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ABSTRACT

This thesis addresses the following question: Is. it possible to have a k-dimensional
data structure which provides for efficient k-d range search and dynamic upciatcs bn a set
of n points in the worst case while maintaining reasonable storage and preprocessing
requirements? Define a data structure to be optimaI_Iy balanced when the product of its
- worst case preprocessing, storage, insertion, deletion, and range search cost functions is
minimal and dynamically balanced when the product of its insert, delete and range search
cost functions is minimal. The optimal balance cost is Q(n*1g* n) and the dynamic balance
cost is ©Qg*n). THc optimal worst case range search time is _é(lg"n + 1) (where we report
t points in ran ggj for such structures. Strﬁctures optimal for range search in the claés of

dynamically balanced structures are illustrated and found to be within O(1g*" ) of optimal.

;_t\ new k-d structure tabeled the k-d Ran gc Dcierministié Skip List (DSL) is
defined and analyzed along with a new variation of the dynamic range. tree labeled the k-d
Range AVL &ec. Both structures are dynamically balanced and optimal for worst case
range search in the model. Experimentally, a mere 20 ﬁﬁlli_seconds was required to report

- all 500 datapoints in range for the largest 4-d structure (of 336 MB) buil.
Both structures perform well. They possess similar update times but we find that

the k-d Range DSL is approximately twice as fast as the k-d Range AVL tree for

insertions while the k-d Range AVL tree is approximately fifteen times faster for deletions.
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1 INTRODUCTION

The problem of k-dimensional range search, where k is the number of dimensions,
has long been of interest to computer science. Efficient access 1o large volumes of multi-
attributc data is a fundamerital requirement of most large-scale computer information
systems. The areas of computer graphics, database management systems, computational

‘geometry, pattern recognition, statistics,.design automation, and geodesy and geomatics
(geographic information systems) are just a few examples of places where one may find
large-scale compﬁter information systems. This is precisely where the problem of k-d

range search is applicable.

However, the problem is not as clear-cut as it may seem. In order to have rapid
execution of queries, the data must be organized such that range search .is very fast but
one must also ensure that the storage requirements of the underlying structure are kept
minima_l in order to feasibly use the structure. Also, today’s applications require a
dynamically updatable database and thus any index structure for the database must also
allow dynamic updates which must also be fast to ensure feasibility. These interdependent
' requirements imply that the design of a dynamic data structure for efficient k-d range

search is difficult and often unintuitive.

Upper bounds must be placed on the worst case search time, update operations,
and storage requirement in order to have a structure that is feasible for use. The storage

requiremnent must be O(n?), where n is the number of data points in the structure, or there




may not be enough storage space for the structure when the data set is large.” The k-d
range search time must_bc O(kn), otherwise the structure provides no improvement over
an unstructured brute force search. The same holds true for the time requircd by dynamic
updates; otherwise the structure would have to be rebuilt with each insertion and deletion

and such a structure should not be considered dynamic.

Nonetheless, implementable structures do exist which provide for cfficicm k-d
range search in a dynamic environment. These include dynamizations of the k-d range tree
of Bentley [Bent80a] and the k-d Range Deterministic Skip List (k-d Range DSL) of
Lamouréux and Nickerson {Lamo95a}. However, until now, their efficiency has been in
questic;n. Although efficient, they do not meet the lower bounds for range search |
provided by the decision tree model. However, they are close to optimal if one defines a
class of optimally balanced data structures based on the more reasonable dynamic model
of Fredman [Fred81] which uses commutative semj-:.groups in ordered key spaces. In this

model, we find that they are optimal for k-d range search.

Informally, oﬁn‘mal balance is defined as the product of the worst case storage,
preprocessing, insert, delete, and range search cost functions. The class of opsimaily
balanced data structures are those structures that have an optimal balance cost given by
the minimal product. Dynamic balance is defined in terms of the product of the worst
case insert, delete and range search cost functions and the class of dynamically balanced

structures are those structures with a dynamic balance cost given by the minimal product.




The objectives of this thesis are stated as follows: |
. réview and analyze data structures _thét permit k-dimensional range search;
e determine time-space trade-offs for k-d range search in a dynamic envirohmcnt;
» determine the cost functions that define an optimally balanced and a dynamically
balanced datzi structure;
» illustrate implementable data structures that are dynamically balanced;

e experimentally analyze dynamically balanced structures optimal for k-d range search;

In the pages that follow, each of the objectives is addressed and an attempt is made
to summarize and unite much of the relevant work in the djsciplihé. The balance .costs foi'
optimally balanced and dynamibally balanced data srrucmreé are determined and a
dynamization of the k-d range tree and the k-d Range DSL are shown to be optimal for
range search in the class of dynamically balanced data struct.ures. Also, the k-d range tree
and k-.d Range DSL are found to be within O(l gk'ln): of being optimally balanced. An
experimental analysis of the k-d Range AVL Tree and the k-d Range DSL was performed

and the results are illustrated and compared in Chapter 7.




-2 DEFINITIONS

Using the definition of [Knut73], we define a range query as a query that asks for
records (in a file F containing n records) whose attributes fall within some specific range
of values (e.g. height > 6’2’ or $23,000 < annual income < $65,000). We call these limits
L for low and H for high. Boolean éombin ations of range queries over different attributes
are called orthogonal r.ange qz_ter-ies.. When the conj.unction of k range qucﬁcs on different
attributes is required, we can view each separate attribute as one dime_nsion of ak-
dimensional space, and the orthbgonal range query corréqunds to asking for all records

(points) that lie within a k-dimensional (hyper) rectangular box.

A tange search is performed to locate all records which satisfy a range query.
Note that this definition does not imply that all the records in range have to be retrieved.
Some authors definé a range search to be a search which determines the number of
records in the given range while others consider it to be a function which simply locates
the records in range and a'separatc function is used for reporting. Unless noted otherwise,
the common definition of range search which dictates the retrieval of all records in range is
assumed. This implies that many of our 2, O, and & analysés of the range search cost
._ functions will have an extra term of t which captures the time needed to report the ¢

records in range.
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When specifying the limits of an orthogonal range query, we use the limit vectors
L, for lower limits, an_d H, for upper limits, and use the notation L; and H; to correspond

to the ith lower and upper limits.

We use five cost functions to portray and analyze the cost of a range search on a
specific data structure X that supports range search on F. The three basic cost functions

P(nk) = preprocessing time required to build X,

8(n,k) = storage space required by X,

Q(n,k) = time required to.perform a range search on X
are as defined in {Bent79a]. In addition, we also conéidcr the tim.e'. required to insert .a
point into or delete a point from X as we are permitting dynamic updates on our struéturc.
The cost of these dynamic o.perations' are represented by

I{n,k) = time required to insert a new record into X, and

D(n.k) = time required to delete a record ffdﬁ'x X.

Following the example of [Will85a], we use U(n,k) to refer to the dynamic update
cost function when the cost function for insertion, I(n,k), is of the same order of
complexity as the cost function for deletion, D(r.k), in the worst case. This is often the
case when the insertion and deletion times are dependent upon the search time. Unless

specified otherwise, in this thesis, all cost functions given are for the worst case.



Sometimes we wish to refer only to the tirhc to locate a single point as some k-d
structures permit a member query to be answered in a time which is less than the time
required to answer a rangc query. In this case we use Qum(n.k) to refer to the timé
required to ansWer a member query. For example, structures such as the k-d range tree
and k-d Range DSL permit member queries to be answered in ©(ig ») time as compared

to the @(Ig"s + t) (for t datapoints in range) time required to answer a range query.

Some of the structures that we examine support partial match queries on s
coordinatcs.. The notation Qs(n,k) denotes a partial match query on s of the k coordinates.
We dcﬁne_ a partial match query to be an s-dimensional onhogon_ai.rangc query v\vhere |
search intervals, possibly semi-infinite, are specified on s of the k dimensions. The
remaining k-s dimensions are "free” or "unbound”; any value is permissible providing that

the coordinate values in the specified dimensions are in the given ranges.

We define the optimal and dynamic balance cost in terms of an amortized worst
case analysis wlﬁéh is a worst case analysis averaged over a sequence of n dynamic -
operations. An amortized analysis not only gives us lowcf bounds on the cost fﬁnctioﬁs,
but is deemed to be more realistic as the worst case for many of the data structures we
illustrate occurs very rarely; the number of possible occurrences in a sequence of n

dyna.thic operations is finite and bounded.




As many'of the structures we examine are trees or tree-like structures, unless
explicitly stated otherwise, we der:oté the leaf level as level O and the root node is denoted
to be at level h in a structure of depth h. This implies that the leaf level is at depth h and

that the root node is at depth 0.

We use the definitions of structural equivalence and functional equivalence as

found in [Lamo96d].

Structural equivalence means that any structure or sub-structure of one data
structure exists in a Similar or isomorphic form in the other data structure. By similar
form we impiy that any operation that can be performed on one structure can be '
p'crfofmcd on the other structure in an analogous fashion. One tmplication of this
definition is that if daturn A logically exists next to datum B in StruCl'Lllrc Gy, then datum A

logically exists next to datum B in structure Gs.

Functional equivalence means that the worst-case preprocessing, storage, insert,

delete, and range search cost functions are of the same © complexity.



3 DATA STRUCTURES FOR RANGE SEARCHING

This thesis focuses only on data structures for orthogonal range queries as defined
by Knuth ([Knut73]). Data structures and algorithms that support other types of range
queries can be found in the excellent survey paper of [Mato94] which illustrates many

problems which are of great importance in the field of compufational geometry,

3.1 1-dimensional Data Structures
We first illustrate 1-dimensional data structures that permit range search, as many
of the existing k-dimensional structures are based on multi-dimensional equivalents of

efficient 1-dimensional data structures.

The simplest 1~dimcnsional data structure for range search is the unsorted list
which permits a brute force range search of @(n) time complexity but which may be sorted
to allow for a range search of complexity ®(lg » + t) which is executed by performing two

binary searches, to locate the first and last points in range, and listing all points in between.

Using the idea of binary search, one may build a binary search tree to permit a
worst-case range search of @(n) time complexity and then impose restrictions to maintain
a height balance, such as those which define the AVL tree of [Adel62], to allow for a

- worst-case range search of ©(1g n + t) time complexity.




The AVL tree is a height balancéd binary search tree which satisﬁcs _thé invariant
that the height difference between the left and ri ght subtrees of a given node is never
greater.than one (1). As AVL trees are part of t.h'e. dichromatic framework of Guibas and
Sedgewick [Guib78], we may'also use red-black trees for range Search and obtain the

same time bound on range search complexity.

One may also use a multi-way height balanced search tree known as the B-tree, of
which a good overview may be found in [Come79), which ailows for a range search of
(gwn +t) (where m is the order of the B-tfee) time complexity, or a deterministic skip

list (DSL), as introduced by {Munr92], which allows for the same fime complexity.

Although not the focus of this thesis, it is interesting to note that the B-tree and
DSL are functionally and structurally equivalent structures {Lamo96d] and that one can be
interchanged for the other in theory and practice. Those interested in a multi-way tree.

structure that provides an alternative to the B-Tree are referred to [Culi81].

We can combine the result of [Lamo%d] with the work of [Guib78] to conclude
that many of the height balanced data structures which are efficient for range search are in
fact in the same class of data structures and this allows us more flexibility in chooéing an
efficient data structure for a given task. The primary difference between the structures lies
in the tradc-off between recursion and iteration in the al gorithms that define and

- dynamically maintain the structures.



3.2 k-dimensional Data Structures

Although there are many data structures which facilitate rap_id average query time
in k;dimeﬁsions, we find that there are relatively few which exhibit good worst case
behavior. In comparison to the 1-d case, there.are simple, inefficient srru(-:tufe.s that cne
may use to execute a k-d range search. These include the unsorted list, which requires
©(kn) time to perform a range search, inverted tables, which are cdmposcd of k sorted
lists on each of the coordinates and which require @(kn) time to perfor;m a range search in
the worst case (but often require less time in the average case), and cells, which divide the
space up into a number of “boxes” or “blocks” which are searchcd;éepalately if they are
partia_lly (or totally) within the desired search ran ge. Cells are no better _than inverted
tables for range search in the worst éase, but are ofte.n better in the average case. The

reader is referred to [Bent79a] for a more detailed overview of these simple structures.

Another simple, inefficient approach is that of the multidimensional B-tree of
[Guti80]. Designed specifically for exact match (member) queries, it is no better than
inverted tables for range search in the worst case but may exhibit good average case

performance for uniformly distributed random data sets.

A more sophisticated approach is that of the k-d tree of [Bent75] which is the
multidimensional equivalent of the binary search tree. Although no better than inverted
tables in the worst case scenario, the worst case is extremely rare and often taken to be the

average case range search time of O(n""* +t) which is guaranteed to be the worst case

10




search time if the g.ivcn tree structure is height balanced (and. therefore of minimal depth).
The advantages of the structure are its low storage requirement, being essentially thatof a
binary search tree (@(kn))_, and the fact that dyﬁanﬁc operations are almost as simple as -
those of the regular 1-d binary search tree. In the a§eragc case, which. is the worst case
for a height balanced structure, P(n,k) = O(n 1g 1) and U(n,k) = O(lg n). The drawback of

the structure is that height balance cannot be dynamically maintained ([Same90]).

An approach that is similar in structure, complexity, and functionality to thas of the
k-d tree of [Bent75] is that of tﬁe K-D-B-Tree of [Robi81] whibh _c.ombines the k-d tree of
Bentley with the B-tree (as defined in [c}_;mew]). Although a detailed analysis, to the
author’s knowledge, does not exist in the literature, experimental results indicate that its

efficiency parallels that of the k-d tree.

A good overview of data structures for rangé searchiﬁg can be found in [Bent79a],
[B_ent?8], and [Maur78]. The point quadtree of [Same90] may also be used for multi-
dimensional range search and, under the strong assumption of relatively evenly spaced

data, has a worst case query time of O(kn"") which is comparable to that of the k-d trec.

We examine k-d structures that allow for a more efficient (guaranteed) worst-case

search time in the sections that follow.

11




3.2.1 The Range Tree

The range tree of Bentley [Bent80a] is a modified height—balanced binary search
tree which is desigﬁed to detect all points that licina given range. We brieﬂy review the

range tree data structure and refer the reader to [Same90] for a good overview.

The 1-dimensional range tree (see Fi gufc I(@)isa héight balanced binary search
tree where the data points are stored in the leaf nodes which are linked in sorted order by
a doubly linked list (the leaf nodes are threaded). A range search for [L:H] is performed
by searching the tree for the node with the smallest key 2 L and then folloﬁng the links
until reaching a leaf node with a key that is greater than or equal o H. For n points, we

see that this procedure takes O(lg n + t) time and uses O(n) storage.

5 F--[25F-35}F---[50}--T60 }---[80 F--85]--[90

Figure 1. (a) A 1-d range tree from [Same90].

A 2-dimensional range tree (see Figure 1 (b)) is simply a range tree of range trees.
We build a 2-dimensional range tree as follows: We first sort all of the points along one of -
the attributes, x, and then store them in a balanced 1-dimensional range tree, T. We then

append to each non-leaf node, I, of the range tree T a range tree Ty of the points in the

12



sub-tree rooted at I where these points are now sorted along the other attribute, y. In
Figure 1 (b), the darkened links connect the range tree Ty (which has a primed node as

root) in dimension 2 to the (un-primed) non-leaf node it is rooted at in dimension 1.

m/\

(90,5y(50,10)—~(85,15)—(25,35)—(35,40>-(5,45)~80,65)—(60,75 B/C

{90,5)+(85,15—(80,65y460,75)

(50,10)—(25,35)~(35,40)(5,45)

D E 3 F G
(5452535935, 40(50,10 60,75)—(80,65)#85.15) —(90.5)
A A A g
(2535)-(545)  (5010~(3540) (80656075  (90.5)~(85,15)

Figure 1. (b} A 2-d range tree from [Same90].

A range search for ([LH,J,[L,:H,}) is carried out as follows. It starts by
searching the tree T for the smallest kéy that is = L, say L,’, and the largest key that is <
H,, say H,”. It then finds the common ancestor of L.,” and H,’, Q, that is closest to them
and assigns {PL;} and {PH,} to be the sequences of nodes, cxcluding Q, that form the

paths in T from Q to L,” and H,’, respectively.

13



Let LEFT(P) and RIGHT(P) deﬁote the left and right children, re_spe_ctively, of
non-leaf node P. Then, for each P that is an element of {PL;} such that LEFT(P)_ is also in
{PL;}, we performa l-dimcnsional range search for [L,:H,] in the 1_«dimcnsionél range
tree footed at node RIGHT(P). For each P that is an element Qf {PHJ such that
RIGHT(P) is also in {PH;}, we perform a 1-dimensional range se_érch for [Ly:Hy] in thc 1-
dimensional range tree rooted at node LEFI‘(P). We also check to see if L,’ and H,’ are

located in the given range.

The above search algorithm can be seen to run in @(IgZﬁ + 1) time and the general
search algorithm for k-dimensional range queries, which is extended in a manner that is

analogous to the extension from the 1-d case to the 2-d case, runs in ©(lg*z + t) time.

The recursively defined k-dimensional range tree has P(n,k) -——. A(n 1g¥'n) and
S(nk} = O(n lgk'ln) in the static case and has P(n,k)lI: &{n ngn), S(nk) = @).('n lgk'ln), and
U_(n.,k) = ©(1g"n) in the dynamic éase where an amortized worst case analysis is used. |
Dynamizétions of the k-d range tree.can be found in [Luek78], [Lueck82], [Will85a],

TWill85bl, zind, more recently, in [Lamo95b)].

The range tree is important for a number of reasons. Not only is it a prime
example of the paradigm of multi-dimensional divide and conquer, introduced by Bentley
[Bent80a], but it is also a prime example of the effective use of a class of transformations

which can be used to add range restriction to an existing data structure for a
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decomposable searching problem such as range search [Bent79b]. Thus, we can build it
bottom up starting with a 1-d range tree structure on the first coordinate or build it top
down starting with a k-d data set and applying the paradigm of multi-dimensional divide

and conquer until we reach a 1-d range tree structure.

The paradigm of multi-dimensional divide and conquer states that we can solve a
problem of N points in k-space by first recursively solving fwo problems each of N/2
points in k-space and then recursively solQin g one problem of N points in (k-l). space.
Thus, a structure which solves a problem using the paradigm stores two siructures of N/2

points in k-space and one structure of N points in (k-1) space.

~ A given interior node in the range tree is the root of a subtree of n’” nodes. It has
two children which are the root nodes of range trees that each have ai)pfoximately n’/2
nodes and it has a poin_ter toa (k-l)-dimensionel tree of n’ nodes. It is clear that the range
tree is an example of the paradigm of multidimensional divide and conquer. Another

| example of the paradigm in use can be found in [Bent79¢c].

The theory of decomposable searching problems can be viewed as the dual of the
paradigm of multidimensional divide and conquer. We can add a second range variable to
a 1-d range tree structure (on one range variable) by building a range tree structure on the

new variable and attaching to it 1-d range tree structures on the first range variable.
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We ﬁnd fhat thc range tree is a dynamically balanced data structure and that it is

- optimal for the execution of range queries iﬁ the class of dynamically balanced daté
structures. Also, the static range tree can be derived from non-overlapping k-ranges, an
array-based data structure that we explore shortly. This leads us to hypothesize that our
minimal optimal balance cost holds for array based data structures in the random access
model of computation as well and not just the pbinter model that we normally assume and

use in the definition and implementation of dynamic data struciures.

3.2.2 The Priority Search Tree

The priority search tree of McCreight [McCr85] is designed for sol_f:ing semi-
infinite range queries of the form ([Lx:H,],[Ly:ee]) in optimal time. .It is a vartant of a
range tree in x and a heap (priority queue) in y. It makes the assumptions that no two data
points have the same x coordinate and the reader is again referred to [S ame90] for. the
details on the construction of the priority search tree. An example of a pridrity search tree

is found in Figure 2.

5 F--f25 F-[35 }--{50 }-{60 }--{80 }-{85 }--%
(545 (2535 (3540) (50,10) (60,75)  (80,65) (8515 (90.5)

Figure 2. A priority search tree from [Same90].
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The priority search tree requires minimal storage space, having S$(n,2) = O(n) and
is optimal for semi-infinite range search in two dimensions, i.e. Q(n,1.5) = @(lg n + 1).
Dynamic updates are optimal as well, requiring only €(ig ») time per update. However, a

normal 2-d range query, Q(n,2), requires ®{n) time in the worst case.

The importance of the structure 1s fhat it is the basis and inspiration for the Range
Priority (RT) tree of Edelsbrunner [Edel81] aﬁd the 2-d Search Skip List of Nickerson
[Nick94]. The Range Priority (R;T) tree is important as it shaves off a logarithmic factor
from the k-d range query time of the range tree. Tﬁc 2-d Search Skip List is impbrtant as
it is the first well defined 2-d sicip list data structure and the inspifétion for the k-d Range

DSL [Lamo95a], another dynamically balanced data structure.

3.2.3 The Rahge Priority Tree

The range priority tree, or the RT-tree, of Edelsbrunner [Edel81] is a k-d data

structure designed specifically for k-d range search and it is similar to the range tree of

Bentley. The structure is optimal for range search in two dimensions, Q(n,2) =
©(lg 1 + 1), and takes advantage of the priority search tree of McCreight [McCr85] to

achieve its optimality. An example of the range priority tree can be found in Figure 3.
An inverse priority search tree is a priority search tree, S, such that with each non-

leaf node, 1, of S we associate the point in the subtree rooted at I with the minimum value

for its y coordinate that has not already been stored at a shallower depth in the tree.
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(25,35)50,10)(85,15+90,5) (3,45)35,40)-(60,75(80,65)

|
(90,5) (50,10) (85,15)(25,33) (35,40)(5.45) (80.,65) (60,75)
Figure 3. A 2-d range priority tree from [SameS0].

A range priority tree is a balanced binary_ search tree, T, where all déta_ points are
stored in the leaf nodes and are sorted by their y coordinate values. With each non-leaf
node I of T which is a right child of its parent we store an inverse priority search tree of
the points in the subiree rooted at [ ordered on their'x coordinate values. With each non-
leaf node I of T which is a left child of its p&ent, we store a priority search tree of the
points rooted in the subtree of I ordered on their x coordina_té values. This scheme allows

us to shave off a logarithmic factor from the k-d range search time of the range tree for a

Q(n.k) of ©1g"'n +1t) for k = 2.

3.2.4 k-d Skip Lists

Nickerson [Nick94] has defined a number of k-d skip list data structures for k-d
range search which are built from 1-d deterministic skip lists and similar both in structure

and range query time to inverted tables. As they are not very efficient for k-d range search
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in the worst case, we do no more than mention them and instead focus on Nickerson’s 2-d
search skip list as it provides an efficient alternative to the priority search tree and is the

- inspiration for the k-d Range DSL.

Remembering that a deterministic skip list is a tree-like structure which has a node
structure that contains (at least) a down pointer, a right pointer, and a data-value, we use
the followiﬁg terms when describing the structure and the associated algorithms. The

down subtree of a node consists of all nodes that can be reached by first raversing the
down pointer of the current node .such that those nodes are not reachable by traversing the
down éointcr of the current node’s right sibling. The immediate dé)vbn subtree of a node is
composed of éll nodes at depth (i+1) in the down subtree of the current node which is
assumed to be located at depth i. The direct descendent in the immediate down subtree is
that node which is the first node in 2 node’s immediate down Subtrcc.- Finally, the gap size
is defined to be the number of nodes in the immediafé down subtree where we exclude the

direct descendent.

For example, in Figure 4, the ddwn subtree of fhc node (140, 37, -30, 41). at level
i consists of the nodes (14, 41, 41, 41), (31, -30, -30, -305, (104, 2,2,2), and
(140, 37,. 37, 37)_ at level 0. The immediate down subtree .of the node (M, .®, -34, 52) at
level 2 consists of the nodcs.(O, 52, 39, 52), (140, 37, -30, 41), and (M, &, -34, -34) at
level 1. The direct descendent of (0, 52, 39, 52) at level 1 is (-123, 48, 48, 48) ét level 0,_

and the gap size of (M, &, -34, -34) is 1.
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3;2;4.1 2-d Search Skip List
-The 2-d search skip list of Nickerson [Nick94] ﬁsc.s the idea inherent in the priority
 search tree and is based on the linked-list version of the 1-3 deterministic skip list (DSL)
of [Munr92]. It is always balanced (in the sense of B-trees) as the leaves are located at
the same depth ¢ 1g n, 1/2 < ¢ £ 1. The properties of the structure are
1. Each node contains four values. These are
D) (Ki, Kz) = keys of the node (the two top fields in Figure 4)
1) mink2 = minimum K, value for all nodes in the down sﬁbtrec
1i1) maxk?2 = maximum K, value for ail nodes in the down subtree
2. Each node has two po.inters; a down pointer aﬁd 2 r_ight'pointer.
3. Special nodes head, tail, and bottom indicate the start and end of list conditions.
4. All data points appear at the leaf level and some may appear at higher levels.
5. Every gap size in the skip list is of size 1, 2, or 3.

6. The skip list is ordered on the K, key values.

The cost functions are the same as those for the priority search tree and the
structure is a prime example of the fact that deterministic skip lists provide efficient
aliernatives to height balanced search trees as illustrated in [Lamo95¢] and [Lamo96d).

An example of a 2-d Search Skip List can be found in Figure 4.
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Figure 4. A 2-d search skip list from [Nick94].
3.2.5 k-Ranges

The k-ranges of Bentlcy'and Maurer ([Bent80b] and {Bent?S]). are important for a
number of reasons. They allow for optimal worst-case range search under a decision tree

analysis. They are one¢ of the few array based data structures and the only one that the

" author knows of that was specifically designed for k-dimensional range search on k-

dimensional data. They are primarily a theoretical construct and, to the anthor’s
knowledge, have not been implemented due to the unrealistically high storage

requirements and difficulties inherent in attempting an implementation.

We note that k-ranges assume that the data has been normalized to the integer
rangc 1 ... n and that all keys are unique. As the normalization time is of Oknlg n), it

does not increase the overall complexity of the preprocessing, P(n.,k), needed to build the

“structure and, as such, is acceptable. Also, a range query can be normalized in ©(k 1g )

time and is thus within the time needed for a range search, Q(n.k).
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Bentley and Maurer have dcﬁnedithr’ee kinds of k-ranges which fall into the
categories of overlapping and non-overlapping. .OVerlappin g k-ranges afe further divided
into single lével and muld-level, the first of which is Optimal for .k-d range search under a
decision tree analysis and the second of which is almost optimal, trading query time for a
decreased Storagc and preprocessing requirement. Non-oirerlappin g k-ranges are defined
as multi-level structures. We describe and provide a brief analysis of the three types of k-
ranges. We note that all of the k-ranges are based on a generalization of Bentley’s mult-
dimensional divide and conquer paradigm [Bent8(a] as this knowledge helps one to

understand the cost-functions and underlyin g analysis,

Tht}re are a number bf reasons that k-ranges are not used in practice, the most
important one being that they are not dyna'mic data.'structur_es. As they are based on
arrays, they are a static data structure and do not pefmit dynamic updates. To insert or
delete a point from the structure essentially involves rebuilding the entire structure and this
gives us an unacceptable update cosf function which is equivalent to the preprocessing |

cost, unacceptable in any situation that requires dynamic updates.

3.2.5.1 Overlapping k-Ranges

A Kk-ran ge is a data structure defined inductively fork=1,2,.. m We first exposit
the 1-dimensional structure and then show how it can be extended to higher dimensions.

Let G be some subset of our dataset F. To store G as a 1-range, we store G in a linear
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array M of » elements. Each element in our array M consists of a set of points M; and a
pointer p; (1 €i < #), where M; is the set of all points of G with first coordinate equal to i,
and where p; points to the next non-empty set M; with i <j and j minimal. An example of

a 1-range can be found in Figure 5(a).

To extend k-ranges to the case where k = 2, we store the 2-range for F by storing
each of the sets F;” for 1 <i <j < nas 1-ranges R, and setting up a two dimensional
array P of pointers, each element P;,; pointing to R;,;. Thus, to carry out a range search

([L1iHy],[La:Ha)), we just have to search the 1-range Fia,m® for [L1:H1],

0 5
8 o
7 o—
6 o
5 _ o
4t
3 o
2 — 5
I ®
1 2 3 4 5 6 7 8 9
1 2 3 4 5 6 7 8 9

G| | P68 P36

Figure 5. (a) Example of a 1-range (Fes™) in a 2-range from [Bent80b].

23




Extension of k-ranges to the case where k = m should now be obvious. Store first
all F;,;® for 1 <i<j<nas (k-1)-ranges R,;. Then, éonstrﬁct a 2-dimensional array P of
pointers where each éIement P;,; points to Ri,;. To carry out a range search
({La:Hil,[LaHs), ..., [LcHd) in F, 1t suffices to carry out a fange search ([L.:H1,[La:Hs],
e [Lici:Hi1 1) in Fuoam®. Since this is stored as a (k-1) range, the process continues until

it remains to search for [L,:H;] in a l-range.

Although these overlapping k-ranges have an optimal query time of Q(n,k) =

©(k 1g n + t), they have a downside in the fact that storage and preprocessing are

exponential in the number of dimensions, namely S(n.k) = P(n.k) = O(n*h,

3.2.5.2 Multi-Level k-Ranges
Bentley and Maurer {Bent80b] have devised a method to decrease the storage and
preprocessing requirements substantially at the expense of an increased range query time.

By defining the structure to be multi-ievél, they are able to reduce the storage and

L ‘) where £ is the number of levels in the structure. The

preprocessing costs to O

query time is increased proportionally, becoming ©(¢'lg n + t).

The analysis above is more exact than that performed by Bentley and Maurer who

ignore the factor of & as ¢, once chosen, is a constant. It is true that if small values of ¢

are chosen then &7 is essentially constant and thus irrelevant, but, if £ is even moderately
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large as compared to n,.say' ¢=1g n, then we find that the analysis of Bentley and Maurer

is insufficient. An example of a two-level 2-range can be found in Figure 5(5).

Level 1

Level 2

1 2 3 4 5 6 7 & 9
Figure 5. (b) Example of a two-level 2-range from [Bent80b].

We illustrate the technique to modify k-ranges into {level k-ranges by first

focusing on 2-ranges, as the extension from &level 2-ranges to £-level k-ranges is rather

analogous to the extension from one-level 2-ranges to one-level k-ranges. .The reader is

referred to [Bent80b] for further information,

We now focus on a two-level 2-range. On the first level we consider one “block”

172 « 2

which contains #*? “units” (we may assume # is a perfect square) which represent '

points each. On the first level of the 2-level 2-range (see Figure 5(b)) we then store all

V2

C%+ n

second level of our covering consists of #'* blocks each containing ' units (which are

= ©(n) consecutive intervals of units; that is, we store ©(n) 1-ranges. The
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individual points). Within each block we store all possible intervals of units (points) as 1-
ranges. The structure is depicted in Figure 5(b) for the case of n =9. The bold vertical
lines represent block boundaries and the regular vertical lines represent unit boundaries.

Each horizontal line represents a I-range structure.

A range query 1n a two-level 2-ran ge is answered by choosing a covering of the
particular y-range from the 2-level structure. This can always be accomplished by

selecting at most one sequence of units from level one and two sequences of units from

level two, giving us our range query time of @(£1g n + 1), as desired.

Although these structures are extremely interesting from a theoretical viewpoint,
we still find them horribly inefficient for implementation. It is not just ;he fact that k-
ranges are essentially static data structures and as sq_ch do ntot permit dynamic updates,
but also the fact that an overlapping structure, by nature, contains too much repeated

- information in the index structure to be useful in terms of the storage requirement.

-3.2.5.3 Non-Overlapping k-Ranges

The third type of k-ranges is probably the most efficient from a practical

viewpoint. Although the cost of a range query is substantially higher than that for

overlapping k-ranges, with the proper choice of the number of levels, £, it is comparable to

that of the k-d range tree which has been deemed to be quite acceptable. In fact, if we

assume that our elements are from a commutative semi-group, then the k-d range tree is
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optimal for range search (as set union is the commutative and associative addition

operation), see [Fred81]. A two-level non-overlapping k-range is shown in Figure 5(c).

As in Figure 5(b), the bold vertical lines représent block boundéries and the regular

vertical lines represent unit boundaries. However, unlike the overlapping k-ranges, each

unit on level £ corresponds to one, and only-one, k-range structure.

Ievel 1

Illl}ll Ievel 2
i 2 3 4 5 6 7 & 9

Figure 5. (c) A non-overlappin g. two-level 2-range.

As with the overlapping two-level 2-range, a range query in a2 non-overlapping
two-level 2-range is answered by choosin g a covering of the particular y-range from the

two-level structure. The covering can always be chosen by choosing at most O(n"*) k-
ranges at at most £ levels. This gives us a search time of ©(¢ n"" 1g n + 1) as it takes most

lg n time to search a given k-range.
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Range search time for an arbitrary Lievel k-range is Q(n.k) = O n’1g n +1).

