COMPUTER REASONING ABOUT
NUCLEAR PHYSICS PROCESSES

by
Sri Hartati

TR96-107, April 1996

This is an unaltered version of the authot's
Ph.D. Thesis

Faculty of Computer Science

University of New Brunswick

Fredericton, N.B. E3B 5A3
Canada

Phone: (506) 453-4566

. Fax: (506) 453-3566
E-mail; fcs@unb.ca

www: http://www.cs.unb.ca

COMPUTER REASONING ABOUT NUCLEAR Paysics
' PROCESSES

by

Sri Hartati
Dra.(Electronics) — Gajah Mada University
M.Sc.(CS) — University of New Brunswick

A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF
THE REQUIREMENTS FOR THE DEGREE OF
Doctor of Philosophy
in the

Faculty of Computer Science

This thesis is accepted.

Dean of Graduate Studies

THE UNIVERSITY OF NEW BRUNSWICK
March, 1996
© Sri Hartati, 1996

Abstract

Nuclear Process Theory (NPT) is a new process theory which models nuclear physics
processes using a formal grammar. This, in turn, allows one to write computer pro-
grams which simulate nuclear process interactions. Knowledge of the nuclear physics
process is expressed in terms of a basic nuclear physics model and an aggregate effects
model. The basic nuclear physics model has the capability of expressing knowledge of
nuclear physics processes for different types of reactions. The products of réactions are
expressed in either deterministic or probabilistic values. The aggregate effects model
coordinates basic nuclear physics processes expressed in the basic nuclear physics
model.

NPT has been tested by using it to represent several nuclear phyéics processes,
including fission, radicactive capture, beta negative and positive decay, that occur
in a homogeneous reactor core. A simulator called NPTsim was written in C to
demonstrate the principles of NPT representation.

Three examples of running 20 second simulations have been carried out using -
NPTsim. The three experiments used differing amounts of %0 and 2280 correspond-
ing to pure, natural a.ﬁd enriched Uranium. The experimehta,llrésults are very closed
to expected theoritical results. _

Unique approaches to symbolically representing the state space and probabilistic
space equations required for nuclear physics processes are presented. In addition, a
unique explanation mechanism for how products of nuclear physics processes arise is

enabled by the NPT approach. This mechanism is illustrated in the thesis.

1

Contents

Abstract ' ii -
List of Tables vil
List of Figures _ viii
Acknowledgements _ x
Dedication " xi
Nomenclature Xiii

1 Introduction i
1.1 Background 2
1.2 Objectivesof thethesis 5
1.3 OQutlineof thethesis 6

2 Reasoning about physical systems 7
2.1 Qualitative Process Theory (QPT) 8

| 2.1.1 Process e e e e e e e e e e e e e e e 9
2.1.2 Basicdeductionso 10

22 Qualitative Simulation (QSim). S .13
| 2.2.1 Derivation of behaviour 13

i1

2.3 Envision . . . v v e e e e e e e e e e e e e e e e e i6

92.3.1 Device structure oot .. 16
9232 Structureto function ettt 1T
2.3.3 Deriviﬁg behavior o o 18
2.4 Dimensional Analysis oo o 19
2.5 Hybrid Phenomena Theory (HPT) 22
2.5.1 Components of HPT 22
2.5.2 Influencesin HPT 25
2.5.3 Subsumption e e e e e e e 27
2.6 Comparison 28
Nuclear Processes . 32
3.1 Behaviour of Nuclear Physics Processes e 36
3..2 Neutron Cycle o it e i e e 37
Nuclear Process Theory (NPT) 42
4.1 Knowledge Level O 42
4.1.1 Basic Nuclear Physics Model (BNPM) 43
4.1.2 Aggregate Effects Model (AEM) 49
4.2 SymbolicLevel e e e e e 56
4.3 Quantitative Level o oL oL 58
44 TInfluencesin NPT 60
4.5 Deriving State Space and Probabilistic Space Equations 65
4.5.1 Algebraic Inﬂjiences e e e e e e e 65
452 Aggregate Influences oL 66
453 Cumulative Influences oo v v 66
4,54 Decay Influences 67

4,5.5 Distribution Influences e e .. 68

iv

5 Implementation 71

5.1 Design and architecture of a nuclear process simulation tecol 71
52 NPT language i woe . T9
6 Evaluation 84
6.1 Experiments i i e e e e 85

6.1.1 State space and probabilistic space equations of the first cycle
forexperiment 2 90

6.1.2 State space and probabilistic space equations of the second cycle

forexperiment2o oL 100

6.2 Comparison to Expected Results 103

6.3 - Queries, Histories and Changes parameters 105

6.4 Worst Case Time Analysis e e e e ... 108

6.5 QGeneralization T 110

6.5.1 Environmental Modeling 110

6.5.2 Chemical processes e e e e e e e e 110

653 Fusion e 111

6.5.4 Nuclear Medicine 112

6.5.5 Communication Networks o oo v v v vt o 114

6.5.6 Software Validation 114

7 Conclusions and Future Work | 115

7.1 Conclusionsv... e e e e e e e - 115

7.2 Suggestions for futurework o oL 116

Bibliography 118
Appendices

I Equations Used in NPT ' 122

11 Fission processes in NPT 122

I.1.1 Macroscopic cross section e 123

[.1.2 Fission fraction 125

1.1.3 Thermal utilization factor 127

1.1.4 Thermal fission factor 128

[.1.5 Multiplication factor, 129

116 PFissionspercycle o o o v i e 130

I.1.7 PFissionproducts 131

I.1.8 Fuel Consumption 140

1.2 Betanegativedecayin NPT e e 141

1.3 Beta positive decay in NPT, 144

L4 Radioactive capturein NPT T 145

II NPTsim Input descriptions for Experiment 2 ' 147

II1 Formal Grammar of the NPT language | | 149
IV Set of Active Processes at the End of the Second Cycle 156 .

Vv State and Probabilistic Space Equzﬂ:ions at the End of the Second

Cycle 198
VI Probabilistic space equations of the sorted isobars | 243
VII Final results of Experiment 2 ' 270

vi

List of Tables

2.1
6.1
6.2
L1

L2

L3

Comparison of physics reasoning systems.. 31
Portion of distr A. e e e e e 97
Portionof pdf dZ. 97
Probability of fission fragments having a certain mass number for ac-

tivating nuclide U235. e e e e 133
Probability per unit interval of energy of neutron products calculated

from [13]. 137
Probability per unit interval of energy of gamma products. 138

vii

List of Figures

2.1
2.2
2.3
3.1
3.2
3.3
4.1
4.2
4.3
4.4
4.5
4.6
4.7
4.8
4.9
4.10
4.11
4.12
5.1
5.2
5.3

Physical process definition for fluid flow from [11]. 11

Model components in HPT.o, 24
A pan with water on hotplate. PP 28
Heavy elements of interest for nuclear reactors from [21]. 34
A simplified diagram for nuclear physics processes. 35
Neutron cyclein NPT. o . 39
Model hierarchy in NPT. SO 43
Basic ﬁuclea.r physics model of fission. 44
Basic nuclear physics model of radioactive capture. 45
Basic nuclear physics model of beta positive decay. 45
Basic nuclear physics model of beta négative decay. 46
Aggregate effects model of fission., 51
Continuation of aggregate effects model §f fission. 52
Aggregate effects model of radicactive capture. 53
Aggregate effects model of beta negative decay. 54
Aggrepate effects model for beta positive decay. 55

Example of a set of conceivable processes at the end of the first cycle. 58

Active processes at the end of the first cycle of the experiment.. . . . 58
Components of a nuclear process simulation tool. 72
High-level activities of simulating nuclear processes in a cycle. T3
High-level description of simulation using the NPT model. 77

viil

5.4 Functional model of NPTsim.
5.5 Basic organization of the NPT language processor..
6.1 Time line used in NPT..
6.2 Active processes at the beginning of the first cycle of the Experiment.
6.3 State and probabilistic space equations at the end of the first cycle of

Experiment 2.
6.4 Continuation of state and probabilistic space equationé at the end of

first éycle of Experiment 2. oL o

6.5 Portion of active processes at the end of second cycle of Experiment 2.

6.6 Isobarlime.. e
6.7 A portion of probalistic space equations for fission products at ¢, for
experiment no. 2. e e e e e e e e e e e
6.8 Continuation of a portion of probalistic space equati@ns for fission prod-
ucts at #; for experiment mo. 2.
6.9 Portion of the state and probabilistic space equations at time ¢, Ex-
periment 2. Lo e e e e
6.10 Example of history and query.o | .
6.11 Continuation of an example of history and query.

II.1 NPTsim input descriptions of experiment no.2.. e

1x

86

87

88

89

96

98

Acknowledgements

I wish to express my sincere thanks and appreciation to my supervisor Dr. Bradford
G. Nickerson for his useful advice, guidance, constructive criticism given throughout
the extent of this research, his patience and for suggesting a number of improvements
in my use of English grammar.

i would express my sincere thanks to Dr. George Demille for his useful discussions
and for his guidance for better understanding of nuclear processes.

[wish to thank committee members, Dr. Bruce Spencer and Dr. David Fel-
lows, for their suggestions and comments generously expressed at various stages of
conducting my research,

I greatly appreciate and thank the Government of Indonesia for the financial sup- -
port and the opportunity to study at the University of New Brunswick, Fredericton,
Canada as well as to bring my family to Fredericton. _

I also would like to express my sincere thanks to the staff and faculty of the UNB
Faculty of Computer Science for giving me very useful training and guidance through
the courses I took, and also giving me an opportunity to carry out my research. A
special thanks goes to Kirby Ward for his suggestion of solutions when I have had
difficulties on systems in the Al Lab.

I would like to express my deepest feeling of gratitude, in particular, to:

e Devica, my beloved daughter, who cheers up and refreshes me every day after

doing some work related to my research on campus.

All moslem sisters who helped me to make my stay at Fredericton more enjoy-

able and make myself stronger in fa.ith;

My beloved mother Wiryodaryanto for her wonderful patience in taking care
of my daughter and her moral support during my difficult years of study. She

always encouraged me to be steadfast pursuing knowledge.

My husband Agus, for his wonderful support and understanding during the

dificult hours of my work, and for his encouragement.

The Sosrowidarsono’s, my parents in law, for their moral support during my

study.

x1

Dedication

This thesis is dedicated to my beloved mother who first introduced me

to the Qur’an particularly chapter 112, which means

In the name of God, Most Gracious, Most Merciful
1. Say: He s God, The One and Only; |
2. God, the Eternal, Absolute;
3. He begetteth not, nor is He begotien;

4. And there is none like unto Him. |

xi

Nomenclature

Clra
Cina
Cle

Ep

2
Fy
Fj
F.f
Fi

NA

N;
Prry
Prren

R
Fird

mass number

mass number of a compound nucleus

nuclide consumption due to the beta negative decay process

amount of nuclides of type j consumed for beta negative decay processes
nuclide consumption due to the radioactive capture process,

as a result of interactions between neutrons and nuclides of type 7
energy released from product nuclide(s}

energy released from product particle(s}

fission products 1

fission products 2

a fraction of absorption of neutrons for each type of nuclide

fraction of thermal neutrons participating in the fission process

fraction of neutrons which interact with nuclides of type j through fission
fraction of neutrons which interact with nuclides of type 7 through
radioactive ca.pturé

neutron number

Avogadro’s number

density of nuclides of type ¢

fast nonleakage probability

thermal nonleakage probability

resulting nuclide due to a beta nega,ti've decay process

xiil

Q
P

P(Z,A).amount
R,

i
ch

SP

Ze
et

Efuel
a
Ej:ll&l

Emod
&

oz

distr_neutront

a nuclear physics system

product nuclide(s)

number of resulting nuclides P

number of fissions in a present cycle as a result of ﬁssioning.
certain types of nuclides

resulting nuclides due to radioactive capture process,

as a result of interactions between neutrons and nuclides of type 7
a collection of state space and probabilistic space equations
target nuclide

total number of fission neutrons in a previous generation
atomic number '

atomic number of a compound nucleus

macroscopic absorption cross section for cladding

a macroscopic absorption cross section '

macroscopic fission cross section of a mixture of n
substances

macroscopic absorption cross section for moderator
deviation of product nuclide

fast fission factor

thermal fission factor

average number of neutrons released per fission

fission cross sectien of nuclides of type 4

capture cross section of nuclides of type 1

incident particle

product particle(s)

distribution of fission neutrons for nuclide of type 5

xiv

el

T g—1
g
Fuel
7Y
p
pdf neutron

pn?

q

energy interval

thermal utilization factor

a multiplication factor

neutrons in a previous cycle

neutrons in a current cycle

fraction of thefma.l neutrons absorbed in fuel

resonance escape probahility

Poisson distribution controlling a probability of producing 0-8 neutrons
total number of fission neutrons generated by nuclides of type 5

a nuclear physics process

Xv

{
:
1
i
1
:
1
:
:
i

Chapter 1
Introduction

Computer reasoning about the physical world is an important topic of investigation.

Traditionally, computer programs or “computer codes” are written in Fortran, C or

other computer languages that support large scale computations. Recently, work

in Artificial Intelligence has attempted to model and represent physical processes in
such a way that computer programs are much more “human-like” in the way they are
éonstructed, e.g. Maple, MODSIM, and G2. This allows them to be used in a much
more natural way for explaining how particular solutions were obtained. Complex
problem solutions can be easily formulated.

This thesis presents a formal representation system for nuclear physics processes.
It introduces the Nuclear Process Theory, NPT, a framework integrating symbolic
descriptions of nuclear physics processes with state space and probabilistic space
equations along with the products of nuclear physics processes. The key idea explored
here is how nuclear physics processes can be represented to model nuclear physics
interactions both quantitatively and qualitatively which, in turn, enables computers
to reason symbolically about nuclear physics processes. It is emphasized that the
purpose of the approach described here is to enable a formal description of what is
already known as nuclear physics processes.

NPT models nuclear physics processes using a formal grammar. This, in turn,

allows one to write computer programs which simulate nuclear process interactions.
Knowledge of the nuclear physics processes is expressed in terms of a basic nuclear

physics model and an aggregate effects model.

1.1 Background

Qualitative physics is concerned with representing and reasoning about the physical
world. Both qualitative physics and physics attempt to characterize the physical world
by formalizing knowledge about it in some language. Physics attempts to elaborate
on new theories, but does not bother to codify the knowledge for direct computer
manipulation. To develop machines capable of reasoning about physical systems, the
knowledge must be represented in a fashion switable for machine manipulation.
Reasoning about physicél syétems aims to expose the underlying mechanisms and
make them sufficiently éxplicit, so that they can be directly reasoned with and about.
Reasoning about physical systems can give causal explanations of a change in one
variable with respect to others. It can reason about when a pfocess starts and stops,
and can give causal explanations when the implicit assumptions under which it was -
written are violated. The underlying and explicit knowledge enables us to develop
machines capable of reasoning about physical systems. Artificial Intelligence (Al)
research on reasoning about physical systems is important for several reasons, e.g.

[34]
o It allows robots to predict the effect of their actions on a dynamic world.

o It leads to powerful tools for automated design, diagnosis, and monitoring of

complex systems such as electronic circuits or chemical plants.

e Tt enables the construction of algorithms that generate causal descriptions ex-
plaining how physical systems work; these algorithms could be used in intelligent

tutoring systems.

| Reasoning about physical systems is one of the fields of Al where attempts have
been made to describe and analyze the behaviour of physical systems. Qualitative
reasoning about physical systems has atﬁracted a growing interest since the late T0’s.
Research in qualitative reasoning was originally motivated by the fact that human
beings function well in their physical surroundings without resorting to quantitative
computations. The first work was an exploration of how qualitative reasoning could
be used to guide the construction and solution of equations in simple motion problems
as well as answering simple questions directly [5]. Qualitative reasoning has from the
" beginning been concerned with reasoning about qualitative properties. A number
- of different qualitative reasoning tasks that have inspired work on several styles of

reasoning are [8]

Simulation: Determining a likely course of future behaviour starting with a struc-

tural description of some device or system, and some initial condifions.

Envisionment: Starting with a structural description, determine all possible be-

havioural sequences.

Diagnosis: Determining the cause of a change in the underlying structure of systems '

which previously behaved correctly.

Verification: Designed systems start with a behaviour specification to achieve a
system function. Any number of structures may be used to try to implement
such a specification. The problem of verification is to ascertain that a particular
implementation structure has a composite behaviour which matches the desired

behaviour specification.

Deducing functionality: Extracting functional descriptions from structural and

behavioural descriptions to identify the functions of components in the system.

A variety of productive approaches to qualitative reasoning frequently differ in em-

phasis and content, and can seem incompatible [2,3,11,12]. These approaches focus

on differént methods for reasoning about different types of physical systems.

Qualitative representation is often appropfiate for the syste.m that is lacking com-
plete numerical information. It provides a theoretical framework for understanding
the behaviour of a physical system, e.g. a qualitative expectation of the system’s
behaviour over time.

Among developed methods in qualitative reasoning, only Forbus’ method [11]
introduced the notion of a process, where physical interactions are described through
properties of processes rather than properties of devices.

Although the approaches mentioned above lack quantitative information, they
have provided valuable insight and methods for analyzing physical systems.. Most
application areas in science and engineering also require some form of quantitative
analysis. Several attempts on integrating qualitative knowledge and quantitative
knowledge for reasoning about physical system have been de{?eloped [10,24,36]. These
approaches produce more accurate predictions and causal explanations of behaviour
of physical systems. Besides giving numerical descriptions of the behaviour, these
approaches describe the behaviour qualitatively, and provide a causal explanation of
behaviour.

" Woods [36] introduces a Hybrid Phenomena Theory which also incorporates the
notion of physical processes for describing the behaviour of physical systems. Woods
introduced a combined qualitative and quantitative approach that can have a quanti-
tative interpretation. His approach introduced parametric state space models which
can represent parameters that physicists and engineers normally use and can easily
undérsta.nd. |

Research on both gualitative and quantitative reasoning emphasizes development
of methodologies for reasoning about physical systems. None of the above approaches
" have been developed to reason about nuclear physics processes [14]. Nuclear processes

are somewhat different from other physical systems, as nuclear physics processes

transform original nuclides to new materials, and produce particles. To develop ma-
chines capable of reasoning about nuclear physics processes,. the knowledge about
physical processes, physical system components and the knowledge about properties
of approximately 3000 different types of nuclides [18] must be codified and embodied

in the system.

1.2 Objectives of the thesis

The thesis concentrates on developing an approach for computer reasoning about

nuclear physics processes. This work has two primary objectives, namely:

1. Devise a theory for defining the nuclear physics processes that can be developed
as a language in which o write computer programs which simulate nuclear

physics interactions.

2. Investigate the utility of the theory as a tool for simulation of nuclear physics
processes, including fission processes, radioactive capture processes, and beta '

positive and beta negative decay processes.

Our approach, called Nuclear Process Thebry (NPT), is addressed at the issues
~ of developing a representation of nuclear physics processes that allows understand-
ing of how nuclear interactions (interactions between reagents) dynamically relate
to equations describing the processes. Parameters in these equations can have non-
deterministic values. Knowledge of nuclear physics processes is expréssed in terms
of a basic nuclear physics model and an aggregate effects model. The aggregate ef-
fects model coordinates basic nuclear physics processes expressed in the basic nuclear

physics model.

1.3 Outline of the thesis

The ofganiza.tion of this thesis is as follows. In chapter 2 a general overview of
reasoning about physical systems is given. Several different approaches for reasoning
about physical systems are presented and compared.

In Chapter 3 an overview of nuclear processes is given, along with reactoi' param-
eters that are needed in the processes.

In Chapter 4, Nuclear Process Theory, a formal knowledge representation system
for nuclear physics processes, is described in detail, while the algorithms and the
implementation are described in Chapter 5.

In Chapter 6 some examples along with evaluations of the performance of NPT is
described, followed by some conclusions reported in Chapter 7. In the final Chapter

T suggestions for further work are given.

Chaptér 2
Reasoning about physical systems

Reasoning about physical systems has become an intensive research area of Artificial
Intelligence in recent years. Research on qualitative reasoning has been motivated by
efforts to make computers more intelligent and capable of réasoning about physical
worlds much as we ourselves, as engineers and scientists, do. Considerable emphasis
has been placed on a kind of analysis called qualitative simulation, for example [6,
11,12,22]. Other efforts have been made in the domain of modeling functions and
malfunctions of devices, causal processes that use devices (for example [35]), and
in the domain of assembling a device [9]. Another focus has been on the problem
of comparative analysis. It takes as input a system’s behaviour and a perturbation
and outputs a description of how and why the behaviour would change as a result
of the perturbation [34]. Alternative approaches for reasoning about different types
of physical systems are included in [33]. The various approaches in reasoning about
phys_ica.l systems have no uniform notation, which makes it hard for one to recognize
the common aspects of the different approaches. |
Qualitative reasoning provides valuable insights and methods for analyzing physi-
cal systemns. With the lack of complete quantitative information, qualitative reasoning
can provide an understanding of the qualitative nature of a system’s behaviour. For

example, in design one may not know the exact value of all parameters in the design,

7

yet one has to make decisions using this partial information. In this case the pa.rtia.l.
information can be used by representing it in qualitative form. By using qualitative
descriptions of the variables, a description of the working of a device can be obtained.
Since qualitative values have less information than numerical values, some chains of
qualitative reasoning resulf in ambiguity. Any ambiguity is due to the weakness of
algebraic operations that can be defined on a qualitative value sﬁace. For example,
addition of a negative qualitative value to a positive qualitative value results in an
ambiguous value.

Many engineering applications involving the physical world require quantitative
values. Research on reasoning about physical systems that combines quantitative
information and qualitative descriptions allows a more precise characterization of
systeﬁl and their behaviours [24,36].

This section reviews some methods in qualitative rea.sdhing about physical sys-
tems. Among the methods reviewed below, Forbus’ and Woods’ methods introduce

the notion of processes.

2.1 Qualitative Process Theory (QPT)

A purely qualitative approach developed for analyzing physical systems is Qualitative
Process Theory (QPT) [11]. QPT defines a simple notion of physical processes which
1s useful as a language to write dynamic theories. |

. The central concept in Forbus’ analysis is that of the process. Instead of focusing
on what processes take place in the system, Forbus’ method focuses on how the
processes influence the system parameters and how the processes interact.

A physical system is described by objects and relationships between the objects.

‘Processes are represented by activities that occur in physical systems. The significant

properties of a process are its preconditions and its influences.

The preconditions of a process are states that must hold if the process is to be

active. For example, consider the process of heat flow from object A to object B.
Sufficient and necessary preconditions for heat flow are that 4 and B are thermally
connected, and that the temperature of A is greater than the temperature of B. The
.inﬂuences of the heat flow are to reduce the temperature of A and to increase the
temperature of B.

Besides characterizing processes, QPT describes the connections between param-
eters. Interactions between parameters are described by the concept of direct and in-
direct influences. Direct influences are used to describe dynamic interactions whereas
indirect influences are used to describe functional relationships.

~ QPT expresses direct influences between parameters using the notations I+ (k,n)
and I — (k,m). The first notation is pronounced “k influenced by n positively”, and
the second is “k influenced by m negatively”. The value of the derivative of k is equal
to the qualitative sum of the influences of all processes on thé parameter. If all signs
of the influences are the same, (e.g. -1,0,1 indicating decreasing, unchanging and
increasing parameters), then the value of the derivative of the influenced parameter
is simply that sign. Since there is no numerical information, ambiguities can arise if
the signs of the influences are different.

Thé relations between parameters that are influenced indirectly by processes are
expressed using statements of proportionality. Parameter & is qualitatively propor-
tional to m, denoted as &k xg4 m , means an increase in & will also increase m, while
other parameters remain the same. Parameter k is negatively proportional to m,

written k g~ m, if an increase in & will cause a decrease in m.

2.1.1 Process

A physical process is something that acts through time to change the parameters of
objects. The concept of a process is used to capture the effects of dynamic interaction
-in a system. Take a pan on a hot plate as an example. The mere fact that a container

is placed on a hot-plate does not entail that a flow of heat will occur. But if the

temperature in the plate is greater than the temperature in the container, a flow
of heat will arise. This will cause the temperature in the container to rise and the
temperature in the plate to decrease. The notion of a process allows us to formalize
conditions for when a process will exist as well as the consequences of its activity. A

process 1s specified by five parts :
Individuals: description of the objects which the process acts on.

Quantity Conditions: Inequality statements and status assignments which must

be true for the process to be active.

Preconditions: Statements other than Quantity Conditions that must be true for

the process to be active.

Relations: The relationships between the individuals which hold when the process

is active.
Influences: Descriptions of the direct effects of the process.

Processes act between any collection of individuals they match, whenever both
Preconditions and Quantitative Conditions are satisfied. This gives rise fo Process
Instances or PIs. The statements in the Relations and Influences fields hold whenever

a process is active. Fig. 2.1 shows the process definition of fluid flow.

2.1.2 Basic deductions

QPT representation allows several deductions as categorized below [11].

Finding possible processes: Given an initial set of objects, find all collections, of
them which match the specifications of each individual view, with the process
definitions. Each collection gives rise to a particular view instance (VI) and pro-

cess instance (PI). These process instances (PIs) represent potential processes

10

process fluid-flow

: Individuals:
src a contained-liquid

dst a contained-liquid

path a fluid path, Fluid-Connected(src,dst,path)
Precondition:

Aligned(path)
QuantityConditions:

Alpressure(src)] > Alpressure(dst)]
: Relations:

Let flow-rate be a parameter

flow-rateccgy. (A[pressure(src)]-A[pressure(dst)])
Influences:

[+{amount-of (dst},A[flow-rate])

I-(amount-of(src), Afflow-rate])

Figure 2.1: Physical process definition for fluid flow from [11].

that can occur between sets of individuals in a view. Individual views describe

objects (called individuals) and their states.

Determining Activity: A process instance is either active or inactive according

to whether or not the particular process it represents is acting between iis

individuals. A status instance is assigned to each process instance for a system

by determining whether or not the preconditions and the parameter conditions

are true. This gives rise to the Process and View structures - the collection of
the active PIs and the collection of VIs of a system, respectively. The process

structure represents what is happening to the individuals in a particular system.

Determining changes: Most of the changes in an individual are represented by the
D, values for its parameters, where D, is a sign of the derivative. A D, value
of -1 indicates the parameter is decreasing, a value of 1 indicates the parameter
is increasing, and a value of 0 indicates that it remains constant. There are

two ways for a parameter to change; either it is caused directly by a process

11

or influenced indirectly by oxg. Determining the value of D, for a parameter is
called resolving its influences [11]. If a parameter is direcily influenced, resolv-
ing that parameter requires adding up the influences. If all influences have the
same signs, then the value is simply that sign. Since there is no numerical in-
formation, ambiguities can arise. Sometimes an answer can be found by sorting
the influences into positive and negative sets, and using inequality information
to prove that one set of influences must, taken together, be a larger set than
the other set. However there is not always enough information to do this, so

~ direct influences are not always resolvable [11].

Resolving an indirectly influenced parameter involves gathering the state-
ments D, that specify it as a function of other parameters [11]. In many cases
indirect influences cannot be resolved within QPT because of the lack of de-
tailed information about the form of the function. For example, suppose there

is a parameter gy such that a particular process structure holds, as follows:

go XQ+ 1 A Qo Xg- g2

where A represents a boolean operation AND. If we also know that D,[q:] = 1
and D,lq;] = 1, then D,[qo] cannot be determined, since there is not enough
information to determine which indirect influence dominates. However, if we

had D,{g;] = 1 and D,[qs] = 0, then we can conclude that D,[g] = 1.

Limit Analysis: Process Structures (PSs) and View Structures (ISs) can change due
to changing parameters. Limit Analysis is defined as determining the possible
changes in a Process Structure and View Structure. It is carried out by using D,
values and the collection of quam'ntity conditions to determine which parameter
conditions can change. Limit Hypotheses are determined to define possible

situations for ending a Process Structure.

Several examples illustrating some of the basic deductions possible using QPT are

explained in detail in [11]. The examples include fluid flow, heat flow, and motion

12

processes that involve liquids, gases, and solids.

2.2 Qualitative Simulation (QSim)

Qualitative Simulation (QSIM) was developed by Kuipers [23]. QSIM is a purely
mathematical approach, and is very different from QPT. It does not attempt to es-
tablish a qualitative model from a description of the system to be analyzed. Q5IM’s
basic objective is to derive a qualitative description of the dynamic behaviour of phys-
ical systems. The behaviour of a physical system is described by values of a set of
variables as a function of time. Kuipers’s approach starts with a set of constraints
abstracted from a differential équation, an& produces a qualitative behaviour corre-
sponding to any solution to the original equation. Kuipers iptroduces the concept of
a qualitative function and expresses a.li constraints on the behaviour of the functions.
At any time, a function takes on one of two types of values; a landmark, or aﬁ interval
between two landmarks. Time is described by means of distinguished time-points,
which occur whenever a function reaches or leaves a landmark. Time is either equal
to a distinguished time-point, or it equals an interval between two such points of time. |
He also points out that both analytical and qlia.lita.tive solutions are abstractions of

the real behaviour of a physical system.

2.2.1 Derivation of behaviour

The notion of a qualitative state is one of the important concepts of qualitative
reasoning. The qualitative state of a variable is the qualitative value of the variable
[11]. The qualitative state of a physical system is the combination of the states of all
variables describing the system. Kuipers [23] made an extension of the notion of 2
state by including derivatives on an equal basis with the values of functions. Kuipers

thus defines the state and behaviour of a single function in the following way:

13

State of }1 QSIM function
Let L, < -+ < L, be the landmark values of f : [¢,5] — R. For any ¢ € [a, b], the
qualitative state of f at ¢, @S(f,¢) is a pair < gval, gdir > defined as follows:

L; if f(t} = L;, a landmark value
qual = :
(Li, Livr) if f(2) € (Liy Liga)

e, if f(#) >0
gdir = < dec, if f(¢) <0
std, -if f(z) =10
Qualitative behaviour
The qualitative behaviour of f on [t,, 1) is the sequence of the qualitative states
of f: ' |
QS(f,1a), @S(f, tartarr), -+, Q5 (S, to-1,1), QS (S, 1)
alternating between qua.li’;a.tive states at distinguished time points, and qualitative
states on intervals between distinguished time points.
A physical system is characterized by a set of variables. QSIM performs an analysis
of a systern by examining the set of qualitative functions f;,-- -, fin corresponding to .
the set of characteristic variables. There are two types of qualitative states for this
kind of system, either at landmarks or between landmarks. These are specified as

indicated below.
QS(F,t,;) = [Qs(flati):'":Qs(fm:ti)] (2'1)
QS(F ti tina) = [@S(fr, tis tizr)y s @S (fmy iy tina))] (2.2)

The qualitative behaviour of the system F is specified as the sequence of the

qualitative states of F, alternating between landmark and interval values.

QS(F; tO))QS(F)tU:tI)) QS(F:tl}:' : ':QS(F:tﬂ)

To derive formally the sequence of states constituting the qualitative description,

it 18 required to identify the possible transitions between states. There are two types

14

of qualitative state transitions {23]: P — transiteons, moving from a landmark to an
interval, and I — transitions, moving from an interval to a landmark. The definitions
of these transitions are given below. An I — transition of f is a pair of adjacent

qualitative states of f,
Qs(fl ti-l) tl) = QS(fa tt)

whose first state is the qualitative state on the interval between distinguished time-
points. A P —transition of f is a pair of adjacent qualitative states of f, whose first

state 1s the qualitative state at distinguished time-point.

Qs(f: ti) = QS(f: ti: ti+1)

The possible state transitions in QSIM can be seen in {14]. The qualitative simulation

algorithm works with the following descriptions of a mechanism [23]:
1. Set f1,- -, fm of symbols representing the functions in the system.

2. Set of constraints applied to the function symbols. Each constraint may have

associated corresponding values for its functions.

3. Fach function is associated with a totally ordered set of symbols representing

landmark values; each function has at least the basic set of landmarks —oo0, 0, o0.

4. Each function may have upper and lower range limits, which are landmark

values beyond which the current set of constraints no longer apply.

5. An initial-point symbol, o, and qualitative values for each of the f; at o are

given.

Examples illustrating the mechanisms of QSIM, including the vertical launch and
subsequent drop of a ball as well as a simple mechanical spring system are given in

23).

15

2.3 Envision

This approach was developed by de Kleer and Brown [6]. They presented a framework
for modeling the generic behavior of individual components of a device which is based
on the notions of gualitative differential equations (confluences) and qualitative state.
Their approach was implemented in a computer program called “Envision”. Envision
first establishes a qualitative model of the system, and then simulates the model in
an attempt to derive the behavior of the system. One of the main features of this
approach is that it considers a physical system to consist of simpler components.
Envision builds a qualitative mode! of a system from the following inputs: a list of
components constituting the system, a topological description of how the components

are interconnected, and a library of generic component-models.

2.3.1 Device structure

There are three basic entities in the Envision approach: components, connections
and materials. Physical behavior is accomplished by operating on and transporting
materials such as water, air, and electrons. Components are constituents that can
change the form and characteristics of materials. Connections are simple constituents
which transport material from one component to another and cannot change any
aspect of the material within them. Some examples of conduits are pipes, wires and
cables. Variables are associated with the material low. Components act on the
materials causing the associated variables to change their values.

The components are building blocks. Each component is described by a generic
qualitative model. The behavibr of a system is derivable from the generic compo-
nent models and the topological description of how components are interconnected.
Each components has a fixed number of ports. Components interact only by being

connected at ports.

Each parameter is associated with one port of one component. The behavior of a

16

component is entirely characterized in terms of constraints that 1t imposes on values
of parameters at its various ports. The lawful behavior of a component is expreésed as
a set of confluence equations. The behavior of a connection is enfirely characterized

in terms of constraints that it imposes on the ports that it joins.

2.3.2 Structure to function

A device consists of physically disjoint parts which are connected together. The
strulcture of the device is described in terms of its components and interconnections.
Each component has a type, whose generic model is available in the model library. The
approach is to infer the behavior of a physical device from a description of its physical
structure. The task is to determine the behavior of a device given its structure and
access to generic models in the model library. The requirement that models in the
library components should be applicable for analysis of different systems places heavy
demeands for modularity in the component models. This requirement is taken care of
through the “No Function In Structure (NFIS)” principle. This states that the laws
of the parts of a device may not presume the functioning of the whole. Consider an
electrical switch as an example. A model of a switch which states that the current
is flowing when the switch is closed violates the NFIS principle because there are
many closed switches through which current does not necessé.rily flow {such as two
switches in series). Current flows in the switch only if the switch is closed and there

is a potential difference for current to flow.

17

2.3.3 Deriving behavior

In addition to the confluences describing the components of a physical system, the
topology of the system constrains its behavior. Two principles, continuity and com-
patibility, are used to create additional confluences relating to topology. The conti-
nuity principle is a.pplica.ble for stream-like processes such as electrical current and
flows of liquids. It states that the sum of all material flows entering a connection
is zero. Since connections are not allowed to accumulate material, this is a sound
physical principle.

The compatibility principle is applicable for pressure-like variables. It states that
whichever path is taken between two points in the topology, the sum of the pressure
drops along different paths must be equal. For electrical systems, this is analogous
to Kirchoff’s voltage law.

Applying both continuity and compatibility principles to the fullest extent possible

produces a redundant set of confluences. This may present difficulties when deriving

“behavior. Therefore, Envision restricts the number of confluences generated from

the topology. It includes only one continuity confluence for every component, and a
compatibility confluence for every three conduits [6].

To understand the behavior of a deviée whiéh is derived from its structures, Envi-
sion decomposes a device’s behavior into two dimensions, one being interstate behav-
ior and the other being intrastate behavior. The intrastate behavior concerns itself
with the behavior within a qualitative state, i.e. the change of values of derivatives
while the system remains in a specific state. One or more consistent sets of values of
the derivatives are the result from the intrastate analysis. Interstate behavior con-
cerns the possible transitions between states. The consistent sets of values of the
derivatives generated from intrastate analysis are used by the interstate analysis to
extrapolate from present values to the next qualitative value for each variable, then
continues on to reason about which change will occur first. Thus the transition to the

next qualitative state is predicted. An example of a pressure regulator that illustrates

18

the mechanisms of Envision is described in detail in [6].

2.4 Dimensional Analysis

Bhaskar and Nigam [2] introduce an approach for reasoning about physical systems
or devices without explicit knowledge of the physical laws that govern the operation
of such devices. Their method requires knowledge of the relevant physical variables
and their dimensional representation. The dimensional representations of physical
variables encode a significant amount of the physical processes, and they can be
obtained without explicit knowledge of the underlying laws of physiﬁs. A variety of
partial derivatives are computed to characterize the behavior of the system. These
partials are used to reason qualitatively about the behavior of devices and systems.
To use dimensional analysis as a method for qualitative reasoning about physical
systems, Baskar and Nigam developed “regimes”. Regimes are a conceptual machin-
ery for reasoning with dimensionless numbers, using elementary notions about partial
differentiation. Their method is useful for tackling qualitative reasoning problems,

such as the following [2]:

¢ to resolve, under certain circumstances, some ambiguities inherent in reasoning

with a {+,0, —} qualitative calculus;
e to provide a comparative qualitative representation for a physical process;

e to derive the causal structure of a device’s behavior, given the inputs and the

outputs of a device.

The principle of dimensional homogeneity in all physics can be stated as follows.
If
Y — Z a;xL; (23)

19

H
i
i
:
]
:

is a physical law or equation, then a; z; must have the same dimensions as y;. If the
a; are dimensionless constants, then each z; must have the same dimensions as vi.
Buckingham’s theorem [27] tells us that it is possible to extract n—r dimensionless
products (IIs) to represent a physical system, where n and r represent the number of
variables and the number of dimensions describing the physica.l. system, respectively.

A dimensionless product I has the following form :

b S

II; = Yi Ty xff"" (24)

where {z; - - - 2, } are the repeating variables (variables describing a physical system)
,{ %1 Yn_r } are the performance variables and { o]l <1 <n—-7r1< 7 <r} are
the exponents. A basis is the set of variables z; that repeat in each II. A term II;
is a regime, which refers to a particular physical aspect of the system. An ensemble
is a collection of regimes. If a system has n variables and a dimensional matrix of
rank 7, then the ensemble contains n — r regimes. The dimensional matrix of rank r
is defined as a matrix with columns corresponding to the basic dimensions and rows
corresponding to the variables. A pivot or contact variable is a variable, zj, that
occurs in both II; and I1;. |

The regime II; offers us a dimensionally homogeneous equation connecting the
variable ; with the basis variables z1, za, - -+, &,. From the dimensionless product of

equation (2.4), we get

it —in

v =Iio ™2y

where 1 < ¢ < n — r. There are three kinds of regimes that are used for reasoning

about the behavior of a device or a physical system.

1. Intra-regime partials. They are used for examining how the variables within a
regime are related to one another. From the expression obtained from a regime,

the change with respect to a basis variable can be obtained by

Bys _ _ cugys

By; T;

20

i
:
i
!

2. Inter-regime partials. They are used to relate performance variables y; and
Y5 tha.t occur in the regimes II; and II; respectively. The inter-regime partial
models the changes in ; and y; in response to a change in contact variable z,.

The notation for an inter-regime partial is

By
. i
By; 37;
From the regime II;, g:—; = —yg%f and from the regime II;, %’:ﬁ = —yj%i: thus
3 3 kT Sy dy; - ;
the inter-regime partial [5:’;]"’? /[é—m-:]”r = (:ﬁ) it)

3. Inter-ensemble partials.
Inter-ensemble partials are used to reason about the behavior of a device or

system comnsisting of coupled components or subsystems.

When dealing with a device with several components, tﬂe ensemble of each com-
ponent or subsystem should be obtained. In order to reason about the behavior of
the entire device, we need to reason about coupling, which manifests itself in terms
of coupling quantities which are used to obtain a coupling regime.

In order to obtain inter-ensemble partials we need contact regimes (a generaliza-
tion of contact variables). Consider two ensembles A and B, regimes IT4 and Ip;
belonging to these ensembles and variables y4; and yg; that are described by the

regimes. The notation for an inter-ensemble partial is

[8yA£]n c
Ays;

where Il¢ is the contact regime.

When reasoning about the behavior of a system, the objective is to compute the
direction of change of a performance variable in response to a change in the basis

variable(s). To reason about change in a performance variable y; as a result of a

~ change in some variables &;, the following can be used:

e If z; is in the basis and occurs in II;, then use intra-regime partials.

21

o If z, is in the basis but not in II;, then reason using chains of inter-regime

partials.

e If z; is not in the basis, then use the appropriate inter-regime partial linking II;

and II;.

Examples of analyzing the behavior of physical systems through regime analyses,

including a pressure regulator and spring systems, are discussed in detail in [2].

2.5 Hybrid Phenomena Theory (HPT)

Woods [36]. presented a Hybrid Phenomena Theory (HPT) which inherited basic
concepts like views, phenomena and influences from QPT. HPT defines these con-
cepts in a more precise manner in order to represent physics knowledge with the
accuracy needed to develop full parametric models. Parameters have quantitative
interpretations which are requifed by the majority of application areas in science and

engineering.

2.5.1 Cdmponents of HPT

HPT has three models of components; topological, phenomendlogica,l and state space
models. Fach model is discussed in turn below.

The term topological model is used to refer to a set of objects, and a set of logical
statements. The objects provide descriptions of entities such as pipes, valves and
control values of physical substances. Logical statements describe properties of these
objects and the topological relationships which exist between them. Any given object,
as well as any logical statement, may in principle be valid or invalid at a particular

point of time. The state of the topological model is thus defined by those objects

22

!
;

and relationships which are valid at that particular point of time. This model is also
called the knowledge level of HPT[37].

The term phenomenological model is used to refer to a set of objects describing
instances of physical phenomena which may potentially occur in a given system. All
objects describing instances of phenomena will not necessarily be active at a given
time. The state of the phenomenological model is thus defined by the set of active
phenomena instances. This model is also called the symbolic level of HPT[37].

The term state space model is used. to derive behavioural predictions in the quan-

tity part of the framework. It 1s also known as the numeric level of HPT[37]. The fact

that an instance of a view or a phenomena exists does not entail that it will influence

the analysis of the system. Views describe physical interactions which do not incor-
porate any dynamic aspects. Phenomena describes physical interactions which do
incorporate dynamic aspects. Only the active instances influence the analysis. To be
active, all pre- and quantity conditions for an instance must be satisfied. In addition,
all objects bound to individuals in the instance have to be active.

To derive the behavicural prediction in the quantity part of a framework, HPT
spans a superset of a state space model. This is accomplished by treating the terms of
the equations as distinct entities which, at. a given point of time, are included in the
state space model at that point of time. After having active instances at a given point
of time, by combining all influences defined by these instances, HPT will produce a
set of equations déscribing the behaviour of the system. |

A HPT model refers to the combined model comprising the topological model, the
phenomenological model, the state space model and a set of relationships describing
how the state and validity in the respective component models affect the state and
validity in the other component models. _ |

HPT generalizes and extends QPT. QPT employs qualitative constraints to de-
écribe the relation between variables, while HPT utilizes parametric state space mod-

els. Providéd'that the values of the parameters of the model are known or can be

23

:
:
;
§
]
:
:
)
i
i
;
:
]
:

e PR TR W M A B SR L T

Topological model
~-s¢t of objects

-set of relationships
State: valid objects and

relationships

Qualitative rode] | dependencies
i

Phenomenological model]
HPT model -instances of physical
phenomena

State: acHve instances)

]
dependencies

L

State space model
-algebraic and
dynamic equations
State: Value of state variables

Quantitative Level

L ,

Figure 2.2: Model components in HPT.

estimated, this will allow us to avoid problems like ambiguous solutions which are
inherent in the qualitative simulation techniques [36). Fig. 2.2 shows the model
components in HPT. The qualitative model includes both the topological and phe-
nomenological components. In addition, the qualitative model incorporates certain
dependencies between topological and phenomenological components which are not
attributed to either component. Similarly, in addition to the qualitative and quanti-
tative components, the HPT model incorporates a set of dependencies among these
components which are not considered to belong to either component.

The most significant difference between HPT and QPT lies in the fact that HPT
employs quantitative values to characterize the properties of the objects, whereas

QPT employs gualitative values only. Apart from this, the actual objects used for

‘all practical purposes are identical in both approaches. In addition, the HPT logical

2

model introduces a type of dependency called subsumption between the entities in
the phenomenological model. Subsumption has no counterpart in QPT.

HPT derives parametric state space models, which provides parameters that may
have a quantitative interpretation. The concept of an equation is important in HPT,
since a large class of problems involving the physical world depend on quantitative
knowledge. Influencesspecify what can cause a quantity to change. A direct influence
de_sc'ribes how the value of one quantity influences the derivative of another. A change

in the influencing quantity only directly affects the value of the influenced quantity.

2.5.2 Influences in HPT

In HPT, influences express how the value of a given variable is affected by one or
a set of other variables. There are two types of influences; dynamic influences and
algebraic influences. The former corresponds to the direct influence of QPT and the

latter corresponds to indirect influence. Their syntax is

(dyn —inf < in fluenced variable >
(< list of influencing variables >)

(< numeric function >))

and

(alg —inf < influenced variable >
(< list of influencing variables >)

(< numeric function >))

respectively. An example where a variable T2 equation is dynamically influenced by
two variables z, and z3 is shown in equation (2.5). Here, the amount of influence is

computed as a nonlinear function of z; and z3. If this is the only influence affecting

25

1, the derivative of #; can be computed from equation (2.6).

(dyn — inf z1(zaza)(sqri(zazs))) (2.5)

23.1 pa Lala (26)

The complete semantic interpretation for dynamic influences is that the derivative
of a dynamically influenced variable equals the sum of the numeric functions specified
in the dynamic influences affecting the variable. Fach dynamicinfluence is interpreted
as the specification of a term in the equation defining the derivative of the dynamicaily
influenced variable.

For algebraic influences mentioned above, the semantic interpretation is that an
algebraically influenced variable equals the sum of the numeric functions specified in
the algebraic influences affecting that variablé. Each dynamic influence is interpreted
as the specification of a term in the equation defining the value of the algebraically
influenced variable. '

To illustrate how influences are combined, consider a closed container which is
partially filled, with liquid and gas taking up the remaining volume. The liquid has
level I, the gas a pressure p;. The pressure at the bottom of the container, ps, is

affected by two different influences as shown below.

(alg — inf pa(p1)(p1)) | (2.7)
(alg —inf pa(I)(p 9 1))

If no other influence specifies py as influenced variable, this implies that p, is given
by the expression
pp=pit+pgl
where p is the liquid density, and g is the earth gravitation.
There are several diﬁ'erénces between the algebraic and dynamic influences of HPT

and the indirect and direct influences of QPT. The first is that the HPT-influences

26

are no longer restricted to relate just two quantities. The second is that the HPT
influences define complete non-linear functions of any ﬁumber of variables. The third
is that HPT will combine algebraic influences in the same manner as it combines dy-
namic influences. QPT is modular with respect to dynamic variables; it computes the
value of the derivative of all directly influenced variables as the sum of all influences
affecting it. QPT is not fully modular with respect to dependent variables. Although
several views and processes may specify indirect influences affecting a given variable,
QPT fails to specify a general mechanism for deriving the value of an indirectly influ-
enced variable whenever two or more influences are pushing it in different directions.

HPT is fully modular in both kinds of variables.

2.5.3 Subsumption

HPT in_corpora.tes a mechanism called subsumption., which enables us to avoid con-
flicts between several instances of the same view and phenomena definitions. Sub-
sumption is defined as follows. For any two instances INS1 and IN.S2 of a given view
or phenomenon definition with individuals D1D2.-- Dm, INS1 subsumes INS52 if
and only if, for any individual Di (3 = 1.--m), the object bound to Ds of INS1 1s
an instance INSB of.a. view or phenomenon definition such that the object bound
to Di of INS2 is also bound to an individual INSB, and the object bound to each
of the other individuals in 7N S1 is identical to the object bound to the same indi-
vidual in JNS2. Individuals are considered as variables participating in the view or
phenomena definitions. Subsumed objects may still be bound to individuals in other
instances. For example, consider the physical system shown in Fig.. 2.3; i.e. apan
containing an amount of water placed on a hot plate. We want to model the effects of
heat flow from the hot plate to the wa-ter. There are six possible instances heat-flow!
(pan hotplate), heat-flow? (hotplate pan), heat-flow3 (water pan), heat-flowd (pan we-
ter), heat-flow5 (container-with-liguid (pan water) hotplate), and heat-flow6 (hotplate

27

Figure 2.3: A pan with water on hotplate.

container-with-liquid (pan water)). These instances will not all be active at the same
time. The quantity conditions affected by temperature will allow instances heat-flow?2
(hotplate pan) and heat-flow6 (hotplate container-with-liquid (pan water)) to be ac-
tive at the same time. The subsumption mechanism works from the principle that
the most specific alternative preval,ils. In this example the instance view definition
of container-with-liquid (pan water}) is more specific than the pan as such, therefore
the heat-flow6 (hotplate container-with-liguid (pan water)) subsumes the heat-flow?
hotplate pan). |

Examples of deriving HPT models fér physical systems, such as the pan with

water on a hot plate and a three-piece-insulator, are discussed in detail in [38].

2.6 Comparison
From the discussions presented in the previous sections it can be summarized that:

1. Both QPT and HPT provide a framework, or vocabulary, to formalize knowledge
of physical interactions. This is the idea of views and phenomena definitions
comprising a prescription for relations and influences between individual quan-
tities which will hold for instances of the definition. In addition, QPT includes
a set of view and process definitions which may be instantiated. Envision also
provides such a framework; this is the idea of generic component models, each

consisting of a number of confinences. Each confluence describes a component in

28

a specified qualitative state. In addition, Envision includes a librar.y of generic

component models.

. Both QPT and HPT have a mechanism which produces a set of constraints
describing the system in the current state. The mechanism consists of two
steps. First, the view and process definitions for each set of objects satisfying
the individual conditions for each definition are instantiated. Next, a process
structure consisting of instances whose pre- and quantity conditions are satisfied
in the current situation is established, and the influences from these instances are
extracted. Envision also has a similar mechanism which consists of two steps.
First, the compatibility and continuity constraints are generated. Next, the
confluences which describe each component in the system’s current qualitative

state are selected.

. QSIM provides neither a framework to formalize knowledge on physical interac-
tions nor a mechanism such as mentioned in 2. QSIM does, however, formulate
the problem in terms of constraints to be used. QSIM does not provide assis-
tance in modeling the system except for those instances when a model in terms
of Ordinary Differeﬁtial Equations (ODEs) exists, in which case a procedure for
converting ODEs to constraints may be applied. Envision provides a library
of components. The user needs only to specify what kind of components the
system is built from, and how the components are interconnected for Envision
to select the right confluences modeling system. QPT and HPT are similar in
that the user only specifies which objects take part and the relations existing

between these objects.

. QPT, HPT and Envision use the set of generated constraints to derive possible
successor states. A new set of constraints is produced whenever a new qualita-
tive state is reached. This approach is iterated until quiescence occurs or until

the successor state equals a previously identified state. Only HPT produces a

29

mathematical model of each state.

L 5. Envision and QSIM describe behavior in terms of qualitative state while QPT
and HPT describe behavior in terms of process structures. QPT and HPT make
use of notions of phenomena explicitly and relate behavior to the occurrence
of physical phenomena. Neither QSIM nor Envision embodies a counterpart to
the notion of phenomena. Therefore, QPT and HPT provide us with a stronger
conceptual framework for formalizing our knowledge about physical systems.
Through the introduction of pre- and quantity conditions, QPT allows us to
formalize conditions for when these phenomena occur. The QSIM approach

only addresses the aspects related to simulation, while Envision, QPT and HPT

address the additional issue of deriving a model, expressed as constraints, from

a topological description of a process.

6. HPT generalizes and extends QPT. QPT employs qualitative constraints to de-
’s scribe relations between variables. HIPT utilizes a parametric state space model.
Among the approaches reviewed, only HPT has a representation which allows

us to modify mathematical models in accordance with the actual situation.

7. None of those approaches can represent nuclear phyéical processes, since none
of them has a mechanism capable of reasoning about probabilistic events such

as occur in nuclear physical processes.

A comparison of physics reasoning systems reviewed here is shown in Table 2.1.

30

Table 2.1: Comparison of physics reasoning systems.

Property QSIM Envision Dimensional QPT HPT
input constraint component variables objects objects
and and and and
topology dimensions relations relations
qualitative
model is equations topological | topological
derived differential of its quantities’ | description | description
from equations components dimensions | of process | of process
and
interconnections
MY, M~ direct and | algebraic
constraints | Add, Mult, confluences regimes indirect and
Deriv influences dynamic
influences
-instantiate | -instantiate
view and view and
derived process process
- mechanism derived continuity from definitions | definitions
producing from compatibility physical -establish -establish
constraints | differential and NFIS quantities’ Process active
equations dimensions Structure processes
-extract -extract
: influences influences
quantity = | dec,0,inc -,0,+ dec, 0, inv -1,0,1 R
value
represent
state at y y n y ¥
discrete
times
represent
state n n n ¥ y
variables
represent
a feedback y y y y y
system
quantifative n n n n y
result
modularity n y n y y
library n y n y y
computer QS5im Envision n GIZMO HPT
Program '
focus mechanics thermo- mechanics thermo- thermo-
dynamics dynamics dynamics

31

Chapter 3

Nuclear Processes

Nuclear processes occur when a nucleus is bombarded by an energetic particle [21].
The nucleus may undergo a transformation to a new nuclide accompanied by the
ejection of a particle. The particle released may be different from the incident one. A
certain amount of energy is released from both the product nuclide(s) and the product

particle(s). A nuclear process can be expressed as
a+T — P+b+Ep+E | (3.1)

where T' and P are the target and the product nuclide(s), respectively; a and b are the .
incident and product particle(s), respectively. Ep and E, ate the energy released from
the product nuclide(s) and product particle(s), respectively. A nuclideis characterized
by the number of protons (atomic number) Z, and the number of neutrons N in the
nucleus. The total number of protons and neutrons in a nucleus is equal to the atomic
mass number A of the nuclide. |

A very wide range of nuclear reactions have been observed experimentally. Of
these, the reactions of most interest to the study of nuclear reactors are the ones
that involve neutrons. If a neutron interacts with a nuclide, a compound nucleus

is formed. The compound nucleus then undergoes several possible processes, such

32

as fission, radioactive capture, elastic scattering, and inelastic scattering. The most
important nuclides for nuclear reactions are summarized in (21}, and are shown in
Fig. 3.1. In this table, isotopes are in rows with horizontal arrows representing
radioactive capture. The downward arrows represent 3~ decays; the % decay is not
shown. The diagonal dashed arrows represent thermal-neutron fission. Decay half-
lives and thermé.i cross sections are from the Chart of the Nuclides [31]. There are
three types of nuclear.processes shown in the figure: fission, radioactive capture, and
beta negative decay. 1t can be seen from Fig. 3.1, for example, that Th233 can interact
with neutrons through fission and radicactive capture ﬁrocesses. It decays through
beta negative decay processes. These interactions are indicated by its properties such
as fission cross section, radicactive capture cross section and beta decay mode.

- For fission, T' is a heavy target nucleus and the products of a fission reaction are
two fission products Fy and F,. The incident particle is a neutron (in). The ejected
particles b are neutron and gamma ($y) particles. The mass and atomic number of the
fission products F; and F; do not have deterministic values. The gamma energy and
fission neutron energy follow energy distributions called the prompt-gamma-spectrum
and the prompt-neutron-spectrum [25]. For a typical target nuclide 33°U, the mass
pumber of fission product Fj ranges from 73 to 114, and from 115 to 162 for fission

product F5. An example fission process is given as follows:
2507 4 In — RKr + 15*Ba + 24n + 168 MeV +5 MeV + 7 MeV .

A radioactive capture process occurs when a particle combines with a nucleus to

 produce a new nucleus. The excess energy is emitted in the form of v rays. An

example of this is
2V +gn - U +oy + By
where Ev is a non-deterministic number averaging 1.98 MeV.

