NON-NUMERIC MEASUREMENT DEVICES
by

Lev Goldfarb
Sanjay S. Deshpande

TR96-106, March 1996

Preliminary Version

Faculty of Computer Science

University of New Brunswick

Fredericton, N.B. E3B 5A3
Canada

Phone: (506) 453-4566
Fax: (506) 453-3566

E-mail: fcs@unb.ca

www:  hitp://www.cs.unb.ca




Non-numeric measurement devices

Lev Goldfarb and Sanjay S. Deshpande

Faculty of Computer Science
University of New Brunswick,
Fredericton, N.B., Canada E3B 5A3,
Ph.(506)453-4566, FAX.(506)453-3566,

Email: goldfarb, d23d@unb.ca

Abstract

In this report we define a fundamentally new type of measurement device- struc-
tured measurement device. The readings of all existing measurement devices are
numeric. We propose a measurement device whose readings are non-numeric, or
symbolic, i.e. the readings are structured objects, e.g. string, graphs, etc., wiht the
geometry defined by the corresponding transformation operations. Thus the set of

numbers in the classical devices is replaced by a transformation system.




1  What are symbols: A new approach to image representation

We propose that the fundamental goal of vision which is to construct a (combinative) rep-
resentation of objects. Now we will discuss how one can construct such a representation
starting from the intensity measurements. It is well known that measurements provide a
“universal” means to study a phenomena. In case of “image understanding”, it is conven-
tionally (implicitly) assumed that the vector represemtation of the intensity measurements
- i.e, the representation that is independant of the combinative structure of the measuring
device - is adequate for understanding the structure of the object. It should now be clear,
however, that the combinative structure of the measuring device has to be represented also.
Moreover, one should note that it ié important to note that numeric measurements (Light
intensity in particular) are hardly the only means to represent the enviroment, as is the case
with all biochemical systems. It is also important to keep in mind that the number itself is
2 human creation and does not exist in nature, As far as the relationships between various
mathematical structures are concerned, and the numeric mathematical structures are very
restricted form of the combinative structure the transformation system.

In this section we propose a new form of image representation that inductively constructs
(from the initial measurements), a combinative object representation. This representation is
constructed in two stages: the first stage is called the structured image representation (SIR)

and the second stage is called the inductive image representation (IIR).

1.1 The Structured Image Representation {SIR)

In order to construct the structured image representation (SIR) one requires an adequate
abstract specification of the measuring devices, since the device forms a fundamental integral

component of any (human or machine) vision system. We define measurement device in a




manner more general than 1s currently understood.

Definition 1 A measurement unit is an abstraction of the elementary/atomic measure-
ment device and will be denoted by u. A (structured) measurement device M is a triple
(U,m, T), where

U 5 a set of meaurement units,

m: U — AT m ¢s a mapping from U into the altribute set AT each element of which is an

2, ...,a" >, &' characterizes one aspect of the unit (see below)

n-tuple m(u) =< at, a
and T = (8,0, D) is a transformation system (see Section 2) whose structs are built from

subsets (possibly of different sizes) of U.

BEach meaurement unit is completely characterised by m(u) - an n-tuple of atiributes of u.
A chosen measurement unit can perform only one type of meaurement, numeric or non-
numeric (i.e. symbolic struct measurement), but could also have many other atiributes and
device M may have units of different types, i.e. performing, for example, different types of
measurement at the same location. For example, we will assume that attribute a* is unit’s
type (thermal, light, acoustic, etc), a? is the unit’s location in space l,, and &® is the range
of the units’s meaéurements which is a set of structs S“' It is important to stress that the
range is also defined as a transformation system T, = (5., O., D.) that specifies what the
measurement are, while the transformation system T in the abovedefinition specifies the -
structure of the device M. It is not difficult to see that all present measurement devices
are special cases of the above. All present devices have units whose ranges are numeric
transformation system, i.e. they all “produce” numbers, which is a very restricted/trivial
form of the transformation system (see Section *). It is important to note that some of

attributes are static (fixed) and some are dynamic (e.g. location). they all produce numbers,
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which are a very restricted/trivial form of structs.

One can easily see that our definition of the measurement devices fundamentally links the
concept of the device to that of the corresponding mathematical structure. This link should
make it quite clear the differences between various measurement devices. In computational
vision, typically, the unit’s range T, is a subset of reals and T is a vector space. What was
not previously understood at all in the computational vision is that the combinative structure
of the objects induces an abstract geometry, defined via the transformation system , which
must be fundamentally linked to the structure of the measurement device. Moreover, since,
we propose that the objective of vision is to capture the combinative structure of the objects,
one can see that the measurement device (including its structure) and vision processes form

an integral whole and cannot be disassociated.

Definition 2 An (instanteneous) measurement mq by a measurement device M = (U, m, T)
18 @ mapping

me: U — AV, (1)

where my(u) € Sy and AV = (J oy Se.

Thus, if all the units measure light intensity, AV C R. In view fo the fact that measurements
result in the images , we turn next to the process of image formation and its combinative
nature,

We propose that images should be thought of as composed of discrete atoms (primitives)
and the structure of image, as determined by a chosen combinations of these atoms. Such an
atomistic view was proposed and extensively studied by U.Grenander [6]. We postulate (in
accordance with Postulate 1) that the combinative structure of the image (or sub-image) can

be captured by representing the image (or sub-image) by the corresponding transformation
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systemn.

Definition 3 Given ¢ measurement device M and its instentaneous meaurement m;, a
(structured) image is a triple I = (mt(ﬁ),L,T), where I = {l. | v € U} 45 a set of
locations and T is a transformation system for M (see definition 1); a (structured) sub-
image I is a triple (Uy, L1, Ty) , where Uy C U, L C L, and T4 is a sub-transformation

T; CT.