In contrast to the overlapping k-ranges, storage and preprocessing costs are substantially

' reduccd, with ${z,k) = ® ! n) and P(n,k) = O 1g n). If we let £ vary with n, we

achieve a tree-like data structure, and ¢ = 1 g n gives the k-d range tree of Bentley. To see

this, we substitute ¢ =1g n into S(r.%) to give O(n1g" n), €= 1g ninto P(n.k) to give us

lgn

O(n 1gkn), and ¢ = lg n into Q(n.k) to give @(lg""n n lg n + t) which is equivalent to

@(lgkn + t).

Non-overlapping k-ranges allow us to show that our minimal optimal balance cost -

holds in the array based memory model as well (and not just in the pointer based memory
model). We set £=1g n in non-overlapping k-ranges to obtain a minimal balance cost
function for the structure. Since non-overlapping k-ranges have a lower balance cost

function than overlapping k-ranges and any other structural variations on the array model,

we can use this minimal balance cost function to show that our optimal balance cost

function holds in the array based memory model as well. Further discussion of k-ran ges

and optimal balance can be found in Chapter 6.
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4 DYNAMIZING THE RANGE TREE

The range tree of Bentley [Bent80a] was originally defined as a static data
structure which is optimal (assuming our fecords are from a cormnutative serni-group), in
a worst éase analysis, for answering k-dimensional range queries when only &(n lg;"ln)
space is used. Willard and Lueker héye devised theoretical modifications .tci the structure,
which are summarized in [VVillSS.a], tﬁat permit dyﬁamic operations in ©(lg"z + t) time |
when an amortized worst case analysis is used, but these dynamic rﬁodiﬁcations are
difficult to. implement, especially as their structures are based on the class of BB« trees,
which are obscure at best. Only the simplest of their structures haé been implemented and,
to the author’s knowledge, a detailed specification of the structure alon g with a complete
and well-defined implementation of a dynamic k-d range tree structure did not exist in the

literature until the author devised and elucidated the k-d Range AV_L.tree in [Lamo935b].

| Aithou gh of the same order of complexity as the other k-d dynamic; range tree data
structures, the k-d Range AVL tree has advantagés that the other structures do not. ‘It is
based on a simple modification of the well known AVL tree data structure [Adel62] and is
thus straight-forward to understand émd impleme.nt- The rotations needed to maintain
balance are straight-forward modifications of the AVL tree rotations and easily specified
(see [Lamo95b]). This structure provides us with a baseline structure against which other
structures, and their implementations, designed to handle multi-dimensional range queries

on multi-dimensional data, can be compared.
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4.1 The 1-d Range AVL Tree

There are two major differences between the AVL tree and the range tree. The
first difference is that the AVL tree stores key values corresponding to data records (data |
points) in all of its nodes, both internal and leaf, while the range tree only stores key values
corresponding to data records in its 1eaf nodes. The second major difference is that the
leaf nodes of the range tree are threaded in sorted order whereas the AVL tree dees not

have any of its nodes threaded.

Thus, to use the AVL tree as a range tree we must impose modifications that
restrict key values corresponding to actual data records to the leaf nodes and modify the

insertion and deletion algorithms so that the Ieaf nodes are threaded.

We accemplish the first modification by noting that we can maintain the existence
of our key values only at the leaf level by inserting (:delen'n £) two nodes instead of one at
each insertion (deletion). The procedures that we use are .essentially the normal AVL tree
insertion and deletion proccdures with the modifications outlined below. We call an AVL |

tree with these modifications a Range AVL tree.

One of the two nodes conespondé to the key value being (inserted / deleted), and
thus is a leaf node, and the other node is an internal node that (takes the place of / is
replaced by) an existing leaf node which must (drop down / move up) a level to allow for

the (insertion / deletion) of a leaf node. This is illustrated in Figure 6.
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In Figqre 6(a), we are inserting a key value y corresponding to a new data record
-and, using the normal AVL tree insertion algorithm, we find that the last node on our path
is x, We replace node x with a new internal node, 1, and drop x down into the left or right
subtree of i, depending on whether y is greater than x or less than x, respectively. The
node corresponding to the new key value y is then placed in the empty subtree and the
refnainder of the normal AVL iree insertion al gorithm_is; used to ensure that the balance

criterion is maintained.

In Figure 6(b), we are deleting a key .value y corresponding to an existing node in
the tree. Using the norrhal AVL tree deletion al gorithm, fnodiﬁed such that a key value
only matches the target kéy value if it is a leaf node, we arrive at the farget node at the
deepest level of recursion. We make the mo'diﬁcatidn that we don’t femove the node
when we return to the parcnt'node (as the recursion 'hnfolds) but wait until we return o
the grandparent node to process the deletion. At thi;. poin.t.the parent node is fcplaced by'
the siblin g of the node we are rcmoQin g and the remainder of the normal AVL tree

deletion algorithm is used to ensure that the balance criterion is maintained.
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Figure 6. (b) Deletion of a key y from a Range AVL tree from [Lamo95b].
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We would like to note that the additional restriction that every node must have 0
or 2 children (maintained by inserting / deleting two nodes at a time) implies that we have

" to define two additional single rotations to handle the two special cases that arise in the
delete procedure. These are illustrated in Figure 7. They are essentially the two standard
single rotatiohs wﬁth the only difference being that a primary node of the rotation which is

the child of the root node has a balance factor indicating equal height (*-” or 0).

h ' Rotate Left
...__—>
_ h| A
h+l | Bl |cC B
hel h+1
Rotate Right
—
h+1 hlcC

A B B

h+1 h+1

h+1

Figure 7. Additional rotations needed for the Range AVL tree from [Lamo95b].

The second modification that we must make is that all of the leaf level nodes
‘appear in a doubly-linked list in sorted order, i.¢. the leaf nodes are threaded. This
modification is simple both to impose and maintain as a leaf node can never be a primary

node of a rotation as the restriction that each node must have 0 or 2 children implies that
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we are dealing with a restricted class of AVL trees where the root node of the rotation is

at least the third interior node from the leaf level.

This allows us to deduce that the threaded linked Iist at the leaf level can only be
changed by the insertion or deletion of a node and this implies that the maintenance of the
doubly-linked list is simple. A straightfon#ard modification to the insert and delete

procedures suffices to maintain the threads.

We refer the reader to [Lamo95b] for the complete insertion and deletion
algorithms and the corresponding Pascal source code. We also note that the worst-case

cost functions are asymptotically those of the AVL tree.:

4.2 The k-d Range AVL Tree

_ If we return to the definition of our k-d ran gé tree, we find that at each interior
node, I, of our tree, T, in dimension k we have a pointer to a range tree, T¢*1, in
dimension k+1 which contains the points of the subtree rooted at I sortéd along the k+1
coordinate values. Therefore, .at each interior node of our Range AVL tree in dimension
k, we must havc_a pointer to a Range AVL tree in dimension (k+1) which contains copics

of the points in the subtree rooted at I ordered on the next coordinate value.

If we ignore totations for the moment, this condition is straightforward to

maintain. As we progress down the tree, in dimension k, searching for the place we
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perform the aciual insertion or deletion, we insert the appropriate nodes i.nt.o or delete the
appropriate nodes from the Range AVL tree structures in the next dimension associated
with each node that we encounter along our search path. We add a second level of
recursion to our existing inscrtibh and deletion al goﬁthfns so that the algorithms recurse
both through a 1-d Range AVL tree structure in a dimension and through the dimensions

of the structure to give us our dynamic k-d range tree data structure.

- Complications arise when we need to use a rotafion to restore balance. The
existing AVL tree rotations are not adequate when a tree structure becomes unbalanced in
one dimension as each node has a.pointer to a corresponding Rangc AVL ree stmcture in
the next dimension which would become invalid for the primary nodes of thc rotation. To
correct this problem, we rotate the pointers to the (k+1)-dimensional trees as well and use
partial rebﬁilding to rebuild the (k+1)-dimensional trees that remain iﬁvalid after the
rotation. When we rotate the pointers, .we ne\;fer have to do more rebuilding than that
requirec_! to rebuild- the (k+1)-dimensional trees that are attached to the child nodes after
thé rotation, aﬁd, for single rotatiohs, we need only do half of thét (i.e., only one tree
structure has to be rebuilt). The rotations used are illustrated in Figure 8 and the reader is

referred to [Lamo95b] for the complete algorithms and corresponding Pascal code.
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Figure 8. Rotations for the k-d Range AVL tree from {Lamo95b].

_The tcchﬁiques used to transform the AVL tree into a dynamié range tree providé
insight into the similarities between different tree structures and may prove useful in
transforming and dynamizing other (binary search) tree structures for more complicated
tasks. The algorithms illustrate a recursive technique that may be useful for defining and.
working with other k-dimensional data structures. It has already been used in the

definition and construction of the k-d Range DSL which we explore in the next chapter.
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4.3 Analysis of The k-d Range AVL Tree

A complete analysis of the k-d Range AVL tree is lengthy and we are content to
summarize the important theorems and results and refer the reader to [Lamo95b)] for

lengthy proofs and non-essential details. A 2-d Range AVL tree is illustrated in Figure 9.

Theorem 1: The time, Q(n.k), to perform a range search on a k-d Range AVL treeis
@(lgkﬁ +t), where t is the number of data points found in the specified range.
Proof:

The.search algorithm used is identical to that used for Bentley’s range tree
{Bent80a] and this is known to require ©(lg*n + t) time to answer él range query. The

reader is referred to [Same90] and [Lamo95b] for additional details. |

Corollary 1: A Range AVL iree partial match query, Qs(n.k), requires ®(lg’n + t) time.
Proof: .I

By construction of the k-d Range AVL tree structure, each interior node in
dimensioni (i< k) has a pointer to 2a Range AVL tree struéture in dimension i+1 t.hat_ :
contains all the points in the subtree, for which it is the root node, ordered on the i+1
coordinate. As such, attached to the root node of every Range AVL tree structure in
dimension i (i .< k) is a Range AVL tree ordered on the i+1 coordinate values.

If dimension i is one of the s dimensions that we search, then the search algorithm
proceeds normally in the Range AVL tree structures in that dimcnsioﬁ. However, if

dimension i is not one of the s dimensions to be searched, then we merely proceed from

37




the root node of the Range AVL tree structure in dimension i to the root node of the
Range AVL tree structure in dimension i+1. In this way we search structures in only s of
the k dimensions of the structure and it is swraightforward to verify that this requires only

©(g’n) time by construction of the k-d Range AVL tree. n

Fact: The time, Qu(#,k), to perform a member query in a k-d Range AVL tree is O(lg n).
By definition of the structure, if a data point is in the structure then it is indexed by
the first dimension. Since all coordinates within a dimension are unique, by definition, one

can verify that a member query can be completed in G(lg ») time. [
For reference, the following are the datapoints in the dataset on which the k-d

range tree of Figure 9 was built: (65, 90), (125, 110), (180, 25), (55, 155), (140, 125),

(25, 195), (95, 60), (45, 131), (15, 175), (75, 205), and (85, 115).
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Figure 9. A 2-d Range AVL Tree from [Lamo93b].

" The following lemma is used in determination of the storage cost and the worst
case rebuilding cost, which are necessary for one to determine the update cost functions

and preprocessing cost.
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Lemma 1: The number of nodes in dimension k in a k-d Range AVL tree is @(n 1g*"n).
Proof:
The result is obvious for dimension one. Tt turns out that the calculation reqﬁiréd

for the k-d case is quite involved, so we refer the reader to [Lamo95b] for a éomplctc

Sy +k-2 . s s .
calculation. In summary, we have 2° C k5 © structures of /2% points in dimension k or

lgn-1

on 3, (C%?)) @1

=0
nodes in dimension k, as the number of nedes is bounded by twice the number of points.
An asymptotic approximation on equation (4.1) evaluates to @(n 1g"») and this

gives us O(xn 1g°'n) nodes in dimension &, as we set out to prove. |

We now prove our amortized worst case bound for insertion in two steps. We
define a simple insertion as an insertion which does not cause a rotation to be performed
and then prove that the time required for a simple insertion, denoted Is(#,k), is bounded by
©(Ig"n). After this, we prove that the time required for any necessary rebuilding overa i
sequence of n insertions, Rsi(,k), is ©(n 1g'n). We are then abie 10 prove that our
amortized worst-case insertion x:Qst function, I{n,k), is @(lg"n). We cém then go on 10

prove our worst case bound for deletion analogously. Note that we define a simple

deletion in a manner which is analogous to the definition of a simple insertion.
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Theofe;n 2: A simple insertion, Is(n k), in a Range AVL trcé requires @(lgk;a) time,
Proof:

The proof depends on the observation that the time required to insert & point into a
1-d Range AVL tree depends 6n the time required to find the location where the new
point is to be inserted as the operations of creaﬁn g the new nodes and changing the
nccesséry pointers to accomplish the insertion require only constant time. This gives us
Is(n,i) = B(1g n), as expected.

The proof that Is(n,k) = @(1g“n) follows from the proof that Q(n,k) = O(g"n + 0.
In dimension k we must insert the new point into a total of @(lgk'l_n) Range AVL trée
structurés associated with the Range AVL tree structures we inserted the new point into
in dimension (k-1). As it takes &(lg n) time to insert the point into a single Range AVL

tree structure, it takes O(lg*n) time to insert the point into a k-d Range AVL tree. [ ]

Lemma 2: The time, Ri(n,k), to do necessary rebuilciing for a single insertion in a k-d
Range AVL tree is ©(n 1g“%n). |
Proof: |

In the worst case insertion, a rotation occurs at the root node of the treé in
dimension 1. We find that we have to do rebuilding of two (k-1)-d Range AVL tree
structurcs.in dimcnsion 2 that consist of roughly #/2 nodes each. We can use the trick _Of
presofu’ng found in [Bent80a] and rebuild a k-dimensional range tree siructure of n nodes

in ©(n 1g°'n) time as the data set can be assumed static for the duration of the rebuilding
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(see [Lamo95b]). This implies that a single insertion causes at most &(n lg"fzn) rebui_lding

to take place, as was desired. | [

Lemma 3: The time, Rg(n.k), required to do any necessary rebuilding over a sequence of n
insertions in the k-d Range AVL tree is given by ©(n Ig*n).
Proof:

The worst case insertion is gularameed 1o occur once, énd only once, in a sequence
of ®(n) insertions when we start with » data points in the Range AVL tree (see [Fred81]
and [Will85al). Likewise, the second worét case insertion is guaranteed to occur twice, -
and only twice, in a sequence of ®(n) insertions. In general, the it.l'1 worst case insertion is
guafanfecd to occur 2! times, and only 2"' times, in a sequence of ©(z) insertions.

The work involved in rebuilding over a sequence of n insertions is given by
S ()2 (L) 42
=1 217 = 21 )
and this summation is bounded by ®(# 1g°'#) (see [Lamo95b]). This completes our proof

that the time, Rg(n,k), to do any necessary rebuilding over a sequence of insertions is

given by ©(n 1g%*n). : o |
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'ihcorem 3: The amortized time, I(n,k), required to perform a ndrmal insertion into a k;d
'Raﬁgc AVL tree is ©(Ig*n).
Proof:

This proof follows directly from Theorem 2 and Lemma 3. A simple insertion is
bounded by @(lg*n) and the time to do any necessary rebuilding is bounded by @(1 g“'n)

where we use an amortized rebuilding cost. Thus, an insertion requires @(g*n) time. =

Theorem 4:; A simpie deletion, Ds(n,k}, in a Range AVL tree requires @(lg"n) time. |
Proof:
The proof depends on the observation that the time rcquiréd for deletion of a node
inal-d Range AVL tree de_,pcnds on the time required to find the location of the point
- being deleted, as the opera'tions. of removing the corresponding nodes and changing the
necessary pointers require constaﬁt time. This gives us D(n,1) = ®(lg n), as expected.
The proof that bs(n,k) = O(Ig*n) follows fro:m the proof that Q(,k) = &g +1).
In dimension k we must remove the point from a total of O(g"'n) Range AVL tree
structures. It takés ©(lg n) time to remove the point from one Range AVL tree structure

and thus it takes ©(Ig"n) time to remove the point from a k-d Range AVL tree. [ |
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' Lemma 4: The time, Rp(n.k}, to do necessary rebuilding for a single deletion in a Range
AVL tree is ®(n 1g5n).
Proof:

In the worst case deletion, a rotation occurs at the roof node of the tree in
dimension 1. We then find that we have 1o do re_buildin g of two (k—l)-d. Range AVL tree
structures in dimension 2 that consist of roughly n/2 nodes each. Wé can use the trick of
presorting found in [Bent80a] and rebuild a k-dimensional range tree structure of # nodes
in O(n lg“‘1 n) time as the data set can be assumed static for the duration of the rebuilding.

Thus, a single deletion can cause at most &(n 1g?n) rebuilding to take place. |

Lemma 35: The time, Rep(n,k), required to do any necessary rebuilding over a sequence of
n deletions in a k-d Range AVL tree is given by ®(n 1g°"'n).
Proof:

. The worst case deletion is guaranteed to occlur onée, and only once, in a sequence
of &(n) dcletioﬁs when we start with 2 data points in a Range AVL tree (see [Fred81)
and [Will85a]). Likcwisc, the second.worst case deletion is guaranteed to occur twice,
and only twice, in a sequence of &(n) deletions. In general, the ith worst case deletion is
guaranteed to occur 2™ times, and dnly 2" ti.'me;s, in a sequence of ®(n) deletions.

The work involved in rebuilding over a sequence of n deletons is given by
equation (4.2) and. we know that the smﬁmation is bounded by ©(n 1g"n) from Lemma 3.
This completes our proof that the time, Rsp(n,k), to do any necessary rebuilding over a

sequence of n deletions is given by ©(n 1g""n). |
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Theorem 5: The amortized time, D(n,k), required to perform a normal deletion in a Range
AVL tree is ©(1g"n).
Proof:

The proof follows directly from Theorem 4 and Lemma 5. A simple deletion is
bounded by @(lgkn) and the tfme to do any necéssary rebuilding is bounded b& eag<'n)

when we use an amortized rebuilding cost. Thus, a deletion requires ©(Ig“s) time. ™.

Theorem 6: The space, S(n,k), required for storage of a Range AVL tree is O(n lg"'ln). : |
Proof: |

Each node in the k-d Range AVL tree has three pointers and a constant number of
data fields a;ld thus requires O(1) space so we need only determine the maximum number
of nodes in the k-d Range AVL wree to determine the space required. From Lemma 1., we
know that dimension k requires ©&(n 1g"n) space. As we are performing an asyrn;;totic
analysis, we see thaf this term is the dominant term in our expression for storage and we

thus correctly determine that we require &(z 1g""'n) space for storage. |

Thedrem 7: The time, P(n,k), to construct a k-d Range AVL tree is @(n 1g*n).
Proof:

We construct a dynamic k-d Range AVL tree by inscrt-ion of one point at a time.
We thus haﬁe to perform » insertions where each insertion is bounded by @tlg*n) time

when we use an amortized analysis. Thus, P(n,k) is ©(n 1gn). |
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5 THE k-D RANGE DSL

The k-d Range DSL is d new data structure for multi-dimensional point data based
on an extension of the 1-3. Deterministic Skip List (DSL) data structure of {Munréz]
projected into k-dimensions. Thc data structure, labeled the k-d Range Deterministic Skip
List, supports fast insertions, deletions, and range search. It is dynamicaily balanced and

optimal for k-d range search in the class of dynamically balanced data structures.

It u.SCS a generalization of the paradigm of multidimensional divide and conquer of
[Bent80a] , which is defined as fo_llows: To storé a structure rcpresénting n points in k-
space, store m structures 'representing (approximately) n/m points in k-space and one
structure of » points in (k-1)-space. Itis always balanced in the sense of B-trees as the

leaves are all at the same depth h where h is bounded by |—lg ni2} < h< rlg nl.

The structure is generalizable such that it is based on an order m DSL (which has
at least [m/2 1 nodes but no more than m nodes in an immediate down subtree) but we use

a 1-3 DSL for simplicity and clarity in exposition and implementation.

- 5.1 Definition of a k-d Range DSL

The properties of the structure are:
1. Each node contains a data point which is either

i) an actuzal data peoint if the node is a leaf node (KK, ..., Ki)
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i) a pre-defined sentinel value (s.v.) if the node is not a leaf node
2. Each node contains two values. These are |

1) minki (m) = minimum K; value in the down subtree of the current node
ii) maxki () = maximum K; value in the down subtree of the current node

3. Each node contains three pointers; a down pointer, a right pointer, and a
* nextdim pointer. The down and right pointers are analogous to the down
and right pointers in the 1-d DSL and the nextdim pointér peoints to a
Range DSL structure of the points in the down subtree ordered on the K;y
. coordinate values.
4, Four special nodes called head, tail, bottom, and lastdim.‘are used_to indicate
| start and end of structure conditions. The nodes head, tail, and bottom are
identical to the head, taii, and bottom nodes in the 1-3 DSL and the_ node
lastdim lets us know that we have reag:hed the last diménsion of the
structure or the leaf level. |

5. All data points appear at the leaf level and only at the leaf level.

6. The skip list is ordered by the i coordinate values where i represents the
dimension that is currently being built or searched (i starts at 1 and
proceeds 101 = k).

7. Every gap size in the skip list is of size 1, 2, or 3.

The basic 1-d structure is somewhat similar to a 2-3-4 tree [Papa93] and the

resulting structure is similar to a 2-3-4 tree of 2-3-4 trees. Figure 10 illustrates the

composition of a sih gle node and Figure 11 illustrates a 2-d Range DSL..
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The node structure is seen to be strikingly similar to the node structure of the 2-d

Search Skip List. In fact, the only differences are 1) the minki and maxki are the minimum

and maximum coordinates in the current (and not the next) dimension and 2) the existence

of an extra field for the nextdim pointer.

head

Figure 10. The node structure for a k-d Range DSL from [Lamo93al.
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We would like to note that a slight distinction is made between the use of the
terms k-d Range DSL, Range DSL structure, and Range DSL substructure. Unless the
context clearly specifies otherwise, we use k-d Range DSL to refer to the ehtirc data
structure, Range DSL srfucrure to refer to a substructure in one dimen_sion, and the term
Range DSL substructure impliés that we are also considering all Range DSL structures in
the next and subsequent dimensions that.arc' attached to the Range DSL structure that we
are currently considering. Thus, Figure 11 illustrates a k-d Range DSL, Figure 11(a)
illustrates a Range DSL structure, and the Iéange DSL substructure for Figure 11(a)

includes the Range DSL structures in Figures 11(b) and 11{c).

The main advantage of the k-d Range DSL lies in the fact that it is much simpler to
conceptualize and implement than a dynamic range tree structure. It has the additional
advantage that the algorithms are _highly iterative in nature. This implies that some
implcmcniations could outperform some implementétions of a range tree as recursion
~ involves extra overhead, and therefore extra time. Although the analysis th'at we perform
- 1s exact only to a constant factor, it éhould be noted that some of the .hidden constants are

lower than those of the k-d Range AVL tree. This is largely due to the highly iterative

nature of the structure as compared to the hi ghly'recursivc nature of thg k-d Range AVL

tree. Also, as we usually won't have a worst-case structure, the depth of the structure is
_usually less than that of a corresponding range tree .st:_ructure and thus range searches may

be faster than thcy would be in a range tree.
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The k-d Range DSL has the additional advantages that it. is extendible, well suited
for range search in 2 parallel procc_ssing environment, and it pe_rmits multi-dimensional
semi-infinite range queries in an equivalent time. It céntains the 2-d Search Skip List
structufc of [Nick94] as a substructure and'servcs as a multi-dimensional equivalent to the
structure. At any in_terior node in dimension i (i < k), we can acceés the minki and maxki
values for the (1+1)st coordinate by checking the minki and maxki val u.cs of the root node
of the attached substructure; and the 2-d Search Skip .List stucture 18 thereférc a

substructure of any two dimensions.

Future work on the structure would include the incorporatién of the Interval Skip
Lis_t of [Hans92] to provide a multi-dimensional alternative to the R-tree (é.ee {Same90]).
We feel that this would be a valuable index structure as [Hans94] have already made use

of the Interval Skip List to accomplish selection predicate indexing for active databases.

5.2 Building a k-d Range DSIL,

Constructing a k-d Range DSL requires inserting each point into the k-d Range
DSL sequentially, starting with an empty k-d Range DSL. Algorithm 1 of [Larrio95a] can
be used for this. As the k-d Range DSL is consu'uétcd by inserting one point at a time, we
discuss the time and space requircments. for building the structufe in .thc section on
insertion. Note that minkey and maxkey are special constants which delineate the range

that all data points must fall in.
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5.3 Searching a k-d Range DSL

Algorithm 1 may be used to perform a k-d range search on a k-d Range DSL.
Note that it is in some ways more involved than the search algorithm for the range tree as
we don’t'always know at which node in the immediate down subtree. we are to continue
- our search and must allow for this situation. This procedure may also be used for a

member query which is the special case where our search interval is a data point,

The algorithm assumes that the Range DSL structure we are currently searching is
rooted at current and that the query ranges are given in the global variables L and H.
Note that cﬁrrem is set to the head node of the k-d Range DSL. on.‘t'hc first call, that prev
points tb the previous node in our seéarch, that rext is set to fél se on the ﬁfst invocation of

the procedure, and that dim is the dimension we are currently searching (i in section 5.1).

A proof of the validity of the k-d range searcil algorithm can be found in
[Larno95a]. The proof is constructed by considering all of the possible cases where the
search region overlaps the range of our data set (cases 2 through 5 in Figure 12) and
showing that the search al gorithm handles them correctly. There are 13 individual overlap
cases to consider and it is straightforward to show that they are all accounted for, handled

correctly, and checked in the right order by the range search algorithm,
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Procedure Search_RDSL(current: nodeptr; prev: nodeptr; next: boolean; dim: integer);
Var snode: nodeptr; {the node after the last node in the immediate down sub-iree}

Begin {Search_RDSL}

{01} IF current = prev Then snode:= current®.right

{02} ELSE snode:= prevA.right.down; '

{03} IF next Then

{04}  Begin While L{dim]>current*.2#s Do current:= current? right; next:= false; End;
{05} With current® Do

{08]  IF NotlLeafLevel{current) Then

{07} IF not ((L[di_rn] > o) or (H[dim] < m#)) Then

{08} IF ((LIdim] <= #) and (9% <= H[dim])) Then

Begin : '
{091 2) IF {current*.nextdim <> lastdim} Then
{10} Search_RDSL{current*.nextdim, current®.nextdim, next, (dim+1})
{11} Else
{12) ReportAllPoints{current) { All points in sub-DSL in range: report them}
{13} IF current?.right <> snode Then
{14} Search_RDSL{current”.right, prev, next, dim);

End .
(15} Else
{16} IF (H{dim] <= 9#) Then
(17} IF (L[dim] <= #) Then
{18} 3) Search_RDSL{current*.down, current, next, dim)
{19} Else '
{20} 4) Search_RDSL(curreni®,down, current, nexi;= true, dim)
{21} Else {H[dim}> 2#7and s <= L[dim] <= 9#)

Begin .
{221 5) Search_RDSL(current®.down, current, next:= true, dim),
{23} IF current®.right <> snode Then :
{24) Search RDSL(current? right, prev, next, dim};
End

{25} Else
{26} 1) Retwrn {No points are in range in the down subtree of the current node )
{27}  Else : :

Begin {we are at leaf level}
{28} While ((current <> snede) and (H[dim] >= current®.22)) Do
Begin .
{29} IF InRange(current) Then Report{current®.datapoint); current:= current*.right;
End,
. End; {we are at leaf level}
End; {Search_RDSL}

Algorithm I: k-d Range Search in a k-d Range DSL.
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Figure 12. Overlap cases for the k-d Range DSL search algorithm from [Lamo95a].
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Theorem 8: The time, Q(n,k), required to perform a k-d range search on a k-d Range DSL
is O(g*n + 1).
Proof:

The 1-d case is equivaleﬁt to searching a standard 1-3 DSL and we know that this
takes O(lg »n + t) time from [Munr92].

The 2-d case is slightly more involved. The worst case is when we have a .worst

case DSL structure (see Figure 13) in the first dimension (all gaps are of size 1 and the

height of the DSL is rlg nh. In this instance, we have o nodes per level { (where the head

node is taken to be level 0) and our resulting Range DSL structure is very similar to the
range tree. We see that the worst case range search implies that we search a Range DSI.

strﬁcturc in fhc next dimensiqn for one node at every level but the head node and leaf
level. For instance,.in Figure 13, we search nodes € and f in the next dimension and then
conclude our search by checking the node g which contains a sin gle data point. We thus
sea_rch a total of (Ig »n - 1) Range DSL structures in the next dimension, each at a search
time bounded by ©(lg #), for an overall .scarch time of ®(Ig’n + 1) in dimension 2.

An inductive proof shows that Q(n.k) = A(gkn + 1) for a worst case k-d Range

DSL structure and the reader is referred to [Lamo95a] for the details. : [ |
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Figure 13. A worst case Range DSL structure from [Lamo95a).

Corollary 2: A partial match query, Qs(n,k), inak-d Range DSL requires @(lg’n + t) time.
Proof: | | |

By construction of the k-d Range DSL structure, each node in dimension i (i <k)
has a pointer to a Range DSL structure in dimension i+1 that contains all the points in th;
subtree, for which it is the root node, ordered on the i+1 coordinate. As such, attached to
the root node of every Rahgc DSL structure in dimensioni (i <k)isa Range DSL ordered

on the i+1 coordinate.
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Ifdimension iis one of the s dimensions that we search, than the search algorithm
proceeds normally in the Range DSL siructures in the dimension. However, if dimension i
is not one of the .s dimensions to be searched, then we merely proceed from the root node
of the Range .D.SL structures in dimension i to the root node of the Range DSL structures
in dimension i+1. In this way we search structures in only s of the k dimensions of the

structure and it is straightforward to verify that this requires only eq g’n) time by

construction of the k-d Range DSL. o [ |

Fact: The time, Qu(#,k), to perform 2 member query in a k-d Range DSL is &(lg »).
By definition of the structure, if a data point is in the structﬁrc then it is indexed by
the first dimension. Since all coordinates in a dimension are unique, by assumption, one

can verify that a member query can be completed in ©(1g ») time. ' n

5.4 Insertion in a k-d Range DSL

Insértion proceeds similar to that of the 1-3 DSL and the 2-d Scarch Skip List of
[Nick94)] with thé only dit;fcrence being that we must also insert the node into the
appropriate Range DSL substructures in the next dimcnsion._ Note that the algorithm
implicitly relies on the existence of the global variables head, tail, bottom, and lastdim as
previously defined along with the concepts of d.own subtrees and gap size. In addition, we
assume that all of the K; coordinates are unique and that the data point isn’t already in the

k-d Range DSL.
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The (top down) insertion algorithm, in summary, is as follows:
(D is the node being inserted and h is the height of the skip list in the current dimension)

1. Start at the head node of the Range DSL.

2. If the gap we are about to drop into is of size 1 or 2, determine where to drop and alter
the m or M value of the dropping node as appropriate.

3. If the gap 1s of size 3, we first raise the middle element of the gap by allocatiﬁg anew
node C to create two gaps of size 1. We then drop as appropriate and alter the m

and T values of the dropping node and the node C as necessary. If raising an

element implies the existence of two elements at depth 0, we must raise the height
of the skip list by creating a new header node.

4. If we are not in the last dimension, we must insert the new node D into the Range DSL
structure rooted at the nextdim field of the last node visited at each level except for
the leaf level.

5. When we reach the bottom level, we insert a new element of height 1. This new
element has a m and M value = K.

This algorithm allows only gaps of sizes 1 and 2 on the path being traced down to
the leaf level and the resulting skip list with a newly inserted element is indeed a valid 1-3

skip list. In addition, since the m and Tl values are always determined with respect to the

new point’s K; coordinate value, the m and values for a node are always correct.

We find that a complete analysis of the k-d Range DSL is rather lengthy, so we are
content to summarize the important theorems and results and refer the reader to

[Lamo95a] for lengthy proofs, calculations, and non-essential details in our analysis.

The following lemma is used in determination of the storage cost and the worst
- case rebuilding cost which are necessary for one to determine the update cost functions

- and preprocessing cost.
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'Lemma 6: The number of nodes in dimension k iﬂ a k;d Range DSL is ©(x 125" n).
Proof:

"This is easy to see for dimension 1. Assuming a worst case DSL (see Figure 13),
we have the maximum (Ig n + 1) levels which gives us our maximum of 2z - 1 nodes
‘which gives us our result of ©(n) nodes in the 1-d Range DSL, as desired.