Beta negative decay occurs for nuclei in which there is an excess of neutrons. A

neutron inside a nucleus may be converted to a proton, with emission of an electron

33

A QL2 TTY IdY SIAN 4TWH AVDIG-»

{£461) SAOITINN IHL 3O LUVHD HOMI
SIAIT-4T¥H ONY SNO1LIIS-SSOUD

AIT-4IVH AA

34

(SNUYE) NOLLDAS-SSOMD TWWBaHL XX [,
AV030-0 >>_ :
iz
Novssiz %7
A »
¥l NoLLovau-iu) ~EX
09 1AM § € 3) NOILIYIH-{UL "U} e
.._m—vu 07 :n_D.wN | 0iZ "
olot, v
un 4
* whn W@h »POET
d it
Nave [*—
u —.v_.ﬂ U m,nﬂﬁ
n z ts | n w o lola, le2in LIS
ovz ser ez vez ez et
k azs
8L s, My g0 phis
¥ L)L ¥ %4
v
*yz ez
) e
PR ow e a
Do9L i
ez “leer A
5L,
‘\

Figure 3.1: Heavy elements of interest for nuclear reactors from {21].

Energy of

. Product

product nuclide Nuclide

e
P

incident

Particle i

a T Compound
arget Nucieus
Nuclide

b
Fn of
e;'gyt il Product
product particie Particle

Figure 3.2: A simplified diagram for nuclear physics processes.

(°;e = 7). The nuclear charge is consequently increased by one, with the mass

number being unchanged. For exa.niple, a beta negative reaction
s 135p, 4 8-

results in a new nuclide égsBa. |

Beta positive decay occurs for nuclei in which there is a deficiency of neutrons.
A proton inside a nucleus may be considered to be converted into a neutron, with
emission of a positron (4 1€ = B*). The resultant atomic number is decreased by one,

and the mass number remains unchanged. For example, a reaction
1y 141P?, +8*

produces i3'Pr as a new nuclzde.

The nuclear processes described above are shown schematically in Fig.. 3.2. In

this diagram

T € {possible nuclides }

35

P ¢ {possible nuclides}
a € {omid1p(H) }
be {on07 8%, 87, a3 He),1p }

The arrow pointing {rom P to T shows that product nuclides may become target
nuclides within a cycle period [¢;,t41]. The cycle period is discussed further in the
next section. Similarly, the arrow pointiﬁg from b to a shows that the product particles
can be incident particles in the interval [t;,¢:;41]. Both T' and P are nuclides in the

chart of nuclides data [18].

3.1 Behaviour of Nuclear Physics Processes

Unlike a typical physical system, a nuclear physics process g ié not only characterized
by the number of real-valued parameters, which vary continuously over time, but is
also characterized by the type of incident particle, and the type of target nuclide that
is involved in the process. In addition, a residual nuclide and particle along with their
released energy also characterize the nuclear physics process. There are about 3000 -
different types of nuclides that might be involved in the nuclear process.

The quantitative behaviour of ¢ over an interval of time [¢;,t:y1] is the sequence
of individual state .space and probabilistic space equations of g, which are generated
by j different types of target nuclides 7. The notation SP describes a collection of

state space and probabilistic space equations, as follows:
SP(q, [tia ti+1]) = SP(Q: Ty, [ti: ti+1])1 SP(Q: T2: [ti) tt'-i-l]): T SP(q: T:h [ti) tt’+11)

A nuclear physics system is a set @ = q1,42; - - gm of nuclear physics processes.
The quantitative behaviour of nuclear physics processes @ during interval [, tir] 18

described by the sequence of j sets of the combined sets of equations, as follows:
SP(Q: [tii.tl“l'l]) = S-P(ql ©t Gy Tl: [tiy ti-}-l])! SP(QI Y Gy TZ) [tia ti+1])!

36

2 5P(ar - g, Ty, [B},

where j refers to the number of types of nuclides available in the system. The com-
bined state space and probabilistic space equations SP(g1 - - gm, Tr, [£:, tit1]) is gener-
ated from individual state space and probabilistic space equations, when an activating

nuclide of type T, activates the processes @, L.e.
SP((h C Oy Tf‘) [ti) ti+1]) = SP(QI: Tf[ti: t5+1]): SP(QZ: T?': [ti: ti-’r-l])?

Ty SP(Qm) Tr) [tt': ti-l—l])

The quantitative behaviour of @ over time interval [tg, t,] is the sequence of state
and probabilistic space equations SP of @ which come from an active target nuclide
T, ie. | _

SP(Q, Ty, [to, t1]), SP(Q, Ty, [t1, t2]), - -+, SP(Q, Tr, [ta—1, tn])

where SP(Q, Ty, [ti,tiy1]) refers to a set of proba,bilistic and deterministic equations
related to the nuclear physics processes). The equations show how to obtain the type
and amount of product nuclide P and product particles b, and the amount of energy
'Ep and E, released from product nuclides and from product pa.rticies, respec.tively.
In the example reported in this thesis, the neutron life time is adopted as the time

interval {t;, ¢;41] which is also referred to as a cycle time.

3.2 Neutron Cycle

This section discusses a neutron cycle for thermal reactors. In a thermal reactor, fast
neutrons are born of fissions. The possibility of a chain reaction was recogﬁized as soon
as it was known that neutrons are released in a fission. Neutrons emitted by fissioning
nuclei induce fissions on other fissile or fissionable nuclei. Neutrons generated by these

induced fissions, cause fissions in other fissile or fissionable nuclei, and so on. Such a

37

chain reaction can be described quantitatively in terms of a multiplication factor, k
[25].

The multiplication factor is deﬁnéd as the ratio of the number of neutrons in the
current generation, ng, to the number of neutrons in the previous generation, ng4_1,
le. |

k=ng(ng_1)".
The value of k indicates the criticality of a reactor. If k& > 1 the number of fissions
increases from generation to generation. The reactor is said to be supercritical and
the power it generates rises exponentially. On the other hand, if ¥ < 1 the reactor
is said to be subcritical and the power it produces decreases with time. If £ =1 the
reactor produces constant energy and the reactor is said to be in its critical stage.

The multiplication factor k can also be expressed in terms of the four-factor for-
mula [25].3,3 follows | |

kE=mnepf Pnrs Prien, . (3.2)
where 7 is defined as the average neutrons emitted per neutron absorbed in fuel
or 7 = (o¢/aa)v, where v is the average number of neutrons released per fission.
This set of reactor parameters are fast fission factor €, resonance escape probability p,
thermal utslization factor f, and nonleakage prf-)bability which is subdivided into fast
nonleakage probability Pyry, and thermal nonleakage probability Py These féctors
are defined in [25]. |

In the NPT model developed here, which is discussed in Chapter 4, a fission chain
is initialized by a number of neutrons ny_; = X in the reactor core. The number
of neutrons increases slightly after some of the neutrons are involved in fast fissions
resulting in a total number of fast neutrons of n,_; ¢(see Fig. 3.3). Each fast neu-
tron has a probability of remaining in the reactor core of Pypy leaving ng_1 € PyLy
neutrons remainirig in the core after allowing for fast leakage. These fast neutrons
~ scatter and slow down. A (1 — p) fraction of the neutrons are captured in a reso-

nance capture process. The remaining n,_1 € Pyr; p escape from resonance capture

38

= ng_1¢fp Pyrs Pupm 55 /2w

Re, = Eng D /ui

R,

g

active AEM

thermal fission
R, = EXmi/nfne

fission
absorption

in fuel
Eiwl/zgwf

r

non fission

absorption

\ £
fast neutrons

Fuel
in fuel

fuel absorption
Eju.sl
— 3
f - Efuel_i_zncm—fuel
e a

\ fast neutrons
' after fast leakage

ng—1 €p Pyry PNLth | thermal neutrons
after leakage

non fuel

absorption

thermal PrLen
leakage

?

thermal neutrons

Figure 3.3: Neutron cycle in NPT.

39

|~

resonance
escape

capture

active BNPM ng = kng_1

/ng_l = X

fast fission

g—1 £

Ny =mng-1€fpPnry Pyren | neutrons absorbed from ﬁssiqn \

fast leakage

Prrs

ng—1€ PyLy

resomnance
capture

Ng—1€p PNL_f

during slowing down and are thermalized. A fraction of the thermalized neutrons,
Tog—1 €PNL¢hpPNLf, remain in the core after dlﬁusmn at thermal energy. A fraction
of these neutrons is absorbed in non-fuel material leaving ng_1 € Pxren p Pyrs f neu-
- trons absorbed in fuel. The fraction of thermal neutrons absorbed in fuel is denoted

as ni® which is equal to

nsf:el = ng-1€Pnrsp Pnren f (3.3)

Substituting equation (3.2) into (3.3) results in

Fuel)
Ny = k0 ng

Some of these neutrons are involved in fission processes while others participate in
radioactive capture processes. Since a process 1s instantiated by nuclides of a certain
type, an expression for distributing n{:’e‘ is needed. This sﬁbject will be discussed
later. For now, let us assume that there is only one type of nuclide and that this nu-
clide can participate in both fission and radicactive capture. The fraction of thermal

neutrons participating in a fission process, Fy, is computed as
Fy = xi (pfe)

I B
Ej:“ and Bf*¢! are the macroscopic fission and absorption cross sections, respectively.

They are defined in [13]. Therefore, the number of fissions at the current cycle is R,

= nlt® F; which is equal to

R, = k™ ngy B (B, (3.4)

as shown in Fig. 3.3.
Since n,_; = X represents the number of fission neutrons in the previous genera-

tion, equation {3.4) becomes

Re, = k™t X S (fly (3.5)

40

The majority of the neutrons available in the next cycle come from fission processes.
Each cycle of Fig. 3.3 represents a generation of prompt neutrons, from their
emission until their absorption in fuel. .The average time that the neutrons .spend
from their emission ﬁntil their absorption is denoted as the prompt neutron lifetime
[25]. The terms BNPM and AEM shown in Fig. 3.3 are discussed in Chapte_r 4.
The amount of fuel consumed, and the energy released in a reactor core are com-
puted every cycle, as well as the composition of fission products. Furthermore, the
number of nuclides of each fission product is updated every cycle time ¢, due to decay

chains. This will be expla.iﬁed separately.

41

]
|
|
.
]
i
:
[
|
|

.Chapter 4

Nuclear Process Theory (NPT)

Nuclear Process Theory (NPT), a formal .representa,tion syétem for nuclear physics
processes, was developed. Knowledge of the nuclear physics process is expressed. in
terms of a basic nuclear physics model and aggregate effects model. The basic nuclear
physics model has the capability of expressing knowledge of nuclear physics processes
for different typés of nuclear reactions. The products of reactions are expressed as
deterministic or probabilistic values. The aggregate effects model coordinates the
basic nuclear physics processes expressed in the basic nuclear physics model. NPT
allows the explicit representation of knowledge of nuclear physics interactions, and
formalizes how the interactions affect the structure and parametefs of the model. The

effects on the model are encoded in a symbolic structure. NPT has three different

" levels, as shown in Fig. 4.1. Each of them is described separately.

4.1 Knowledgé Level

The knowledge level incorporates general descriptions of reaction components, ma-

terials and nuclear interactions. Two types of knowledge are embodied in this level.

42

Knowledge Level Basic Nuclear Physics Models (BNPM)s
Aggregate Effects Models (AEM)s
Insiance 1 of Instance 2 of Instance n of
Symbolic L
ymbolic Level | pypm, AEM BNPM, AEM 00 | v anm
and objects and objects and objects
State space & State space & State space &
Quantitative | oropabitistic probabilisic | @ @ | probabilistic
Level equa[j_()n 1 equation 2 equation J

Figure 4.1: Model hierarchy in NPT.

Firstly, there :is a description of the properties 6f various types of material substances.
This knowledge is in the representation of the nuclide data [18]. Secondly, there is
knowledge about nuclear physics interactions, which is expressed in terms of defi-
nitions in the basic nuclear physics model and the aggregate effects model. At this
stage, a nuclear physics process is purely abstract, and not related to any objects. The
knowledge expressed in the basic nuclear physics model describes a type of nuclear

process which is applicable to many types of nuclides.

4.1.1 Basic Nuclear Physics Model (BNPM)

The basic nuclear physics model coﬁsists of descriptions of the underlying nuclear
process being modeled. It contains reagents, conditions for when a process occurs,
product spéciﬁca.tions of the process, and it may contain intermediate states in which
a process participates. If is characterized by four fields: reactants, activity_conditions,
intermediate state, and products. Examples of basic nuclear physics models for fis-
sion, radioactive capture, beta negative and beta positive decay processes, are shown

in Figures 4.2, 4.3, 4.4, and 4.5, respectively.

43

basic_nuclear_physics_model fi is fission

{

reactants {
objl is NUCLIDE
obj2 is PARTICLE }
activity_conditions { objl.sigma_f > 1 & obj2.id = NEUTRON }
intermediate_state { neutron.absorbtion c_n {objl} }
products {
~def_obj { Neutron PARTICLE
Neutron.id is DETERMINISTIC (value: 32)
Neutron.amount is PROBABILISTIC
(value: decomposition(pdf_neutron Poisson(2.43,2.43,0,8)))
Neutron.energy is PROBABILISTIC :
(value: look_up_table(pdf_E_neutron, neutronjp(O 3N }
def_obj { F1 NUCLIDE
F1.Z is PROBABILISTIC
(value decomposition(pdf_dZ, Gaussian{0,1,-4,4)))
F1.A is PROBABILISTIC
(value: look_up_table(pdf_Al, mass-yueldAl(??; 117)))
Fl.energy is PROBABILISTIC
(value: look_up_table(pdf_E_F1, energy distrF1(40,84))) }
def_obj { F2 NUCLIDE
F2.Z is PROBABILISTIC
(value: decomposition(pdf_dZ, Gaussian(0,1,-4,4)})
F2.A is PROBABILISTIC _
(value: look_up_table(pdf_A2, mass_yieldA2(118,162)}))
F2.energy is PROBABILISTIC
(value: look_up_table(pdf_E_F2, energy. distrF2(85,129))) }

Figure 4.2: Basic nuclear physics model of fission.

44

{

basic_nuclear_physics.model rc is radioactive_capture

{
reactants {
objl is NUCLIDE
obj2 is PARTICLE }
activity_conditions { objl.sigma g > 1 & obj2.id = NEUTRON }
products {
def_obj { P NUCLIDE
P.Z is DETERMINISTIC (value: obj1.Z)
P.N is DETERMINISTIC (value: objl1.N-+1) }
def_obj { Gamma PARTICLE
Gamma.id is DETERMINISTIC (value: 8) }
Gamma.energy is PROBABILISTIC .
(value: look_up_table(pdf_.E_gamma, gamma_sp(0.8))) }
}
}

Figure 4.3: Basic nuclear physics model of radioactive capture.

basic_nuclear_physics_model bpd is beta_positive_decay

reactants { :
objl is NUCLIDE }
activity_conditions { objl. dmode = BETA_POSITIVE }
products {
def_obj { Beta_Pos PARTICLE
Beta_Pos.id is DETERMINISTIC (value: 2) }
def obj { P NUCLIDE
P.Z is DETERMINISTIC (value: objl.Z-1)
P.N is DETERMINISTIC (value: objl.N+1) }
} .
}

Figure 4.4: Basic nuclear physics model of beta positive decay.

45

basic_nuclear_physics_model bnd is beta_negative_decay

{

reactants {

objl is NUCLIDE }
activity_conditions { objl.dmode = BETA_NEGATIVE }
products { ' :

def_obj { Beta_Neg PARTICLE
Beta_Neg.id is DETERMINISTIC (value: 4) }
def_obj { P NUCLIDE
P.Z is DETERMINISTIC (value: obji.Z+41)
P.N is DETERMINISTIC (value: obj1.N-1) }

Figure 4.5: Basic nuclear physics model of beta negative decay.

reactants - describes what reagents are being used in the reaction being modeled,
‘and the relations between reagents which are necessary for the reaction to occur.
In our example, the reagents are represented symbolically by objl and obj2.

They are in classes of NUCLIDE and PARTICLE respectively.

activity_conditions - describes conditions which are necessary for a process to be
active. It specifies either absolute limits on one variable, or limits relative to two
variables. In our example, the radioactive capiure process can only be activated

by nuclides whose radioactive capture cross section is greater than 1 barn.

intermediate_state - describes actions which occur before the process generates a
set of products. For example, the intermediate_state of a fission process is a state

where the projectile particle absorbs the target nucleus, forming a compound

nucleus.

products - describes a set of products generated as a consequence of an active pro-
cess. The products are characterized by their class name, along with the de-

scriptions of the quantities which characterize them (e.g. atomic number and

46

I-

atomic mass number). The values of the quantities may be probabilistic or
- deterministic depending on the type of reaction itself. The product nuclides P
are specified by their atomic numbers P.Z and their neutron numbers P.N {e.g.
see .Fig‘ 4.3) in the basic nuclear physics model. Their type and their amount
are _determined by specifying cum_infl in the aggregate effects model (see Fig.

4.8) which.is described later.

The pro&ucts field in the basic nuclear physics model defines the gquantity of
products generated in a reaction. If the basic nuclear physics model of a specific
reaction 1s active, 1t generates a set of products symbblical_ly, and their amounts
are either PROBABILISTIC or DETERMINISTIC values. The PROBABILISTIC
values are represented in a vector, while the deterministic values are represented by
real values. The element of the vector represents either the pioba.bility of a.. parameter
being in a certain interval or the proba.bility of a parameter having a certain value.

The probability of z being in interval {z,, ;) is defined by

Plan<z<az)= [fla)de (4.1)

Tl

where f(x) represents a pfoba.bilitjr density function (pdf) [30]. The probability of z
having a certain value is mapped by a probability measurement value which is defined
by [30] |

P(X =2) = f(z) | | (4.2)

In the case that the value of a quantity is PROBABILISTIC, its distribution is
specified by a specific distribution curve and its range is known. The vector repre-
senting the curve must be defined, and the vector values must represent the y axis
values of the curve. In our example, when 0bj1 represents /235, and obj2 represents
a neutron, the nuclear reaction for fission resulting in 233/ splits into two fragments

as follows

2U + on— g P+ ‘;: Fy + v in + Energy (4.3)

47

where F} and F) indicate the products of fission {ragments, A4, and A4, represent mass
numbers of Fy and Fj, respectively, and Z; and Z; represent atomic numbers of F
and s, respectively._ |

The target nuclide and the incident particle, 53°U and }n, are represented as the
elements of reactants of Fig. 4.2. The products of fission fragments Fy and F. are
represented as the elements of products of Fig. 4.2. These are expressed as def obj
{ F1 NUCLIDE ...} for fission fragment F; and def_obj { F2 NUCLIDE ...} for fission
fragment F,. _

The splitting of & fissioning nucleus does not always produce equal mass numbers.
Mass numbers of fission fragments for #**U range from 72 to 163, with the most
probable mass numbers at ranges roughly 90-100 and 135-140 [21]. Symmetric fission,
a fission producing equal mass numbers, is relatively uncommon ocgurring in only
about one in 20,000 events [26]. | |

The mass numbers of fission fragments Fy are probabilistic; they are expressed
as F1.A is PROBABILISTIC (value: look_up_table(pdf_Al, mass_yieldA1{73,117))) in
Fig. 4.2. Fission fragments F, are expressed in a similar way. Since NPT is used
for reasoning about nuclear physics processes, the probabilities per unit mass of dif-
ferent fissionable nuclei must be provided. This is a vector with indices representing
the range of values of the mass distribution. The values of vector elements are the
probability of a fragment having a certain mass number. For example, if the target
of fission is #3%[J, the probabilities of having a fission fragment with a mass number
73, 74 and 75 are 0.0001, 0.0003, and 0.0010, respectively. For each target, there is a

pair of mass numbers, and the probability value of producing a fission fragment with

that mass number. These pairs are pfovided as a look-up table called mass_yield.

Further details are provided in Section 6.1.1. _
The product particle of fission, neutron, is represented as one of the elements

of products in Fig. 4.2. It is expressed as def_obj { Neutron PARTICLE ...}. A

48

neutron is uniquely identified by an id value, and expressed as Neutron.id is DETER-
MINISTIC (value: 32). Other particles (e.g. proton, photon, gamma, beta-positive,
beta-negative) have different id values. | |
The number of neutrons produced is probabilistic between 0 and 8. It is con-
trolled by the Poisson distribution, which is represented by pdf_neutron. This number
of fission neutrons is expressed as Neutron.amount is PROBABILISTIC (value: decom-
position{pdf_neutron, Poisson(.2.43,2.43,0,8))). The energy of fission products is also
probabilistic depending upon the energy distributions. The energy distributions are
represented by pdf_.E_F1 and pdf.E_F2 for energy of fission fragments F} and F;, re-
spectively. The energy of fission products Fj is expressed in Fig. 4.2 as Fl.energy is
PROBA.BILESTIC (value: look up_table(pdf_E_F1, energy_distrF1(40,84))) .

4.1.2 Aggregate Effects Model (AEM)

An aggregate effects model is used to aggregate nuclear physics processes expressed
in the basic nuclear physics model as a consequence of an active process. The aggre-
gate effects model describes nuclear process interactions in terms of influences which
affect parameters of the system over a time period {e.g once per neutron life-time). It
is characterized by the fields material, etiuipment, preconditions, activity conditions,
parametric_reactions, relations, and products for the main process. Examples of ag-
gregate effects models for fission, radioactive capture, beta negative and beta positive

decay processes, are shown in Figures 4.6, 4.7, 4.8, 4.9 and 4.10, respectively.

material - describes material being used in a reaction being modeled; it may be the
same as one of the reactants in the basic nuclear physics model. In our example,

the material is denoted symbolically by objl.

equipment - specifies a place where a reaction is to be considered, along with its
components and parameters. In a fission reaction, the equipment could be a

reactor with all its parameters.

49

preconditions describes conditions which may depend on external actions. Turning
a power switch on or off is an example. No reaction occurs unless the power
is turned on, but once on, the power is toggled depending on the state of the

system.

activity_conditions - describes conditions which are necessary for processes to be
active. Whenever the conditions are violated, the model is no longer an adequate
description of the process. It specifies either Iabsolute liﬁlits on one variable, or
limits relative to two variables. In our example, the radioactive capture process

stops if no amount of objl is available in the system.

parametric_reactions - describes a set of parameters which are necessary for the
system being modeled. A statement in the parametric field defines a new con-
stant, parameter or vector and associates it with each instance of the definition.
Fig. 4.6 shows two definitions of coﬁsta.nts, NA and ei, where NA and ei are

Avogadro’s number and the interval of gamma energy, respectively.

relations - specifies relationships to be associated with each instance of the defini-
tions. The relationships are expressed as influences, such as algebraic, aggregate,

cumnulative, distribution, and decay influences.

products - specifies the creation of objects (e.g. nuclides or particles) which come
into being as a consequence of an active aggregate effects model. An active
aggregate effects model causes a set of new objects to be created. These are

objects which are stated in the products field of the basic nuclear physics model.

- The products field in the basic nuclear physics model represents a product of a
process under consideration when a nuclide interacts with a neutron. A statement
in the product field in the aggregate effects model aggregates products of a process

under consideration when a number of nuclides interact with a number of neutrons.

50

aggregate_effects_model fission(fi)
{
material { objl }
equipment {
PHWNUR is REACTOR
HW is MODERATOR
Zra is CLADDING }
preconditions { PHWNUR.power is ON }
activity_conditions { objl.amount > 0 & obj2.amount > 0 }
parametric_reactions { -
def const NA (value: 6.0221723)
def_const ei (value: 1) :
def_const nu (value: 2.43)
- def_vector pdf_E_gamma (value: look.up_table(gamma_sp(0,8)))
relations {
alg_infl { (Sigma_a_fuel)(objl.amount,objl.sigma_f){objl.amount*objl sigma_f) }
alg_infl { (Sigma_f_fuel}{objl.amount,objl.sigma_f)(objl.amount*objl.sigma.f) }
alg_infl { (f(obj1))
{objl.amount,objl.sigma_f,objl.sigma.g,Sigma_a_fuel, Zra.sigma_a,H\W .sigma_a)
{objl.amount*(objl.sigma_f+objl.sigma_g)/
(Sigma_a_fuel+Zra.sigma.a+HW.sigma_a)) }
alg_infl { (eta)(nu,objl.amount,objl.sigma_f,Sigma_a_fuel)
{nu*objl.amount*objl sigma_f/Sigma_a_fuel) }
alg infl { (k)(f(obj1),eta,
PHWNUR.epsilon, PHWNUR.p, PHWNUR:PNLf,PHWNUR.PNLth)
(f(objl)*eta*PHWNUR.epsilon*PHWNUR.p*PHWNUR.PNL*PHWNUR.PNLth)}
alg infl { (Ff(obj1)){objl.amount,objl.sigma_f Sigma_a_fuel)
{obj1l.amount*objl.sigma_f/Sigma_a_fuel) }
alg.infi { (Rc{obj1))(k,eta,obj2.amount,Ff(ob)1))
(k/eta*obj2.amount*Ff{obj1)) } _
alg_infl { (Cf(obj1))(Re(objl),NA,objl.A)(Re(objl)/NA*obj1.A) }
aggr-infl { (distr_neutron{obj1)[i])(Re(objl),pdf_neutron)
(Re{objl)*pdf_neutron[i],i=0..8) }
alg infl { (pn(objl1))(distr_neutron{objl)}
(sum(i*distr_neutron{obj1)]i].i=0..8)) }
- aggr_infl { (distr_Al(obj1}{i])(Rc({objl),pdf_Al)
(Re(objl)*pdf_Al[i],i=73..117) }

Figure 4.6: Aggregate effects model of fission.

51

aggr_infl { (distr-A2(obj1}{i[}(Rec{obj1),pdf_A2)
(Re{objl)*pdf_A2[i],i=118..162) }

aggr_infl { {distr_E_neutron{cbjl)}[i]}{pn(objl),pdf_E_neutron)
(pn(obj1)*pdf_E_neutron[i],i=0..8) }

aggr-infl { (distr_E_gamma({obj1}i]){Rc{obj1), pdf_E gamma)
(Re{obji)*pdf_-E_gammali],i=0..8) }

aggr-infl { (distr_E_F1{obj1)[i}}(Rc{obj1},pdf_E_F1)
(Re(obj1)Y*pdf E_F1[i],i=40..84) }

aggr_infl { (distr_.E_F2(obj1)[i])(Re({obj1),pdf_E_F2)}
(Re{obj1)*pdf_E_F2[i],i=85..129) }

cum_infl { (Fissile_fissioned}{Re{obj1})(Rc(objl)) }

) cum_infl { (Fissile_consumed){ Cf{obj1}){Cf{obj1}) }

products {

cum_infl { (Objl amount)(Cf(objl))(Cf{obj1)) }

cum_infl { (obj2.amount}{Rec{obj1)}{-Rec(obj1}) }

cum_infl { (Neutron.amount)(pn(obj1)){pn{obj1}) }

cum_infl { (Neutron.energy)(distr.E_neutron(objl1)} (sum((i+ei/2)*
distr_E_neutron(obj1)[i],i=0..8)) }

cum _infl { (Gamma.energy)(distr_E_gamma(obj1))

- (sum((i-+ei/2)*distr_E_gamma{obj1){i].i=0..8)) }

distr_infl { (F1)(distr_AL,pdf_dZ)
(F1.Z=cn.Z/(con. A-nu)*A+dZ;
FILN=A-(c.n.Z/{c_n.A-nu)*A+dZ);
‘Fl.amount=distr_Al{obj1)[A]*pdf_dZ{dZ]/NA*A, dZ=-4.4,A=73..117) }

distr_infl { (F2)(distr_A2,pdf-dZ)
(F2.Z=c.n.Z/{cn.A-nu)*A+dZ;
F2.N=A-(cn.Z/{c.n.A-nu)*A+dZ);
F2.amount=distr.A2(obj1)[A]*pdf_dZ[dZ]/NA*A dZ=-4..4 A= 118 162) }

- cum_infl { (Energy_F1.amount)(distr_E_F1(obj1))

(sum((i-+ei/2)*diste_E_F1(obj1)[i].i=40..84)) }

cum_infl { (Energy_F2.amount)(distr_E_F2(obj1))
(sum({(i+ei/2)*distr_E_F2(obj1)[i].i=85..129)) }

Figure 4.7: Continuation of aggregate effects model of fission.

52

{

aggregate_effects_model radioactive_capture (rc)

material { obj1 }
activity_conditions { objl.amount > 0 & obj2.amount > 0 }
parametric_reaction {
def_const NA (value: 6.02217e+23) }
relations {
alg_infl { (Sigma_a_fuel)(objl.amount,objl.sigma_g)
(objl.amount¥objl.sigma_g) } _
alg infl { (Fg(objl))(objl.amount,objl.sigma.g,Sigma_a_fuel) -
(objl.amount*objl sigma.g/Sigma_a_fuel) } '
alg_infl { (nrc(objl))(obj2.amount k,eta,Fg{objl}))
(obj2.amount*k/eta*Fg{objl)) }
alg infl { {(Prc(objl)){nrc(objl),objl.A,NA)(nrc{objl)*obj1.A/NA) }
alg_infl { (Crc(objl))(nrc(obj1),0bj1.A,NA){nrc{objl)*objI. A/NA) }
aggr_infi { (distr_ E_gamma(obj1)[i])(nrc(objl),pdf_E_gamma)
{nrc{obj1)*pdf_E_gammali].i=0..8) }

products { : .

- cum.infl { (obj1.amount)(Crc(ob.jl))(-Crc(ob‘jl)) }
cum_infl { (obj2.amount){nrc(objl))(-nrc(objl)) }
cum_infl { (P.amount){Prc(obj1))(Pre{objl)) }
cum_infl { (Gamma.energy)(distr.E_gamma(obj1))

(sum((i+ei/2)*distr_.E_gamma(obj1){i].i=0..8}) }

Figure 4.8: Aggregate effects model of radioactive capture.

a3

aggregate effects_model beta_negative_decay(bnd)

material { obj1 }
activity conditions { objl.amount > 0 }
parametric_reactions { def const Id (value:0.693) }
relations {
decay_inft { (objl.dmode & BETA_POSITIVE)(Pbnd{obj1))
(1d,0bj1.halflife,objl.amount,NA,obj1.A cycle_time)
(0.5*/d*obj1.hatflife*objl.amount*NA/objl. A*cycle_time) }
decay.infl { (objl.dmode & BETA_POSITIVE){Cbnd(obj1))
(Id,obj1.haiflife,objl.amount,NA,obj1.A, cycle_time)
(O.S*Id*objl.halﬂife*objl.a_mount*NA/objl.A*cycie..time) }
decay_infl { (!(objl.dmode & BETA_POSITIVE))(Pbad(obj1))
(d,0bj1.haHlife,objl.amount,NA,obj1.A cycle_time)
(Id*obj1.halflife*obj1.amount*NA /objl A*cycle_time) }
decay_infl { (!{objl.dmode & BETA_POSITIVE))(Cbnd(objl))
(Id.objl.haIf!ife,obj1.amount,NA,objl.A,cyc!e,time)
(ld*objl.halflife¥objl.amount*NA/objl.A*cycle_time) }
} |

products {
cum_infl { (objl.amount)(Cbnd(objl),NA,objl.A)(-Cbad(obj1)/NA*objl.A) }
cum_infl { (P.amount){Pbnd{objl1).NA objl.A}{(Pbnd(objl)/NA*objl.A) }
cum _infl { (Beta_Neg.amount){Pbnd(obj1)}(Pbnd(obj1}) }
cum_infl { (Beta_Neg.energy)(Pbnd(obj1))(0.4*Pbnd(obj1}) }

- Pigure 4.9: Aggregate effects model of beta negative decay.

54

aggregate_effects model beta_positive_decay(bpd) {
material { objl }
parametric_reactions {
def_const Id (value: 0.693) }
activity_conditions { objl.amount > 0}
relations {
decay_infl { (obji.dmode & BETA_NEGATIVE)(Pbpd{objl))
(1d,0bj1.halflife, objl.amount,NA,objl.A cycle_time)
(0.5*Id*obj1.halflife*objl.amount*NA /objl. A*cycle_time) }
decay_infl { (objl.dmode & BETA_NEGATIVE)(Cbpd{objl)}
(Id,0bj1.halflife, objl.amount,NA,objl.A cycle_time)
(0.5*Id*obj1.halflife*objl.amount*NA /objl.A*cycle_ time) }
decay_infl { (not{objl.dmode & BETA NEGATIVE))(Pbpd(objl))
(Id,0bj1.halflife, objl.amount,NA,obj1 A cycle time)
(ld*objl.halﬂife*objl.amount*NA/objl.A*cycle_time) }
decay_infl { (not(objl.dmode & BETA_NEGATIVE))(Cbpd(obj1})
(Id,objl.halflife, objl.amount,NA,objl.A cycle_time)
(Id*obj1.halflife*objl.amount*NA/objl A*cycle_time) }

}
products {

cum_infl { (objl.amount){Cbpd{objl), NA Objl A){(-Cbpd{obj1)/NA*obj1.A) }
cum_infl { {P.amount)(Pbpd{obj1),NA,objl.A)(Pbpd(objl}/NA*objl.A) }
cum_infl { (Beta_Pos.amount){Pbpd{obj1),obj1.A)(Pbpd{obj1)) }

cum_infl { (Beta_Pos.energy){Pbpd(obj1),0bj1.A)(0.4*Pbpd(objl)) }

Figure 4.10: Aggregate effects model for beta positive decay.

35

Any term “objl” or “(obj1)” in the aggregate effects model will be associated with
the identity of the object that instantiates the aggregate effects model. For example,
in the case of the radioactive capture p.rocess, when 250/ is active, and instantiates
the basic nuclear physics model of radioactive capture, it, in turn, instantiates the
corresponding aggregate effects model. NPT associates Prc(objl) with PrcU235 (see
Fig. 4.8), which has the semantic meaning of a product of radioactive capture pro-
cess instantiated by #3*I/. The amount of PrcU235 is influenced by the number of
radioactive capture processes nrcU235, the mass number of ***U (U235.A), and Avo-
gadro’s number NA. This amount is expressed through the algebraic influence alg_infl
{ Pre(obj1) (nrc(objl),0bjl.A, NA) (nrc{objl) * objl.A/NA) } in Fig. 4.8. The alg infl
is discussed in Section 4.4.

Each type of active nuclide (e.g. U235) which actives the BNPM of certain process
(e.g. radioactive capture process) will dete;mine the type.'of products nuclides P
through P.Z and P.N defined in BNPM (see Fig. 4.8). Knowing values of P.Z and
P.N, the type of product nuclides can be known directly from the representation of
nuclide data. The result, then, will be used to replace any term P specified in the
AEM (e.g. P.amount) to produce a state space equation showing the amount of

product nuclides at the time when the certain type of nuclide is active.

4.2 Symbolic Level

' The symbolic level consists of objects, their properties, and relations which are defined
in an input description. The symbolic level also consists of objects representing
instances of the basic nuclear physics model (BNPM) definitions and aggregate effects
model {AEM) definitions. An example of an input description is shown in Appendix
IL. | |

Whenever one refers to BNPM and AEM, they exist in one of three possible

stages: definition stages, instantiation stages, and activity sta.ges'. At the definition

56

stage, BNPM and AEM are purely an abstra.ction. of the nuclear physics processes,
and are not related to any actual objects.

‘At the instantiation stage, NPT identifies a subset of objects which, when assigned
to reactants of the basic nuclear physics model, satisfy the reactant fields. The system
also identifies every basic nuclear physics model which, when assigned to the aggregate
effects model, satisﬁes the aggregate effects model conditions.

For each set of objects which is bound to the reactants of the BNPM, instances of
the BNPM are created. Some of these instances are then .bound fo the AEM which
. in turn instantiates the AEM. For example, consider a set of o'bjects.for a reactor
core simulation fueled by a mixture of U235 and U238 such as defined in the input
descriptions shown in Appendix IL

These .objects are considered to be active. The subset of instantiations of these
objec;ts, U235 and Neutron are bou.nd to reactants of the ba.s‘ic nuclear physics model
of fission and radiocactive capture. This causes the instances of the basic nuclear
physics models, BNPM fission (U235, Neutron) and BNPM radioactive capture (U235,
Neutron), to be created. Similar actions take place for U238. These instantiations,
along with some instantiations of the basic objects PHWNUR,HW,Zra are bound to
the aggregate effects models of fission. This causes the instantiations of the aggre-
gate effects models, AEM (BNPM fission{U235,neutron}, PHWNUR,HW,Zra}) and AEM
(BNPM radioactive_capture(U235,neutron)). Fig. 4.11 shows an example of instances
of obj.ects along with instances of BNPM and AEM for radioactive capture and fission
when U235 and U238 instantiate these models.

These instances are considered as conceivable processes. Some of these concei_ra.ble

processes are not active at the activating stage, which is discussed later.

57

U235

neutron

PHWNUR

HW

Zra

BNPM radicactive_capture(U235,neutron)

AEM (BNPM radiocactive_capture(U235,neutron))
BNPM fission(U235,neutren)

AEM (BNPM fission(U235,neutron),PHWNUR,HW,Zra)
U238

BNPM radioactive_capture(U238,neutron)

AEM (BNPM radiocactive_capture{U238,neutron))
BNPM fission(U238,neutron)

AEM (BNPM fission(U238,neutron),PHWNUR,HW,Zra)

Figure 4.11: Example of a set of conceivable processes at the end of the first cycle.
4.3 Quantitative Level

- An instance of the basic nuclear physics model and aggregate effects model does not
cause any analysis of the system. Only active instances can cause the analysis. After
instantiations of BNPMs and AEMs, the next step is to identify the active instances.

Active instances are obtained when objects are bound to reactants, the instan-
tia.téd basic nuclear physics model is bound to the aggregate effects model, and the
parameters of the objects satisfy activity conditions for both the BNPM and the
"AEM, and any preconditions of the AEM. The basic objects are always considered
active, 1.e. U235, U238, Neutron, PHWNUR, HW, Zra. The active processes which
come from Fig. 4.11 are shown in Fig. 4.12. The last two lines in Fig. 4.11 do not
appear as active processes. This is due the fact that when U238 is active, its fission
cross section, U238.sigma_f, does not satisfy the activity condition of a fission process.
Therefore the BNPM of fission 1s not activated, which, in turn, means that the AEM
of the fission process for U238 is not activated.

The set of active BNPMs and AEMs are éet to follow nuclear process phenomena

58

U235
. neutron
 PHWNUR
HW
Zra
BNPM radicactive_capture(U235,neutron)
AEM (BNPM radioactive_capture(U235,neutron))
BNPM fission(U235,neutron)
AEM (BNPM fission(U235,neutron) ,PHWNUR,HW,Zra)
U238
BNPM radiocactive_capture{U238,neutron)
AEM (BNPM radioactive_capture(U238,neutron))

Figure 4.12: Active processes at the end of the first cycle of the experiment.

in the current state. At the activating stage, the interactions between nuclear physics

processes G = ¢1, ¢z + - - gm take place. Several tasks are carried out as follows:

1. Each active nuclide T, (possibly from the product nuclides of the previous cycle)
and possible particles {beta &ecay processes do not need particles) generates
state space and probabilistic space equations SP for active processes @), i.e.
SP(g1,Ta, [tiy tig1]) - - - SP(gm, Ta, [t:, tis1]). The state space equations are used
to answer the following question: how W-i]]. the state of the system evolve over

- the next cycle period given the current state? The probabilistic space equations

are used to answer questions such as: what is the distribution of products (e.g.

neutrons or fission fragments) in the current state?

2. The type of product nuclides for each active process, (e.g. P for the radioactive
capture process, see Fig. 4.8), is characterized by its atomic number P.Z and

its neutron number P.N specified in the product field of the BNPM. The {ype

of product particle, (e.g. Beta_Pos for the beta positive decay process, see Fig.
4.4), is characterized by its particle identity Beta_Pos.id specified in the product
field of the BNPM. |

59

The atomic and the neutron numbers of product nuclides are dependent on the
type of activating nuclide (e.g. objl). Knowing the values of P.N and P.Z, the
behaviour generator of NPT (discussed later) determines the type of product

nuclides P using the representation of nuclide data {18].

3. NPT substitutes any symbolic name defined in the BNPM and AEM, (e.g.
“(obj1)” or “objl”), with the actual identity of the activating nuclides. This

gives NPT the capability of instantiating BNPMS and AEMs by different types

~of activating nuclides, which in turn, produces the correct type of product nu-
clides and their attributes required for calculating the amount of product nu-
clides, as well as establishing the appropriate energy distribution. NPT substi-
tutes any symbolic name defined in the AEM as “F1” or “F2”, with an actual

nuclide name from the representation of nuclide data [18]. Once the type of

‘the product nuclides for current active process is known, NPT substitutes any
symbolic name of product nuclides P defined in the AEM with actual name of

o R product nuclides.

4. If no more nuclides are active at the current cycle, the state space equations
then are evaluated. The state space equations predict how much material is
; consumed, how much remains as fuel along with its composition, and how much

energy is released from product particles and from product nuclides.

4.4 Inﬂuences in NPT

Besides characterizing nuclear processes, NPT describes the connections between var:-
| ables. The connections between variables, i.e. how one or a set of variables affect
_another variable or another set of variables, are expressed in terms of influences.
There are several types of influences in NPT which are described here’. The formal

syntax for all NPT influences is given in Appendix III.

60

Algebraic influences specify how the value of a given variable is affected by one or
more variables. The syntax for the algebraic influence is given using a context-free

grammar [39] as follows:

<alg_infl> s:= Malg_ infl" "{" "(" <infl_ed_var> ")"
(" <1list_infl_ing_vars> ")"

n(n <funr:.‘t_spec> u)lr ||}u

The semantic interpretation for the algebraic influences is that an algebraically influ-
enced variable equals the sum of the function specifications specified in the algebraic
influences of active processes affecting that variable.

For example, the macroscopic absorption cross Section, Sigma_a_fuel , is affected by
the fission process and by the radioactive capture process. From the fission process,
Sigmé_a_fuel, 1s affected by the amount of activating nuclides objl.amount, and the
fission cross section objl.sigma_f, through function objl.amount, * objl.sigma_f. From
the radioactive capture process, Sigma_a_fuel, is influenced by the amount of activating
nuclides objl.amount, and the capture cross section objl.sigma_g through function
objl.amount, *objl.sigma.g. These influences can be seen in Figures 4.6 and 4.8. |

An aggregate influence specifies how the values of a vector variable are influenced
by vector variable(s) or by variable(s) and vector variable(s) through specific opera-

tions. The.synta.x of this influence is as follows:
<aggr_infl> 1= Yaggy infl" "{" "(" <infl_ed_vect_var> ")"
(" <infl_ing_vects_vars_vects> '"}"
Il(H <func‘—spec> ll)" ll}l'
<-inf1__iﬁg_vects_vars_vects) 1:= <infl_ing_vect_vars> l.

<infl_ing_var_and_vect_vars>

61

The semantic interpretation for the aggregate influences is that an aggregately influ-
enced vector variable equals the vector operation specified in the aggregate influence
affecting that vector variable.

For example, when the fission process is active as a result of fissioning a type of
nuclide, the number of fissions per cycle influences the distribution of fission neutrons
- produced as specified by distr_neutron. This distribution influences the number of

fission neutrons produced. This is stated as

aggr_infl { (pn{(j))(distr_neutron(j)) (sum(i*distr_neutron(j)[i], i=0..8)) }

where a Poisson distribution is specified in this case. Complete details of this example
are given in Appendix [.1.7.1.

A cumulative influence specifies how the value of a variable is affected cumulatively
by one variable, or by an oi)era,tion on a set of influencing variables, or by an operation

on a set of elements of a vector variable. The syntax of this influence is as follows:

<cum_infl> 1= "Cum_infl" wfw n{w <infl_ed_var> “)"
(" <1list_infl_ing_vars> ")"

I!(I! <funct_specl> ll)l! I!}II

The semantic interpretation for the cumulative influences is that they specify how
- cumulatively influenced variables are influenced by the influencing variables.

Unlike alg_infl, which assigns the value of the expression to the influenced vari-
able, cum_infl accumulates the result of evaluating the function. For example, the
amount of material is influenced by processes that are active (e.g. fission and radioac-
tive capture). The amount of material consumed for fission process Cf(objl) decreases

the amount of fissile material objl.amount. This is stated as

cum_infl { (obj1.amount)(Cf(objl))(-Cf(objl)) }

62

Similarly, the amount of material consumed for radioactive capture decreases objl.a mount.

The function specification can be seen in Fig. 4.8.

A distribution influence specifies how the values of a set of NPT output objects are
influenced by vector variable(s) or variable(s) and vector variable(s) through specific
repeated operations. The syntax of this influence is given by
<distr_infl> = “distr_infl" "{" *(" <out_obj_symb> ")"

#(" <infl_ing vects_vars_vects>)"
1 (u <100p_expr> ||)|| n}u
<loop_expr> ;1= <in_loop_expr>+ <loop_counter> <more_loop>*

~ <more_loop> ::= """ <loop_counter>

<in_loop_expr> <out_obj_ident> "=" <func_spec> ";"

For distribution influences, the semantic interpretation is that a set of influenced NPT
object attributes equals operations between a set of vector variables specified in the
distribution influence affecting that attribute. An example of distribution influences

for fission (see also Fig. .4.7) is as follows:

distr_infl { (F1)(distr_Al,pdf_dZ)
(Fl.Z=c.n.Z/(cn.A-nu)*A+dZ;
Fi.N=A-(c.n.Z/{c_n.A-nu)*A+dZ);
F1.amount=distr_Al{obj1}[A]*pdf_dZ[dZ] /NA*A;
dZ=-4.4A=73.117} } |
The terms objl and distr_Al(objl) are used to refer the type of fissioning nuclide (e.g.

235[/) and its mass number distributions, respectively. The details are discussed in

63

Appendix 1.1.7.2.
A decay influence specifies how a variable is influenced by a set of variables through
certain operations when conditions for a decay process are fulfilled. The syntax of

this influence is

<decay_infl> i 1= "decay_infl" ¥{" ¥ (" <cond_expr> ")"
v <infl_ed_var> ")" "(" <infl_ing vars> ")"

<infl_expr> "}"

For decay influences, the semantic interpretation is that an influenced variable caused
by decay processes is equal to the the sum of the expressions specified in the decay
influences of decay processes affecting that variable. An example of a decay influence

15 as follows:

decay_infl { (not{obj.dmode & BETA_NEGATIVE))
(Pbpd(obj)){obj.halflife, obj.amount, cycle_time)
(Id / obj.halflife * obj.amount * cycle_time) }

This shows that when the decay mode of the activating object (nuclidé) fof the
beta positive decay is BETA POSITIVE, not BETA NEGATIVE, then the product
‘nuclides Pbpd{obj) are influenced by the nuclide’s halflife obj.halflife, the number of
the activating nuclides obj.amount and the cycle time cycle_time. The influence is
evaluated using the function specification |

Id / obj.halﬂife * obj.amount * cycle_time. The value of the constant Id is 0.693 [21}.

The term Id/obj.halflife represents a decay constant of the a.ctiva,ting.nuclides.

64

Tem=mA A

4.5 Deriving State Space and Probabilistic Spacé

Equations

4.5.1 Algebraic Influences

State space and probabilistic space equations are used to answer questions such as:
how will the state of the system evolve over the next iteration given the current
1nitial state? Both state space equations and probabilistic space equations are estab-
lished by extracting all influences; algebraic, aggregate, and cumulative influences,
and combining them. The influences are specified in the AEMs. Algebraic influences
are designed to express dependency between an influenced variable and influencing
variables which may come either from different types of prdcesses or the same pro-
cesses that are activated by different types of nuclides. Algebraic influences expressed
in different AEMs may have the same influenced variables. The influenced variable is
established by performing an addition operation of all function specifications of the
influenced variables. In addition, an object identity is attached to any variable having
notation (objl) in order to recognize which type of nuclides activate the processes.
For example, the first influence in the AEM of radiocactive capture tells NPT how
to calculate macroscopic absorption cross section, Sigma.a [21). When U activates

the AEM of radioactive capture, NPT generates
Sigma_a = U235.amount * U235.sigma_g. (4.4)
Later, 87 activates the AEM of radioactive capture, and *380/ contributes a term
U7238.amount * U238.s§gma_g
to Sigma_a, and this leads to

Sigma_a = U235.amount % U235.sigma.g + U238.amount x U238.s1gma_g.

65

:
3
4
:

4.5.2 Aggregate Influences

Unlike the algebraic influences, aggregate influences are established, not combined,
by performing operations expressed in their function specifications. This is due to the
fact that ’shé aggregate influence is designed for expressing dependency between non-
deterministic quantities represented as a vector (or quantities stored in a vector) and
deterministic quantities. The aggregate influence shown in Fig. 4.8 tells NPT to fill
the first 9 elements of distr E_gammal235 with the products of arcU235 and the first
9 elements of pdf_.E_gammaU235 when ?**U instantiates the aggregate effects model

of radioactive capture. The proba.bilis.tic space equation is generated as follows:
distr_E_gammal235 = nrclU235 x pdf _E_gammal/235

The probabilistic space equation of distr_E_gammalt)238 is generated in the same man-

I11€T.

4.5.3 Cumulative Influences

Cumulative influences are designed to express dependency between inﬂﬁenced and
influencing variables cumulatively. Like a,ggregafe influences, all cumulative influences
are established, not combined, by performing operations expressed in their function
specifications. Unlike other influences which replace the value of the variable on the

left hand side of the equation with the value of the right hand side of the equation,

- cum_infl decreases, increases, multiplies, or divides the value of the variable on the left

hand side of the equation with the value of the right hand side of the equation. This
influence is very useful for accumulating the amount of NPT objects. For example,
the first cum_infl in Fig. 4.8 tells NPT to decrease the amount of **U with the
amount of 25U consumed for radioactive capture represented as CrcU235 when #5U

instantiates the AEM for radioactive capture. The generated probabilistic state space

66

equation will be

[7235.amount + = — C'rcll235

The same applies to 2380,

4.5.4 Decay Influences

 Decay influences are designed to express dependency between the influenced variable
and influencing variables when decay processes occur. A nuclide may undergo more
than one decay process depending on its decay modes. If more than one decay pro-
cess occurs, the product nuclides come from different decay processes. In this case,
the number of product nuclides (the influenced variable) influenced by many decay
processes equal to the sum of the function specifications specified in the decay pro-
cesses affecting the varable. Since a nuclide can have moré than one decay mode,
each type of nuclide possibly activates two decay processes 8% and 8. In this case,
when the nuclide instantiates a 8% decay process, it produces a state space equation

for product nuclides
0.5 % 0.603 * obj1.hal flife + objl.amount (4.5)

where objl will be replaced with the nuclide identity of the instantiating nuclide. The
same state space equation is produced from the 8~ decay process. The factor 0.5
in equation (4.5) indicaltes that half of the product nuclides for the decay.processes
come from the 8+ decay process, and the rest from the 8~ decay process. If the type

of nuclide activates only one type of decay process, then the state space equation
0.693 * objl.hal fli fe = objl.amount

is produced from the decay process, where objl will be replaced with the nuclide |

identily of the istantiating nuclide.

67

4.5.5 Distribution Influences

Distribution influences are designed to express dependencies between a set of NPT
objects with the appropriate distributions affecting thé objects. For example, when a
type of nuclide activates a fission process., two sets of fission fragments, symbolically
- represented by F1 and F2, are produced. The mass numbers of the two sets of fission
fragments F1 and F2 are prqbabilistic. The distribution of the mass numbers of
the ﬁ.ssflon fragments are given by distr_ Al for F1 and distr A2 for F2. For F1, the

distr_infl specified in the AEM of an active fission process is

distr_inﬂ { (F1)(distr_Al,pdf_dZ)
(F1.Z=c.n.Z/(c.n.A-nu)*A+dZ;
F1.N=A-(c_n.Z/{c.n.A-nu)*A+dZ);
F1.amount=distr_A1{obj1)[A]*pdf_dZ[dZ]/NA*A;
 dZ=-4.4,A=T73.117) }

Hav.ing this distr_infl, the probabilistic space equation for each fission fragment of F1
will be produced showing the type of product nuclides produced, and their amount.
This is carried out by the behaviour generator of NPT, explained in section 5.2, by

the following sequence of steps:

1. Determine its atomic number F1.Z and its neutron number F1.N using the first

two expressions in the distr_infl.

2. Determine the actual nuclide identity for F1.Z and F1.N using the representation
of nuclide data [18].

68

kit b

3. Generate a probabilistic space equation, which shows the number of nuclides
having F1.Z and F1.N, by replacing the F1, A, dZ of equation (4.6) with the
actual nuclide identity, the appropriate A and the appropriate dZ, respectively.

Fl.amount = distr_Al(obj1)[A] * pdf dZ|dZ|/NA % A. (4.6)

4. This sequences of steps 1s carried out for the values of dZ from -4 to 4, and A

from 73 to 117.

For example, when a type of nuclide 2350/ instantiates the fission process, hav-
ing distr_infl for F1 specified in the AEM (see Fig. 4..6), the first expression of
distr.infl, F1.Z=c_n.Z/{c.n.A-nu)*A+dZ , gives the atomic number of fission fra.g-.
ment F1. By replacing c.n.Z, ¢.n A, A, and dZ with the vaiues of U236.Z,-U236.A,
one of values in a range [73,117], and one of values in a range in |-4,4], the atomic
number F1.Z of a fission fragment is obtained. The second expression of distr_infl,
F1.N=cn.Z/{c.n.A-nu)*A+dZ , gives the corresponding neutron numbers of the fis-
sion fragment F1. From the obtained values of F1.Z and F1.N, the type of fission
fragment is known from the representation of the nuclide data [18]. The third expres-
sion, F1l.amount=distr_Al{obj1)[A]*pdf_dZ[dZ]/NA*A , produces a probabilistic space
equation showing the number of nuclides of ﬁséion fragment F1.

As an example, when the mass number A is 90, and dZ = 1, the atomic number of
fission fragment F1.Z = 36 is obtained. The corresponding neutron number F1.N =
54 is obtained. The actual type of nuclide having F1.Z = 36 and F1.N = 54 is found
to be Kr90. Therefore, one of the probalistic space equations generated by the NPT

generator behaviour 1s
Kr90.amount = distr _A1U235[90] * pdf dZ[1].

Analogously, other probabilistic space equations for other types of fission fragments
are produced. An example of the fission process producing different types of fission

fragments is discussed in section 6.1.

69

The complete set of equations generated from the relations gnd product definitions
in the AEMs of all processes usually changes from c.ycle to cycle depending upon the
number of types of activating nuclides.

After equations are generated, the behaviour generator of NPT evaluates the
state space and probabilistic space equations to obtain qudntitative values. As. a
consequence, new objects may be born or existing objects may disappear every cyclé

time, which leads to a2 dynamic state space and probabilistic state space description.

70

Chapter 5

Implementation

This chapter discusses the design of a nuclear process simulation tool and the imple-

mentation of the NPT models.

5.1 Design and architecture of a nuclear process

simulation tool

A nuclear process simulation tool can be used, for example, to simulate nuclear physics
processes in a reactor core (seé Fig. 5.1). The NPTsim simulation tool enables

the study of, and experimentation with, nuclear process interactions by way of the

" NPT symbolic representation. By changing simulation parameters and observing

the resulting output, the behaviour of the specific nuclear physics processes can be
observed. _

The simulation kernel is composed of the internal representation of NPTsim where
the functional model of NPTsim is shown in Fig. 5.4. The model description file

contains the knowledge level components discussed before; i.e. the basic nuclear

71

physics models and the aggregate effects models of different types of processes (fission,

radioactive capture, beta negative decay and beta positive decay).

model
description

file

/ system descriptions \

kernel simulation

client
program

file
NPTSim A output

user

interface

Figure 5.1: Components of a nuclear process simulation tool.

Fig. 5.2 shows the high-level activities of simulating nuclear processes in a cycle.
Once the basic nuclear physics and aggregate effects models are included in the kernel,
NPT identifies all possible instantiations of the basic nuclear physics and aggregate
effects models. This task is accomplished in two steps. First, the instantiations of
the basic nuclear physics model for each type of process are determined. Second,
the instantiations of the corresponding a.ggrega.té effects models using the results of
instantiation of basic nuclear physics models are determined.

A basic nuclear physics model of & type of process-is instantiated when the nuclide
objects and their conditions, as well as their attributes, match the requirements for
the individual reactants, and reactant conditions as stated in the basic nuclear physics
models. These requirements are symbolically represented as C1.