Example in figure 1 illustrates the role of transformation system in image representation.
Conventionally, in computational vision an m X n image region is represented as a vector in a
m X n-dimensional vector space. Almost in all the current low-level vision approaches use the
vector space is used as the underlying mathematical structure for image representation, i.e.
the transformation of the corresponding measurement device is a finite- dimensional vector
spa..ce. The fundamental drawback of such a vector representation (numeric struct) is related
to the fact that the spatial relations between the pizels and their intensities is completely lost.
This is clearly evident from figure 1. At the same time, the symbolic struct representation
together with the operations completely (anrd explicitly} captures the relationship between

the pixels and their intensity values.

A necessity for the choice of the symbolic struct representation can be seen from the
following facts. The material properties of the objects are completely determined by its -
microstructural properties {5]. It is also known that the intensity values depend on the
material properties and the surface geometry [4]. Moreover, the image contains objects
that have combinative structure. Hence each infensity value represents the microstructural
property of the object at that spatial location. Symbolic structs are tailer-made to capture

thisstructural information.




Definition 4 Given o (structured) image I = (my(U), L, T), a set of subimages {Li }rex of
I is called local (structured) image partitioning of I if Upex Uz = U where Uy C U.

One can think of the above subimages as the receptive fields in the retina (in neurophysio-
logical language), or as image windows (in computational vision terms).

In connection with the above (general) definitions, we will address in this paper only one
aspect related to the low-level feature discovery and representation. As the first step in the
process, one has to begin with the construction of the transformation system for a given
subimage. It is useful to keep in mind that in this paper we are not addressing the issue
of the relationship between the subimage and the image transformation systems as well as

between various subimage transformation systems.

2 A new mathematical structure: The Evolving Transformation System

We now turn to the description of the recently proposed evolving transformation system
(ETS) model of inductive learning (1] [2] [3], which could be thought of as the formalisation
of the symbolic system whose role in Al has been so pervasive. ETS is the mathematical
structure that is built “on top of” a basic mathematical structure — the transformation
system.

A transformation system (TS) is a triple
T=(8,0,D) @)

where

refer to the original paper for constructive definition *
S is a set of structs {e.g. strings, trees, etc.) which are representations of analogously

structured (discrete ?) objects; *(use the phrase structs are bulit from units)*
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O = {O;}, is a finite set of multivalued functions, O; : § — 8, satisfying the follow-

ing two axioms:

()YVOeO VseS8S 3FJ01'cO suchthat s€ N 073
Fc0(#)

(ii) for every pair of structs there exists a sequence of operations that transforms

one into the other,

the set O specifies permissible operations for transforming one object into another (e.g.
deletion-insertion, substitution operations), and can be thought of as a postulated set of

object features and

D = {A.}ueca is competing family of distance functions defined on S whose parameter

set {2 is the (m — 1) -dimensional unit simplex in £™

Q:{w:(wi,wz,...,wm) [ wiZO, Z‘w'i:l}. (3)
i=1

Each of the distance functions A,, is defined as follows: Weight w is assigned to the operation

0O; and
k +
Aw(sh 32) = ‘I,leé{,l; wzj] (4)

where the minimum is taken over all possible sequences o; = (05*“ )....OE)) of operations that
transform struct s; into struct s,.

To compute the distances A,,(s1, 32), the system must use its set of operations in a coop-
erative and competitive manner. Thus, all the properties of the system resulting from this

definition can be viewed as emergent properties.
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Learning in a TS can be reduced to the following optimization problem:

w w) = ‘——'—'-'fl(w)
max f(w), f(w)= ot fol@) (8)

where fi(w) is the A,-distance between C* and C~, fo(w) is the average A,-distance within
C*, and ¢ is a small positive constant to prevent the overflow condition (when the values
of fa{w) approach 0). Since f(w) gives the measure of the separation of C* with respect to
C~, it is called the guality of (learning} class perception.

For a given concept C and given set O of operations, every optimal weighting scheme
w* € §) generates the ‘best’ metric configuration of the training set C*. In other words, the
distance function A,+ gives the ‘best’ separation of the positive class with respect to the
negative class,

Evolving transformation system (ETS) is a mathematical structure which is a finite or

infinite sequence of TS’s with a common set of structured objects
T, = (S, 0;, D5, R) (6)

in which each set of operations O;, except Oy, is obtained from O;_; by adding to it one or
several operations _that are constructed from the operations in Q;_; with the help of a small
set R of composition rules. Each rule R € R allows one to construct new operations from
existing operations.

From the above definition of ETS it follows that at stage ¢ we have
0 COC0:C.. 08 CHCRT..CH (7)

Roughly speaking, the inductive learning process for the ETS proceeds by constructing
a sequence of Q;’s in such a way that, for each consecutive T, the minimum value of f;

decreases (while making sure that the value of f; is not zero). In essence, the interdistances
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in C* gradually shrink to 0 while the distance between C* and C~ remains non-zero. For
a complete example of an inductive learning process in ETS see [3].
In view of the above inductive learning process the inductive class structure can be defined

by the following triple

% = (C*, 0y, ) (8)

where €+ is a subset of C+, Oy is the final set of operations at the end of the learning
process, and
subseteqfl is the set of optimal weight vectors for the final transformation system.

Thus, since the class membership of a struct s will be determined on the basis of its Ae
distance from C*, the class structure embodies the symbiosis of both the classical discrete
and continous formalisms.

Postulate 2: Inductive learning processes are evolving processes that capture the object
(class) structure mentioned in Postulate 1. Hence, the corresonding mathematical structure
used in the model of inductive learning should have the capabilities to capture this structure.
(It turns out that the corresponding mathematical structure is fundamentally different from

the classical mathematical structure.)
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