The k-d case turns out to be much more involved to calculate, but upon careful

investigation, where we assume that all of the Range DSL structures are worst case DSL

structurcs; we find that we have 2° Cﬁflgc"z structures of #/2” points in dimension k. This
expression is equivalent to equation (4.1), as the number of nodes is boﬁnded by twice the
number of points, and an asymptotic approximation on equation (4 1) gives us our result.
As the calculation is involved and_ lengthy, the reader is referred to [Lamo95a] for a
detailed calculation. The summation in equation (4.1) can be abproximated by @(1g""'n) as
the largest term in the summation is of ©(1g"?n) and there are O(lg n) terms in the

summation. This approximation thus gives us &(n 1g"'#) nodes in dimension k. ]

We now prove our amortized worst-case bound for insertion in two steps. We-
define a simple insertion as an insertion which does not cause rebuilding to be performed
and thgn prove that the time required for a simple insertion, denoted Is(n.k), i$ bounded by
©(Ig"n). After this, we prove that the time required for any necessary rebuilding over a
sequence of n iﬁscrtions, Rgl(n,-k)_, is of ('-j(n lg"'ln). We are then able to prbvc that our

amortized worst-case insertion cost function, I{(n,k), is of @(ngn). We can then go on to
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prove our worst case bound for deletion analogously. Note that we define a simple

deletion analogous to the definition of a simple insertion.

Theorem 9: A simple in.sertion, Is(n,k), in a k-d Ran ge DSL requires ©(1g"x) time,
Proof: |

The proof depends on the observation that the time required for insertion of a node
into a 1-d Range DSL depends on the time required to find the location where the new

point is to be inserted as the operations of creating a new node and inserting a node

require constant time {(as only a constant number of values and pointers need.to be
changed). This tells us that insertion takes &(lg ») time in the 1-d ¢ase. |

Tﬁc proof that Is(n,k) = ©(lg"n) fqllows from the prdof that Q(n,k) = @(1gkn + t).
In dimension k we must insert the new point into a total of ®(Ig""'n) Range DSL
structures associated with the Range DSL structures we inserted the new point into in
diménsion (k-1). Asittakes O(lg nj time to insert t};e point into a single Range DSL

structure, we see that it takes ©(Ig*n) time to insert the point into a k-d Range DSL. W

Lemma 7: The time, Ry(n k), to do ﬁeéessary rebuilding for a single insertton in a k-d

Range DSL is given by &(n 1g¥'n).

Proof:
" In the worst case insertion a split propagates all the way up to the head node in
dimension 1 and we find that we have to do rebuilding of two Range DSL substructures in

the next dimension corresponding to each level of the Range DSL structure in dimension




1, except for the head node, which we propagate up after creating a new level consisting
of two nodes to go between it and the level it used to connect to in order to avoid doing
unnecessary work.

The largest Range DSL .substructures that we have to rebuild are at depth 1 and
they contain roughly n/2 points each. Rebuilding of a Range DSL substructure attached
to depth 1 takes @(n 1g¥2n), as we can use the trick of ﬁresortin g found in [Bent80a] to
rebuild a k-d Range DSL structure in ©(n 1g°"n) time. This time bounds the time needed
-to rebuild the Range DSL substructures in the next dimension at all other levels and, since
we have ©(lg n) levels, we can thus bound the rebuilding time for the worst case insertion

at ©(n 1g%'n), as desired. ; u

Lemma 8: The time, Rg(n,k), to perform all necessary rebuilding over a sequence of n
insertions in a k-d Range DSL is bounded by ©(x 1g"n).
Proof: | :-

The worst case Insertion is guaranteed to occur once, and only oﬁce, in a sequence
of O(n) insertions when we start with » data points in the k-d Ran ge DSL (see [Fred81]
and [Will85a]). Likewise, the second worst case insertion is guaranteed to occﬁr twice,
and only twice, in a sequence of O(n) inscrti'oﬁs. The pattern continues until we hit the
base case for rebuilding which is when we rebuild at depth (h-1) and this océurs at most
nf2 times in a sequence of &(n) insertions. |

Examining the pattern, we see that the work involved in rebuﬂding overa -

sequence of n insertions is closely approximated by equation (4.2). The summation is
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bounded by O(n 1g"'n) ([Lamo9_5a]) and this completes our proof that the time, Rg(n,k),

_ to do any necessary rebuilding over a sequerice of 7 insertions is given by ©(n 1g¥'z). =

Theorem 10: The amortized tirne, 1(n.k), to_perfomh a general insertion in a k-d Range
DSL is &(g"n).
Proof:

The proof follows directly from Theorem 9 and Lemuima 8. A sifple insertion is
bounded by ©(1g"») and the amortized rebuilding cost for a general insertion is (g n).

Thus, an insertion can be seen to take @(lgkn) time, _ ||

Theorem 11: The space, S(n.k), required for storage of a k-d Range DSL is ©(z 1g*n).
Proof:

Each node in the k-d Range DSL has three pointers aﬁd three data fields and thus
occupies O(1) space so we need only.detemﬁne the fnaximum number of nodes in the k-d
Range DSL to determine the space r_eﬁuired. From Lemma 6, we know that dimension k
requires &(n lgk'l.n) space. As we are performing an asymptotic analysis, we see that this
term is the dominant term in our cxprcssion for storage and we thus conclude that we

require &(n lgk'ln) space for storage, S(n,k). [ |
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Theorem 12: The time, P(n,k), required to dynamically build a Rang_e DSL is ®(n lg"n).
Proof:

As a k-d Range DSL is constructed dynamically by inserting one pdint at a time
into an initially empty k-d Range DSL, we compute the construction time of ©(z 1g4) as

each insertion is bounded by @(1gs) and there are n of them. ' [ ]

5.5 Deletion in a k-d Range DSL

Deletion proceeds similar to that of the 1-3 DSL and the 2-d Search Skip List of
[Nick94], with the only difference 5cing that we must also delete the node from the
appr_opria_tc Range DSL substructures in the next dimension. Agai‘n, note that the
algorithm implicitly relies on the global variables head, tail, bottom, and lastdim as
previously deﬁncd and the concepts of immediate dowh subtree and gap size. In addition,
we as.sume that all of the K; coordinates are unique and that the data point isn’t already

located in the k-d Range DSL.

The (top down) deletion algorithm, in summary, is as foltows:
(D is the node being deleted and h is the height of the skip list)

1. Start at the head node of the Range DSL.
2. If the gap we are about to drop into is of size 2 or 3 then drop and if the m or value
equals that of the node about to be deleted, record the node in a path list P.
If the gap we are about to drop into is of size 1 then
IF G is not the last gap in the current level, then
IF the following gap G’ is of size 1 then
- merge G and G’ (lower the separating element)
ELSE ' '
: remove an element from G’ and insert it into G
ELSE
IF the preceding gap G’ is of size 1 then
merge G and G’ (fower the separating element)
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ELSE
remove an element from G’ and insert it into G. -

3. Continue until we reach the bottom level, removing the node from the associated Range
DSL substructure in the next dimension for the last node visited on each level on the
way down, where we remove the element of height 1. If the node to be deleted is not
of height 1, we swap with its predecessor (successor).

4. Follow the pointers in the list P to reestablish the m and T values as necessary,

This algorithm allows only gaps of sizes 2 or 3 on the path being traced down to
the leaf level and therefore the resulting skip list with a newly deleted element is indeed a

'valid 1-3 skip list. In addition, the m and T} values of the nodes on the deletion path are
adjusted as necessary with respect to the deleted node’s m and M values so the m and M

values for a node are always correct,

Theorem 13: The time, Ds(n,k), to perform a simple deletion of a point in a k-d Range
DSL is 8(1g ).
Proof:

~ The proof depends on the observation that the time required for deletion of a node
in a 1-d Range DSL depcnds on the time required to find the node being deleted aé the
operations of renioving a node and borrowing a node require constant time (as only a
coﬁstant number of pointers and values need to be chan ged). Thus, the deletion of a point
frém a 1-d Range DSL takes ©&(Ig ») time.

The proof that Ds(n,k) = @(lg*n) follows from the proof that Q(n,k) = OUgn +1).

In dimension k we must delete the point from a total of @(Ig"'n) Range DSL structures

associated with the Range DSL structures that we wish to delete the point from in



dimension k-1. As it takes ©(Ig n) time to delete the point from a single Range DSL

structure, we see that it takes ©(1g*s) time to delete the point from a k-d Range DSL.

Lemma 9: The time, Rp(n,k), .to db any necessary rebuilding for a single deletion in a k-d
Range DSL is &(n Ig"'n).
Proof: |
In the worst case deletion, a merge propagates all the way up to depth 1 in
dimension 1 and we find that we have to do rebuilding of a Range DSL substructure in the
next dimension corresponding to each level of the Range DSL structure in dimension 1.
The largest Range DSL substructure that we have to rebuild is at depth 1 and it
contains roughly n/2 points. Rebuilding of a Range DSL substructure a.ttached to depth 1
takes &{(n lgk'zn) time as we can use the trick of presorting found in [Bent80a] to rebuild a
k-d Range DSL structure in ©(x 1g*'#) time. This time bounds the time needed to rebuild |
the Range DSL substructures in the next dimension ;u all other levels and, since wc; have
©(lg n) levels, we are thus able to bound the rebuilding time for the worst case deletion ét

B(n1g"n), as desired. m

Lemma 10: The time, Rsp(n,k), for all necessary rebuilding over a sequence of n deletions
in a k-d Range DSL is ©(x 1g*"n).
| Proof:
The worst case deletion is guaranteed to occur once, and only once, in a sequerice

of ©(n) deletions when we start with » data points in the k-d Range DSL (see [Fred81]
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and [Will85a]). Likewise, the second worst case deletion is guaranteed to occur twice,
and only twice, in a sequence of ©(n) deletions. This pattern continues until we hit the
‘base case for rebuilding which is when we rebuild at depth (h-1) and this occurs at most
n/2 times in a sequence of ®(n) deletions.

Looking at the pattern, we see that the work involved in rebuilding over a
sequence of n deletions is given by the summation of equation (4.2) as we have to rebuild
2' Range DSL structures of #/2' data points over the course of @(n) deletions. The largest

term is of @(n 1g"?x) and so we can bound our expression at @(n Ig¥'n), as desired. B

Theorcrh 14: The amortized time, D(n,k), to perform a general dclétion in a k-d Range
DSL is ©(g*n).
Proof:

The proof follows dir_ectly from Theorem 13 and Lemma 10. A simple deletion is
bounded by ©(Ig*n) and the amortized rebuildiﬁ g coist for a general deletion is ©(Ig" " n).

Thus, a deletion can be seen to require @(lgkn) time. : |




6 LOWER BOUNDS

6.1 Optimal Balance

We claim that the k-d Range DSL and the k-d range tree maintain dynamic balance
and that they are within a factor of O(lgt'n) of being optimally balanced. We illustrate
this fact by defining the minimal .optimal balance and dynamic balance cost functions. We
remind the reader that we assume our records are from a commutative semi group as we

use Fredman's results [Fred81] regarding lower bounds on the worst-case cost functions.

The optimal balance cost is defined as the minimum product of the worst-case
storage, preprocessing, insert, delete and range search cost functions. The dynamic
balance cost function, a factor in the optimal balance cost function, is defined to be the

minimum product of the worst-case range search, insert, and delete cost functions.

Before llustratin ¢ the minimal optimal balance cost and dynamic balance cost, we
first show that th'e minimal prcproccs’éin g cost function, Po(n,%), and minimal update cost
functions, Io(n,k) and Do(#n,k), are optimal. Fro_m {Fred81] we know that the work
involved in a single insertion or deletion is dependent not only on the number of data
points in the data structure, but also on the sequence of previous insértions and deletions.
From [Fred81], we know that any sequence of » update operations in k-d must take |
Q_(n lgkn) time in the worst case. This tells us that Po(n.k) rﬁust be of ®(n lg"n) and that,

using an amortized worst case analysis, Io(n,k) and Do(n,k) must be of @(ngn).
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[Fred81] tells us that the minimum k-d range search time, Qo(n.k), is Q(lgn),
where we use the basic definition of range search which specifies only the location, and
not the reporting, of the points in range. We also know that the minimal storage

requirement, So(r,k), is always €(n) as each datapoint must be stored at least once.

.Thcorcm 15: The minimal optimal balance cost function for a data structure is given by
Buo(n.k) = Q(ntlg™n).
Proof:

The minimal optimal balance cost is .given by:

Po(nk) * Solnk) * Io(n.k) * Dolnk) * Qo{nk) =

On 1gr) * Q(n) * g n) * O(Ig"n) * O(g*n) = Q(n'1g*n) |

We define the optimal balance cost as the pr;)duct of the worst-case relevant cost
functions since a product captures interdependencies between functions that summations
cannot. _The inspiration behind the definition comes from [Bent80b] in which Bentley
asked: what bounds exist on the product of P(n,k), S(n,k), and Q(:;,k)? By restating the
question in the dynamic framework and using Ffedman’s model, we are able to determine
aclass of data structures that are in many ways optimal for use in a dynamic environment.
The class of structures that we are referring to are the class of dynamically balanced

structures which are given by the following theorem and optimal for k-d range search.
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Theorem 16: The dynamic balance cost of a structure is given by Dofn.k) = @(1g*n).

Proof:

The dynamic balance cost is given by:

To(n,k) * Do(n,k) * Qo(nk) = etlgkn) * @(Ig"n) * O(lghn) = Og™n) | =

Thus, when we say that a structure is dynamically balanced, we are really saying
that the three dynamic cost functions of range seafch, ins_ertion, and deletion are of

optimal compléxity (within the model that we use).

We use Fredman’s [Fred81] commutative semigroups as th.é analysis they permif i
* more realistic than that obtainable from decision trees, providing us with a combinatorial
.sctting which yields stronger bounds than those which can be derivéd from decision trees.
It makes the more realistic assumption that the data points are from an ordered key space
where each data point is a member of an arbitrary cc;mmutative semigroup. The cost is
accounted for in terms of arithmetics over the semi groups and Knuth's [Knut73] definition
of an orthogonal range query is equivalent to Fredman’s formulation where we choose our
commutative semigroup to have set union as its addition operation. We note that
Fredman assumes that the cost of a single semigroup addition is 1 time unit. This implies

that the lower bounds obtained are actually stronger than those achievable in practice.
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Theorem 17: The k-d range tree and k-d Range DSL are dynamically balanced.
Proof:
The dynamic balance cost of the structures is given by

To(n,k)*Do(n,k)*Qo(nk) = Alg*n) * B(gn) * B(Ig*n) - A(lg*n) = Dolnk). |

Theorem 18: Assuming an oﬁtimally balanced data structure, @(lg*s + t) time complexity
is optimal for a k-d range search which reports the t points in range.
Proof:

The data structures in the class of optimally balanced data structures are dynamic
and based on Fredman’s commutative semigroups -[FredSI]. This &:lls us that Q(lgkn) is -
the lower bound on the worst case time complexity of a single range search which locates
the points in range. As structures exist where O(1 gkn) is the worst case search time,
@(lg*n) is optimal for a range search which locates the points in range. Thus, @I(ngn +1)

is optimal for a k-d range search which reports the t points in range. [ |

The proof that Fredman uses to show that Q(ﬁ lg"n) is the lower bound on a
| sequence of n dynamip operations, which implies that Q(1g*n) is the lower bound on a
single dynamic operation, is difficult and involved. As such, we do not sumrharize itin
this thesis. .In its place, we present an illustrative argument as to why ©(1g*n) must be the

lower bound for k-d range search in an optimally balanced structure.
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Any optimally balanced data structure must require preprocessing of B(n lg"n),_an
update time of @(lgkn) (using an amortized analysis), and storage of Q(n) as these costs
are minimal for any such structure. This gives us a minimal balance cost of Qxnllg™*n),
where x stands for range query time. This tells us that our range query cost function must
be O(lgkn) if we are to maintain a rninir'na.l balance. From {FredSl] we know that Q(1 gkn)
is minimal in the model we use and thus ©(Ig») must be minimal for a ran gequeryona

structure that is optimally (and dynamically) balanced.

Theorem 19: The k;d range tree and the k-d Range DSL are optimal for k-d range search
in the CL;;xss of dynamically balancéd data étructures. ) |
Proof:

Both the k-d range tree and the k-d Range DSL have a k-d range query cost
function of ©(Ig"n + t), where t is the reporting time, and are thus optimal for k-d range

search in the class of dynamically balanced data structures. L

Theorem 20: Our minimal optimal balance cost, BMO(n,k), of Q(n21g4“n) holds in the
random access model of computation as well.
Proof:

Béntley’s k-ranges [Bent80b] are representative of array-based data .Structurcs that
exist under the random access model of computation and not under the pointer model of
compu.tation that is normally assumed. Muiti-level non¥overlai)ping k-ranges are the n’idst
efficient k-range structures (see [Bent80b] of Sec. 3.2.5) and, therefbre, we ﬁse them to

show that our minimal optimal balance cost holds in the array model of computation.
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We know that the cost functions for Po(n,k), So(n.k), and Qu(n.k) are given by
Po(n,k) = O n 1g 1), So(n.k) = ®F'n ), and Qo(nk) = O n" 1g n). If we can show
that Po(n,k) * So(n.k) * Qo(n.k) is Q(n’1g%*n), then, since Io(n,X) and Do(nk) are always
l&B(lg"n) in a dynamization of any structure, by [FredS]], dur theorem will be proved. The

product Po(n,k) * Sol(n,k) * Qo(n,k), equal to @(6ﬂ k‘3nznwlg2n), is minimized when €=1g n

(giving us a range tree structure). Letting €= 1g n gives us Po(n,k) * So(n,k) * Qo(n,k) =

@(#*1g*'n) and this is Q(r’1g%n). _ o

6.2 Minimal Update Cost

In sections 4.3, 5.4, and 5.5 we have seen that the worst case dynamic updates
require @(n 1g" ) time to complete. This is because, as pointed out by [Luek78],

rebalancing a node may require that the associated structure be completely rebuilt.

An obvious and important question for one to ask is the following: Are there any
modifications to the structure or associated algorithms for k-dimensions that one could

use to improve the worst-case update time?
We could try the technique of clustering as described in [Bent79b] to reduce the

update time. The idea is to decompose our structure into #/c clusters of ¢ elements and

store each cluster as the data structure of our choice. This reduces the update time to
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Un,k) = ©(c 1g""c) while increasing our query time to Q(n,k) = @(—rl 1g¥c +1). This tells
c

us that we must have ¢ 2 »n'” as U(n.k) must be greater or equal to Q(n,k) as the update
time is dependent upon the query time. This implies that U(r.k) is Q(n'*1g"x"?) and this

is not a considerable improvement for large z.

In [Bent80c], Bentley and Saxe in their paper on decomposable searching
problems have also noted that we can never go below the n*” limit when balancing query
and update times. By balancing, we imply that decreasing one cost function below n'?

increases the other above #'” as the product of the cost factors, n/c and c, must equal 7.

An idea and methodology which is similar to that of clustering appears in [VanL80}.

We might also try arhortizcd rebuilding where we postpone excessive rebuilding
until necessary to distribute the ®(n 1g5" 1) rebuilding caused by a sequence of ©(n)
updates over the next ®&(r) updates in an attf;mpt to keep the rebuilding needed for a
single update minimal.' This is thé approach taken by Willard and Lueker in [Will85a]. A
structure is only completely rebuilt when necessary and when a structure needs to be
rébuilt, it is marked as invalid and placed into a priority queﬁe. Substructures attached 1o

lower levels have a greater chance of becoming invalid and are given higher priority. -

After an update has been performed and any structures that have become invalid
marked as such and added to the priority queue, a structure(s) is (are) removed from the

queue and (partially) rebuilt until approximately ¢ Ign work has been performed for some
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predetermined constant c. Willard and Lueker’s structures maintain the invaﬁant that if a
subst_ructuré attached to a node is invalid, then the substructures attached to the child
nodes must be valid. Thus, priority is assigned to the structures needing to be rebuilt such
that the substructure of a node should be completely rebuilt before it is again needed in a

rotation which would invalidate another substructure (and the invariant) in the rotation.

In theory, according to [Will85a], the complex method of Willard and Lueker can
be used to insure that no single update requires more thaﬁ O(lg*n) time to complete, but in
practice one cannot use the method for reasons that are clarified in Theorem 21. Tt is an
open question whéther a good implementation of the amortization algorithm would

provide us with a better upper bound on the worst-case update function.

Theorem 21: The worst case cost for a single update, U(n,k), is Q{n) for k > 1.
Proof’ |

Th¢ amortization method, which is the most efficient method, fails for large n since_
one must rebuild an entire range tree structure in one dimension once it is started. In the
worst case we have to rebuild a k-1 dimensional substructure containing ©(n) points.
Rebuilding of a structure of @(n) points requires @(n-) overhead which is greater than
O(g"n) for even moderate n (e.g. n > (k+c.)ﬂ‘+°) forany ¢ 2 2).

The reason we must rebuild an entire structure in one dimension is that we would

otherwise have to maintain the &(n) overhead between updates to maintain the state of
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rebu'ilding for a partially rebuilt structure. An overhead of &(n) implies an Q(n) rebuilding -

cost and thus, in the worst case, a single update is of Q(n) time complexity. . n

~ This theorem invalidates the claim of Willard and Lueker {(which was restated in
[Edel811), who state that a single update can be completed in O(lg*x) time [Will85a], as
we have shown the minimal rebuilding time in the worst case to be at least of (n)as a

range tree structure in one dimension must be completely rebuilt once it is started.

However, the worst case rarely happens, and a modification of Willard and
Lueker’s method for the k-d Range AVL tree and k-d Range DSL, which postpones
unnecessary rebuilding, may give update algorithms that are noticeably faster in

implementation than the analysis would lead one to expect.

Willard and Lueker state in their paper that r.'.he.constant factor ¢ is quite large and
that the bookkeeping required for the approach is extensive and expensive. As can be
seen from our analysis, the method could be inefficient for all but the largest data sets and
our analysis agrees with their claim. We can thus conclude that in all but the most
exceptional of circumstances, the worst case update does indeed require ®(z 1g“"'n) time

to complete and that our analysis of the k-d Range AVL tree and k-d Range DSL is valid.
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7 EXPERIMENTAL RESULTS

7.1 Experimental Setup

The k-d Range AVL tree and the k-d Range DSL were expérimentaily analyzed
using the methodical approach described below, in an attempt to facilitate an accurate
comparison of their actual ruﬁ times. We are interested in the average insertion time, the
average deletion time, and the average search time as the worst-case is not 6nly rare for
large structures but difficult to specify. In this section we butline the general approach
that is used in the expcrirﬁcntal analysis of the k-d Range AVL tree in section 7.2 and the

k-d Range DSL in section 7.3. Section 7.4 compares their perfonna_nce.

Both structures were tested on randomly generated data sets which were uniformly
distributed thfoughout a k-dimensional spacé. The's_u'uctures were analyzed based on
their constmctjon times, destruction times, and ran gé search times. It is the construction
and destruction times that allow us to approximate the "hidden" constants of our big-oh
analysis of the insertion and deletion algorithms that we performed in Chapters 4 and 5.
Our analysis of the update times is based on these constants as they allow us to fnake a

direct comparison of the structures.

" The construction time is defined as the time to build a structure by inserting »n
points sequentially into an initiaily empty structure. The destruction time is defined as the

time to dispose of a structure by deleting one data point at a time until we are left with an
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empty structure. The range search time is simply the time to execute a k-d range search

for a given k-d orthogonal range query.

The range search time is recorded for 8 different query windpws that cover
0, 5, 10, 25, 50, 75, 90, and 100 % of the search space, respectively. The query windows
are rcstrictcd such that. they are completely contained within the search space (inclusively)
and contain the required percentage of data points. Algorithm 2 was used tb generate the

random query windows.

Procedure GenerateQueryWindow(L, H, qws, n, k, dp);

{L and H store the lower left and upper right corners of the query window}
{gws is the fraction of points that must be contained within the query window}
{n is the number of points in the structure and £ is the number of dimensions}
{dp is an array which holds the n data points}

{random(n) returns a random integer between 1 and n, inclusive}

Varr: integer; {stores a random dimension between 1 and k}
1: integer; {a loop control variable} ' '

Begin
r:=random(k);
L{r}:=random (n - qws*n); {randomty determine left endpoint of the interval for dim r}
H[r):=L{r] + (qws*n) - 1; {the left endpoint uniquely determines the right endpoint}

Fori:=1tok Do {now we must determine the intervals for the other dimensions}
IFi<>r Then {don’t re-calculate the interval for dimension r}
L{i]:= min{dplj.il: L[j.x] £dplj,r] <H[j.1], 1 £j <n}
H[i]:= max {dp{j.i}: L[j,r] <dpij,r] £H[j,r], I£j < n}
EndIF
EndFor

End;

Algorithm 2. Procedure for generating a random query window for a k-d range search.
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To allow for an accurate analysts, each structure is constructed, searched for the 8
* different query windows, and destroyed five times. Also, for each structure that is built,
each range search is performed 1000 times in order to bring the search time into the high
millisecond range so that accurate timings may be obtained as a single range query is

extremely fast, requiring only a few milliseconds for the largest structures we build.

Three test runs were performed on 1, 2, 3, and 4 dimensional data for data sets
that ranged in size from 100 to 1700 data points, as illustrated in Table 1. A single test
run consisted éf five passes over 25 data structures whose sizes are given in Table 1.
Also, the data sets were -regcncrated with each test run. A single ﬁass consisted of

constructing, searching, and destroying a single data structure.

Table 1. The sizes of the randomly generated data sets that were used in initial testing.

Number of data points in the randomly generated datasets
100 300 500 700 %00 1100 1300 1500 1700
100 . 300 500 700 900 1100 1300 1500
100 300 500 700 %00
100 300 500

After the data obtained from the initial three test runs was analyzcd and
interprctéd, we performed three further test runs, which consisted of three passes over 12
data structures whose sizes are given in Table 2, to yield further results which we could
use to determine the accuracy of our initial test runs and interpretations. These further
randomly generated, uniformly distributed data sets also contained 1, 2, 3, and 4

dimensional data and ranged in size from 1000 to 3500 data points.
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Table 2. The sizes of the randomly gencratéd data sets that were used in further testing.

dim Number of data points in the randomly generated datasets
1 2500 3000 3500
2 2000 2500 3000
3 1500 | - 2000 | 2500
4

1000 1500 2000

The timings were taken using SUN SPARCompiler Pascal’s built in function
sysclock, accurate to at least 1/60 of a second, which keeps track of the amount of system
: time used and.retums an integer result in milliseconds.” All of our construction and
destruction times are given in milliseconds and al! of our search times are in micrOSt;cbnds.
Due to fhc size of n 1gn as compared to the actual run times, the constants for the
insertion and deletion times of the data structures, calculated according to the following
equation, were normalized by a factor of 10,000:

actual run time

actual run time 10000 1 millisecond : o
c= — X — = (7.1)
1 millisecond ~ nig*n) n(lgk )
10,000

The factor used in the computation of ¢, z 1g# / 10,000, can be found in Tables 3 and 4.

Table 3. Valuesof n lgkn /10,000 for the values of n and k in Table 1

100 300 500 700 500 1100 1300 1500 1700

0.07 025 045 066 088 1.11 1.34 1.58 1.82
0.44 2.03 402 625 867 11.23 1391 1670
293 1672 3604 39.10 835.07

19.48 137.55 323.09
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Table 4. Values of » 1g"# /10,000 for the values of » and k in Table 2.

dim #pts as per Table 2 #pts as per Table 2 #pts as per Table 2
1 2.82 3.47 4.12
2 24.05 _ 31.85 40.03
3 176.17 : 263.72 - 359.55
4 986.38 1858.76 2891.94

Apprbximatin g the constant for the range search cost function, which is ¢ Ign + 1,
is extremely difficult for a number of reasons. The range search function is highly
dependent on the timf: needed to report the t data points in range and the time needed to
open and close the output file, both of which are extremely difficult to determine
accurately. The time to report a point is in the microsecond range and the time to open a
file for Writing and close it requires only a few milliseconds. Also, Ig*n is very small,
especially compared to the values of n 1g" , and is in the microsecond range for many of
the searches we perform. As we cannot accuratély time the reporting time t, the time to
open and close a data file (as these make calls to the.operating systeﬁl w.hich, in practice,
take variable time), or the time to perform the actual k-d range search, we do not attempt
o approximate th¢ constant for the range search function and simply analﬁe the average

run times (which are highly dependent on k and t).

The method we use for analyzing the searc;h times is to determine whether or not
the search times increase appropriately with an increase in the size of the query window.
For example, wh:cn the query window increases from 5% to 10% coverage, the searc.h
time should approximately double if the search is performed on t.he. same structure under

the assumption that t dominates the search time (which our results seem to indicate).
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Also, we plot the search times relative to k*t. If t dominates the search time, then

. h ti o o
a graph which plots gﬁr_}({:*t_rm , for each range search performed in dimension k with t

points in range, should be approximately constant (as k*t should grow linearly relative to
the search time when t dominates the actual search time). This provides us with an easy

visual check of whether or not the search algorithm is behaving as expected.

Our methodology is to avefage the consﬁ*uction, search, and destrucﬁon times for
each structure built (where one structure corresponds to o.ne data file) and determine our
COnsiants and approximate run times__ from these averages. Since “;c have built a number
of structures fdr cach n and k, we can be reasonably confident in our analysis. As

| building, searching, and destroying 483 data structures implies that we have many tables
of raw data for each of the k-d Range AVL Tree angl the k-d Range DSL structures
{which summarize construction times, destruction times, and search times), we only
summarize the results in the sections that follow and refer the reader to the appendices for

additional data and results.

The testing was performed on sol, a Sun SPARC 1000 workstatton, under SUN
OS 5.3. Sol has 640 MB of RAM and 820 MB of hard disk space available for use as
virtual memory. Sol is located in the Computing Services Department of the University of

New Brunswick and is a two-processor multi-user system which runs at 50 MHZ. Sol is
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heavily used throughout the campus and testing took place between Thursday January 4

and Wednesday January 16, 1996 when usage was usually below normal.

The p.seudo-codc for the test runs can be found in Algorithm 3. It contains
bseudo-code for the main driver used in testing both the k-d Réngc AVL tree and the k-d
Range DSL along with pseudo-code for the driver procedures to accomplish the
construction, searching, and destruction of the data structures. The ¢omplete test driver
code for the k-d Range AVL Tree can be found in Appendix U .and the complete test

driver code for the k-d Range DSL can be found in Appendix V.
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Driver Test_k-d_Data_Structure;

Var i, j, k, I: integer; {loop control variables )
numruns: integer;  {how many runs are we performing? - we perform 3 runs}
numpasses: integer; {how many times we build, search, and destroy a structure?}
(5 passes for initial testing and 3 passes for further testing}
nimdim: integer; {number of dimensions - we test for 1 to 4 dimensions}
numqw; integer; {number of query windows - we use 8 for all of our test runs}
numsearches: integer; {number of searches we perform per query window}
{we perform 1000 searches for every query window}
nd: array of integer; {holds number of data sets per dimension}
_ {given by Tables 1 and 2}
basenumpts: integer; {number of data points is always a multiple of this number]}
{we use basenumpts = 100 for all of our testing}
ndpts: array of array of integer; {indicates number of data points in a data set}
{given by Tables 1 and 2}
datapoints: array/list of coordinates; {the data points for our structure)
: {uniformly distributed and randomly generated}

Begin {Main Driver}

for i:= 1 to numruns do
for j:=1 to numdim do
for k=1 to nd[j] do
for I:= 1 to numpasses do
begin {main testing loop}
read in datapoints from a datafile;

BUILD the structure and output the construction time
SEARCH the structure for the given query windows and save the results
DESTROY the structure and output the destruction time

end; {main testing loop}

End. {Main Driver}

Algorithm 3. (a) Main driver routine for testing the k-dimensional data structures.
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Sub-driver BUILD
Var getstarttime, getendtime, m: integer; -

Begin
getstarttime:= sysclock;
for m:= 1 to ndpts[j,k]*basenumpts do
insert datapointsm];
getendtime:= sysclock;
output(getendtime - getstarttime);
End;

Sub-driver DESTROY
Var getstarttime, getendtime, m: integer;

Begin
getstarttime:= sysclock;
for m:= 1 to ndpts{j,k]*basenumpts do
delete datapoints[m];
getendtime:= sysclock;
output(getendtime - getstarttime);
End;

Sub-driver SEARCH
Var getstarttime, getendtime, m, n: integer;

Begin
open output file for writing; .
for m:= 1 to numqw do
begin .
getstarttime:= sysclock;
for n:= 1 to numsearches do _
search the data structure for the given query window and output
the points found in range to the output file;
getendtime:= sysclock; .
output(getendtime - getstarttime);
end; :
close the output file;
End;

Algorithm 3. (b) Sub-driver routines for testing the k-dimensional data structures.




7.2 An Analysis of the k-d Range AVL Tree

In this section we experimentally analyze the k-d Range AVL Tree of chapter 4.
The construction and destruction times for all five passes of all three runs for randomly

gcnerated datasets whose sizes are given in Table 1 in section 7.1 can be found in

Appendix A and their averages can be found in Appendix B. Tables 7 and 8 below

summarize the construction and destruction times for the initial test runs.