The resulfs of the instantiation of basic ﬁuclea.r physics models, along with reactor

parameters stated in the input description, are used to instantiate the corresponding

72

£€TN sapiona
SUOINAU

sajanmed ynpoxd sapipanu npord sadoos jo 198 SUONNDU ‘g13q ‘Blwes - Kooop oamwod o1q

waiy paseajar Ldraus WG] pasratar AZTaua sapyaet anpord sapored jonpoad Aeop sATeSau visq

armdes aaTioeoIper

uorssyy

s[epotm sorsiyd
T[N DTSR

‘

(WOXMAN'GET 1) UOISSI WANK

" (uonnaNFSEZN)Imde) GATIIROTPRE WINE
{SgzN)AEaap aanvSan maq WANY
{ce7)Kesap samisod v15q WINS

TS + 14§ = Py ¢ WG . . suonenbo aoeds a1ws pue aouds snsniqeqoxd _

WS -—1 (uomnaN‘gezn) armdeo sanoeotpes WANG) WAV

148 =7 (vomnaN'SETN) WOISSY ININTWAY

sassaood aatpe

Aeoap santsed elaq
; Aeoop sanedau vl

ammdes sanpsorper

uorssyy

sjapou
1oey]e cedadde

((eT) Aroap oanedau ¥39q WANT)INTV
{{sgzn)Aeoop aansod vi9q WINIINEVY

{uonna Z.mmmapg%u SATIIEOIPEl ININTIWNSEY
(wonuan'¢ETN) volssY WINDINIV

Figure 5.2: High-level activities of simulating nuclear processes in a cycle.
73

£3852001d Iearonl A[qrARIUOD.

aggregate effects models. An aggregate effects model is .insta,ntiated when the re-
quirements for the reactants, material, and equipment stated in the aggregate effects
model are satisfied. These requirements are symbolically represented as C'2. The
results of the instantiation of basic nuclear physics and aggregate effects models are
considered as conceivable nuclear processes.

The program proceeds to test the validity of the preconditions and activity condi-
tions for each instance. The activity conditions are specified in both the basic nuclear
physics and aggregate effects models, which are shown in Fig. 5.2 by the dotted
lines. The preconditions and the activity conditions are symbolically represented as
C3. Testing the validity of both preconditions and activity conditions, the program
requires that the initial values for at least a subset of parameters and variables have
been specified. The result of this test is a set of active processes, which generates
state space and probabilistic space equations showing the interactions among objects
(particles and nuclides) existing in the reactor co_re;' Fig. 5.2 shows an example equa-
tion Sigma_a_fuel resulting from interactions between neutrons and nuclides through
radioactive capture and fission processes. The actual expression containing SP1 and
SP2 for the first example can be seen in this example. When U235 activates a fis-
sion process, the NPT behaviour generator produces Sigma_a_fuel = U235.amount
* {235.sigma_f which is symbolically written as SP1 in Fig. 5.2. Similarly, when
U235 activates a radioactive capture process, the NPT behaviour generator produces
Sigma_a_fuel = U235.amount * U235.sigma_g which is symbolically written as SP2
in Fig. 5.2. The final state space equation for Sigma_a_fuel when U235 activates two

| types of processes 1s
Sigma_a_fuel = U235.amount x U235.sigma_f + U235.amount x U235.sigma.g.

Once the state space and probabilistic space equations have been generated, and
no more nuclides are active in the current cycle, the NPT interpreter evaluates the

equations to produce quantities of products for the nuclear processes involved. The

74

products include product particle(s), product nuclide(s), energy of product particle(s)
released and energy release of product nuclide(s), along Witi’z the amount of fuel
consumed.

When a cycle is completed, there are possibly more types of nuclides available
in the reactor core. Each type of nuclide may activate one or more processes that
are available in the system depending on their properties. Each type of nuclide will
activate its associated basic nuclear physics and aggregate effects models again as
shown in Fig. 5.2. This process 1s repeated in a loop. The conceivable nuclear

- processes and the active processes as well as the state space equations generated
in the next cycle may be different from those genera.ted in the current cycle. The
changes depend on how many types of nuclides are available in the system and their
properties (e.g. fission cross section, halflife).

The products of nuclear reactions every cycle time are recorded in the system
description as shown in Fig. 5.1. The products (e.g. neutron products, product
nuclides) are fed back into the simulation kernel to do same procedures described
above and to generate other sets of products for the next cycle time.

The system description also contains an initial set of parameters of the objects
involved in nuclear processes, along with their starting amount, runtime of simulation,
report interval required during the simulation, and cycle time {e.g. neutron cycle
time).

Once the runtime, the report interval, and cycle time are set in the system. de-
scription, simulation is performed and the behaviour of the system can be obtained.

For a nuclear fission process, for example, the system predicts how much material is
consumed, how much material remains as fuel, the quantity of fission products gener-
ated along with their composition (including neutron products), how much thermal
energy is released from both fission products and neutron products, and how much
energy is generated by the resulting gamrma rays.

The above products are reported in an output file at every report interval time

75

step of the simulation. Through a simple user interface, a user can interact directly
Wifh the kernel simulation in order to change the parameters of the nuclear processes
being modeled.

In NPT, each type of nuclide is capable of carrying out processes in the same
manner as described in Ch.apter 3. When a type of nuclide interacts with neutrons
through a specific process, the associated actions in the NPT model have active
processes from instances of the basic nuclear physics and the corresponding aggregate |
effeéts models. -

For example, in the case of Th233, it will instantiate the basic nuclear physics
models of flssion, radioactive capture and beta negative deca.y and the corresponding
aggregate effects models which result in the active processes of fission, radioactive
capture and beta negative decay. \ |

NPT uses basic nuclear physics models and aggregate effects models as a modeling
language for each type of nuclear process. The NPT behaviour generator can generate
state space equations and probabilistic space .equa.tions every cycle time (or neutron-life
time in this example) from active processes. Both the state space and probabilistic
space equa,ﬁidns show the interactions between objects (for example neutrons and
nuclides) which a.lrea.dy existed in the reactor core and which become available as a
result of nuclear processes up to a particular time period.

Consider Fig. 5.3. Assuming that all relevant basic nuclear physics and aggregate
effects models are included in the system (basic nuclear physics and aggregate effects

models of fission, radioactive capture, beta positive and beta negative decays), the

NPT behaviour generator identifies all possible instantiations of the basic nuclear

physics and aggregate effects models. This task is accomplished in two steps, first
determining instantiations of the basic nuclear physics model for each type of process,
and then determining the corresponding .instantiation of aggregate effects models
using the results of instantiation of basic nuclear physics models.

A basic nuclear physics model of a process is instantiated when a set of NPT

76

senquie-
apianu

suonenbo
aoeds onsiiqeqosd

sapmred 1anpord jo A810us ¢
sapyonu jonpoid o AdIsus ¢

pue aoeds sers

deneas

suonunbs

aseds snsgiqegoid SIOTIPUGS
! m% a sos50001d (00 e 1o Anpien e S2SS3008E BORONU £ 510070 oreorSSe
pie aceds sws AALIOR JO 198 a1 1591 SHIEAIIOUCD B —
elatad

BIED 2PIONN 0.5
Jo gy

soponued jonpoad 7
saprponu 1onpoxd *§

s[epow

sasaa0ad Jeafonu
alseq
10 SOOUBISUE
spepour sorsyd
-spuosard
Iea[onu 21seq
suoneaoads suonipuod | wowdmbs | sejourered .
Jo uoTrenumsLa
12npoxd SeoUNLJul AnAnow [PLIIBW 1019831 1
“spuoyaxd SpUo
SuRaEaL Ztao
1fqo
S[apow S[opo
$109]59 21e80133e sorsAyd Jesponu uonduosep
: nej a1sSB(q MO mndur

_

High-level description of simulation using the NPT model.
77

N
.

8.3

Figure

s_
i

objects match the requirements for the individual reactants as defined in the basic
nuclear physics models. The high-level process showing the flow of data values from
their sources to their destination for every neutron life-time or cycie time is shown in
Fig. 5.3.

The results of the instantiation of basic nuclear physics models, along with reactor
parameters stated in the input description, are used fo instantiate the correspond-
ing aggregate effects models. An aggregate effects model is instantiated when the
requirements for the reactants, material, and equipment defined in the aggregate
effects model are satisfied. The result of this instantiation is a set of conceivable
processes, The NPT behaviour generator then proceeds to test the validity of the
preconditions and activity conditions for each instance. This requires that the iﬁitial
values for at least a subset of parameters and variables have been specified. The
result of this test is a set of active processes. ’

The state space and probabilistic space equations always follow directly from the
set of active processes. These are the consequences of a number of influences defined
in the aggregate effects models of the active pfocesses. When the behaviour generator
generates thé state space and probabilistic space equations of active processes, it uses
product specifications defined in the basic nuclear physics models of the processes.
NPT also requires the nuclide’s attributes data which are represented as an open hash
table of the Chart of the Nuclides [L7]. |

Once the state space and probabilistic space equations have been created, the NPT

interpreter evaluates these equations, and produces a set of product nuclides, product

particles, energy of product nuclides, and energy of product particles along with the
consumption of the appropriate nuclides. Both product nuclides and product particles

will then instantiate basic nuclear physics and aggregate effects models of some of the

-processes in the next cycle, see Fig. 5.3. The state space and probabilistic space

equations may change from cycle time to cycle time depending upon how many types

of nuclides are available in the system. A computer program called NPTsim, a total

78

of 7200 lines of source code, was written in C to perform these tasks. The functional
model of NPTsim is shown in Fig. 5.4. Another C program called MakeHash was
written (total of 870 lines of source) to create the binary representation of Chart of

Nuclide Data.

5.2 NPT language

This section describes the NPT language. The NPT language is designed for repre-
senting nuclear physics processes to allow the writing of computer programs which
simulate nuclear physics interactions. The NPT language is defined by the Extended
Backus-Naur Form (EBNF) grammar which is given in Appendix III. This grammar

is made up of rules that specify how to form sentences in the language. The structure

of the language processor for NPT is shown in Fig. 3.5. ‘The language processor
consists of a lexical analyzer, parser and behaviour generator. The lexical analyzer
accepts strings written in the language and identifies substrings that are elements
of the language. The substrings, called tokens, are passed onto the parser, whose
responsibility it is to build structures representing the statements in the language.

The parser controls the lexical analyzer. The parser asks the lexical analyzer for
a particular type of token. The lexical analyzer looks at the next program token,
determines its type, and passes the token to the parser.

Starting with the start symbol of the grammar, the parser uses the tokenized
source program to fulfill the requirements of the grammar. The parser disassembles
statements in the language and produces, for each statement, a series of tokens. These
tokens define the function to be executed and parameters of the function.

Once the statement has been parsed, we know what to do with this statement.
This information (function and parameters) is saved until the program is executed by
the behaviour generator. The NPT language processor runs the program and produces

the behaviour of nuclear physics processes which is specified in the program.

79

explanations

- e knowledge of nuciear
mfw coacitions physics processes
(e.. input description) (¢.g. BNPMs and AEMs)
L j
reee——————— o B o v e : of Nuclide
instances of : instantiate : Data
| BNPMs | BNPMs E
L : E
! ! construct
conceivable 1 i Chart of Nuclide Data
1
nuclear physics processes | | : Hash Table
| l :
) 1
! . : _
set of active ' test the vatidity ' Binary Hash Table
processes | HE activity conditions / ' of Chart of Nuclide Data
| i ¥
v)
])
t)
1]
: t
state space ! :
and probabilistic space H '
equations ' '
| : ?
- d 1
.)]
1]
)]
?)
!)
: :
quantitative state 1 :
-product nuclides ! :
-product particles ! !
‘ '
H 1
1]
] i
1 1
])
))
1 [}
' '
¥ -

[}
]
]
i
]
]
]
]
]
]
t
]
]
]
[]
]
]
]
]
1
]
]
]
]
]
]
]
]
]

Figure 5.4: Functiona! model of NPTsim.

80

Lexical

Analyzer

Figure 5.5: Basic organization of the NPT language processor.

The processing performed by the behaviour genera.tor. includes

1. For each type of nuclide, instantiate AEMs and BNPMs which produces a set

of conceivable nuclear physics processes.

2. Determine the set of active processes by testing the validity of activity and

j preconditions.

, 3. Determine the type of the product nuclides of the processes being modelled
using the product field in the BNPMs and the nuclide data [18].

4. Generate state space and probabilistic state space equations from all influences

defined in AEMs, showing interactions between the processes being modelled.

5. Attach the type of active nuclide identity to the variable specified in the AEMs

having symbolic names followed “(obj1)” or initialized by “objl”. Similarly,
' attach the actual name of product nuclides $o the symbolic name of variables
associated with the product nuclides. The actual name of a nuclide is obtained

i " from the nuclide data [18]

_% | 6. Repeat the processes mentioned above for all existing'types of nuclides at the
current cycle. At the first cycle, the existing nuclides defined in the input

description are used.

81

e Once the processes mentioned above are completed, the interpreter evaluates
any state space and probabilistic space equations at the current cycle. All
storage memory is reset at the end of each cycle, except for the storage that
deals with the reporting variables. This storage is reset at the end of each

reporting cycle.

8. The above steps are repeated as long as the processes are active or for the

duration of the simulation period.

Once the input description, (consisting of inif.ia.l NPT objects, reactor, and cladding
parameters) has been parsed, all these parameters are stored in memory. Once all
basic nuclear physics and aggregate effects models have been parsed, the initial NPT
objects stored in memory are checked against all reactants in the basic nuclear physics
model. If they satisfy the reactants fields, they instantiate a sét of BNPMSs. To instan-
tiate the AEMs, the requirements for materials and equipment stated in the AEMs
must be satisfied. These will prodiice a set of conceivable nuclear processes.

In order to have a set of active processes, step 2 mentioned above 1s carried out.
Having all influences defined in the AEMs, a set of probabilistic and state space
equations is produced showing the interaction between reagents (e.g. how many
nuclides interact with neutrons in both the fission process, and the radioactive capture
process when one or more types of nuclides are active).

For example, assuming that we have four types of BNPM and AEM models in
NPT, (i.e. fission, radioactive capture, beta positive and beta negative decays), neu-

trons can interact with nuclides through fission and radioactive capture only, since
beta decay does not require neutrons. Assuming that two types of nuclides are avail-
able in the reactor core (e.g. 2*°U and %37), the fraction of neutrons which interact
with nuclides of type *3U through radiocactive capture will be generated as one of the

state space equations as follows:

F,U238 = U238.amount * U238.sigma_g/ Sigma.a_fuel.

82

The fraction of neutrons which interact with nuclides 28U through the fission

process will be generated as another st.a.te space equation, Le.
FpU235 = U235.amount * U235.stgma_f [Sigma_a_fuel.

The generated state space equation for Sigma_a_fuel, at the cycle when only 2350_’

and #2387 are active, is given by
 Sigma_a_fuel = U235.amount * U235.sigma_f + U23B.amount * U238.s1gma_g

The number of fissions at the current cycle is influenced by k, eta, the number
of neutrons at the previous cycle neutron.amount, and the fraction of neutrons which
interact with nuclides FfU235 (see Fig. 4.6). When®®U activates a fission process,

the generated state space for the number of fissions is given by
RcU235 = k/eta x neutron.amount * F fU235

The neutrons produced by these fissions are influenced by the number of fissions and
the probabilistic density of neutrons specified by pdf_neutron. The generated state
space equafions for distribution of neutron products, when #3350 activates fission is
given by |
RelU235 * pdf neutronlz],: =0..8

The probabilistic space and state space equétions are then evaluated by carrying
out two tasks: a conversion from infix to postfix expression, and a postfix evaluation.
These are due to the fact that each expression is stored in the node of a linked-list,
and brackets are allowed in the expression. For example, the state space equation

below

fU235 = U235.amount * (U235.sigma_f + U235.sigma.g)/

(S_igma._a_fuel + Sigma.a_cl + Sigma_a_md)

" is stored in the one of the nodes of the linked-list.

83

Chapter 6

Evaluation

This section illustrates how NPT works by showing three examples of the fission
process and other related processes in the core of a reactor. In the first experiment,
the reactor was fueled with pure 2330/, In the second experiment, natural Uranium,
which consists of 0.7 % of £°U and 99.3 % of 232U, is used as the fuel of the reactor.
For the third .exp_erimeut, the reactor was fueled by an enriched natural Uranium
which consists of 12 % of 23°U and 88 % of 332U. The average prompt neutron life
time [p (i.e. 20ms) was adopted as the cycle time for the NPT simulator. In these
experiments, NPT was used to predict, after a period of time, how much fuel is
consumed, how much fuel is left, the composition of the product nuclides and the
amount of eﬁergy produced.

Only the second experiment results are discussed in detail here. The two other
experiments are discussed in [17]. There are many other processes accompanying
the fission process [21]. For the experiments discussed here, only four processes are
considered; they are fission, radioactive capture, beta negative decay and beta positive
decay. Hence the nuclear physiﬁs system @ described in section 3.1 consists of four

types of processes ¢1, ¢z, g3 and g4. The BNPMs and AEMs definition for these

84

tp 1y ty 4ty ltr

I 1 i 1
¢cycle 1 cycle 2 cycle i+i

tiy - ty=cycletime; t.- ty =report ime.

Figure 6.1: Time line used in NPT.

processes are shown in Fig. 4.2 through Fig. 4.10. The experiment was carried
out over a period of 20 seconds. The time line used by NPT is shown in Fig. 6.1,
where ¢; — #;_; and t, — {, represent the cycle time, and report time respectively.
The reporting variables are reset every report time, while the cycle variables are reset

every cycle time.

6.1 Experiments

In experiment 2, a reactor core is fueled by 1000 kg of naf.ura.l Uranium which consists
of 0.7 % of 92U and 99.3 % of ¢,U?%®. Other experiments are discussed in [17]. The
input descriptions to the NPTsim program, including reactor pafameters are shown
in Appendik II. Part of the input values are taken from [21]. This section describes
how NPTsim works given a mixture of substances as fuel.

Assuming that all relevant basic nuclear physics and aggregate effects models are
included in the system, NPT identifies all possiblé instantiations of the basic nuclear
physics and aggregate effects models in a manner similar to that discussed in Section
5.1.

In this experiment there are two types of nuclides, 25U énd 23877 initially available
in the reactor core. As can be seen in Fig. 3.1, only the nuclides of type U can
interac.t with neutrons through fission as indicated by the value of fission cross section.
Both nuclide types 23*/ and 2*®U can interact with neutrons through the radioactive
' éapture process as indicated by the values of radicactive capture cross sections.

Since only two types of nuclides are available initially, only two types of nuclides

85

activate the defined processes. Ea.qh type of nuclide acfiva.tes BNPMs of the defined
four processes, which in turn activate the corresponding AEMs.

The activity conditions at the current cycle are then tested to determine the
active processes. The resulis are a set of active processes. The active processes at

the beginning of first cycle are shown in Fig. 6.2.

U235

neutron

- PHWNUR

HW

Zra

BNPM radiocactive_capture(U235,neutron)

AEM (BNPM radioactive_capture(U235,neutron))
BNPM fission(U235,neutron) '

AEM (BNPM fission(U235,neutron) ,PHWNUR,HW,Zra)
U238 '

BNPM radicactive_capiure(U238,neutron)

AEM (BNPM radioactive_capture(U238,neutron))

Figure 6.2: Active processes at the beginning of the first cycle of the Experiment.

From these active processes, the behaviour generator produces a set of probabilis-
tic and state space equations such as those shown in Fig. 6.3 and Fig. 6.4.

At 1 (see F1g 6.1), besides nuclides 3% and 2%/, there are fission products
from fissioning, and product nuclides from capturing neutrons by nuclides of types
23517 and 2%/ through radioactive capture processes. Hence, not only 2**U and
287 activate the basic nuclear physics and aggregate effects models of fission and
radioactive capture, but also some fission products and prodﬁct nuclides of radioactive
capture processes. Each type of nuclide instantiates the appropriate basic nuclear
physics model and the corresponding aggregate effects models. Therefore, there are
many active processes at the _end of the second cycle as given in Appendix IV, part
of which are shown in Fig. 6.5.

At the end of the second cycle t;, there are new nuclides born as products of

86

Sigma_a_fuel = U235.amount*U235.sigma_g+U235.amount*UQSS.sigﬁa_f+
U238.amount+*U238.sigma_g;

FgU236 = U235.amount*U235.sigma_g/Sigma_a_fuel;

nrclf23b = neutron.amoﬁnt*k/eta*FgU235;
PrcU235 = nrcU235+U235.A/NA;
CrcU23b =

nrcU235%U235 . A/NA; ' ‘
U235.amount += -1.00%CrcU235-C£fU235;
U236.amount += 1.00%Prcl235;

Gamma.energy += 1.98%nrcU236+sum({itei/2)*distr_E_€ammaU235[i],0,8)+
1.98%nrclU238; .

Sigma_f_fuel = U235.amount*U235.sigma_f;

U235 = U235.amount*(U235.sigma_£+U235.sigma_g)/
(Sigma_a_fuel+Sigma_a_cl+Sigma_a_md);

eta = nuU235+U235.amount*U235.sigma_f/Sigma_a_fuel;

k = fU235%eta*RC.epsilon*RC.p*RC.PNLL*RC.PNLth;

FfU235 = U235.amount*U235.sigma_f/Sigma_a_fuel;
RcU235 = k/eta*neutron.amount*FfU235;
CfU235 = RcU235/NA*U235.4;

distr_neutronU235[i] = RcU235%pdf_neutronU235{il},0,8;

Figure 6.3: State and probabilistic space equations at the end of the first cycle of
Experiment 2.

87

pnU235 = sum(i*distr_neutronU235[ij,0,8);

-

distr_A1U235[i] = RcU235*pdf_A1U235[i],0,44;

distr_a20235{i] RcU235*pdf _A2U235(i],0,44;
distr_E_neutronU235[i] = pnU235*pdf_E_neutronlU235[i],0,8;

distr_E_gammaU235[i] = RcU235*pdf_E_gammalU235[i],0,8;

distr_E_F1U235[i] = RcU235*pdf_E_F1U235[i],0,44;

distr_E_F2Uu235[i] RcU235*pdf _E_F2U235[i],0,44;
Figsile_fissioned += RcU235;
Fissile_consumed += CfU235;

Neutron.amount += pnU235;

Neutron.energy += sum((i+ei/2)*distr_E_neutronU235[i],0,8);

Energy_F1.amount += sum((i+ei/2)*distr_E_F1U235[i1,0,90);
Energy F2.amount += sum((i+ei/2)*distr_E_F2U235[i],0,90);

FgU238 = U238.amount*U238.sigma_g/Sigma_a_fuel;

nrcl238 = neutron.amount*k/eta*FgU238;
Prcl238 = nrcU238*U238.A/NA;
Crcl238 = nrcU238%U238.4/NA;

U238.amount += -1.00%CrcU238;

U238 . amount += 1.00%PrcU238;

Figure 6.4: Continuation of state and probabilistic space equations at the end of the
first cycle of Experiment 2. - '

88

U235
nentron

PHWNUR

HW

Zra .

BNPM radicactive_capture(U235,neutron)

AEM (BNPM radioactive_capture(U235,nentron))
BNPM fission{U235,neutron)

AEM (BNPM fission{U235,neutron),PHWNUR,HW,Zra)
U238 :

BNPM radicactive_capture(U238,neutron)

AEM (BNPM radiocactive_capture(U238,neutron))
17236

BNPM radiocactive_capture(U236,neutron)

AEM (BNPM radicactive_capture(U236,neutron))
U239

BNPM beta_negative_decay(U239)

AEM (BNPM beta_negative_decay(U239))

Tb158 '

BNPM beta_negative_decay(Tb158)

Figure 6.5: Portion of active processes at the end of the second cycle of Experiment

2.

processes, which can activate different processes than occur in the .previous cycle.
The active processes usually change from cycle to cycle due to the fact that new
nuclides may be born or existing nuclides may vanish. The vanished nuclides cause
the corresponding active processes to be remdved_. The change of active processes
"leads to a dynamic set of state space and probabilistic space equations.

The active processes at the end of the second cycle cause the behaviour generator
to produce different types of nuclides. Some of them have the same type as the
available nuclides, some are new. .If the product nuclides are not new, the number of
nuclides are accumulated with the previous nuclides. If they are new, the number of

nuclides are stored in new memory locations. Both the new and the previous nuclides

89

will activate some BNPMs and AEMs which lead to some active processes. These
active processes produce different state space and probabilistic space equations from
the previous cycle. The above activities are repeated over the period of simulation,
or as long as the pre- and activity conditions are satisfied. The reporting variables,

defined by the user, are reported every reporting period.

6.1.1 State space and probabilistic space equations of the

first cycle for experiment 2

Since initially a mixture of 2°U and 2%8U is available as a fuel in the reactor, the
state space equation for £'°® appears in Fig. 6.3 as equation (6.1). This equation
is the result of ***U activating the basic nuclear physics model of fission and the
corresponding aggregate effects model; and of 2**U and #*7 activating the basic
nuclear physics models of radicactive capture, and the corresponding a.ggrega.te effects

models.

Sigma_a_fuel = U235.amount » U235.3igma_g + U235.amount
| U235.sigma_f + U238.amount * U/238.sigma_g (6.1)

The first, the second and the third terms of the above equation show the results
of interactions between neutrons and nuclides of type ***U through the radioactive
capture process, and the fission process, and the result of interaction between neutrons
and nuclides of type 238U through the radioactive capture process, respectively.
Since initially only nﬁclides of 2330 are available as fissionable nﬁclides, the state
space equation X{*®, as a result of ¥5U activating the basic nuclear physics model

and aggregate effects model of fission, is generated as
Sigma_f_fuel = U235.amount x U235.sigma_f.

A fraction of neutrons that interacts with 25U through radiocactive capture is

90

generated as a state space equation _
FgU235 = U235.amount * U235.sigma_g/Sigma_anfueI.
A state space equation
PrclU235 = FgU235 x neutron.amount x kjeta » U235.A/N A

‘is the product of neutrons captured by #*U during cycle 1. This can be seen in Fig.

6.3 on lines 2 and 4. The consumption of **¥/ during this cycle is generated as
CrelU235 = Fgli235 » neutron.amount x k/eta x U235.A/N A

The radicactive capture process increases the mass number of the target nuclide by
one, producing a new nuclide **U. The products of radicactive capture processes
increase the amount of the resulting nuclides by an amount PrcU235, which appears

as a state space equation
U236.amount + = 1.00 x Prcl/235. _ (6.2)

The constant 1.00 in equation (6.2) indicates that one nuclide is produced for every ra-
dioactive capture process, as specified in the prbducts section of the basic radicactive
capture process.

The generated state spa.ce.equa.tion
U235.amount + = —CrcU235 — C fU235, - (6.3)

shows the amount of 23U consumed every cycle time period, both by the fission
process (CfU235) and by the radioactive capture process (CrcU235), where the con-

sumption of 235[for fission, CfU235, is generated as a state space equation
CfU235 = RcU235/NA + U235.4,

~ where RcU235 is generated as in equation (6.4).

91

The ”4+=" operators in equations (6.3) and (6.2) are used to denote accumulation
processes. These two equations show tha.t any consumption will reduce the amount
of the original nuclides, and any produc.t_iou will increase the amount of the resulting
nuclides. |

When only nuclides of 235U are available as fissionable nuclides, then the thermal
utilization factor f, the thermal fission factor 7 aﬁd the multiplication factor k are

generated from state space equations as

fU235 = U235.amount*xU235.sigma_f /(Sigma_a_fuel+Sigma_a_md+Sigma.a_cl) ,

eta = null235 » U235.amount * U235.stgma_f/Sigma_a_fuel |
k= fU235 * eta + RC.epsilon + RCO.px RC.PNLf « RC.PN Lth.

The fraction of neutrons which interact with **{/ through fission processes is gener-
ated .as |

FfU235 = U235.amount x U235.sigma_f[Sigma_a_fuel.
This fraction of neutrons determines the number of fissions in the current cycle.
When only'nuclides 23577 and neutron.amount neutrons are available in the reactor -
core, then the number of fissions at the current cycle period is generated as a state

space equation
RclU235 = k/eta * neutron.amount * F fU235. - (6.4}

These fissions influence the amount of 2330/ consumed, which is generated in the state

space equations as

CfU235 = RcU235/NA = U235.A.

The number of fissions RclU235 above determines the distribution of fission neutrons,
the energy distribution of fission neutrons, the distribution of mass number of product
nuclides, as well as the distribution of gamma energy. Since the probability of pro-

ducing a certain number of neutrons and the probability of producing gamma energy

92

in a fission are represented as pdf_neutron and pdf_E_gamma respectively, the proba-
bilistic space equations for the distribution of fission products and for the distribution

of .gamr'na energy are generated as
distr_E_gammal235[2] = RcU235 * pdf _E_gammal235[4],0..8

and

distr_neutronlU235[z] = RelU235 * pdf neutronl/235[),0..8,

respectively.
The number of fission neutrons as a result of fissioning 2330/ is generated in the

probabilistic space model as

pnlU235 = sum(s * distr_neutronl235[7]),0..8. (6.5)

The .total number of fission neutrons resulting from fissioning different types of nu-
clides is accumulated in neutron.amount for each cycle and in Neutron.amount for
each time report period. The number of neutrons, which comes from interactions
between neutrons and 2®U increases both neutron.amount and Neutron.amount and
1s generated as

neutron.amount + = pnl/235

and

Neutron.amount + = pnl/235,

_ respecti\}ely. The difference between the two lies in the fact that neutron.amount is
used to store the number of neutrons in the reactor core for one cycle time period
whereas Neutron.amount is used to store neutrons generated within one report time
perio.d.

Fach fission neutron is emitted with a continuous distribution of energy. The
'proba.bil_itjr of a fission neutron having an energy in a certain interval is represenfed

by pdf_E_neutron. The number of fission neutrons influences the energy distribution

93

of fission neutrons. The energy distribution resulting from fissioning ?3*IJ is generated
as

distr_E_neutronlU235[i] = pnlU235 * pdf _E_neutronlU235[],0..8.

In NPT, each type of nuclide which interacts with neutrons through fission, is mod-
eled to produce the associated fission neutrons along with its energy per cycle time.
This energy 1s spread over certain intervals and is represented by distr.E_neutrons.
The amount of energy of fission neutrons per cycle, as a result of fissioning **U, is

_ accumulated over all energy ranges in distr_E_neutrons as follows:
sum((i + ei/2) * distr_E_neutronsU235[¢]), 0..8

where ei is the neutron energy interval appearing in pdf_E_neutrons. Since the total
amount of the energy of fission neutrons can come as a result of fissioning different
types of nuclides, then the probabilistic state space equation for the fotal amount of

the energy of fission neutrons (from 23°U) per cycle is generated as
Neutron.energy + = sum((i + ei/2) * distr_E_neutronslU235[:]), 0..8.

The number of fissions per cycle period, RcU235, influences the distribution of
mass numbers of fission products. Since the probability of having a certain mass
number is represented by vectors pdf Al and pdf_A2 for fission products F1 and F2,
respectively, the distribution of mass numbers of fission products F1 and F2, caused

by fissioning 25/ only, are generated in the probabilistic space model as

distr.A1U235[i] = RclU235 = pdf .A1U235[3], 73..117 (6.6)
distr_A2U235[i] = Rcl7235 * pdf _A2U235[i], 118..162. (6.7)

In order to identify a particular nuclide, its mass number A and its atomic number
Z must be known. From the distribution of mass number of fission fragments obtained,

a set of mass numbers A, Ay -+ A, are known. For each A; , there is a set of Zs

94

associated with it. The distribution for Z is approximated by proton-neutron ratio

[25], which is defined as follows:
Zi = (Zon)(Acn — v)) * Ai + 67, & = T3..162, (6.8)

where Z., and A, are the atomic number and the mass number of the compound
nucleus formed from a target nuclide and a neutron. In the above equa’tién, 67 1s
non-determimstic. Its value 1s controlled by the Gaussian distribution. The term
67 represents the deviation of the product nuclide (Z;, A;) from the stable zone of
nuclides, and v 1s the average product neutrons per ﬁssi;)n. The probability of 67
having a cerfain value is computed by decompos.ing the area under the Gaussian
distribution curve. This probability distribution is represented as vector pdf_dZ

Once the number of fission fragments (product nuclei) having a particular mass
number is known, then their isobars, (i.e. nuclides which have the same mass numbers
A, but different atomic numbers) can be obtained easily using equation (6.8). The
value for éz for the jth isobar in the isobar line (see Fig. 6.6) is given by the index j
of pdf_.dZ. The number of nuclides for the jth isobar is influenced by the number of
nuclides having mass number A and the element pdf_dZ[j].

The number of nuclides having a certain mass number A, as a result of the fission
process, is represented as the element of distr_A. A itself is represented by the index of
distr_A. Knowing the pdf;dZ, the number of nuclides of the jth isobar (Z;, A) having.

mass number A and atomic number Z; 1s computed using
distr_A[A] = pdf .dZ 5]

The value of Zj is computed using equation (68) The value of §z in equation (6.8)
is equal to 3.

As an illustration, consider a portion of the distribution of mass numbers, distr_A,
of fission products tabularized in Table 6.1. Consider also the part of elements of

'pdf_dZ tabularized in Table 6.2. The number of nuclides having A=75 and located at

95

(Z,N)

OO 00
O oo

OO QO eee
oP OO

Z
O = isotope line
- isobar line L B N
N
®
®
®
Figure 6.6: Isobar line.
the 7 = —2th element of the isobar line is equal to
distr_A[T5] * pdf .dZ[—2] = 1000 % 0.0219 (6.9)

with 67 equal to -2. The associated atomic n:ﬁmber Z is computed using equation
(6.8). The associated neutron number is computed as Z - A.

Knowing the distribution of mass numbers of product nuclides which are repre-
sented as distr_.Al and distr_A2 for fission products F1 and F2, respectively, then all
_isobars associated with each mass number can be generated based on equation {6.8).
The set of distribution representations, i.e., pdf_dZ , distr_Al, distr_A2 as well as the
knowledge about a compound nucleus and the average number of fission neutrons
influence the generation of isobars of fission products through distr_infl . Each mass
number corresponds to set of isobars.

For the fissioning 337, the NPT behaviour generator generates probabilistic space

equations for all isobars of fission products. For program efficiency consideration, the

96

Table 6.1: Portion of distr_A.

index | number of

nuclides -
73 400
74 800
75 1000

Table 6.2: Portion of pdf dZ.

j | probability
of 62

-4 | 0.00001
-3 0.00104
-2 | 0.02190
0! 0.14007
0.67902
- 0.13634

isobars are sorted in an ascending order based on the nuclide name. The probabilistic
space equations for the sorted isobars are shov;rn in Appendix VI, and part of them
are shown in Fig. 6.7.

The number of fissions per cycle period, RclU235 discussed above, influences the
distribution of energy of fission products. The probability of having a cerfain energy
“is represented by vectors pdf_E_LF1 and pdf_E_F2 for fission products F1 and F2,
respectively. The distribution of energy of fission products F1 and F2 appears in the

probabilistic space equations as.

distr_E_F1U235 = Rel/235 « pdf _E_F1U235[3), 73..117,
distr_E_F2U235 = Rcl'235 « pdf _E_F2U235[3], 118..162.

The number of fissions of fissioning many types of nuclides, Rej, (j = 1..n), per

97

Agl09.amount += distr_A1U235[110]*pdf_dZ[4]/NA*110;
Agli0.amount += distr A1U235[111]*pdf.dZ[4]/NA*111;
Aglil.amount += distr A1U235[112]*pdf dZ[3]/NA*112;
Agll2.amount += distr_A1U235[113]*pdf_dZ[3]/NA*113;
Agll3.amount += distr A1U235[114]*pdf _dZ[3]/NA*114;
Agll4.amount += distr . A1U235[115]*pdf_dZ[2]/NA*115;
Agll15.amount += distr A1U235[116])*pdf_dZ[2]/NA*116;
Agll6.amount += distr. AIU235[117]*pdf dZ[1]/NA*117;
Agl17.amount += distr_A2U235[118]*pdf dZ[1]/NA*118;
Agli8.amount += distr_A2U235[119]*pdf dZ]1]/NA*119;
Agll9.amount += distr_A2U235[120]*pdf_dZ[0]/NA*120;
Agl20.amount += distr_ A2U235[121])*pdf_dZ[0]/NA*121;
Agl2l.amount += distr. A2U235[122])*pdf.dZ[-1]/NA*122;
Ag122.amount += distr_A2U238[123]*pdf.dZ[-1]/NA*123;
Agl23.amount += distr_,A2U235[124]*pdf dZ[-1]/NA*124;
Agl24.amount += distr A2U235[125]*pdf.dZ[-2]/NA*125;
Agl125.amount += distr_,A2U235[126)*pdf dZ[-2]/NA*126;
Ag126.amount += distr_A2U235[127]*pdf -dZ[-3]/NA*127;
Ag127.amount += distr A2U235[128]*pdf_dZ[-3]/NA*128;
Ag128.amount += distr_A2U235[129)*pdf_dZ[-3]/NA*129;
Agl129.amount += distr.A2U235[130)*pdf dZ[-4]/NA*130;
Agl30.amount += distr A2U235[131]*pdf dZ[-4]/NA*131;
Ag131.amount += distr_ A2U235[132]*pdf_dZ[-4]/NA*132;
As73.amount += distr_ A1U235[74[*pdf_dZ[4]/NA*74;
As74.amount += distr A1U235[75]*pdf_dZ[4]/NA*75;
As75.amount += distr A1U235[76]*pdf_dZ[4]/NA*TE;
As76.amount += distr_ A1U235[77*pdf dZ[3]/NA*77;
As77.amount += distr. A1U235[78]*pdf_dZ[3]/NA*78;
As78.amount += distr A1U235[79]*pdf_dZ[2]/NA*79;
As79.amount += distr_A1U235[80]*pdf_dZ[2]/NA*80;
As80.amount += distr A1U235[81])*pdf_dZ[2]/NA*81;
AsBl.amount = distr A1U235[82[*pdf_dZ[1]/NA*82;
As82.amount 4= distr_A1U235{83]*pdf_dZ[1]/NA*83;
As83.amount += distr_A1U235{84]*pdf_dZ[0]/NA*84;
As84.amount += distr_A1U235{85]*pdf_dZ[0]/NA*8S;
As85.amount += distr_A1U235[86]*pdf_dZ[0]/NA*386;
As86.amount += distr_ A1U235{87]*pdf_dZ{-1]/NA*8T;
As87.amount += distr_A1U235[88]*pdf_dZ[-1]/NA*88;
As88.amount += distr A1U235[89]*pdf_dZ]-2]/NA*89;
As89.amount += distr A1U235[90)*pdf.dZ[-2]/NA*90;

Figure 6.7: A portion of probabilistic space equations for fission products at ¢; for
experiment no. 2.

08

As90.amount += distr_,A1U235[91]*pdf_dZ[-2]/NA*91;
As931l.amount += distr_,A1U235[92]*pdf _dZ[-3]/NA*92;
As92.amount += distr A1U235[93])*pdf_dZ][-3]/NA*93;
As93.amount += distr_,A1U235[94]*pdf _dZ[-4]/NA*94,
As94.amount += distr_A1U235[95])*pdf_dZ[-4]/NA*95;
As95.amount = distr_ A1U235{96]*pdf dZ[-4]/NA*96;
Bal32.amount += distr_A2U235[133]*pdf.dZ[4]/NA*133;
Bal33.amount += distr_A2U235[134)*pdf_dZ[4]/NA*134,
Bal34.amount += distr A2U235[135]*pdf_dZ[3]/NA*135;
Bal35.amount += distr_A2U235[136)*pdf dZ[3]/NA*136;
Bal36.amount += distr A2U235[137])*pdf_dZ[3]/NA*137;
Bal37.amount += distr_ A2U235[138]*pdf dZ[2]/NA*138;
Bal38.amount += distr_ A2U235[139]*pdf_dZ[2]/NA*139;
Ba139.amount += distr_A2U235[140)*pdf_dZ[1]/NA*140;
. Bal40.amount += distr A2U235[141]*pdf dZ[1]/NA¥141;
Bal4l.amount += distr_.A2U235{142]*pdf_dZ[1]/NA*142;
Bal42.amount += distr_.A2U235{143]*pdf .dZ[0]/NA*143;
Bal43.amount += distr_ A2U235[144}*pdf _dZ[0]/NA*144;
Bal44.amount += distr A2U235[145]*pdf_dZ[-1]/NA*145;
Bald5.amount 4= distr A2U235{146]*pdf_dZ[-1]/NA*146;

Figure 6.8: ‘Continuation of a portion of probabilistic space equations for fission
products at t; for experiment no. 2.

report time period are accumulated in Fissile_fissioned. Since only nuclides of 2357
activate the fission process in the first cycle, then the state space equation for Fis-

sile_fissioned is generated as
Fissile fissioned + = Rcl/235.
A state space equation
Fissile_consumed + = ;CfU235.

is .genera,ted showing the amount of substance consumed per cycle period Cfi=1.a
which are accumulated in Fissile_consumed.

The nuclides of types 238 and 23°U activate radioactive capture processes. When
these processes are active, the nuclides of type ***U cause the NPT interpreter to

generate state space equations for a fraction of neutrons for radioactive capture

99

FgU235, consumption of 23 CrcU235, productions of 238U Prcl235 which are caused
by nuclides of 33/ capturing neutrons, the amount of neutl;on capturing nuclides
U235.amount, and the number of the resulting nuclides U236.amount. Similarly, the
nuclides of type ***U cause the NPT interpreter to generate state space equations
for FglU238, PrcU238, CrclU238, U238.amount, and U23%.amount. The state space

equations related to 2*®U are shown below:

FglU238 = U238.amount * U238.sigma.g/Sigma_a_fuel - (6.10)
Pch238 = FgU238 x k/eta * neutron.amount (6.11)
Crcl/238 = Fgli238 + k/eta * neutron.amount (6.12)

U239.amount + = 1.00 % PT;cU238 (6.13)
[/238.amount + = —1.00 % Crcl/238 (6.14)

The nuclides 280 interact with neutrons through radioactive capture only; i.e.
23817 is consumed only for radicactive capture. The state space equation for %3/ con-
sumption is different than that of 2*°U consumption as seen by comparing equations

(6.14) and (6.3).

6.1.2 State space and probabilistic space equations of the

second cycle for experiment 2

- At %, there are many types of product nuclides other than #3*U. The product nuclides
2381/ come from radioactive capture involving neutrons from nuclides of **U. The
fission products with mass numbers ranging from 73 to 162 come from the result of
fissioning *337. The product nuclides of *°U come from the radioactive capture of
neutrons with nuclides of 238U. It can be seen from Fig. 3.1 that the nuclide 2*°U
can interact with neutrons through fission, through radicactive capture, and that it

undergoes beta negative decay. Consequently, #*°U instantiates three types of basic

100

nuclear and aggregate effect models: fission, radioactive capture and beta negative
decay. Both 23307 and **°U interact with neutrons through the fission précess. Nu-
clides 235U, 2387 and **°U interact with neutrons through radiocactive capture, .a.long
with other types of nuclides which come from fissioning 35U at the first cycle; i.e.
Tb159, Gd156, Gd157, Eulb3, Eulb4, Eulb5, Smih0, Sm151, Sm152, Sm153, Sm154,
Pm148, Nd145, Nd146, Nd148, Nd150, Pr143, Lal38, Cs133, Xel30, Xel31, Xel35,
1127, 1129, Sh123, MolOO, and-Kr85. The result of the above nuclides interacting with
neutrons through radiocactive capture, and both nuclides 2% and 233U interacting
through the fission process can be seen in the generated state space equation of X
shown in Fig. 6.9. The resulting state space and probabilistic space équatibns at
time t; of Experiment 2 are given in Appendix V, while a portion of them is shown
in Fig. 6.9. The complete set of active processes in the second cycle can be seen in
Appendix IV.

The nuclide 2?0 and some product nuclides, which cc;me from fissioning 23U
at the first cycle, are not stable. They undergo either beta negative decay or beta
positive decay by emitting beta particles along with beta energy. The corresponding
actions in NPT are that each type of nuclide activates the basic nuclear physics model
of beta negative decay or beta positive decay, and the associated aggregate effects
model. The state space equations of nuclide pr:-.oduction and consumption as a result
of each type of nuclide is produced. The number of beta particles produced, and
the energy of beta released by each type of nuclide is accumulated in the state space
equations Beta_Neg.amount and Beta_Neg.energy (see Appendix V).

When a sirmulation is carried out, the resulting state space equations change from.
cycle to cycle depending upon how many types of nuclides are available in the reactor
core, and how many types of interactions occur. The results of running a simulation
for 20 seconds are shown in Appendix VII.

' The results of the evaluations of the state space and the probabilistic equations

are reported every report time period. The reported result includes the number of

101

Sigma_a_fuel = U235.amount*U235.sigma_g+U235.amount*U235.signa_f+
U236.amount*U236.sigma_g+U238.amount*U238. sigma_g+Tb159. amount*
Tb169.sigma_g+Gd155 . amount*Gd1E5.sigma_g+Gd156. amount*Gd156.sigma_g+
GA157.amount*Gd1b7.sigma_g+Eul53.amount*Eulb3. signa_g+Eul154. amount*
Eulb4.sigma_g+Eulb5.amount*Eul55. sigma_g+Sm150. amount*Smi50. sigma_g+
5Smi151.amount*Smitl.sigma_g+5m152. amount*Sm152. sigma_g+Smi53.amount*
Sm153.sigma_g+Sm154.amount*Sm154.sigma_g+Pm148.amount*Pm148.sigma_g+'
Nd145.amount*Nd145.sigma_g+Nd146.amount*Nd146.sigma_g+Nd148. amount*
Nd148.sigma_g+Nd150.amount*Nd150.sigma_g+Pri43.amount*Pri43.sigma_g+
Lal138.amount*Lal38.sigma_g+Cs133.amount*Csl33.sigma_g+Xel30.amount*
Xel30.sigma_g+Xel3l.amount*Xel3dl.sigma_g+Xel3b.amount*Xel35.sigma_g+
1127 .amount*I1127 .sigma_g+I129.amount*1129.sigma_g+5b123.amount*

- 5b123.sigma_g+Mol100.amount*Mo100.sigma_g+Kr85.amount*Kr8s. . sigma_g;

FgU235 = U235.amount*U235.sigma_g/Sigma_a_fuel;

nrcl235 = neutron.amount¥k/eta*Fgl235;
PrcU235 = nrcU235%U235.4/N4;
Crcli235 = nrcU2356%U236.A/NA;

U235 .amount += -1.00%CrclU235-CfU235;
U236.amount += 1.00*Prcl235-1.00*Crcli236;

Gamma.energy += 1.98%nrcU236+sum({i+ei/2)+*distr_E_GammaU235[i],0,8)+
L98%nrcll236+1 . 98%nrclU238+1 . 98*nrcTh159+1 . 98%nrcGd156+1 . 98*nrcGd 166+
.98*nrcGd167+1.98%nrcEulb3+1.98%nrcEulb4+1 . 98+*nrcEulbb+1.98*nrcSm150+
.98*nrcSmi51+1.98%nreSm152+1. 98*nreSm153+1. 98*nrcSm154+1 . 98*nrcPmi148+
.98*nrcNd145+1.,98*%nrcNd146+1.98*%nrcNd148+1 ., 98*%nrcNd150+1 . 98*nrelPridd+
.98%nrcLal38+1.98*nreCs133+1,98*%nrcXe130+1,98+nrcXe131+1.98+nrcXe135+
.98%nrel127+1.98#nrcl 12941 . 98*nrcSh123+1. 88*nrcMo100+1 . 38*nrcKr8b;

I

Sigma_f_fuel = U235.amount*U235.sigma_f;

fU235 = U235.amount*(U235.sigma_f+U236.sigma_g)}/
(Sigma_a_fuel+Sigma_a_cl+Sigma_a_md};

Figure 6.9: Portion of the state and probabilistic space equations at time 2, Experi-
ment 2.

102

fissions over the report time period, amount of fissile material consumed for both 2357/

and %380/ in units of grams, the number of fission neutrons along with the energy of
fission neutrons, the energy of gamma products, the energy of fission fragments for
both F1 and F2, the number of beta particles and the energy of beta particles, The
distribution of nuclides in the reactor core are reported at the end of the simulation.
These results show a subcritical state for the reactor, where the number of fissions
decréases with each report period. The reports are shown up to the third report
period only. The entire 20 second simulation reqﬁired 2 hours, 4 minutes, and 1
second CPU time on SUN SPARC station IPX computer. This experiment required -
about half of\the time required for the first and the third experiments [17]. This is
due to the fact that after 9 seconds, no more fission proceéses occur, and the only
remaining processes requiring calculations are the beta positive and beta negative

decays.

6.2 Comparison to Expected Results

A theory 1s usually tested by comparing the observed actual behaviour of a system,
sometimes resulting from a carefully constructed experiment, with the predictions
made from the theory.

NPT can predict the behaviour o_f nuclear physics processes by geﬁerating dy-

namic state space equations and probabilistic equations every cycle and evaluating

_these equations. The results generated by NPT may be verified against experiments,

but any discrepancy between the observed behaviour and the behaviour predicted by
NPT does not necessarily indicate a flaw in the approach taken by NPT.. Often, such
discrepancies may be better explained by inadequate knowledge of nuclear physics
processes (e.g., distribution of prompt gamma particles, distribution of product nu-
clides) or by inappropriate assumptions made by the modeler interacting with NPT

{e.g. parameters of the reactor);

103

~ The examples shown in section 6.1 and iﬁ [17] demonstrate some of the capabilities
of NPT and NPTsim. The example does exercise most of the NPT mechanisms and
thus shows that the mechanisms work for nuclear physics systems which consist of
nuclear physics processes (e.g., fission, radicactive capture, beta positive decay and
beta negative decay).

For the experiment discussed in section 6.1, four basic nuclear physics and aggre-
gate effects models were written. They are BNPMs and AEMs for fission, radioactive
capture, 8% decay and 8~ decay. In this simulation, the reactor is fueled with 1000
kg of natural Uranium which consists of 0.7% of ¢2U/** and 99.3% of 02U, The
reactor parameters used for the simulation are 1.03 {fast fission factor), 0.985 (fast
non-leakage probability), 0.667 (resonance escape proba,b.ility.)_ and 0.975 (thermal
non-leakage probability). A geometric model has not yet been included in NPT. The
reactor is a.ssﬁrned to be homogeneous, where there is no difference in flux due the
distribution of fuel, moderator and cladding.

The experimental results for the 20th second are shown in Appendix VII. The
report tells that 2.876e+05 nuclides were fissioned in the beginning, the number of
nuclides fissioned decreases and they vanished after 9 seconds. These results showed
a subcritical state for the reactor, where the number of fissions decreases with each
report period. This is due the fact that the exact values for the resonance escape
probability 7 and the resonance escape probability p are not kﬁown yet. The # and p
adopted are the same values as for a homogeneous reactor, which are 1.03 and 0.667,

respectively. For a heterogeneous reactor, such as the CANDU reactor, the value
| of n and p must be greater than that of a homogeneous reactor in order to achieve
' criticality [13]. The exact values are not yet reported. Experiment 3 reported in [17]
shows that by using 12% enriched Natural Uranium as a fuel, the reactor remains
critical for 20 seconds.

The energy released per fission in the beginning is 175.7 MeV with less contribution

coming from the energy of beta particles. When the number of nuclides fissioned

104

decreases, more nu.clides are involved in other processes such as the beta decay and
the radioactive capture processes. These processes produce more energy than fission
processes. This energy is the major contribution in the total energy released. The
amount of energy released per fission in the form of kinetic energy of product nuclides
(energy of F1 and F2) is found to be 167.02 MeV, i.e., within 0.02% error with respect
to the experimental results presented in [21]. The amount of the average neutron
energy released per fission is found to be 4.79 MeV, which means 4.14% error with
respect to the experimental value of 5 MeV presented in [21]. This is partly due to
the fact that a model for the delayed neutrons accompanying fission reactions has not
been included in the system. The number of neutrons released per fission, v, is found
to be 2.429 which is .very close to the known experimental value of 2.43 [21]. The
value of v will even be closer to 2.43 if a BNPM and AEM_for the delayed neutron
process is included. The available nuclides at the end of the simulation period are

shown 1n Appendix VIL

6.3 Q-ueries, Histories and Changes parameters

Having a set of both state space and probabilistic space equations, one can query,
at a current cycle, either the value of a variable or the history of a variable to determine
where it éame from. To get the value of a variable, the NPT language allows one to
write “get_value ©”, where z is the name of the variable being searched. For example,

in order to know the amount of a particular type of nuclide (e.g. Krypton),. the query
“get_value Kr85.amount” will determine it.

To know how parameters of NPT change from cycle to cycle, the notion of history
is used. History of a parameter is made up of state space and probabilistic space
equations showing where it came from. The equations are stored in linked-lists, and
when they are evaluated by the NPT behaviour generator, they require CoOnversion

from infix to postfix expressions. NPT takes into account a set of postfix expressions

105

History of Sigma_a_fuel
Sigma_a fuel: U235.amount U235.sigma f * U235.amount U235.sigma g * +
U238.amount U238.sigma_g * +
U235.amount: (value: 1.200e+05) CfU235 - CrcU235 -
CfU235: RcU235 NA / U235.4 *
RcU235: k eta / Neutron.amount * FfU235 *
k: fU235 eta * HWRC.epsilon * HWRC.p * HWRC.PNLf * HWRC.PNLth *
fU235: U235,amount U235.sigma_f U235.sigma_g + * Sigma.a_fuel
Zacl.sigma.a + HWmd.sigma_a + /
U235.sigma_ f: 5.850e+02 (leaf)
UR35.sigma_g: 9.900e+01 (leaf)
Zacl.sigma_ a: 0.185
‘HWmd.sigma_a: 0.001
eta: nu U235.amount * U235.sigma_f * Sigma_a_fuel /
nu: 2.43 '
HWRC.epsilon: 1.03
HWRC.p: 0.667
HWRC.PNLf: 0.865
HWRC.PNLth: 0.833 _ :
Neutron.amount: (value: 1.386e+20) pnU235 + nrcU235 - nrcU238 -
pnU235: 0 distr_neutronU235[0] * ! distr_neutronU235{1] * + 2
distr_neutronU235[2] * + 3 distr_neutronU235[3] * +
4 distr_neutronU235[4] * + 5 distr_neutronU235[5] * +
6 distr_neutronU235[6] * + 7 distr_neutronU235[7] x +
8 distr_neutronU235[8] * + :
distr_neutronU235[0]: RcU235 pdf_neutron[0] *
pdf_neutron{0]: 8.804e-02 (leaf)
distr_neutronU235[1]: RcU235 pdf_neutron[i] *
pdf_neutronii]: 2.139e-01 (leaf)
distr_neutronU235[2]: RcU235 pdf_neutron(2] *
pdf_neutron[2]: 2.59%e-01 (leaf)
distr_neutronU235[3]: RcU235 pdf_neutronf3] *
pdf_neutron[3]: 2.105e-01 (leaf)
distr_neutronU235[4]: RcU235 pdf_neutron[4] *
pdf_neutron(4]: 1.279e-01 (leaf)
distr_neutronU235[5]: RcU235 pdf_neutron{B] *
pdf_neutron[5]: 6.216e-02 (leaf)
-distr_neutronU235{6]: RcU235 pdf_neutron[6] *
pdf_neutron[68]: 2.517¢-02 (leaf)
distr_neutronU235[7]): RcU235 pdf_neutron[7] *
pdf _neutron[7]: 8.739e-03 (leaf)

Figure 6.10: Example of history and query.

