTAL

COMMUNICATIONS.

After 400 Epochs || After 400 Epochs

Repreéenta.tidn Success | Error || Success | Error
Conventional || 97.56% | 0.03386 i| 100.00% | 0.02698
8-bit float 90.24% | 0.04386 || 92.68% | 0.03800
4-bit float 90.24% | 0.03984 || 95.12% | 0.03514

12-bit fixed | 95.12% | 0.02958 || 97.56% | 0.02865
10-bit fixed 92.68% | 0.04662 | 92.68% | 0.03690
8-bit fixed 24.39% | 0.23799 | 24.39% | 0.23799
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Pig. 1. Input node outgoing weights evolutions with the fixed- and floating- point cormmunications for

~the Sine function
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' Fig. 12. Angles and Buclidean distances of input node outgoing weight vector with the fixed- and floating-~

point communications for the Sine function
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.'Fig. 13 Output node incoming weights evolutions with the fixed- and floating- point communications '

: f_dr the Sine function
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- Fig. 14. Angles and Euclidean distances of the cutput node il_lcdming weight vector with the fixed- and

: 'ﬂOa;ting— point communications for the Sine function
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Flg 15, Absolute and relative errors in the ou_ti:ut va.iues of the network with the 12-bit fixed- and 4-bit

. floating- point communications for the Sine function
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