The constants, as computed by equation 7.1, corresponding to the construction

and destruction times of Appendix A can be found in Appendix C and the constants
corresponding to the averages of Appendix B and their standard deviations can be found

in Appendix D and are summarized below, by dimension, in Tables 5 and 6.

Table 5 -

Average insertion constants for initial testing of the range AVL tree
dimension run 1 un2 un 3 all runs
2 36.47 45.53 2635 36.12
3 47.00 . 31.04 34.44 _ 37.49
4 ' 24.64 34.46 36.25 31.79

_ _ Table 6

Average deletion constants for initial testing of the range AVL tree
dimensions run 1 run 2 run 3 all runs
2 _ 4.69 12.30 2.80 6.59
3 1.33 _ 0.82 1.23 - 1.13

4 1.33 0.24 0.37 - 0.65
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Table 7
Average construction times (milliseconds) for initial testing of the range AVL tree

dim Construct time averages for data set sizes given in Table 1
1 2 2 7 9 4 10 7 15 18
2 44 92 87 70 114 9% 181 237 |
3 23 305 595 980G 1523
4

16 1874 4968

Table 8 :
Average destruction times (milliseconds) for initial testing of the range AVL tree

dim Destruct time averages for data set sizes given in Table 1
1 1 2 7 14 3 12 11 13 19
2 0 8 17 18 30 23 49 42 '
3 1 10 14 25 57
4 14 28 122 '

‘Notice that Tables 3 and 6 only contain data vatues for dim‘ensioris 2,3, .and 4,
This is done because the construcfion and destruction times for dimcnsipn 1 are very low
and thﬁs inaccurate. One notices that many of the values are 0, 16/17, 33/34, and 50 and |
these values correspond to clock ticks of 1/60 of a sgcond, illustraﬁn g the limitations of
the timing procedure. Also, the first column (whiclrf corresponds to a data set size of 100
data points) is seen to be generally inaccurate as well and is thus also ignored in our
calcﬁlations. Hﬁwcvcr, the other timings can be seen to be quite accurate and the

remainder of our analysis is thus carried out on these values.

From tables 5 and 6, it would appear that the constant for the insertion procedure
is moderately high at about 35 and that the constant for the deletion procedure is rather
low at about 2. It was expected that the insertion procedure would be slower than the

deletion procedure in practice as an insertion always involves the creation of a
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substructure in the next dimension while deletion always causes a substructure in the next
dimension to be destroyed and building a new structure involves more work than
deallocating the memory for a discarded structure. However, a difference greater than a

factor of 2 or 3 certainly was not expected and is thus taken to be a significant result.

If we look at tables 9(a) and 9('b) in Appendix D which summarize the standard
deviations of the constants, it appears that we can assume our approximations to be rather

good as the standard deviations are fairly low, éspecially for the higher dimensions.

We now use the data from our second set of test runs to verify our analysis. We
expect the constants to be slightly higher as larger structures require more overhead and
more recursion which could considerably slow down the cons&uctidn and destruction
times, especially when the constant paging and swapping of the process that is bound to

happen in a multi-user system is taken into account.’

The construction and destruction time averages for the second set of test runs on
the randomly generated datasets whose sizes are given in Table 2 can be found in
Appendix M. The associated constants and standard deviations can be found in Appendix
- N and a summary appears below in Tables 9 and 10. Tables 11 and 12 provide the

corresponding construction and destruction times.
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Table 9

Average insertion constants for further testing of the range AVL tree

dimension

2.
3
4

dimensions

2
3
4

run 1 , run 2 | run 3 | all runs

116.75 121.25 120.32 119.45
42.76 41.70 47.08 43.84
16.69 15.69 16.41 16.26
Table 10
Average deletion constants for further testing of the range AVL tree
run 1 : run 2 run 3 all runs
2,15 1.98 271 2.28
0.49 0.69 - 0.44 0.54
0.22 0.08 0.12 0.14
Table 11

Average construction times (milliseconds) for further testing of the range AVL tree

dim

FENL WS I o

Construct time averages for data set sizes given in Table 2.

3741 2850 3098
4361 2991 S 3326
11168 9493 11557
26800 23258 26324
Table 12

Average destruction times (milliseconds) for further testing of the ran ge AVL tree

dim

B S N R

Destruct time averages for data set sizes given in Table 2.

52 74 82
56 87 72
137 106 161
183 215 _ 348

If we ignore dimension 2, which is reasonable given the exceedingly high standard

deviation (see Tables 9(a) and 9(b) in Appendix N), then we see that the results are

 consistent with the results which we would expect to get and we can therefore assume that

our analysis is fairly accurate. We ignore dimension 2 as the high standard deviations

most likely indicate that there is a lot of noise in our data.
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Wc now go on to analyze the search times. The average search times (i.e. the
avéragc of 1000 searches) fbr the initial runs are given in Table 13 and the corresponding
multipliers that correspond to the increases in search time for an increase in query window
size are given in Table F4 (Appendix F). Remember that, unlike the construction and |

destruction times, the search times are in microseconds.

The multipliers of Table F4 represent the increase in query window size from 5 -

10%, 10 - 25%, 25 - 50%, 50 - 75%, 75 - 90%, and 90 - 100% and should be roughly
2.0,2.5,2.0,1.5, 1.2, and 1.1 if t dominates the search time as predictéd. The xxxx’s in
Table F4 indicate that accurate timings were nbt obtained, indicating that the multipliers

could not be determined.

Examination of the multipliers of Table F4 leads us to conclude that the range
search procedure is correct and very efficient, behaving as predicted in our analysis. The
multipliers are close to their estimated values and the search times clearly depend on both

search time

k and t. Figure 14, which plots the search times relative to k*t (i.e. it plots -

for each range search on each data set in each dimension), exemplifies this fact as the plots

- are all very close to straight lines, as expected.
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Table 13

Average search times (microseconds) for initial testing of the k-d Range AVL Tree |

% of pts 0% 5% 10% 25% S50% 15% 90% 100%
dim  #pts Actual Search Times in microseconds

1 100 4 11 42 L 163 288 357 386
300 4 48 113 - 280 551 912 1110 1297
500 2 98 183 450 1005 1506 1854 2026
700 6 146 307 694 1383 2018 2651 2842
900 3 173 326 847 1843 2818 3390 3888
1100 4 223 452 1091 2178 3372 3998 4589
1300 4 230 501 1267 2612 4056 4767 5520
1500 9 318 622 1558 2930 4532 5580 6313
1700 7 329 668 1674 3553 5331 6337 7108
2 100 4 29 71 149 308 478 596 674
300 3 95 206 561 089 1481 1776 2051
500 9 146 311 862 1676 2523 3126 3597

700 4 206 472 1158 2421 3636 4371 4976 .
900 4 273 621 1573 3085 4615 5608 6401
1100 7 354 700 1840 3806 5519 7002 7777
1300 9 351 676 1857 3673 5498 6781 5764
1500 4 361 671 1629 3273 4911 5561 4705
3 100 9 58 89 254 507 780 010 1025
300 11 146 304 780 1542 2453 2843 3414
500 13 247 552 1399 2670 4063 4954 5638
700 . 9 348 690 1783 3381 5348 6500 6791
900 5 438 952 2225 4496 6743 8121 7276
4 100 8 70 148 367~ 703 1081 1273 1444
300 4 214 542 1106 2307 3410 4231 4629

20

500 369 692 1701 3395 5324 6382 6816

0.05 a.1 0.25 0.5 0.75 0.9 1
percentage of datapoints In range

Figure 14. A plot of the search times relative to k*t for the k-d Range AVL Tree.




Tables 14 and P4 (Appendix P), below, provide the average search times obtained
from further testing along with the corresponding multipliers. Examination of the
multipliers in Table P4 and Figure 15 which plots the search times relative to k*t leads us

to conclude that our initial results are correct and accurate.

TABLE 14

Average search times (microseconds) of further testing of the k-d Range AVL Tree

% of pts 0% 5% 10%  25% 50% 75% 9%0% 100%
dim  #pts Average search times in microseconds

1 2500 - 7 554 1072 2754 5385 8309 9991 11339
© 3000 9 580 1265 3431 6513 9793 11991 13298
3500 2 730 1389 3865 7544 11620 13793 15209
2 2000 9 709 1489 35331 7171 11041 13206 15476
2500 4 880 1896 4533 8961 13863 16930 18667
3000 5 1115 2252 5267 10750 16811 20343 22685
3 1500 9 844 1630 4261 8274 12491 15198 16878
: 2000 7 1104 2267 5600 10642 16613 20446 22550
2500 11 1048 2158 5400 10843 16098 19567 14942
4 1000 9 628 1163 2843 5678 8165 9948 11002
1500 7 1200 2257 5363 10804 15689 18758 21324
9 1297 2526 5811 11376 17407 20428 12245

2000

0.05 0.1 0.25 0.5 0.75 0.9 1
percéntage of datapoints in range e e

Figure 15. A plot of the search times relative to k*t for the k-d Range AVL Tree.
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7.3 An Analysis of the k-d Range DSL

In this section we experimentally anaiyze the k-d Range DSL of chapter 5 The
construction and destruction times for all five passes of all three runs for randomly
generated datasets whose sizes are given in Table 1 in section 7.1 can be found in
Appéndix G and their averages can be found in Appendix H. Tables 17 and 18 below

summarize the construction and destruction times for the initial test runs.

The constants, as computed by equation 7.1, corresponding to the construction
and destruction times of Appendix G can be found in Appendix I and the constants
corresponding to the average construction and destruction times of Appendix H and their

standard deviations can be found in Appendix J and are summarized in tables 15 and 16.

Table 15
Average insertion constants for initial testing of the k-d Range DSL
dimensions run 1 ©orun 2 run 3 _ all runs
2 23.31 23.38 23.75 23.48
3 13.90 - 20.58 18.53 17.67
4 . 8§92 7.56 8.82 8.44
Table 16
Average deletion constants for initial testing of the k-d Range DSL
dimensions run 1 mn 2 run 3 all runs
2 4425 45.04 .. 55.81 48.37
3 - 43.77 44 .83 38.64 42.41
4 19.42 17.54 19.90 18.96
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: Table 17 _
Average construction times (milliseconds) for initial testing of the Range DSL

dim : Construct time averages for data set sizes given in Table 1
1 2 0 4 10 5 5 8 20 22
2 4 38 82 148 192 294 358 457
3 96 454 510 924 1166
4 163 1288 2425

Table 18
Average destruction times {milliseconds) for initial testing of the Range DSL
dim Destruct time averages for data set sizes given in Table 1
1 0 4 2 13 13 Il 17 17 14
2 6 34 131 196 326 794 1102 1171
3 89 595 1546 2547 4087
4 155 2513 6345

Notice that the above tables only contain data values for dimensions 2, 3, and 4.
This is done because the building and destruction times for dimension 1 are very low and

thus inaccurate, again due to the limitations of the timing procedure.

- From tables 15 and 16, it would appear that the constant for the insertion

procedure is reasonable at around 17 and that the constant for deletion is moderately high

at around 37. Although the procedures should require the same amount of time on

average as they both require the same amount of rebuilding in the worst case, it was

expected that the deletion procedure might be slightly slower than the insertion procedure

as it involves extra overhead and requires backtracking along the deletion path when a
maximal or minimal value in a down subtree is removed. However, a difference of a

factor of 2 is taken to be a moderately significant result, especially when the deletion
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procedure is slower than the insertion procedure, the opposite of what we might expect

considering the results obtained from our analysis of the k-d Range AVL tree.

If we examine tables 9(a) and 9(b) in Appendix J which summarize the standard
deviations of the constants, it appears that we can be quite confident in our

approximations of the constants as the standard deviations are fairly low.

We now use the data from our second set of test runs to verify our analysis. A_s.
with the k-d Range AVL tree, we éxpect the constants to be slightly higher as larger
structures require mofe overhead which could considerably slow down the construction
and destruction times, especially when the constant paging and swapping of the process

that is bound to happen in a multi-user system is taken into account.

The construction and destruction time averages for the second set of test runs on
the randomly gengratcd datasets whose sizes are given in Table 2 can be found in
Appendix Q. The associated constants and standard deviations can be fou;ld in Appendix
R and a summary appears below in Tables 19 and 20. Tables 21 and 22 .provide the

corresponding construction and destruction times.

Table 19
Average insertion constants for further testing of the k-d Range DSL
dimensions “run l run 2 : run 3 all runs
2 15.58 16.35 17.32 16.41
3 40.59 40.12 _ 44.42 41.71
4 : - 6.15 6.20 6.12 - 6.18
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Table 20
Average deletion time constants for further testing of the k-d Range DSL

dimensions run 1 . run?2 run 3  all runs

2 _ .55.19 52.50 ' 48.58 52.09
3 339.20 - 247.89 349.69 312.26
4 92.66 92.28 91.09 92.01
Table 21 .
Construction time averages (milliseconds) for further testing of the k-d Range DSL
dim | Average construction time for data set sizes given in Table 2.
1 22 46 39
2 383 . 504 700
3 3459 10620 23450
4 5085 13471 17763
Table 22 :
Destruction time averages (milliseconds) for further testing of the k-d Range DSL
dim Average destruction time for data set sizes given in Table 2.
1 31 35 30
2 844 1593 2848
3 20894 80883 187493
4 40053 196555 375012

If we ignore dimeﬁsion 3 when looking at oﬁr destruction constant, which 1s
reasonable given the exbeedingly high standard deviation (see Tables 9(a) and 9(b) in
- Appendix R) and the high probability that all it is measuring is noise, then we see that the
results aré consistent with the results which we would expect to get and we canl'thcrcforc
assume that our analysis is fairly accurate. The high standard deviations are most likely
due to other processes which .required higher time slices relative to when dimensions 2 and
4 were being tésted. The other processes were possibly regularly run system

administration processes which occurred during some of the test runs,
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Three further test runs on dimension 3 gave average insertion constants of 13.67, -
33.27, 59.82, émd 35.58 and average deletion constants of 8.26, 22.55, 33.20, and 21.34
which were much closer to predicted values. This confirmed our hypothesis that the
previous timings were mostly measuring noise as the standard deviations of 3.67, 9.32,
12.15, and 8.38 for the insertion constants and 2.50, 5.57, 3.88, and 3.98 for the deletion

constants were much lower.

We now go on to analyze the search times. The average search times for the initial
runs are given in Table 23 and the corresponding maltipliers that correspond to the
increases in search time for an increase in query window size are given in Table L4

(Appendix L.). Again we note that the search times are given in microseconds.

The multipliers of Table L4 represent the increase in query window size from 5 -
10%, 10 - 25%, 25 - 50%, 50 - 75%, 75 - 90%, and 90 - 100% and should be roughly
2.0,25,2.0, 1.5, 1.2, and 1.1. Again, the xxxx’s in Table L4 indicate that accurate

timings were not obtained, indicating that the multipliers could not be determined.

Examination of the multipliers of Table L4 leads us to conciudé that the ran gé
search prdcedure is correct and very efﬁcient, behaving as predicted in our analysis. The
multipliers are close to their estimated values and the search times depend on k and t.
Figure 16, which plots the search times relative to k*t, exemplifies this fact as the plots are

all very close to straight lines, as expected.
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Table 23
Average search times (microseconds) for initial testing of the k-d Range DSL

- % of pts 0% 5% 0% 25% 50% 75% 90% 100%
dim # pts Average Search Times in microseconds
1 100 10 30 59 131 272 438 551 572
300 3 88 177 431 865 1353 1656 1791
500 4 156 315 725 1497 2251 2736 3113
700 10 222 442 1041 2066 3246 3995 4371
900 3 311 572 1402 2844 4399 5269 5580
1100 8 315 671 1684 3388 4975 6278 6740
1300 4 404 800 2183 4279 6418 7674 8708
1500 6 410 924 2216 4481 6537 7833 8238
1700 7 497 944 2429 5020 7227 8858 8229
2 100 11 62 111 218 509 769 957 . 1053
300 7 175 367 818 1644 2556 3078 3440
500 17 318 579 1468 2813 4350 5076 5722
700 6 384 727 1819 3589 5266 6353 6770
900 17 440 898 2118 4302 6348 7527 7449
1100 12 590 1138 2881 5567 8419 9233 9049
1300 13 595 1180 2860 5703 8420 9114 9246
1500 0 584 1211 2880 5806 8549 7730 6808
3 100 21 72 143 386 - 718 1173 1444 1522
300 17 271 526 1257 2605 3898 4680 5080
500 11 391 792 1878 3836 5568 6604 7170
700 17 513 985 2462 4893 7424 8660 8887
500 16 608 1350 3156 6187 9487 9394 9157
4 100 23 96 180 487 - 998 1405 1745 1855
300 13 319 697 1511 3237 4796 5560 6472
500 20 553 1048 2562 5418 8016 9820 10630
7
6
5
“ime; 4
ket
14
odi M : _
0.05 0.1 0.25 05 0.75 0.9 L
percentage of datapoints In range oo

Figure 16. A plot of the search times relative to k*t for the k-d Range DSI..
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Tables 24 and T4 (Appendix T), below, provide the average search times obtained

from further testing along with the corresponding multipliers. Examination of the

multipliers in Table T4 and Figure 17 which plots the search times relative to k*t leads us

to conclude that our initial results are correct and accurate,

% of points 0%
dim #pts

1 2500 4

3000 5

3500 9

2. 2000 11

2500 11

3000 11

3 1500 6

2000 15

2500 11

4 1000 15

1500 15

2000 20

search 4 .
time / “
Kt 2%

0.05 0.1

5%

363
483
3935
495
561
615
459
746
830
361
619
1965

Table 24
Average search times (microseconds) for further testin g of the k-d Range DSL.

10% 25%
Average search times
801 2076 4083
919 2376 5013
1041 2807 5554
986 2548 4124
1162 2684 5252
1507 3624 7229
874 2178 4224
1694 3723 7376
1522 3717 7319
904 2080 4493
1406 3546 6717
3779 7863 17219

0.25

0.5

50%

0.75

pércentage of datapoints in range

75%

6093
7484
8658
7489
7702

11115
6300

10927

10900
6615
9841

26045

0.9

90%

7176
8509
10017
9154
9532
10844
7954
11517
10615
7778
10511
12211

100%

8085
9739
11300
9130
8218
8357
7152
8128
10754
8286
7820
11857

Figure 17. A plot of the search times relative to k¥t for the k-d Range DSL.

98



7.4 Comparison of the k-d Structures

In this section we perform a brief comparison of the two structures. We expect a
close correspondence between the k-d Range DSL and the k-d Range AVL tree as the

two structures are in the same class (section 6.1) and known to be equivalent [Lamo96d].

Sections 7.2 and 7.3 have provided us with approximations for the constants in the
insertion and deletion procedures and timings for range search which indicate that both

structures are extremely fast and have close to the same range search time,

_ Table 25 _
A comparison of the constants for the k-d Range AVL Tree and the k-d Range DSL

Insertion constant (approx.) Deletion constant (approx.)
k-d Range AVL Tree 35 2
k-d Range DSL 17 37
The constants for the insert and delete proceames are given above in Table 25.
The constants indicate that the two structures are similar in balance, the k-d Range DSL
being approximately 2 times faster for insertion and the k-d Range AVL Tree being

approximately 15 times faster for deletion, and that they should be relatively

interchangeable in practice, depending on the application.
Table 26 lists the time to locate and report 0, 5, 10, 25, 50, 75, 90, and 100 points,

in microseconds, in each of the four dimensions for the k-d Range AVL Tree and the k-d

Range DSL. ‘Examining the table we conclude that it takes about 1.5 milliseconds to
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locate and report 100 points in a four dimensional Range AVL Tree structure and about
2.0 milliseconds to locate and report the same amount of points in a 4-d Range DSL.
Based on the data in Table 26, we conclude that the k-d Range AVL Tree is about 1.5 |
times faster, on average, for range search in practice. Although this result may initially
seem countcrintuitive as we know that the k-d Range DSL is usually of a shallow depth
than the k-d Range AVL tree, we can explain it as follows. When we move to a subtree in
the Range AVL Tree we don’t have to determine the node at which we must continue ocur
. search as we must do in the Range DSL. It is the fact that we must often check multiple
nodes in the subtree before we are able to determine the node that we move to at the next

level that that causes the search procedure to often be slower in practice.

Table 26 was calculated using the data of Tables 13 and 23. All of the search
times in each dimension were normalized so that they represented the time to report 100

datapoints and the averages of these times were taken across each dimension.

: Table 26(a)
Time to locate the given number of points (in microseconds) in the k-d Range AVL Tree
dim 0 5 10 25 50 75 90 100
1 1 18 40 96 195 303 370 416
2 1 29 62 158 314 470 574 620
3 3 - 51 101 259 513 785 936 1014
4 4 72 156 359 717 1094 1320 1450
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Table 26(b)
Time to locate the given number of points (in microseconds) in the k-d Range DSL

dim 0 5 10 25 50 75 90 100
1 2 30 61 148 - 300 455 557 595
2 3 53 103 244 493 741 850 891
3 7 76 153 377 748 1140 1321 1387
4 10

104 207 501 1054 1536 1854 2046

We now go on to perform a brief analysis of the storage space required, S(#.k).
Both structures have the same analytical storage cost, S(n,k) = O(n ] g"'fn), and
Iapproximatcly the same number of nodes. As arange AVL tree structure always contains
2n - 1 nodes for  datapoints, the storage is roughly 2n 1g“'n. On the other hand, a 1-3
Range DSL structure always has between 4/3# and 2z - 1 nodés. Thus, on the avera ge, it

usually has about 1.5z 1g"'n nodes.

Our implementation of the node structure for the k-d Range AVL Tree requires 9
ihtegers plus 1 integer fof each dimension of the structure. Our implementation of the
node structure for the k-d Range DSL requires 5 integers plus 1 integer for each |
dimension of thc_strucnire. On UNIX, each integer requires 4 bytes of storage. Table 27
gives the expected storage requirement, in kilobytes, for thg k-d Range AVL Tree and the -
k-d Range DSL for the data set sizes of Tablé 1. We assume a storage requirement of

1.5 n1g“"n for the k-d Range DSL.

Exanﬁning the tables, we find that the k-d Range AVL tree usually requires about

twice the amount of storage that the k-d Range DSL requires, but that both are obviously
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of the same storage complexity. They both require in the hundreds of megabytes for the

largest structures that we build and test.

Table 27(a)
Storage required, in KB, for the Range AVL tree structures with sizes defined by Table 1

dim Storage requirements, in KB, for the data structures with sizes given in Table 1
1 53 197 359 529 707 889 1076 1266 1459
2 388 1788 3537 5502 7628 9881 12241 14694
3 2815 16047 34594 56732 81663 :
4 20263 143056 336013

_ Table 27(b) _
~ Storage required, in KB, for the Range DSL structures whose sizes are given in Table 1

dim Storage requirements, in KB, for the data structures with sizes given in Table 1

1 24 89 161 238 318 400 484 570 657

2 185 853 1688 2626 3641 4716 5842 7013

3 1408 8024 17297 28366 40831 '

4 10521 74279 174468

One question that immediately comes to mind is the following: how many

datapoints can we insert into our structure for a given number of dimensions? It is
obvious that as the number of dimensions increase that the size of a workable data set
decreases as the Ig"n factor becomes more prominent with larger k. For sol, it was found
that, when usage was low, it was possible to build a 1-d structure of 10,000,000
datapoints, a 2-d structure of 100,000 datapoints, a 3-d structure of 32,000 datapoints,
and a 4-d structure of 4,000 datapoints. The corresponding structures required

approximately 800 MB, 880 MB, 692 MB, and 720 MB for the k-d Range AVL Tree and

approximately 360 MB, 420 MB, 345 MB, and 375 MB for the k-d Range DSL.
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8. CONCLUSIONS

8.1 Summafy

We conciudé that it is possible to have a kﬂimensicmal data structure efficient for
range search and dynamic updates and which maintains a reasonable storage requirement
and preprocessing cost and offer-the k-d Rah ge DSL and k-d Range AVL Tree as
examples. Both structures are dynamically balanced (@(Igs"n) balance cost function)
under our model and within a factor of O(1g“"n) of being optimally balanced. They are

optimal f01_' range search (@)(lgzn + 1)) in the class of dynamically balanced structures.

Dynamic implementations of the structures are feasible and our implementations
are extremel.y fast for k-d range search, requiring only 1.5 to 2.0 milliseconds to locate and
report 100 datapoints in a four-diménsional structure. Also, the constants in the update
procedures are reasonable, with the k-d Range AVL Tree being faster for deletions and_
the k-d Range DSL being faster for insertions. They have a similar storagt;, requirement,

but the k-d Range AVL Tree requires approximately twice as much storage in practice.

As memory and hard drive space continues to increase on today's computers, it is
reasonable to assume that the k-d Range AVL Tree and the k-d Range DSL provide
efficient, feasible index structures for k-d range search on k-dimensional structures. Also, |
the facts that they allow for optimal member queries and efficient partial match queriéé

make them very attractive as index structures.
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8.2 Future Work

In this thesis we have made a number of assumptions about our data set and it's
size, including that of k << n and k < lg n. The natural question to ask now is: what
happens to our analysis if lg n <k < #? If k > #, is it feasible to work with the dual

prdblem, and, if s0, how does one define the dual?

Other questions concern that of the underlying computing environment. What
increases can be obtained in a parallel processing environment? What happens if we have

one processor per dimension? What if we have one processor per datapoint?

In the section on Lower Bounds (Ch. 6.2), we mentioned that clustering could
moderately improve the worst case update time. How efficient would an implementation
of our structure be, in practice, if clustering was used? Would the average update time

decrease? Would the average search time increase?

We also inéntioned that using an amortization scheme might reduce the worst-case
update time.as well. How efficient would an implementation of a good amortization
'scheme be? By how much would the search time increase, if at all? How good could an
amortization scheme be in theory? What is the lower bound on the worst case update time
when an amortization scheme is used? Is amortization as effective as clustering in

practice? If it is more effective, by how much?
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One of the big open questions is: what is the lower bound on a single update in our
dynamic model? We know, from Theorem 21, that it is Q(n) and that it is O(nm_ 1gn*%)

(from [Bent79b]), but it's true value in a © analysis still remains a mystery.

We also want to know if there are any modifications we can make to the update
algorithms so that the average update time is decreased. We have noticed that the avefage
deletion time for the k-d Range DSL, in partiéular, is quite high, Would a bottom-up

deletion scheme be more effective on average?

‘Another big question is whether £2(n) storage really is miniﬁlal in our model? It
might be the case that having a range search and update cost function of ®(Ig*s) requires a
sﬁucturc of larger storage requirement, possibly even a storage function of ©(nlg"'n) if a
large number of subsets of our set of datapoints mﬁst be indexed in sorted order for each
coordinate value. If this were true, our optimal bal:«{:hce cost function would be G')(_nlgﬂ"1 )

and our structures would be optimally balanced.

Finally, in Chapter 7 we mentioried that it mi ght be possible to incorporate the
Interval Skip List data structure into the k-d Range DSL data structure and thereby
provide a multi-dimensional alternative to the R-Tree data structure. Could this be done?

If so, how efficient would our structure be using a worst case analysis?
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APPENDIX A
RAW CONSTRUCTION AND DESTRUCTION
TIMES FOR INITIAL TESTING OF THE

K-D RANGE AVL TREE
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Table Al(a) _ . '
Raw construct times for pass 1 of run 1 of initial testing of the k-d Range AVL Tree

dim Raw construct times for data set sizes given in Table 1.
1 17 17 0 0 0 33 0 50 17
2 0 83 100 116 167 266 200 284
3 0 683 883 1617 2083
4 0 2100 4467
_ Table Al(b) _
Raw destruct times for pass 1 of run 1 of initial testing of the k-d Range AVL Tree
dim : Raw destruct times for data set sizes given in Table 1.
1 0 17 0 17 0 0 17 33 17
2 0 0 0 34 33 17 50 50
3 0 17 16 34 67
4 0 67 50
Table AZ(a)

Raw construct times for pass 2 of run 1 of initial testing of the k-d Range AVL Tree

dim Raw construct times for data set sizes given in Table 1.
1 0 0 . 0 0 0 17 16 33 17
2 0 34 83 67 167 50 267 300
3 17 400 500 1200 1900
4 17 1333 2950

Table A2(b)
Raw destruct times for pass 2 of run 1 of initial testing of the k-d Range AVL Tree
dim " Raw destruct times for data set sizes given in Table 1.
1 0 0 0 0 0 0 0 -0 34
2 0 0 0 17 0 33 100 100
3 0 0 0 50 33 '
4 0 0 400
Table A3(a) _
Raw construct times for pass 3 of run 1 of initial testing of the k-d Range AVL Tree
dim Raw construct times for data set sizes given in Table 1.
1 0 0 0 17 0 560 0 - 0 16
2 0 67 100 116 167 133 166 166
3 17 416 750 934 2134
4 0 1783 3317
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Table A3(b)
Raw destruct times for pass 3 of run 1 of initial testing of the k-d Range AVL Tree

dim | Raw destruct times for data set sizes given in Table 1.
1 0 0 17 17 0 0 33 0 0
2 0 0 S50 17 50 0 50 50
3 0 0 17 33 34
4 34 50 267
Table A4(a)
Raw construct times for pass 4 of run 1 of initial testing of the k-d Range AVL Tree
dim _ Raw construct times for data set sizes given in-Table 1. '
1 0 0 0 17 c 0 0 0 16
2 17 17 50 83 284 166 234 217
3 0 384 650 1150 1616
4 0 1800 3366
Table Ad(b)
Raw destruct times for pass 4 of run 1 of initial testing of the k-d Range AVL Tree
dim Raw destruct times for data set sizes given in Table 1.
1 0 0 17 16 0 17 0 ¢ 17
2 0 0 16 0 0 0 33 16
3 0 0 33 33 116
4 17 116 250
Table A5(a)
Raw construct times for pass 5 of run 1 of initial testing of the k-d Range AVL Tree
dim ' Raw co_nstrﬁct times for data set sizes given in Table 1.
1 0 0 0 0 16 16 0 0 0
2 0 33 134 50 100 67 200 400
3 0 267 717 1050 1617
4 84 1350 2950
Table A5(b)
Raw destruct times for pass 5 of run 1 of initial testing of the k-d Range AVL Tree
dim Raw destruct times for data set sizes given in Table 1.
1 0 16 0 17 0 ) 0 17 0
2 0 0 0 16 0 16 17 33
3 0 17 17 34 166
4 66 '

17 367
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Table A6(a)
Raw construct times for pass 1 of run 2 of initial testing of the k-d Range AVL Tree

dim Raw construct times for data set sizes given in Table 1. :
1 0 0 50 50 16 0 34 67 66
2 400 634 266 83 166 17 200 250
3 100 350 734 1150 1650
4 0 2650 5916
Table A6(b) _
.Raw destruct times for pass 1 of run 2 of initial testing of the k-d Range AVL Tree
dim Raw destruct times for data set sizes given in Table 1.
1 0 0 0 33 17 17 17 16 50
2 0 33 34 17 16 34 67 50
3 17 0 0 50 17
4 0 0 17
: . Table A7(a) . .
Raw construct times for pass 2 of run 2 of initial testing of the k-d Range AVL Tree
dim Raw construct times for data set sizes given in Table 1,
1 0 0 0 0 0 0 0 0 50
2 117, 100 100 34 66 50 133 200
3 50 217 466 766 1183
4 0 1750 4650
Table A7(b)
Raw destruct times for pass 2 of run 2 of initial testing of the k-d Range AVL Tree
dirm _ Raw destruct times for data set sizes given in Table 1.
1 0 0 0 17 17 50 17 33 0
2 0 33 17 0 34 67 67 17
3 0 33 0 34 17
4 0 0 83
Table A8(a) :
Raw construct times for pass 3 of run 2 of initial testing of the k-d Range AVL Tree
dim - Raw construct times for data set sizes given in Table 1.
I 0 0 17 0 0 17 0 17 0
2 17 50 100 67 83 17 167 250 '
3 50 150 417 750 1083
4 0 1633 5100
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Table A8(b) _
Raw destruct times for pass 3 of run 2 of initial testing of the k-d Range AVL Tree

dim Raw destruct times for data set sizes given in Table 1.
1 0 0 16 0 0 33 34 50 33
2 0 34 S50 50 17 50 67 67
3 0 17 0 0 17
4 0 0 33
Table A9(a)
Raw construct times for pass 4 of run 2 of initial testing of the k-d Range AVL Tree
dim Raw construct times for data set sizes given in Table 1.
1 0 -~ 0 0 0 0 0 0 0 17
2 50 116 50 33 33 17 183 134
3 67 200 567 834 1250
4 16 1734 53867
_ Table AS(b)
Raw destruct times for pass 4 of run 2 of initial testing of the k-d Range AVL Tree
dim Raw destruct times for data set sizes given in Table 1. :
1 16 0 0 33 0 0 0 0 i7
2 0 17 0 50 133 17 50 100
3 0 0 0 17 33
4