106

distr_neutronU235{8]: RcU235 pdf_neutron[8] *
pdf_neutron[8]: 3.755e-03 (leaf)

nrcl235: Neutron.amount k * eta / FgU235 *
FgU235: U235.amount U235.sigma_g * Sigma_a_fuel /
nrcU238: Neutron.amount k * eta / FgU238 %
FgU238: U238.amount U238.sigma g * Sigma_a_fuel /
U238.amount: (value: 8.800e+05) Crcl238 -
CrcU238: nrcU238 U238.4 * NA /

U238.4: 2.380e+02 (leaf)

NA: 6.02217e23

U238.sigma_g: 2.680e+00 (leaf)

F£U235: U235.amount U235.sigma f * Sigma_a_fuel /
U235.4: 2.350e+02 (leaf)

CrcU235: nrcU235 U235.4 * N4 /

Get value: Sigma.a_fuel
Value: 8.44384e+07

History of AglO8.amount
Ag108.amount: 0.000e+00 (leaf)

Get value: U235, amount
Value: 1.20000e+05

Figure 6.11: Continuation of an example of history and query.

to create a history of a parameter. The history: of a parameter at the current cycle is
created by giving a keyword “history”. For example, giving “historySigma_a_fuel”
at the first cycle produces a history for parameter Sigma_a_fuel. This history.is
shown in Fig. 6.10. This history tells us that Sigma_a_fuel initially comes from
U235.amount * U235.sigma_f + U235.amount * U235.sigma.g + U238.amount *
U238.s1gma_g, where U235.amount comes from —C 235 - CrclU/235 and has a value
of U235.amout = 1.2e + 5 as shown in Fig. 6.10. cfU235 comes from Rel7235 *

_ NA/235,A.I Other sequences are shown in the Figures 6.10 and 6.11.
A value of a parameter of NPT can be changed directly by giving a keyword

“set_value”. For example, to change the parameter of HW RC.p from the previous

107

value to the value of 0.98, one must fype “setvalue HW RC.p 0.98”.

6.4 Worst Case Time Analysis

The running time of NPTsim can be analyzed in terms of the number of operations
required to evaluate state space and probabilistic space equations in one cycle time.

The analysis includes

1. Time required for instantiation of the BNPM and AEM for establishing active

processes, which, in turn, are used to obtain the products of processes.
2. Time required for generating state space and probabilistic space equations.
3. Time required for evaluating state space and probabilistic space equations.

[tem 1 requires O(m) time for establishing active processes, and O{1) time for de-
termining the products of processes (e.g. préduct nuclides). The term m corresponds
to the number of available processes expressed in BNPM and AEM (in our example
m = 4). O(1) is the time réquired to determine a particular nuclide (e.g. 2%U) along
with its features from.the representation of nuclide data [18].

Generating a state space and probabilistic space equation requires [* r * s com-
parisons, where I, r and s represent the number of characters in the equation, the
length of a symbolic name of active objecté {e.g. objl, obj2), and the number of types
~of active nuclides. Therefore, the time to generate ¢ équa.tions_ is O(t * [r«s). For
our example in the worst case, [can be as large as 100, r can be up to 5, s can be up
to 3.000 (all types of nuclides in the nuclide data), and ¢ can be up to 10000 for all
processes. ' _ |

To evaluate the state space and probabilistic space equations requires two types
" of operations: a conversion from infix to postfix expression, and a postfix evaluation.

Each operation requires a constant time O(u) [32], where u is the number of terms

108

in the expression. The running time of the simulation using the NPT model for each

cycle time is thus
O(m) + O(1) + O(t x I x 7 8) x 2 x O(u),
where u is 10 in the worst case. This reduces to
O(t*l*r*s*u)'

Sﬁbstituting the above worst case values gives an order of 1.5 x 10 operations per
cycle time.

From the generated state space and probabilistic space equations, one can qﬁery
either the value of a variable, or the history of a variable to determine where.it came
from. The worst case time to search for a value of a parameter is O(2), because, in
the worst case, the complete linked-list representing all inﬂﬁenced variables in the

state space and probabilistic space equations must be traversed.

109

6.5 Generalization

NPT can be adapted for use with other processes outside the domain of nuclear

physics.

6.5.1 Environmental Modeling

For example, environmental modeling deals with the simulation of environmental phe-
nome.na.. From the perspective of a modeller, air pollution problems are conveniently
characterized by their scale and by the types of pollutants involved. Many sources
of pollutants are reported.in [40], such as formaldehyde, NOx, carbon monoxide, and
radon. The processes of producing these different types of pollutant can be defined
in NPT, using the AEM and the BNPM. The mathematical models for relating the
source of emissions to pollutant concentrations can be formulated using the influ-
ences of NPT. Each type of pollutant contributes the pollutant concentrations to
a certain degree. The emission of pollutants can then be accumulated through the
NPT cumulative influence. A model for spatial distribution of pollutants would also

be required.

6.5.2 Chemical processes

NPT can also be extended for simulating chemical processes. Chemical processes are

slightly different than nuclear physics processes as chemical processes allow reactions
between two types of molecules, while a nuclear physics process, such as fission, in-
volves a reaction between two types of nuclides. To represent chérnical processes in
NPT requires an additional framework for representing interactions between molecules
performing chemical reactions. The framework must be capable of handling interac-
tions between two or more atoms forming a molecule. It must also be capable of

handling interactions between two or more molecules performing chemical reactions,

110

- ag well as representing the basic chemical reaction principles that follow the chemical

reactions. As an example of a chemical reaction, two molecules of hydrogen react

with two molecules of nitrogen oxide to form water and nitrogen.is as follows:
2H, +2NO - 2H,0 + N,

For chemical reactions, NPT requires the representation of the periodic table of the
elements in & similar manner as for the representation of the nuclide data. All NPT

influences, except for the decay influence, can still be used here.

6.5.3 Fusion

Fusion is the process of combining two light nuclear particles. The combined masses
of fusion products are less than the mass of the original particles. The conversion of
this tiny mass results in a huge torrent of energy. A kinetic energy equal to or greater
than a potential energy of 0.29 MeV is required to enable nuclei to undergo fusion
reactions against the Coulomb force [29]. A number of fusion reactions involving
deuterium (3 H) are given below:

sHe+3n+3.37 MeV

iD+ID -
ST +1 H +4.03 MeV

(6.15)

2D 43T —5 He+yn+ 17.6MeV (6.16)

Equations (6.15) and (6.16) .represent D-D and D-T reactions respectively. Since

there is no natural tritium 37" [29], the 3T can be produced via the reactions
SLi+in -5 He 3T +4.8MeV (6.17)
TLi+in —s He+3T —2.TMeV (6.18)

NPT can be extended to represent fusion reactions, both for the D-D reaction and

for the D-T reaction. There are two types of D-D reactions,

D42D) He4+yn +3.2TMeV (6.19)

111

and

D43 D > T +1 H + 4.08MeV, _ - (6.20)

respectively. Both 2D and $He have been represented in the representé.tion of the
nuciide data, hence the D-D reaction can be represented in the NPT language in a
manner similar to that of representing fission. The unstable nuclide 37 must be added
to the chart of nuclide data, and the representation of (6.15) via some distribution is
also required. To enable nuclei to undergo a fusion reaction requires a kinetic energy
equal or greater than 0.29 MeV, and therefore ancther field or influence must be
added into the NPT framework to indicate there is a triggering force for fusiﬁn to
occur. |

 Since tritium 3T [29] is produced from either reaction (6.17) or (6.18), then to
‘represent a D-T' reaction , the reactions (6.17) and (6.18) must be represented in

NPT accompanying the reaction written in equation (6.20). .

6.5.4 Nuclear Medicine

Radiation in the form of gamma rays, beta particles, and neutrons in science and
industry is used o achieve desirable changes. The use of radiation for medical therapy
has greatly increased in recent years., The radiation comes from teletherapy units in
which the source is at some distance from the target, or from isotopes in sealed
containers implanted in the body or ingested in solutions of radionuclides. The main
advantages of using radioisotopes are ease of detection of their presence through the
emanations, and the uniqueness of the identifying halflives and radiation properties.
Different types of radionuclides used in medical diagnosis are reported in {1). They
iﬁclude the gamma-ray emitter, e.g. Iodine-123 (%3] for thyroid therapy, Gallium-67

(57Ga) for tumor and abscess imaging, and Strontium-85 for bone scanning.
If a radioactive substance enters the body, radiation exposure to organs and tissues

will occur. However, the foreign substance will not deliver all of its energy to the body

112

because of partial elimination. The effective time of irradiation is given by [28]

1 | |
T =T t 7
1,"2 EFFECTIVE 1/2 PHY SICAL 1}'2 BIOLOGIC

where 7 and 1
1/2 PHY SICAL 1{2 BICLOGIS

are the halflife of the radionuclide and _the'clear-
ance half-time of residence in the organ, respectively.

For example, the radioactive iodine uptake study is performed by oral administra-
tion of a radioisotope of iodine 3] to the fasting patient, followed by measurement
of the uptake in the neck at an early interval varying from 2-6 hours and again at
24 hours. The emitted G-radiation is effec;tive in irradiating the immediate local re-
gion of tissue in which *!J is concentrated, since S-radiation is able to travel only
millimeters in tissue [1]. |

To simulate the process of radiation absorption in tissue, one must know the
amount of activity within the tissue, the total time of irradiation, and the number
and abundance of emissions. One must know the geometry of the organ and the
likelihood that radiation arising from decay in adjacent organs will reach the tissue
of interest. The organ geometry is also important because it determines the volume
in which the total amount of energy is deposited. The time-dose integral defines the
amount of activity in the tissue, where the speciﬁc geometry determines the likelihood
of a particle depositing all or part of its energy in the organ. -

Since the greatest use of radiénuclides for medical therapy is in the form of gamma
and beta emitters, NPT can play a role in the simulation of the process of radiation in
_ tissue in terms of representing the decay processes (the process of ermitting gamma or
beta particles) in the tissué. NPT cannot represent the whole activity within tissue,
since it requires modeling of the organ geometry, modeling the molecules of the organ

tissue, and modeling biological effects on the tissue.

113

6.5.5 Communication Networks

The distribution influences of NPT could also play a role in the simulation of computer
communication networks. Different statistical distributions of traffic and noise could
be modelled on network connections. The structure used for the chart of nuclides
data could be used to represent network edges. A simulation of network traffic could

then measure curnulative throughput on various edges and nodes in the network.

6.5.6 Software Validation

One of the important phases in software validation is module testing. The term
module testing is used to encompass all procedures involving the testing of parts of a
program in isolation. Module testing involves the testing of new untried code which
can be presumed to include some faults and errors. It must seek to bring these faults
to light so that they can be removed. The problem of ensuring that modules interface
correctly can be broken into two components: physical and logical interfacing. At
the physical level, a module may invoke another module and pass across a number
of variables. It must be verified in some way that both modules assume that the
same variables are passed across, that where necessary these variables are presented
in the same order, that they include expected elements of d.a.’sa. and that the elements
of data are in the same expected order. At the logical level, it must be proven that
if the called module assumes that a particular data item must be within a speéiﬁc
range, then the calling module provides a value in the expected range.

NPT can be adapted for representation of the process of statistical testing of mod-
ules; cumulative influences could be used for accumulating errors. A two-dimensional
sparse array with rows and columns indicated calling and called modules, respec-
tively, can be built using the chart of nuclide data structure. Each element (2, 7)

would contain the variables passed from module 4 to module j.

114

Chapter 7

Conclusions and Future Work

7.1 Conclusions

The work of this thesis gives a formal representation system for nuclear physics pro-
cesses. As a result, Nuclear Physics Theory, NPT was established and was imple-
mented. The results of the research have been met satisfactori.ly and the objectives
outlined in section 1.2 have been met. In geuer.a.l the accomplishments can be stated

as Tollows:

1. A formal representation of nuclear physics processes, NPT, was established
which takes into account an accurate representation of nuclide data. It provides

a proper way of expressing knowledge of nuclear physics processes.

2. A new formalism for representing non-deterministic influences (i.e. distribution
influences) that affect physical processes has been devised, that can be applied

to a wide variety of process modeling tasks.

3. NPT is a flexible framework which allows a user to express different types of

nuclear physics processes.

118

4, NPT can describe interactions between highly dynamic processes in terms of
influence variables in a process, or influence between variables in processes being

modeled.

5. NPT can be used for reasoning about nuclear physics processes. The state of a
process being modeled is described by a set of state space equations and a set of
probabilistic space equations, which, when evaluated, provides the quéntitative

description of the processes in the current operating regime.

6. NPT can predict a behaviour of nuclear physics process quantitatively, not only
by generating pa.ra.ineters that have quantities, but also by generating any type
of both product nuclides and product particles which accompany almost any

nuclear physics process.

7. NPT defines nuclear physics processes in terms of an-easy-to-understand lan-

~ guage that can express a wide variety of nuclear physics processes.

8. The methodology is easily extended to other nuclear physics processes.

7.2 Suggestions for future work

Possible extensions of this work include:

1. Develop a symbolic tool for nuclear physicists to allow them to write NPT

expressions in an easy-to-use fashion.
2. Add more error checking in the syntax analyzer.

3. Add a display capability to the simulator that has been built so far so that the

- result of simulation can be graphically displayed for interpretation.

116

10.

11.

12.

Add more realistic “machinery” to the neutron cycle. For example more detailed
models of the moderator, cladding, control rods and the physical shape of the

fuel would allow a more realistic simulation of an actual reactor.

Include a geometric model of reactor, such that it gives an accurate value of

any reactor parameters in the model.

Extend the basic nuclear physics model and the aggregate effects model to allow

them to better focus on those isotopes used in medical domain.
Explore the application of NPT in the medical domain.

Explore other nuclear physics simulations using NPT; e.g. delayed neutron

fission, gamma. decay, fusion. This will also require extending the current basic

nuclear physics and aggregate effects model.

Investigate what would be required to speed up the simulation tool. Currently,
a complete 20 second simulation requires about 4 hours to run on a SparcStation

IPX.

Integrate a self-explanatory facility with NPT, such that it can provide causal
accounts and characterize possible behaviour. This could become a core com-

ponent in computer-based tutors.

Integrate NPT with work in virtual reality, such that visualization of any process
interactions occur in real time. This could provide betier explanations, and a

better understanding of nuclear process interactions.

Implement NPTSim Iising parallel processing. Each processor would cormpute
data for one nuclide (if there are at least 3000 processors) or a set of nuclides
apportioned such that each processor handles an equal number of nuclides. This

would speed up the simulation.

117

Bibliography

(1} Alazraki, N.P. and Mishkin, F'.S. Pundamental of Nuclear Medicine, The Society
of Nuclear Medicine, Inc, New York, NY, 1984,

[2] Bha.ska.r R. and Nigam, A. “Qualitative Physics Using Dimensional Analysis”,
Artificial Intelligence, vol.45, 1990, pp.73-111.

3] Bobrow, D. G. Qualitative Reasoning about Physical S'ystems MIT Press, Cam-
bridge, MA 1985.

[4] Collins, J. W and Forbus, K.D. “Reasoning About Fluids Via Molecular Col-
lections”, Proceedings of AAAI-1987, pp.590-595.

[5] deKleer, J.D. “Multiple represénta.tions of knowledge in mechanics problem-
solver”, Proceedings of IJCAI-77.

[6] deKleer, J.D and Brown, J.S. “A qualitative physics based on confluences”,
Artificial Intelligence, vol.24, 1984, pp.7-83.

[7] deKleer, J.D and Bobrow, D.G. “A qualitative reasoning with high-order deriva-
tives”, Proceedings of the National Conference on A.IL, Austin, TX, Aug. 6-10,
1984, pp.86-91.

[8] Bobrow, D.G. “Qualitative Reasoning about Physical Systems: An Introduc-
tion”, Artificial Intelligence, vol 24, 1984, pp.1-5.

[9] Dormoy, J. “Assembling a Device”, Proceedings AAAI-88 Seventh National
Conference on Artificial Intelligence, St Paul, Minnesota, USA, August 21-26,
1988, pp.330-335.

[10] Falting, B., and Struss, P. Recent Advances in Qualitative Physics, The MIT
Press, Cambridge, Massachusetts, London, England, 1992.

[11] Forbus, K. D. Qualitative Process Theory, Ph.D. Thesis, Department of .Com—
puter Science, Massachusetts Institute of Technology, 1984.

118

(12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

(20]

.Forbus, K.D. “Introducing Actions into Qualitative Simulation”, Proceedings
of the tenth International Joint Conferences on Artificial Intelligence, 1989,
pp.1273-1278.

Foster, A. R. and erght R. L. “Basw Nuclear Engmeermg . Allyn and Bacon,
Inc., Boston, MA, 1977.

Hartat:, 5. “Reasoning about Physical Systems in Artificial Intelligence”,
Techmcal Report TR93-080, Faculty of Computer Science, University of New
Brunswick, 1993.

Hartati, S and Nickerson, B. G. “A Symbolic Model for Representing Nuclear
Physics Processes”, APICS Annual Computer Science Conference Proceedings,
Wolfville, Nova Scotia, October 29, 1994, pp.99-108.

Hartati, S and Nickerson, B. G. “Nuclear Process Theory”, Proceedings of the
11th IEEE Conference on AI Applications, Los Angeles, CA, February 19-22,
1995, p340-346.

Hartati, S. “Nuclear Process Theory: A Symbolic Model for Representing Nu-
clear Physics Processes”, Technical Report TR94-087, Revision 2, Faculty of

‘Computer Science, Un1vers1ty of New Brunswick, May 4, 1995.

Hartati, S and Nickerson, B.G. “An Efﬁment Computer Representation of Nu-
clide Da.t.a Computatwnal Materials Science, submitted June, 1995, 18 pages.

Hartati, S., Nickerson, B.G. and DeMille, G.R. “Reasoning About Nuclear
Physics Processes” Proceedings of the 7th IEEE International Conference on
Tools with Artificial Intelligence, Wa.shlngton DC, November 5-8, 1995, pp.228-
235.

Hartati, S., Nickerson, B G. and DeMille, G.R. “A model for simulation of
nuclear physics processes”, International Journal of Modellmg and Simulation,

- accepted September, 1995, 24 pages (in press).

[21]
22]

[23]

Knief, R.A. “Nuclear Energy Technology’, McGrawlill, NY, 1981.

Kuipers, B. “Commonsense reasoning about causality: deriving behavior from
structure”, Arisficial Intelligence, vol.24, 1984, pp.169-203.

Kuipers, B. “Qualitative Slmula.tlon” Artificial Intelligence, vol.29, pp.289-388,
1986.

Kuipers, B. and Berleant, D. “Using Incomplete Quantitative Knowledge in
Qualitative Reasoning”, in Readings in Qualitative Reasoning about Physical
Systems edited by Weld, D and de Kleer, J, Morgan Kaufmann Publishers, Inc,
San Mateo, California, 1990, pp.324-328.

119

[25]

[26]
27]

28]
[29]
[30]
[31]
32
33
34]
[38]
136

[37]

[38]

[39]

Lamarsh, John R. Introduction to nuclear engineering, Addison-Wesley,

MA,1983.
Lamarsh, John R. Nuclear Reactor Theory, Addison-Wesley, MA, 1966.

Langh.aar, H.L. Dimensional Analysis and Theory of Models, John Wiley and
Sons Inc., NY, 1958.

Palmer, E.L., Scott, J.A. and Struss, H'W. Practicel Nuclear Medicine, W.B.
Saunders Company, Philadelpia, Pennsylvania, 1992.

Niu, K. “Nuclear Fusion, Cambridge University Press, NY, 1989.

Jain, R. “The art of computer systems performance Analysis Techniques for
Ezperimental Design, Measurement, Stmulation, and Modeling”, John Wiley
and Sons, NY, 1891.

Walker, F. W and Parrington J. R. “Nuclides and Isotopes”, General Electric
Company, San Jose, CA, 1989.

Weiss, M. A Data Structures and Algorithm Analysis, The Benjamin Cummings
Pubhshmg Company, Inc., Redwood City, CA, 1995.

Weld, D and de Kleer, J. “Readings in (QQualitative Reasoning about Physical
Systemns’, Morgan Kaufmann Publishers, Inc, 1990.

Weld, D. “Theories of Comparative Analysis”, The MIT Press, Cambridge,
Massachusetts, London, England, 1990.

William, B. “Qualitative Analysis of MOS circuits”, Artificial Intelligence, vol.
24, 1984, pp.281-346.

Woods, E. “The Hybrid Phenomena Theory”, Proceedings of the 12th Int. Con-
ference on A.l, Sydney, Australia, Aug. 24-30, 1991, pp.1138-1142.

Woods, E. and Balichen, J.G. “Structural Estimation with the hybrid phenom-
ena theory”, Proceedings of the 3rd IFAC Workshop, California, Sep. 23-25,
1991, pp.127-132.

Woods, E. The Hybrid Phenomena Theory A Framework Integrating Structural
Descriptions with State Space Modeling and Simulation, Ph.D. Thesis, Divi-
sion of Engineering Cybernetics, Norwegian Institute of Technology, Trondheim,
Norway, 1993.

“The Common Object Request Broker: Architecture and Speczﬁca,tmn Sun
Microsystems, Inc, 1992.

120

[40] Zannetti, P. Environmental Modeling - Vol.I Computer Methods and Software
for Stmulating Environmental Pollution end its Adverse Effects, Computational
Mechanics Publications, Ashurts, Southhampton, UK, 1993.

121

Appendix I

Equations Used in NPT

This section gives an example of how to derive formulae for use in NPT for several
types of nuclear processes. Since this is an example, this does not mean that equations
obtained in this chapter are the only valid expressions for simulating nuclear procesées.

One could certainly choose a different set of equations to satisfy different needs. Since

NPT evaluates state space equations every cycle, the equations to be derived have to
.be written based on this observation. It is not difficult to understand that selecting
a reasonable time cycle is crucial in NPT. The equations used for this particular
example are based on the neutron cycle of a reactor. To be moré specific, they are
based on the four factor equation [25]. For this reason, the average neutron life time

in the reactor 1s selected as the NPT’s cycle time period.

1.1 Fission processes in NPT

This section describes how to derive the four-factor formula [25] for use in NPT,
which can describe the behavior of a thermal reactor system. It also describes_ how
to generate state space models of neutron distribution, energy distribution of both
gamma and neutron products, and the distribution of fission products. The four-

factor formula components are :

122

1. fast fission factor, €

2. resonance escape probability, p
3. thermal utilization factor, f

4. fission factor, n

Each of these has been described in section (3.2). These terms will be discussed in

more detail in the next few sections.

I.1.1 Macroscopic cross section

The macroscopic cross section for a particular interaction of a mixture of substances is
defined as the sum of the cross section for the particular interaction over all substances
per unit volume of material. Thus, the macroscopic fission cross section of a mixture

of n substances E’;“el is

24 = Ny o} + Ny od+- o+ Ny o, 1)

where N;, o%(i = 1---n) represent the density of nuclides of type ¢ and the fission
cross section of nuclides of type i, respectively.
Similarly, the macroscopic absorption cross sections of a mixture of n substances

niuel is
nivl = N, U}+Nzg§+...+Nﬂg’;+N1or;+N20:+...+Nno';‘. (1.2)

where o; represents the radioactive capture cross section of nuclides of type 2.

The above equations consist of two parts, which are notated by SP and 5P,
in Fig. 5.2. The first n terms come from fission cross section of the n substances,
while the second n terms come from the radioactive capture cross section of the n

substances.

123

Each basic nuclear physics and aggregate effects model of a process is designed'
to represent interactions between neutrons and nuclides as a pfocess {e.g. fission, ra-
dicactive capture). As a consequence, if more than one type of nuclide can'instantiate
* a particular process, each type of nuclide will activate the basic nuclear physics and
aggregate effects models individually. This gives NPT an ability to show the inter-
action between nuclides and neutrons individually. Once all types of nuclides have
activated basic nuclear physics and aggregate effects models, the generated equa-

tions will show all interactions between neutrons and all types of nuclides and other

processes.

To illustrate how to write the expression for macroscopic absorption cross section,
consider the following example. Suppose we have two types of nuclides, type 1 and 2,
as fuel in a reactor core. The nuclide of type 1 will activate basic nuclear physics and
aggregate effects models of fission and produce an equation for macroscopic absorption

cross section L% as

nfvt = Ny o}

The nuclides of type 2 also activate basic nuclear physics and aggregate effects models
of fission. The corresponding term contributed by nuclides of type 2 18 N, cr?. These
two terms are added by NPT to produce |

E{{uel = N]_ O'} + Ng O'?c. (13)

. The two types of nuclides, while activating basic nuclear physics and aggregate effects
models of fission, also activate basic nuclear physics and aggregate effects models of
radiocactive capture and produce terms for macroscopic absorption cross sections as
N; g} and N; 2. These two terms are added by NPT to equation (I.3), which will |

result in an equation for macroscopic absorption cross section as
E‘{ue! = N]_ 0’}+N2 J?-}*Nl U;+N2 0’:. (:[4)
The more substances there are in the mixture, the more terms will appear in equation

124

(1.4). The generated equations are evaluated by the NPT evaluator to obtain the value
of the LHS expressions, which in turn is used by the NPT simulator.

By looking at a particular equation in the state space model, one can tell what
processes are active and what nuclides are involved in the processés. For example,
by looking at equation (1.4) one can say that there are four types of intera,c.tions.
between neutrons and nuclides, i.e., interaction between neutrons and nuclides of type
1 through the fission process; between neutrons and nuclides of type 2 through the
fission process; between neutrons and nuclides of type 1 through radioactive capture,
and between neutrons and nuclides of type 2 through radicactive capture.

The macroscopic absorption cross section, £/*¢, is influenced by the fission process
activated by nuclides of type 7 through N7 o;., and by the radioactive process through

N7 g3, These influences are formalized in NPT using algebraic influences, i.e.
q)

alg_infl { (Sigma_a_fuel)(objl.amount,objl.sigma_f)(objl.amotnt*objl.sigma_f} }
alg_infl { (Sigma‘a_fuel)(obj1.amount,objl.sigma_g)(objl.amount*dbjl.sigma_g) }

such as written in Figures 4.6 and 4.8 respectively.

1.1.2 Fission fraction

Initially, a certain number of neutrons along vﬁith one or more types of nuclides are
given as an input; see e.g. the input description in Appendix II. These neutrons may
interact with the nuclides in several possible ways; e.g. fission, radioactive capture.
Assuming that we have four types of BNPM and AEM models in NPT, (i.e. fission,
radioactive capture, beta positive and beta negative decays), neutrons can interact
‘with nuclides through fission and radioactive capture only, since beta decay does not
require neutrons. Assuming that n types of nuclides are available in the reactor core,
and that there are X neutrons, the fraction of absorption of neutrons for each type

of nuclide F? will be
FJ Nt O'g

= f .=1....
TNt Nool ot Naop "

125

where ¢, is the sum of the neutron absorption cross sections,
Oqp = 05+ ay

and N; is the density of nuclides of type 7 in the system. This equation shows that
part of the neutrons, F? X interact with nuclides of type j through neutron absorp-
tion, which leads to both fissions and radioactive capture. Therefore the fraction of
neutrons which interact with nuclides of type 7 through fission only , F ; , will be
Fi= 2% p
f N;ol ®
which leads to _ _
j
Fi= N o .
7 Nyol+Nyoi+-- +N,on

The fraction of neutrons which interact with nuclides of type j through radiocactive

captgre, Fg , will be o
. . 0‘?

Fi= -2 :

¢ Niol+Nyo24---4+ N,oo

The denominator of the last two equations is the macroscopic absorption cross section,

which is denoted as Li%. Using this notation, the fraction of neutrons for fission

and the fraction of neutrons for radioactive capture can be rewritten as

. N o"j -
f
F}? = E‘}uel . ' (15)
and ' _
. N, o3
F; = Egguelg _ (16)

respectively. These equations show that only F Jf of n{;;‘e ! neutrons will interact with
nuclides of type j through fission, and FJ of nl*® neutrons interact with the same type
of nuclides through radicactive capture. The fraction of thermal .neutrons absorbed
in fuel, nf**, was discussed in Section 3.2. |

When nuclides of type j having density N; and fission cross section a;"; activates

the fission process, it causes a fraction of neutrons, F, to interact with the nuclides.

This influence is formalized by the NPT language through the algebraic influence

126

alg_infl { (Ff(obj1)){objl.amount,objl.sigma_f,Sigma.a_fuel)}

Similarly, when the nuclides of type j having capture cross section o activate ra-
dioactive capture, 1t causes another fraction of neutrons, Fgf , to interact with the

nuclides. This influence is written in Fig. 4.8,

1.1.3 Thermal utilization factor

The thermal utilization factor, f, is defined as the ratio of the number of thermal
neutrons absorbed in the fuel to the total number of absorptions in the fuel, cladding,

moderator and other materials [21], i.e.,

Efue.l
_)
f - E{ud + E;zcm.—_fue!'

(L7)

If the fuel is a mixture of n substances, £* is given by equation (I.2). Substituting

equation (I.2) into the denominator of equation (I.7) results in

N1a}+N2U?—I—----{-Nﬂa}‘-l-Nl0';—|—Ngag+---+Nno';‘ I8
f - Eiuel_i_}:':on—fuel (:)

‘which can be written as

M ot + Ny o, Ny o} + N, o N, o} + N, o}
f - Eg:uel + Egm-«fuel Ei‘uzl + E:on—fuel’ +o Eél:uzl 4+ E:m-fuef

(1.9)

or more compactly as

f=h+fot -+ fn

Since there are n substances involved in both fission and radioactive capture, each

substance contributes

N; a; + N; o?)
fi= Eﬁ“"l-];):}f.“’“_fze“for] =12,---,n (110)

to f. If the non-fuel contributors are only cladding and moderator, then Zren—fue is
given by
Eﬂoﬂ—fue! — zd + Emd

127

where ¢ and £™ are the macroscopic absorption cross section for cladding and
moderator, respectively.
If only one type of nuclide activates both basic nuclear physics and aggregate

effects models of fission and radioactive capture, ¢ reduces to
siv = Nos+ N g,

Since only one type of nuclide actives both basic and aggregate effects models of

fission at a time, the thermal utilization factor is given by

Nos+ N o,
f = Ffuel ‘
534+ B 4 Tmd

(1.11)

The thermal utilization factor f is formalized by the NPT language through an alge-

braic influence such as

alg.infl { (f(obj1))
(obj1.amount,objl.sigma.f,objl.sigma_g,Sigma_a_fuel,Zra.sigma._a,HW.sigma_a)}

I.1.4 Thermal fission factor

The thermal fission factor, 7, is defined as the ratio of the number of fast neutrons

produced per thermal neutron absorbed in fuel [13], i.e.

v E}'MI
= Eguel :

The general expression for the thermal fission factor of a mixture of n substances is

7 Ny U}-I—UQNZUJEA----—FV,;N“G}‘

= 1.12
n el (1.12)
which can be written as
n Nyo} v Ny o} vn Ny o}
n= Ec{uei Eguel U E‘):uef (113)

where v; is the average fission neutrons produced from fissioning nuclide of type j.

The values of v; of all different types of nuclides are not completely known, and only

128

a few of nuclides have a known value of v, (it is approximately 2.43). Assuming that
the values of v for different types of nuclides are the same (e.g. v = 2.43), equation
(1.13) becomes

Nl 0.1 N2 0.2 Nn ot .
D=y (St Sk b zf“{) (1.14)

or

n=th+tn+ +m
Each term 7;(j = L -- - n) represents the thermal fission factor as a result of fissioning
nuclides of type j. When the nuclides of type j activate the fission process, 7 is
affected by the process through function

v Nj 0'}
Eguef

(L15)

This influence is formalized in NPT language through the algebraic influence

alg_infl { (eta)(nu,obj1_.amoﬁnt,obj1.sigma_f,Sigma_a_fueI)
{nu*objl.amount*objl.sigma_f/Sigma_a fuel} }

I.1.5 Multiplication factor

The multiplication factor k is defined as the ratio of the number of neutrons in the
current generation, ng.1, to the number of neutrons in the previous generation, ng;
ie.

g

k=

ng_]_

" The multiplication factor can be expressed in terms of the four-factor formula [25] as

k=nepf PnrsPrren ' (1.16)

Since BNPM and AEM models of fission can be instantiated by one type of nuclide
at a time, then if only one type of nuclide is available for the fission process, k is given

by equation (1.16). If n types of nuclides activate both BNPM and AEM models of

129

fission and radioactive capture, there will be a state space equation for each f; and #;
as discussed before (see equations (1.15) and (1.10)). Each type of nuclide contributes

a term to k. The contribution is

nep f; Pnry Pyrn

The equation of & for more then one type of nuclide involved, is defined as
k=nepfi Pvrs Pyrn+0€p fo Pvoy Pepen+-- -+ nep fo Pyrs Puoe

or
k=kthk+ -tk
where k;(j = 1. n) represents the contribution of nuclide j to the multiplication
factor. _
The influence on the multiplication factor k is formalized in NPT as the algebraic

influence

alg_infl {(k)(f(objl},eta,
PHWNUR'.epsilon,PHWNUR.p,PHWNUR.PNLf,PHWNUR.PNLth)
(f(obj1)*eta*PHWNUR .epsiton*PHWNUR.p*PHWNUR. PNLF*PHWNUR .PNLth) }

I.1.6 Fissions per cycle

As discussed in section (3.2}, the NPT model evalua.tes. the number of fissions every
‘prompt neutron life time, I, which is called the cycle time, .. The number of fissions
in the present cycle as a result of fissioning certain types of nuclides is given by
equation (3.5), R.,, and can be rewritten as

Cg1

R, - xF
7

where X is the total number of fission neutrons in the previous generation , and Fy

is the fission fraction.

- 130

As explained in the previous sections, each type of fissioning nuclide gives rise to
the corresponding equations for k, 5 and F; If the fuel is composed of n substances,
and X neutrons are generated in the previous generation, the number of fissions at

the present cycle caused by each substance is

R =Fpix (L17)
; |

For brevity, R, will be referred to by R. in the succeeding discussion. Equation {I.17)

can be rewritten as

m=£Wx - (118)
3

The above equation represents the number of fissions at the present cycle involving
nuclides of type j. When the nuclides of type j activate a fission process, it causes
equations for k, 7 and F¥ to exist, which in turn, give rise to equation L.18. This

inﬁﬁe_nce is expressed in the NPT language through algebraic influence such as
alg_infl {{Rc(obj1)}(k.eta,obj2.amount,Ff{obj1))(k/eta*obj2.amount*Ff{obj1)}}

where obj2.amount is X in equation {I.18), and objl is symbolic expression for the

activating nuclides.

I1.1.7 Fission products

There is a set of products associated with each fission process. The products of the
fission process described in this section are fission neutrons, energy of fission neutrons,

product nuclides, energy of product nuclides, and energy of gamma particles.

1.1.7.1 Fission neutrons

" For each active process, NPT generates equations for the number of fissions per cycle
for each type of nuclide, R?. Fission neutrons are produced when neutrons interact
with nuclides under fission processes. The number of fission neutrons is probabilistié.

The probability of producing 0-8 neutrons is controlled by the Poisson distribution.

131

This distribution is represented by pdf_neutron. Once the equation of the number of
fissions caused by each type of nuclide is generated, the equation for the distribution
of fission neutrens for each type of nuclide, distr neutron(i)? (see Fig. 4.6), can be
defined; i.e. |

distr_neutron[i} = R? *pdf_neutron[s], 1 =0.8. (1.19)

The superscript j represents the type of nuclide activating the process under consid-

eration. The equation for the total number of fission neutrons generated by nuclides
of type 7 pn? is

pn’ - sum(i * distr_neutrondls],i = 0..8). (1.20)

When nuclides of type 7 activate the fission process, an equation for the number

‘of fissions per cycle, R, is produced. This will influence the distribution of fission

neutrons, and the influence is formalized by the NPT language using the aggregate

inﬂuehce. In the NPT language the above equation becomes

alg_infl { (pn{obj1))(distr_neutron{obj1)) (sum({i*distr_neutron{objl1){i],i=0..8)) }

I.1.7.2 Product Nuclides

The mass numbers of product nuclides are probabilistic. For example, for 235U the
mass number ranges from 73 - 162. Fission always produces a pair of nuclides, F1
(light nuclide) and F2 {heavy nuclide), where the mass number of F1 typically ranges
between 72 - 117, while F2 is from 118 to 162. The range of mass numbers of product
~nuclides varies from nuclide to nuclide. |

The probability of having a certain mass number is typically expressed in terms of
% mass yield distribution of the fissioning nuclides. Part of the mass yield dié_tribution
for 2357 is shown in Table 1.1. In our example, mass yield probabilities for F1 and
F2 are represented by pdf_Al and pdf_A2, respectively. The distribution of the mass
numbers of product nuclides are given by distr_Al for F1 and distr_ A2 for F2.

132

Table I.1: Probability of fission fragments having a certain mass number for activating
nuclide U235. '

Al | % yield Al] % vyield || A2 | % yield | A2 | % yield
pdf Al pdf Al pdf A2 pdf A2

72 | 0.000026 | 95 | 6.50 118 1 0.013 142 | 6.21
73 | 0.0001 96 | 6.50 119 | 0.011 143 | 6.58
74 | 0.0003 g7 | 6.3 120 | 0.013 144 | 6.584
75 | 0.081 98 | 5.98 121 | 0.013 145 | 8.595
76 | 0.003 99 | 5.78 123 | 0.013 146 | b.50
77 | 0.008 1080} 6.1 124 1 0.016 147 | 3.93
78 | 0.021 101 | 6.28 125 | 0.0159 143 3.00
79 | 0.044 102 | 5.18 126 | 0.027 149 | 2.25
80 | 0.13 103 | 4.29 127 | 0.031 150 | 1.67
81] 0.13 104 | 3.03 128 | 0.059 151 | 1.08
82 | 0.19 105 | 1.88 129 | 0.126 152 | 0.653
83 | 0.32 106 | 0.96 130 | 0.35 153 | 0.417

84 | 0.535 107 | 0.41 131 | 0.75 154 | 0.268
85 1 1.00 108 | 0.145 132 | 1.81 155 | 0.158
86 | 1.317 109 | 0.054 133 | 2.89 156 | 0.074
87 | 1.96 110 | 0.031 134°| 4.31 157 | 0.032
88 | 2.bb 111§ 0.025 135 | 6.69 158 | 0.0149
89 | 3.57 112 | 0.019 136 | 7.87 159 | 0.0062
90 | 4.76 113 | 0.013 137 | 6.54 160 | 0.0033
91 | 5.8 114 } 0.015 138 | 6.32 161 | 0.0010
92 | 5.84 115 | 0.013 139 | 6.18 162 | 0.0003
93 | 6.03 119 | 0.0096 140 1 6.71 163 | 0.0085
94 1 6.37 117 | 0.00106 || 141 | 6.4

133

As discussed before, an active fission process produces equations for the number
of fissions per cycle for each type of nuclide, Rg Once this state space equation is
created, the state space equation for distribution of mass numbers of fission products

of F1 and F2 will be

distr_Al[i) = RE « pdf_Al%[], + = zbj..%bf - (121)

distr A2} = BRI « pdf _A1[3], i = %”'..ubj (1.22)

respectively, where Ib and ub are the lower and upper bound range of mass numbers
of fission products. [b and ub vary from nuclide to nuclide.

Once the nuclides of type j activate a fission process, the equation for R is
generated, which influences the distribution of mass numbers of fission products of F1
and F2 such as written in equations (I.21) and (1.22). These influences are expressed
in the NPT language through the aggregate influence, one of ‘them is shown here such

aggr_infl { (distr.Al{obj1)[i]){Re(objl),pdf.Al) (Re(obj1)*pdf_Al[i}i=73..117) }

In order to know what the fission products are, NPT has to provide a way to
generate atomic numbers from the known mass number. Consider a nuclide with
mass number A. The associated Z can be approximated by proton — neutron ratio

[25] with uncertainty éz, as
Z;

c — V

Z=5"— A+ (1.23)

where v is the average product neutrons per fission, A, and Z. represent the mass
number and the atomic number of the compound nucleus, respectively. The term &z
represents the deviation of product nuclide (Z, A) from the stable zone of nuclides,
and it has a non-deterministic value. The distribution of 67 can be approximated by
the Gaussian distribution. Given a number of product nuclides with & certain mass
number A, §z distributes these nuclides to produce many nuclides with different

atomic numbers (isobars).

134

. Once the distribution of mass numbers, digtr_Al , is known, its element consists of
the number of product nuclides having the same r'nass. numbers given by the element’s
index (isobars). The NPT language provides a way for decomposing the isobars into
different types of nuclides having different atomic numbers. Each type of nuclide has
unique atomic numbers F1.Z and neutron numbers F1.N

Knowing distr_Al and pdf_dZ, each element in distr_ Al represent a set of isobars
of producf nuclides F1 with mass numbers given by the associated index. To identify
how many types of nuclides occur within each element of distr_Al , several tasks are

carried out

1. Determine a common isobars’ atomic numbers using proton neutron ratio Z =

1= A (see equation (1.23)).

2. Determine the atomic number of each type of nuclide Fl;.Z, by giving a deviation

8z, represented by an index ofpdf_dZ, to the value of item 1.

3. Determine the neutron number of each type of nuclides F1.Z, by subtracting

the known mass numbers with the value of item 2.

4. Since the number of isobars in each element of distr Al are distributed over
pdf dZ, the number of each type of nuclide.in the isobars,F1l.amount, is calculated
by multiplying every element of distr. Al with elements of pdf dZ. If the result
is converted into grams, it is multiplied by Avogadro’s number, then divided by

the associated mass number.

5. The above processes are repeated for all set of isobars represented in distr Al .

Similarly, these process are carried out for all isobars represented in distr A2 .

These above processes are formalized in the NPT language using the distribution

influence for fission fragments F1 such as for fission fragments F1 such as

135

distr_infl { (F1)(distr_Al,pdf dZ)
(F1.Z=c.n.Z/{cn.A-nu)*A+dZ;
F1.N=A-(cn ..Z/(c_n A-nu)*A+dZ);
E1.amount=distr_AL(obj1)[A]*pdf_dZ[dZ)/NA*A, dZ=-4.4,A=T3..117) }

Therefore, when a type of nuclide activates a fission process, the process gives rise
to distr.Al and pdf.dZ, which in turn cause product nuclides F1 (having different
type of nuclides) and F2 (having different types of nuclides) to be produced. Both

c.n.A,c.n.Z and nu are the same as A, and Z; and v in equation (1.23), respectively.

1.1.7.3 Energy of fission neutrons

' Prompt neutrons are emitted with a continuous distribution of energies called the
prompt-neutron-spectrum [26]. Equation (1.24) gives the distribution of this prompt-

neulron spectrum

x(B) = 0.453¢" % sinh+/2.29E (1.24)

where x(E)dE is the number of fission neutrons emitted with energy between E and
E +dE.

The probability of a prompt neutron having an energy in a certain interval [ey, e;] is
obtained by calculating the area under the prompi-neutron spectrum which is bounded
by e; and e;. Examples of the préba.bilities of a neutron having an energy in a certain
interval are tabularized in Table I.2.. pdf_E_neutron in the probabilistic space equations
contains probability values given by the prompt-neutron spectrum, part of which are

‘shown in Table 1.2.
The total energy of neutron products for a number of fissions is accumulated such

as follows
8

) (3 + €/2) x pdf _E_neutronli] (1.25)

i=0
where ei is an energy interval in pdf_E_neutron and i + 0.5 is the average energy of

the 7** energy interval of neutron products.

136

Table 1.2: Probability per unit interval of energy of neutron products calculated from
[13]. '

neutron probability of
energy producing
En En, pdf_E_neutron[i] | i

(0,1] 0.3101635382 0
[1,2] 0.2965603757 1
(2, 3] 0.1858727779 2
(3, 4] - 0.10335641111 3t
[4, 5] 0.0538716708 4
[5,6] 0.0269146713 5
[6,7] 0.0130406600 6
[7,8] 0.0061712412 7
8, 9] 0.0028658063 8

Once the probabilistic space equation of the distribution of fission neutrons, and
the state space equation of the number of fission neutrons are generated by NPT -
(such as given by equations (1.19) and (1.20)), NPT generates equations for energy

distribution of fission neutrons such as
distr_E_neutron[i)’ = pn? * pdf .E_neutron?[s], for i =0..8

where the superscript j indicates the fissioning nuclides. The equation for the energy
of fission neutrons as a result of interaction between neutrons and nuclides of type j

is accumulated as
Neutron.energy + = (i + i/2) » distr_E_neutron’[i], fori =0.8" (I.26)

‘The ”+=" operator in equation (1.26) is used to denote an accumulation process.
This equation shows that N eutron.energy is obtained by accumulating the RHS of
equation (1.26) resulting from different types of nuclides.

The generation of the above equation is formalized by the NPT language through

a cumulative influence, for example

cum_infl { (Neutron.energy)(distr_E_neutron{objl))

137

(sum((i+ei/2)*distr_E_neutron(objlj[i],i=_0..8)) }

L.1.7.4 Energy of gamma particles

Gamma particles are emitted with a continuous distribution of energies which is called
the prompt-gamma-spectrum [26]. Equation (1.27) gives the distribution of prompi-
gamma spectrum |

N(E) — el.lDE . . (1.27)

where N{E)dE is the number of vy-rays emitted with gamma an energy between E
and E +dE. .

The probability of a prompt gamma having an energy in a certain interval d& =
[e1, e2] is obtained by calculating the area under the prompt-gamma spectrum which is
bounded by e; and e;. Examples of the probabilities of a gamﬁna. having an energyin a
certain interval are shown in Table 1.3. pdf_E_gamma in the probabilistic space model
contains probability values given by the prompt-gamma spectrum, part of which are

shown in Table 1.3.

Table 1.3: Probability per unit interval of energy of gamma products.

gamma probability of
- energy producing
Eg | BEg, pdf_E_gammali] | i
[0,1] 0.666481 0
(1,2] 0.221880 1
(2, 3] 0.077200 2
[3,4] 0.022369 3
[4, 5] ~ 0.007446 4
(5, 6] 0.002479 5
(6,7] 0.000825 8
[7,8] 0.000275 7
[8,9] 0.000091 8

Having pdf_-E_gamma defined, the equation for the gamma energy distribution

138

caused by interaction of neutrons and nuclides of type j is given by
distr_E_gammali)’ = RY x pdf _E_gamma’[i], for i = 0..8.

The energy of gamma products, as a result of interactions between neutrons and

nuclides of type 7, is accurnulated as
Gamma.energy + = (2 +ei/2) = distr_E_gamma’[i], for ¢ = 0.8,

The generation of the above equation is formalized by the NPT language through a

cumulative influence, for example

cum_infl { (Gamma.energy)(distr_E_gamma(obj1))
(sum((i+ei/2)*distr_E_gamma(obj1)[i].i=0..8)) }

1.1.7.5 Energy of product nuclides

The major fraction of the energy released in a fission process appears as kinetic energy
of the two fission fragments (F1 and F2). The distribution of mass numbers of fission
fragments and the distribution of kinetic energy of the fission fragments are related

by equations described below. For the two fragments (designated F1 and F2) in a

binary fission, the momenta of F1 and F2 must be equal, i.e.

M]_‘U]_ = Mg‘vg.
Since
1 2 1 2
El = EM]_‘UI and Ez = §M2U2
therefore | _
By _ My
E, M

Since the mass distribution of fission products are known, the energy distribution
of fission products can be obtained using the above relations. In our example, the

energy distribution for the two product nuclides F1 and F2 are repfesented by pdf_E.F1

139

and pdf_E_F2, respectively (see Fig. 4.2). Having péf_E_Fl defined, the equation for
the energy distribution of fission products F1 caused by interaction of neutrons and

nuclides of type 7 is given by
distr_E_F1[5) = R x pdf E_F19[3), for i = 0..8.

The energy of fission products F1, as a result of interactions between neutrons

and nuclides of type j, is accumulated as
Energy_Fl.amount’ + = (3 + €i/2) * distr_E_F19[3}, for i = 0..8.

The generation of the above equation is formalized by the NPT language through

another cumulative influence, i.e.

cum_infl { (.Energwal.amount)(distr_E_Fl(objl))
(sum({i+ei/2)*distr.E_F1({obj1)[i].i=40..84)} }

1.1.8 Fuel Consumption

NPT evaluates changes in parameters every cycle time. Every product generated or
object consumed in an active process is evaluated every cycle time. Every active pro-
cess in NPT evaluates its fuel consumption directly. If there are m types of processes
activated by one type of nuclide, then there will be m parts for fuel consumption, and
each is consumed differently depending.on the process.

For example, in the fission process NPT evaluates the number of fissions per cycle

time, and the fuel consumption for fission per cycle for a certain type of nuclide, O;I.

c;‘i:%,q

where NA is Avogadro’s number, and A is the mass number of the activating nuclide.
Note that Cy is in units of grams. Consumption of nuclides of type j for fission

processes is expressed in the form of

j.amount + = —C}i.

140

f this type of nuclide also activates the basic and aggregate effects models for radioac-
tive capture, then the equations for fuel consumption also reflect this fact. Denoting
- (7 as the amount of nuclides of type j consumed by radioactive processes {see section

1.4), the equation for the consumption of this type of nuclide will be of the form
j.amount + = —C; — ¢l

Similarly, if Cf ; represents the amount of nuclides of type j consumed for beta
negative decay processes, the form of the equation for consumption of nuclide j for

fission, radioactive capture and beta negative decay processes will be
j.amount + = —O}; —-CL -0,

The details of C7. and Cj,, are given in the next few sections.

1.2 Beta negative decay in NPT

The beta negative decay process occurs for nuclei in which there is an-excess of

neutrons. In this process, a neutron (3n) is considered to be converted into a proton
0

! p) with emission of an electron (%, e) or 8. The nuclear charge, Z, is consequently
increased by one with the mass number being unchanged. This is indicated by
AT —_f; aT (1.28)
The nuclide 4 41T is regarded as a new nuclide, and can be denoted as 4P.
Equation (I.28) shows that a radioactive species T' decays into another species P

by emitting 3~. The equations for the rate of change of the number of atoms with

time for each species are given by

dNy
— = —Ar N, | (129)
dNp
&%P _ \p Ny L
dt AT T (30)

141

Equation (1.29) shows a consumption of the number of atoms of the decaying
nuclides over time, while equation (1.30) shows the production of the resulting nuclide
P over time. The change in the number of atoms of the decaying nuclidés at a very

small time period ¢, can be approximated by
dNt = —Ap Ny t,. (1.31)

The amount of production of the resulting nuclide for a certain time period is the

same as the amount of consumption for that period, i.e
dNR_: ArNrpt,,

where P is the resulting nuclide.
In our example, the equation for nuclide consumption due to the beta negative

. decay process, CZL ., is written in the form

ng = Ar Nr i, - (1.32)
while the resulting nuclide, Py ,, is given by

PL.=Ar Ny t.. (1.33) |

Some equations that are also involved in the beta decay process and generated

every cycle time are equations (1.32), (I.33) and

T(Z, A).amount — = CL4, (1.34)
and

P(Z, A).amount + = Ppg. (1.35)

Equations (I.34) and (1.35) show the the number of nuclides T' decreases by the value
of CL,, and the number of nuclides P increases by the value of P ;.
When a beta negative decay occurs, it emits a beta particle with the corresponding

energy release of 0.4 MeV [25]. To show this process, the equation for the number

149

of beta particles is generated as well as the amount of energy of beta particles. The
number of beta particles released is equal to the number of product nuclides P. The
total number of beta negative particles from decaying a particular type of nuclide,

Beta_Neg.amount, is givén by

Beta_Neg.amount + = Pl * L. (1.36)

The corresponding equation for the amount of energy of beta particle, Beta_Neg.energy,
is given by
Beta_Neg.energy+ = PL, % 0.4 _ (1.37)
Each basic and aggregate effects model in NPT is activated by one type of nuclide
at a time. Therefore, when the basic nuclear physics and aggregate effects model

of beta negative decay is activated by a type of nuclide, the resulting e.quation for

nuclide consumption is given by equation (1.32). The equation for nuclide production

is given by equation (1.33).

If the activating nuclide has two beta decay modes, 3~ and 8%, the resulting
equation for the nuclide consumption will be from both A~ and S processes. The

one Which cémes from beta. negative decay will be

CF ., =05xr NT i, | (1.38)
with the corresponding state space equation for P given by

PP, =0.5)r N; t.. - (1.39)

In this case the amount of production and consumption associated with the beta
positive decay process is generated by the aggregate effects model of beta positive

decay.

The generation of equations for the product nuclides of beta negative decay, either

equation (1.39) or (1.33), is formalized in the NPT language using decay influences as

follows:

143

decay_infl { (objl.dmode & BETA_POSITIVE)(Pbnd(objl))
(Id,obj1.halflife,objl.amount,NA obj1.A, cycle_time)
(0.5*id*obj1.haiflife*objl.amount*NA/objl.A*cycle_time) }

decay_infl { (!(objl.dmbde & BETA_POSITIVE))(Pbnd{obj1})
(1d,0bj1.halflife,0bjl.amount,NA objl.A, cycle_time)
(Id*obj1.halflife*objl.amount*NA /objl.A*cycle_time) }

1.3 Beta positive decay in NPT

Beta positive decay occurs for a nuclide in which there is a deficiency of neutrons.
In this process, a proton ({, p} is considered to be converted info a neutron with
emission of a positron (3, €) or 8. The resultant nucleus has a nuclear charge of the
originating nuclear charge minus one, with the mass number being unchanged. This

is denoted by

A
am BF
T =z T

The nuclide 4_,7T can be denoted as a new nuclide £P.

Since the beta positive decay process is very similar to the beta negative decay
process, the basic nuclear physics and aggregate effects models of the two processes
are very similar. Consequently, when these models are activated by a nuclide the

state space equations generated for the beta positive decay processes are very similar.
The state space equations for a beta positive deca.y. process are similar to equations
(1.32), (1.33), (1.34), (1.35), (1.36) and (L.37), except that they have different LHS
expressions. Similarly, the same influences as those used in the beta negative decay

are employed in this process.

144

1.4 Radioactive capture in NPT

Radioactive capture processes occur when a neutron is captured by a nucleus and a

~ particle is emitted. In general, the radioactive capture process can be ekpressed as

A 1., 1

where the nuclide 4717 can be denoted as a new nuclide 4P,

As discussed before, there are X % thermal neutrons available in the reactor core.
There are also n types of nuclides involved in the reactor core. ‘These thermal neutrons
interact with the n types of nuclides through several different processes.

The fraction of neutrons interacting through radioactive capture for each type of
nuclide (e.g. nuclide of type 7) is given by equation (1.6). At the current cycle, the
production of P as a result of interactions between neutrons and nuclides of type 7
which cause a radioactive capture process is given by Rf_, where

. : k
R, =F] X —. (L.40)
7 .
The consumption of T (nuclides of type j) for radioactive capture is equal to equation
(1.40), since one nuclide T is consumed for every nuclide P produced. -
This gives 7, as follows |
. Kk
Cl.=F, X —.
_ 7
Consequently, C_ decreases the amount of nuclides 7', and RI_increases the amount
of nuclides P. The amount of T decreases by the amount of consumption of nuclides

T during a cycle time, that is
T(Z, A).amount — = CI,

where T{(Z, A) is the actual activating nuclide ID. This task is specified through the

NPT language as a cumnulative influence

cum_infl { (obj1..amount)(Crc(objl))(-Crc(objl)) }

145

where objl will be replaced with the actual decaying nuclide ID.

The equation for the nurmber of resulting nuclides P, P{Z, A).amount, is given by
P(Z, A).a.mount += PJ

where P(Z, A) is the actual resulting nuclide ID.

146

Appendix 11

NPTsim Input descriptions for

Experiment 2

The experiment is made to model nuclear physics process..in a Pressurized Heavy
Water Natural Uranium reactor core (PHWNUR). In this model, the core was fueled
by a Natural Uranium which consists of 0.711 % of 23U/ and 99.289 % of 28U, The
moderator used in the Pressurized Heavy Water Natural Uranium is heavy water and

zircaloy was used as cladding.

147

simulation_time 20.00 s
report _time 1.00 s
cycle_time 0.02 s

report Fissile.fissioned
report Energy F1l.amount
report Neutron.amount
report Gamma.energy
report Beta_Positive energy
report Beta_Negative.energy
report U23&.amount

NUCLIDE U235 {

Z 92

N 143

amount 0.7e+5 }
NUCLIDE U238 {

Z 92

N 146

amount 99.3 e+5 }
PARTICLE neutron {

id 32 '

amount le+20 }
REACTOR PHWNUR {

power ON

epsilon 1.03

p 0.667

PNLth 0.975

PNLf 0.985 }
MODERATOR HW {

sigma_a 0.001

density 3.006e422 }
CLADDING Zra {

sigma._a (.185

density 2.013e+23 }

Figure I1.1: NPTsim input descriptions of experiment no.2.

report Fissile_consumed
report Energy .F2.amount
report Néutron.energy
report Beta_Positive.amount
report Beta_Negative.amount
report U235.amount

148

Appendix III

Formal Grammar of the NPT

language

This appendix defines the grammar for the input files of the current NPT language

and its implementation. Some of the notation used is adapted from [39]. The symbols

used are defined below.

Notation

<text>
"text"
+ .

{*

H b/

Is defined to be
Alternatively
Non-terminal

Literal is always between double quotes

The preceding syntactic unit can be repeated zero or more times

The preceding syntactic unit can be repeated zero or one time
The preceding syntactic unit can be repeated one or more times
The enclosed syntactic unit are grouped as a single syntatic unit

Encloses a comment in the NPT grammar definition

149

<number> ::= <real> | <integer>

<real> ::= <dreal> | <ereal>

<integer> 115 <0-9>% | <0-9>+<eE><0-9>+
<dreal> 1= <0-9>¥M M<0-9>+

<ereal> 13= <0-9>%","<0-9>+<eE><sign><0-9>+
<eE>. o = Mgt | il

<symbol> 1i= <a-zA-2><a-zA-Z0-9>*

<variable> 1= <symbol> | <obj_ident>

<inp_obj_symb> 1 1= <symbol>
+/# will be replaced by an actual
object name of an active object from input */

<out_ocbj_symb> ::= <symbol>
/* will be replaced by an actual
cbject name of an active object from the
representation of nuclide data */

<obj.class> ::= "PARTICLE" | “"NUCLIDE"

<obj_attr> "::= <nuclide_attr> | <particle_attr>
<obj_ident> ::= <puclide_name>"."<nuclide_attr> |

_ <particle_name>", "<particle_attr>
<out_obj_ident> 1= <out_obj_symb>"."<obj_attr>
<input-file> ::= <simulation_time><report_time><cycle_time>

<report_var>*<debug_var>*<history_var>x
<nuclide_struct>*<particle_struct>*
<equip_struct>*

<gimulation_time> ::= "simulation_time" <time>
<report_time> ::= "report_time" <time>
<cycle_time ::= Ycycle_time" <time>
<time> ::= <number> <unit_time>
<unit_time> Copp= gt | ovd" | vh* | m" | "s”
<report_va : ::= "report" <variable>
<debug_var> ::= "debug" <variable>
<history_var ::= “"history" <variable>
<nuclide_struct> : 1= Y“NUCLIDE" <nuclide_name>
"{" <nuclide_spec>+ "}"
<puclide_name> L= CA-Z><a—-2Z>*¥<0-3>+
<nuclide_spec> 1:= <nuclide_attr><aumber>

150

<nuclide_attr>

<particle_struct>

<particle_name>
<particle_spec>
<particle_atir>

<equip_struct>

<equip.name>
<equip_symb>
<equip_spec>

<process_defs>
. <process_def>

<basic_def>

<basic_heading>
<basic_body>

<process_id>
<process_name>

<reactants>
<reactant _spec>
<act_conds>
<bool_exp>
<operand>
<act_operator>
<relatiomnal_op>
<boolean_op>
<weak_op>
<strong_op>

<interm_state>

nn ! e] nan l "amount" l
"energy" | "sigma_a" | “gigma_f"|
"density" | "sigma_g"

"PARTICLE" <particle_name>
“{" <particle_spec>+ "}"

CA-Z><a—z>*
<particle_attr><number>
1|ZH | "A” l "aIflOU.Il't” l ||energyu I "id"

<equip_name> <equip_symb>
!!{l!(equip_spec>+n}u
<symbol>

= <symbol>

<symbol> <number>

<process_def>+
<basic_def> <aggre_def>+

<basic_heading> "{" <basic_bedy> "}"

"basic_nuclear_physics_model"
<basic_1id> "is" <process_name>

<reactants> <act_conds> <interm_state>*x*x
<product_basic>

<symbocl>
<symbol>

"reactants" "{" <reactant_spec>t "}
<inp_obj_symb> "is" <obj_class>

= "activity_conditions" “{" <bool_expr> "}"
= <operand> <bool_operator> <operand>
= <number> | <obj_ident> | <bool_expr>
= <boolean_ocp> | <relational_op>

= Wz=b | UNEIL ! e | 1y I he= | Nyt

I
= gy ' "o
I

1 I'u l LN Rl

ll&ﬂ
LLFRL

ll/l!

intermediate_state" "{" <NPT_func>

151

<NPT_func>

<product_basic>
<object_def>

<ob]_spec>
<det_spec>

<expr>
<term>
<element>

<prob_spec>

<decomp_lockup>

<look_up_tab_vals> ::

<vector_var>
<vector_elm>

<pdf_file>

<decomp_func>
<distr_func>

<distr_name>
<mean>
<variance>
<1lb>

<ub>

<Symbol> u(u <inp_obj_symb> u)u n}u
<symbol>"_"<a-zA-Z0-9>*
/* "neutron_absorption" */

"products” u{u <object_def>+ u}n

"def_obj" "{" <out_obj_symb> <obj_class>
<obj_spec> "}

<det_spec> | <prob_spec>

= <out_obj_symb>"."<obj_attr> "is"

"DETERMINISTIC" (" "value" ":" <expr> “)*

<term> | <expr> <weak_op> <term>

= <element> | <term> <strong_op><element>

<number> | <variable> | "(" <expr> ")"

<out_obj_symb>","<obj_attr> "is"
“PROBABILISTIC" (" “value" ":"
<decomp_lookup> ")

<look_up_tab_vals> | <decomp_func>

"look_up_table" "(" <vector_var> <pdf_file>
I (|I<lb>li . H(ub>ll) 1l ll) 113

= <symbol>
= <vector_var>"["<symbol>"]" |

<vector_var> "(" <obj_symb>)" "['<symbol>"]"

<symbol>

/* file name containning pdf values
e.g. "neutron_sp" | "gamma_sp" |
"mass_yieldAl"| "mass_yielda2" |
“energy_distrF1" | "energy.distrF2" */

= "decomposition" wn <pdf_var><distr_func> nym
= <distr_name> " (" <mean>",'<variance>",

1l <lb>!!’"<ub>l! ll)ll

= "Gaussian" | "Poisson" | "Uniform" | "Xsquare"
= <number>
= <number>
= <integer>
= <integer>

152

;
£
e
¥

<aggre_def>
<aggre_heading>

<aggre_body>

<material>
<equipment>
<equip_spec>
<egquip_class>

<pre_conds>
<equip.sta>
<status>

<param_reacts>
<param_def>
<def_const>

<def vector>

<relations>
<infl_def>

<alg_inf1>

<infl_ed_var>
<npt_symb_var>
<inp_symb_var>
<symb_var>

<aggre_heading> "{" <aggre_body> "}"
"aggregate_effects_model"
<process_name> "(" <basics_id> "}"

<material><equipment><preconds>
<act_conds><param_reacts><relations>

<product_aggr>

<inp_obj_symb>

= "equipment" "{" <equip_spec>+ "1}
= <equip_name> "is" <equip_clas>

<A-Z>+

"pre_conditions" "{" <equip_sta> “}"
<equip._ident> "is" <status>

iIONu | "DFE"' E uoul I u1n

"parametric_reactions" "{" <param_def>* "}

<def_const>*<def_vector>*

"def_const" <symbol> "(" "value" ":"

<pumber>)"

"def_vector" <symbol> "(" 'value

"look_up_table" "(" <pdf_file>
”(”(lb)“,"<ub>")" u)u

“relations" "{" <infl_def>* "}
<alg_infl>* <cum_infld>* <aggr_infl>*
<distr_infl>* <decay_infl>*

"alg_infl" "{" "(" <infl_ed_var>)"

(" <list_infl_ing_vars> ")"

u(u <funct_spec> u)n n}n

<npt_symb_var> :

= <symbol> | <inp_symb_var> | <symb_var>

<list_infl_ing_vars>::

<inp_obj_symb>"."<obj_attr>
<symbol>* ("<inp_obj_symb>")"

= <npt_symb_var> |

<npt_symb_var>","<list_infl_ing_vars>

153

<funct_spec>
<infl_expr>
<infl_term>

<inlf_element>

<vect_expr>

<leoop_counter>
<in_vect_expr>
<in_vect_term>

<in_vect_element>

<in_vect_var>

ri= (j_nfl_expr> | Yaum! n(u <vect_expr> n)u

1:= <infl_term> | <infl_expr> <weak_op>

<infl_term>

::= <infl_element> | <infl_term> <strong_op>

<infl_element>

::= <number> | <npt_symb_var>]

w{" <infl_expr> ")"

1:= <in_vect_expr> "," <loop_counter>
11= <symbol> "=" <1b> ".." <ub>

11= <in_vect_term> |

<in_vect_expr> <weak_op> <in_vect_term>

::= <in_vect_element> | <in_vect_term> <strong_op>

<in_vect_element>

.= <pnumber® [<in_vect_var> |

"(" <in_vect_expr> ")"

: 1= <npt_symb_var> | <vector_elm>

<aggr_infl> s1= “aggr infl" "{" "(" <infl_ed_vect_var> "}"
w(" <infl_ing_vects_vars_vects> ")
||(|r <func_spec> n)l! Ir}ll
<infl_ing_vects_vars_vects> ::= <infl_ing_vect_vars> |

<infl_ed_vect_var>

<infl_ing_vect _vars>::

<infl_ing_var_and_vect_vars>

::= <vector_elm>

<vector_var>

<infl_ing_var_vect_vars> ::= [<vector_var>] |

<funct spec>

<cum_infl>

<vector_var> “," <npt_symb_var> |
<npt_symb_var> "," <vector_var> |
<vector_var><infl_ing_var_vect_vars> |
<ppt_symb_var> "," <infl_ing _var_vect_vars>

(1= Kvect_expr>

v= "cum_infl“ I!{n n(n <inf1_ed_var> N)u
“(" <list_infl_ing_vars> ")"
u(u <funct_spec> ll)l! n}n

154

<distr_infl>

<loop_expr>
<more_locop>
<in_loop_expr>

<decay_infl>

<product_aggr>

tdistr_infl" "{" "(" <out_obj_symb> ")"

w(v <infl_ing vects_vars_vects>)"

n(u <100P expr> ll)ll !I}!l

<in_loop_expr>+ <loop_counter> <more loop>*

= "," <loop_counter>
= <out_obj_ident> "=" <func_spec> ";"

"decay_infl" "{" "(" <cond_expr> ")"
"(" <infl_ed_var> ")" "(" <infl_ing_vars> "}"
<infl_expr> "}"

"products" "{" <cum_infl>* <distr_infl>* "}"

<vector_var> |
<vector_var> "," <list_infl_ing_ vars>

158

Appendix IV

Set of Active Processes at the End

of the Second Cycle

This appendix shows the different types of nuclides that are available in the system

at the end of the second cycle of running the simulation for Experiment 2.

156

U235

neutron

PHWNUR

HW

Zra :

BNPM radicactive_capture(U235,neutron)

AEM (BNPM radioactive_capture(U235,neutron))
BNPM fission(U235,neutron)

AEM (BNPM fission(U235,neutron),PHWNUR,HW,Zra)

U238
BNPM radicactive_capture(U238,neutron)
AEM (BNPM radioactive_capture(U238,neutron))

U236
BNPM radicactive_capture(U236,neutron)
~ AEM (BNPM radioactive_capture(U236,neutron))

U238
BNPM beta_negative_decay(U239)
AEM (BNPM beta_negative_decay(U239))

Tbh1b8
BNPM beta_negative_decay{Tb158)
AEM (BNPM beta_negative _decay(Tb158))

Tb159
BNPM radioactive capture(Tb159 neutron)
AEM (BNPM radiocactive_capture(Tblb9, neutron))

Gd155
BNPM radicactive_capture(Gd155,neuntron}
AEM (BNPM radioactive_capture(Gd155,neutron))

- Gd156

BNPM radicactive_capture(Gd156,neutron)
AEM (BNPM radicactive_capture(Gdi56,neutron))

Gd157

BNPM radiocactive_capture(Gdi57,neutron)
~ AEM (BNPM radioactive_.capture(Gdi57,neutron))

157

Gd158

G4159
BNPM beta_negative_decay(Gdi59)
AEM (BNPM beta_negative_decay(Gd159))

Eu153 _
BNPM radicactive_capture(Eul53,neutron) _
AEM (BNPM radioactive_capture{Eui53,neutron))

Eul54

BNPM radicactive_capture(Eulb4,neutron)

AEM (BNPM radioactive_capture(Eul54,neutron))
BNPM beta_positive_decay(Eul54)

~ AEM (BNPM beta_positive_decay(Eul54))

Enls5 :

BNPM radiocactive_capture{Eul55,neutron)

AEM (BNPM radicactive_capture(Eulb5,neutron))
BNPM beta_negative_decay(Eul55)

AEM (BNPM beta_negative_decay(Eul55))

Eulb6
BNPM beta_negative_decay(Eul56)
AEM (BNPM beta_negative_decay(Euib6))

Eulb7 .
BNPM beta_negative_decay(Eul57)
AEM (BNPM beta_negative_decay{Eui57))

Eulb8
BNPM beta_negative_decay(Eulb8)
AEM (BNPM beta_negative_decay(Eu158))

Eulksg
BNPM beta_negative_decay(Eulb9)
AEM (BNPM beta_negative_decay{Eul59))}

Smi50

BNPM radioactive_capture(Sm150,neutron)
AEM (BNPM radiocactive_capture(Smib0,neutron))

158

Smilb1

BNPM radicactive_capture(Smi5t,neutron)

AEM (BNPM radicactive_capture(Sm151,neutron))
BNPM beta_negative_decay(Smi51)

AEM (BNPM beta_negative_decay(Smi151))

Smik2
BNPM radicactive_capture(Sm152,neutron)
AEM (BNPM radiocactive_capture(Smi52,neutron))

Smib3

BNPM radicactive_capture(Sm153,neutron)

AEM (BNPM radioactive_capture(Smi53,neutron))
BNPM beta_negative_decay(Smi53)

AEM (BNPM beta_negative_decay(Smi53))

Sm154
BNPM radicactive_capture{Smi54,neutron)
AEM (BNPM radicactive_capture(Sm154,neutron))

Smibb
BNPM beta_negative_decay(Sm155)
AEM (BNPM beta_negative_decay(SmibB))

Sm156
BNPM beta_negative_decay(Sm1&6)
AEM (BNPM beta_negative_decay(Sni56))

smib7
BNPM beta_negative_decay{Sm157)
AEM (BNPM beta_negative_decay(Smi157))

Sm168
BNPM beta_negative_decay{Sm158)
AEM (BNPM beta_negative_decay(Smib8))

Sm159
BNPM beta_negative_decay(Smi59)
AEM (BNPM beta_negative_decay(Sm159))

Pm148
BNPM radioactive_capture(Fmi148,neutron)

159

AEM (BNPM radiocactive_capture(Pm148,neutron))
BNPM beta_negative_decay(Pm148)
AEM (BNPM beta_negative_decay(Pm148))

Pm149
BNPM beta_negative_decay(Pm149)
AEM (BNPM beta_negative_decay(Pm149))

Pm150 .
BNPM beta_negative_decay(Pm150)
AEM (BNPM beta_negative_decay(Pmi50})

Pmi151
BNPM beta_negative_decay{Pmi51)
AEM (BNPM beta_negative_decay(Pmi51))

Pmi52
BNPM beta_negative_decay(Pm152)
AEM (BNPM beta_negative_decay(Pm152))

Pm153
BNPM beta_negative_decay(Pmi53)
AEM (BNPM beta_negative_decay{Pm153))

Pmib4
BNPM beta_negative_decay(Pm154)
AEM (BNPM beta_negative_decay{Pmi54))

Pmi1bb
BNPM beta_negative_decay(Pm155)
AEM (BNPM beta_negative_decay{Pmi55)}

Pm156
BNPM beta_negative_decay(Pm156)
AEM (BNPM beta_negative_decay(Pmi56})

Pm157
BNPM beta_negative_decay(Pm157)
- AEM (BNPM beta_negative_decay(Pm157})

Pmi58
 BNPM beta_negative_decay(Pmi58)

160

AEM (BNPM beta_negative_decay(Pm158))

Ndi4b
BNPM radiocactive_capture(Nd145,neutron)
AEM (BNPM radioactive_capture(Nd145,neutron))

Nd146
BNPM radioactive_capture(Ndi46,neutron)
AEM (BNPM radiocactive_capture(Nd146,neutron))

Nd147
BNPM beta_negative_decay(Nd147)
AEM (BNPM beta_negative_decay(Nd147))

Nd148
BNPM radicactive_capture(Nd148,neutron)
AEM (BNPM radioactive_capture{Nd148,neutron))

Nd149
BNPM beta_negative_decay{(Nd149)
AEM (BNPM beta_negative_decay(Nd149))

Nd150
BNPM radioactive_capture(Nd150,neutron)
AEM (BNPM radicactive_capture{(Ndib0,neutron))

Nd151
BNPM beta_negative_decay(Nd151)
AEM (BNPM beta_negative_decay(Ndis1))

Ndib2
BNPM beta_negative_decay{Nd152)
AEM (BNPM beta_negative_decay(Nd152))

Nd153
BNPM beta_negative_decay{Nd153)
AEM (BNPM beta_negative_decay(Nd153))

Nd154

BNPM beta_negative_decay(Nd154)
AEM (BNPM beta_negative_decay(Ndi54))

161

Nd155
BNPM beta_negative_decay(Ndi55)
AEM (BNPM beta_negative_decay(Nd155))

- Ndib6
BNPM beta_negative_decay(Nd156)
AEM (BNPM beta_negative_decay(Ndi56))

Pri143

BNPM radioactive_capture(Pr143,neutron)

AEM (BNPM radicactive_capture(Pri143,neutron))
- BNPM beta_negative_decay(Pri43)

AEM (BNPM beta_negative_decay(Pr143))

Pris4
BNPM beta_negative_decay(Pri44)
AEM (BNPM beta_negative_decay(Prid4))

Pr145
BNPM beta_negative_decay(Prid5)
AEM (BNPM beta_negative_decay(Pri145))

Pri146
BNPM beta_negative_decay(Pri46)
AEM (BNPM'beta_negative_decay(?ri46))

Pri47
BNPM beta_negative_decay(Pri47)
AEM (BNPM beta_negative_decay(Pri47)}

Pri48
BNPM beta_negative_decay(Pri148)
AEM (BNPM beta_negative_decay(Prids8})

Pr149
BNPM beta_negative_decay(Pri49)
AEM (BNPM beta_negative_decay(Pri4s))

Pris0

BNPM beta_negativeﬂdeday(Pr150)
AEM (BNPM beta_negative_decay(Pri50))

162

Pribi
BNPM beta_negative_decay(Pri51)
AEM (BNPM beta_negative_decay(Pri51))

Prib2
BNPM beta_negative_decay(Pri52}
AEM (BNPM beta_negative_decay(Pri52))

Prit3
BNPM beta_negative_decay(Pr153)
AEM (BNPM beta_negative_decay(Pri53))

Prib4
BNPM beta_negative_decay{Pri54)
AEM (BNPM betafnegative_decay(Pr154))

Cel4d0

Celdl
BNPM beta_negative_decay(Cel41)
AEM (BNPM beta_negative_decay(Cel41))

Cel4d2

Celd3d
BNPM beta_negative_decay{Cel43)
AEM (BNPM beta_negative_decay(Cel43))

Celd4qd
BNPM beta_negative_decay(Ceid4)
AEM (BNPM beta_negative_decay(Celd4))

Cel4b
BNPM beta_negative_decay{Cel45)
AEM (BNPM beta_negative_decay(Cel45))

Celds
BNPM beta_negative_decay{Cel46)
AEM (BNPM beta_negative_decay(Cel48))

Cel4d7
BNPM beta_negative_decay(Celd7)

163

AEM (BNPM beta_negative_decay(Cel47))

Cel48
BNPM beta_negative_decay(Cel48)
AEM (BNPM beta_negative_decay{Cel48))

Celdd
BNPM beta_negative_decay{Cel49)
AEM (BNPM beta_negative_decay(Cel49))

Cel50
BNPM beta_negative_decay(Cel50)
AEM (BNPM beta_negative_decay(Cel50))

Ce151 |
BNPM beta_negative_decay(Cel51)
AEM (BNPM beta_negative_decay(Cel51))

Celb2
BNPM beta_negative_decay{Cel52)
AEM (BNPM beta_negative_decay(Cel52))

Lal138
BNPM radioactive_capture(Lal38,neutron)
AEM (BNPM radioactive_capture(Lal38,neutron))

Lal139

Lal4o
BNPM beta_negative_decay(Lal40)
AEM (BNPM beta_negative_decay(Lail40))

Lal4l
BNPM beta_negative_decay(Lal4l)
AEM (BNPM beta_negative_decay(Laidl})

Lal4z
BNPM beta_negative_decay{Lal42)
AEM (BNPM beta_negative_decay(Lal42))

La143 N
BNPM beta_negative_decay(La143)

164

AEM (BNPM beta_negative_decay(Lal43))

Lal44
BNPM beta_negative_decay(Lal44)
AEM (BNPM beta_negative_decay(Lal44))

1.al4b
BNPM beta_negative_decay(Lal45b)
" AEM (BNPM beta_negative_decay(Lai45})

Lal4s6
BNPM beta_negative_decay(Lal46)
AEM (BNPM beta_negative_decay(Lal46))

La147 -
BNPM beta_negative_decay(Lald7)

AEM (BNPM beta_negative_decay{Laid7))
La148

BNPM beta_negative_decay(Lal48)

AEM (BNPM beta_negative_decay(Lal48))
Lal49

BNPM beta_negative_decay{La149)

AEM (BNPM beta_negative_decay(La149))
Ba13b

Bal36

Bal37

Ba138

Bai3g

BNPM beta_negative_decay(Bal39)

AEM (BNPM beta_negative_decay(Bal39))
Bail40

BNPM beta_negative_decay(Bal140)
AEM (BNPM beta_negative_decay(Bal40))

165

Bal41l
BNPM beta_negative_decay(Bal4l)
AEM (BNPM beta_negative_decay(Bal41))

Bai42
BNPM beta_negative_decay(Bai42)
AEM (BNPM beta_negative_decay(Bai42))

Bal43
BNPM beta_negative_decay(Ba143)
AEM (BNPM beta_negative_decay(Bal43))

Bal44d _
BNPM beta_negative_decay(Bald4)
AEM (BNPM beta_negative_decay(Bal44))

Ba145b
BNPM beta_negative_decay{Bal45)
AEM (BNPM beta_negative_decay(Bal45b))

Bal46
BNPM beta_negative_decay(Bal46)
AEM (BNPM beta_negative_decay{Bail46))

Bal47y
BNPM beta_negative_decay(Bal47)
AEM (BNPM beta_negative_decay{Bai47))

Bal48
BNPM beta_negative_decay(Bal48)
AEM (BNPM beta_negative_decay(Bal48))

Ba143
BNPM beta_negative_decay(Bal49)
AEM (BNPM beta_negative_decay(Ba149))

Cs133
BNPM radicactive_capture(Cs133,neutron)
AEM (BNPM radioactive_capture(Cs133,neutron))

Cs134 |
BNPM beta_negative_decay(Cs134)

166

AEM (BNPM beta_negative_decay(Cst34))
Cs135

Cs136 - .
BNPM beta_negative_decay(Cs136)
AEM (BNPM beta_negative_decay(Cs136))

Cs137
BNPM beta_negative_decay(Cs137)
AEM (BNPM beta_negative_decay(Csi137))

Cs138
BNPM beta_negative_decay(Cs138)
AEM (BNPM beta_negative_decay{Cs138))

Csi139
BNPM beta_negative_decay{Cs139)
AEM (BNPM beta_negative_decay(Cs139))

Csi40
BNPM beta_negative_decay(Cs140)
AEM (BNPM beta_negative_decay(Cs140Q))

Cs141
BNPM beta_negative_decay(Cs141)
AEM (BNPM beta_negative_decay(Cs141))

Cs142
BNPM beta_negative_decay(Csi42)
AEM (BNPM beta_negative_decay(Csl142))

(5143

BNPM beta_negative_decay(Cs143)
AEM (BNPM beta_negative_decay(Cs143))

Csild4
BNPM beta_negative_decay(Cs144)
AEM (BNPM beta_negative_decay(Csi144))

Cal4db
BNPM beta_negative_decay(Cs145)

167

AEM (BNPM beta_negative_decay(Csi145))

Cs146
BNPM beta_negative_decay{Cs146)
AEM (BNPM beta_negative_decay(Cs146))

Cs147
BNPM beta_negative_decay{Cs147)
AEM (BNPM beta_negative_decay(Cs147))

Cs148
BNPM beta_negative_decay(Cs148)
AEM (BNPM beta_negative_decay(Cs148))

Xel3C
BNPM radiocactive_capture(Xei30,neutron)
AEM (BNPM radiocactive_capture(Xel30,neutron))

Xe131
BNPM radioactive_capture(Xel131,neutron) .
AEM (BNPM radioactive_capture(Xel31l,neutron))

Xel3d2

Xel33
BNPM beta_negative_decay(Xe133)
AEM (BNPM beta_negative_decay(Xel33))

Xel34

Xel3b

BNPM radioactive_capture(Xe135,neutron)

AEM (BNPM radioactive_capture(Xel35,neutron))
'BNPM beta_negative_decay{Xe135)

AEM (BNPM beta_negative_decay(Xel35))

Xel136
Xel137

BNPM beta_negative_decay(Xel3T7)
AEM (BNPM beta_negative_decay(Xel37))

168

Xel38
BNPM beta_negative_decay(Xe138)
AEM (BNPM beta_negative_decay(Xe138))

Xe139 |
BNPM beta_negative_decay(Xel39)
AEM (BNPM beta_negative_decay(Xe139))

Xel4dl
BNPM beta_negative_decay(Xe140)
AEM (BNPM beta_negative_decay(Xel40))

Xel4dl
BNPM beta_negative_decay(Xeldi)
AEM (BNPM beta_negative_decay(Xel41))

Xel42 |
BNPM beta_negative_decay{(Xel42}
AEM (BNPM beta_negative_decay(Xel142))

Xeld3
BNPM beta_negative_decay(Xel43)
AEM (BNPM beta_negative_decay(Xel43))

- Xeld44
BNPM beta_negative_decay(Xeld4)
AEM (BNPM beta_negative_decay(Xel44))

Xeldb
BNPM beta_negative_decay(Xel45)
AEM (BNPM beta_negative_decay{Xel45))

1127
" BNPM radicactive_capture(I127,neutron)
AEM (BNPM radioactive_capture(I1127,neutron))

T128
BNPM beta_negative_decay(I128)
AEM (BNPM beta_negative_decay(I128))

1129
- BNPM radicactive_capture(I129,neutron)

169

AEM (BNPM radiocactive_capture(I129,neutron))

I130
BNPM beta_negative_decay(I130)
AEM (BNPM beta_negative_decay(I130))

1131
BNPM beta_negative_decay{I131)
AEM (BNPM beta_negative_decay(I131))

1132
BNPM beta_negative_decay(I132)
AEM (BNPM beta_negative_decay(I132))

T133
BNPM beta_negative_decay(I133)
AEM (BNPM beta_negative_decay(I133))

1134
BNPM beta_negative_decay(I134)
~ AEM (BNPM beta_negative_decay(I134))

I136
BNPM beta_negative_decay(I135)
AEM (BNPM beta_negative_decay(I135))

1136
'BNPM beta_negative_decay(I136)
AEM (BNPM beta_negative_decay(I136))

I137
~ BNPM beta_negative_decay(I137)
AEM (BNPM beta_negative_decay(I137))

I1138
BNPM beta_negative_decay(I138)
AEM (BNPM beta_negative_decay(I1138))

I138
BNPM beta_negative_decay(I139)
AEM (BNPM beta_negative_decay(I139))

170

1140
BNPM beta_negative_decay(I140)
AEM (BNPM beta_negative_decay(I1140))

1141
BNPM beta_negative_decay(I141)
AEM (BNPM beta_negative_decay(l141))

1142
BNPM beta_negative_decay(I142)
AEM (BNPM beta_negative_decay(I142))

Tel2b

TellB

Tel27

BNPM beta_negative_decay{Tel27)

AEM (BNPM beta_negative_decay(Te127))
Tel28

Te129 |

BNPM beta_negative_decay(Te129)

AEM (BNPM beta_negative_decay(Tel29))
Tel30

Tel31

BNPM beta_negative_decay(Tei31)

AEM (BNPM beta_negative_decay(Tel31))
Tel32

BNPM beta_negative_decay(Tel32)

AEM (BNPM beta_negative_decay(Tel32))
Tel33

BNPM beta_negative_decay(Tel33)

AEM (BNPM beta_negative_decay(Tel33))

Te134 | |
BNPM beta_negative_decay(Tei34)

171

AEM (BNPM beta_negative_decay(Te134))

Tel3b
BNPM beta_negative_decay{Te135)
AEM (BNPM beta_negative_decay(Te135))

Tel386
BNPM beta_negative_decay(Tel36)
AEM (BNPM beta_negative_decay(Tel36))

Teld7
BNPM beta_negative_decay(Tel37)
AEM (BNPM beta_negative_decay(Tel37))

Tell8
BNPM beta_negative_decay(Tel38) _
AEM (BNPM beta_negative_decay(Te138))

5b122
BNPM beta_negative_decay(Sb122)
AEM (BNPM beta_negative_decay(5b122))

8b123
BNPM radicactive_capture(Sb123,neutron) _
AEM (BNPM radioactive_capture{(Shi23,neutron))

Sbhi124
BNPM beta_negative_decay(Sh124)
AEM {BNPM beta_negative_decay(Sb124))

Sbi12b
BNPM beta_negative_decay(Sb125)
AEM (BNPM beta_negative_decay(Sb125))

S5b126
BNPM beta_negative_decay(Sbi26)
AEM (BNPM beta_negative_decay(8b126))

Sb127

BNPM beta_negative_decay(Sbi27)
AEM {BNPM beta_negative_decay(Sh127))

172

5b128
BNPM beta_negative_decay(Sb128)
AEM (BNPM beta_negative_decay(Sb128))

Sh129 .
BNPM beta_negative_decay(Sb129)
AEM (BNPM beta_negative_decay(Sb129))

Sbhb130
BNPM beta_negative_decay(S5b130)
AEM (BNPM beta_negative_decay(Sb130))

Sb131 .
BNPM beta_negative_decay(Sb131)
AEM (BNPM beta_negative_decay(Shi31))

Sb132 :
BNPM beta_negative_decay(S5b132)
AEM (BNPM beta_negative_decay(8b132))

Sb133 -
BNPM beta_negative_decay(5b133)
AEM (BNPM beta_negative_decay(Sbi133))

Sb134 :
BNPM beta_negative_decay(Sb134)
AEM (BNPM beta_negative_decay(Sbi134))

8b135 }
BNPM beta_negative_decay(Sbi35) _
ATM (BNPM beta_negative_decay(Sb135))

5b136

BNPM beta_negative_decay(5b136)

AEM (BNPM beta_negative_decay(Sb136))
Sni20

Sni121

BNPM beta_negative_decay(Sn12i)
AEM (BNPM beta_negative_decay{Sni121))

173

$n122

Sn123
BNPM beta_negative_decay(Sni23)
AEM (BNPM beta_negative_decay(Sn123))

Sni124

Sni12k .
BNPM beta_negative_decay(Sni2B)
AEM (BNPM beta_negative_decay(Sni125)) -

Sn126

Sni27?
BNPM beta_negative_decay(Sn127)
AEM (BNPM beta_negative_decay(Sni127)})

Sn128
BNPM beta_negative_decay{(Sni28)
AEM (BNPM beta_negative_decay(Sn128))

Snl129
BNPM beta_negative_decay(Sni129)
AEM (BNPM beta_negative_decay(Sni129))

$n130 _
BNPM beta_negative_decay(Sni30}
AEM (BNPM beta_negative_decay(Sn130))

Sni131
BNPM beta_negative_decay(Sni31)
AEM (BNPM beta_negative_decay(Sni31))

Sn132
BNPM beta_negative_decay(5n132)
AEM (BNPM beta_negative_decay(Sni32))

S5n133

BNPM beta_negative_decay(5ni33)
AEM (BNPM beta_negative_decay(Sn133))

174

Sni34
BNPM beta_negative_decay(Sni134)
AEM (BNPM beta_negative_decay(Sni34))

Inii7
BNPM beta_negative_decay(Inii7)
AEM (BNPM beta_negative_decay(Inll7))

Ini1i8
BNPM beta _negative_decay(In118)
AEM (BNPM beta_negative_decay(Inii8))

In11i9
BNPM beta_negative_decay(In119)
AEM (BNPM beta_negative_decay{In1i9))

In120
BNPM beta_negative_decay(In120)
AEM (BNPM beta_negative_decay(Ini120))

Ini121
 BNPM beta_negative_decay(Ini21)
AEM (BNPM beta_negative_decay(In121))

Ini22
BNPM beta_negative_decay(In122)
AEM (BNPM beta_negative_decay(In122))

Ini23
BNPM beta_negative_decay(In123)
AEM (BNPM beta_negative_decay(In123))

Ini24
BNPM beta_negative_decay(Inl24)
AEM (BNPM beta_negative_decay{Ini24))

Ini26
BNPM beta_negative_decay{In125)
AEM (BNPM beta_negative_decay(Ini25))

Ini126 :
BNPM beta_negative_decay(Ini26)

175

'AEM (BNPM beta_negative_decay(In126))

Ini127 .
BNPM beta_negative_decay(Ini27)
AEM (BNPM beta_negative_decay(In127))

In128
BNPM beta_negative_decay(In128)
AEM (BNPM beta_negative_decay(Ini128))

In129
BNPM beta_negative_ decay(In129)
AEM (BNPM beta_negative_decay(In129))

Ini130
BNPM beta_negative_decay{(Ini30)
AEM (BNPM beta_negative_decay(Ini130))

Ini131
BNPM beta_negative_decay(Ini31)
AEM (BNPM beta_negative_decay(Ianl31))

In132
BNPM beta_negative_decay(Ini32)
AEM (BNPM beta_negative_decay(Inl132))

In133 -
BNPM beta_negative_decay(Ini33)
AEM (BNPM beta_negative_decay(Inl33))

Cd11b

BNPM beta_negative_decay(Cd115)

AEM (BNPM beta_negative_decay(Cd115))
Cdl16

Cd117

BNPM beta_negative_decay(Cd117)

AEM (BNPM beta_negative_decay(Cd117))

£di1i8
BNPM beta_negative_decay(Cd118)

176

AEM (BNPM beta_negative_decay(Cd118))

Cd119
BNPM beta_negative_decay(Cd119)
AEM (BNPM beta_negative_decay(Cd119))

cd120 |
BNPM beta_negative_decay(Cdi20)
AEM (BNPM beta_negative_decay(Cdi20))

Cdi1z1
BNPM beta_negative_decay{Cd121)
AEM (BNPM beta_negative_decay(Cd121))

Ccdi22
BNPM beta_negative_decay(Cd122)
AEM (BNPM beta_negative_decay(Cdi122))

Cd123
BNPM beta_negative_decay{(Cd123)
AEM (BNPM beta_negative_decay(Cd123))

cd124

. BNPM beta_negative_decay(Cdi24)

AEM (BNPM beta_negative_decay{Cd124))

Cd125
BNPM beta_negative_decay(Cd125)
AEM (BNPM beta_negative_decay{Cd125))

Cdi12g
BNPM beta_negative_decay(Cd126)
AEM (BNPM beta_negative_decay(Cd126))

cdi127
BNPM beta_negative_decay(Cd127)
AEM (BNPM beta_negative_decay(Cd127))

Cd128

 BNPM beta_negative_decay(Cd128)

AEM (BNPM beta_negative_decay{Cd128))

177

Cd129
BNPM beta_negative_decay(Cd129)
AEM (BNPM beta_negative_decay(Cd129))

Cd130
BNPM beta_negative_decay(Cd130)
AEM (BNPM beta_negative_decay(Cd130))

Agl12
BNPM beta_negative_decay(Agi12)
AEM (BNPM beta_negative_decay(Agii2))

Agl13
BNPM beta_negative_decay(Agl13)
AEM (BNPM beta_negative_decay(Agll3))

Agli4
BNPM beta_negative_decay(iglld)
AEM (BNPM beta_negative_decay(Agii4))

Ag115
BNPM beta_negative_decay(Aglib)
AEM (BNPM beta_negative_decay(4gll5))

Agl16
BNPM beta_negative_decay(Aglif)
AEM (BNPM beta_negative_decay(Aglis))

Ag117
BNPM beta_negative_decay(Agii?)
AEM (BNPM beta_negative_decay(Agll7))’

Ag118
BNPM beta_negative_decay(Agli8)
AEM (BNPM beta_negative_decay(Agl18))

Agli9
BNPM beta_negative_decay{Agli9)
AFEM (BNPM beta_negative_decay(Agll9})

Agl120
BNPM beta_negative_decay(Agl120)

178

AEM (BNPM beta_negative_decay(Ag120))

Ag121
BNPM beta_negative_decay(Agl21)
AEM (BNPM beta_negative_decay(igl21l))

Ag122
BNPM beta_negative_decay(4gi22)
AEM (BNPM beta_negative_decay(igi22))

Agl23
BNPM beta_negative_decay(Agl23)
AEM (BNPM beta_negative_decay(Agi23))

Ag124 .
BNPM beta_negative_decay{igi24)
AEM (BNPM beta_negative_decay(Agl24))

Pdi10

Pdiil :
BNPM beta_negative_decay(Pd111)
AEM (BNPM beta_negative_decay(Pdil1i))

Pdi12
BNPM beta_negative_decay(Pd112)
AEM (BNPM beta_negative_decay(Pdii2))

Pd113 | |
BNPM beta_negative_decay(Pd113)
AEM (BNPM beta_negative_decay(Pd113))

.Pd114 .
BNPM beta_negative_decay(Pd114)
AEM (BNPM beta_negative_decay(Pd114))

Pdi115
BNPM beta_negative_decay(Pd115)
AEM (BNPM beta_negative_decay{Pdii5))

Pd118 _
BNPM beta_negative_decay(Pd116)

179

AEM (BNPM beta_negative_decay(Pd116))

PdiiT
BNPM beta_negative_decay{(Pdi17)
AEM (BNPM beta_negative_decay(Pd117})

Pd118 :
BNPM beta_negative_decay(Pd118)
AEM (BNPM beta_negative_decay{Pd118))

Rh107
BNPM beta_negative_decay{(Rh107)
AEM (BNPM beta_negative_decay(Rh107))

Rh108
BNPM beta_negative_decay(Rh108)
AFM (BNPM beta_negative_decay(Rhi08})

Rh109
BNPM beta_negative_decay(Rh108)
AEM (BNPM beta_negative_decay(Rh109))

Rhi1i0
BNPM beta_negative_decay(Rh110)
AEM (BNPM beta_negative_decay{Rh110))

Rhi111
BNPM beta_negative_decay(Rhlil)
AEM (BNPM beta_negative_decay(Rhi11))

Rh112
BNPM beta_negative_decay(Rk112)
AEM (BNPM beta_negative_decay(Rh112))

Rh113
BNPM beta_negative_decay(Rh113)
AEM (BNPM beta_negative_decay(Rh113))

Rhii4

BNPM beta_negative_decay(Rh114)
AEM (BNPM beta_negative_decay(Rhi14))

180

-Rh11b
BNPM beta_negative_decay(Rhi115)
AEM (BNPM beta_negative_decay(Rh115))

Rhi16
BNPM beta_negative_decay(Rhi116) _
AEM (BNPM beta_negative_decay(Rhii6))

Rul05 :
BNPM beta_negative_decay(Ru105)
AEM (BNPM beta_negative_decay(Rul05))

Rulldé
BNPM beta_negative_decay(Rul(6)
AEM (BNPM beta_negative_decay(Rul06))

Rul07 .
BNPM beta_negative_decay(Rull7)
AEM (BNPM beta_negative_decay(Rul07))

~ Rul108
BNPM beta_negative_decay(Rul08)
AEM (BNPM beta_negative_decay(Rul(8))

Rul0s
BNPM beta_negative_decay{Rul09)
AEM (BNPM beta_negative_decay(Rul08))

Ru110
BNPM beta_negative_decay(Ruii0)
AEM (BNPM beta_negative_decay(Rulld))

Ruiill
BNPM beta_negative_decay(Ruill)
AEM (BNPM beta_negative_decay(Rullil))

Rul12
BNPM beta_negative_decay(Rul1l2)
AEM (BNPM beta_negative_decay(Rul1l2))

Rulil3
BNPM beta_negative_decay{Rul13)

181

AEM (BNPM beta_negative_decay(Ru1i3))

TeclG2
BNPM beta_negative_decay(Tc102)
AEM (BNPM beta_negative_decay(Tc102))

Tcl03
BNPM beta_negative_decay(Tc103)
AEM (BNPM beta_negative_decay(Tc103))

Tci04
BNPM beta_negative_decay(Tc104)
AEM (BNPM beta_negative_decay(Tc104))

Tci05
BNPM beta_negative_decay(Tc105)
AFEM (BNPM beta_negative_decay(Tc105))

Tcl06
BNPM beta_negative_decay(Tc106)
AEM (BNPM beta_negative_decay(Tc108))

Tc107
BNPM beta_negative_decay(Tc107)
AEM (BNPM beta_negative_decay(Tcl107))

Tcl08
BNPM beta_negative_decay(Tc108)
AEM (BNPM beta_negative_decay(Tc108))

Tc109
BNPM beta_negative_decay(Tc109)
AEM (BNPM beta_negative_decay(Tc109))

Tecl110
BNPM beta_negative_decay(Tc110)
AEM (BNPM beta_negative_decay(Tc110))

Tel11

BNPM beta_negative_decay(Tcl11)
AEM (BNPM beta_negative_decay(Tc111))

182

Mol10Q0
BNPM radicactive_capture(Mo100,neutron)
AEM (BNPM radicactive_capture(Mo100,neutron))

Mol101
BNPM beta_negative_decay(Mo101)
AEM (BNPM beta_negative_decay(Mo101))

Mo102 - _
BNPM beta_negative_decay(Mo102)
AEM (BNPM beta_negative_decay(Mo102))

Mo103 _
BNPM beta_negative_decay{(Mo103)
AEM (BNPM beta_negative_decay(Mo103))

Mo104
BNPM beta_negative_decay(Mo104)
AEM (BNPM beta_negative_decay(Mo104))

Mo105
BNPM beta_negative_decay(Mc105)
AEM (BNPM beta_negative_decay(Mo105})

Mo108
BNPM beta_negative_decay(Mo106)
~ AEM (BNPM beta_negative decay(Mo106))

Mol1Q7
BNPM beta_negativefdecay(MoiO?)
AEM (BNPM beta_negative_decay{Moi07))

-Mo108

Nba7

BNPM beta_negative_decay(Nb97)

AEM (BNPM beta_negative_decay(Nb97))
NbS8

BNPM beta_negative_decay(Nb98)

AEM (BNPM beta_negative_decay{(Nb98})

183

NB99
BNPM beta_negative_decay{Nb99)
AEM (BNPM beta_negative_decay(Nb99))

Nb100O
BNPM beta_negative_decay(Nb100)
AEM (BNPM beta_negative_decay(Nb100))

Nb1i01
BNPM beta_negative_decay{Nb101)
AEM (BNPM beta_negative_decay(Nbi01))

Nb102
BNPM beta_negative_decay(Nb102)
AEM (BNPM beta_negative_decay(Nb102))

Nb103
BNPM beta_negative_decay(Nbi03)
AEM (BNPM beta_negative_decay(¥b103))

Nbi104
BNPM beta_negative_decay(Nb104)
AEM (BNPM beta_negative_decay{Nb1i04))

Nb105

BNPM beta_negative_decay(Nb105) _
AEM (BNPM beta_negative_decay(Nb105))
Nb106

BNPM beta_negative_decay(Nbi06)

AEM (BNPM beta_negative_decay(Nb106))
Zr34

Zr8b

BNPM beta_negative_decay(Zr95)

AEM (BNPM beta_negative_decay(Zr95))
Zr96

2ro7
BNPM beta_negative_decay(Zrs7)

184

AEM (BNPM beta_negative_decay(Zr97))

Zros
BNPM beta_negative_decay(Zr98)
AEM (BNPM beta_negative_decay(Zr98))

Zrag
BNPM beta_negative_decay(Zr99)
AEM (BNPM beta_negative_decay(Zr99))

Zri140
BNPM beta_negative_decay{Zri00)
AEM (BNPM beta_negative_decay(Zri0o0))

Zri101
BNPM beta_negative_decay(Zri01)
AEM (BNPM beta_negative_decay(Zri0i))

Zr102
- BNPM beta_negative_decay{Zr102)
AEM (BNPM beta_negative_decay(Zr102))

Zriod
BNPM beta_negative,decay(Zr103)
AFM (BNPM beta_negative_decay(Zr103))

Zrio4
BNPM beta_negative_decay(Zri04)
AEM (BNPM beta_negative_decay(Zri04))

¥92
BNPM beta_negative_decay(Y92)
AEM (BNPM beta_negative_decay(Y92))

Y33
BNPM beta_negative_decay(Y93)
AEM (BNPM beta_negative_decay(¥93))

Y94
BNPM beta_negative_decay(Y94)
AEM (BNPM beta_negative_decay(Y94))

185

Y85
BNPM beta_negative_decay(Y95)
AEM (BNPM beta_negative_decay(Y95))

Ya8
BNPM beta_negative_decay(Y96)
AEM (BNPM beta_negative_decay(Y96))

Yo7
BNPM beta_negative_decay(Y97)
AEM {BNPM beta_negative_decay(Y97))

Yas8
BNPM beta_negative_decay(Y98)
AEM (BNPM beta_negative_decay(Y98))

Y99
BNPM beta_negative_decay(Y99)
AEM (BNPM beta_negative_decay(¥Y39))

Y100 |
BNPM beta_negative_decay(Y100)
AEM (BNPM beta_negative_decay(Y100))

Y101
BNPM beta_negative_decay(Y101)
AEM (BNPM beta_negative_decay(Y101))

Y102
BNPM beta_negative_decay(Y102)
AEM (BNPM beta_negative_decay(Y102))

Srag
- BNPM beta_negative _decay(Sr89)
AEM (BNPM beta_negative_decay(5r89))

S5r20
‘BNPM beta_regative_decay(Sr90)
AEM (BNPM beta_negative_decay{(Sr90)})

S5ro1
BNPM beta_negative_decay(Srsl)

186

AEM (BNPM beta_negative_decay(Sr9i))

Sr82
BNPM beta_negative_decay(Sr92)
AEM (BNPM beta_negative_decay(5r92))

Sr93
BNPM beta_negative_decay(S5r93)
AEM (BNPM beta_negative _decay(Sr93))

Sro94d
BNPM beta_negative_decay(Sr94)
AEM (BNPM beta_negative_decay(Sr94))

Sr95
BNPM beta_negative_decay(Sr95)
AEM (BNPM beta_negative_decay(Sr95))

Sro6.
BNPM beta_negative_decay(Sr96)
AEM (BNPM beta_negative_decay(Sr96))

Sr97
BNPM beta_negative_decay(5r97)
AEM (BNPM beta_negative_decay(Sr87))

3r98
BNPM beta_negative_decay(Sr98)
AEM (BNPM beta_negative_decay(Sr98))

Sr99
BNPM beta_negative_decay(Sr99)
AEM (BNPM beta_negative_decay(Sr99))

Sri100
BNPM beta_negative_decay(Sr100)
AEM (BNPM beta_negative_decay(Sri00))

8rio1

BNPM beta_negative_decay(Sri01)
AEM (BNPM beta_negative_decay(Sr101))

187

Sri102
BNPM beta_negative_decay(Sri02)
AEM (BNPM beta_negative_decay(Sri02))

Rb87

Rb&8
BNPM beta_negative_decay(Rb88)
AEM (BNPM beta_negative_decay(Rb88))

Rb89
BNPM beta_negative_decay(Rb89)
AEM (BNPM beta_negative_decay(Rb89))

Rb90
BNPM beta_negative_decay(Rb30)
AEM (BNPM beta_negative_decay{Rb90))

Rb91.
BNPM beta_negative_decay(RbS1)
AEM (BNPM beta_negative_decay(Rb91))

Rb92
BNPM beta_negative_decay(Rb92)
AEM (BNPM beta_negative_decay(Rb92))

RbS3 .
BNPM beta_negative_decay(Rb93)
AEM (BNPM beta_negative_decay(Rb93))

Rbd4
BNPM beta_negative_decay(Rb94)
AEM (BNPM beta_negative_decay(Rb94))

Rb95
BNPM beta_negative_decay(Rb95)
AEM (BNPM beta_negative_decay(Rb95))

Rb96

BNPM beta_negative_decay(Rb96)
AEM (BNPM beta_negative_decay(Rb96))

188

LA L

Rb97
BNPM beta_negative_decay(Rb97)
AEM (BNPM beta_negative_decay(Rb97))

Rb98
BNPM beta_negative_decay(Rb98)
AEM (BNPM beta_negative_decay(Rb98))

Rbag
BNPM beta_negative_decay{(Rb99)
AEM (BNPM beta_negative_decay(RbQQ))

Rb100
BNPM beta_negative_decay(Rb100)
AEM (BNPM beta_negative_decay(Rb100))

Rb101

Rb102
BNPM beta_negative_decay(Rb102)
AEM (BNPM beta_negative_decay(Rb102))

Krga

Kr85

BNPM radiocactive_capture(Xr85,neutron) -

AEM (BNPM radioactive_capture(Kr85,neutron))
BNPM beta_negative_decay(Kr8E)

AEM (BNPM beta_negative_decay(Kr85))

Krge

- Kr87

BNPM beta_negativé_decay(Kr87)
AEM (BNPM beta_negative_decay(Kr87))

Kr88
BNPM beta_negative_decay(Kr88)
AEM (BNPM beta_negative_decay{Kr88))

Kr8s
BNPM beta_negative_decay(Kr89)

189

AEM (BNPM beta_negative_decay(Kr89))

Kr9o
BNPM beta_negative_decay(Kr30)
AEM (BNPM beta_negative_decay(Kr90))

 Krdi
BNPM beta_negative_decay(Kr91i)
AEM (BNPM beta_negative_decay(Kr91))

Kr92
BNPM beta_negative_decay(Kr92)
AEM (BNPM beta_negative_decay(Kr92))

Kro3
BNPM beta_negative_decay(Kr93)
AEM (BNPM beta_negative_decay(Kr93))

Kr9o4
BNPM beta_negative_decay(Kr94)
AFM (BNPM beta_negative_decay(Kr94))

Krob
BNPM beta_negative_decay(Kr95)
AEM (BNPM betaz_negative_decay(Kr95))

Krae6

Kra7 :
BNPM beta_negative_decay(Kr97)}
AEM (BNPM beta_negative_decay(Kr97))

Brg2
BNPM beta_negative_decay(Br82)
" AEM (BNPM beta_negative_decay(Br82))

Br83
BNPM beta_negative_decay(Br83)
AEM (BNPM beta_negative_decay{(Br83))

Brg84
BNPM beta_negative_decay(Br84)

190

AEM (BNPM beta_negative_decay(Br84))

Br85s
BNPM beta_negative_decay(Br8b)
AEM (BNPM beta_negative_decay{(Br8E))

Brge
BNPM beta_negative_decay(Br86)
AEM (BNPM beta_negative_decay(Br86))

Br8&7
BNPM beta_negative_decay(Brs7)
AEM (BNPM beta_negative_decay{Br87))

Br8ésg
BNPM beta_negative_decay(Br8s)
AEM (BNPM beta_negative_decay(Br88))
Br&s :
BNPM beta_negative_decay(Br89)
AEM (BNPM beta_negative_decay{(Br89))
Brgo0
BNPM beta_negative_decay(BrS0)
AEM (BNPM beta_negative_decay(Br90))
Brol :
BNPM beta_negative_decay(Br91)
AEM (BNPM beta_negative_decay(Br91))
Br92
BNPM beta_negative_decay(Br92)
AEM (BNPM beta_negative_decay(Br92))
Br93
Bra4
S5e79

Se80

191

Se81
BNPM beta_negative_decay(Se81)
AEM (BNPM beta_negative_decay(Se81))

Se82

Se83
BNPM beta_negative_decay(Se83)
AEM (BNPM beta_negative_decay(Se83))

Se84 |
BNPM beta_negative_decay(Se84)
AEM (BNPM beta_negative_decay(Se84))

Se85
BNPM beta_negative_decay(Se85)
AEM (BNPM beta_negative_decay(Se85))

Se86.
BNPM beta_negative_decay(Se86)
AEM (BNPM beta_negative_decay{(Se86))

Se87
BNPM beta_negative_decay(Se87)
AEM (BNPM beta_negative_decay(Se87))

Se88
BNPM beta_negative_decay(Se88)
AEM (BNPM beta_negative_decay(Se88))

Se89

BNPM beta_negative_decay(Se89)

AEM (BNPM beta_negative_decay(Se89))
Sed0

Sedil -

BNPM beta_negative_decay(5e91)

AEM (BNPM beta_negative_decay(SeS81))

AsTT
BNPM beta_negative_decay(As77)

192

AEM (BNPM beta_negative_decay(as77))

AsT8
BNPM beta_negative_decay(As78)
AEM (BNPM beta_negative_decay{As78))

AsT9
BNPM beta_negative_decay(As79)
AEM (BNPM beta_negative_decay(4s79))

As80
BNPM beta_negative_decay(As80)
AEM (BNPM beta_negative_decay(As80))

As81
BNPM beta_negative_decay(As81)
AEM (BNPM beta_negative_decay(As81))

A382-
BNPM beta_negative_decay{As82)
AEM (BNPM beta_negative_decay(As82))

As83
BNPM beta_negative_decay(4s83)
AFM (BNPM beta_negative_decay(4s83))

As84
BNPM beta_negative_decay(As84)
AEM (BNPM beta_negative_decay{As84))

4s85
BNPM beta_negative_decay(As85)
AEM (BNPM beta_negative_decay(As85))

AsB6
BNPM beta_negative_decay(As86)
AEM (BNPM beta_negative_decay(As86))

AsB87

BNPM beta_negaﬁive_decay(ASST)
AEM (BNPM beta_negative_decay(As87))

193

GeT4

Ge7bh
BNPM beta_negative_decay(Ge75)
AEM (BNPM beta_negative_decay(Ge7B))

Ge7B

Ge77
BNPM beta_negative_decay(Ge77)
AEM (BNPM beta_negative_decay(Ge77))

GeT78
BNPM beta_negative_decay(Ge78)
AEM (BNPM beta_negative_decay(Ge78))

Ge79
BNPM beta_negative_decay{Ge79)
AEM (BNPM beta_negative_decay(Ge79))

Ge80
BNPM beta_negative_decay(Ge80)
AEM (BNPM beta_negative_decay(Ge80))

Ge81
BNPM beta_negative_decay(Ge81)
AEM (BNPM beta_negative_decay(Ge81))

Ge82
BNFM beta_negative_decay(Ge82)
AEM (BNPM beta_negative_decay(Ge82))

Ge83 :
BNPM beta_negative_decay(Ge83)
AEM (BNPM beta_negative_decay(Ge83))

Ge84
BNPM beta_negative_decay(Ge84)
AEM (BNPM beta_negative_decay(Ge84))

GaT72
BNPM beta_negative_decay(Ga72)

194

AEM (BNPM beta_negative_decay{Ga72))

Ga73
BNPM beta_negative_decay(Ga73)
. AEM (BNPM beta_negative_decay(Ga73))

GaT74 _
BNPM beta_negative_decay(Ga74)
AEM (BNPM beta_negative_decay(Ga74))

Ga75
BNPM beta_negative_decay(Ga75)
AEM (BNPM beta_negative_decay(Ga75))

Ga76 |
BNPM beta_negative_decay(Ga76)
AEM (BNPM beta_negative_decay(Ga76))

GaTT.
BNPM beta_negative_decay(Ga77)
AEM (BNPM beta_negative_decay(Ga77))

Ga7s :
BNPM beta_negative_decay(Ga78)
AEM (BNPM beta_negative_decay(Ga78))

Ga’9
" BNPM beta_negative_decay(Ga?S)
AEM (BNPM beta_negative_decay(Ga79))

Gago |
BNPM beta_negative_decay(Ga80)
. AEM (BNPM beta_negative_decay(Ga80))

Gas1 :
BNPM beta_negative_decay(Ga8l)
AEM (BNPM beta_negative_decay{Ga81))

Ga82

BNPM beta_negative_decay(Ga82)
AEM (BNPM beta_negative_decay{Ga82))

195

Ga83
BNPM beta_negative_decay(Ga83)
AEM (BNPM beta_negative_decay{Ga83))

ZnTr2
BNPM beta_negative_decay(Zn72)
AEM (BNPM beta_negative_decay(Zn72))

Zn73
BNPM beta_negative_decay(Zn73)
AEM (BNPM beta_negative_decay(Zn73))

Zn74
BNPM beta_negative_decay(Zn74)
- AEM (BNPM beta_negative_decay(Zn74))

Zn75
BNPM beta_negative_decay(Zn75)
AEM (BNPM beta_negative_decay(Zn75))

Zn76
BNPM beta_negative_decay(Zn76)
AEM (BNPM beta_negative_decay(Zn76))

Zn77
BNPM beta_negative_decay(Zn77)
AEM (BNPM beta_negative_decay(Zn77))

Zn78
BNPM beta_negative_decay(Zn78)
AEM (BNPM beta_negative_decay(Zn78))

_Zn79
BNPM beta_negative_decay(Zn79)
AEM (BNPM beta_negative_decay{(Zn73))

Zn80
BNPM beta_negative_decay(Zn80)
AEM (BNPM beta_negative_decay{Zn80))

Cu72
BNPM beta_negative_decay(Cu72)

196

AEM (BNPM beta_negative_decay(Cu72))

Cu73
BNPM beta_negative_decay(Cu73)
AEM (BNPM beta_negative_decay(Cu73))

Cu74

Cu75

BNPM beta_negative_decay(Cu75)

AEM (BNPM beta_negative_decay(Cu78))
Cu7é

BNPM beta_negative_decay(Cu76)
AEM (BNPM beta_negative_decay{Cu76))

197

Appendix V

State and Probabilistic Space
Equations at the End of t_-he.
Second Cycle

This appendix shows the probabilistic space and the state space equations at the end -

of the second cycle (¢3) of running the simulation for Experiment No.2.