17 17 83

| Table A10(a) _
Raw construct times for pass 5 of run 2 of initial testing of the k-d Range AVL Tree

dim ' Raw construct times for data set sizes given in Table 1.
] 0 0 0 0 0. 0 0 16 17
2 33 67 17 34 67 50 200 283
3 33 267 350 650 1200 '
4 117 1800 6400

Table A10(b) .
- Raw destruct times for pass 5 of run 2 of initial testing of the k-d Range AVL Tree
dim Raw destruct times for data set sizes given in Table 1.
1 0 0 50 50 0 17 16 33 17
2 0 0 34 67 67 50 134 34
3 0 17 0 50 33 '
4 17 34 16
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_ Table All(a)
Raw construct times for pass 1 of run 3 of initial testing of the k-d Range AVL Tree

dim Raw construct times for data set sizes given in Table 1.
1 0 0 33 17 0 0 50 16 16
2 0 67 217 100 84 150 200 267
3 0 483 933 1150 1517
4 0 2883 6850 :
Table Al11(b)
Raw destruct times for pass 1 of run 3 of initial testing of the k-d Range AVL Tree
dim Raw destruct times for data set sizes given in Table 1.
1 0 0 0 16 0 16 0 0 16
2 0 0 0 0 0 0 34 0 '
3 0 0 50 17 16 :
4 17 33 50
Table Al12(a) :
Raw construct times for pass 2 of run 3 of initial testing of the k-d Range AVL Tree
dim Raw construct times for data set sizes given in Table 1.
1 0 0 16 0 0 0 0 17 0
2 0 0 0 33 33 100 150 216
3 0 167 534 850 1383
4 17 1717 4967
Table A12(b)
Raw destruct times for pass 2 of run 3 of initial testing of the k-d Range AVL Tree
dim _ Raw destruct times for data set sizes given in Table 1.
1 0 0 0 0 16 0 0 0 17
2 -0 0 17 17 33 0 16 16
3 0 34 17 0 16
4 17 33 50
_ Table Al13(a)
Raw construct times for pass 3 of run 3 of initial testing of the k-d Range AVL Tree
dim Raw construct times for data set sizes given in Table 1.
1 -0 17 0 0 17 - 17 0 0 17
2 0 0 16 117 117 133 134 267
3 17 217 550 883 1350 :
4 0 1833 5566
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Table A13(b)
Raw destruct times for pass 3 of run 3 of initial testing of the k-d Range AVL Tree

dim Raw destruct times for data set sizes given in Table 1.
1 0 0 0 0 0 0 0 0 33
2 0 0 0 0 33 17 16 34
3 0 0 17 0 133
4 16 17 67
Table Al4(a) _
Raw construct times for pass 4 of run 3 of initial testing of the k-d Range AVL Tree
dim Raw construct times for data set sizes given in Table 1.
1 0 0 0 0 0 0 - 0 17 17
2 17 50 16 50 66 100 150 150
3 0 133 466 0933 1217
4 0 1700 5966
. Table Al4(p)
Raw destruct times for pass 4 of run 3 of initial testing of the k-d Range AVL Tree
dim Raw destruct times for data set sizes given in Table 1.
1 ) 0 17 0 0 17 16 0 0
2 0 0 17 0 17 50 0 34
3 0 17 0 17 100
4 17 17 17
Table A15(a)
Raw construct times for pass 5 of run 3 of initial testing of the k-d Range AVL Tree
dim ' Raw construct times for data set sizes given in Table 1.
1 17 0 0 33 17 0 17 0 0
2 17 67 67 67 117 134 133 183
3 0 250 . 416 783 1667 '
4 0 1950 6200
' Table A15(b)
Raw destruct times for pass 5 of run 3 of initial testing of the k-d Range AVL Tree
| dim Raw destruct times for data set sizes given in Table 1.
1 0 0 0 0 0. 16 17 17 17
2 0 0 16 0 17 0 33 34
3 0 0 50 16 67 '
4 0 17 83
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APPENDIX B
AVERAGE CONSTRUCTION AND DESTRUCTION
TIMES FOR EACH INITIAL TEST RUN OF THE

K-D RANGE AVL TREE
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Table Bl(a) :
Construct time averages for run 1 of initial testin g of the k-d Range AVL Tree

dim Construct time averages for data set sizes given in Table 1
1 3 3 0 6 3 23 3 16 13
2 3 46 93 86 177 136 213 273
3 6 430 700 1190 1870
4 20 1673 3410

Table B1(b) _
Destruct time averages for run 1 of initial testing of the k-d Range AVL Tree

dim Destruct time averages for data set sizes given in Table 1
L 0 6 6 13 0 3 10 10 17
2 0 0 13 16 16 13 50 49
3 0 6 16 36 83
4 23 50 266
Table B2(a)
Construct time averages for run 2 of initial testing of the k-d Range AVL Tree
dim Construct time averages for data set sizes given in Table 1
1 0 0 13 10 3 3 6 20 30
2 123 193 106 50 83 30 176 223
3 60 236 506 830 1273 :
4 26 1933 5586

Table B2(b)
Destruct time averages for run 2 of initial testing of the k-d Range AVL Tree

dim Destruct time averages for data set sizes given in Table 1
1 3 0 13 26 6 23 16 26 23
2 0 23 27 36 53 43 77 53
3 3 13 0 30 23 '
4 6 10 46
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Table B3(a)
Construct time averages for run 3 of initial testing of the k-d Range AVL Tree

dim Construct time averages for data set sizes given in Table 1
1 3 3 9 10 6 3 13 10 10
2 6 36 63 73 83 123 153 216
3 3 250 579 919 1426 '
4 3 2016 5909

Table B3(b)
Destruct time averages for run 3 of initial testing of the k-d Range AVL Tree

Destruct time averages for data set sizes given in Table 1

dim
1 0 0 3 3 3 9 6 3 16
2 0 0 10 3 20 13 19 23
3 0 10 26 10 66
4 13 23 53
Table B4(a) _
- Construct time averages for all passes of all runs of initial testing of the Range AVL Tree
dim Construct time averages for data set sizes given in Table 1
1 2 2 7 9 4 10 7 15 18
2 44 92 87 70 - 114 96 181 237
3 23 305 595 980 1523
4 16 1874 4968

. - : Table B4(b)
Destruct time averages for all passes of all runs of initial testing of the Range AVL Tree

dim _ Destruct time averages for data set sizes given in Table 1 _
1 I 2 7 14 3 12 11 13 19
2 0 8 17 18 30 23 49 42
3 1 10 14 25 57
4 14 28 122
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APPENDIX C
RAW INSERTION AND DELETION
CONSTANTS FOR INITIAL TESTING OF THE

K-D RANGE AVL TREE
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Table Cl(a)

Insertion constants for pass 1 of run 1 of initial testing of the k-d Range AVL Tree

0.00
0.00

dim
1 255.88
2
3
4 0.00

Insertion constants for the data set sizes given by Table 1.
11120 000 000 000 5960 000 64.81 1925
7103 4923 3881 4155 52.05 3199 38.17
7646 52.82 62.59 57.80
30.76 3247

Table C1(b)

Deletion constants for pass 1 of run 1 of initial testing of the k-d Range AVL Tree

dim
1 0.00
2 0.00
3 0.00

4 0.00

Deletion constants for the data set sizes given by Table 1, _
111.20 0.00 49.17 000 000 2570 4277 19.25

0.00 000 1138 821 333 800 672

1.90 0.96 1.32 1.86

0.98 0.36

Table C2(a)

Insertion constants for pass 2 of run 1 of initial testing of the k-d Range AVL Tree

dim
I 0.00
2 0.00
3 5.80
4 0.87

Insertion constants for the data set sizes given by Table 1.
0.00 000 000 000 3070 24.18 4277 19.25
29.10 40.86 22.42 41.55 978 4270 40.32
4478 2991 4645 5273
19.52 21.45

Table C2(b)

Deletion constants for pass 2 of run 1 of initial testing of the k-d Range AVL Tree

dim
1 0.00
2 0.00
3 0.00
4 0.00

Deletion constants for the data set sizes given by Table 1.
000 000 000 006 000 000 000 3849
000 000 569 000 646 1599 1344
000 0.00 1.94 092
000 291

Table C3(a)

Insertion constants for pass 3 of run 1 of initial testing of the k-d Range AVL Tree

dim
1 0.00
2 0.0
3 5380
4 0.00

Insertion constants for the data set sizes given by Table 1.
000 000 4917 000 9030 000 000 18.12
57.33 4923 3881 41.55 2603 2655 2231
46,57 4487 36.15 59.22
26,11 24.11
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Deletion constants for pass 3 of run 1 of initial testing of the k-d Range AVL Tree

dim
1 0.00
2 0.00
3 0.00
4 1.75

Insertion constants for pass 4 of run 1 of initial testing of the k-d Range AVL Tree

dim
1 0.00
2 3851
3 0.00
4 0.00

Table C3(b)

Deletion constants.for the data set sizes given by Table 1. _
0.00 68.86 49.17 0.00 0.00 49.88 0.00 0.00
0.006 2461 569 1244 000 8.00 672
0.00 102 128 094
073 194

Table C4(a)

Insertion constants for the data set sizes given by Table 1.
000 000 4917 000 000 000 000 18.12
14.55 2461 2777 7066 3248 3742 2917
42.99 38.88 4452 4484
2636 24.47

Table C4(b)

Deletion constants for pass 4 of run 1 of initial testing of the k-d Range AVL Tree

dim
1 0.00
2 0.00
3 0.00
4 0.87

Deletion constants for the data set sizes given by Table 1.
0.00 68.86 4628 000 3070 000 0.00 1925
000 788 000 000 000 528 215

- 0.00 1.97 1.28 3.22
1.70 1.82 .

Table C5(a)

Insertion constants for pass 5-of run 1 of initial testing of the k-d Range AVL Tree

dim
1 0.00
2 0.00
3 0.00
4 4.31

Insertion constants for the data set sizes given by Table 1.
000 000 000 3569 288 000 000 0.00
28.24 6596 1673 2488 1311 3199 5376
2986 4289 40.64 44.87
19.77 2145

Table C5(b)

Deletion constants for pass 5 of run 1 of inital testing of the k-d Range AVL Tree

dim
1 0.00
2 0.00
37 000
4 3.39

Deletion constants for the data set sizes given by Table 1. _
10466 000 4917 000 000 0.00 2203 19.25
000 000 535 000 313 272 444
190 - 1.02 1.32 461 :
025 267 _ :

121




Table C6(a)
Insertion constants for pass 1 of run 2 of initial testing of the k-d Range AVL Tree

Insertion constants for the data set sizes given by Table 1.
(.00 0.00 202.54 144.61 3569 0.00 5139 86.84 74.72
906.19 542.54 13094 2777 4130 3.33 3199 3360
3410 39.18 4391 4452 4579
-0.00 3881 43.01

AU)NH%‘

Table C6(b)
Deletion constants for pass 1 of run 2 of initial testing of the k-d Range AVL Tree

Deletion constants for the data set sizes given by Table 1, _
0.00 0.00 000 9544 3792 3070 2570 2074 56.61
0.00 2824 1674 569 398 6.65 1072 672
5.80 0.00 0.00 1.94 047
0.00 0.00 012

-p-wt#:»—xg

Table C7(a) :
Insertion constants for pass 2 of run 2 of initial testing of the k-d Range AVL Tree

dim Insertion constants for the data set sizes given by Table 1.
1 0.00 000 000 000 000 000 000 000 35661
2 265.06 8557 4923 1138 1642 978 21.27 26.88
3 17.05 2429 2788 29.65 32.83
4 0.00 25.63 33.81

Table C7(b)
Deletion constants for pass 2 of run 2 of initial testing of the k-d Range AVL Tree

Deletion constants for the data set sizes given by Table 1.
0.00 0.00 000 4917 3792 9030 2570 4277 000
0.00 2824 837 000 846 1311 1072 228
0.00 369 000 132 047
0.00 0.00 0.60 '

-ll‘-qu\)t—-s‘

_ Table C8(a)
Insertion constants for pass 3 of run 2 of initial testing of the k-d Range AVL Tree

Insertion constants for the data set sizes given by Table 1.
0.00 000 688 000 000 3070 000 2203 0.00
3851 4279 4923 2242 2065 333 2671 33.60
17.05- 1679 2495 29.03 3005
000 2392 37.08

Ammwg"
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Table C8(b)

Deletion constants for pass 3 of run 2 of initial testing of the k-d Range AVL 'I‘ree

-anl\.)*—*g

- 0.00
0.00
0.00
0.00

Deletion constants for the data set sizes given by Table 1.

0.00 6481 0.00 000 59.60 5139 6481 37.36
29.10 2461 16.73 423 9.78 10.72 9.00
1.90 000 000 047
0.00 024 '
Table C9(a)

Insertion constants for pass 4 of run 2 of initial testing of the k-d Range AVL Tree

dim
1
2
3
4

0.00
113.27
22.85
0.82

Insertion constants for the data set sizes given by Table 1,

000 000 000 000 000 000 000 1925
0927 2461 1104 821 333 2927 18.01
2239 3392 3228 34.69
2540 42.65

Table C9(b)

Deletion constants for pass 4 of run 2 of initial testing of the k-d Range AVL Tree

Deletion constants for the data set sizes given by Table 1.

0.00 0.00 9544 0.00 0.00 0.00 0.00 19.25
1455 ¢ 0.00 1673 33.09 3.33 3.00 1344
0.00 0.00 0.66 0.92
025 0.60
Table C10(a)

Insertion constants for pass 5 of run 2 of initial testing of the k-d Range AVL Tree

dim

1
2
3
4

0.00
74.76
11.25

6.00

Insertion constants for the data set sizes given by Table 1.

000 000 000 000 000 000 2074 19.25
57.33 8.37 1138 16.67 9.78 31.99 38.04
29.89 2094 2516 33.30 ' :
27.83  46.53
Table C10(b)

Deletion constants for pass 5 of run 2 of initial testing of the k-d Range AVL Tree

.p.u_oto»—-s.

0.00
0.00
0.00
0.87

Deletion constants for the data set sizes given by Table 1. :
19.25

0.00 202.54 144.61 0.00 3070 24.18 42.77
000 1674 2242 16.67 978 2143 457
1.90 0.00 194 092

0.50 0.12
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o Table Cl1(a)
Insertion constants for pass 1 of run 3 of initial testing of the k-d Range AV, Tree

Insertion constants for the data set sizes given by Table 1.
0.00 0.00 13368 4917 000 0.00 7558 2074 18.12
0.00 57.33 106.82 3346 2090 2935 31.99 35.89
0.00 54.07 5581 4452 42.10
0.00 4222 4980 '

Amm:—-g

Table C11(b)
Deletion constants for pass 1 of run 3 of initial testing of the k-d Range AVL Tree

Deletion constants for the data set sizes given by Table 1.
0.00 000 000 4628 0.00 2889 000 0.00 1812
0.00 000 000 000 000 000 544 0.00
0.00 000 299 066 044
0.87 048 036

-Ib-u-‘il\)t—*g

_ Table C12(a)
Insertion constants for pass 2 of run 3 of initial testing of the k-d Range AVL Tree

Insertion constants for the data set sizes given by Table 1,
- 0.00 000 6481 000 000 000 000 2203 0.00
-0.00 000 000 1104 821 1957 2399 29.03
0.00 1870 3195 3290 38.38
087 2515 36.11

Aw'w-—tg

Table C12(b)
Deletion constants for pass 2 of run 3 of initial testing of the k-d Range AVL Tree -

Deletion constants for the data set sizes given by Table 1.
0.00 0.00 000 000 3569 000 000 000 1925
0.00 000 837 569 821 000 256 215
0.00 3.81 1.02 000 044 '
0.87 048 0.36

| _ Table C13(a)
Insertion constants for pass 3 of run 3 of initial testing of the k-d Range AVL. Tree

Insertion constants for the data set sizes given by Table 1.
0.00 11120 0.00 0.00 3792 3070 0.00 0.00 1925
0.00 000 7.88 39.15 29.11 2603 2143 35.89
580 2429 3290 3418 37.46
000 2685 40.46

-b-ml\)*-—*g‘
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. Table C13(b)

Deletion constants for pass 3 of run 3 of initial testing of the k-d Range AVL Tree

0.00
0.00
0.00
0.82

Deletion constants for the data set sizes given by Table 1.

006 000 000 000 000 000 0.00 37.36
0.00 000 000 821 333 256 457
0.00 102 000 3.69
025 049
Table C14(a)

' Insertlon constants for pass 4 of run 3 of initial testing of the k—d Range AVL Tree

Insertion constants for the data set sizes given by Table 1.

000 000 000 000 000 000 2203 1925
4279 788 1673 1642 1957 23959 20.16
14.80 27.88 36.12 33.77
2490 4337

Table C14(b)

Delcuon constants for pass 4 of run 3 of initial testing of the k-d Range AVL Tree

0.00
0.00
0.00
0.87

Deletion constants for the data set sizes given by Table 1.

0.00 ©68.86 0.00 0.00 3070 24.18 0.00 0.00
0.00 8.37 0.00 4.23 9.78 0.00 4.57
1.90 0.00 0.66 2.78
0.25 0.12
Table C15(a)

Insertion constants for pass 5 of run 3 of initial testing of the k-d Range AVL Tree

Insertion constants for the data set sizes given by Table 1.

0.00 0.00 9544 3792 0.00 2570 0.00 0.00
57.33 3298 2242 2911 2622 2127 24.60
27.99 2480 3031 46.26
28.56  45.07

Table C15(b)

Deletion constants for pass 5 of run 3 of mmal testing of the k-d Range AVL Tree

0.00
0.00
0.00

0.00

Deletion constants for the data set sizes given by Table 1.

000 000 000 000 2889 2570 2203 1925
000 7.88 000 423 000 528 457
000 299 0.62 1.86

0.60

0.25
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APPENDIX D
INSERTION AND DELETION CONSTANTS
FOR EACH INITIAL TEST RUN

OF THE K-D RANGE AVL TREE
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Table D1(a) _
Constants for insertion averages of run 1 of initial testing of the Range AVL Tree

dim Constants for insertion averages for data set sizes given by Table 1.
1 4515 1962 000 1735 669 4154 453 2074 1472
2 680 3936 4578 2878 44.04 26.61 34.06 36.69
3 205 48.14 4188 46.06 51.89
4 1.03 2450 2479

~ Table D1(b) |
Constants for deletion averages of run 1 of initial testing of the Range AVL Tree
dim Constant for deletion averages for data set sizes given by Table 1.
1 0.00 3925 2430 3760 0.00 542 1512 1296 19.25
2 000 000 640 535 398 254 8.00 659
3 000 067 096 1.39  2.30
4 1.18  0.73 1.93
| Table D2(a) o
Standard deviations of constants for insertion averages of run 1 of initial testing of the
: Range AVL Tree
dim Standard deviations of constants in Table D1(a).

1 11463 4982 000 2706 1597 3430 1082 3049 8.38
2 17.25 2329 1503 985 1654 1694 6.14 11.94

3 3.19 17.14 840 1004 6.86

4 1.87 4381 452 :

Table D2(b)
Standard deviations of constants for deletion averages of run 1 of initial testing of the
' Range AVL Tree
- dim Standard deviations of constants in Table D1(b).

000 5932 3789 2174 000 1375 2239 1920 13.61
000 000 1068 404 585 270 498 422

0.00 LS 070  0.29 1.59

142 0.66 1.00

W b —
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Table D3(a) :
Constants for insertion averages of run 2 of initial testing of the Range AVL Tree

dim Constants for insertion averages for data set sizes given by Table 1.
1 0.00 0.00 52.66 2892 6.69 542 9.07 2592 3397
2 27865 16516 52.18 1673 20.65 5.87 28.15 2997
3 2046 2642 30.27 32.13 3533
4 1.33 2831 40.61

Table D3(b)
Constants for deletion averages of run 2 of initial testing of the Range AVL Tree

dim Constant for deletion averages for data set sizes given by Table 1.
1 4515 0.00 5266 7520 1338 4154 2418 3370 26.04
2 0.00 19.68 1329 12.05 13.19 841 12.31 7.12
3 1.02 1.46  0.00 1.16  0.64
4 031 0.15 033

Table D4(a)
Standard deviations for constants of insertion averages of run 2 of initial testing of the
Range AVL Tree
dim Standard deviations of constants in Table D3(a).

T 0.00 0.00 88.10 64.67 1597 1375 23.02 3570 30.66
2 360.76 21195 47.17 7.81 1240  3.53 448 7381

3 8.66 8§49 895 7.38 6.08

4 2.62 603 509

Table D4(b)
Standard dev1at10ns for constants of deletion averages of run 2 of mmal testing of the
: Range AVL Tree
dim _ Standard deviations of constants in Table D3(b).

1 10775 000 8794 5470 20.87 3415 1823 24.68 21.41
2 0.00 1274 939 918 1220 370 523 4.29

3 260 155 000 084 025 '

4 048 022 025
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Table D5(a)
Constants of insertion averages of run 3 of initial testing of the Range AVL Tree

dim Constants for insertion averages for data set sizes given by Table 1.
1 4515 19.62 3646 2892 1338 542 1965 1296 11.32
2 1359 3081 31.01 2443 2065 24.07 2447 29.03
3 102 2799 34.64 3557 39.57
4 015 2953 4296

Table D5(b)
Constants of deletion averages of run 3 of initial testing of the Range AVL Tree
dim Constant for deletion averages for data set sizes given by Table 1.
1 000 000 1215 868 669 1625 907 389 18.12
2 000 000 492 1.00 498 254 304 309
3 000 . 112 1.56  0.39 1.83
4 067 034 039
Table Dé6(a)
Standard deviations for consfants of insertion averages of run 3 of initial testing of the
Range AVL Tree
dim Standard deviations of constants in Table D5(a).
1 114.63 4982 59.67 4285 20.87 1375 32.88 11.84 10.35
2 2119 2936 4411 11.63 8.89 438 437 694
3 2,60 1543 1224 541 476
4 0.39 724 511
Table D6(b)
Standard dcv1ar.10ns for constants of deletion averages of run 3 of 1n1t1al testing of the
Range AVL Tree
dim _ Standard deviations of constants in Table D5(b).
I 0.00 000 30.85 2071 1597 1625 1371 9.87 1324
2 000 000 450 255 342 425 226 206
3 000 1.70 133 0.35 1.43
4 038 013 0.8
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‘Table D7(a)
Constants for insertion averages of all passes of all runs of initial testing of the Range

AVL Tree
dim Constants for insertion averages for data set sizes given by Table 1.
1 3010 13.08 2971 2507 892 1746 11.08 19.87 20.00 .
2 9968 7844 4299 2331 2845 1885 28.89 3190
3 7.84 3418 3559 3792 4226
4 084 2745 36.12
Table D7(b)
Constants for deletion averages of all passes of all runs of initial testing of the Range AVL
Tree -
dimn Constant for deletion averages for data set sizes given by Table 1.
1 1505 13.08 2971 4049 6.69 21.07 16.12 16.85 21.13
2 000 656 820 613 738 450 778 560
3 034 108 084 098 1.59
-4 072 041 0388
Table D8(a)
Standard deviations for constants for insertion averages of all passes of all runs of initial
testing of the Range AVL Tree
dim Standard deviations of constants in Table D7(a).
I 7642 3321 4926 4486 17.60 2060 2224 26.01 1646
2 13307 8820 3544 976 1261 828 500 890
3 482 13.6% 986 761 590
4 1.63  6.03 491

. Table D8(b} .
Standard deviations for constants for deletion averages of all passes of all runs of initial
testing of the Range AVL Tree

dim Standard deviations of constants in Table D2(a).
1 3592 1977 5223 3238 1228 21.38 1811 1792 16.09
2 0.00 425 819 526 7.16 355 416 3352
3 0.87 143  0.68  0.49 1.09
4 076 (034 048
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Table D9(a)
Standard deviations of the constants in Table 5

dimensions run 1 run 2 run 3
2 14.20 42,16 15.67
3 10.61 773 9.46
4 4,67 5.56 -6.18
Table D9(b)
Standard deviations of the constants in Table 6
dimensions ‘tun 1 mn2 mn3
2 - 4,64 8.10 2,72
3 0.91 0.66 1.20
4 _ 0.83 0.24 0.16

all runs
24.02
9.27
5.47

all runs
5.16
0.92
0.41
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~ APPENDIX E
AVERAGE SEARCH TIMES FOR FEACH INITIAL

TEST RUN OF THE K-D RANGE AVL TREE
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Table E1
Average search times for run 1 of initial testing of the k-d Range AVL Tree

% of points 0% 5% 10% 25% 50% 75% 90% 100%

dim # pts _ Actual Search Times

1 100 7 10 43 83 163 270 363 380
300 3 70 - 124 350 570 963 1103 1350

500 3 96 184 563 1073 1610 1877 2097

700 0 174 307 727 1527 2070 2719 3020

%00 3 173 367 820 1907 2910 3493 3977

1100 3 227 333 1250 2320 3707 4510 4970
1300 0 - 203 540 1437 2827 4333 5227 5996
1500 7 327 673 1663 3106 4844 6193 6657
1700 7 373 - 744 1737 3576 5660 6907 7230

2 100 10 30 73 154. 323 523 640 717
300 3 103 213 643 1087 1543 1840 2196

500 0 143 376 990 1830 2697 3333 3940

700 10 250 510 1233 2657 - 3870 4600 5270

900 0 273 730 1670 3190 - 4657 6217 6900

1100 0 353 724 1893 4010 5727 7297 8260
1300 13 477 890 2373 4713 6953 8660 9537
1500 0 443 763 1883 3927 5977 7207 7603

3 100 17 50 83 250 433 733 787 950
' 300 16 130 353 817 1524 2743 3017 3503
500 20 240 587 1483 2727 4113 4980 5807

700 10 383 717 1974 4033 6173 7430 8260

900 10 533 1140- 2637 5247 7933 9600 10353

4 100 3 67 174 413 747 1073 1367 1567
300 7 223 343 1180 2403 3660 4250 4963

23 474 803 1960 3793 6223 7647 8000

500
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_ Table E2
Average search times for run 2 of initial testing of the k-d Range AVL Tree

% of points 0% 5% 10% 25% 50% 15% 90% 100%
dim  #pts : : Acmal Search Times
1 100 13 53 . 46 133 310 383 430

3
300 7 43 130 286 567 937 1157 1483
500 3 110 183 527 1054 1540 1993 2043
700 10 147 317 683 1333 2073 2753 2913
900 -7 187 287 947 1820 3003 3550 . 4077
1100 10 220 457 1027 2027 3177 3786 4317
1300 3 243 473 1256 2657 3760 4436 5207
1500 10 293 540 1477 2770 4373 5370 5940
1700 10 313 643 1670 3593 5100 5903 7040

2 100 3 33 74 150 320 447 583 617
300 0 113 184 510 906 1433 1747 2043

500 3 150 313 807 1580 2333 3056 3390

700 3 227 460 1087 2244 3440 4297 5100

900 6 253 567 1540 2984 ° 4573 5537 6263

1100 13 327 677 1720 3603 5360 6653 7643
1300 3 280 597 1583 3037 4707 5660 @ 5257
1500 0 330 617 1480 2790 4190 5114 3466

3 100 7 63 70 270 547 844 940 - 1020
300 10" 160 280 803 1647 2390 2907 3397

500 3 290 347 1393 2660 4087 5040 5487

700 17 384 890 2033 4024 5833 7143 7860

900 3 453 1160 2537 5226 7964 9680 8650

4 100 7 56 117 373 670 1127 1206 1393
: 300 0 240 546 1104 2406 3490, 4436 4707
23 384 768 1750 3618 5809 7075 7690

500
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Table E3
Average search times for run 3 of initial testing of the k-d Range AVL Tree

% of points 0% 5% 10% 25% 50% 5% 90% 100%

dim #pts - Actual Search Times

1 100 3 10 30 100 193 284 323 . 347
300 3 30 87 204 517 837 1070 1057

500 0 87 183 380 887 1367 1693 1937

700 7 117 297 673 1290 1910 2480 2594

900 0 160 323 773 1803 2540 3127 3610

1100 0 224 366 997 2187 3233 3697 4480
1300 10 244 490 1107 2353 4074 4636 5357
1500 10 333 653 1533 2913 4380 5176 6344
1700 3 300 617 1617 3490 5233 6200 7033

2 100 0 23 67 143 280 463 563 690
300 7 70 220 530 973 1467 1740 1913

500 23 143 243 790 1617 2540 2990 3460

700 0 140 447 1153 2363 3397 4217 4557

900 7 293 567 1510 3080 ° 4617 5070 6040

1100 7 383 700 1906 3803 5470 7056 7427
1300 10 297 540 1613 3270 4834 6023 2500
1500 13 310 633 1523 3104 4567 4363 3047
3100 3 60 114 243 540 763 1003 1107
300 7 147 280 720 . 1457 2227 2607 3343

500 16 210 . 523 1320 2623 3990 4843 5620

700 0 277 463 1344 2687 4037 4927 4253

900 3 327 557 1500 3013 4333 35083 2824

4 100 13 87 154  -313 693 1043 1247 1373
300 7 - 180 536 1033 2110 3080 4007 4217

13 250 507 1393 2773 3940 4424 4756

500
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Table E4
Average search times for all runs of initial testing of the k-d Range AVL Tree

%ofpoints ~ 0% 5% 10% 25% 50% 15% 90% 100%
dim # pts Actual Search Times '

I 100 4 11 42 77 163 288 357 386

300 4 48 113 280 551 912 1110 1297

500 2 98 183 490 1005 1506 1854 2026

700 6 146 307 694 1383 2018 2651 2842

900 3 173 326 847 1843 2818 3390 3888

1100 4 223 452 1091 2178 3372 3998 4589

1300 4 230 501 1267 2612 4056 4767 5520

1500 9 318 622 1558 2930 - 4532 5580 6313

1700 7 329 668 1674 3553 5331 6337 7108

2 100 4 29 71 149 308 478 596 674

300 3 95 206 561 989 1481 1776 2051

500 9 146 311 862 1676 2523 3126 3597

700 4 206 472 1158 2421 3636 4371 4976

900 4 273 621 1573 3085 . 4615 5608 6401

1100 7 354 700 1840 3806 5519 7002 7777

1300 9 351 676 1857 3673 5498 6781 5764

1500 4 361 671 1629 3273 4911 5561 4705

3100 9 58 89 254 507 780 - 910 1025

300 11 146 304 780 1542 2453 2843 3414

500 13 247 552 1399 2670 4063 4954 5638

700 9 348 - 690 1783 3581 5348 6500 6791

900 5 438 952 2225 4496 6743 8121 7276

4 100 8 70 148 367 703 1081 1273 1444

300 4 214 542 1106 2307 3410 4231 4629

500 20 369 692 1701 3395 5324 6382 6816
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APPENDIX F
MULTIPLIERS REPRESENTING SEARCH TIME
INCREASES IN THE INITIAL TEST RUNS

OF THE K-D RANGE AVL TREE

137




Table F1
Multipliers corresponding to search time increases for increase in query window size
for run 1 of initial testing of the k-d Range AVL Tree

Expected: 2.0 2.5 2.0 1.5 1.20 1.11
dim # pts _ Actual Multipliers

1 - 100 XXXX XXXX 2.08 1.86 1.38 1.07
300 XXXX 2.96 1.77 1.75 1.15 1.25

500 2.54 3.18 1.94 151 1.17 1.14

700 1.96 2.56 2.13 1.36 1.32 1.12

900 2.17 2.25 233 . 1.58 1.21 1.14

1100 2.40 2.37 1.87 1.60 1.22 1.10

1300 2.71 2.74 2.00 1.54 1.21 1.15

1500 2.13 2.64 1.89 1.56 1.28 1.08

1700 2.01 2.35 2.06 1.59 1.22 1.05

2 100 XXXX 3.05 265 1.83 1,27 1.14
300 2.16 3.24 1.76 144 - 121 1.20

500 2.77 2.65 1.85 1.48 1.24 1.18

700 2.19 2.42 2.22 1.47 1.19 1.15

900 273 2.30 1.93 1.46 1.33 1.11

1100. 2.15 - 2.64 2.13 1.43 1.28 1.14

1300 1.87 2.71 2.01 1.47 1.25 1.10

_ 1500 1.82 2.49 2.08 1.52 1.18 1.07
3 100 1.78 2.95 1.84 1.72 .10 ~ 1.23
300 2.85 2.35 1.92 1.80 1.10 1.16

500 2.53 256 1.86 1.51 1.22 1.17

700 1.93 277 207 1.54 1.21 1.11

900 2.17 2.32 2.00 1.51° 1.21 1.08

4 100 2.62 2.37 2.04 145 . 1.31 1.16
300 2.53 2.20 2.04 1.54 1.16 1.17

500 1.71 2.46 1.96 1.64 1.23 1.05
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Table F2
Muiﬁphers corresponding to search time increases for increase in query window size
for run 2 of initial testing of the k-d Range AVL Tree

Expected 2.0 2.5 2.0 1.5 120 - 1.11
dim #pts Actual Multipliers _
1 100 XXXX XXXX 4.35 2.60 1.24 1.16
300 XXXX 421 2.03 1.69 1.24 1.29

500 2.03 2.99 2.04 1.48 1.31 ' 1.04

700 2.19 2.18 1.99 1.56 1.34 1.07

900 173 3.40 1.94 1.67 1.19 1.15

1100 2.19 2.26 2.00 1.57 1.20 1.14

1300 2.04 2.68 2.13 1.43 1.19 1.17

1500 1.91 2.78 1.88 1.58 1.23 1.11

1700 215 . 2.67 2.18 1.42 1.17 1.19

2 100 XXXX 2.59 226 1.46 1.31 1.06
300 1.76 3.03 1.80 1.59 123 . 117

500 239 2.75 1.97 1.48 1.31 1.11

700 2.13 2.39 2.09 1.54 1.25 1.19

900 2.36 2.79 1.95 1.54 1.21 1.13

1100 2.14 2.57 2.13 1.49 1.24 1.15

1300 2.94 3.03 1.86 1.52 1.22 0.96

1500 2.06 2.42 2.03 1.43 1.37 0.81

3 100 1.39 4.89 2.02 1.56 1.14 1.10
300 1.88 3.03 2.11 1.46 1.23 1.17

500 2.00 261 . 1.93 1.54 1.24 1.09

700 2.32 2.31 1.99 1.45 123 1.10

900 2.67 2,19 2.06 1.53 1.22 - 0.89

4 100 2.49 3.44 1.90 176 . 1.08 1.19
300 2.41 2.05 2.24 1.46 1.27 1.06

500 2.16 2.29 2.07 1.61 1.22 1.09
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Table F3
Muttipliers corresponding to search time increases for increase in query window size
for run 3 of initial testing of the k-d Range AVL Tree

~ Expected: 2.0 2.5 2.0 1.5 1.20 1.11
dim # pts Actual Multipliers

1 100 XXXX XXXX 2.18 1.50 1.21 1.17

300 XXXX 2.62 3.32 1.64 1.29 1.00

500 2.68 2.24 2.55 1.55 1.27 1.15

700 2.83 2.31 1.97 1.49 1.33 1.05

900 2.21 2.50 2.36 142 123 1.16

1100 1.77 2.84 2.22 1.48 1.15 1.21

1300 216 232 214 1.74 1.14 1.16

1500 2.02 2.39 1.92 1.51 1.18 1.23

1700 2.23 2.70 2.16 1.50 1.19 1.14

2 100 XKXX 2.64 1.96 1.77 1.30 1.23

300 4,22 2.71 1.83 1.52 1.20 1.10

500 1.98 3.47 2.08 1.57 1.18 1.16

700 3.26 2.65 2.08 1.53 1.18 1.08

900 1.96 2.74 2.06 1.52 1.11 1.19

1100 1.89 272 2.00 1.44 1.29 1.05

1300 2.93 3.04 2.00 1.53 1.22 0.64

1500 2.32 2.39 2.08 1.43 1,08 0.89

3 100 3.13 219 243 1.42 1.35 1.12

' 300 213 - 264 206 ©  1.53 1.17 1.29

500 2.79 2.59 200 1.52 1.22 1.18

700 1.84 301 0 1.92 1.52 1.17 0.99

- 900 1.96 2.56 - 196 1.44 1.24 0.76

4 100 2.00 2.42 2.24 1.53 1.24 1.11

300 3.38 1.94 2.16 1.47 1.32 1.06

500 2.53 2.55 221 1.41 1.14 1.05
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Table F4
Multipliers corresponding to search time increases for increase in query window size
for all runs of initial testing of the k-d Range AVL Tree

Expected: 2.0 2.5 2.0 L5 1.20 1.11
dim # pts Actual Multipliers
1 100 XXXX RXXX 2.87 1.99 1.28 1.14
300 XXXX 3.26 2.37 1.69 123 1.18
500 242 2.80 2.18 1.51 1.25 1.11
700 2.33 2.35 2.03 1.47 1.33 1.08
900 2.04 272 2.21 1.55 1.21 1.15
1100 2.12 2.49 2.03 1.55 - 1.19 1.15
1300 2.30 2.58 2.09 1.57. 118 1.16
1500 S 202 0 2.60 1.90 1.55 1.23 1.14
1700 213 2.57 2.13 1.50 1.19 1.13
2 100 XKXX 276 2.29 1.69 1.29 1.14
300 2.71 2.99 1.80 1.51 1.21 - L16
500 2.38 2.96 1.97 1.51 1.24 1.15
700 2.53 2.49 2,13 1.51 - 1.21 1.14
900 2.35 2.61 1.98 1.51 1.22 1.15
1100 2.06 2.65 2.09 1.46 1.27 1.11
1300 2.58 2.93 1.96 1.51 1.23 0.90
1500 2.07 2.43 2.07 1.46 1.21 0.92
3 100 2.10 3.34 2.10 1.57 1.19 1.15
300 2.29 2.67 2.03 1.60 1.17 1.21
500 2.44 259 1.93 1.52 1.22 1.15
700 203 270 199 1.50 1.20 1.07
900 2.26 2.36 2.01 1.49 1.22 091
4 100 237 2.74 2.06 1.58 1.21 1.15
300 277 206 2.15 1.49 1.25 1.10

500 213 243 2.08 1.56 120 1.06
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APPENDIX G
RAW CONSTRUCTION AND DESTRUCTION TIMES

FOR INITIAL TESTING OF THE K-D RANGE DSL
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Table G1(a)
Raw construct times for pass 1 of run 1 of initial testing of the k-d Range DSL

dim Raw construct times for data set sizes given in Table 1 _
' 1 0 0 0 . 17 17 16 17 = 33 0
2 16 17 83 250 234 316 450 383
3 50 334 550 783 867
4 183 1416 2400

Table G1(b)
Raw destruct times for pass 1 of run 1 of initial testing of the k-d Range DSL
dim Raw destruct times for data set sizes given in Table 1
i 0 0 0 33 17 0 0 16 34
2 0 34 234 166 366 900 1067 333
3 83 317 1567 2466 5700
4 116 1833 7517

Table G2(a)
Raw consiruct times for pass 2 of run 1 of initial testing of the k-d Range DSL

dim Raw construct times for data set sizes given in Table 1
1 0 0 0 17 0 0 0 34 16
2 0 33 150 150 234 217 350 366
3 133 200 367 884 1000
4 84 1484 2317

Table G2(b)
Raw destruct times for pass 2 of run 1 of initial testing of the k-d Range DSL

dim ' Raw destruct times for data set sizes given in Table 1
1 0 0 0 16 0 0 17 17 0
2 0 67 200 184 383 883 834 384
3 50 366 1833 2467 5183
4 150 2350 7150

- Table G3(a)
Raw construct times for pass 3 of run 1 of initial testing of the k-d Range DSL
dim Raw construct times for'data set sizes given in Table 1
1 0 0 0 17 0 0 0 33 33
2 0 50 100 117 284 267 283 183
3 100 200 500 784 933 2
4 100 1234 2566
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Table G3(b)
Raw destruct times for pass 3 of run 1 of initial testing of the k-d Range DSL

- dim ' Raw destruct times for data set sizes given in Table 1

1 0 0 17 16 16 17 17 33 50
2 0 34 234 150 400 1034 1050 266

3 67 334 1550 1983 5467

4 117 2333 7200

Table G4(a)
Raw construct times for pass 4 of run 1 of initial testing of the k-d Range DSL
dim Raw construct times for data set sizes given in Tabie 1
1 0 0 0 0 0 16 16 33 16
2 0 33 66 116 200 334 267 300
3 0 166 350 1000 967
4 250 1317 2267
Table G4(b)
Raw destruct times for pass 4 of run 1 of initial testing of the k-d Range DSL
dim Raw destruct times for data set sizes given in Table 1
1 0 0 0 33 17 16 16 17 0
2 0 33 200 166 434 900 717 484
3 50 484 1616 2700 5884
4 267 2466 7784 -

Table G5(a) _
Raw construct times for pass 5 of run 1 of initial testing of the k-d Range DSL

dim ' Raw construct times for data set sizes given in Table 1
1 0 0 0 16 33 0 0 0 17
2 0 66 83 217 233 367 216 134
3 83 383 534 850 1267
4 184 1717 2433 '

Table G5(b)
Raw destruct times for pass 5 of ran 1 of initial testing of the k-d Range DSL
dim Raw destruct times for data set sizes given in Table 1
1 0 0 0 0 6 17 34 17 0
2 0 67 66 133 384 917 783 467
3 33 450 1750 2667 5000 -
4 150 2133 6983

144 -




Table G6(a) _
Raw construct times for pass 1 of run 2 of initial testing of the k-d Range DSL

dim Raw construct times for data set sizes given in Table 1
1 0 0 0 0 0 0 17 0 33
2 0 50 117 100 100 450 434 483

-g : 3 50 633 584 783 1316
4 83 1133 2583

Table G6(b) _
Raw destruct times for pass 1 of run 2 of initial testing of the k-d Range DSL

dim _ - Raw destruct times for data set sizes given in Table 1 _
1 0 0 0 0 16 0 50 16 0
2 0 0 83 216 283 433 1100 1250
3 117 683 1883 2700 3900
4 133 2834 5767

| -  Table G7(a)
Raw construct times for pass 2 of run 2 of initial testing of the k-d Range DSL

dim Raw construct times for data set sizes given in Table 1
10 0 16 17 0 0 0 17 33
2 0 67 66 100 217 200 317 633
3 133 617 434 1066 1267
4 150 1384 2200

Table G7(b)
Raw destruct times for pass 2 of run 2 of initial testing of the k-d Range DSL

dim ' Raw destruct times for data set sizes given in Table 1
1 0 0 0 16 50 0 17 33 33
2 17 17 133 200 384 517 1033 1350
3 66 717 1900 2500 3517
4 116 2517 5250

Table G8(a)
Raw construct times for pass 3 of run 2 of initial testing of the k-d Range DSL

dim Raw construct times for data set sizes given in Table 1
i 16 0 0 7 - 0 0 33 16 17
2 0 16 83 150 150 233 383 583
3 33 634 384 1133 1250
4 134 933 2050
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| Table G8(b)
Raw destruct times for pass 3 of run 2 of initial testing of the k-d Range DSL

dim ' Raw destruct times for data set sizes given in Table 1
1 0 o 0 16 16 16 17 33 17
2 0 33 183 234 300 584 1050 1333
3 66 800 1666 2467 3516
4 150 2450 5266

. Table G9(a) .
Raw construct times for pass 4 of run 2 of inital testing of the k-d Range DSL

dim Raw construct times for data set sizes given in Table 1
1 0 0 0 0 0 33 0 16 50
2 0 0 67 150 150 350 466 600
3 184 700 517 950 1183
4 183 1083 2383

Table G9(b) _ _
Raw destruct times for pass 4 of run 2 of initial testing of the k-d Range DSL

dim Raw destruct times for data set sizes given in Table 1
1 0 17 0 0 0 -0 16 0 34
2 17 0 133 266 350 400 1217 1284
3 66 700 1667 2850 3133
4 117 2334 5433

_ : Table G10(a)
Raw construct times for pass 5 of run 2 of initial testing of the k-d Range DSL

dim : Raw construct times for data set sizes given in Table 1
I 16 0 0 0 -0 0 17 0 16
2 0 34 67 100 200 283 350 583
3 67 583 566 833 1167
4 150 950 2384

Table G10(b)
Raw destruct times for pass 5 of run 2 of initial testing of the k-d Range DSL

dim Raw destruct times for data set sizes given in Table 1
1 0 16 0 17 17 0 17 17 34
2 33 33 116 283 316 516 933 1400
3 83 684 1700 2816 4000
4 134 2166 6050
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Table G11i(a)
Raw construct times for pass 1 of run 3 of inidal testing of the k-d Range DSL

im Raw construct times for data set sizes given in Table 1
1 0 0 16 34 17 0 16 16 17
2 0 50 67 167 217 300 350 517
3 117 466 ~ 700 934 1283 '
4 150 1133 2450

_ Table G11(b) ;
Raw destruct times for pass 1 of run 3 of initial testing of the k-d Range DSL
dim Raw destruct times for data set sizes given in Table 1
1 0 0 0 0 0 17 0 0 0
2 0 17 100 183 317 833 1333 1816
3 116 933 1150 2417 3184
4 183 2500 5617
Table G12(a)
Raw construct times for pass 2 of run 3 of initial testing of the k-d Range DSL
dim Raw construct times for data set sizes given in Table 1
1 0 0 .17 0 17 0 16 0 17
2 0 33 67 200 150 317 367 533
3 150 567 267 984 1183
4 217 1234 2666 )
Table G12(b) _
. Raw destruct times for pass 2 of run 3 of initial testing of the k-d Range DSL
dim - Raw destruct times for data set sizes given in Table 1
1 0 0 0 50 33 33 -0 0 0
2 17 33 117 183 267 083 1284 1833
3 150 900 1233 2433 3084 '
4 150 2683 6067
_ Table G13(a)
Raw construct times for pass 3 of run 3 of initial testing of the k-d Range DSL
dim Raw construct times for data set sizes given in Table 1
1 0 0 0 16 0 0 0 16 17
2 0 50 83 133 216 267 450 350
3 50 533 533 1066 1250
4 200 1317 2400
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Table G13(b)
Raw destruct times for pass 3 of run 3 of initial testing of the k-d Range DSL

dim Raw destruct times for data set sizes given in Table 1
1 0 17 0 0 0 0 33 50 0
2 0 67 83 233 316 1183 1566 1750
3 117 950 1183 2650 3400
4 200 2766 6433

Table G14(a)
Raw construct times for pass 4 of ran 3 of initial testing of the k-d Range DSL

dim ' Raw construct times for data set sizes given in Table 1
1 0 0 0 0 0 17 0 50 33
2 17 50 50 117 184 283 384 500
3 133 600 466 883 1367
4 133 1400 2700
Table G14(b)
Raw destruct times for pass 4 of run 3 of initial testing of the k-d Range DSL
dim Raw destruct times for data set sizes given in Table 1
1 0 17 17 0 16 17 17 0 0
2 16 50 66 200 184 900 1317 1833
3 134 300 1267 2583 3267
4 233 2817 6633 g
Table G15(a)
Raw construct times for pass 5 of run 3 of initial testing of the k-d Range DSL
dim : Raw construct times for data set sizes given in Table 1
1 0 0 17 0 0 0 0 50 17
2 34 33 84 150 117 233 300 517
3 116 200 700 933 1200
4 250 1600 2584

: Table G15(b)
Raw destruct times for pass 5 of run 3 of initial testing of the k-d Range DSL.

dim Raw destruct times for data set sizes given in Table 1
1 0 0 0 0 0 33 16 17 17
2 0 33 33 150 216 934 1250 1784
3 150 316 1233 2516 3083
4 117 3517 6033
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APPENDIX H
AVERAGE CONSTRUCTION AND DESTRUCTION
TIMES FOR EACH INITIAL TEST RUN

OF THE K-D RANGE DSL
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_ Table Hi(a)
Construct time averages for run 1 of initial testing of the k-d Range DSL
dim Construct time averages for data set sizes given in Table 1
1 0 0 0 13 10 6 6 26
2 3 39 96 170 237 300 313 273
3 73 25 500 860 1006
4 160 1433 2396
Table H1(b) _
Destruct time averages for run 1 of initial testing of the k-d Range DSL
dim Destruct time averages for data set sizes given in Table 1
1 0 0 3 19 10 10 16 20
2 0 47 186 159 393 926 890 386
3 56 390 1663 2456 5446
4 160 2223 7326
Table H2(a)
Construct time averages for run 2 of initial testing of the k-d Range DSL
dim Construct tiihe averages for data set sizes given in Table 1
1 6 0 3 6 0 6 13 9
2 0 33 80 120 163 303 350 576
3 103 633 497 953 1236
4 140 1096 . 2320 .
Table H2(b)
Destruct time averages for run 2 of initial testing of the k-d Range DSL
dim ' Destruct time averages for data set sizes given in Table 1 |
1 0 6 0 9 19 3 23 19
2 13 16 129 239 326 490 1066 1323
3 79 716 1763 2666 3613
4 130 2460 5553
_ Table H3(a)
Construct time averages for run 3 of initial testing of the k-d Range DSL
dim Construct time averages for data set sizes given in Table 1
1 0 0 10 10 6 3 6 26
2 10 43 70 153 176 280 370 523
3 113 473 533 960 1256 '
4 190 1336 2560
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Table H3(b)
Destruct time averages for run 3 of initial testing of the k-d Range DSL

dim Destruct time averages for data set sizes given in Table 1
1 0 6 3 6 - 9 20 13 13 3
2 6 40 79 189 260 966 1350 1803
3 133 679 1213 2519 3203
4 176 2856 6156

: Table H4(a)
Construct time averages for all runs of initial testing of the k-d Range DSL
dim ' Construct time averages for data set sizes given.in Table 1
1 2 ¢ 4 10 5 5 8 20 22
2 4 38 82 148 192 294 - 358 457
3 96 454 510 924 1166
4 163 1288 2425
Table H4(b)
Destruct time averages for all runs of initial testing of the k-d Range DSL
dim Destruct time averages for data set sizes given in Table 1 o
1 0 4 2 13 13 11 17 17 14
2 6 34 121 196 326 794 1102 1171
3 89 595 1546 2547 4087
4 155 2513 6345
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APPENDIX I
RAW INSERTION AND DELETION
CONSTANTS FOR INITIAL TESTING

- OF THE K-D RANGE DSL
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Table 11(a) .
Constants for Insertions of pass 1 of run 1 of initial testing of the k-d Range DSL

dim Insertion constants for the data set sizes given by Table 1.
1 0.00 000 0.00 2570 1925 1440 1264 2085 0.00
2 36.25 8.37 20.65 39.98 27.00 2814 3235 2294
3 17.05 1998 1526 1325 10.19
4 939 1029 743

Table It(b)
Constants for Deletions of pass 1 of run 1 of initial testing of the k-d Range DSL

dim Deletion constants for the data set sizes given by Table 1.
1 006 000 000 4988 1925 0.00 000 1011 18.64
2 000 1674 5822 2655 4222 8015 7670 1994
3 2830 1896 4348 4173 67.01 '
4 595 1333 2327 '

_ _ Table I12(a)
Constants for Insertions of pass 2 of run 1 of initial testing of the k-d Range DSL

dim Insertion constants for the data set sizes given by Table 1.
1 000 000 000 2570 000 000 000 2148 877
2 000 1624 37.32 2399 27.00 1933 2516 2192
3 4535 1196 10.18 1496 11.76
4 431 1079 7.17

Table I2(b)

Constants for Deletions of pass 2 of run 1 of initial testing of the k-d Range DSL
dim : Deletion constants for the data set sizes given by Table 1.
1 000 000 000 2418 000 000 1264 1074 0.00
2 000 3298 4976 2943 44.19 78.64 5995 23.00
3 17.05 2190 50.87 4175 6093
4 7790 17.08 22.13
Table I3(a)
Constants for Insertions of pass 3 of run 1 of initial testing of the k-d Range DSL
dim Insertion constants for the data set sizes given by Table 1.
1 0.00 000 000 2570 000 000 0.00 20.85 18.09
2 000 2461 2488 1871 3276 2378 2034 10.96
3 3410 1196 13.88 1327 1097
4 513 897 794
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~ Table I3(b)
Constants for Deletions of pass 3 of run 1 of initial testing of the k-d Range DSL

dim _ . Deletion constants for the data set sizes given by Table 1.
1 0.00 0.00 3792 2418 1812 1530 12.64 20.85 2741
2 0.00 1674 5822 2399 46.15 9209 7548 1593
3 2285 1998 4301 33.56 6427
4 6.00 1696 2228

. Table I4(a)
Constants for Insertions of pass 4 of run 1 of initial testing of the k-d Range DSL
dim Insertion constants for the data set sizes given by Table 1.
1 0600 000 000 000 000 1440 1190 2085 877
2 000 1624 1642 1855 2307 2975 1919 1797
3 000 993 1526 1692 11.37
4 1283 957 7.02

_ Table 14(b)
Constants for Deletions of pass 4 of run 1 of initial testing of the k-d Range DSL

dim Deletion constants for the data set sizes given by Table 1.
1 0.00 000 000 4988 1925 1440 1190 1074 0.00
-2 000 1624 4976 2655 35007 80.15 5154 2899
3 17.05 2895 4484 4569 69.17
4 1370 17.93 24.09

Table 15(a)
Constants for Insertions of pass 5 of run 1 of initial testing of the k-d Range DSL
dim : Insertion constants for the data set sizes given by Table 1.
1 000 000 000 2418 3736 000 000 000 932
2 000 3249 2065 3470 2688 3268 1553 803
3 2830 2291 1482 1438 14.89
4 944 1248 7.53
_ Table I5(b)
Constants for Deletions of pass 5 of run 1 of initial testing of the k-d Range DSL
dim Deletion constants for the data set sizes given by Table 1.
1 000 000 000 0060 000 1530 2528 1074 0.00
2 000 3298 1642 2127 4430 81.67 5629 2797
3 1125 2692 4856 4513 58.78
4 770 1551 21.61
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Table 16(a)
Constants for Insertions of pass 1 of run 2 of initial testing of the k-d Range DSL

dim Insertion constants for the data set sizes given by Table 1,
1 000 000 000 000 000 000 1264 000 18.09
2 000 2461 2911 1599 11.54 40.08 31.20 28.93
3 17.05 3787 1621 1325 1547
4 426 824  7.99

Table I6(b)
Constants for Deletions of pass 1 of run 2 of initial testing of the k-d Range DSL

dim Deletion constants for the data set sizes given by Table 1.
1 000 000 000 000 1812 000 37.18 10.11 0.00
2 000 000 20.65 3454 32.65 38.56 79.08 7486
3 3990 40.86 5225 4569 4585
4 683 2060 17.85

Table I7(a)
Constants for Insertions of pass 2 of run 2 of initial testing of the k-d Range DSL
dim Insertion constants for the data set sizes given by Table 1.
I 000 000 3569 2570 000 000 000 1074 18.09
2 000 3298 1642 1599 2503 1781 2279 3791
3 4535 3691 1204 18.04 14.89 :
4 770 1006 681

Table I7(b)
Constants for Deletions of pass 2 of run 2 of initial testing of the k-d Range DSL

dim ' Deletion constants for the data set sizes given by Table 1.
1 0.00 000 0.00 2418 56.61 0.00 12.64 2085 18.09
2 38.51 8.37 33.09 3199 4430 46.04 7426 80.85
3 2251 4289 5273 4230 4134
4 595 1830 16.25

: Table 18(a)
Constants for Insertions of pass 3 of run 2 of initial testing of the k-d Range DSL

dim ' Insertion constants for the data set sizes given by Table 1.
1 24082 000 000 2570 000 000 2454 10.11 9.32
2 0.00 7.88 20,65 2399 1731 2075 2753 3491
3 2830 3793 10.66 19.17 14.69 '
4 6.88 6.78 6.34
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dim

dim

Table 18(b)

Constants for Deletions of pass 3 of run 2 of initial testing of the k-d Range DSL

1 0.00
2  0.00
3 2251
4 770

Deletion constants for the data set sizes given by Table 1.

0.00 0.00
16.24 4553
4786 46.23
17.81 16.30

24,18 18.12 1440 12.64 20.85 9.32
3742 34,61 5201 7548 79.83
41.75 41.33 '

Table 19(a)

Constants for Insertions of pass 4 of run 2 of initial testing of the k-d Range DSL

1 0.00
2 000
3 6274
4  9.39

Insertion constants for the data set sizes given by Table 1.

0.00 0.00
0.00 1l6.67
41.88 14.35
7.87 738

0.00 000 2969 000 1011 2741
2399 17.31 3117 3350 3593
. 16.08 1391 '

Table I9(b)

~ Constants for Deletions of pass 4 of run 2 of initial testing of the k-d Range DSL

dim

dim

1 0.00
2 3851
3 2251
4  6.00

Deletion constants for the data set sizes given by Table 1.

68.86

0.00
41.88
16.97

0.00
33.09
46.26
16.82

0.00 0.00 0.00 11.90 0.00 - 18.64
42.54 40.38 3562 87.49 76.90
4823  36.83

Table 110(a)

Constants for Insertions of pass 5 of run 2 of initial testing of the k-d Range DSL

Insertion constants for the data set sizes given by Table 1.

0.00 0.00
16.74 16.67
3488 1571

691 738

000 000 000 1264 000 877
1599 2307 2520 2516 3491

14.10 1372

* Table I10(b)

Constants for Deletioﬁs of pass 5 of run 2 of initial tesiing of the k-d Range DSL

0.00
74.76
28.30

6.88

LN WS B S

Deletion constants for the data set sizes given by Table 1.

64.81 0.00
1624 28.86
40.92 47.18
15.75 18.73

2570 1925 0.00 1264 1074 18.64
45.26 3646 4595 67.07 83.84
47.65 47.02
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_ _ Table I11{a)
Constants for Insertions of pass 1 of run 3 of initial testing of the k-d Range DSL

dim - Insertion constants for the data set sizes given by Table 1.
I 000 000 3569 5139 1925 0.00 1190 1011  9.32
2 000 2461 1667 2671 2503 2672 2516 30.96
3 3990 27.88 1943 1580 15.08
4 770 824 758
: Table I11(b)
Constants for Deletions of pass 1 of ran 3 of initial testing of the k-d Range DSL
dim Deletion constants for the data set sizes given by Table 1.
I 000 000 000 000 000 1530 0.00 0.00 0.00
2 000 837 2488 2927 3657 7419 9583 108.76
3 3955 5581 3191 4090 3743
4 939 1817 17.39 '

_ Table I12(a)
Constants for Insertions of pass 2 of run 3 of initial testing of the k-d Range DSL

dim Insertion constants for the data set sizes given by Table 1.
L 0.00 0.00 3792 000 1925 0.00 1190 0.00 9.32
2 000 1624 16.67 3199 1731 2823 2638 31.92
3 5115 3392 741 1665 1391 '
4 1114 897 825

Table I12(b)
Constants for Deletions of pass 2 of run 3 of initial testing of the k-d Range DSL

dim : Deletion constants for the data set sizes given by Table 1.
1 000 000 0600 7558 3736 29.69 000 000 0.00
2 3851 1624 29.11 2927 30.80 87.55 9230 109.78
3 51.15 53.84 3422 41.17 3625
4 770 19.51 18.78

Table 113(a)
Constants for Insertions of pass 3 of run 3 of initial testing of the k-d Range DSL
dim Insertion constants for the data set sizes given by Table 1.
1 000 000 000 2418 000 000 000 1011 9.32
2 000 2461 2065 2127 2492 2378 3235 3294
3 17.05 31.89 1479 18.04 14.69
4 1026 957 743
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Tabie [13(b)
Constants for Deletions of pass 3 of run 3 of initial testing of the k-d Range DSL

dim Deletion constants for the data set sizes given by Table 1.
1 000 6886 0.00 000 000 0.00 2454 3159 0.00
2 000 3298 2065 3726 3646 10536 112.58 104.80
3 3990 56.83 32.83 44.84 3997
4 1026 20.11 1991

" Table [14(a)

Constants for Insertions of pass 4 of run 3 of initial testing of the k-d Range DSL

~ dim Insertion constants for the data set sizes given by Table 1.

1 0600 000 000 000 000 1530 000 3159 1849
2 3851 2461 1244 1871 2123 2520 27.60 29.94

j 3 4535 3589 1293 1494 16.07

4 683 1018  8.36

1 o | Table I14(b)
' Constants for Deletions of pass 4 of run 3 of initial testing of the k-d Range DSL

dim Deletion constants for the data set sizes given by Table 1,
1 0.00 6886 3792 0.00 18.12 1530 12.04 0.00 0.00
2 3625 2461 1642 3199 2123 80.15 9468 109.78
3 4569 1795 3516 4371 3841 '
4 1196 20.48 20.53

Table I15(a)
Constants for Insertions of pass 5 of run 3 of initial testing of the k-d Range DSL
dim : Insertion constants for the data set sizes given by Table 1.
I 000 000 3792 000 000 000 000 3159 932
2 7703 1624 2090 2399 1350 2075 21.57 30.96
3 3955 1196 1943 1579 14.11
4. 1283 11.63  8.00 .
Table I15(b)
Constants for Deletions of pass 5 of run 3 of initial testing of the k-d Range DSL
dim Deletion constants for the data set sizes given by Table 1.
1 000 000 000 000 000 2969 1190 1074 932
2 000 1624 821 2399 2492 8318 8986 106.84
4 3 51.15 1890 . 3422 4257 3624
4 600 2557 18.67
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'APPENDIX J
INSERTION AND DELETION CONSTANTS
FOR EACH INITIAL TEST RUN

OF THE K-D RANGE DSL

159



. Table J1(1)
Constants for insertion averages of run 1 of initial testing of the k-d Range DSL

dim Constants for insertion averages for data set sizes given by Table 1.
1 000 000 000 1965 11.32 540 446 1643 8.77
2 680 1520 2388 27.19 2734 2672 22.50 1635 '
3 2489 1531 1388 1455 11.83 '
4 821 1042 742 '

Table J1(b)
Constants for deletion averages of run 1 of initial testing of the k-d Range DSL.

dim Constani for deletion averages for data set sizes given by Table 1.
1 000 000 669 2872 11.32 900 1190 12.64 8.77
2 000 2314 4628 2543 4534 8247 6398 2312
3 1910 2333 46.15 4156 64.02
4 821 16.16 2267

Table J2(a)
Standard deviation for constants for insertion averages of run 1 of initial testing of the k-d
: Range DSL
dim Standard deviations of constants in Table J1(a).

1. 000 000 000 1136 1677 790 674 941  6.40
2 1622 923 803 971 347 524 649 662

3 1729 572 214 151 1.80

4 350 134 036 "

Table J2(b)

Standard deviation for constants for deletion averages of run 1 of initial testin g of the k-d
: Range DSL
dim Standard deviations of constants in Table J1(b).

000 000 1699 2099 1035 822 897 460 13.00
0.00 899 1733 308 297 545 1145 547

6.49 438 342 484 426

3.19 1.81 0.99

B b
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Table J3(a) .
‘Constants for insertion averages of run 2 of initial testing of the k-d Range DSL

dim Constants for insertion averages for data set sizes given by Table 1.
1 9031 000 669 907 000 540 9.67 569 1590
2 000 1624 1990 19.19 1880 2699 28.04 34.50
3 3512 3787 1379 16.13 14.53 ' '
4 719 797 7.8

~ Table J3(b)
Constants for deletion averages of run 2 of initial testing of the k-d Range DSL
dim Constant for deletion averages for data set sizes given by Table 1.
1 0.00 2430 000 13.60 21.51 270 17.1¢  12.01 2.6l
2 2945  7.88 3210 3822 3761 4364 76.63 79.23
3 2694 4283 4892 4511 4247
4 6.67 17.88 17.19
_ Table J4(a)
Standard deviation for constants for insertion averages of run 2 of initial testing of the k-d
Range DSL
dim _ Standard deviations of constants in Table J3(a). _
1 13207 000 1597 1414 000 1329 1032 569  7.68
2 0.00 13.08 544 438 534  8.88 436  3.36
'3 1865 255 238 252 072
4 1.87 132 0.63 '
Table J4(b)
Standard deviation for constants for deletion averages of run 2 of initial testing of the k-d
B Range DSL
dim Standard deviations of constants in Table J3(b).
1 0.00 3674 0.00 13.60 20.75 6.44  11.07 8.74 8.26
2 3143 8.13 9.00 5.50 4.67 6.54 7.45 3.49
3 7.56 2.90 3.28 299 - 4.08
4 0.72 1.80 1.07
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Table J5(a)
Constarits for insertion averages of run 3 of initial testing of the k-d Range DSI.

dim Constants for insertion averages for data set sizes given by Table 1.
i .00 000 2231 1512 679 270 446 1643 1096
2 22,65 21.17 1742 2447 2030 2494 2660 31.32
3 3853 2830 1479 1624 1477
4 975 971 792

_ Table J5(b)
Constants for deletion averages of run 3 of initial testing of the k-d Range DSL

dim Constant for deletion averages for data set sizes given by Table 1.
000 2430 669 1512 10.19 1800 9.67 821 l.64

1
2 1359 1969 19.66 3023 30.00 86.03 97.05 107.98
3 4535 40.62 33.66 4263 37.65

4 903 2076 19.05

_ . Table J6(a)
Standard deviation for constants for insertion averages of run 3 of initial testing of the k-d
Range DSL
dim ' Standard deviations of constants in Table J5(a).

i 0.00 000 2038 2282 1059 685 653 14.23 3.92
2 3445 459 348 513 499 287 392 1.13

3 1294 961 502 .17 '0.86

4 247 1.29 041

. Table J6(b)
Standard deviation for constants for deletion averages of run 3 of initial testing of the k-d
' Range DSL
dim _  Standard deviations of constants in Table J5(b).