198

Sigma_a_fuel = U235 .ameunt*U235. sigma_g+U235.amount*U235. sigma_f+
U236.am9unt*U236.Slgma_g+U238.amount*U238.Sigma_g+Tb159.amount*
Tb1b9.sigma_g+Gd156 . amount*Gd155. sigma_g+Gd156.amount*Gdi66. sigma_g+

Gd157.
Eulb4.
Smib0.
Smi1&2.
Sm154,
Nd145.
Nd1i48.
Pri43,
Cs133.
Xel131.

amount*Gdis57.
amount*Eul54.

amount*5SmiG0

sigma_g+Eul53.
sigma_g+Eulbs.
.sigma_g+Smi51
amount*Smi1b2.
amount*Smlb4.
amount*Nd145.
amount*Nd148.
amount*Pri143.
amount=Csl33.
amount*Xel31.

sigma_g+3mi53,
sigma_g+Pm148.
sigma_g+Nd146.
sigma_g+Nd150.
sigma_g+Lal38.
sigma_g+Xel30.
sigma_g+Xel35,

amount*Euib3.
amount#*Euis5s.
.amount*Smi5si1.
amount*Smib3d.
amount*Pm148.
ancunt*Ndi146.
.sigma_g+
amount*Lal138.
amount*Xel30.
amount*Xe135.

amount*Nd150

sigma_g+
sigma_g+
sigma_g+
sigma_g+
sigma_g+
sigma_g+

sigma_g+
sigma_g+
sigma_g+

1127 .amount*I127.sigma_g+1123.amount*I129,signa_g+
Sb123.amount*5b123.sigma_g+Mol00. amount*Mo100.sigma_g+
Kr8%.amount*Kr85.sigma_g;

FgU235 = U235.amount*U235.sigma_g/Sigma_a_fuel;
nrcU235 = neutron.amount*k/eta*FglU235;

Prcii23
Crcl23

U236. amount +=

- U236 . amount +=

5
5

nrcl235%U235. A/NA;
nrcU235+U235. A/NA;
~1.00%CrcU235-C£U235;

1.00%Prcl235-1.00*CrclU236;

Gamma.energy += 1.98%nrcU235+sum((i+ei/2)*distr_E_GammalU235[i],0,8)+
.98#nrcU236+1 .98*nrcl238+1 .98*%nrcTh159+1 .98*nrcGd155+1 .98*nrcGd156+
.98*nreGdl1b7+1.98%nrcEulb3+1.98*nrcEulb4+1.98*nrcEulbs+1.98*%nrcSmib0+
.98%nrcB8m151+1.98%nrcSm152+1.98%nrcSm1563+1.98%nrcSm154+1 . 98*%nrcPmi148+
.98%nrcNd145+1 ., 98+nrcNd146+1,98+nrcNd148+1. 98%nrcNd150+1 . 88*nrcPri43+
.98%nrclLal3d8+1.98%nrcCs133+1.98*nrciel130+1.98%nrcXel31+1.98+nrcXel36+
L98%nrcl127+1 .984%nrcl129+1.98%nxrcShi23+1.98*nrcMo100+1 . 98*nrcKr8b;

o ol ST N

- Sigma_f_fuel = U235.aﬁount*U235.sigma_f;

U235 = U235.amount*(U235.sigma_f+U235.sigma_g} /
(Sigma_a_fuel+Sigma_a_cl+Sigma_a_md);

eta = nuU235+U235.amount*U235.sigma_f/Sigma_a_fuel;
k = fU235%eta*RC.epsilon*RC.p*RC.PNLf*RC.PNLth;

F£U235 = U235.amount*U235.signa_f/Signa_a_fuel;
' RcU235 = k/eta*neutron.amount*FfU235;
CfU235 = RcU235/NA*U235.4;

distr_neutronU235[i] = ReU235*pdf_neutronU235[i],0,8;
pnU235 = sum(i*distr_neutronU235[i],0,8);

distr_A1U235[1i} .RCU235*pdf_A1U235[i],0,44;
distr_A2U235[1] = RcU235*pdf_a20U235[i],0,44;
distr_E_neutronU235[il = an235*pdf_EfneutronU235[i],0,8;

l

199

- distr_E_gammaU235[i] = RcU235+pdf_E_gammaU235[i],0,8;
distr_E_F1U235[i] = RcU235%pdf_E_F1U235[i],0,44;
distr_E_F2U235[i] = RcU235*pdf_E_F2U235[i],0,44;
Fissile fissioned += RcU235; |

Figsile_consumed += CfU235;

Neutron.ameount += pnlU235;

sum((i+ei/2) *distr_E_neutront235[i],0,8);
sum((i+ei/2)*distr_E_F1U235[i],0,90);
sum((i+ei/2)*distr_E_F2Uu235[i],0,90);
FgU236 = U236 .amount*U236.sigma_g/Sigma_a_fuel;

Neutron.energy +=
Energy_F1.amount +=

Energy_F2.amount +=

nrcU236 = neutron.amount*k/eta*FgU236;
PrcU236 = nrcU236*U236.4/NA;
CrcU236 = nrcU236*U236.4/N4;

U237 .amount += 1.00%PrcU236;
FgU238 = U238.amount*U238.signa_g/Sigma_a_fuel;

nrclU238 = neutron.amount*k/eta*Fgl238;
PrcU238 = nrclU238%xU238.4A/NA;
Crcli238 = nrcU238*U238.4/NA;

-1.00%Crcl238;

U238%.amount += 1.00%Prcl238;

PbndlU239 1d*U239.halflife*U239.amount*NA/UESQ.A*cycle_time;
CbndU238 ld*UZSQ.halflife*U239.amount*NA/U239.A*cycle_time;
Np239.amount +=_1.00*andU239/NA*U239.A;

Beta_Neg:amount += 1,00%PbndU239+1.00%PbndTb158+1.00+#PbndGd159+

U238.amount +=

L P s

.00*%PbndEulbb+1
.00*PbndEuibo+1
.00*PbndSm156+1
.00*PbndPm148+1
.00%PbndPm152+1
.00%PbndPm156+1
.00*PbndNd145+1
.00*%PbndNd154+1
.00*PbndPri144+1
.00%PbndPri4sg8+1
.00*PbndPri62+1
.00*%PbndCel43+1
.00*PbndCe147+1
LQ0*PbndCelbli+l.
.00*PbndLai42+1.

.00*PbndEul56+1.
.0C*PbndSm151+1.
.00*PbndSmib7+1.
.00%PbndPm149+1.
.00*PbndPm153+1.
.00%PbndPm157+1.
.00*PbndNd151+1.
.00*PbndNd155+1.
.00%PbndPr145+1.
.00%PbndPri148+1.
.00*PbndPri153+1.
.00#PbndCel44+1.
.00*%PbndCe148+1.

00*PbndCelb2+1.
00*PbndLal43+1.

Q0*PbndEul57+1,
Q0*PbndSm153+1.
Q0*PbndSm158+1 .
00*PbadPm150+1 .
. 00*PbndPm155+
00*PbndPml158+1 .
Q0*PbndNd152+1.
00*PbndNd166+1.
00*PbndPri46+1.
00*PbndPri150+1,
Q0*PbndPri154+1.
00*PbndCeldb+1.
00*PbndCel149+1.
00*PbndLal40+1.
00*PbndLald4+1.

00*PbndPm154+1

200

Q0*PbndEnl523+
00*PbndSmi1b5+
00+PbndSm159+
Q0*PbndPmlbl+

Q0*PbndNd147+
00*PbndNd153+
00*PbndPr143+
0Q*PbndPr147+
00*PbndPr151+
00*PbndCel4 1+
00*PbndCel46+
Q0*PbndCel50+
00*PbndLaldl+
00*Pbndl.aldb+

,00*%PbndLal46+1.
.00%PbndBa139+1.
.00*¥PbndBa143+1,
.00*#PbndBal47+1
.00*PbndCs136+1
.00*PbndCs140+1
L00*%PbndCs144+1.
.00*xPbndCs148+1.
.00*PbndXel38+1.
.00*xPbndXeld2+1

.Q0*PbhndMo106+1,
.00*PbndNb99+1, 00*PbndNb100+1.00*PondNbl01+1.00%PbndNb102+
.00*PbndNb103+1 . 00*PbndNb104+1 . 00*PbndNb105+1 . 00*PbndNb106+
. 00*PbndZr95+1, 00*PbndZr97+1.00*PbndZr98+1 . 00+PondZr99+ :
.00*PbndZr100+1.00*%PbndZri01+1,00%PbndZr102+1, 00%PbndZr103+
.00*%PbndZr104+1.00*PbndY92+1.00*PbndY93+1,00*PbndY94+
.00*PbndY95+1,00*PbndY96+1 ,00*PbndY97+1.00*PbndY98+
.00*%PbndY99+1.00*PbndY100+1.00*%PbndY101+1.00%PbndY102+
.00*PbndSr89+1.00*PbndSro0+1.00*Pbnd5r91+1. 00+PbndSr92+
.00*PbndSr93+1.,00*PbndSro4+1, 00%PbndSr35+1. 00*#PondSr36+
.00*PbndSr97+1,00*PbndSx98+1.00*PbndSr89+1.00%PbndSr100+
.00*PbndSr101+1,.00*PbndSr102+1.00*PbndRb88+1 . 00*PbndRb8%+

00+PbndLald7+1
00*PbndBa140+1
00*PbndBal44+1

.00*PbndBa148+1
.Q0%PbndCs137+1
.00*%PbndCs141+1

00*PbndCs145+1
C0*PbndXel1l33+1
CO*PbondXel139+1

.00*%PbndXe143+1

00+PbndTel32+1
00*PbndTel36+1
00#PbndSb124+1
Q0*PbndSb128+1

.00*PbndSb132+1
.00%PbndSb136+1
.00*PbndSn127+1
.00*PbndSn131+1
.00*PbndInll7+1.
. 00%PbrdIni2i+l

00+PbndIni26+1
00*%PbndIni29+1
00*PbndInl133+1
00*PbndCd119+1

. 00*PbndCd123+1
. 00*PbndCd127+1
.00*PbndAgli2+1

00*PbndAgli6+1
00*PbndAg120+1
00*PbondAgi24+1
00*PondPd11i4+1
00*PbndPd118+1
00*PbndRhi10+1
00*PbndRh114+1

.00*PbndRul06+1
.00*PbndRuli0+1
.00*PbndTc102+1
.00*PbndTcl06+1
.00*PbndTc110+1
.00*PbndMo103+1

Q0*PbndMo107+1.

.00%PbndLal148+1.
.00*PbndBal41+i.
.00%PbndBai4b+1.
.00*%PbndBal49+1
.00*%PbndCs138+1
.00*PbndCs142+1
.00*PbndCs146+1
.00%PbndXe135+1.
.00*PbndXe140+1.
_ .0*Pbnd¥Xe144+1.,00%PbndXeid45+
.00*PbndI128+1.00+%PbndI130+1.00%PbondI131+1.00*%PbndI132+
.00*Pbndl133+1.,00*PbndI134+1.00*PbndI135+1, 00*PbndI 136+
L00%PbndI137+1.00%PbndI138+1,00*PbndI1230+1.00*PbndI 140+
L00*PbndIi41+41.00*%Phbndll42+1,00%PbndTel127+1.00*%PbndTel129+
L00*xPbndTel31+1.
.00%PbndTel3b+1.
.00*%PbndSb122+1.
.00%PbndSb127+1.
.00*¥PbndSh131+1
. 00*PbndSb135+1
.00*%PbndSn125+1
.00*PbndSn130+1
.00%PbndSni134+1
.00*%PbndIni20+1
L00%PbndIni124+1.
O0%PbndIni28+1.
.00*%PbndInl132+1.
00xPbndCd118+1.
.00*PbndCd122+1
.00%PbndCd126+1
.00*%PbndCd130+1
.00*#PbndAgl15+1,
.00*PbndAgl19+1.
.00+«PbndAg123+1.
.00%PbndPd113+1.
.00*PbndPd117+1.
.00*¥PbndRh109+1.
.00*PbndRh113+1.
,00%PbndRu105+1
.00%PbndRu109+1
.00*%PbndRu113+1
.00*%PbndTc105+1
.00*%PbndTc109+1
.00*PbndMo102+1

. 00*PbndTe133+1.
.00*%PbndTel37+1.
.00%PbndSh125+1,
.Q0*PbndSh129+1
.00%PbndShb133+1
.00*%PbndSniz21+1
L00%PbndSn128+1
.00*PbndSn132+1
00*+PbndInli8+1.
,00*%PbndIni22+1.
L004PbndIni26+1.
.00*%PbndInl130+1.
L00#PbndCd115+1.
.00*PbndCd120+1
.00*PbndCd124+1
LO00%PbndCd128+1
.00*PbndAg113+1
.00*PbndAgl17+1
.00*PbndAg121+1
.00*%PbndPd111+1
.00*%PbndPd115+1
.00%PbndRh107+1
.00+PbndRhi11i+1
.00*#PbndRh115+1
.004+PbndRul07+1
.00%PbhndRulli+i.
L00%PbndTc103+1.
.00*PbndTecl107+1
L.00+PbndTecl11+1
.00*PbndMo104+1.

00*PbndlLai149+
Q0*PbndBal4o+
Q0*PbndBal146+

.00*PbndCs134+ .
.00%PbndCs139+ -
.00*PbndCs143+
LQ0*%PbndCs147+

00*PbndXell37+
00*PbndXeld1+

00*PbndTel34+
00*PbndTel38+
CO*PbndSb126+

.00*PbndShi30+
.00*PbndSb134+
.00*PbndSn123+
.00*PbndSn129+
. 00*PbndSn133+

00*PbndInl119+
00*PbndInl123+
00*PbndInl27+
00*PbndInl31+
00*PbndCd117+

.00%PbndCd121+
.Q0*PbndCdi26+
.00%PbndCd129+
.00*PbndAg114+
.00*PbndAgli18+
.00*PbndAgl122+
. 00*PbndPdi112+
.00*PbndPd116+
.00*PbndRh108+
.00*PbndRh112+
.00*PbndRhi16+
.00*PbndRu108+

00*PbndRull2+
00*PbndTc104+

.00*PbndTc108+
. 00*#PbndMo101+

00*PbndMo10b+

Q0*PbndNb97+1 ., 00*PbndNL98+

.00*PbndRb91+1.
.00*PbndRb9G+1,
.00*PbndRb99+1.
. 00*PbndKra7+1,

00*PbndRb92+1. 00*PbndRb93+
Q0*PbndRb96+1 ., 00*PbndRbI7+
00+%PbndRb104+1.00*PbndRb102+
00*PbndKr88+1. 00*PbndKr89+
.00*¥PbndKr91+1.00%PbndKr92+1. 00*%PbndKra3+
00*PbndKr95+1.00*¥PbndKr97+1. 00*PbndBr82+
00+PbndBr84+1.00*PbndBras+1.00*PbndBra6+

.00*PbndRb90+1
.Q0*PbndRb9o4+1
.00*PbndRb98+1
.00*PbndKr85+1
.00*PondKro0+1
.00+PbndKr94+1.
.Q0%PbndBr83+1.

e e el el e e ey e ey ey e e e e el ot ol et el e e) T e e e T el] S T Y I S S g I I G G S U PSP U

201

.00*¥PbndBr87+1.
.00*PbndBral1+1
.00*PbndSe84+1
.00%PbndSe88+1
.00*xPbndAs73+1.
.00*%PbndAs82+1.
.00*%PbndAs86+1.
,00*¥PbndGe78+1.
.00+#PbndGe82+1
.00*PbndGa73+1
. 00%PbndGa77+1
.00*PbndGa81i+1
. 00%PbndZn73+1
L00*PbndZn77+1
.00%PbndCu72+1.

00*PbndBras+1.

.Q0*PbndBr92+1,
. 00*PbndSed5+1,
.00*PbndSeg9+1

Q00*PondAs79+1
00*PbndAs87+1

00%PbndCu73+1

00*PbndBrag+1.
00*PbndSe8l+1.0
Q0*PbndSe86+1.

LQ0xPbndSe91+1
. 00*%PbndAs80+1.
00*PbndAs83+1.

00*PbndAs84+]

»00*%PbndGe75+1
00*%PbndGe79+1.
.00*PbndGe83+1.
LO0xPhndGa74+1.
.00%PbndGa78+1.
L00%PbndGas82+1.
.00*PbndZn74+1.
.00%PbndZn78+1.

00*PbndGe80+1
00*PbndGe84+1
Q00*PbndGa75+1

00*PbndGa79+1.
00*PbndGa83+1.
00*PbndZn75+1.
00*PondZn79+1.
.00*PbndCu75+1.

00*PbndBro0+
00*PbndSe83+
00*PbndSe87+

. 00*PbndAs77+

00*PbndAs81+

,00*PbndAs85+
.00%PbndGe77+
.00*PbndGes81+
.00*PbndGa72+
.00*PbndGa76+

00*PbndGa80+
Q0*PbndZn72+
CO*PbndZn76+
00*PbndZn80+
00*PbndCuv8;

eta_Neg.energy += 0.40%PbndU239+0.40%PbndTb158+0.40*PbndGd159+

COQQOoOQOOOOUOOOQOOOOOOOOCO0OOOOQLOOOOOOOOOOOOOO T bbbl b fhph b b b5 b ok b

.40*PbndFulb5+0
.40*¥PbndEul159+0
.40*¥PbndSm156+0
.40%PbndPm148+0
.40*¥PbndPm152+0
.40%PbndPm156+0
.40*%PbndNd149+0
.40%PbndNd154+0
.40%PbndPri144+0
.40%PbndPri148+0
.40%PbndPr152+0
.40*PbndCel143+0
.40*¥PbndCel147+0,
.40%PbndCel51+0
.404PbndLal142+0
.40*%PbndLal4640Q
.40*%PbndBal139+0
.40%PbndBal143+0
.40%PbndBa147+0
.40*PbndCs136+0
.40*%PbndCs140+0
.40*%PbndCs144+0
.40*PbndCs 14840
.40*xPbndXe138+0
.40%PbndXel142+0.
.40*%PbndI128+0.40+PbndI130+0.40*PbndI131+0.40+PbndI132+

L.40*%PbndI133+0.40*%Pbndl134+0.40*Pbndl135+0,40*Pbndl 136+

.40%PbndI137+0.40+#Pbndl138+0.40%PbndI139+0.40%PbndI 140+

LA04Pbndl141+0.40%PbndI142+0.40%PbndTel127+0.40*PbndTe129+
.40*%PbndTel31+0
.40*%PbndTel35+0
.40%PbndSb122+0
.40*%PbndSh127+0
.40*PbndSb131+0
.40%PbndSh135+0
.40*%PbndSn125+0
.40*%PbndSa130+0
.40%PbndSn134+0
.40%PbndIn120+0
.40*%PbndInl130+0
LA0*PbhndCd115+0
LA0*%PbndCd 12040
.40%PbndCd124+0
LA0*PbndCd128+0
.40*PbndAg113+0
.40#PbndAgll7+0

.40*PbndEul156+0
.40*PbndSm151+0
.40*PbndSm157+0
.40%PbndPm149+0
.40*PbndPm153+0
.40*PbndPm157+0
.40*PbrdNd151+0
.40*PbndNd155+0
.40x%PbndPr145+0
.40*PbndPri49+0
.40*%PbndPris3+0
.40*#FbndCe144+0
40+PbndCel48+0

.40*PbndCel52+0,
.40*PbndlLal143+0.
.40xPbndLal47+0.
.40*PbndBai41+0
.40+«PbndBa145+(
.40+%PbndBal49+0
.40*PbndCs138+0
.40*PbndCs142+0
.40+PbndCs146+0
.40xPbndXe135+0
.40*PbndXel40+0

.40%PbndBal40+0
.40*PbndBal44+0
.40+PbndBal48+0
.40*PbndCs137+0
.40+PbndCs141+0
.40*xPbndCs145+0
.40*PbndXel133+0
.40+PbndXel139+0

40*PbndXel143+0.

.40+PbndTel132+0
.40*PondTell36+0
.40%PbndSb124+0
.40+PbndSb128+0
.40+PbndS5b132+0
.40*PbndSb136+0
.40*PbndSn127+0
.40*PbndSn131+0
.40*PbndInil17+Q
-40%PbndInl21+0
.40*PbndIn131+0
.40¥PbndCd117+0
.40*PbndCd121+0
.40*PbndCd125+0
.40%PbndCd129+0
.40%PbndAg114+0

.40+PbndAg118+0

.40*PbndEul157+0
LA40*PbndSmi53+0.
.40*PbndSm158+0
.40+*PbndPm150+0
.40+PbndPm154+0
.40*PbndPm158+0
.40*PbndNd 1562+0
.40*PbndNd156+0
.40*xPbndPri146+0
.40*PbndPr150+0
.40*PbndPr1564+0
.40%PbndCe145+0
.40*#PbndCe149+0

40*PbndLal140+0
40*PbndLa144+0

40%PbndLai48+(.
,40%PbndBa142+
.40*PbndBai46+
.40*PbndCs134+
.40*PbndCs139+
.40*PbndCs143+
.40*%PbndCs147+
.40*PbndXeld7+
.40*PbndXeldl+

40+PbndXe144+0.

.40*PbndTel33+0
L40*xPbndTel3T+(,
.40%PbndSb125+0.
.40*PbndSb129+(,
L40*PbndSb133+5,
.40*PbndSni21+5
.40*%PbndSni128+0
LAQ*%PbndSni32+0
.40+PbndIn118+0
LA4Q0%PbndInl 2240
.40+PbndIn132+0
,40%PbndCd118+0
.40*%PbndCd122+0
.40%PbndCd126+0
L40*xPondCd 13040
.40*PbndAgl115+0

.40*PbndAg119+0

202

.40*PbndEulbg8+

40*PbndSm1556+

.40*PbndSmi59+
.40%PbndPmi51+
.40*PbndPm1556+
.40*PbndNd147+
,40%PbndNd153+
. 40*PbndPrid3+
.40*PbndPri147+
.40*PbndPri1bi1+
.40*%PbndCeldl+
.40*%PbndCel46+
.20*PbndCel50+
.40*PbndLal41+
.40*PbndLal145+

40*PbndLa149+

40*PbndXe145+

.40%PbndTel34+

40%PbndTel38+
40*PbndSbh126+
40*PbndSb130+
40*PbndSb134+

.40¥PbndSn123+
.40%PbndSni29+
L40*PbndSn133+
.40%PbndInli9+
.40%PbndInl23+
A0%PbndInl33+
.40*PbndCd119+
L40%PbndCd123+
L40+PbndCd127+
.40%PbndAgl112+
.40*%PbndAgl 16+
.40*PbndAgl120+

.40*PbndAg121+0
.40+%PbndPd111+0
.40*%PbndPd115+0
,40*¥PbndRh107+0
.40+#PbndRh111+0
,20*PbndRh115+0
.20%PbndRul07+40
,40*PbndRuli1+0
,40*¥PbndTci103+0
,40*PbndTc107+0
LA0*PbndTcl111+0
.40*PbndMo 104+0 ,

.40*PbndAg122+0
.40%PbndPd112+0
.40*%PondPd116+0
.40*¥PbndRh108+0
.40*%PbndRh112+0
.40%PbndRh11640
.40*xPbndRul08+0
-40*%PbndRull2+0
.40%PbndTc104+0
.40*%PbndTc108+0
.40*PbndMo101+0

40*PbndMo105+0.

.40*andﬁg123+0
.40*PbndPd113+0.
.40*%PbndPd117+0.
.40%*PbndRh109+0 .
40%PbndRh113+0.
.40*PbndRul05+¢
.40%*PbrndRu109+0
.404+PbndRu113+0.
.0*PbndTc105+40, 40*PbndTc 106+
.40*PbndTc109+0 .
L4A0*PbndMo102+0 .

40*PbndMo106+0.

.40%PbndAg124+

40*PbndPdli4+
40*PbndPd118+
40*PbndRh110+ -
40%PbndRh114+

.40*PbndRul06+
LA0*bndRuli0+

40%PbndTc102+

40%PbndTcl10+
40+*PbndMo103+
40%PbndMo 107+

.40*xPbndNbo7+0.40%PbndNbo8+0.40*PbndNb99+0 . 40%PbndNb100+
LA0*PbndNb10140 ,40%xPbndNb102+0.40+PbndNb103+40 , 40+PbndNb 104+
.40%PbndNb105+0 . 40%PbndNb106+0 . 40*PbndZr85+0 , 40%PbndZro7+
LA0*PbndZr98+0 . 40%PbndZr99+0,40%PbndZr100+0 ,40*%PbndZri101+
L40*%PbndZr10240 ,40%PbndZr103+0 ., 404PbndZr104+0 . 40*%PbndY92+
LAO*PbndY93+0 . 40%Pbnd¥94+0 . 40*Pbnd¥Y95+0 ., 40*PbndY96+0 . 40%Pbnd Y97+
LA0*PbndY98+0.40%Pbnd¥99+0.40*Pbnd¥Y100+0 ., 40%PbndY 101+
L40*xPbndY102+0.40%PbndSr89+0C . 40+PbndSr90+0 . 40*%PbndSr91+
LA0*%PbndSr92+0.404PbndSr93+0 ., 40*%PbndSr94+0 . 40*PbndSr96+
.40*¥PbndSr96+0.40*PbndSra7+0.40*PhndSr98+0Q.40%PbndSTo9+
.40%PbndSri00+0.40%PbndSr101+0.40*PbndSr102+0 .40+PbndRb38+
.40*%PbndRb89+0, 40*%PbndRb90+0 . 40%PbndRb91+0 . 40*PbndRb92+
.40%PbndRb83+0 . 40%PbndRb94+0.40*PbndRb95+0 . 40+*PbndRb96+
.40*PbndRb97+0.40*PbndRb98+0 . 40*PbndRb99+0,40%PhbndRb100+
.40*¥PbndRb102+0 . 404 PbndKr85+0 . 40*PbndKr87+0 .40*PbndKr3s+
LA0*PbndKr89+0 ., 40%PbndKr90+0 . 40%PbndKr9140.40%PbndKr92+
.A0%PbndKr93+0 ., 404PbndKr94+0.40%«PbndKr95s+0 . 40%PbndKra7+
L40*PbndBr82+0.40*xPbndBr83+0.40+«PbndBr84+0.40+PbondBr85+

L 40%PhbndBr86+0.40%PbndBr87+0Q ., 40*PbndBra8+{.40*%PbndBr89+

. 40*PbndBr90+0.40«PbndBr8i+0,40*PbndBr92+0. £0+%PbndSe81+
,40*PbndSe83+0.40*¥PbndSe84+0 .40*PbndSe86+0 . 40*PbndSe86+
,40*PbndSe87+0.40%PbndSe88+0.40*¥PbndSe89+0 . 4£0*PbndSe91+

L. A04PbndAs77+0,40%PbndAs78+0.40*%PbndAs79+0.40%*PbndAs80+
.40%PbndAs81+0.40%PbndAs82+0.40*%PbndAs83+0.40*xPbndAs84+
.40*PbndAs85+0.40%PbndAs86+0.40*PbndAs87+0.40*PbndGe7b+
.40%PbndGe77+0.40%PbndGe78+0.40%PbndGe79+0 ., 40%PhndGel0+
.40%PbndGe81+0.40%PbndGe82+0.40*%PbndGe83+0.40%PbndGe84+
LA0%PbndGa72+0 . 40%PbndGa73+0.40%PbndGa74+0.40%PbndGa75+
.40*%PbndGa76+0.40%PbndGa77+0.40%PbndGa78+0.40*PbndGa79+
,40*PbndGal0+0.40%PbndGa81+0.40%PbndGa82+0 . 40*%PbndGal3+
LA0*PbndZn72+0,40*%PbndZn73+0.40*xPbndZn74+0 . 40*xPbndZn75+
LA0+PbndZn76+0, 40%PbndZn77+0.40+%PbndZn78+Q . 40*PbndZn 79+
.38*ggngén$g+0.40*andCu72+0.40*andCu73+0.40*andCu75+
LAQ*xPondlu

PbndTb158 1d*Tb158.halflife*Tbi58. amount*NA/Tb158. A*cycle_time;
CbndTb158 1d*Tb158.half11fe*Tb158.amount*NA/TbiBS.A*cycle_tlme,
Dy158.amount += 1.00%PbndTb158/NA*Tb158.4;

FgTb159 = Tbi69.amount*Tb158.sigma_g/Sigma_a_fuel;
nrcTb159 = neutron.amount*k/eta*FgTb169;

PrcTbl158 = nrcTb159+%Tb1i59.A/NA;

CrcTb1b69 = nrcTb159xTb189.A/NA;

Tb159.amount += -1.00*CrcTb159+1.00*%PbndGd159/NA*Gd159.A;

203

Tb160.amount += 1.00%PrcTb159; _
FgGdibb = Gd155.amount*GdlSS.sigma_g/Sigma_a_fuel;

nrcGd155 = neutron.amount*k/etaxFgGd156;
PrcGd155 = nrcGdi55+Gd165.4/N4;
CrcGd155 = nrcGd155+%Gd156.A/NA;

Gd1ibb5.amount += ~1.00*%CrcGdi5b6+1.00%PbndEul55/NA*Eul1E5.4;

Gd156.amount += 1.00%PrcGdi55-1.00%CrcGdi56+1.00%PbndEul56/NA*Eulb6.4;
'Fng156 = Gd1566.amount*Gd166.sigma_g/Sigma_a_fuel;

nrcGd156 = neutron.amount*k/eta*FgGd156; '

PrcGd1b6 = nrcGd166%Gd156.A/NA;

CrcGd156 = nrcGd156%Gd156.A/NA;

3d157.amount += 1.00*%PrcGd156-1.00%CrcGd157+1.00*%PbndEul57/NA*Eu157.4;
FgGd157 = Gd1i57.amount*Gd157.sigma_g/Sigma_a_fuel;

nrcGdi57 = neutron.amountxk/eta*FgGdi57; . :

PrcGdi57 = nrcGd157*Gd157.A/NA;

CrcGd157 = nrcGd157+Gd157 .A/NA;

Gd158.amount += 1.00*Prch157+1.00*andEﬁ158/NA*Eu158.A;

‘PbndGd159 1d*Gd159.halflifexGdi59 ., amount*NA/GA159 . A*cycle_time;
ChndGdis9 1d*Gd159.halflife*GdiSQ.amount*NA/GdiSS.A*cycle_time;
FgEul53 = Eul53.amount*Eul53.sigma_g/Sigma_a_fuel;

1}

nrcEulb3 = neutron.amountxk/eta*FgEulb3;

PrcEul53 = nrcEul53*Eulb3.A/NA;

CrcEul53 = nrcEulb3#Eulb3.A/NA; .
Eui53.amount += -1.004#CrcFul53+1.00*PbndSmi53/NA*Sm153.4;
Euil54.amount += 1.00%PrcEulb53-1.00*CrcEulb4;

" FgEulb4 = Eu154.amount*Eu154.sigma_g/Sigma“a,fuel;

nrcEulb4 = neutron.amount*k/eta*FgEu154;

PrcEulb4 = nrcEulb4+Euibd.A/NA;

CrcEul54 = nrcEulb4xEulb4a . A/NA;

Eui55.amount += 1.00%PrcEul54-1.00%CrcEul55+1.00*PbndSm155/NA*Sm156.4;
PbpdEu154 = 1d*Eul54.halflife+Eul54.amount*NA/Eul154.A*cycle_time;
CbpdEuib4 = 1d*Eui54.halflife*Eulb4.amount*NA/Eulb4.A*cycle_time;

204

Sm154.amount += 1.00%PbpdEulB4/NA*Eu154.A+1.00*Prciml153-1.00%
CrcSmib4+1.00%PbndPm154/NA*Pm154.4;

Beta_Pos.amount += 1,00*PbpdEul54;

Beta_Pos.energy += 0.40%PbpdEul&4;

FgEulb6 =_Eu155;amount*Eu155.sigma_g/Sigma_a_fuel;

nrcEulbs = neutron.amount*k/eta*xFgEul55;

PrcEuiS5 = nrcEul55%Eu155.A/NA; |

CrcEulb5 = nrcEulb5+Eulss.A/NA;

Eui56,amount += 1.00*PrcEulb5+1.00*PbndSmis6/NA*Sm156.4;
PbndFul155 = 1d*Euilb55.halflife*Euls5. amount*NA/Eulbs, Axcycle _time;
CbndEul155 = 1d+Euibb.halflife*Eulbs. amount*NA/Eulbb. A*cycle_time;
PbndFulb6 = 1d*Euib56.halflife*Eulb6.amount*NA/Eulb6, Axcycle_time;
CbndEulE6 = ld*Eulb6.halflife*Eulb6,amount*NA/Eulb6.Axcycle time;
PbndEul57 = ld*Eulb7.halflife*Eulb7.amount*NA/Eulb7.A*cycle_time;
CbndEuiET = 1d*Eul57.halflife*Enl57.amount*NA/EulS7.A*cycle_time;
PbndEu158 = 1d*Eu158.halflife*Eul58.amount*NA/Eulb8.A*cycle_time;
CbndEul58 = 1d*Eul58.halflifexEul58.amount*NA/Eul58, A*cycle time;
PbndEul59 = 1ld*Eul59.halflife*Eulb3.amount*NA/Eulb9.A*cycle_time;
CbndEui59 = 1d*Eul59.halflifexEulb9.anount*NA/Eulb9.A*cycle_time;
Gd159.amount += 1.00*PbndEul59/NA*Eul159.4;

FgSm150 = Smi50.amount*Smi50.sigma_g/Sigma_a_fuel;

nrcSmnis0

neutron.amount*k/eta*FgSmis0; -

PrcSmib0 nrcSmiSO*SmlSO.A/NA;

CrcSmib0 = nreSm150%Smi50.A/NA;

Sm150.amount += -1.00%CrcSmi50+1.00%PbndPm150/NA*Pm1b0.4;

- 8mib5i.amount += 1.00*PrcSm150-1.00*CrcSm151+

1.00*PbndPmi51/NA*Pm151.4; \

FgSm151 = SmiSi.amount*SmiSi.sigma_g/Sigma,a_fuel;
nrcSmisi

neutron.amount*k/eta*FgSmi51;
PrcSmi5i = nrcSmiSi*Smi151.A/NA;
CrcSmisi = nreSm151%Sm151.A/NA;

Smi152.amount += 1.00%PrcSmib51-1.00*%CrcSmib2+
1.00%PbndPmi52/NA*Pnl152.4;

205

PbndSm151 = 1d*Sm151.halflife*Sm151.amount*NA/Smi51.A%cycle_time;
CbndSm151 = 1d*5m151.halflife*Sm151.amount*NA/Smi51.A*cycle_time;
Ful5i.amount += 1.00%PbndSm151/NA*Smi51.4; '

]

FgSm152 = Sm152.amount*Smib2.sigma_g/Sigma_a_fuel;
nrcSmi52

neutron.amountxk/eta*FgSmi52;
PrcSmi52 = nrcSmibs2*Smi52.4/NA;
CrcSm152 = nrcSmi152%Smi52.4/NA;

Sm153.amount += 1.00%PrcSm152-1.00*CrcSmiE3+
1.00%PbndPmi53/NA¥Pm153.4;

FgSmi153 = 5mi53.amount*Sm153.sigma_g/Sigma_a_fuel;

nrcSmis3 = neutron.amountxk/eta*FgSmis3;

PrcSmi1t3 nrcSmi153*Smi53.A/NA;

CrcSmi1b3 = nrcSm153*Smi153.4/N4A;

PbndSm153 = 1d*Sm153.halflife*Smi53. amount*NA/Smib3.A*cycle_time;
CbndSm153 1d*Sm153.halflife*SmlSS.amount*NA/SmiSS.A*cycle_time;
FgSmib4 = Smi54.amount*5m154.sigma_g/Sigma_a_fuel;

nrcSmis4
PrcSmi54 = nrcSm154*Smi54.4/NA;

CrcSm154 = nrcSmi54%Sm154.4/NA;

Sm155. amount += 1.00*PrcSm154+1.00*ande155/NA*Pm155.A;
PbndSmibs = ld*Sm155.halflife*SmlSS.amoﬁnt*NA/Sm155.A*cycle_time;

neutron.amount*k/eta*FgSm154;

CbndSm155 = 1d*Smi55.halflifexSm155. amount*NA/Sm155.A*cycle_time;
PbndSmi156 = 1d#Sm156.halflife*Sm156. amount*NA/Sm156.A*cycle_time;
CbndSm166 = 1d*5mi66.halflife*xSmib6 . amount*NA/Sm156.A*cycle_time;
PbndSmi1b7 = 1d*Sm157.halflife*SmiS?.amount*NA/SmlST.A*Cycle_time;
- CbndSml1E7 = 1d*Sm157.halflife*SmlST.amount*HA/SmlST.A*cycle_time;

EulS7.amount += 1,00*%PbndSmi157/NA*Sm157.4;
PbndSm1b8 1d*Sm158.halflife*SmlSB.amount*NA/SmlES.A*cycle_time;
CbndSm158 = 1d*Sm158.halflife*Smib8. amount*NA/Sm158. A*cycle_time;
Eulb8. amount += 1.0Q*andSm158/NA*Sm158.A;
PbndSm159 = 1d*Sm159.halflife*Sm159.amount*NA/Sm159.A*cycle_time;
CbndSm159 ld*Sm159.halflife*SmlEQ,amount*NA/SmlEQ.A*cycle_time;

206

Eul59.amount += 1,00%PbndSmi59/NA*Sm159.4;
FgPm148 = Pmi148.amount*Pm148.sigma_g/Sigma_a_fuel;

nrcPm148
PrcPmi48
CrcPmi148

PbndPmi43
CbndPm149

PbndPm150
CbndPm150
PbndPm151

. CbndPm151

PbndPm152

CbndPmib2 -

PbndPm153
CbndPm153
PbndPm154
CbndPmib4
PbndPm155
CbndPm155
- PbndPnibe
CbndPm156

It

neutron.amount*k/eta*FgPnl148;
nrcPml148*Pmi48 . A/NA;
nrcPml48*Pm148.A/NA;
Pmi148.amount += -1.00%CrcPmi148;
Pm149 ., amount += 1.00*Prch148+1.00*ande149/NA*Nd149.A;

PbndPm148 = 1d*Pm148.halflife*Pmi148.amount*NA/Pm148.4A*cycle_time;
CbndPmi48 = 1d*Pm148.halflife*Pm148.amount*NA/Pm148.A*cycle_time;
"Sm148.amount += 1.00%PbndPm148/NA*Pm148.4A;

= 1d*Pn149.halflifexPm149, amount*NA/Pm149.
1d*Pm149 .halflife*Pmi49, amount*NA/Prn149.
Sm149.amount += 1.00+PbndPm149/NAXPm149.4;

1d*Pmi50
1d*Pm150
1d*Pmib1

1d*Pmib2

1d*Pm152

1d*Pmib3

1d*Pmlb4

1d*Pm154.
halflife¥Pmibhb.
.halflife*Pmi55.
.halflife*xPm156.
.halflife*Pn156.

'1d*Pm155
1d*Pm155
1d*Pm156
1d*Pm156

.halflife*xPmiS0.
.halflifexPm150.
.halflifexPmi51.
1d*Pm151.
.halflife*Pmi52,
halflife*Pmi52.
halflife*Pmi53.
1d*Pm153.
.halflife¥Pmib4.

halflife*Pm151.

halflifexPmib3.

halflife*Pmib4,

amount*NA/Pm150C.
amount*NA/Pn150.
amount*NA/Pm151.
amount*NA/Pmi51.
amount*NA/Pri52.
amount*NA/Pmi52.
amount*NA/Pm153.
amount+NA/Pm153.
amount*NA/Pmi54,
amount*NA/Pmi54.
amount*NA/Pm155.
amount*NA/Pm155.
amount*NA/Pm156.
amount*NA/Pm156.

Smi56,amount += 1.00%PbndPm156/NA*Pm166.4;
1d*Pmi57 .halflife*Pm157 . amount*NA/Pm157.
1d*Pm157.halflife*Pm15?.amount*NA/PmlST.
Sm157.amount += 1.00%PbndPmi57/NA*Pm157.4;
and?m158 = 1d*Pm158.ha1flife*Pm158.amount*NA/Pm158.

PbndPmi57
CbndPmi1b7

207

Ax*cycle_time;

A*cycle_time;

A*cycle_time;
A*xcycle_time;
Axcycle_time;
A*cycle_time;
Axcycle_time;
Axcycle_time;
Axcycle_time;
A*cycle_time;
A*cycle_timse;
Akxcycle_time;
A*cycle_time;
Axcycle_time;
A*xcycle_time;

Axcycle_time;

Axcycle_time;

Axcycle_time;

Axcycle_time;

CbndPm158 = 1d*Pm158.halflife¥Pmi58. amount*NA/Pm158.A¥cycle_time;
Smi58.amount += 1.00*PbndPm1b8/NA*Pm158.4;
FgNd145 = Nd145.amount*Nd145.signa_g/Sigma_a_fuel;

nrcNd145 = neutron.amount¥k/eta*FgNdi145;
PrcNdi145 = nrcNd145#Nd145.A/NA;
CreNdi45 = nrcNd145*Nd145.4/NA;

Nd145.amount += -1.00*CrcNd145+1.00*%PbndPri145/NA+Pri145.4;

Nd1486.amount += 1,00%PrcNd145-1.00*%CrcNd146+
1.00*PbndPr146/NA*Pri46.4;

FgNd146 = Nd146.amount*Nd146.sigma_g/Sigma_a_fuel;

nrcNdid4e6 = neutron.amount*k/éta*FgNd146;
PrcNdi46 = nrcNdi146+Nd146.A/NA;
CrcNdi46 = nrcNdi146%Nd146.A/NA;

Nd147.amount += 1.00*PrcNd146+1,00«PbndPri47/NA*Pri147.4;
PbndNd147 1d*Nd147.halflife*Nd147.amount*NA/Nd14?.A*cycle_time;
CbndNd147 = 1d*Nd147.halflife*Nd147.amount+*NA/Nd147.Axcycle_time;
Pmi147.amount += 1.00%¥PbndNd147/NA*Nd147.4;

FgNd148 = Nd148.amount+*Nd148.sigma g/Sigma_a_fuel;

nrcNd148 = neutron.amount*k/eta*FgNdi148;
PrcNd148 = nrcNd148+Nd148.A/NA;
CrcNd148 = nrcNd148*Nd148.4/NA;

Nd148.amount += —1.00*CrcNd148+1.00*andPr148/NA*Pr148.A;
Nd149.amount += 1.00%PrcNd148+1.00*PbndPr149/NA*Pri49.4;
PbndNd149 = 1d*Nd149.halflife+Nd149,amount*NA/Nd149.A*cycle_time;
CbndNd149 = 1d#Nd149.halflife*Nd149.amount*NA/Nd149.Axcycle_time;
FgNd150 = Nd150.amount*Nd150.sigma_g/Sigma_a_fuel; '

nrcNd150 = neutron.amount*k/eta*FgNd150;
PrcNd150 = nrcNd150*Nd156.A/NA;
CrcNd150 = nrcNd150+Nd150.4/N4;

Nd150.amount += =-1.00%CrcNd150+1.00%PbrdPri50/NA*Pr150.4;
Nd151.amount += 1.00%PrcNd150+1.00+PbndPr151/NA*Pri61.4A;
PbndNd151 = 1d#Nd151.halflife*Nd151.amount*NA/Nd151.A*cycle_time;
CbndNd1b51 = 1d*Nd151.halflife*Nd1i51.amount*NA/Nd151.A*cycle_time;

208

Pm1B1.amount += 1.00*PbndNd151/NA*NA151.4;

PbndNd152 = 1d*Nd152.halflife*Nd152.amount*NA/Nd152.A*cycle_time;
CondNd 152 1d*Nd152.halflife*Nd152.amdunt*NA/NdiS2.A*cycle_fime;
Pm152.amount += 1.00*ande152/NA*ﬁd152.A;

PbndNd1563 = 1d*Ndi153.halflife*Nd153.amount*NA/Nd153.A*cycle_time;
CbndNd153 = 1d*Nd153.halflife*Nd153. amount*NA/Nd163. A*cycle_time;
Pmi53.amount += 1.00*PbndNd153/NA*Nd153.4;

PbndNdi54 = 1d*Ndi54.halflife*Nd154.amount*NA/Nd154.A*cycle_time;
CbndNdi54 = ld*Nd154.ha1flife*Nd154.amount*NAdelEé.A*cycle_time;
Pm154.amount += 1.00*PbndNd154/NA*Nd154.4;

PbndNdi155 1d*Nd155.halflife*NdiSS.amount*NA/NdiBS.A*cyéle_time;
CbndNdibb = 1d*Nd155.halflife*Nd155. amount*NA/Nd1565.A*cycle_time;
Pm155.amount += 1.00*PbndNdi55/NA*Nd155.4; _

PbndNd156 1d*Nd156.halflife*NdiSGfamount*NA/Ndiss.A*cycle_time;
'Cbnde156 1d*Nd156.halflife*NdiSG.amount*NA/NdiES.A*cycle_time;
Pm156.amount += 1.00%PbndNd156/NA*Nd156.4;

FgPri143 ='Pr143.amount*Pr143.sigma“g/Sigma_a_fuel;

nrcPrid3 = neutron.amount+k/eta*FgPri43;

PrcPri43 nrcPrid3*xPri43 A/NA;

CrcPridl nrcPri43*Pri43.A/NA;) .
Pri143.amount += -1.00%CrcPri143+1.00+4PbndCel143/NA*Cel143.4A;
Pri44.amount += 1.00*PrcPri43+1.00*PbndCel44/NAxCel44.4;
PbndPri43 = 1d*Pri43.halflifexPri43.amount*NA/Pri43.A*cycle_time;
CbndPri43 = ld*Pr143.halflife*PriQS.amount*NA/Pr143.A*cycle_time;
' Nd143.amount += 1.00%PbndPri43/NA*Pri43.4;

PbndPri44 = ld*Pr144.halflife*Prléé.amount*NAfPr144.A*cycle_time;
CbndPri44 = 1d*Pr144.halflife*Priéé.amount*NA/Pr144.A*cycle_time;
Nd144.amount += 1.004%PbndPri44/NA*Pri44.A;

PbndPri45 = 1d*Pri145.halflifexPr145.amount*NA/Pri46.A*xcycle_time;
CbndPri4s5 = 1d*Pr145.halflife*Pr145.amount*NA/Pr145.A*cycle_time;
andPr146 = ld*Prl46.halfiife*Pr146.amount*NA/Pr146.A*cycle_time;
CbndPr146 = 1d*Pri46.halflife*Pri146,amount*NA/Pri46.A*cycle_time;

209

PbndPri147
CbndPr147
PbndPri4s8
CbndPr143
PbndPri149
CbndPri49
PbndPriGo
CbndPriB0
PbndPribl
CbndPri5i1
PbndPri52
CbndPri52

1d*Pri47
1d*Pri147
1d*Pri4sg
1d*Pri48
1d*Pr149

1d*Pri1493.

1d*Pri50

1d%Pri150.

1d*Pr151
1d*Pr151
1d*Pr152

1d*Pri52.

halflifexPri147.
JhalflifexPrid?7,
JhalflifexPrl4s,
.halflifexPridsg,
.halflife*Pri49.
halflifexPri149,
halflife*Prib.
halflife*Pri50.
.halflifexPrisi.
.halflife*Pribl.
.halflife*Prib2.
halflife*Pri1b2.

amount*NA/Pri147.
amount*NA/Pr147.
amount*NA/Pr148.
amount*NA/Pri148.
amount*NA/Pri49.
amount*NA/Pri149.
amount*NA/Pri50.
amount*NA/Pri50.

amount*NA/Pri51
amount*NA/Pri51
amount*NA/Pr152
amount*NA/Pri152

Nd152.amount += 1.00*PbndPri152/NA*Pri52.4;

PbndPri53
CbndPri53

1d#*Pr153.halflifexPri53.amount*NA/Pri53.
1d*Pr153.halflifexPr153. amount*NA/Pri53,

Nd153.amount += 1.00*PbndPri53/NA*Pri53.4;

PbndPrisd
CbndPrib4

|

1d*Pr154 .halflife*Pr154, amount*NA/Pri54.
1d*Pr154.halflife*Prib4 . amount*NA/Prib4.

Nd154.amount += 1.00*PbndPri54/NA*Prib4 . A;
ld*Ce141.halflife*Cei41.amqunt*NA/Cei41
1d*Cel41.halflife*Celdl.amount*NA/Celdl
Pri141l.amocunt += 1.00*PbndCel41/NA*xCeldl . A; |

PbndCel4l
CbhndCeldl

PbndCel143
CbndCel43

PbndCel44
.CbndCeiéé
andCeléS
ChndCel145b

i}

1d*Ce143.halflife*Cel43.amount*NA/Cel143.
ld*Cel43.halflife*Cel43.amount*NA/Celd3d.
1d*Cel44 .halflife*Cel44. amount*NA/Ceids.
1d*Cel44 .halflifexCeld4.amount*NA/Celdd,
1d*Ce145.halflife*Ce145.amount*NA/Ce145.
1d*Ce145.halflife*Cel45.amount*NA/Celd5,

Pri145.amount += 1.00*PbndCel45/NA*Celdb.4;

PbndCe146
CbndCe146

1d*Cel46.halflifexCel146,amount*NA/Celd6,
1d#Cel146.halflife*Cel46. amount*NA/Celds.

Pri46.amount += 1,00%PbndCeil46/NA*Celd6.4;

210

Axcycle_time;
Axcycle_time;
ﬁ*cycle_fime;
Axcycle_time;
Axcycle_time;
Axcycle_time;
A*cycle_timé;

A*cycle_time;

JA*cycle_time;
JA*cycle_time;
Axcycle_time;

Axcycle_time;

Axcycle_time;

Axcycle_time;

A*cycle_time;

Akxcycle_time;

.A*cycle_time;

JA*cycle_time;

A*cycle_time;
A*cycle_time;
A*cycle_time;
A*cycle_time;
Axcycle_time;

A*cycle_timé;

Axcycle_time;

Axcycle_time;

PbndCe147
CbndCel47
Pri47.amount += 1.00*PbndCel47/NA*Celd7 .A;

PbndCel48 = ld*Cel48.halflife*Cel48.amount*NA/Celss.

CbndCel48 = 1d%Cel148.halflifexCeld8.amount*NA/Cel48
Pri148.amount += 1.00*PbndCe148/NA*Ce148.4; '

PbndCel149 = ld*C6149.halflife*CeléQ.amount*NA/Ce149.
CbndCel149 = 1d*Cel149.halflife*Cel149.amount*Na/Ce149,

Pri49.amount += 1.00%PbndCel149/NA*Cel49.4;
PbndCel50 = 1d*Cel50.halflife*Cel50.amount*NA/Cel50
CbndCel1B50 = 1d*Celb50.halflife*Celb0.amount*NA/Celb0
Pri150.amount += 1.00%PbndCel50/NA*Cel50.4;
PbndCelb1
-CbndCel51
Pri51i.amount += 1.00%PbndCel151/NA*Cel51.4;
PbndCel52 = 1d*Cel52.halflife*Celb2.amount*NA/Celb2
CbndCel152 = 1d*Ce152.halflife*Celb2.amount*NA/Celb2
Pri152.amount += 1.00*PbndCel52/NA*Cel152.4;

Fglal38 = Lal38.amount*Lal38.sigma_g/Sigma_a_fuel;
nrclal38
PrcLal3s
CrclLal3s

Lal138.amount +=

neutron.amount*k/eta*Fglall8;
nrclal38*La138.A/NA;
nrcLal38%Lal138.A/NA;
-1.00xCrclLal38;

I

1]

n

LaiSQ.amount +=

PbndlLal40 = 1d*Lal40.halflife*Lai40.amount*NA/Lal40

1d*Celd7 . halflifexCeld?, amount*NA/CeldT.
1d%Cel147.halflife*Celd7 . amount*NA/Celd? .

1d*Ce1b51.halflife*xCel5l.amount*NA/Celbl.
1d#Cei151.halflife*Celibl.amount*NA/Celisi.

Axcycle_time;

Axcycle_time;

Axcycle_time;

JA¥cycle_time;

Axcycle_time;

Axcycle_time;

JA*xcycle_time;

.A*cycle_time;

A*cyclewtime;_

Axcycle_time;

.A*cycle_time;

.A*xcycle_time;

1.00%PrcLal38+1.00*%PbndBal39/NA*Bal39.4;

JAxcycle_time;

CbndLal4d = 1d*Lal140.halflife*La140.anount*NA/Lal40.A*cycle_time;

Cel40.amount += 1.00*andLa140/NA*La140.A;
PbndLal41l
CbndLal41 = 1d*Lal4l.halflife*Lal4l.amount*NA/Lal41
Cel4l.amount += 1.00*andLa141/NA*La141.A;

PbndLal42
CbndLal42

211

ld*Laléi.halflife*La141.amount*NA/La141.A*cycle_time;

Axcycle_time;

1ld*Lai42.halflifexLal42.amount*NA/Lal42.A*cycle time;
ld*Lal42.halflifexLal42.amount*NA/Lal42.Axcycle_time;

Celd42.amount += 1.00*PbndLal42/NA*Lal142.4:
PbndLal43 = 1d#Lal43.halflife*Lal43,amount*NA/Lal43,
CbndlLal43d = 1d*Lal43.halflifexLal43,amount*NA/Lald3.
Ce143.amount += 1.00%PbndLa143/NA*Lal143.4;

PbndLal44 = ld*Lal44.halflife*Lald4.amount*NA/Lal44.
Cbndlal44 = 1d+Laid44 . halflife*Lal44.amount*NA/Lald4.
Cel44 .amount += 1.00%PbndLal44/NA*Laldd. 4;
PbndLal145 = 1d*Lal45.halflife*lald5.amount*N4i/Lal45,
CbhdLalQS 1d*Lal4b5.halflife*Laldb. amount*NA/Lal145,
Cel45.amount += 1.00%PbndLal45/NA*Laid5.A;
PbndLa146 = ld+*Lal46.halflife*Lal46.amount*NA/Lal46.
CbndLal46 = 1d*Lal46.halflifexLal46.amount*NA/Lal46.
Cel46.amount += 1.00%PbndLai46/NA*Lal46.4;
PbndLal147 = 1d*Lal47.halflife*Lal47.amount*NA/Lai47.
CbndLal47 1d*Lal47 .halflife*Lald7.amount*NA/Lal147.
Cel47.amount += 1.00%PbndLal47/NA*Lald7 . 4;
PbndLa148 = 1d*Lal48.halflife*l.al48.amount*NA/Lal48.
CbndlLa148 = 1d*Lal48.halflife*xLald8.amount*NA/Lal148.
Cel48.amount += 1.00*PbndLal48/NA*Lal48.4;
PbndLal49 = 1d+Lal49 . halflife*Lal49,amount*NA/Lal49,
CbndLa149 ld*Lai49.halflife*La149.amount*NA/La149.
Ce149.amount += 1.00%PbndLa149/NA%La149.4; |

13

H

]

PbndBal39 = 1d*Ba139.halflife*Bal39.amount*NA/Bal139.
CbndBal39 = 1d+Bal39.halflifexBal3s.amount*NA/Bal3g.
PbndBal40 = ld*BgléO.halflife*Ba140.amount*NA/Ba140.
CbndBal4l = ld*BaléO.halflife*3a140.aﬁount*NA/Ba140.

Lal140.amount += 1.00*PbndBal40/NA*Bal40.4;
PbndBal41 1d*Ba141.halflife*Ba141.amount*NA/Bai41.
| CbndBaldi 1d*Bal4l.halflife*Bald1l.amount*NA/Baldl.
Lal41l.amount += 1LOO*andBa141/NA*Ba141.A;
PbndBal42 = 1d#Bal42.halflife*Bal42,amount*NA/Bai42,
CbndBal142 = 1d*Bal42.halflife+Bal42.amount*NA/Bal142,

212

A¥cycle_time;

Axcycle_time;

Axcycle_time;

Axcycle_time;

Axcycle_time;

A*cycle_time;

Axcycle_time;

A*cycle_time;

Axcycle_tinme;

A*cYble_time;

Axcycle_time;

A*cycle_time;

A*cycle_time;

A*cycle_time;

Axcycle_time;
dxcycle_time;
A*cycle_time;

Axcycle_time;

Axcycle_time;

Axcycle_time;

Axcycle_time;

A*cycle_time;

Lal42.amount += 1.00%PbndBa142/NA*Ba142.4;

PbndBal43
CbndBa143

1d*Ba143.halflife*Bal43.amount*NA/Bai43.
1d*Bal43.halflife*Bal43. amount*NA/Ba143.

Lal43.amount += 1.00%PbndBa143/NA*Ba143.4;

PbndBal44

CbndBai44
Lai144.amount += 1,00*%PbndBal44/NA*Baid4.4;

PbndBal46
CbndBal4t

1d*Bal44 halflife*Bal44.amount*NA/Balsd,
1d*Bat44 .halflife*Bal44d.amount*NA/Bal44d.

ld*Ba145;halflife*Ba145.amount*NA/Ba145.
1d*Bal4b .halflife*Bal45.amount*NA/Bal45.

Lal45.amount += 1.00*PbndBai45/NA*Ba145.4;

PbndBal46 = 1d*Bai46.halflife*Bal46.amount*NA/Bal46.
CbndBal146 = 1d+*Bal46.halflife*Bal46,amount*NA/Bal4s.
Lat46.amount += i.00*andBa146/NA*Ba146.A; _
PbndBal47 = 1d*Ba147 .halflife*Bal47.amount*NA/Bal47.
CbndBa147 = 1d*Ba147.halflife*Ba147.amount*NA/Ba14T.
La147.amount += 1.00%PbndBaid7/NA*Bal47.4;

PbndBal48
CbndBa148

1d*Bal148 .halflife*Bal48.amount*NA/Balds.
1d#Ba148.halflife*Ba148.amount*NA/Ba148.

La148.amount += 1.,00%PbndBa148/NA*Bal48.4;

PbndBa149
CbndBai149

1d*Ba149.halflife*Bal49.amount*NA/Bal49.
1d*Ba149.halflife*Bal49.amount+NA/Bai49.

Lal49.amount += 1.00*PbndBal49/NA*Bal49.A;
FgCs133 = Cs133,amount+Cs133.sigma_g/Sigma_a_fuel;

nrcCs133
PrcCs133
CrcCslidd

Hi

neutron.amount*k/eta*Fngiss;-
nrcCs133%Cs133.A/N4;
nrcCs133*%Cs133.A/NA;

A*cycle_time;

A*cycle_time;

Axcycle_time;

A*cycle_time;

Axcycle_time;

Axcycle_time;

A*cycle_time;

A*cycle_time;

Axcycle_time;

Axcycle_time;

Axcycle_time;

A*cycle_time;

Axcycle_time;

Axcycle_time;

Cs133.amount += =1.00%CrcCs133+1.00%PbndXel133/NA*Xe133.4;
Csi34.amount += 1.00%PrcCsl33;
PbndCs134 = 1d*Csi34.halflife*C5134.amount*NA/C3134.A*cycle_time;
CbndCs134 = 1d*Cs134.halflife*Cs134.amount*NA/Cs134.A*cycle_time;
Bai34.amount += 1.00*%PbndCs134/NA*Cs134.4; _
PbndCs136 = ld*C3136.halflife*C3136.amgunt*NA/CsiSG.A*cycle_fime;

213

CbndCs136 = 1d*Cs136.halfliferCs136.amount*NA/Cs136.
- Bal36.amount += 1.00*PbndCs136/Na*Cs136.4;
PbndCs137 ld*CslS?.halflife*CslS?.amount*NA/C5137;
CbndCs137 ld*CsiST.halflife*CslB?.amouﬁt*NA/CslS?.
Ba137.amount += 1.00*andCsiS7/ﬁA*C3137.A;
PbndCs138 ld*CsiSB.halflife*CSiSS.amount*NA/CsiBS.
CbndCs138 = 1d*Cs138.halflife*Cs138.amount*N4a/Cs138,
Ba138.amount += 1.00+#PbndCs138/NA*Csi138.4;
PbndCs139 = ld*CsiSQ.halflife*CslSQ.amount*NA/CslSQ;
CbndCs139 = 1d*Cs139.halflife¥Cs139.amount*NA/Cs139.
BaiBQ.amoﬁnt += 1.00*andCslsglNﬂ*Cslsg.A;
PbndCsi140 = 1d*Cs140.halflife*xCs140.amount*NA/Cs140.
CbndCs140 1d*Csi40.halflife*Csl40.amount*NA/Csi40.
Bal4{.amount += 1.00%PbndCs140/Na*Cs140.4;
andCsl41 = 1d*Cs141.halflife*Csi4l.amount*NA/Cs141.
CbndCsi4l = 1d*Csi141.halflife*Csi14l.amount*NA/Csi41.
Bal4i.amount += 1.00%PbndCs141/NA*Csi141.4;
PbndCs142 ld*Cslé2.halflife*Csi42.amoﬁnt*NA/CsiéZ.
CbndCs142 = 1d#Cs142.halflifexCs142.amount*NA/Cs142.
Bal42.amount += 1.00*PbndCs142/NA*Cs142.4;
PbndCs143 1d*Cs143.halflife*Cs143.amount*NA/Cs143.
CbndCs143 = 1d*Cs143.halflife*Cs143.amount+*NA/Cs143.
Ba143.amount += 1.00*PbndCs143/NA*Cs143.4;
PbndCs144 = 1d*Csl144.halflife*Csl144.amount*NA/Cs144.
._CbndCsi44 = 1d*Cs144 .halflifexCs144.amount*NA/Cs144.
Bal44,amount += 1.00%PbndCs144/NA%Csl144.4;
PbndCs145 = 1d*(Cs145.halflife*Cs145.amount*NA/Cs145.
CbndCs145 = 1d*Csl45.halflifé*C3145.amount*NA/Csi45.
Ba14b.amount += 1.00*PbndCs145/NA*Cs145.4;
PbndCs146 = id*Csl46.halflife*05146.amount*NA/Csi46.
CbndCs146 = 1d*Cs146.halflifexCs146.amount*NA/Cs146.
Bal46.amount += 1.00*PbndCs146/NA*Cs146.4;

1]

I

214

A*cycle_time;

A*cycle_time;

A*xcycle_time;

Axcycle_time;

Axcycle_time;

A*cycle_time;

Axcycle_time;

A*xcycle_time;

A*cycle_time;

A*cycle_time;

Axcycle_time;

A*cycle_time;

A*xcycle_time;

Axcycle_time;

Axcycle_time;

A*cycle_time;

A*cycle_time;

A*cycle_time;

Axcycle_time;

A*Cycle,time;

A*cycle_time;

- PbndCs147 = 1d*Cs147 .halflife+Cs147.amount*NA/Cs147 . A*cycle_time;
CbndCs147 = 1d*Cs147 .halflife*Cs147.amount*NA/Cs147.A*cycle_time;
Bal47.amount += 1.00%*PbndCsi147/NA*Cs147.4A; -
PbndCs148 = 1d*Cs148.halflife*Cs148.amount*NA/Cs148.A*cycle_time;
CbndCs148 = 1d*Cs148.halflife*Cs148.amount*NA/Cs148.Axcycle_time;
Bal48.amount += 1.00%PbndCs148/NA*Cs148.4;

FgXel30 = XeiSO.amount*XeiSO.sigma_g/Sigma_a;fuel;

nrcXell30 = neutron.amounttk/eta*FgXell0;
PrcXel30 = nrcXel30%Xel30.A4/NA;
CrcXeil30 = nreXel130*xXel30.A/NA;

Xe130.amount += -1.00%CrcXe130+1.00%PbndI130/NA*I130.4;
Xe131.amount += 1.00%PrcXel30-1.00*CrcXel131+1.00%¥PbndI131/NA*I131.4;
FgXel3i = Xel131l.amount*Xel31l.sigma_g/Sigma_a_fuel;

nrcXel31 = neutron.amount*k/eta*FgXel3l;

PrcXel31 = nrcXel31*Xel31.A/NA;

CrcXeldl = nrcXel31xXel31.A/NA; .

Xe132.amount #= 1.00%PrcXe131+1, OO*and1132/NA*1132 A; _
PbndXe133 1d*Xe133.halflife*Xe133. amount*NA/Xel33.A*xcycle_time;
CbndXe133 ld*Xe133.halflife*XeiSS.amount*NA/XeiSS.A*cycle_time;

FgXe135 = Xe135.amount*Xe135.sigma_g/Sigma_a_fuel;

nrcXel35 = neutron.amountxk/eta*FgXel35;

PrcXel3db = nrcXel35%Xel135.A/NA;

CrcXel35 = nrcXel35*Xel135.A/NA: _

Xel135.amount += -1.00%CrcXel135+1.00%PbndI135/NA*I1135.4;
~Xel36.amount += 1.00%PrcXel35+1.00%PbndI136/NA*I136.4;

PbndXe135 = 1d*Xe135.halflife*Xel36.amount*NA/Xe135.A*cycle_time;

[

CbndXel3b = 1d*XelS5.haiflife*Xei35.amount*NA/XeiSS.A*cycle_time;
Cs135.amount += 1.00*PbﬁdKe135/NA*Xe135.A;
PbndXel3d7 = 1d*Xel37.halflifexXel37.amount*NA/Xe137.A*cycle_time;
CbndXel137 = 1d*Xel37.halflife*Xel37.amount*NA/Xe137.A*cycle_time;
Cs137.amcunt += 1.00*Pbnd¥el37/NA*Xel37.4;
PbndXei38 = ld*XelBS.halflife*XeiSB.amount*NA/XeiSS.A*cycle_time;

215

CbndXellds = 1d*Xe138.halflife*KeiSS;amount*NA/Xe138.A#cycle_time;
Cs138.amount += 1.00%PbndXe138/NAxXe138.4; | _

PbndXel139 = ld*XelSQ.halflife*Xeng.amount*NA/Xei39.A*cycle_fime;
CbndXel39 = ld*Xe139.halflifexXel39.amount*NA/Xel139.A*cycle_time;
Cs139.amount += 1.00%PbndXel39/NA*Xe139.4;

PbndXel4 1d*Xel140.halflife*Xel40. amount*NA/Xel40.A*cycle_time;
Cbnd¥eldl 1d*Xel40 . halflife*Xeld0.amount*NA/Xel40. . A*cycle_time;
Cs140.amount += 1,00%PbndXei140/NA*Xel140.4;

PbndXel4l = ld*Xel41.half1ife*Xe141.amounf*NA/Xe141.A*cyclé_time;
CbndXel4i = ld*Xel4l.halflife¥Xeldl.amount*NA/Xeldl.A*cycle_time;
Cs141.amount += 1.00%PbndXel41/NAxXel41.4;

PbndXeld2 1ld*Xel42.halflife*Xeld2.amount*NA/Xel142. A*xcycle_time;
CbndXel142 = 1d*Xel42.halflifexXel42.amount*NA/Xel142.A*cycle_time;
Cs142.amount += 1.00*PbndXel142/NA*Xeld2.4; |

andXe143 1d*Xe143.halflifexXeld3. amount*NA/Xel43.A*xcycle_time;
CbndXe143 = 1d+Xe143.halflife*Xel43.amount*NA/Xel43.A*cycle_time;
Cs143.amount += 1.00*PbndXel143/NA*Xel43.4;

PbndXeid4d = 1d*Xe144.halflife*Xei44.émount*NA/Xeiéé.A*cycle_time;
CbndXel144 = 1ld*Xel44.halflife*Xeld4.amount*NA/Xeld4. Axcycle_time;
Cs144.amount += 1.00+PbndXe144/NA*Xe144.4; |

andXe145 1d*Xg145.halflife*Xel45.amount*NA/Xe145.A*cycle_time;
CbndXe145
Cs145,amount += 1.00*andXé145/NA*Xe145.A;

i}

3

1d*Xel145.halflife#Xel145. amount*NA/Xe145, A*cycle_time;

FgI127 = I1127.amount*I127.sigma_g/Sigma_a_fuel;

nrcI127 = neutron.amountxk/eta*Fgll127;

PrcIi27 = nrcIi27+I1127.A/NA;

CrcIl27 = nrcl127*I127.A/N4A;

1127.amount += -1.00%CrcI127+1.00*PbndTel27/NA*Tel27. .4;
I128.amount += 1.00*Prcll127:;

PbndIl1zs 1d*1128 . halflife*xI128.amount*NA/1128 . A+cycle_time;
CbndI128 ld*1128,halfiife*I128.amount*NA/I128,A*cyc1e_time;
Xe128.amount += 1.00%PbndI128/NA*I128.4;

B

216

Fgl129 = 1129.amount*I129.sigma_g/Sigma_a_fuel;

nrcll29 = neutron.amount*k/eta*Fgl129;
Prcli29 = nrcl129%I1129.4/NA;
Crcl129 = nrcli29*I1129.A/NA4; -

1129 .amount += -1.00%CrcI129+1,00*PbndTe129/NA*Te129.4;
1130 . amount += 1.00%Prcli29;

PbndI130 = 1d*I130.halflife*I130,amount*NA/I130.A*cycle_time;
CbndI130 = 1d*I130.halflife*I130.amount*NA/I130.A*xcycle_time;
PbndI131 = 1d*I131.halflifexI131.amount*NA/I131.A%cycle_time;
CbndI131 = 1d*I1131.halflife*I131.amount*NA/I131.A*cycle_time;
PbndIi32 = 1d*I132.halflife*I132.amount*NA/I132.A*%cycle_time;
CbndIi132 = ld*1182.halflife*1132.amount*NAf1132.A*cycle_tiﬁe;
andIiSS = ld*IiSB.halflife*IiSS.amount*NA/1133.A*cycle_time;
CbndI133 = 1d+I133.halflife*I133.amount*NA/I1133.4*cycle_time;
Xe133.amount += 1,00*%PbndI133/NA*I133.4;

PbndI134 = 1d*1134.halflife*1134.amount*NA/1134.A*cycle_time;
CbndIid4d = ld*I134.halflife*1134.amount*NA/IiS4.A*cycle_time;
Xel34.amount += 1.00%PbndI134/NA*I134.4; . |
PbndI135 = 14*I135.halflife*I135.amount*NA/I135.A%cycle_time;

CbndI135 = 1d#I135.halflife*I135.amount*NA/I135.A%cycle_time;
PbndI136 = 1d*1136;halflife*1136.amount*NA/IiSﬁ.A*cYcle_time;
CbndI136 = ld*1136.halflife*IiBS.amount*NA/IiSS.A*cﬁcle_time;
PbndI137 = 1d*I137.halflifexI137.amount*NA/I137.A%cycle_time;
CbndI137 = 1d*I137.halflifexI137.amount*NA/I137. A*cycle_time;

Xe137.amount += 1.00%PbndI137/NA*I137.4;

PbndI138 = 1d*I138.halflifexT138.amount*NA/I138.A*cycle_time;
CbndI138 = 1d*I138.halflife+1138.amount*NA/I138.A*cycle_time;
Xe138.amount += 1.00%PbndI138/NA*1138.4; |
PbndI139 = ld*IlBQ.halflife*1139.amount*NA/IiSQ.A*cycle_time;
CbndI139 = 1d+*I139.halflife*I139.amount*NA/I139.A*cycle_time;
Xe139.amount += 1.00*%PbndI139/NA*xI139.4;

Pbndl140 = 1d*I140.halflife*xI140.amount*NA/I140.Axcycle_time;

217

CbndI140 = ld*1140.halflife*1140.amount*NA/Il40.A*cycle_timef
Xeld(. amount += 1.00*andIi40/NA*I14°.A; _
1d+I141.halflife*I141.amount*NA/I141.A*cycle_time;
ld*I141.halflifexI141.amount*NA/I1141.A*cycle_time;
Xel41,amount += 1.00*PbndI141/NA*I141.4;
ld*1142.halflife*1142.amount*NA/Il42.A*cycle‘time;
1d*1142.halflife*I142. amount*NA/TI142.A*cycle_time;
Xel142.amount += 1.00%PbndIl142/NA*I142 4;

PbndIi41
CbndIi41

PbndI142
CbndI142

PbndTel127
CbndTel27
PbndTel129
.CbndTe129
PbndTe131
CbndTel31l
I131.amount
PbndTel32 =
CbndTe132 =
I1132.amount
PbndTei33
CbndTel33
I133.amount
andT9134
CbndTell4
T134.amount
PbndTel3b =
CbndTel3b =
I135.amount
PbndTel36 =
CbndTel36 =
I136.amount
PbndTel37 =
CbndTel37 =

It

1d*Tel127 .halflife*xTel27.
1d#Te127.halflifexTe127.
1d*Te129.halflifexTel29.
1d*Te129.halflife*Tel29,
1d#Te131.halflife*Te131.amount*NA/Te131.
1d*T9131.hélflife*TelSi.amount*NA/TeiSi.
4= 1,00*PbndTel31/NA*Tel31.4;
1d#Te132.halflife*Tel32. anount+NA/Te132.
1d*Tei132.halflife*Tel32. amount*Na/Tel32.
+= 1.00%PbndTel132/NA*Tel132.4;
1d*Te133.halflife*Tel33.amount*NA/Te133.
1d*Te133.halflife*Tel33. amount*NA/Te133.
+= 1.00%PbndTel33/NA*Te133.4;
1d%Te134.halflifexTel34. amount*NA/Tel34.
1d*Te134.halflife*Tei34.amount+NA/Teid4.
+= 1.00%PbndTel34/NA*Telld4 . 4;
1d*Te135.halflife*Tel35. amount*NA/Te135.
1d*Te135.halflife*Te135. amount*NA/Te135.
+= 1.00%PbndTe135/NA*Te135.4;
1d*Te136.halflife*Te136. anount*NA/Te136.
1d*Te136.halflife*Te136. amount+NA/Tel36.
+= 1.00%PbndTe136/NA*Te136.4;

1d*Tel137 .halflife*Tel137.amount*NA/Te137.
1d*Te137.halflife*Tel37.amount*NA/Te137.

amount*NA/Tel27.
amount*NA/Tel27.
amount*NA/Tel29.
amount*NA/Te129.

218

Axcycle_time;
Axcycle_time;
Axcycle_time;
A*xcycle_time;
A*cycle_time;

A*cycle_time;

dkcycle_time;

A*cycle_time;

Axcycle_time;

Axcycle_time;

A*cycle_time;

A*Cycle_time;

Axcycle_time;

Axcycle_time;

A*cycle_time;

Axcycle_time;

A*cycle_time;

A*cycle_time; .

I137.amount += 1.00*PbndTel37/NA*Tel137.4;

PbndTel38 = 1d*Tel38.halflife*Tel38.amount*NA/Tells.
CbndTel38 = 1d*Tel38.halflife*Tel38, amount*NA/Tel38,
I138.amount += 1,00*%PbndTel38/NA*Tel38.4; '
PbndSb122 = 1d*5b122.halflife*Sb122. amount*NA/Sb122.
Cbnd3b122 1d*5b122.halflife*5b122, amount*NA/Sb122.
Tel22.amount += 1.00%PbndSb122/NA*Sb122.4;

FgSb123 = Sb123.amount*Sbl123.sigma_g/Sigma_a_fuel;

nrc$bl23 = neutron.amount*k/eta*Fng123;
PrcS8b123 = nrcSb123%Sb123.A/NA;
CrcSb123 = nrc5b123*x5b123.A/NA;

Axcycle_time;

Axcycle_time;

Axcycle_time;

Axcycle_time;

Sb123.amount += -1,00*CrcSb123+1.00*xPbndSn123/NA*Sn123.4;

Sb124 .amount += 1.00%PrcSbl123; .
PbndSb124 = 1d*Sbi24.halflife*Sbi24.amount*NA/Sb124.
CbndSb124 = 1d#Sb124.halflifexSb124.amount*NA/Sb124.
Tel24.amount += 1.00%FPbndSb124/NA*xSb124.4;

PbndSb125 = 1d*Sbi125.halflife*Sh125. amount*NA/Sh125.
CbndSb125 = 1d*Sb125.halflife*5b125. amount*NA/Sbi25.
Tel125.amount += 1.00*%PbndSb125/Na*Sb125.4;

PbndSbi26 = 1d*Sbi26.halflife*Sbl26.amount*NA/Sh126.
CbndSb126 = 1d*S8b126.halflife*Sb126.amount*NA/Sb126.
Tel26.amount += 1.00*PbndSb126/NA*Sb126.4;
PbndSb127 = 1d*5Sb127.halflife*Sbi27.amount*NA/Sb127.
CbndSb127 = 1d*Sb127.halflife¥Sbi27.amount*NA/Sb127.
Tel27.amount += 1.00%PbndSb127/NA*Sb127.4;
PbndSh128 = 1d*Sb128.halflife*Sb128.amount*NA/Sb128.
CbndSb128 1d*Sb128.halflife*Sb128.amount*NA/Sb128.
Tel128.amount += 1.00*PbndSb128/NA*Sb128.4;
PbndSb129 = 1d*Sb129.halflife*5b129.amount*NA/Sb129.
CbndSb129 = 1d*5b129.halflife*Sb129.amount*NA/Sb129.
Tel29.amount += 1.00*PbndSb129/NA*Sb129.4;
PbndSb130 = 1d*Sb130.halflife*Sb130.amount*NA/Sb130.

219

A*cycle_time;

Axcycle_time;

Axcycle_time;

A*cycle_time;

A*cycle_time;

Axcycle_time;

Axcycle_time;

Axcycle_time;

A*cycle_time;

Axcycle_time;

Ax*cycle_tine;

A*cycle_time;

Axcycle_time;

CbndSb130 = 1d*Sb130.halflife*Sb130.amount*NA/Sb130.

Tel30.amount += 1.00*%PbndSb130/NA%*Sb130.4;
PbndSb131 = ld*SbiBl.halflife*SblSi.amount*NA/Sb131

CbndSb131 = ld*SblSi.halflife*SblSl.amount*NA/SblBi.

Tel31i.amount += 1.00%PbndSb131/NA*5b131.4;
PbndSb132

CbndSb132 = ld*SbiSQ.halflife*5b132.amount*NA/Sbi32.
Tei32.amount += 1.00*andSb132/NA*Sb132.A;

Pbnd5b133 = 1d*Sb133.halflife*xSb133.amount*N4A/Sb133,
CbndS8bh133 = 1d*Sb133.halflife*Sb133. amount*NA/Sb133.

Te133.amount += 1.00%PbndSb133/NA*Sb133.4;

Pbndsb134 = ld*Sb134.halflife*Sb134.amount*NA/Sb134.
CbndShb134 = 1d*Sbh134.halflife*Sb134.amount*NA/Sb134.

Tel34.amount += 1.00*PbndSb134/NA*Sb134.4;

PbndSb135 = 1d*Sb135.halflife*Sb135. amount*NA/Sbi35
CbndSb135 = 1d*Sb135.halflife*xSbi35.amount*NA/Sb135.
Tei35.amount += 1.00%PbndSb135/NA*Sb135.4;

PbndSb136 = 1d#Sb136.halflife*Sb136.amount*NA/Sb136.
CbndSb136 = 1d*Sb136.halflife*Sbl36.amount*NA/Sb136

Tel36.amount += 1.00%PbndSb136/NA*Sb136.4;
PbndSn121 1d*Sn121.halflife*Sn121.amount*NA/Slel
CbndSn121 = 1d*Sn121.halflife*Sn121.amount*NA/Sn121
Sbi21.amount += 1.00%PbndSni21/NA*Sn121.4;
Pbnd5n123

_ CbndSni23 = 1d#Sn123.halflife*Snl123.amount*NA/Sn123.
PbndSni25 = 1d*Sni25.halflife*Sn125.amount*NA/Sn125
CbndSni125 = 1d*Sni125.halflife*Sn125. amount*NA/Sn125

Sb125.amount += 1.00%PbrndSni25/NA*Sn125.4;

~ PbndSni27 = 1d*Sni127.halflife*Sn127.amount*NA/Sni27.
CbndSn127 = 1d*Sn127.halflife*Sn127.amount*N4i/Sn127.

Sb127.amount += 1.00%PbndSni127/NA*Sn127.4;

PbndSni128 = 1d#Sn128.halflife*Sn128.amount*NA/Sn128.

220

1d*Sb132.halflife*Sb132. . amount*NA/Sb132.

ld*Sn123.halflife*Sn123.amount*NA/SniQS.

Axcycle_time;

.Axcycle_time;

Axcycle_time;

Axcycle_time;

Axcycle_time;

Axcycle_time;

Axcycle_time;

Axcycle_time;

Axcycle_time;

.A*cycle_time;

A*cycle_time;

A*cycle_time;

JA*xcycle_time;

.A*xcycle_time;

.A*xcycle_tims;

Axcycle_time;

Axcycle_time;

JAxcycle_time;

.A*cycle_time;

A*xcycle_time;

Axcycle_time;

A*cycleﬂtime;

CbndSni28 = 1d*5n128.halflife*Sni28.amount*NA/Sn128.

Sb128,amount += 1.00%PbndSn128/NA*Sni28.4;

PbndSn129 = 1d*Sn129.halflifexSn129.amcunt*NA/Sn129.
CbndSn129 = 1d*5n129 . halflife*Sni129.amount*NA/Sn129.

Sb129.amount += 1.00*andSn129/NA*Sn129.A;
PbndSni30 = 1d*5n130.halflife*Sn130.amount*NA/Sn130
CbndSn130 = 1d*Sni30.halflife*Snl130.amount*NA/Sn130
$b130.amount += 1.00*PbndSn130/NA%*Sn130.4;
PbndSn131 = 1d*Sni131.halflife*Sn131.amount*NA/Sn131
CbndSn131 = 1d*8n131.halflife*Sn131.amount*NA/Snl31
Sb131.amount += 1,00*%PbndSn131/NA*Sni31.4;
PbndSn132

CbndSni132 = 1d*Sn132.halflife*Sn132.amount*NA/Sn132.
Sb132.amount += 1.00%PbndSn132/NA*Sni132.4; .
PbndSn133 = 1d*Sn133.halflife*Sn133.amount*NA/Sn133.
CbndSn133 = 1d*Sn133.halflife*Sn133.amount*NA/Sn133.
Sb133.amount += 1.00*PbndSn133/NA*Sn133.4;

PbndSn134 = 1d*Sni34.halflife*Sn134.amount*NA/Sn134,
CbndSn134 = 1d*5n134.halflife*Sni34,amount*NA/Sni34,

Sbh134.amount += 1.00*PbndSn134/NA%Sni34.4;

PbndInll? = 1d*In117.halflife*Inl117.amount*N4/Intl7.
CbndIni1i7 = 1d*In117.halflife*Inl17.amount*NA/Inll7.

Snli?.amount += 1,00*%PbndInll17/NA*Inil7.4;
PbndIn118 = 1d*Inl118.halflife*In118,amount*N4a/Inii8
CondIn1i18 = 1d#Inl118.halflifexIn1i8.amount*NA/In118
.Sn118.amount += 1. 004PbndInl118/NA*In118.4;

PondInll9 = 1d*In119.halflifexInii9.amount*NA/In119.
CbndInii19 = 1d*Ini119.halflife*In119.amount*NA/In119.

Sn119.amount += 1.00%PbndInl119/NA*Int19.4;
PbndIni120
CbndIn120
Sn120.amount += 1,00%PbndIni20/NA*In120.4A;

1}

221

1d*Sn132.halflife*Sn132.amount*NA/Sn132.

1d*In120.halflife*Ini20.amount*Na/In120.
1d*In120.halflife*In120.amount*N4/Ini20.

A*Cycle_time;

A*cycle_time;

Axcycle_time;

.A*¥cycle_time;

.A*cycle_time;

.A*cycle_time;

JA¥cycle_time;

A*cycle_time;

A*cycle_time;

A*cycle_time;

A*cycle_time;

A*cycle_time;

Axcycle_time;

Axcycle_time;

Axcycle_time;

.Axcycle_time;

A*cycle_time;

Axcycle_time;

Axcycle_time;

Axcycle_time;

Axcycle_time;

PbndIni21
CbndIni21

1d*In121.halflife*In121.amount*NA/Iﬁ121.
1d#In121.halflife*In121.amount*N4/Ini21.

Sn121.amount += 1.00*PbndIn121/NA*In121.4;
PbndInl22 = 1d4*Ini22 halflife*Ini122.amcunt*NA/Ini22.
CbndInl22 = 1d*Ini122.halflife*Ini122.amount*NA/Ini22.
Sn122.amount += 1.00%PbndIn122/NA*In122.4;
PbndIni23 = 1d*In123.halfiife*ln123.amount*NA/In123.
CbndIni23 = 1d*Ini23.halflife*Ini23.amount*NA/In123,
Sni123.amount += 1.00*PbndIni23/NA*xIn123.4;

PbndInl24
CbndIni24

1]

1d*%Ini124.halflifexIn124. amount*NA/Ini24.
1d*In124 . halflife*Inl24.amount*Na/Inl124,

Sn124.amount +=.1.00*andIn124/NA*In124.A;

PbndIni125s
CbndInil25b

1d*In125.halflife*Ini25.anount*NA/In125.
1d*In125.halflife#IniQB.amount*NA/In125.

Sni25.amount += 1.00*PbndIni25/NA*Ini25.4;

PbndInl26
CbndInl26

1d*In126.halflifexInl126. amount*NA/In126.
1d*%Tni26.halflife*Ini26. amount*NA/Inl26.

Sn1926.amount += 1.00%PbndIni26/NA*In126.4;

PbndIni27
CbndIni27

I}

1d*In127 .halflife*In127.amount*NA/Ini27.
1d#In127 .halflife*xIn127.amount*NA/In127.

Sni27.amount += 1.00%¥PbndIni27/NA*Inl127.4;

PbndIn128
CbndIni28

1d*Ini28.halflife*In128, amount*NA/In128.
1d*In128.halflifexIn128. amount*NA/In128.

Sni28.amount += 1.00*andIn128/NA*In128.A;
PbndInl29 = ld*In129.haiflife*ln129.amount*NA/IleQ.
CbndIni29 = 1d*In129.halflifexIn129.amount*N4A/In129.
Sn129.amount += 1.00*¥PbndIni29/NA*In129.4;
 PbndIni30 = 1d*In130.halflife*xIn130.amount*NA/In130.
CbndIn130 = 1d*Ini30.halflife*In130.amount*NA/In130.
Sn130.amount += 1.00*PbndIn130/NA*In130.4;

andIn131
-CbndIni3i

1d*In131.halflife*InlSl.aﬁount*NA/IniBi.
1d*Ini31 . halflife*Inl3l.amount*NA/In131.

222

A*cycle_time;

Axcycle_time;

Axcycle_time;

Axcycle_time;

Axcycle_time;

Axcycle_time;

Axcycle_time;

Axcycle_time;

Axcycle_time;

A*cycle_time;

Axcycle_time;

Akcycle_time;

A*cycle_time;

A*cycle_time;’

Axcycle_time;

A*xcycle_time;

Axcycle_time;

A*cycle_time;

Axcycle_tine;

A*xcycle_time;

Axcycle_time;

Axcycle_tinme;

Sni31.amount += 1.00%PbndInl31/NA*In131.4;

PbndInil32 = 14*Inl132.halflife*Inl32.amount*NA/Ini32.
CbndInl32 = 1d*In132.halflifexInl132.amount*NA/In132.

Sn132.amount += 1,00%PbndIni32/NA*Ini32.4;

PbndIni33 = 1d*In133.halflife*In133.amount*NA/Inl33.
CbndIni33 = 1d*Inl133.halflifexInl33.amount*NA/In133.

Sn133.amount += 1.00%PbndInt33/NA*Inl33.4;

PbndCd115 = 1d+*Cd115.halflife*Cd115. amount*NA/Cd115
CbndCd115 = 1d*Cd115.halflife*Cd115. amount*NA/Cd115
Ini15.amount += 1.00%PbndCd115/NA*Cd115.4;

PbndCdi17
CbndCdi17
Inll?.émount += 1.00%PbndCd117/Na*Cd117.4;

]

PbndCd118 = 1d*Cd118.halflife*Cd118.amount*NA/Cd118.
CbndCd118 = 1d*Cd118.halflife*Cd118, amount*NA/Cd118.

In118.amount += 1.00%PbndCd118/NA*Cd118.4;
PbndCd119 = 1d*Cd119.halflife*Cd119. amount*NA/Cd119
CbndCdllQ = 1d*Cd119.halflife*Cd119.amount*NA/Cd119
Inil19.amount += 1.00*%PbndCd119/NA*Cd119.4;
PbndCd120 = 1d*Cd120.halflife*Cd120.amount*NA/Cd120
CbndCd120 = 1d*Cd120.halflife*Cd120.émount*NA/CdeO
Ini20.amount += 1.00*ande120/NA*Cd120.A;
PbndCdi21 ld*Cd121.halflife*Cd121.amounﬁ*NA/Cd121
CbndCd121 = 1d#Cd121.halflifexCd121.amount*NA/Cd121
In121.amount += 1.00*andCd121/NA*Cd121;A;

PbndCd122 = 1d*Cd122.halflife*Cd122.amount*NA/Cd122
CbndCd122 = 1d*Cd122.halflife+*Cd122.amount*NA/Cd122.
fn122;amount += 1.00*%PbndCd122/NA*Cd122.4;

PbndCd123 = 1d*Cdi23.halflife*Cd123.amount*NA/Cd123.
CbndCd123 = 1d*Cd123.halflife*Cd123.amount*NA/Cd123.

Ini23.amount += 1.00*andCd123/NA*Cd123.A;

PbndCdi124 = 1d*Cd124.halflife*Cd124.amount*NA/Cd124.

223

1d*Cd117 .halflife*Cd117. amount*NA/Cd117.
1d%Cd117 .halflife*Cd117.amount*NA/Cd117.

Axcycle_time;

A*cycle_time;

A*gycle_time;

Axcycle_time;

JAxcycle_time;

.Axcycle_time;

Axcycle_time;

Axcycle_time;

A*cycle_time;

Axcycle_time;

.A*cycle_time;

.A*cycle_time;

JA*cycle_time;

.A¥cycle_time;

JAxcycle_time;

.A*xcycle_time;

.A*c?cle_time;

A*cycle_time;

A*cycle_time;

Axcycle_time;

Axcycle_time;

CbndCd124 = 1d*Cd124.halflife*Cd124, amount*N4/Cd124.
In124.amount += 1,00*PbndCd124/NA*Cdi124.4;

PbndCd125
CbndCd125

]

1d*Cd125 . halflife*Cd125.amount*NA/Cd125,
1d#Cd125 halflifexCd125. amount*NA/CQ125.

Inl125.amount += 1.00%PbndCd125/NA*Cd125.4;

PbndCd126
CbndCd126

1d*Cd126 .halflife*xCd126. amount*NA/Cd126.
1d*Cd126.halflifexCd126. amount*NA/Cd126.

In126.amount += 1.00*%PbndCd126/NA*Cd126.4;
PbndCd127 = ld*Cdi27.halflifé*Cd127.amount*NA/Cd127.
CbndCd127 = 1d4*(Cd127 .halflife*Cd1i27.amount*NA/Cd127.
Ini27.amount += 1.00%PbndCd127/NA*Cd127.4;
PbndCdi128 = 1d*(Cd128.halflifexCd128.amount*NA/Cd128.
CbndCd128 = 1d*Cd128.halflife*Cd128.amount*NA/Cd128.
In128.amount += 1.00*PbndCd128/NA*Cd128.4;

PbndCd122
CbndCd128

I

1d*Cd129 .halflife*Cd129, amount*NA/Cd129.
1d*Cd129.halflife*Cd129. amount*NA/Cd129.

Ini129.amount += 1.00%PbndCd129/NA*Cd129.4;

' PbndCd130

CbndCd130

1d*Cd130.halflife*Cd130.amount*NA/Cd130.
1d%Cd130.halflife*Cd130.amount*NA/Cd130.

In130.amount += 1.00%PbndCd130/NA%CA130.4;

PbndAgll2
CbndAgl12

1]

1d*Ag112.halflife*Agll2. amount*NA/Agl12,
1d*Ag112.halflifexAgl12. amount*NA/Aglil12,

Cd112.amount += 1.00*PbndAgl12/NA*Agl112.4;
PbndAg113 = 1d*Ag113.halflifexAgll3.amount*NA/Agl13,

CbndAgl13 = ldxAgl13.halflifexAgll3.amount*NA/Agli3.

Cd113.amount += 1.00*Pbndigli13/NA*Ag113.4;
PbndAgl14 = ld*Agll4.halfliferAglié.amount+NA/Ag114,
CbndAgl14 = ld*Agll4.halflifexAgll4.amount*NA/Agli4.
Cd114.amount += 1.00%PbndAgl14/NA*Agl14.4;

PbndAgii1b

- CbndAglld

1d+Ag115.halflife*Agllb.amount*NA/Agl15,
1d*Ag115.halflife*Agl15.amount*NA/Agl15.

Cd115.amount += 1,00%Pbndigli5/NA*Aglib.4A;

224

Axcycle_time;

Axcycle_time;

A*cyclé_time;

Axcycle_time;

Axcycle_time;

Axcycle_time;

Axcycle_time;

Axcycle_time;

dxcycle_time;

Axcycle_time;

Axcycle_time,

Axcycle_time;

Axcycle_time;

A*cycle_time;

Axcycle_time;

Axcycle_time;

Axcycle_time;

A*cycle_time;

A*cycle_time;

Axcycle_time;

Axcycle_time;

]

PbndAgll€é = ld*Agll6.halflifexAgli6.amount*NA/Aglli6.A*cycle_time;
CbndAgl16 = 1d*Ag116.halfliferAgl16.amount*NA/Agll6.A*cycle_time;
Cd116.amount += 1.00%PbndAgl16/NA*Agl116.4;

andﬁgii? 1d*4g117 . halflifexAgll7.amount*NA/Agl17.A*cycle_time;
CbndAgll7 = 1d%Agl17.halflife*Agl17.amount*NA/Agll7. A*cycle_time;
Cd117.amount += 1,00+PbndAg117/NA*Agll7.A; |

PbndAgl18 = 1d*Agl18.halflifexAgli8.amount*NA/Agl18.Axcycle_time;
CbndAg118 = 1d+Agl118.halflife*Agii8.amount*NA/Ag118.A*cycle_time;
Cdii8.amount += 1.00%PbndAgl18/NA*Agli18. 4;

Pbndaglis = 1d*Ag119.halflife*AgllQ.amount*NA/AgilQ.A*cyclé_time;
Cbndigl19 = ld*Ag119.halflife*Agll9.amount*NA/Agl19.A*cycle_time;
Cd119.amount += 1.00%PbndAgli9/NA+Agl119.4;

PbndAgl120 = 1d*Ag120.halflife*Agl20.amount*NA/Agl120.A*cycle_ time;
CbndAg120 = 1d*Ag120.halflife*Agi?O.amount*NA/AngO.A*cycle_timé;
€d120.amount += 1.00%PbndAgi20/NAxAg120.4;

PbndAgi21 = 1d*Agl21.halflife*Agl21i.amount*NA/Agl121. A*cycle_time;
Cbnddgl21l = 1d*Agl121.halflifexAgl21l.amount*NA/Ag121.A*cycle_time;
Cdi121.amount += 1.00%PbndAgl21/NA*Agi21.4;

PbndAgl22 = ld*Ag122.halflife*Ag122.émount*NA/Ag122.A*cycle_time;
CbndAgl22 = 1d*Ag122.halflife*Ag122.amounf*NA/AngZ.A*cycle;time;
Cd122.amount += 1.00%PbndAg122/NA*Ag1i22.4;

PbndAgi23 = 1d*Ag123.halflife*Ag123.amount*NA/Agi23.Axcycle_time; -
CbndAgl23 = 1d*Ag123.halflifexAgl23.amount*NA/Agi23.A*cycle_time;
Cd123.amount += 1.00*PbndAgl23/NA*Ag123.4; '

PbndAgl24 = 1d*Agl24.halflife*Agl24.amount*NA/Agl24. A*cycle_time;
Cbndigl24 = 1d*Agl24.halflife*Agi24.amount*NA/Agl24.A*cycle_time;
Cd124.amount += 1.00%PbndAgl24/NA*Agi24 .4; |

PbndPd111 = 1d#Pd111.halflife*Pdl1l.amount*NA/Pd11l. A*cycle_time;
CbndPdi111 ld*Pdlll.halflife*Pdlll.amount*NA/Pdlll.A*cycle_time;
Agl1l.amount += 1.00*PbndPd111/NA*%Pd111.4;

PbndPdil2 = ld*Pd112.halflife*PdllQ.amount*NA/Pdi12.A*cycle_time;
CbndPd11i2 = 1d*Pdii2.halflife*PdiiZ.amount*NA/Pd112.A*cycle_time;

225

Agll2.amount += 1.00%PbndPd112/NA*Pd112.4;
PbndPd113 = 1d*Pd113.halflife*Pd113.amount*NA/Pd113.
CondPd113 = 1d*Pd113.halflife+Pd11i3.amount*NA/Pd113.
Ag113.amount += 1.00%*PbndPd113/NA%Pd113.4;
PbndPdi14 = 1d*Pd114.halflife*Pd114.amount*NA/Pd114.
CbndPd114 = 1d*Pd114.halflife*Pd114.amount*NA/Pdi14.
Agl14.amount += 1.00*PbndPd114/NA*Pd114.4;
PbndPd115 = 1d#Pd115.halflife+Pd115. amount+NA/Pd115.
CbndPd115 = 1d+Pd115.halflife*Pd115.amount*NA/Pd115.
Agli5.amount += 1.00%PbndPd115/NA*Pd115.4A;
PbndPdi16 = 1d*Pd116.halflife*Pd116.amount*NA/Pd116.
CbndPd116 = 1d*Pd116.halflife*Pd116.amount*NA/Pd116.
Agl16.amount += 1.00+PbndPd116/NA*Pd116.4; _
PbndPd117 = 1d*Pd117 .halflifexPd117.amount+NA/Pd117.
CbndPd117 = 1d%Pd117.halflifexPd117.amount*NA/Pdi17.
Ag117.amount += 1.00%PbndPd117/NA*Pd117.4;

PbndPd118 = 1d*Pd118.halflife*Pd118.amount*NA/Pd118.
CbndPd118 = 1d+Pd118.halflifexPd118.amount*NA/Pd118.
Agli8.amount += 1.00*xPbndPd118/NA%Pd118.4;

PbndRh107 = 1d*Rh107.halflife*Rh107.amount*NA/RR107.
CbndRh107 = 1d*Rh107.halflife*Rh107.amount*NA/Rz107.
Pd107.amount += 1.00%PbndRh107/NA*Rh107.4;

PbndRh108 = 1d*Rh108.halflife*Rh108.amount*NA/RR108.
CbndRh108 = 1d*Rh108.halflife*Rh108.amount*NA/Rh108.
| Pd108.amount += 1.00%PbndRh108/NA*Rh108.4;
PbndRh109 = 1d*Rh109.halflife*Rh109.amount*NA/Rh109.
CbndRh109 = 1d*Rh109.halflife*Rh109.amount*NA/Rh109.
Pd109.amount += 1.00%PbndRh109/NA*Rh109.4;
PbndRh110 = 1d*Rhi1i0.halflife*Rh11i0.amount*NA/Rh110.
CbndRh110 = 1d*Rh110.halflife*Rh110.amount*NA/Rh110.
Pd110.amount += 1.00%PbndRh110/NA*Rh110.4;
PbndRR111 = 1d*#Rh111.halflife*Rh111.amount*NA/Rh111.

H

n

I

1]

1}

226

A*cycle_time;

A*cycle_time;

A*cycle_time;

A*xcycle_time;

A*xcycle_time;

Axcycle_time;

Axcycle_time;

Axcycle_time;

A*cycle_tiﬂe;

A*xcycle_time;

Axcycle_time;

A*cycle_time;

Axcycle_time;

Axcycle_time;

A*xcycle_time;

A*cycle_time;

A*xcycle_time;

A*cycle_time;

Axcycle_time;

Axcycle_time;

Axcycle_time;

CbndRh111 = 1d*Rh111.halflife*Rh11i.amount*NA/Rh111.A¥cycle_time;
Pd111.amount += 1.00*PbudRh111/NA*Rh111.4;

PbndRh112 = 1d*Rh112.halflife*Rh112.amount+NA/Rhi12. A*cycle_t'ime;
CbndRh112 = 1d*Rh112.halflife*Rh112.amount*NA/Rh112.A*cycle_time;
Pd112.amount += 1,00*%PbndRh112/NA*Rh112.4;

PondRh113 = 1d#Rh113.halflife*Rh113.amount*NA/Rh113.Axcycle_time;
CbndRh113 = 1d*Rh113.halflife*Rh113.amount*NA/Rh113.A*cycle_time;
Pd113.amount += 1.00%PbndRh113/NA*Rh113.4:

PbndRhiil4 ld*Rh114.halflife*Rh114.amount*NA/Rh114.A*cycle_time;
CbndRh114 1d*Rh114.halflife*Rh114.amount*NA/Rh114.A*cycle_time;
Pd114,amount += 1.00#%PbndRh114/NA*Rh114.4A;

PbndRh115 = 1d*Rh115.halflife*Rh115.amount*NA/Rh115.A*cycle_time;
CbndRh115 = 1d#Rh115.halflife*Rh115.amount*NA/Rh115.Axcycle_time;
Pd115.amount += 1.00%PbndRhi115/NA+*Rh115.4;

andﬁhiiG = ld*RhiiG.halflife*Rh116.amount*NA/RhiiS.A*cycle“time;
CbndRh116 = 1d*Rh116.halflife*Rhi116.amount*NA/Rh116.A*cycle_time;
Pdi16.amount += 1.00*PbndRh116/NA*Rh116.4;

PbndRul0s = 1d*Rul05.halflife*Rullb.amount*NA/Rul0b.A*cycle_time;
CbndRul05 = 1d*Rul05.halflife*Rull5.amount*NA/Rul05.A*cycle_time;
Rh105.amount += 1.00*andHu105/NA*Ru105uA; |

PbndRul06 = 1d*Rul06.halflife*Rull6.amount*NA/Rul06.A*cycle_time;
CbndRul08 1d*Ru106.halflife*RulOG.amount*NA/RulOG;A*cycle_time;
Rh106.amount += 1.00%PbndRul06/NA*Ru106.4;

PbndRul07 1d*Ru107.halflife*RulO?.amount*NA/RulOT.A*cycle_time;
CbndRul07 = 1d*Rul07.halflife*Rul07.amount*NA/Ruld7.A*cycle_time;
Rh107.amount += 1.00*andRu107/NA*Ru107.A;

PbndRuldg = 1d*Ru108.halflife*RuiOS.amount*NA/RulOS.A*cycle_time;
CbndRui0g = ld*RulOS.halflife*Ru108.amdunt*NA/RuiOS.A*cycle_time;
Rh108.amount += 1.00*PbndRul08/NA*Rul08.4;

PbndRul109 = 1ld*Rul09.halflife*Rul09.amount*NA/Rui09.A*cycle_time;
CbndRul09 = 1d*Rul09.halflife*Rul09.amount*NA/Rul09.A*cycle_time;
Rh109.amount += 1.00*PbndRul09/NA*Rul09.4; '

I

It

1]

227

PbndRul110
CbndRuiio0

1d*Rul10.halflife*Rul10. amount*NA/Rulll.
1d+*Rul1Q.halflife*Rull), amount*NA/Rulll.

Rh110.amount += 1.00*andRullofNA*Rullo.A;
PbndRuilll = 1d*Rulii.halflife*Rulll.amount*NA/Ruill.
| CbndRuill = ld*Ruill.halflife*Rulll.amount*NA/Ruiii.
Rhi111l.amcunt += 1.00%PbndRuill/NA*Rulil.4;
PbndRul12 = 1d*Ru112.halflife*Rull2.amount*NA/Ruii2,
CbndRui12 = 1d*Rulil2.halflife*Rull2.amount*NA/Ruli2.
Rhi112.amount += 1.00*PbndRull2/NA*Rull2.A;
PbndRuil3 = 1d*Rui13.halflife*Rull3.amount*NA/Rulil3.
CbndRuil3 = 1d*Ru113.halflife*RuilS.amount*NA/RuiiS.
Rhi13.amount += 1.00*PbndRuli3/NA*Rulld.A;
PbndTc102 = 1d*Tc102.halflife*Tc102. amount*N4/Tc102.
CbndTci02 = 1d*Tc102 halflife+Tc102.amount*NA/Tc102.

Rul102.amount += 1.00+%PbndTc102/NA%Tc102.4;

PbndTc103
CbndTc103

1d*Tci08.halflifexTc103. amount*NA/Tc103,
1d*Tc103.halflife*Tc103. amount*NA/Tc103.

Rui03.amount += 1.00*PbndTcl03/NA*Tcl103.4;

PbndTci04
CbndTc104

1d*Tc104.halflife*TciO4.amount*NA/TciO4.
1d*Tc104.halflife*Tcl104. amount*NA/Tc104,

Rul(4.amount += 1.00*PbndTcl104/NA*Tci04.4;

PbndTc106
CbndTcl10b

i3

ld*TciOE.halflifé*TclOS.amount*NA/TciOS.
1d*Tc105.halflifexTci05, amount*NA/Tcl106.,

Ru105.amount += 1.00%PbndTcl05/NA*Tc105.4;
PbndTc106 = 1d#Tc106.halflife*Tc106.amount*NA/Tcl106.
ChndTcl06 = 1d*Tc106.halflife*TciQG.amount*NA/TclOG.
Rul06.amount += 1.00*PbndTcl106/NA*Tcl06.4;

PbndTcl107
CbndTc107

1d*Tc107 .halflife*xTcl107.amount*NA/Tc107.
1d*Tc107.halflifexTcl07 . amount*NA/Tcl107.

RuiO?.amount.+= 1.00*PbndTc107/Na*Tc107.4;

PbndTc108
CbndTel08

1d*Tc108.halflifexTc108.amount*NA/Tc108.
1d*Tci08.halflife*Tcl108.amount*NA/Tcl108.

228

A*cycle_time;

A*cycle_time;

Axcycle_time;

Axcycle_time;

Axcycle_time;

Axcycle_time;

A*cycle_time;

A*cycle_time;

A*xcycle_time;

Axcycle_time;

Axcycle_time;

Axcycle_time;

A*cycle_time;

Axcycle_time;

Axcycle_time;

Axcycle_time;

A*cycie_time;

A*xcycle_time;

A*cycle_time;

A*xcycle_time;

Axcycle_time;

A*xcycle_time;

Rul08.amount += 1,00+PbndTc108/NA*Tcl108.4; :

PbndTcl09 = 1d*Tc109.halflife*Tc109. amount*NA/Tcl109.A*xcycle_time;
CbndTcl08 = 1d*Tc109.halflife*TclOQ.amount*NA/TciOg.A*cyCle_fime;
Rul09.amount += 1.00*PbndTc109/NA*Tc109.4; _ '

PbndTc110 = 1d#Tc110.halflife*Tc110. amount*NA/TcliO A*cycle time;
CbndTc110 = 1d¥Tc110.halflifexTc110.anount*NA/Tc110. A*cycle time;
Rul10.amount += 1. 00*PbndTc110/NA*Tc110.4;

PbndTcl11l ld*Tclll.halfllfe*Tciil.amount*NA/Tclil.A*cycle_time;
CbndTe111 1d*Tcl1l.halflife*Tclll.amount*NA/Tclll A*cycle_time;
Rutil.amount += 1.00%PbndTcl1i1/NA*Tclil.4;

FgMo100 = Mo100.amount*Mo100.sigma_g/Sigma_a_fuel;

nrcMol00 = neutron.amount+*k/eta*FgMo100;
PrcMo100 = nrcMel00%Mol100.A/NA;
CrcMel00 = nrcMel1Q0*Mol00.A/NA;

Mo100.amount -+= fl.OO*CrcM0100+1.OO*andNbloofNA*NbIOO.A;
Mo101.amount += 1.00*PrcMolOO+1.00*andNblolfNA*Nbiol.A;
PbndMoi01 ld*MolOl.halflife*MolOi.amount*NA/MoiOi.A*cycle_time;
CbndMo101 ld*MoiOi.halflife*MoiOi.amount*NA/MoiOi.A*cycle_time;
Tc101.amount += 1.00*PbndMo101/NA*Mo101.4;

PbndMc102 = 1d*M0102.halflife*MolOQ.amqunt*NA/MolOZ.A*cycle_time;

CbndMo 102 = ld*MoiO2.halflife*MoiOQ.amount*NA/MoiO2.A*cycle_time;
Tc102.amount += 1.00*%PbndMol102/NA*Mo102.4; '
PbndMo103 ld*M0103.halflife*M0103.amount*NA/MoiOS.A*cycle_time;
CbndMo103 ld*M0103.halflife*MoiOS.amount*NA/MolO3.A*cycle_time;
Tcl103.amount += 1.00*andM0103/NA*M0103.A; _
PbndMo104 = 1d*Mo104.halflife*Mo104.amount*NA/Mol104.A*cycle_time;
- CbndMe104 = 1ld*Mol104.halflife*Mo104.amount*NA/Mol04.A*cycle_time;
Tc104.amount += 1.00%PbndMo104/NA*Mo104.4;
andMolOE ld*M0105.halflife*MoiOS.amount*NA/M0105.A*cycle_time;
CbndMo 105 ld*MolOS.halflife*MoiOS.amount*NA/M0105.A*cycie_time;
Tc105.amount += 1.00*PbndMo106/NA*Mo108.4;
PbndMo106 = ld*MolOG.halflife*MolOG.amount*NA/M0106.A*cycle_time;

ti

1l

H

229

CbndMol106 = 1d*Mo106.halflife*Moi06.amount*NA/Mol106.A*cycle_time;

Tc106.amount += 1.00%PbndMo106/NA*M0106.4; '
ld*MolOT.halflife*MolO?.amount*NA/MoiO?.A*cycle_fime;
1d#M0o107 .halflife*Mo107. amount*NA/Mo107 . A*cycle_time;
Tc107.amount += 1.00*PbndMol07/NA*Mo107.4;
PbndNbS7 = 1d*Nb97.halflife*NbQ?.amount*NA/NbQ?.A*cycle_time;
CondNb97 = 1d*Nb97.halflife*NbI7.ancunt*NA/Nb97.A*xcycle_time;
Mo97 . amount += 1.00*PbndNb97/NA*NDIT .A;
PbndNb98 = 1d*Nb98.halflife+Nb98.amount*NA/NbI8. A*cycle_time;
CbndNb98 = 1d*Nb98.halflife*Nb98.amount*NA/Nb98.Axcycle_time;
Mo98.amount += 1.00*PbndNb98/NA*NbIS.4;
PbndNb99 = ld*Nbgg.hélflife*NbQQ.amount*NA/NbQQ.A*cycle_time;
CbndNb99 = 1d*Nb99.halflife*Nb99.amount*NA/Nb99.A*cycle_time;
+= 1,00*¥PbndNb99/NA*Nb9S.4A;

PbndMo107
CbndMo107

L}

1}

Mo99. amount
PbndNb100
CbndNb100
PbndNbi01
CbndNb101
PbndNb102
CbndNb102

1l

1d*Nb100
1d*Nb100
1d*Nbio1
1d*Nbic1
1d*Nb102
1d*Nbl102

.halflifexNb100.amount*NA/Nb100.
.halflife*NbiOO.amount*NA/NbiOO.
.halflife*Nb101.amount*NA/Nbi01.
.halflife*Nbi01,amount*NA/Nb101.
.halflife*Nb102. amount*NA/NH102.
.halflife*Nbil02. amount*NA/Nb102,

Mo102.amount += 1,00%PbndNb102/NA*Nb102.4;
PbndNb103 = 1d*Nb103.halflife*Nb103.amount*+NA/Nb103.
CbndNb103 = 1d*Nb103.halflifexNb103.amount*NA/Nb103.
Mo103.amount += 1.00*PbndNb103/NA*xNb103.4;
PbndNb104 = 1d*Nb104.halflifexNb104.amount+NA/Nb104,
CondNb104 = 1d*Nb104.halflifexNb104,amount*NA/Nb104.
Mo104.amount += 1.00%PbndNb104/NA*Nb104.A;
PbndNb105 = 1d*Nb105.halflife*Nbi05.amount*NA/Nb105.
CbndNb105 = 1d*Nb105.halflife*Nb105.amount*NA/Nb105,
Mo105.amount += 1.00%PbndNb105/NAXNb105.4;

PbndNb106
CbndNb106

1d*Nb108&
1d*Nb106

L halflife*Nb106. amount*NA/NbiO8.
.halflife*Nb106. amount*NA/Nb106.