1 0.00 37.89 1699 3380 16.68 1237 1027 1374 4.18
2 2055 939 805 483 686 11.82 898 215

3 572 2033 1.29. 167 158 '

4 230 282 1.21

162




Table J7(a)
Constants for insertion averages of all runs of initial testing of the k-d Range DSL

dim Constants for insertion averages for data set sizes given by Table 1.
30,10 000 9.67 1461 604 4350 620 12.85 11.88

1

2 982 1887 2040 23.62 2215 2621 2571 2139
3 3285 27.16 14,15 1564 1371

4 8.38 937 7351

Table J7(b)
Constants for deletion averages of all runs of initial testing of the k-d Range DSL

dim Constant for deletion averages for data set sizes given by Table 1.
1 0.00 1620 446 19.15 1434 990 12.89 1095 7.67
2 1435 1690 3268 3129 3765 7071 7922 70.11
3 3046 3559 4291 43,10 48.05
4 797 1827 19.64 :

Tabie J3(a)
Standard deviation for constants for insertion averages of all runs of initial testing of the k-
' d Range DSL
dim Standard deviations of constants in Table J7(a).

1 4402 000 1212 1611 912 935 786 978 600
2 1689 897 565 641 460 566 492 370

3 1629 596 318 173 113

4 261 132 047 '

Table J&(b)
Standard deviation for constants for deletion averages of all runs of initial testin g of the k-
: d Range DSL
dim Standard deviations of constants in Table J7(b).

1 0.00 24.88 1133 2280 1593 9.01 1010 9.03 8.48
2 1733 8.84 1146 447 483 794 929 3.70

3 6.59 920 266 317 331

4 207 2.14 1.09
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Table J9(a)
Standard deviations for the values of Table 15

dimensions run 1 run 2 run 3
2 190.96 195.41 205.33
3 64.60 6290 60.87
4 26.45 24.64 22.69
Table J9(b)
Standard deviations for the values of Table 16
dimensions : run 1 run 2 run 3
2 - 2.28 1.81 2.14
3 0.60 0.88 0.49
4 ' - 0.33 0.08 0.14

all runs
197.23
62.79
- 24.59

allruns .
2.07
0.66
.18
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APPENDIX K
AVERAGE SEARCH TIMES FOR EACH INITIAL

TEST RUN OF THE K-D RANGE DSL

165



: Table K1
Average search times for run 1 of initial testing of the k-d Range DSL

% of pts 0% 5% 10% 25% 50% 5%  90%  100%

dim  #pts Average Search Times _
1 100 7 23 80 177 290 446 550 564
300 - 0 63 170 466 934 1383 1620 1680

500 10 167 343 750 1533 2340 2953 3273
700 13 233 414 1060 2127 3263 4163 4494

900 0 317 357 1410 2883 4507 5477 5367
1100 7 297 603 1587 2983 4690 5550 5890
- 1300 0 403 910 2217 4350 6673 7757 8723

1500 0 307 740 1600 3397 4740 5920 5087

1700 10 356 760 1880 3960 6000 7263 3280
2 160 13 74 116 203 513 727 867 940

300 7 173 363 866 1670 2557 3100 3563
500 17 353 587 1543 2767 4390 5107 5963
700 7 257 547 1400 2800 4387 5167 4717

900 13 267 563 1450 2733 4007 4970 2587
1100 10 500 887 2293 4573 6793 5746 3217
1300 13 480 956 - 2297 3983 6370 4680 4020
1500 10 583 1313 3167 6517 9607 4207 4877
3 100 17 67 147 380 693 1193 1517 1503
300 20 - 250 543 1344 2826 - 4357 5210 5370
500 10 317 653 1567 3017 4293 5040 4603
700 7 386 644 1563 3263 4877 5120 2930
900 13 483 1153 2893 5313 8307 4204 3633
4 100 26 100 177 434 917 1460 1750 1920
300 10 310 700 1473 3267 4947 5540 6600
500 17 337 1083 2647 5463 8080 9973 10770
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Table K2 _
Average search times for run 2 of initial testing of the k-d Range DSL

% of pts 0% 5% 0% 25% 50% 5% 90% 100%
dim  #pts Average Search Times
100 - 10 40 50 130 257 463 516 627
300 7 123 170 427 8§77 1366 1717 1940
500 3 170 317 690 1537 2197 2700 3100
700 3 200 476 1074 2093 3347 4023 4467
900 0 330 590 1387 2910 4403 5460 5827
1100 3 294 700 1723 3737 5364 6813 7530
1300 7 470 716 2084 4290 6527 7717 8933
1500 0 427 950 2473 4866 7324 8617 9533
1700 3 523 977 2780 5520 7810 9717 10700
2 100 10 30 126 227 463. 777 1047 1054
300 6 180 343 780 1620 2517 3057 3337
500 17 297 590 1380 2860 4334 4920 5467
700 10 453 743 1934 3920 5620 6877 7770
900 17 510 1037 2397 4997 7747 8700 9680
1100 17 583 1223 3183 5893 9140 10597 11797
1300 3 527 1033 2563 5090 7667 9087 8703
1500 7 453 927 2357 4563 6927 8503 5913
3 100 20 60 150 427 820 1310 1590 1647
300 10 287 497 1257 2477 3800 4367 4957
500 17 444 820 2010 4240 6313 7467 8817
700 24 580 1140 2980 5747 8610 10883 12303
! - 900 14 493 1236 2677 5620 8457 9923 8473
| 4 100 17 93 173 470 946 1317 1683 1760
300 13 337 690 1550 3267 4947 5540 - 6600
500 17 537 1083 2647 5463 8080 9973 10770
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Average search times for run 3 of initial testing of the k-d Range DSL

% of pts

dim

1

# pts
100
300
500
700
900

1100
1300
1500
1700
100
300
500
700
900
1100
1300
1500
100
300
500

700.

900
100
300
500

0%

13
3
0

13

10

13
6

17
7

10
7

17
0

20

10

23

10

27

20
7

20

20

27

17

27

5%

27
77
130
233
287
353

" 340

497
610

63
170
303
443
543
687
777
717

90
277
413
373
847

93
310
587

Table K3

10% 25% 50% 75%
Average Search Times
47 87 270 404
190 400 783 1310
286 734 1420 2217
437 990 1977 3127
570 1410 2740 4287
710 1743 3443 4870
740 2250 4197 6053
1083 2573 5180 7547
1097 2627 5580 7870
90 223 550 803
393 8307 1643 2393
560 1480 2813 4327
890 2123 4047 5790
1094 2507 5177 7290
1303 3167 6233 9323
1550 3720 8037 11223
1393 3117 6337 9113
133 350 640 1017
536 1170 2513 3537
903 2057 4250 6097
1170 2843 5670 8787
1660 3897 7627 11697
190 557 1130, 1440
700 1510 3177 4493
977 2394 5327 7887

90%

587
1630
2554
3797
4870
6470
7550
8963
9593

957
3077
5200
7017
8910

11357
13577
10480
1227
4463
7307
9977
14057
1803
5600
9513

100%

527
1753
2966
4153
5547
6780
8467

10153
10707
1167
3420
5737
7823
10080
12133
15013
9634
1416
4913
8090
11427
15363
1883
6217
10350
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Table K4
Average search times for all runs of initial testing of the k-d Range DSL
% of pts 0% 5% 10% 25% 50% 75% 90% 100%
dim  #pts Average Search Times.
I 100 10 30 59 131 272 438 551 572
300 3 88 177 431 85 1353 1656 1791
500 4 156 315 725 1497 2251 2736 3113
700 10 222 442 1041 2066 3246 3995 4371
900 3 311 572 1402 2844 4399 5269 5580
1100 8 315 671 1684 3388 4975 6278 6740
1300 4 404 809 2183 4279 6418 7674 8708
1500 6 410 924 2216 4481 6337 7833 8258
1700 7 497 944 2429 5020 7227 8858 8229
2 100 11 62 111 218 509 769 957 1053
300 7 175 367 818 1644 2556 3078 3440
500 17 318 579 1468 2813 4350 5076 5722
700 6 384 727 1819 3589 - 5266 6353 6770
900 17 440 868 2118 4302 ° 6348 7527 7449
1100 12 590 1138 2881 5567 8419 9233 9049
1300 13 595 1180 2860 5703 8420 9114 9246
1500 9 584 1211 2880 5806 8549 7730 6808
3 100 21 72 143 386 718 1173 1444 1522
300 17 271 526 1257 2605 3898 4680 5080
500 11 391 792 1878 3836 5368 6604 7170
700 17 513 985 2462 4893 7424 8660 8887
. 900 16 608 1350 3156 6187 9487 9394 9157
4 100 23 96 180 487 998 1405 1745 1855
300 13 319 697 1511 3237 4796 3560 6472
.20 553 1048 2562 5418 8016 9820 10630

500
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APPENDIX L
MULTIPLIERS REPRESENTING SEARCH TIME
'INCREASES IN THE INITIAL TEST RUNS

OF THE K-D RANGE DSL
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Table L1 _
Multipliers corresponding to search time increases for increase in query window size
forrun 1 of initial testing '

Expected: 20 2.5 2.0 1.5 1.2 1.11
dim # pts Actual Multipliers

1 100 XXXX 2.45 1.71- 1.60 1.31 1.06
300 XXXX 2.95 2.06 1.51 1.18 1.04

500 2.07 2.26 2.11 1.54 1.27 1.12

700 1.79 2.65 2.03 1.55 1.28 1.09

900 1.75 2.66 2.08 1.57 1.22 0.97

1100 2.01 2.68 191 156 121 1.04

1300 2.36 2.46 1.96 1.54" 1.17 1.13

1500 3.37 2.07 2.14 1.33 1.29 0.95

1700 5.02 2.71 2.09 1.53 1.25 0.63

2 100 XXXX 1.98 2.44 1.71 1.17 1.24
300 2.37 2.60 1.96 - 1.56 1.22 1.16

500 1.69 2.70 1.80 1.60 1.17 1.18

700 2.08 249 193 1.55 121 095

900 2.00 2.45 194 | 1.54 1.21 0.79

1100 1.70 2.66 2.06 1.48 092 ° 072

1300 1.98 2.31 1.75 1.61 0.99 0.88

1500 2.74 2.24 2.19 1.53 0.60 1.16

3 100 XXXX 293 1.69 2.07 1.26 0.98
300 2.37 2.57 2.11. 1.55 120 103

500 225 . 223 . 218 1.43 1.18 0.99

700 2.01 2355 204 1.48 1.16 0.75

900 259 247 1.79 1.67 0.7t 0.89

4 100 2.06 2.51 2.30 1.55 1.24 1.07
300 2.33 2.14 2.24 1.53 1.12 1.19

500 2.04 2.47 2.07 1.48 1.24 1.08
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Table 1.2
- Multipliers corresponding to search time increases for increase in query window size
for run 2 of initial testing '

Expected: 2.0 25 2.0 1.5 1.2 1.11
dim # pts : Actual Muitipliers

1 100 XXXX 2.90 2.79 . 1.80 1.13 1.24 .
300 XXXX 2.63 2.13 1.60 1.29 1.15
500 2.16 225 226 1.46 1.23 1.15

700 2.39 2.40 1.98 .61 121 1.11

900 1.87 2.40 2.16 1.52 1.24 1.07

1100 2.41 2.49 2.17 1.44 1.28 1.11

1300 1.74 2.69 2.06 1.52 1.19 1.16

1500 2.29 2.63 1.98 1.51 1.18 1.11

1700 1.87 2.88 1.99 1.42 1.25 1.10

2 100 XXXX 1.88 2.09 1.72 1.37 1.01
300 2.04 2.49 2.10 1.56 1.22 1.11

500 2.08 2.36 2.09 1.53 . 1.14 1.12

700 1.73 2.60 204 - 144 1.22 1.14

900 2.07 2.32 2.10 1.55 1.12 1.11

1100 2,13 262 1.85 1.55 1.16 1.11

1300 2.36 2.53 2.00 1.52 1.18 1.01

1500 2.33 2.53 1.88 1.56 1.24 0.88

3 100 XXXX 3.25 1.95 1.64 1.22 1.05
300 1.93 - 2.59 2.02 1.55 1.15 1.14

500 1.94 248 214 1.49 1.19 1.18

700 1.99 262 193 1.50 1.26 1.13

900 244 - 209 2.13 1.49 1.22 0.90

4 100 1.83 3.04 2.21 1.44 1.26 1.05
300 2.10. 2.26 213 - 1.53 1.12 1.19

500 204 247 2.07 1.48 1.24 1.08
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_ Table L3
Multipliers corresponding to search time increases for increase in query window size
for run 3 of initial testing B

Expected: 2.0 2.5 2.0 1.5 1.2 1.11
dim # pts Actual Multipliers ' ' B

1 100 XXXX 2.84 3.90 1.53 1.47 0.92

300 xxx 2.12 2.04 1.76 1.28 1.10

500 2.30 2.59 1.95 1.59 1.15 1.18

700 1.94 2.30 2.08 1.59 1.23 1.10

900 2.07 2.57 1.95 1.57 1.14 1.14

1100 2.11 2.50 2.01 1.42 1.33 1.05

1300 2.30 3.15 1.88 1.44 1.25 112

1500 2.28 2,38 202 1.46 L9 114

1700 1.81 2.44 2.13 1.41 1.22 1.12

2 100 XXXX 3.93 2.55 1.49 1.22 1.23

300 2.60 2.11 2.09 1.59 1.19 .11

500 1.87 2.65 1.94 1.55 S 1.21 111

700 2.04 2.38 1.95 143 1.21 1.12

900 2.07 2,31 2.07 1.42 1.22 1.13

1100 1.93 2.45 1.99 1.50 1.22 1.07

1300 2.00 2.40 2.17 1.40 1.21 1.11

_ 1500 1.79 2.39 2.04 1.42 1.15 1.00

3 100 XXXX 13.57 2.23 1.54 1.24 1.17

300 2.04 2.27 2.20 1.42 1.27 1.10

500 2.19 233 208 1.44 1.20 .11

700 2.06 244 - 200 - 1.55 1.14 1.15

900 197 2.35 1.97 1.54 1.20 1.09

4. 100 2.1 3.42 206 128 . 1.26 1.06

300 2.39 2.16 2.13 1.42 1.25 1.11

500 1.72 2.51 2.24 1.48 1.21 1.0%9
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Expected:

dim

1

# pts
100
300
500
700
900
1100
1300
1500
1700
100
300

500 -

700
900
1100
- 1300
1500
100
300
500
700
900
100
300
500

for all runs of initial testing

2.0

XXXX
XXXX
2.18
2.04
1.90
2.18
2.13
2.65
2.90
XXXX
2.34
1.88
1.95
2.05
1.92
2.12
2.29
XXXX
2.11
2.13
2.02
2.33
2.00

2.27

1.93

Table 14
Multipliers corresponding to search time increases for increase in query window size

2.5

273

2.57

2.37
2.45
2.54
2.56
2.76
2.36
2.68

"2.59

2.40
2.57
2.49
2.36
2.58
2.41
2.39
6.59
2.48
2.35
2.54
2.30
2.99
2.19
2.48

2,0 1.5
Actual Multipliers
2.80 1.64
2.08 1.62
2.11 1.53
2.03 1.58
2.06 1.55
2.03 1.47
1.97 1.50
2.05 1.43
2.07 1.45
2.36 1.64
2.05 1.57
1.94 1.56
1.98 1.47
2.03 1.50
1.97 1.51°
1.97 1.51
2.04 1.50
1.96 1.75
2.11 1.50
2.13 1.45
1.99 1.51
1.96 1.57
2.19 1.42
2.17 1.4%
2.12 1.48

1.2

1.30
1.25
1.22
1.24
1.20
1.27

. L.20

1.22
1.24

125

1.21
1.17
1.22
1.19
1.10
1.13
1.00
1.24
1.21
1.19

119

1.04
1.25
117
1.23

1.11

1.07
1.10
1.15
1.10
1.06
1.07
1.14
1.07
(.95
1.16
1.13
1.13
1.07
1.01
0.97
1.00
1.01
1.07
1.09.
1.09
1.01
0.96
1.06
1.17
1.08
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APPENDIX M
AVERAGE CONSTRUCTION AND DESTRUCTION
TIMES FOR EACH FURTHER TEST RUN

OF THE K-D RANGE AVL TREE
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| * Table Ml(a) |
Averages for construct times of run 1 of further testing of the k-d Range AVL Tree

dim . Construct time averages for data set sizes given in Table 2.
1 2756 2311 2505
2 4372 2895 3105
3 10878 8911 _ 11767
4 27234 24200 27272
Table M1(b)
Averages for destruct times of run 1 of further testing of the k-d Range AVL Tree
dim Destruct time averages for data set sizes given in Table 2.
1 50 61 72
2 67 - 78 50
3 111 117 150
4 311 400 394
_ Table M2(a)
Averages for construct times of run 2 of further testing of the k-d Range AVL Tree
dim - Construct time averages for data set sizes given in Table 2.
1 2611 1989 : 2372
2 4484 3044 3272
3 10361 9267 - 11205
4 26233 . 22123 24783
Table M2(b) _ _ '
Averages for destruct times of run 2 of further testing of the k-d Range AVL Tree
dim - Destrﬁct time averages for data set sizes given in Table 2.
1 39 78 &3
2 39 67 89
3 167 139 217
4 122 111 156
. Table M3(a)
Averages for construct times of run 3 of further testing of the k-d Range AVL Tree
dim ' Construct time averages for data set sizes given in Table 2.
1 5856 4250 4417
2 4228 3034 : 3600
3 12267 10300 11700
4 26933 23450 26917
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Table M3(b)
Averages for destruct times of run 3 of further testing of the k-d Range AVL Tree

dim Destruct time averages for data set sizes given in Table 2.
L 67 84 89
2 61 117 78
3 133 61 117
4 117 133 ' 494
Table M4(a)
Averages of construct times for all runs of further testing of the k-d Range AVL Tree
dim  Construct time averages for data set sizes given in Table 2.
1 3741 2850 3098
2 4361 2991 3326
3 11168 9493 11557
4 26800 23258 26324
Table M4(b)
Averages of destruct times for all runs of further testing of the k-d Range AVL Tree
dim : Destruct time averages for data set sizes given in Table 2.
1 52 74 82
2 56 87 72
3 137 106 161
4 183 215 ' 348
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APPENDIX N
INSERTION AND DELETION CONSTANTS
FOR EACH FURTHER TEST RUN

OF THE K-D RANGE AVL TREE
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Table Ni(a)
Constants for insertion averages of run 1 of further testing of the Range AVL Tree

dim Constants for insertion averages of data set sizes of Table 2
1 976.52 666.91 - 608.00
2 181.79 90.88 77.58
3 61.75 33.79 ' 32.73
4 27.61 13.02 9.43
Table N1(b)
Constants for deletion averages of run 1 of further testing of the Range AVL Tree
dim Constants for deletion averages of data set sizes of Table 2
' 1 17.72 17.60 17.55
2 2.77 2.44 . 124
3 0.63 - 044 .42
4 0.32 0.22 0.14
_ Table N2(a)
Standard deviations of constants for insertion averages of run 1 of further testing of the
Range AVL Tree '
dim Standard deviations of constants int Table N1(a).
1 1584.59 1084.95 _ 983.51
2 294.13 149.73 - 129.01
3 90.58 51.77 51.47
4 43.14 120.89 -~ 1530
Table N2(b)
Standard deviations of constants for deletion averages of run 1 of further testing of the
Range AVL Tree
dim Standard deviations of constants in Table N1(b).
1 20.56 19.39 20.80
2 2.40 3.33 1.11
3 0.86 _ 0.55 0.37
4 0.46 0.33 0.20
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Table N3(a) _
Constants for insertion averages of run 2 of further testing of the Range AVL Tree

dim Constants for insertion averages of data set sizes of Table 2
1 925.25 573.89 575.64
2 186.43 95.57 81.76
3 58.81 35.14 31.16
4 26.60 _ 11.90 ' 8.57
Table N3(b)
Constants for deletion averages of run 2 of further testing of the Range AVL Tree
dim Constants for deletion averages of data set sizes of Table 2
1 13.82 22.41 20.22
2 1.62 2.10 2.22
3 095 0.53 _ 0.60
4 0.12 0.06 0.05
Table N4(a)
Standard deviations of constants for insertion averages of run 2 of further testin g of the
Range AVL Tree
dim Standard deviations of constants in Table N3(a).
i 1390.98 883.59 927.94
2 300.26 154.37 131.59
3 85.00 ) 54.63 49,04
4 41.58 ' - 1875 13.59
Table N4(b)
Standard deviations of constants for deletion averages of run 2 of further testin g of thc
Range AVL Tree
dim Standard deviations of constants in Table N3(b).
1 12.34 15.34 2460
2 1.03 2.10 2.29
3 1.32 0.5% . 0.72
4 0.11 0.07 0.05
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Table N5(a)
Constants for insertion averages of run 3 of further testing of the Range AVL Tree

dim Constants for insertion averages of data set sizes of Table 2
1 2075.18 1226.38 _ . 1071.93
2 175.79 95.24 89.93
3 69.63 39.06 32.54
4 27.30 12.62 9.31
_ ' Table N5(b)
Constants for deletion averages of run 3 of further testing of the Range AVL Tree
dim Constants for deletion averages of data set sizes of Table 2
1 23.62 24.14 21.60
2 254 3.66 - 1.94
3 0.76 0.23 (.33
4 0.12 0.07 ' 0.17
Table N6(a)
Standard deviations of constants for insertion averages of run 3 of further testing of the
Range AVL Tree '
dim Standard deviations of constants in Table N5(a).
1 3578.66 212015 1832.08
2 300.88 162.22 152.89
3 91.76 49.11 41.75
4 36.79 : 17.89 13.38
Table N6(b)
Standard deviations of constants for deletion averages of run 3 of further testing of the
Range AVL Tree '
dim Standard deviations of constants in Table N5(b).
1 20.46 25.52 11.77
2 1.03 . 3.44 1.96
3 0.82 0.35 0.30
4 0.12 0.06 0.23
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Table N7{a)
Constants for insertion averages of all runs of further testing of the Range AVL Tree

dim Constants for insertion averages of data set sizes of Table 2
1 1325.65 822.3% 751.86
2 181.34 93.90 83.09
3 63.39 ' 35.99 32.14
4 27.17 _ 12,51 -9.10
Table N7(b)
Constants for deletion averages of all runs of further testing of the Range AVL Tree.
dim Constants for deletion averages of data set sizes of Table 2 _
1 18.39 21.39 19.79
2 2.31 2.73 1.80
3 0.78 0.40 ' 0.45
4 0.19 0.12 0.12
Table N8(a) :
Standard deviations of constants for insertion averages of all runs of further testing of the
Range AVL Tree
dim Standard deviations of constants in Table N7(a).
1 2184.74 1362.91 1247.84
2 298.42 155.44 137.83
3 89.11 51.83 : 4742
4 - 40.50 : 19.18 . 14.09
Table N8(b) _
Standard deviations of constants for deletion averages of all runs of further testing of the
Range AVL Tree
dim Standard deviations of constants in Table N7(b).
1 17.79 - 20.08 19.06
2 1.49 _ 2.95 ' 1.78
3 1.00 0.50 0.47
4 0.23 0.15 0.16

182




_ Table N9(a)
Standard deviations for the values of Table 9

dimensions run 1 run 2 run 3
2 ' 6.97 6.41 3.73
3 2.80 2.04 4,17
4 0.85 0.98 . 0.85
Table N9(b)
Standard deviations for the values of Table 10
dimensions ruh 1 run 2 run 3
2 7.82 6.40 7.44
3 4,23 3.31 6.22

4 1.40 1.44 2.02

all runs
5.70
3.00
0.90

all runs
7.22
4.59
1.62
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: TABLE Ol
Average search times for run 1 of further testing of the k-d Range AVL Tree

% of points 0% 5% 10% 25% 50% 75% WN% 100%
dm  dpts Average search times
1 2500 6 478 1144 2784 5239 8177 9856 11450
3000 6 556 1217 3283 6239 9561 11800 13067
3500 0 778 1350 3894 7372 11478 13450 14806
22000 0 22 689 1500 3511 7506 10650 13144 15128
2500 0 878 1683 4367 8616 13967 16883 18939
3000 11 995 2278 5311 10350 16483 19056 22011
3 1500 6 800 1461 4067 7928 12322 14178 15956
2000 - 11 1044 2222 5556 10250 15834 19250 21522
2500 0 1044 2067 4933 10456 14622 18200 15700
4 1000 11 467 1184 2617 5078 7272 8928 10066
1500 6 1250 2334 4861 10394 15033 18378 20556
2000 6 1422 2300 5756 11672 18061 20933 12978
TABLE 02 ,
Average search times for run 2 of further testing of the k-d Range AVL Tree
% of points 0% 5% 0% 25% 50% 75% 90% 100%
dim dpts Average search times

1 2500 1 655 1083 2689 54396 8394 10428 11333

4 1000
1500 1
2000

561 1122 2544 5306 7889 9523 10283
1239 2150 5695 10845 15494 18467 21139
1123 2656 5544 10600 16345 19555 10872

1
3000 6 600 1484 3561 6805 9917 12511 13789
3500 0 789 1372 3922 7656 11366 14039 15955
2 2000 6 833 1517 3477 6973 11327 13573 15922
2500 6 839 1922 4511 9194 13856 16678 18117
3000 0 1094 2245 5033 10700 17105 20700 22750
3 1500 11 1000 1600 4072 . 8222 12138 15078 16811
2000 6 1016 2100 . 5283 10294 16422 20133 22233
2500 22 978 2089 5361 10650 16206 19517 13427

6

I

3
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dim dpts

1 2500

3000

- 3500

2 2000
2500
3000

3 1500
2000
2500

4 1000
1500
2000

16

528
583
622
606
922
1235
733

1250

1122
856

1139

1345

TABLE 03
Average search times for run 3 of further testing of the k-d Range AVL Tree

Average search times

989 2789
1094 3450
1444 3778
1450 3606
2083 4722
2234 5456
1828 4644
2478 5961
2317 5905
1183 3367
2289 5533
2622 6133
TABLE 04

5478
6494
7606
7033
9072
11200
8672
11383
11422
6650
11172
11855

8355

9900
12017
11145
13767
16844
13011
17583
17467

. 9333

16539
17817

9689
11661
13889
12800
17228
21272
16339
21956
20083
11395
10428
20795

11233
13039
14867
15378
18944
23295
17867
23894
15700
12655
22277
12883

Average search times for all runs of further testing of the k-d Ran ge AVL Tree

dim dpts

1 2500
3000

3500

2 2000
2500

3000

3 1500
2000

2500

4 1000

' 1500
2000

—t
O =1 NS = =l O P D RO D

554
580
730
709
880

‘1115

844
1104
1048

628

1209

1297

Average search times

1072
1265
1389
1489
1896
2252
1630
2267
2158
1163
2257
2526

2754
3431
3865
3531
4533
5267
4261

5600

5400
2843

5363

5811

5385
6513
7544
7171
8961
10750
8274
10642
10843
5678
10804
11376

8309

9793
11620
11041
13863
16811
12491
16613
16098

8165
15689
17407

9991

11991
13793
13206
16930
20343
15198
20446
19567

9948
18758
20428

11339
13298
15209
15476
18667
22685
16878
22550
14942
11002
21324
12245
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Table P1
Mulmphers corresponding to search time increases for increases in query window size for
run 1 in further testmg of the k-d Range AVL. Tree

Expectcd 2.0 2.5 20 1.5 1.20 1.11
dim points Multipliers

1 2500 2.95 2.44 1.89 1.56 1.21 1.16
3000 2.20 2.72 1.91 - 154 1.24 1.11

3500 1.74 2.90 1.90 1.56 1.17 1.10

2 2000 2.18 2.37 2.14 1.42 1.23 1.15
2500 1.95 2.62 1.98 1.63 1.21 1.12

3000 2.29 2.33 1.95 1.59 1.16 1.16

3 1500 1.84 286 1.95 1.56 1.15 1.13

' 2000 2.14 2.51 1.85 1.55 1.22 1.12
2500 204 . 248 2.16 135 . 1.26 0.97

4 1000 2.45 2.14 1.98 1.47 .23 1.16
1500 1.87 2.09 2.15 1.45 1.22 1.12

2000 1.54 2.50 1.97 1.58 1.13 0.75

Table P2

Multipliers corresponding to search time increases for increases in query window size for
run 2 in further testing of the k-d Range AVL Tree

Expected: 20 - 25 20 1.5 1.20 1.11
dim points Multipliers

1 2500 1.63 261 . 2.03 1.54 - 1.24 1.10
3000 2.63 2.48 1.92 1.46 1.26 1.11

3500 1.74 289 196 1.49 1.24 1.14
2 2000 1.83 2.33 2.01 1.63 1.20 1.17
2500 2.33 2.35 2.04 1.51 1.21 1.09

3000 2.09 2.25 2.14 1.60 121 110

3 1500 1.62 2.56 2.03 1.48 1.24 1.12
2000 2.11 2.52 1.95 1.60 1.23 1.11

2500 225 257 1.92 1.53 1.19 0.78

4 1000 2.29 2.19 2.06 I.51 1.16 1.11
1500 - 1.79 - 2.66 191 143 1.19 1.15

2000 224 2.12 1.91 1.51 1.19 0.69
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Table P3
Mulnphcrs corresponding to search time increases for increases in query window size for
run 3 in further testing of the k-d Range AVL Tree

Expected: - 2.0 2.5 2.0 1.5 1.20 1.11
dim points _ Multipliers

1 2500 2.00 2.87 1.97 1.53 1.16 1.16

3000 - 1.87 3.20 1.89 1.53 1.18 1.12

3500 - 236 2.64 2.02 1.58 1.16 1.07

2 2000 245 2.52 1.95 1.58 1.16 1.19
2500 2.33 2.27 1.95 1.52 1.25 1.10

3000 1.82 2,44 2.06 1.50 1.26 1.09

3 1500 2.54 2.54 1.87 1.50° 1.26. 1.09

2000 2.00 2.44 1.91 1.55 1.25 1.09

2500 2.11 2.44 1.98 1.55 1.19 0.83

4 1000 1.43 2.87 2.00 1.36 1.27 1.10

1500 2.08 242 2.02 1.48 1.18 1.15

2000 2.32 231 1.89 151 1.16 0.73

. Table P4

Multipliers corresponding to search time increases for increases in query window size for
all runs in further testing of the k-d Range AVL Tree

Expected: 2.0 2.5 2.0 1.5 1.20 1.11
dim points ' Muluphers

1 2500 2.20 2.64 . 196 1.54 1.20 1.14

3000 2.23 2.80 1.91 1.51 1.23 1.11

3500 1.95 . 281 1.96 1.54 1.19 1.10

2 2000 2.15 2.40 203 - 154 1.20 1.17

2500 220 2.41 1.99 1.55 122 110

3000 2.07 234 - 205 1.57 1.21 1.12

3 1500 2.00 2.66 195 151 122 111

- 2000 2.08 2.49 1.90 1.56 1.23 1.10

_ 2500 2.13 2.50 2.02 1.48 1.22 0.86

4 1000 2.06 2.40 2.01 1.45 1.22 1.12

1500 1.91 2.39 2.02 146 ~ 1.20 1.14

2000 2.03 2.31 1.92 1.53 1.16 0.73
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Table Q1(a)
Construction time averages for run 1 of further testing of the k-d Range DSL

dim Average construction time for data set sizes given in Table 2.
1 33 28 55
2 300 539 694
3 3367 9761 - ' 23600
4 5156 12884 18195
Table QL{b) _
Destruction time averages for run 1 of further testing of the k-d Range DSL
dim Average destruction time for data set sizes given in Table 2.
i 22 28 28
2 1028 1556 2961
3 16911 69900 246845
4 39297 197139 382009
: Table Q2(a)
Construction time averages for run 2 of further testing of the k-d Range DSL
dirn Average construction time for data set sizes given in Table 2.
1. 11 _ 56 28
2 411 500 650
3 3339 10434 22239
4 5267 - 13313 17634
Table Q2(b)
Destruction time averages for run 2 of further testing of the k-d Range DSL
dim Average destruction time for data set sizes given in Table 2.
1 44 : 44 _ 39 .
2 672 1672 3084
3 19816 ' 71389 129611
4 41152 200396 368111
Table Q3(a)
Construction time averages for run 3 of further testing of the k-d Range DSL
dim Average construction time for data set sizes given in Table 2.
' 1 22 ' 56 : 34
2 439 472 . 756
3 3672 _ 11667 24511
4

4833 14216 17460
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Table Q3(b)
Destruction time averages for run 3 of further testing of the k-d Range DSL

dim - Average destruction time for data set sizes given in Table 2.
1 27 33 22
2 833 1550 - 2500
3 25955 101361 186022
4 39710 192130 374917
. Table Q4(a) :
Construction time averages for all runs of further testing of the k-d Range DSL
dim : Average construction time for data set sizes given in Table 2.
: ' 1 22 46 39
2 383 504 700
3 3459 10620 23450
4 5085 13471 17763
Table Q4(b) _
Destruction time averages for all runs of further testing of the k-d Range DSL
dim Average destruction time for data set sizes given in Table 2.
1 31 35 30
2 844 1593 2848
3 208%4 80883 187493
4

40053 196555 375012
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: Table R1(a) _
Constants for average insertions of run 1 of further testing of the k-d Range DSL

dim : Average insertion constants for data set sizes of Table 2.
1 11.81 8.08 13.43
2 12.47 16.91 17.35
3 19.11 37.01 65.64
4 5.23 6.93 6.29
Table R1(b)
Constants for average deletions of run 1 of further testing of the k-d Range DSL
dim ' Average deletion constants for data set sizes of Table 2.
1 7.80 7.98 ' 6.80
2 42.74 48.84 73.98
3 95.99 265.05 686.54
4 39.84 106.06 132.09
_ _ Table R2(a)
Standard deviations of constants for average insertions of run 1 of further testing of the k-
d Range DSL
dim Standard deviations of the data values of Table R1{a).
' 1 0.20 2.75 470
2 1.19 0.78 1.27
3 4.50 . 10.58 12.16
4 0.27 1.40 0.37
Table R2(b)
Standard deviations of constants for average deletions of run ! of further testing of the k-d
' Range DSL
dim Standard deviations of the data values of table R1(b).
1 305 : 7.34 2.32
2 5.02 4.46 1.34
3 18.40 72.18 11770
4 376 7.39 7.31
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Table R3(a)
Constants for average insertions of run 2 of further testing of the k-d Range DSL

dim . Average insertion constants for data set sizes of Table 2.
' 1 4.02 16.06 6.71
2 17.10 15.70 16.24
3 18.95 39.56 61.85
4 5.34 7.16 6.10
Table R3 (o)
Constants for average deletions of run 2 of further testing of the k d Range DSL
dim Average deletion constants for data set sizes of Table 2.
' 1 15.59 12.79 9.46
2 27.94 52.50 77.04
3 112.48 270.70 360.48
4 41.72 : 107.81 : 127.29
Table R4(a)
Standard deviations of constants for average insertions of run 2 of further testing of the k-
d Range DSL
dim Standard deviations of the data values of Table R3(a).
1 : 3.48 . 10.21 6.17
2 3.15 1.04 - 341
3 412 10.85 7.06
4 0.15 : 1.22 0.19
Table R4(b)
Standard deviations of constants for average deletions of run 2 of further testing of the k-d
' Range DSL
dim ' Standard deviations of the data values of table R3(b).
1 9.05 994 6.04
2 6.28 8.34 4,41
3 19.92 65.74 41.97
4

3.59 ' 2.78 283
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Table R5(a)
Constants for average insertions of run 3 of further testing of the k-d Range DSL

dim Average insertion constants for data set sizes of Table 2.
1 7.91 1606 . 8.17
2 18.25 14.83 18.88
3 20.84 44.24 68,17
4 4.90 7.65 6.04
Table R5(b)

Constants for average deletions of run 3 of further testing of the k-d Range DSL

dim Average deletion constants for data set sizes of Tabie 2.

1 9.69 9.62 © 534

2 34.64 48.66 62.45

3 147.33 384.35 517.38

4 40.26 103.36 129.64
Table R6(a)

Standard dcv1at10ns of constants for average insertions of run 3 of further testing of the k-
d Range DSL
dim Standard deviations of the data values of Table R5(a).

1 9.01 2.83 . 8.13

2 6.28 289 2.85

3 6.51 12,23 9.63

4 1.17 1.02 . 0.17
Table R6(b) ;

Standard deviations of constants for average deletions of run 3 of further testing of the k-d
Range DSL
dim Standard deviations of the data values of table R5(b).

1 12.20 4.76 4.62

2 3.67 7.19 542

3 31.79 76.17 - 66.17

4

3.10 : 9.35 7.04
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Table R7(a)
Constants for average insertions of all runs of further testing of the k-d Range DSL

dim Average insertion constants for data set sizes of Table 2.
1 791 . 13.40 944
2 1594 15.81 17.49
3 19.64 40.27 65.22
4 5.16 7.25 6.14
Table R7(b)
Constants for average deletions of all runs of further testing of the k-d Ran ge DSL
dim Average deletion constants for data set sizes of Table 2.
1 11.02 10.13 7.20
2 35.11 50.00 71.16
3 118.60 306.70 52147
4 40.61 105.74 129.68
_ Table RB(a)
Standard deviations of constants for average insertions of all Tuns of further testin g of the
k-d Range DSL
dim Standard deviations of the data values of Table R7(a).
I 4.23 ' 527 6.33
2 3.54 _ 1.57 2.51
3 5.04 11.22 _ ) 5.62
4 0.53 1.22 0.24
Table R8 (b)
Standard dcv1at10ns of constants for average deletions of all runs of further testing of the
k-d Range DSL
dim ' Standard deviations of the data values of table R7(b).
: 1 10.10 - 734 4.33
2 4,99 6.66 3.72.
3 23.37 71.37 7528
4

348 6.51 5.72
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Table R9(a)
Standard deviations for the values of Table 19

dimensions run 1 Tun 2 run 3
2 1.08 2.53 ' 4.01
3 9.08 - 1.34 9.46
4 _ - 0.68 0.52 0.79
Table R9(b) _
Standard deviations for the v_alues of Table 20
dimensions run 1 run 2 run 3
2 3.61 6.34 3.43
3 69,43 42.54 .58.04

4 6.15 3.07 . 6.50

-all runs

2.54
8.63
0.66

all runs
' 5.12
56.67
5.24
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TABLE S1
Average search times for run 1 of further testing of the k-d Range DSL

% of points 0% 5% 10% 25% 50% 75% @ 90% 100%
dim dpts Average search times -

1 2500 6 700 1641 4339 8450 12533 14511 16989

3000 6 933 1939 4844 10189 15544 17645 20684

3500 5 16l 2094 5772 11417 18061 20939 23439

2 2000 11 867 1855 4811 6961 14305 17434 17006

2500 ) 972 1839 4267 8566 < 12711 15739 10816

3000 6 972 2600 6483 13128 20433 17577 8683

3 1500 6 700 1278 3473 . 6383 9511 12444 9411

2000 23 1422 3111 6750 14044 20389 19786 8839

: 2500 11 1250 2089 5606 11372 17355 12328 11250
4 1000 22 444 1622 3595 8300 12100 14061 14428
1500 11 961 2322 6206 11600 17850 17055 7306

2000 17 1589 2648 6614 12640 18833 13489 14039

TABLE 82 _
Average search times for run 2 of further testing of the k-d Range DSL
% of points 0% 3% 0% 25% 50% 75% 90% 100%
dim dpts Average search times
1 2500 g 189 322 745 1539 2428 2856 2917

3000 11 228 361 1011 2100 3128 3516 3878
3500 16 323 433 1167 2289 3417 4017 4400
2 2000 11 255 522 1317 2294 3661 4555 4639
2500 17 278 550 - 1644 3228 4489 5578 6372
3000 22 411 822 1833 3889 5611 6528 7172
3 1300 0 339 616 1495 2939 4239 5234 5533
2000 11 339 950 2011 3489 5515 6866 7161
2500 11 622 1378 2550 5178 7733 9367 10122
4 1000 11 272 444 1161 2317 3556 4439 4811
1500 17 517 950 2066 3945 5383 6628 7678
2000 17 1767 3483 8322 15400 22578 10194 9767
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TABLE 83
Average search times for run 3 of further testing of the k-d Range DSL

% of points 0% 5%  10% 25% 50% 15%  90% 100%
dim dpts Average search times

1 2500 6 200 439 1144 2261 3317 4161 4350

3000 0 289 455 1272 2750 3778 4366 4655

3500 6 300 . 595 1483 2956 4497 5095 6061

2 2000 11 361 581 1517 3117 4500 5472 = 5744

2500 11 433 1098 2142 3961 5906 7278 7466

3000 5 461 1100 2556 4671 7300 8428 9217

3 1500 11 339 728 1566 3350 5150 6185 6511
2000 11 478 1022 2409 4594 6878 7900 8385
2500 @ 11 617 1100 2995 5405 7611 10150 10889

4 1000 11 367 644 1483 2861 4189 4833 5620
1500 16 378 944 2366 4606 6289 7850 8478
2000 28 2539 5205 8651 23617 36725 12950 11767

_ ' TABLE §4
Average search times for all runs of further testing of the k-d Range DSL
% of points 0% 5% 10% 25% 50% 75% 90% 100%
dim dpts Average search times _
1 2500 363 801 2076 4083 6093 7176 8085

4
3000 5 483 - 919 2376 5013 7484 8509 9739
3500 9 595 1041 2807 5554 8658 10017 11300
2 2000 11 495 986 2548 4124 7489 9154 9130
2500 11 561 1162 2684 5252 7702 9532 8218
3000 11 615 1507 3624 7229 11115 10844 8357
3 1500 6 459 874 2178 4224 6300 7954 7152
2000 15 746 1694 3723 7376 10927 11517 8128
2500 11 830 1522 3717 7319 10900 10615 10754
4 1000 15 361 904 2080 4493 6615 7778 8286
1500 15 619 1406 3546 6717 9841 10511 7820
2000 20 1965 3779 7863 17219 26045 12211 11857
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: Table T1 :
Multipliers corresponding to search time increases for increases in query window size for
run 1 in further testing of the k-d Range DSL

Expected: 2.0 2.5 2.0 1.5 1.20 1.11
dim points Multipliers
1 2500 2.36 2.65 1.95 1.49 1.16 1.17
3000 2.08 2.50 2.11 1.53 1.14 1.17
3500 1.81 2.76 1.98 1.58 1.16 1.12
2 2000 2.44 2.54 1.57 2.29 1.20 1.02
2500 1.83 2.29 2.05 1.49 1.24- 0.88
3000 3.12 2.46 2.03 1.54 097 0.62
3 1500 1.79 2.83 1.80 1.43 1.29 0.93
2000 2.11 2.26 2.05 1.43 1.03 0.60
2500 1.62 3.01 2.06 1.48 1.02 (.94
4 1000 7.41 2.18 2.42 1.48 1.16 1.01
1500 2.89 2.81 1.88 1.56 1.06 0.56
2000 1.65 2.54 1.84 '1.49 0.94 1.03
Table T2

Multipliers corresponding to search time increases for increases in query window size for
run 2 in further testing of the k-d Range DSL

Expected: 2.0 2.5 2.0 1.5 1.20 1.11
dim points Multipliers :
1 2500 1.96 237 . 2.09 1.58 1.18 1.03
3000 - 1.86 281 210 1.51 1.12 1.11

3500 1.44 292 - 197 1.50 1.18 1,10

2 2000 2.05 2.54 1.75 1.62 125 1.02
2500 2.03 2.99 1.96 1.40 1.24 1.15

3000 2.00 2.26 2.14 145 . 1.16 1.10

3 1500 1.90 2.63 1.98 1.45 1.26 1.06
2000 3.00 2.59 1.74 1.58 124 . 105

2500 . 222 1.86 2.06 1.50 1.22 1.08

4 1000 1.63 2.73 2.03 1.54 1.26 1.08
1500 1.81 2.25 1.92 1.38 1.23 1.17

2000 2.02 2.45 1.85 1.48 0.65 0.96
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_ Table T3
Multipliers corresponding to search time increases for increases in query window size for
run 3 in further testing of the k-d Range DSL

Expected: 2.0 2.5 2.0 L.5 1.20 1.11
dim points Multipliers

1 2500 2.57 2.61 1.99 1.47 1.26 1.05
3000 1.59 2.85 2.16 1.39 1.16 1.07

3500 2.16 2.60 2.00 1.52- 1.14 1.19

2 2000 - 167 2.71 2.06 1.45 1.22 1.05
2500 2.60 210 - 190 1.49 1.23 1.03

3000 2.48 2.32 1.83 1.56 1.15 1.10

3 1500 2.18 2.21 2.16 1.55 1.20 1.06
2000 2.16 2,37 1.91 1.50 1.16 1.06

2500 1.80 2,72 1.83 1.40 1.38 1.07

4 1000 1.97 2.31 1.94 1.46 1.15 1.17
1500 2.52 2.55 1.98 1.37 1.25 1.08.

2000 206 . 1.59 7.81 156 . 035 0.91

Table T4

Multipliers corresponding to search time increases for increases in query window size for
all runs in further testing of the k-d Range DSL.

Expected: 2.0 2.5 2.0 1.5 1.20 L1t
- dim points Multipliers '
1 2500 2.30 2.54 . 201 1.51 1.20 1.08
3000 1.84 2.72 2.12 1.48 i.14 1.12
3500 1.80 . 2.76 - 1.98 1.53 1.16 1.14
2 2000 2.05 2.60 1.79 1.78 1.22 1.03
2500 . 2.15 2.46 197 146 1.24 1.02
3000 2.54 235 . 200 152 1.10 0.94
3 1500 1.95 2.56 1.98 .48 125 1.02
2000 2.42 2.41 1.90 1.50 1.14 0.91
2500 1.88 2.53 1.99 1.46 1.21 1.03
4 1000 3.67 2.41 2.13 1.50 1.19 1.09
1500 2.41 2.54 1.93 1.44 1.18 0.94
2000 1.91 2.19 3.83 1.51 0.65 0.97
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APPENDIX U
COMPLETE SOURCE CODE FOR THE TEST DRIVER

ROUTINES FOR THE K-D RANGE AVL TREE
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:
3
r
:
i

program dynamic_kd range avl tree;
{this program contains the tost drivers to test the k-d range AVL tree)

{datapts are read in from a datafile which follows a naming convention:
(also, the query windows are precomputed for a data set and stored in a
file as well)

[xxxx] [d] [r] [np].dat

where [xxxx] is either ‘'dpts' for a data set :

or 'rgpr’ for a file containing range query windows
fdal a single digit dencting how many dimensions to the data
fr} a single digit; the run number in which structure is built

fap] two digits:

signifies the number of datapoints in the file

# dpts in file = np * basenumpts

(if np < 10 then it contains a leading 0) -}

const numsearches = 100; fused to test rangesearch}

numper = 8:; (how many query windows?)}

dptnam = 'dpts'; f{contains datapoints for testing}

dptext = 1.dat'; (contains datapoints for testing)

rgfnam = 'rgpr'; {contains range guery windows}

rgfext = '.dat'; {containg range query windows}

maxdim = 4; {max num dimensions of our structure}

maxdset = 9; {test for max this many datasets per dimension)}

rsearch2file = 'rgres.dat'; (results of range queries)

basenumpts = 100; {all datafiles have a # of points

type

coordinate = array
dpfsize = array

var t: tree;

numpoints: integer;
dimensions: integer:
sv: coordinate;

testpar: char;
ni: coocrdinate;
ns: dpfsize;

passes: integer;
sdim, edim: integer;
srun, erun: integer;
sset: integer;
k,i,3,r: integer;

xflle: text:
rfile: text;

rgfile: text;

resfile,
rsearchfile: string;

that i3 a multiple of this number)}

[1..maxdim] of integer;
[1..maxdim, 1. .maxdset] of 1nteger,

{pointer to our tree}

fhow many datapoints for test run?}
{how many dimensions for test run?j
{non-1leaf nodes contain this value}

{initial (i) or further (f) testing?}
(the number of data sets per dlmen31on}
(the sizes of the data sets)

{the number of passas over a single structure)

{the starting and ending dimension of our test)
{the starting and ending run of our test)
{the starting multiplier of our test}

{icop control variables}

{r: runs k: dimensions i:data set j: passas]
{construct / destruct times file variable)
{search times file variable)}

ftemporary datafile for gsearches file variable}

{names of output files}
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functicn achr(k: integer): char;'
fused to convert a digit to a character)

begin {achr}
case k of

0: achr:= *'0';
1; achr:= '1';
2: achr:= '2"';
3: achr:= '37;
4: achr:= 147;
5: achr:= 15;
6: achr:= 167;
~7: achr:= '7*%;
8: achr:= *8';
9: achr:= '8¢,
end;

end; {achr}

function bchr(k, c: integer): char;
{used to convert a number between 0 and 99 to two characters)

begin
if ¢ =1 then
bechr:= achri(k div 1)
else
bchr:= achri{k mod 10);
and;

procedure builddrt(var t: nodeptr; numdim, ptndz, run: integer):

var ndp: coordiﬁate; {the datapoint being inserted}

nn: nodeptr:; {the new node to be inserted}

taller: boolean; {used by insertdrt, has height of tree increased?}
dim: integer; {fcurrent dimension in which to insert new node}
dfile: text; {file varaible of file containing datapoints}

i, Jj: integer; {loop control variables}

st, et: integer; {get starting and ending times, report difference)

begin {builddrt}
{prepare the file for input)
open{dfile,

dptnam+achr (numdim) +achr {run) +bchr (ptndx, 1) +bchr (ptndx, 2)+dptext,'old'),
reset (dfile);

st:= sysclock;
for i:= 1 to numpoints do
begin {insert next datapoint}
dimi;=1; {we first insert the datapoint in the first dimension}
for j:= 1 to numdim do
read (dfile, ndp(j]); {read in the datapoint}
getnode {ndp, nn, dim); {get/init. the node to be inserted}
taller:= false; f{must insert a node for the height to increase}
finsert the new node into the drt structure}
insert (t, nn, taller, dim);
end; {insert next datapoint}
et:= sysclock;

close (dfile); fwe have tested cur structure}

writeln({xfile, (et-st));
end; {builddrt}
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procedure testrs(t: nodeptr; numdim, ptndx, run: integer);

var dim: integer:;
i,3,p: integer;
1,7r: coordinate;

dfile: text;
st, et: integer:;

begin {testrs)}
open (dfile,

rgfnamtachr (numdim} +achr {run) +bchr {ptndx, 1) +behr (ptndx, 2) +rgfext, 'old?) ;
reset (dfile);

rewrite (rgqfile) ;

for p:= 1 to numper do
begin {for p}
write{p:2, ' "); (track progression of testing)}

(read in lower left and upper right corners of gquery window}
for j:= 1 to dimensions do

read (dfile, 1[jl, r{il):
readln (dfile}; .

{we time Ffor numsearches}
st:= sysclock;
for i:= 1 to numsearches do
begin (for i}
dim:= 1;
rangesearch(t,l,r,dim) ;
end; {for i}
et:= sysclock;
writeln(rfile, {et - st));
end; (for p}

close (rqfile);
close {(dfile);

end; (testrs} o
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procedure destroydrt (var t: nodeptr; numdim, ptndx, run: integer);

var dp: coordinate; (the datapoint being deletad)
dim: integer; {current dimension to delete node from)
.dfile: text; {file variable of file contianing points}
i,j: integer; {loop control variable}
reduced: boolean; {recursive control in deleta}

st, et: integer; {get start and end times and output difference}

begin {destroydrt)
(prepare file for input)
open{dfile, :
dptnam+achr(numdim)+achr(run)+bchr(ptndx,1)+bchr(ptndx,2)+dptext,'old'):
reset (dfile):

st:= sysclock;
for i:= 1 to numpoints do
begin {delete next datapoint}
dim:= 1; (we first delete datapoint from dimension 1}
reduced:= false; .
for j:= 1 to numdim do _
read(dfile, dpl3l): - (read in the datapoint}
- delete({dp, t, reduced, dim); (delete next point from the drt}
‘end; (delete the next datapoint)}
et:= sysclock;

close (dfile); (we have tested our structure}
writeln(xfile, (et - st));
end; (destroydrt}

begin {mainj}
{determine 1f we are to perform initial or Further testing}
writeln ('initial (i) or further (f) testing?');
readln (testpar);
{get parameters which govern test - may perform partial or full test} .
writeln (‘'how many passes per run?!');:
readln (passes); .
writeln {’starting and ending runs?'j:
readln (srun, erun)j: :
writeln ('starting and ending dimensions?');
readln (sdim, edim): '
writeln (’'starting multiplier?*);
readln ({sset); :
{sentinel value stored in interior nocle}
sv[l]l:= 0; sv{2]:= 0; sv[3]:= 0; sv[4):= 0;
if testpar = i then
begin
nifll:= 9; nif2}:= 8; ni(3]:= 5; ni[4):= 3;
ns{l,1]:= 1; ns[l,2}:= 3; ns(l,3]:= 5; ns[i,4}:= 7; ns(1,5}:= 9
ns{i,6l:= 11; ns[l,7]:= 13; ns[l,8]:= 15; ns[l1l,9]:= 17;

e

nsl[2,1):= 1; ns[2,2):= 3; ns(2,3]:= 5; ns{z,4]:= 7; ns[2,5]:= 9;
nsf{2,6}:= 11: ns(2,7}:;= 13; ns{2,8]:= 15; .
ns[3,11:= 1; ns{3,2]:= 3; ns[3,3):= 5; ns[3,4]:= 7; ns([3,5]:= 9;
ns[4,1]:= 1; ns(4,2]:= 3; nsf4,3]:= 5;

end '

glse

begin
nifl):= 3; ni[2):= 3; ni(3]:= 3: nif4}):= 3;
nsf{i,i}:= 25; ns[1,2]:= 30; ns([l,3]:= 35;
ns(2,1]:= 20; ns{2,2]:= 25; nsi{z,3):= 30;
ns{3,11:= 15; ns[3,2):= 20; ns(3,3]:= 25;:
ns(4,1j:= 10; ns[4,2]:= 15; ngf4,3]:= 20;

end
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: ' writeln{'enter name of datafile to hold construct/destruct timss.');
: readln (resflle),

writeln('please enter name of datafile to held search tlmes. Vs
readin (rsearchfile);

{open datafile to hold construct/destruct times}
open (xfile, resfile, ‘*new'};

rewrite (xfile):;

{open datafile to hold search times)

open (rfile, rsearchfile, ‘new'};

rewrite (rfile);

(temporary datafile used by rangesearch procedures to report results}
open (rgfile, rsearch2file, 'new');

{main test loop}
for r:= srun to erun do
. for k:= sdim to edim do
_for i:= sset to nil[k]l do
for j:= 1 to passes do
begin {for 7}
numpoints:= ns(k,i]*basenumpts; {# datapoints in dataset)
dimensions:= k; {how many dimensions will our tree have?}

{output to track progression of testlng}
writeln (’'ready. set. gone. run: ', r:2, ‘'dim: °?, k:2,
! points: ', numpoints):

t:= nil; _ finitialize tree as empty)

write ('building :
builddrt (t,k, (ns [k, 1i]
write {'searching '

)
. I {build a tree}
}
testrs(t,k,ns[k,i], =)
')
]

{perform some range searches)
write ('annihilating
destroydrt{t,k,ns(k, i ry: {destroy the tree)}
end; . {(for j} )
{close result datafiles)
close (rfile);
close (xfile}:;
cend. {main}
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APPENDIX V
COMPLETE SOURCE CODE FOR THE TEST DRIVER

ROUTINES FOR THE K-D RANGE DSL
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ALt

program rangedsl;
{this program contains

the test drivers to test the k-d Range DSL}

{datapts are read in from a datafile that follows a naming convention:
{also, the query windows are precomputed for a data set and stored in a

file as well)

fxxxx}] fd] {r} {np].dat

where [xxxx] is either

'dpts'! for a data set

or 'rgpr' for a file containing range query windows
[d} a4 single digit denoting how many dimensions to the data
[r] a single digit; run number in which the structure is built
[np] two digits; signify the number of datapoints in the file
# dpts in file = np * basenumpts

(if np <

10 then it contains a leading 0)}

const maxdim = 4; {maximum number of dimensionsj}
maxdsets = 9; {max data sets in a dimension)

dptnam = 'dpts';
dptext =."'.dat';
rgfnam = 'rgpr';
rgfext = T.dat';

basenumpts:= 100;

mx = maxkey;
mn = minkey;
numper = - 8;
numsearch =

type crdptr
coordinate

{contains datapoints for testing}
{contains datapoints for testing}

{contains range quéry windows)
{fcontains range gquery windows}

fall data sets are multiples of this many pts}

{abbreviation for maxkey}
fabbreviation for minkey}

fthis many query windows for range search}

1000; faverage over this many searches)

~cogordinate;
array [1..maxdim} of integer; [stores a datapoint}

dsetsizes = array [1l..maxdim, 1.1maxdsets] of integer;

var sv, amax, amin: crdptr; (sentinel value for non-leaf nodes, amin

head, tail,

for bottom node, amax for tail node}

bottom, lastdim: nodeptr; {sentinel nodes of the rdsl}

testpar: char;
passes: integer;
ndss: integer:;
numdsets: integer;
ntds: integer;
ntestdim: integer;
sm: integer;

ni: coordinate;
ns: dsetsizes;

numpoints: integer:

{initial (i) or further (f) testing)

{number of passes}

(starting run}

fending run}

{starting dim}

{ending dim)}

{starting multiplier}

{stores number of datasets in a dlmenSJOn}
{stores multipliers that give *pts in data sets)

{the number of data points of our structure}

dimensions: integer; (the number of dimensions of the data}

bldname: string; (name of file storing building/destruction times)
srchname: string; f(name of file that stores search times}

bildfile: text; {file variable for construct/destruct times file}
srchfile: text: {file variable for search times file}

i,3,runs,p: integer; {loop control variables}

fruns: runs 1i; dim F: dsets p: passes}
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function achrik: integer): char;
{converts a digit to a character}

begin (achr}

case k of
0: achr:= "¢7;
1l: achr:;= '1?;
Z2: achr:= '2';
3: achr:= '37;
4: achr:= 147;
5: achr:= '57;
6: achr:= '6';
7: achr:= '77?;
8: achr:= *87;
9: achr:= *'g%;

end;

end; fachr}

function behr(k,c: integer): char;
fconverts a two digit number to two characters)}

begin {bchr}
if ¢ = 1 then behr:= achr(k div 10)
else bchr:= achr{k mod 10);
end; (bchr} .

procedure buildrdsl (var head, tail, bottom, lastdim: nodeptr;

ndim, ptndx, run: integer):
{this is a driver procedure to test the insertion procedure. It builds a
rdsl structure by inserting one datapoint at a time) ' '

var dpoint: crdptr; {the datapoint we are about to insert}
current: nodeptr; {the new node we are about to insertj)
i, j: integer; floop control variables}
dfile: text; {the input datafile}
et, st: integer; {for timings)

begin (buildrdsl} : )
createemptyrdsl {head, tail, bottom, lastdim);
open (dfile, )

dptnamt+achr (ndim} +achr (run) +behr (ptndx, 1) +bchr (ptndx, 2) +dptext, 'old');
reset {dfile}; ’

st:= sysclock;
for i:= 1 to numpoints do _
begin {get and insert next datapoint}
new (dpoint) ;
for j:= 1 to ndim do
read (dfile, dpoint~[4]}):
readln (dfile); '
for j:= (ndim+l) to maxdim do
dpoint™~[3jl:= 0;
newi{current) ;
‘current©.datapoint:= dpoint;
current” .minki:= current”~.datapoint~[1];
current” . maxki:= current”~.datapoint”[1];
‘current”,.nextdim:= lastdim;
current”.down:= hottom;
insert_rdsl{head, current, 1);:
end; {get and insert next datapoint}
et := sysclock:

writeln (bldfile, et-st);
close (dfile);
end; {huildrdsl}
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procedure searchihead: nodeptr; ndim, ptndx, run: integer):

{this procedure contains the driver code to test the search procedure,

kdrsearch, which 1s located in unit rdslsrch.}

var next: boolean;
i,73: integer: floop control}
st, et: integer:; {for timings}
lrfile: text;
count: integer;

- procedure getlar(ndim: 1nteger),
{this procedure initializes 1 and r for our search})

var j: integer;

begin {getlsr}
for j:= 1 to ndim do
begin
read(lrfile, 31y
read(lrfile, r[ 1):

end;
readln (lrfile);
for j:= (ndim+l) to maxdim do
begin
1[j1:= 0
r[(i1:= 0;
_ end;
end; {getlsar}

begin {search}

open{lrfile,

rgfnam+achr {ndim) +achr {run) +bchr (ptndx, 1)+bchr(ptndx 2)y+rgfext, 'oldt) ;

reset {lrfile);
rewrite {sfile);

for i:= 1 to numper do
begin
getlar{ndim);

{track progressin of'range search}
write(i:2, ' *);

st:= sysclock:
for j:= 1 to numsearch do
begin
next:= false;
kdrsearch(head, head, next, 1, 1);
(1 if we want to report points in sfile}
end;

et:= sysclock;
writelni{srchfile, (et-st}):
end;

close (sfile);
close (lrfile);

end; {search}
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procedure destroyrdsl (var head: nodeptr; ndim, ptndx, run: integer);
{ths is a driver procedure for testing the delete procedure. we
dispose of the rdsl built up by the driver procedure buildrds! in the

unit rdslitst by deleting one datapoint at a time until we are left with
an empty rdsl.}

var dpoint: coordinate;
i,3: integer; {loop contrel variable}
dfile: text; {the input datafile)
et, st: integer; (for timings}

begin {destroyrdsl)

open (dfile,
dptnam+achr(ndim)+achr(run)+bchr(ptndx,1)+bchr(ptndx,2)+dptext,’old'};
reset (dfile); :

st:= sysclock;
for i:= 1 to numpoints do
begin {obtain and delete the next datapoint}
for j:= 1 to ndim do
read{dfile, dpoint{jl);
readln(dfile); :
for j:= (ndim+l) to maxdim do
dpoint (j]1:= 0;
delete rdsl(head, dpoint, 1);
end; (obtain and delete the next datapoint}
et:= sysclock;

writeln (bldfile, et-st);
close (dfile);

end; {destroyrdsl}

begin {main}

{determine if we are to perform initial oi further testing)
writeln{'initial (i) or further (f) testing?7);
readin (testpar):

(get parameters that govern tests - support full and partial testing)
writeln('how many passes per run??');

readln ({passes);

writeln{’please enter start and end runs'):

readln {ndss, numdsets);

writeln('please enter start and end dimensiont);

readln (ntds, ntestdim);

writeln{'please enter start multipliert};

readln (sm) ;

{initialize values needed by structure)

new(amax) ; ;

amax~{l]:= mx; amax"[2]:= mx; amax”™[3]:= mx; amax"{4]:= mx;
new{amin) ; :

amin®[1]:= mn; amin”{2]:= mn; amin”[3]:= mn; amin~[4):= mn;
new(svj ;

sv*{ll:= 0; sv~[2]:= 0; sv~[31:= 0; sv~[4]:= 0:
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if testpar = i then

ns(3,1]:= 15; nsi(3,2
ns{4,1]:= 10; ns(4,2
end

begin
ni[ll:= 9; ni[2]:= 8; ni[3]:= 5,- ni[qj:: 3;
ns(l,1):=1; ns{1,2}:= 3; ns[1,3]: ns(l,4}:= 7; ns(1,S51:= 9;
nsfil,&):= 11; nsll,7]:= 13; ns[l 8] = 15; ns{l,%):= 17;
ns(2,1}:= 1; ns(2,2]:= 3; ns[2, 31:= ns{2,41:= 7; ns{2,5):= 9;
ns(2,6l:= 11; ns[2,7]:= 13; ns[2,8]:: 15;
ns(3,11:= 1; ns[3,2]:= 3; ns(3,3]:= 5; ns[3,4]1:= 7; ns[3,5]:= 9;
ns(4,11:= 1; ns{4,21:= 3; ns(4,31:= 5;
end
else
begin
nifll:= 3; ni{2]:= 3; nii3]:= 3;: nif4l:= 3;
ns(1l,11:= 25; nsl[1,2]: 0; nsfl,3]:= 35;
ns[2,1]):= 20; ns([2,2]: r ns[2,3]:= 30;
]:
]

Idion

3
25;

20; nsi3,31:= 25;
15; ns(4,3]:= 20;

writeln('enter name of datafile to hold construct/destruct times.'):
readln (bldname);

writeln('please enter name of datafile to hold search times. Yy
readln {srchname); .

{open datafile to hold construct/destruct tlmes}
open {(bldfile, bldname, ‘new');

rewrite (bldfile);

{open datafile to hold search times)

open (srchfile, srchname, 'new'):;
rewrite{srchfile);

fmain test loop}
for runs:= ndss to numdsets do
for i:= ntds to ntestdim do
for j:= sm to ni[i] do
for p:= 1 to passes do {it's a multipass tester!}

begin
numpoints:= ns[l,j]*basenumpts, {# datapts in our data set)}
dimensions:= i; (num dimensions of tree}

{output to track progression of testing) )

wrlteln ('ready. set. gone. dim: ?, i:2, ' points: ',
numpoints) ;

write('building ... ?);

buildrdsl (head, tail, bottom, lastdim, i, ns[l,j],runsn,
{build the rdsl structure}

writeln('built");

write(*searching ... '}: :

search(head, i,nsfi,jl,runs); (search the structure)

writeln{'searched');

write(’annihilating cee B

destroyrdsl (head, i,ns(i, 3], runs):
{dispose of the rdsl structure}

writeln{’it''s history!');

end;

{close our result datafiles)
close (srchfile):
close (bldfile);

end, {fmain}
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