230

Axcycle_time;
Axcycle_time;
Axcycle_time;
Axcycle_time;
Axcycle_time;

Axcycle_time;

A*cycle_time;

Axcycle_time;

Axcycle_time;

Axcycle_time;

A*cycle_time;

A*cycle_time;

A*cycle_time;

A*cycle_time;

Mol06.amount += 1.00*PbndlNbi06/NA*Nb106.4;
PbndZr9% = 1d*Zr9%5.halflife*Zr95, amount*NA/Zr95
CbndZr95 = 1d*Zr95.halflifexZr95.amount*NA/Zrg5
Nb95.amount += 1.00%*PbndZr95/NA*Zr95.A;
PbndZr97 = 1d*Zr97.halflife*Zr97.amount+NA/Zr97.
CbndZr97 = 1d*Zr97.halflife*Zr97.amount*NA/Zr97.
Nb97.amount += 1.00+PbndZr97/NA*Zr97.4;
PbndZr98 = 1d*Zr98.halflife*xZr98.amount*NA/Z2r98.A*cycle_time;
CbndZr98 = 1d*Zr98.halflife*Zr98.amount*NA/Zr98.
Nb98.amount += 1.00%PbndZr98/NA*Zr98.4;
PbndZr89 = 1d*Zr99.halfiife*ZrQQ.amount*NA/ZrQQ
CbndZr99 = 1d*Zr99.halflifexZr99.amcunt*NA/Zr99.A*cycle_time;
Nb99.amount += 1.00*PbndZr99/NA*+Zr99.4; _
PbndZri00 = 1d+Zr100.halflifexZri00.amount*NA/Zr100.
CbndZr100 = 1d+Zr100.halflife*xZri00.amount*NA/Zr100.
Nb100.amount += 1.00*PbndZri100/NA*Zrl100.4;
PbndZr101 = 1d*Zr101.halflife*Zrl101.amount*NA/Zr101
CbndZr101 = 1d*Zri101.halflife*Zr101.amount*NA/Zr101
Nb101.amount += 1.00*%PbndZri01/NA*Zr101.4;

Axcycle_time;

JA*cycle_time;

Axcycle_time;

Akcycle_time;

A*cycle_time;

JAxcycle_time;

1}

Axcycle_tine;

A*cycle_time;

.A*cycle_time;

.Axcycle_time;

PbndZr102 = 1d*Zr102.halflife*Zr102.amount*NA/Zr102
CbndZr102 = 1d*Z2ri102.halflife*Zri02.amount*NA/Zr102
Nbi02.amount += 1.004+PbndZri02/NA*xZri02.4;

PbndZri03 = 1d*xZr103.halflifexZr103.amount*NA/Zr103.
CbndZr103 = 1d*Zr103.halflife*Zr103.amount*NA/Zr103.

Nb103.amount += 1.00%PbndZri03/NA*Zr103.4;

PbndZri04 = 1d*Zr104.halflife*ZriO&.amount*NA/Zr104.
CbndZr104 = 1d*Zri104.halflife+Zr104.amount*NA/Zr104,

Nb104.amount += 1.00%PbndZr104/NA*Zr104.4;

Pbnd¥92 = 1d*Y92.halflife*Y92.amount*NA/Y92.A*cycle_
Cbnd¥92 = 1d*Y92.halflife*Y92,amount*NA/Y92, Axcycle_

Zr92.amount += 1.00*PbndY92/NA*Y92.4;

.A*cycle_time;

JA*cycle_time;

A*cycle_time;

Axcycle_time;

Axcycle_time;

A*cycle_time;

time;

time;

PbndY383 = 1d*Y93.halflife*Y93. amount*NA/Y93.A*xcycle_time;

231

Cbnd¥Y93 = 1d*Y¥Y93.

Zr93,amount += 1,
PbndYo94
CbndY94

Zr94, amount += 1.

Pbnd¥95 = 1d*Y95.

Cbnd¥956 = 1dx*Y95.
Zr9b.amount += 1,
PbndYS56 = 1d*Y96.
CbndYS6 = 1d*Y98.
Zr96.amount += 1.
PbndY97 = 1d*Y97.
CbndY97 = Ld*Y97.
Zr97 .amount += 1.
PbndY98 = 1d#Y98.
CbndY88 = 1d*Y98.
Zr98.amount += 1
Pbnd¥99 = 1d4%Y99.
CbndY99 = 1d*Y99,
ZrQQ.amount += 1.
PbndY100
Cbnd¥Y100

Zri1¢0.amount += 1

1}

i

PbndY101 = 1d*Y101.halflife*Y101,amount*NA/Y101.
CbndY101 = 1d#Y101.halflife*xV101.amount*NA/Y101.

1d*Y94.
1d#Y94.

halflife*Y93.amount*NA/Y93.
OO*andYQS/NA*YQS.A;
halflife*Y94.amount*Na/Y94.
halflife*Y94,amount*NA/Y94.
00*PbndY94/NA*Y94 . A;
halflifexV95. amount+NA/Y95
halflife*Y95.amount*NA/Y95
00*PbndY95/NA*Y95.A;
halflifexY96.amount*NA/Y96.
halflifexY96.amount*NA/Y96.
Q0*PbndY968/NA*Y96 .A;
halflifexY97.amount*NA/Y97.
halflife*Y97.amount*NA/YI7.
00*PbndY97/NA*Y9T .A;
halflifex¥Y98.amount*NA/Y98.
halflife*Y98.amount*NA/Y98.

.00*PbndY98/NA*Y98.A;

halflife*Y99.amount*NA/YS9
halflife*Y99.amount*NA/Y39.
00*PbndY99/NA*Y99 .A;

.00*#PbndY100/NA*Y100.4;

Zri0l.amount += l.OO*aninoi/NA*Yioi.A;

PbndY102 = 1d*¥Y102.halflife*¥102, amount*NA/Y102.
Cbnd¥102 = 1d4*Y102 . halflife*¥102.amount*NA/Y102.

2r102.amount += 1.00+PbndY102/NA*Y102.4;

Pbnd8r89 = 1d*3r89%.halflife*Sr89,amount*NA/Sr89.
CbndSr89 = ld*Sr89.halflife*SrSQ.amount*NA/SrSQ.

Y89.amount += 1.00*PbndSr89/NA*Sr89.4;

232

Axcycle_time;

dxcycle_time;

Axcycle_time;

LAxcycle_time;

Axcycle_time;

Axcycle_time;

Axcycle_time;

Axcycle_time;

A*cycle_time;

A*cycle_time;

A*cycle_time;

Axcycle_time;

Axcycle_time;

ld*Ylod.halflife*YiOO.amount*NA/YiOO.A*cyCle_time;
1d*Y100.halflife*Y100.amount*NA/Y100.

A*cYcle_time;

Axcycle_tinme;

Axcycle_time;

Axcycle_tine;

Axcycle_time;

A*cycle_time;

Axcycle_time;

PbndSr90
CbndSrad
Y90.amount
PbndSroi
CbndSrol
¥91.amount
PbndSr92 =
CbndSr92 =

 ¥92.amount
PbndSr93 =

CbndSr83 =

Y93.amount
PbndSr94 =
CbndSr94 =
Y94.émount
PbndSr8b
ChndSr95
Y95 . amount
PbndSr96 =
CbndSr96

1]

it

Y96 . amount
PbndSr97 =
CbndSro7 =
Y97 .amount
PbndSr98 =
CbndSr98 =
¥98.amount
~ Pbnd5r99 =
CbndSr99 =

¥39 . amount

PbndSr100 = 1d#Sri100.halflife*Sr100.anount*NA/Sr100.A%cycle_time;
CbndSr100 = 1d*Sr100.halflifexSr100.amount*NA/Sr100.A*cycle time;

1d*Sr90.halflife*Sr90.amount*NA/Sro0
1d*Sr90.halfiife*Sro0. amount*NA/Sro0
+= 1.00%PbndSr30/NA*Sr90.4;
1d*Sr91.halflifexSr9l.anount*NA/Sr91
1d#5r91.halflife*Sr91.amount*NA/Sro1
+= 1.00%PbndSr91i/NA*Sr91.4;
1d*Sr92.halflife*S5r92. amount*N4a/Sr92
ld*Sr92.halflife*Sr92.émount*NA/SrQQ
+= 1,00%PbndSr92/NA%*Sr92.4;

1d*Sr93.halflife*Sr93. amount*NA/Sr93.

1d%8r93.halflife*Srd3. amount*NA/Sr93
+= 1.00%PbndSr93/NA*STr93.4;

1d*8r94 . halflife*Sr94. amount*NA/Sro4.
ld*Sr94.halflife*5r94.amount*NA/SrSé.

+= 1.00*PbndSr94/NA*Sr94.4A;
1d*Sr95.halflife*Sr95.amount*NA/SrIb
1d*8r95 . halflife*Sr95. amount*NA/Sr95
+= 1,00%PbndSr95/NA*Sr95.A;
1d*8r96.halflife*Sr96.amount*NA/Sr96
ld*SrQS.halflife*SrQG.amount*NA/SrQS
+= 1.00%PbndSr96/NA*Sr96.A;

1d*Sr97 . halflifexSr97.amount*NA/Sro7,
1d*Sr97.halflife*Sr97.amount*NA/Sx97.

+= 1.00*PbndSr97/NA*Sre7.4;
1d%5r98.halflife*Sr98. amount*NA/Sr98
1d#Sr98.halflife*Sr98. amount*NA/5r98
+= 1.00*PbndSr98/NA*ST98.4;
1d#Sr99.halflife*Sr99.amount*NA/Sr99
1d*5r99.halflife*Sr99. amount*NA/Sr99
+= 1.00%PbndSr99/NA*Sr99.4;

233

.A*cycle_time;

.Axcycle_time;

JA*cycle_time;

JAxcycle_time;

Axcycle_time;

JA*cycle_time;

Axcycle_time;

JAxcycle_time;

A*gycle_time;

Axecycle_time;

.A*cycle_time;

JAxcycle_time;

JAxcycle_ time;

A*xcycle_time;

Axcycle_time;

A*cycle_time;

JA*cycle_time;

.A*cycle_time;

.A*cycle_time;

.A*cycle_time;

+= 1.00+PbndSrl100/NA*Sri100.4A;

Y100 . amount

PbndSr101 = 1d*Sr101.halflife*Sri01.amount*NA/Sr101.A*cycle_time;
CbndSri0l = ld*Sriol.halflife*SriOl.amount*NA/SriOi.A*cycle_fime;
Y101.amount += 1.00%PbndSri101/NA*Sri01.4A;

PbndSri102 = ld*SriOQ.halflife*Sr102.amount*NA/Sr102.A*cycle_time;
CbndSr102 = 1d*Sr102.halflife*Sr102.amount*NA/Sr102. A*xcycle_time;
Y102.amount += 1.00%PbndSr102/NA*Sr102.4;

PbndRb88 = 1d*Rb88.halflife*Rb88.amount*NA/RbSS.
CbndRb88 = 1d*Rb88.halflife*Rb88.amount*NA/RbSS.

Sr88,amount += 1.00*PbndRb88/NA*RbLSS.A;
PbndRb89 = 1d*Rb89.halflife*Rb89.amount*NA/Rb89
CbndRb8Y = 1d*Rb89.halflife*Rb8Y.amount*NA/Rb89
Sr89.amount += 1.00%*PbndRb89/NA*Rb8I.A;
PbndRb90 = 1d*Rb30.halflife*xRb90.amount*NA/RbIO
CbndRb90 = 1d*Rb90.halflife*RbI0.amount*NA/RbIO
Sr90.amount += 1.00+PbndRb90/NA*RLIO.A;
PbndRb91 = 1d*Rb91.halflife*Rb91.amount+NA/RbI1
CbndRb91 - 1d*Rb91.halflife*Rb91.amount*NA/RbI1
Sr91.amount += 1.00*PbndRb91/NA*RbI1.4;
PbndRb92 = 1d*Rb92.halflife*Rb92.amount*NA/Rb92
CbndRb92 = 1d*Rb92.halflife*Rb92.amount*NA/Rb92
Sr92.amount += 1.00%PbndRb92/NA*Rb92.A;
PbndRb93 = 1d*Rb93.halflife*Rb93.amount*NA/Rb93
CbndRb83 = 1d*Rb93.halflife*Rb93.amount*NA/RbI3

Sr93.amount += 1.00*andR593/NA*Rb93.A;

1

1}

PbndRb94 = 1d*Rb94.halflife*Rb94.amount*NA/Rb94.
CbndRb94 = 1d*Rb94 _halflife*Rb94.amount*NA/Rb94,

Sr94.amount += 1.00%PbndRb94/NA*RbI4.A;
PbndRb9S = 1d*Rb95.halflife*Rb95.amount*NA/RbI5
CbndRb95 = 1d*Rb95.halflife*RbI5.amount*NA/RbI5
" Sr85.amount += 1.00%¥PbndRb95/NA*RbI5.A;

PbndRb96 = 1d*%Rb96.halflife*Rb96.amount*NA/RbS6

234

Axcycle_time;

Axcycle_time;

.Axcycle_time;

JAxcycle_time;

.A*xcycle_time;

A*cycle_time;

Axcycle_time;

A*xcycle_time;

JA*cycle_time;

JA*cycle_time;

JAxcycle_time;

Axcycle_time;

Axcycle_time;

Axcycle_time;

JA*cycle_time;

JAxcycle_time;

JAxcycle_time;

CbndRb96 = 1d*Rb96.halflife*Rb96.amount*NA/RbI6.A*cycle_time;
Sr96.amount += 1.00*PbndRb96/NA*RbI6.4;

PbndRb97 = 1d*Rb97.halflife*Rb9I7.amount*NA/RbI7.A*cycle_time;
CbndRb37 = 1d*Rb97.halflife*RbI7.amount*NA/RbO7.A*cycle_time;
Sr97.amount += 1.00*PbndRb97/NA*RbI7.A;

PbndRbO8 = 1d+Rb98.halflife*Rb98.amount*NA/RbI8.Axcycle_time;
CbndRb98 ='1d*Rb98.halflife*RbQB.amount*NA/RbQS.A*cycle_time;
Sr98.amount += 1.00%PbndRb98/NAXRDIS.A;

PbndRb99 = 1d*Rb99.halflife*Rb99.amount*NA/Rb99.4*xcycle_time;
CbndRb99 = 1d*Rb99.halflife*Rb99.amount*NA/RbI9.A*cycle_time;
Sr99.amount += 1.00*PbndRb39/NA*RbI9.4A;

.ande100_= 1d*Rb100.halflife*Rb100C. amount*NA/Rb100. A*xcycle_time;
CbndRb100 = 1d*Rb100.halflife*Rb100.amount*NA/Rb100.A*xcycle_time;
Sr100.amocunt += 1.00*PbndRbi00/NA+Rb100.4;

PbndRb102 1d*Rb102.halflife*Rb102.amount*NA/Rb102.A*cycle_time;
CbndRb102 = 1d*Rb102.halflife*Rbi02.amount*NA/Rb102.A*cycle_time;
Sri102.amocunt += 1.00*PbndRb102/NA*Rb102.4;

FgKr85 = Kr85.amount*Kr85.sigma_g/Sigma_a_fuel;

nrcKr8b = neutron.amount*k/eta*FgKr85;

PrcKrg85s = nrcKr85*Kr85.4/NA;

CrcKr86 = nrcKr85+Kr85.4/N4;

Kr85.amount += -1.00*CrcKr85+1.00+%PbndBr85/NA*Br85.4;
Kr86.amount += 1.00*PrcKr85+1.00+%PbndBr86/NA*Br86.4;

PbndKrgs = 1d*Kr85.halflife*Kr85.amount*NA/KrSS.A*cycle_time;
_CbndKr85 = ld*Kr85.halflife*K;85.amount*NA/KrSS.A*cycle_time;
. Rb86.amount += 1.00%PbndKr85/NA*Kr85.4; _

PbndKr87 = 1d*Kr87.halflife*Kr87.amount*NA/Kr87.A*cycle_time;
CbndKr87 = ld*KrST.halflife*KrST.aﬁount*NA/Kr8?.A*cycle_time;
Rb87.amount += 1.00%PbndKr87/NA*Kr87.4;

PbndKr88 = ld*Kr88.halflife*Kr88.amount*NA/KrSS.A*cycle_time;
CbndKr88 = 1d*Kr88.halflife+Kr88.amount*NA/Kr88.Axcycle_time;
RbSS.amount += 1.00+PbndKr88/NA*KrSS.4; |

#

235

1

PbndKr89 = 1d*Kr89.halflifexKr89.amount*NA/Krs9
CondKr89 = 1d*+Kr89.halflife*Kr89.amount*NA/Kr89
Rb89.amount += 1.00*PbndKr89/NAxKr89.4A;

PbndKr90 = 1ld*Kr90.halflife*Xr9Q.amount*NA/KroC.
CondKr90 = 1d*Kr90.halflife*Kr90. amount*NA/Kroo.

Rb90.amount += 1.00*PbndKr9C/NA*Kra0.4A;
Pbnd¥r91 = 1d*Kr91.halflife*Kr91.amount*NA/Kr91
ChndKr91 = 14d*Kr91.halflifexKr3l.amount*NA/Kr91
Rb91.amount += 1.00*PbndKr91/NA*Kr91l.4;
PbndKr92 = 1d*Kr92.halflife*Kr92,amount*NA/Kr92
CbndKr92 = 1d*Kr92.halflife*Kr92.amount*NA/Kr92
Rb92.amount += 1.00+#PbndKr92/NAxKr982.4;
PbndKr93 = 1d*Kr93.halflife+Kr93.amount*NA/Kr93
CbndKr93 = 1d*Kr93.halflife*Kr93.amount*NA/Kro3
Rb93.amount += 1.00*PbndKr93/NA*Kr33.A;
PbndKrs4
_CbndK£94
Rb94 .amocunt += 1.00%PbndKr94/NA*Kr94.4;
PbndKr95 = 1d*Kr95.halflife*Kr95.amount+NA/Kr9b
CbndKr95
Rb95.amount += 1.00*PbndKr95/NA*Kr95.4;

1]

- PondKr97 = ld*Krg?.halflife*KrQ?.amount*NA/KfQ?.
CbndKr97 = 1d*Kr97.halflife*Kr97.amount*NA/Kr97.

Rb97.amount += 1.00*PbndXKr37/NA+Kr97.4;
PbndBr82 = 1d*Br82.halflife*Br82. anount*NAi/Br82
CbndBr82 = 1d*Br82.halflife*Br82.amount*NA/Br82
Kr82 .amount += 1,00%PbndBr82/NA*Br82.4;
PbndBr83 = 14*Br83.halflife*Brd3.amount*NA/Br83

CbndBr83 = 1d*Br83.halflifeiBr83.amount*NA/BrSS.

Kr83.amount += 1.00*PbndBr83/NA*Br83.A;
PbndBr84
CbndBrg84

236

1d+Kr94.halflife*Kr94 . amount*NA/Kro4.
1d*Kr94.halflife*Kr94 . amount*NA/Kro4 .

1d*Kr95.halflife*Kr95. amount*NA/Kr9s.

1d*Br84.halflife*Br84.amount*NA/Br84.
1d*Br84 .halflife*Br84.amount*NA/Br84.

JA*cycle_time;

A*¥cycle_time;

A*cycle_time;

A*cycle_tims;

Axcycle_time;

JAxeycle_tine;

JAxcycle_time;

Axcycle_time;

.A*cycle_time;

Axgycle_time;

A*xcycle_time;

Axcycle_time;

JA*cycle_time;

A*cycle_time;

Axcycle_time;

Axcycle_time;

JA¥cycle_time;

JA*cycle_time;

A*cycle_time;

A*xcycle_time;

A*cycle_timse;

Axcycle_time;

Kr84.amount += 1.00*PbndBr84/NA*Br84.4;

PbndBr85 = 1d*Br85.halflife+Brs85.amount*NA/Bras
CbndBr85 = 1d*Br85.halflife*Br85.amount*NA/Brs5.
PbndBr86 = 1d*Br86.halflifexBrS6.amount*NA/Brs6
CbndBr86 = 1d*Br86.halflife*Br86.amount*NA/Br6
PbndBr87 = 1d*Br87.halflife*Br87.amount*NA/Brs7
CbndBr87 = 1d*Br87.halflifexBr87.amount*NA/Brs7

Kr87.amount += 1.00*%PbndBr87/NA+Br87.4;
PbndBrgs = 1d+Brs8.halflife+Brss.amount*NA/Bres
CbndBr88 = 1d*Br88.halflifexBrs88.amount*NA/Brss
Kr88.amount += 1.00*#PbndBr88/NA+Br&8.4;
PbndBrg9 = ld*Br89.halflife*BrSQ.amount*NA/BrSS
CbndBr8y = 1d*Br89.halflife*BrSQ.amount*NA/BrSS
Kr89.amount += 1.00*PbndBr89/NA*Br89.4;
andBrSO = 1d*Br90.halflife*Br90.amount*NA/Br9o
CbndBr90 = 1d*Br90.halflife*Br90.amount*NA/Br90
Kr90.amount += 1.00*PbndBr90/NA*Br90.4;
PbndBr91 = 1d*Br91.halflife*Br9l.amcunt*NA/Brol
CbndBra1 1d*Br9i.haiflife*Br91.amount*NA/BrQi
Kr91i.amount += 1.00%PbndBr91/NA*Broil.A;
PbndBr92 1d*Br92.halflife*Br92.amount*NA/Br92
CbndBr92 1d*Br92.halflife*Br92.amount*NA/Br92
Kr92.amcunt += 1.00*andBr92/Nﬁ*Br92.A;
PbndSe81 = 1d*Se81.halflife*Se81.amount*NA/Sed1
CbndSe81 = 1d*Se81.halflifexSe81.amount*NA/Se81
Br81.amount += 1.00%PbndSe81/NA*Se81.4;
PbndSe83 = 1d*SeB83.halflifexSe83.amount*NA/Se83
CbndSe83 = ld*Se83.halflife*SeBS.amount*NA/SeSS
Br83.amocunt += 1.00*PbndSe83/NA*Se83.4;

PbndSe84 = 1d#Se84.halflife*Sef84.amount*NA/Se84,
CbndSe84 = 1d+Se84.halflife*Se84.amount*NA/Se84.

Br84.amount += 1.00*PbndSe84/NA*Se84.4;

237

JAxcycle_time;

Ax*cycle_time;

JA¥cycle_time;
.A*xcycle_time;
Akcyele_time;

.Axcycle_time;

JA*cycle_time;

JAxcycle_time;

-A¥cycle_time;

JA*xcycle_time;

Axcycle_time;

JAxcycle_time;

A*cycle_time;

JAxcycle_time;

JAxeycle_time;

JAxcycle_time;

JA¥*cycle_time;

A*xcycle_time;

JAxcycle_time;

A*xcycle_time;

Axcycle_time;

Axcycle_time;

PbndSe85
CbndSe85 = 1d*5e85.halflife*Se85.amount*NA/Se85
Br85.amount += 1.00*andSe85/NA*Se8S.A;

PbndSe86
CbndSe86
Br86.amount += 1.00%PbndSe86/NA*Se86.4;
PbudSe87
CbndSe87
Br87.amount += 1.00%PbndSe87/NA*Sel7.4;

1d*Se86.halflifexSe86. amount *NA/Se86

PbndSe88 = 1d*Se88.halflife*5e88.amount*NA/Se88.
CbndSe88 = 1d*Se88.halflife*Se88.amount*NA/Se88,

Br88.amount += 1.00%PbndSe88/NA*Se88.4;

PbndSe89 = 1d*Se89.halflife*Sel9.amount*NA/Se89
CbndSe89 = ld*Se89.halflife*S5e89.amount*NA/Se89
BrSQ.amount += 1,00*PbndSe89/NA*Se89.4;

PbndSe91 = 1d#Se91.halflifexSe9l.amount*NA/Se1
CbndSe91 = 1d+*Se91.halflife*Se9l.amount*NA/Se9l
Br91.amount += 1.00+*PbndSe31/NA*Se91.4;

PbndAs77
CbndAs77
Se77.amount += 1.00*PbndAs?7/NA*AsT7.4;
PbndAs78
CbndAs78
Se78.amount += 1.00+Pbndis78/NA*As78.4;

H

b}

 PbndAs79 = 1d*As79.halflife*As79.amount*NA/As79

CbndAs79 = 1d*As79.halflifexAs79.amount*NA/AsT9
Se79.amount += 1.00*PbndAs79/NA*As79.4;

PbndAs80 = 1d*As80.halflifexAs80.amount*NA/As80
CbndAs80 = 1d*As80.halflife*As80.amount*NA/As80
Se80.amount += 1.00%PbndAs80/NA*As80.4;

PbndAs81 = ld*As81.halflifexAs81.amount*NA/As81
CbndAs81 = 1d*As81.halflife*As81.amount*NA/As81

238

ld*SeSS.halflife*SeSS.amount*NA/SeSS-

1d*5e87.halflife*Se87. amount*NA/Se87.
1d*Se87 .halflife*Se87.amount*NA/Se87,

1d*As77 . halflifexAs77.amount*NA/ASTT.
1d*4s77.halflife*As77.amount*NA/ASTT.

1d*As78.halflifexAs78.amount*NA/As78.
ld*AsTS.halflifé*ASTS.a@ount*NA/AsTS.

Axcycle_time;

JAxcycle_time;

JA*cycle_time;

ld*Se86.halflife*Se86.amount*NA/SeS6.

Axcycle_time;

Axcycle_time;

Akcycle_time;

Axcycle_time;

Axcycle_time;

.A*xcycle_time;

Axcycle_time;

Akxcycle_time;

A*cycle_time;

Axcycle_time;

Axcycle_time;

A*xcycle_time;

A*cycle_time;

.A*cycle_time;

JA*cycle_time;

JA*cycle_time;

JA*cycle_time;

JA*cycle_time;

,A*cycle_fime;

‘Se8l.amount += 1.00*PbndAs81/NA*AsS8i.A;
PbndAs82 1d*As82 . halflife*As82. amount*NA/As82
CbndAs82 1d*As82.halflife¥As82. amount*NA/As82
Se82.amount += 1,00*PbndAs82/NA*4s82.4;
Pbndis83 = 1d*As83 . halflifexAs83.amount*NA/As83
CbndAs83 = 1d*As83.halflife*As83.amount*NA/As83
Se83.amount += 1.00*andA583/NA*A583.A§

PbndAs84 = 1d*As84.halflife*As84.amount*NA/As84.
CbndAs84 = 1d*As84 .halflife*As84.amount*NA/As84,

Se84,amount += 1.00%PbndAs84/NA*As84.A;
PbndAs85 = 1d*As85.halflife*As85.amount*NA/As85
CbndAs85 = ld*ASSE.halflife*AsSS.amount*NA/AsBS
Se85.amount += 1.00%PbndAs85/NA*As85.4;
PbndAs86 = 1d*As86.halflife*As86.amount*NA/As86

CbndﬁsSG = 1d*As86.halflife*As86.amount*NA/AS86.

Se86.amount += 1.00*%PbndAs86/NA*As86.4;
PbndAs87 = 1d*As87 .halflife+*As87.amount*NA/As87
CbndAs87 = 1d*As87.halflife*As87.amount*NA/As87
Se87.amount += 1.00*PbndAs87/NA*AS87 .A;
PbndGe75 = 1d*Ge75.halflife*Ge75. amount*NA/Ge75
CbndGe75 = ld*Ge75.halflife*Ge75.amount*NA/Ge75
As75.amount += 1.00*PbndGe75/NA*Ge75.4;

It

PbndGe77 = 1ld*Ge77.halflife*Ge?7.amount*NA/Ge77.
CbndGe77 = 1d*Ge77.halflife*(3e77.amcunt*NA/GeTT.

AsT7 .amount += 1.00*PbndGe77/NA*GeT7.A;

PbndGe78 = ld*Ge78.halflife*Ge78.amount*NA/Ge?B.
CbndGe78 = 1d*Ge78.halflife*Ge78.amount*NA/GeT8.

As78.amount += 1.00*PbndGe78/NAxGe78.4;
PbndGe79 = 1d*Ge79.halflife*Ge79.amount*NA/Ge79
CbndGe79 = 1d*Ge79.halflife*Ge79.amount*NA/Ge79
AS79.amount += 1.00%PbndGe79/NA*Ge79.4;
PbndGe80 = 1d+*Ge80.halflife*Ge80.amount*NA/Ge80

239

Axcycle_time;

Axcycle_time;

Axcycle_time;

.A*cycle_time;

A*cycle_time;

Axcycle_time;

Axcycle_time;

A*cycle_time;

.A*cycle_time;

Axcycle_time;

.Axcycle_time;

.Axcycle_time;

JAxcycle_time;

A*cycle_time;

A*cycle_time;

A*cycle_time;

Axcycle_time;

A*cycle_time;

JA*cycle_time;

JA*cycle_time;

JA*cycle_time;

CbndGe80 = 1d*Ge80.halflife¥Ge8Q.amount*NA/Ge80.
4s80.amount += 1.00*PbndGe8C/NA*Ge80.4;
PbndGe81 = 1d*Ge81.halflifexGe81,amount*NA/Ge81.
CbndGe81 = 1ld*Ge81.halflife#Ge81.amount*NA/Ges1.
As81.amount += 1.00*PbndGe81/NA*Ge81.4;
PbndGe82 = 1d*Ge82.halflife*Ge82.amount*NA/Ge82.
CbndGe82 = 1d*Ge82.halflife*Ge82.amount*NA/Ge82.
As82.amount += 1.00*%PbndGe82/NA+(Fe82.4;
PbndGe83 = 1d*Ge83.halflife*Ge83.amount*NA/Ge83.
CbndGe83 = 1d*Ge83.halflife*(e83.amount*NA/Ge83.
As83.amount += 1.00*andGe83/NA*Ge83.A;
. PbndGe84 = 1d*Ge84.halflife*Ge84.amount*NA/Ge84.
CbndGe84 = ld*Ge84.halflife+Ge84.amount*NA/Ges4.
.A384.amount += 1.00%PbndGe84/NA*GeS84.4;
andGa72 = 1d*Ga72.halflife*Ga72.amount*NA/Ga72.
CbndGa72 = 1d*Ga72.halflife*Ga72.amount*NA/Ga72.
Ge72.amount += 1.00*PbndGa72/NA*Ga72.4;
PbndGa73 .ld*GaTS.halflife*GaTS.amount*NA/Ga?B.
CbndGa73 = ld*Ga73.halflife*Ga73.amount*NA/Ga73.
Ge73.amount += 1.00*PbndGa73/NA*Ga73.4;
PbndGa74 = 1d*Ga74.halflife*Ga74.amount*NA/Ga74.
CbndGa74 1d*Ga?4.haiflife*Ga74.amount*NA/Ga?4.
GeT4.amount += 1.00*%PbndGa74/NA*Ga74.4;
PbndGa75 = ld*Ga75.halflife*Ga75.amount*NA/Ga7s.
CbndGa75 = 1d*Ga75.halflife*Ga75, amount*NA/Ga75.
- (Ge75.amount += 1.00*#PbndGa75/NA*Ga75.4;
PbndGa76 = 1d*Ga76.halflife*Ga76.amount*NA/Ga76.
CbndGa76 = ld*Ga76.halflife*Ga76.amount*NA/Ga76.
Ge76.amount += 1.00*PbndGa76/NA*Ga76.4;
PbndGa77 = 1d#Ga77.halflife*Ga77.amount*NA/Ga77.
CbndGa77 = ld*Ga77.halflifexGa77.amount*NA/Ga77.
Ge77.amount += 1.,00%PbndGa77/NA*GaT77.4;

It

I}

13

240

Axcycle_time;

A*xcycle_time;

A*cycle_time;

A*cycle,time;

A*cycle_time;

A*cycle_time;

A*cycle_time;

Axcycle_time;

A*cycle_time;

A*cycle_time;

A*xcycle_time;

Axcycle_time;

Axcycle_time;

A*cycle_time;

Axcycle_time;

A*cycle_time;

Axcycle_time;

A*cycle_time;

A*cycle_time;

Axcycle_time;

A*cycle_time;

1d*Ga78.halflife*Ga78. amount*NA/Ga78

PbndGa78
CbndGa78
Ge78.amount += 1.00¥PbndGa78/NA*Ga78.A;
PbndGa79 = 1d*Ga79.halflife*Ga?9.amount*NA/Ga79
CbndGa79 = 1d*Ga79.halflife*Ga79.amount*N4/Ga79
Ge79.amount += 1.00*PbndGa79/NA*Ga79.4;
PbndGa80 = 1d*Ga80.halflife*Gas0.amount*NA/Gas80
CbndGal80 = 1d*Ga80.halflife*GaSO.amount*NA/GaSO
Ge80.amount += 1.,00*PbndGa80/NA*Gas0.4;
PbndGag8l = 1d*Ga81.halflife*Ga81.amount*NA/Gas1
CbndGa81 = 1d*Ga81.halflife*Ga8l.amount*NA/Ga81
Ge81.amount += 1.00%PbndGa81/NA*Ga81.4;
PbndGa82 = 1d+Ga82.halflife*Ga82.amount+NA/Gas2
CbndGa82 = ld*Ga82.halflife*Ga82.amount*NA/Ga82
Ge82.amount += 1.00+PbndGa82/NA*Gal2.4; _
PbndGa83 = 1d*Ga83.halflife*Ga83.amount*NA/Ga83
CbndGa83 = 1d*Ga83.halflife*Ga83.amount*NA4/Gag3
Ge83.amount += 1.00*PbndGa83/NA*Ga83.4;
PbndZn72 = ld*Zn72.halflife*Zn72.amount*NA/Zn72
CondZn72 = 1d*Zn72.halflife*Zn72.amount*NA/Zn72
Ga72.amount += 1.00*PbndZn72/NA*Zn72.4;
PbndZn73 = 1d*Zn73.halflife*Zn73.amount+NA/Zn73
CbndZn73 = 1d*Zn73.halflife+Zn73.amount*NA/Zn73
Ga73.amount += 1.00*%PbndZn73/NA*Zn73.4;

[}

#

 PbndZn74 = 1d*Zn74.halflifexZn74.amount*NA/Zn74.
CbndZn74 = 1d*Zn74.halflife*Zn74.amount*NA/Zn74.

Ga74.amount += 1.00*#PbndZn74/NA*Zn74.4;
PbndZn75 = 1d*Zn75.halflife*Zn75.amount*NA/Zn75
CbndZn75 = 1d*Zn75.halflife*Zn75.amount*NA/Zn75
Ga75.amount += 1.00%PbndZn75/NA*Zn75.4;
PbndZn76 = 1d*Zn76.halflife*Zn76.amount*NA/Zn76
CbndZn76 = 1d*Zn76.halflife*xZn76.amount*NA/Zn76

241

1d*Ga78.halflife*Ga78. amount*NA/Ga78.

Axcycle_time;

Axcycle_time;

JAxcycle_time;

Axcycle_time;

.A*cycle_time;

JA¥cycle_time;

Axcycle_time;

.Axcycle_time;

Axcycle_tinme;

JAxcycle_time;

JA*cycle_time;

Axcycle_time;

Axcycle_time;

.A*cycle_time;

.A*cycle_time;

JAxcycle_time;

A*cycle_time;

Axcycle_time;

JAxcycle_time;

.A*cycle_time;

JAxcycle_time;

JAxcycle_time;

Ga76.amount += 1.00%PbndZn76/NA*Zn76.4;
PbndZn77 = 1d*Zn77 .halflife*Zn77.amount*NA/Zn77
CbndZn77 = 1d*Zn77.halflife*Zn77.amount*NA/Zn77
Ga77.amount += 1.00*and2n77/NA*Zn77.A;
PbndZn78
CbndZn78 = 1d*Zn78.halflife*Zn78.amount*NA/Zn78
Ga78.amount += 1.00*%PbndZn78/NA*Zn78.4;
- PbndZn79 = 1d*Zn79.halflife*Zn79.amount*NA/Zn79

1l

CbndZn79 = 1d*Zn79.halflifexZn79.amount*NA/Zn79,

Ga79.amount += 1.004PbndZn7S9/NA*Zn79.4;
- PbndZn80 = 1d*Zn80.halflife*Zn80.amount*NA/Zn80
CbndZn80 = 1d*Zn80.halflife*Zn80.amount*NA/Zn80
Ga80.amount += 1.00*%PbndZn80/NA*Znd0.A;
PbndCu72 = 1d*Cu72.halflife*Cu72.amount*NA/Cu72

CbndCu72 = 1d*Cu72.halflife*Cu72.amount*NA/Cu72.

Zn72.amount += 1.00*PbndCu72/NA*Cu72.4;

PbndCu73 = 1d*Cu73.halflife*Cn73.amount*NA/Cu73.
CbndCu73 = 1d*Cu?3.half1ife*Cu73.amqunt*NA/Cu?s.

Zn73.amount += 1.00*PbndCu73/NA*Cu73.4A;

PbndCu75 = 1ld*Cu75.halflife*Cu?5.amount*NA/Cu75
CondCu75b ld*CuTS.halflife*Cu75.amount*NA/CuTE
Zn75.amount += 1.00%PbndCu75/NA*Cu75.4;

PbndCu76
CbndCu7é
Zn76.amount += 1.00%*PbndCu76/NAxCu76.4;

¥

242

1d*Zn78.halflife*Zn78. amount*NA/Zn7S.

ld*CuTS.halflifé*CuTG.amount*NA/Cu?G.
1d*Cu76.halflife*Cu?G.ambunt*NA/CuTS.

JAxeycle_time;

A*cycle _time;

Axcycle_time;

JAxcycle_time;

JAxcycle_time;

A*cycle_time;

.Axcycle_time;

.A*xcycle_time;

JA*cycle_time;

A*cycle_time;

Axcycle_time;

Axcycle_time;

A*xcycle_time;

Axcycle_time;

A*cycle_time;

Axcycle_time;

Appendix VI

Probabilistic space equations of the
sorted isobars

This appendix shows the probabilistic space equations for isobars generated at the

end of first cycle for the Experiment No.2.

243

Agl109.amount

Agl110.amount

Aglll.amount

Agl112.amount

Agli3.amount

Agll4.amount

Agllb.amount

Agl16.amount

Ag117.amount

Agl18.amount

Agli9.amount

Ag120.amount

Agl21.amount

Agl22.amount

Agl23.amount

Agl24. amount

Ag125 ., amount

Agl26.amount

Agl27.amount

Ag128.amount

Agl29.amount

Agl130.amount

Agl131.amount

AsT3.
AgT4.
"~ AsTS.

As78
ASTT
As78

AsT9.
As80.
As81.

amount
amount

amount

.amount
.amount

.amount

amount
amount

amount

+=

+=

+=

distr_A1U235[110]*pdf_dZ[4]/NA*110;
distr_A1U235[111]1*pdf_dZ[4]/NA*111;
distr_A10235[112]*pdf_dz{3]/NA*112;
distr A1U235[113]*pdf_dZ[3]/NA*113;
distr_A1U235[114]*pdf_dZ[3]/NA*114;
distr_A1U235[115]*pdf_dZ[2]/NA*115;
distr_A1U235[116]#pdf_dZ[2]/NA*116;
distr_A1U235[117] *pdf_dZ[1]/NA*117;
distr_A2U235[118] *pdf_dZ[1]/NA*118;
distr_A2U235[119]*pdf_dz[1}/NA*1ig;
distr_A2U235[120]*pdf_dZ[0]/NA*120;
distr_A20235[121]#pdf_dZ[0]/NA*121;
distr_A2U235[122]*pdf_dZ[-1] /NA*122;
distr_A2U235[123]+pdf_dZ[-1]/NA*123;.
distr_A2U235[124]1+pdf_dZ[-1]/NA¥124;
distr_A2U235[125]*pdf_dZ[-2] /NA*125;
distr_A20235[126]*pdf_dZ[-2] /NA*126;
distr_A20235[127]*pdf_dZ[-3]/NA*127;
distr_A2U2365[128]+pdf_dZ[-3]/NA*128;
distr_A2U235[129]*pdf_dZ[-3]/NA%129;
distr_A20235[130] *pdf_dZ[-4] /NA*130;
distr_A20235[131]1*pdf_dZ[-4] /NA*131;
distr_A2U235[132]%pdf_dzZ[~4]/NA*132;

distr_A1U23B[74]*pdf_dZ[4]/NA*74;
distr_A1U235[75]*pdf_dZ[4]/NA*75;

distr_A1U235[761*pdf_dZ[4] /NA*T7E;
distr_A1U235[77]*pdf_dZ[3] /NA*TT;
distr_A1U235[78]*pdf_dZ[3]/NA*78;
distr_A1U235{79]*pdf_dz[2]/NA*79;
distr_A1U235[80]*pdf_dZ[2]/NA*80;
distr_A1U235[81]*pdf_dZ[2]/NA*81;
distr_A1U235[82]*pdf_dz[1]/NA*82;

244

‘AsB2.
As83.
AsB4,
As85.
As86.
As87.
As88,
As89,
As90.
AsS1.
As92,
As93.
AsS94.
AsBb,

Bal32.
Bal33,
Bal34.
Ball5.
Ba136.
Ba137.
Bal138.
Ba133.

Ba140

Bai4i.
Ba142,
"Bal43.
Bald4,
Bal145.
Bal4s§.
Bai4Ty.
Ba148,
Bal49.

amount
amount
amount
amount
amount
amount
amount
amount
amount
amount
amount
amount
amount
amount
amount
anount
amount
amount
amount
amount
amount
amount
amount
amount
amount
amount
amount
amount
amount
amount
amount

amount

o=

distr_A1U235[83]%pdf_dZ[1]/NA*83;
distr_A1U235[84]*pdf_dz[0]/NA*84;
distr A1U235[85]*pdf_dZ[0]/NA*85;
distr_AlU235(86]*pdf_dZ[0]/NA*86;
distr_A1U236 [87]+pdf_dZ[-1]/NA*87;
distr_A1U235[88]+*pdf_dZ[-1]/NA*88;
distr_A1U235([89]*pdf_dZ[~2] /NA*89;
distr_A1U235[90]*pdf _dZ[-2]/Na*90;
distr_A1U235[91]*pdf_dZ[-2]/NAx91;
distr_A1U235[92]*pdf_dZ[-3]/NA*92;
distf_A1U235£931*pdf_dz[—3]/NA*QS;
distr_A1U235[94] *pdf_dZ[~4] /NA*94;
distr_A1U235[95]*pdf_dZ[-4]/NA*95;
distr_A1U235[96]#pdf_dZ[-4]1/NA%96;
distr_A2U235[133]*xpdf_dZ[4]/NA*133;
distr_A2U235[134]*pdf_dZ[4]/NA*134;
distr_A2U235[135]#pdf_dZ[31/NA*135;
distr_A20235[136]*pdf_dZ[3]/NA*136;
distr_A2U235[1371#pdf_dzZ[3]/NA*137;
distr_A20235[138]*pdf_ dZ[2]/NA*138;
distr_A2U235[139]%pdf_dz[2]/NA*139;
distr_A2U235[140] *pdf_dZ[11/NA%140;
distr_A2U235[141]*pdf_d2[1}/NA*141;
distr_A2U235[142] *pdf_dZ[1]/NA*142;
distr_A20235([143] *pdf_dZ[0]/NA*143;
distr_A20235[144] #pdf_dZ[0]/NA*144;
distr_A2U235[145] *pdf_dZ[-1] /NA*145;
distr_A2U235[146]*pdf_dZ[-1]/NA*146;
distr_A2U235[147]*pdf_dzZ[-1]/NA*147;
distr_A2U235[148]#pdf_dZ[-2]/NA*148;
distr_A2U235[149] *pdf_dZ[-2]/NA*149;
distr_A2U235[150]*pdf_dZ[-3]/NA*150;

245

I}

Ba150.amount += distr_A20U235[161]%pdf_dZ[-3]/NA*151;

distr_A2U236[182]*pdf_dZ[-3] /NA*152;
Ba152.amount += distr_A20235[153]%pdf_dz[-4]/NA%163;
Ba153.amount += distr_A2U235[154]*pdf_dZ[-4] /NA*154;
Br100.amount += distr_A1U235[101]*pdf_dZ[-4]/NA*101;
Br78.amount += distr_A1U235[79]*pdf_dz[4]/NA*79;
Br79.amount += distr_A1U235[80]*pdf_dZ[4]/NA*80;
Br80.amount += distr_A1U235[81]*pdf_dZ[4]/NA*81;
Br81.amount += distr_A1U235[82]*pdf_dZ[3]/NA*82;
Br82.amount += distr_A1U235[83]+pdf_dZ[3]/NA*83;
Br83.amount += distr_a1U235{84]*pdf_dZ[2] /NA*84;
Br84.amount += distr_A1U235{85]*pdf_dZ[2]/NA*85;
Br85.amount += distr_A1U235[86] ﬂ-‘Pdf__dz [2] /NA*86;
Bra6.amount += distr_A1U235[87]1+pdf_dzZ[1]/NA+8T;
Br87.amount += distr_A1U235[88]*pdf_dZ[1]/NA*88;
Br88.amount += distr_A1U235[89]+pdf_dZ[0]/NA*89;
Br89.amount += distr_A1U235[90]*pdf_dZ[0]/NA*90;
Br90.amount += distr_A1U235[91]#pdf_dZ[0]/NAx91;

Br91.amount += distr_A1U235[92]*pdf_dZ[-1]/NA*92;
Br92.amount += distr_A1U235[93]*pdf_dZ[-1]/NAx93;
Br93.amount += distr_A1U235[94]+pdf_dz[-2]/NA*94;
Br94.amount += distr_A1U235[95]*pdf dZ[-2]/NA*95;
Br95.amount += distr_A1U235[96]*pdf_dZ[-2]/NA*96;

 Br96.amount += distr_A1U235[87]*pdf_dZ[-3]/NA*97;
Br97.amount += distr_A1U235[98]*pdf_dZ[-3]/NA%98;

' Br98.amount += distr_A1U235[99]¥pdf_dZ[-3]/NA*99;
Br99.amount += distr_A1U235[100]*pdf_dZ[-4]/NA*100;
Cd111.amount += distr_A1U235[112]+pdf_dZ[4]/NA*112;
Cd112.amount += distr_A1U235[113]+pdf_dZ[4]/NA*113;
Cd113.amount += distr_A1U235[114]*pdf_dZ[4]/NA*114;
Cd114.amount += distr_A1U235[115]%pdf_dZ[3]/NA*115;
Cd115.amount += distr_A1U235[116]*pdf_dZ[3]/NA*116;

Baibi.amount +

246

Cd11s,

cd117

€d118.,
Cd113.
Cd120.

Ccdi2i
Cdi122

Cdi23.
Cd124.

Cd128
Cd126

Cd127.
¢di12s8,
Cdi129,
Cd130.
Cd131.
Cd132.
Cd133.
Cel37,
Cel38,

Ceild

Cel40.
Cel4dl.
Celéd2.
Cel43.
Celds,
Cel45.

Cel46

CeldT,
Cel4d8,
Celd§.
Celb0.

amount

camount

amount
amount

amount

.,amount

.amount

amount

amount

.amount

.amount

amount
amount
amount
amount
amount
amount
amount
amount

amount

.amount

amount
amount
amount
amount
amount

amount

.amcunt

amount
amount
amount

amount

distr_A1U235[117]*pdf_dZ[2]/NA%117;
distr_A2U235[118]*pdf_dZ[2]/NA*118;
distr_A2U235[119]*pdf_d2[2j/NA*119;
distr_ A2U235[120]*pdf_dZ[1]/NA*120;
distr_A20235{121]*pdf_dZ[1]/NA*121;
distr_A2U235[1221*pdf_dZ[0]/NA*122;
distr_A20235[123]*pdf_dZ[0]/Na*123;
distr_A2U235[124] *pdf_dZ[0]/NA*124;
distr_A2U235[125]*pdf_dZ[~1]/NAx125;
distr_A2U235[126]*pdf_dZ[-1]/NA%126;
distr_A2U236[127]*pdf_dZ[-2]/Na*127;
distr_A20235[128] *pdf_dZ[-2] /Na*128;
distr_A2U235[129]*pdf_dZ[-2]/Na*129;
distr_A2U235[130]*pdf_dz£—sj/NA*1so;
distr_A2U235[131]*pdf_dZ[-3]/NA*131;
distr_A2U236 [132] *pdf_dZ[-3]/NA*132;
distr_A2U235[133] #pdf_dZ[-4]/NA*133;
distr_A2U235{134]*pdf_dZ[-4]/Na*134;
distr_A2U235[138]*pdf_dZ[4]/NA%138;
distr_ A20235[139]*pdf_dZ[4]/NA*139;
distr_A20U235[140]*pdf_dZ[3]/NA%140;
distr_A20235[141]*pdf_dZ[3]/NA*141;
distr_A2U235[142]*pdf_dZ[3]/NA*142;
distr_A2U235 [143] *pdf_dZ[2]/Na*143;
distr_A2U235[144] #pdf_dzZ[2] /NA*144;
distr_A2U235[145]*pdf_dZ[1]/NA*145;
distr_A20235[146]*pdf_dZ[1]/NA*146;
distr_A2U235[147] *pdf_dZ[1]/NA*147;
distr_A20U285[148] #pdf_dZ[0]/NA%148;
distr_A2U235[149] #pdf_dZ[0]/NA*149;
distr_A2U235[150] *pdf_dZ[-1]/NA*150;
distr_A2U235[161]*pdf_dZ[-1]/NA*151;

247

Cel51.amount += distr_A2U235[152]*pdf_dZ[—ij/NA*152;
Ce152.amount += distr_A2U235[153]+pdf_dz[-2]/NA*153;
Ce153.amount += distr_A2U235[154]+pdf_dzZ[-2]/NA*154;
distr_A2U235({155]*pdf_dZ[-3]/NA*155;
distr_A2U235[156]%pdf_dZ[-3]/Na*156;
distr_A20235[157]*pdf_dZ[-3] /NA*157;
distr_A2U235[158] *pdf_dz[-4] /NA*158;
Ce1b58.amount += distr_A2U235[159]*pdf_dZ[-4]/NA¥159;
Co72.amount += distr_A1U235[73]*pdf_dZ[-1]/NA*73;
Co73.amount += distr_A10235[74]+pdf_dZ[-2]/NA*74;
Co74.amount += distr_A1U235[75]*pdf_dZ[-2]/NA*75;
Co75.amount += distr_A1U235[76]*pdf_dZ[-2]/NAx76;
Co76.amount += distr_A1U235[771+pdf_dZ[-3]/NA*77;
Co77.amount += distr_A1U235[78]*pdf_dZ[-3]1/NA*78;
Co78.amount += distr_A1U235[79]*pdf_dZ[-4]/NA*79;
Co79.amount += distr_A1U235[80]*pdf_dZ[-4]/NA*80;
Co80.amount += distr_A1U235[81)*pdf_dZ[-4]/NA*81;
Cr72.amount += distr_A1U235[73]*pdf_dZ[-4]/NAx73;
Cs129.amount += distr_A2U235[130]*pdf_dz[4]/NA*130;
Cs130.amount += distr_A2U235[131]x*pdf_dZ[{4]/NA*131;
Cs131.amount += distr_A2U235[132] #pdf_dZ[4]/NA*132;
€s132.amount += distr_A2U235[133]*pdf_dZ[3]/NA*133; -
Cs133.amount += distr_A2U235[134]+pdf_dZ{3]/NAa*134;
Cs134.amount += distr_A2U235[135]*pdf_d2[2]/NA*135;
Cs135.amount += distr_A2U235[136]*pdf_dZ[2]/NA%136;
C5136.amount += distr_A2U235[137]*pdf_dZ[2]/NA*137;
Cs137.amount += distr_A20235(138]#pdf_dZ[1]/NA*138;
Cs138.amount += distr_A20235[139]*pdf_dZ[1]/NAx139;
Cs139.amount += distr_A20U235[140]*pdf_dZ[0]/NA*140;
Cs140.amount += distr_A2U235[141]*pdf_dZ[0]/NA*141;
Cs141.amount += distr_A20U235[142]*pdf_dZ[0]/NA*142;
Cs142.amount += distr_A2U235[143]*pdf_dZ[-1]/NA*143;

+
Il

Celb4 . amount
Celb5.amount
CelkB.amount

Gelb7.amount +

+
1l

o+
Il

248

Cs143.amount += distr_A2U235[144]*pdf_dZ[-11/NA*144;
Csl44.amount += distr_A2U235[145]#*pdf_dZ[-2]/NA*145;
Cs145.amount += distr_A2U235[146]*pdf_dZ[-2]/NA*146;
Cs146.amount += distr_A20235[147]*pdf_dZ[-2]/NA*147;
C2147 .amount += distr_A2U235[148]*pdf_dZ{-3]/NA*148;
Cs148.amount += distr_A2U235[149]*pdf_dzZ[-3]1/NA*149;
Cs149.amount += distr_A20U235[150]%pdf_dZ[-4] /NA*150;
Cs150.amount += distr_A2U235[151]%pdf_dZ[-4]/NA*151;
Cs151.amount += distr_A2U235[152]*pdf_dZ[-4]/NA*152;
Cu72.amount += distr_A1U235[73]+pdf_dZ[1]/NA%73;
Cu73.amount += distr_A1U235[74]*pdf_dZ[0]/NA*74;
Cu74.amount += distr_A1U235[75]1#pdf_dZ[0]/NA*T5;
Cu75.amount += distr_A1U235[76]%pdf_dZ[0]/NA*76;
Cu76.amount += distr_AiU?BS[77j*pdf_d2[-1]/NA*77;_
Cu77.amount += distr_A1U235[781*pdf_dZ[~1]/NAx78;
Cu78.amount += distr_A1U235[79]*pdf_dZ[-2]/NA*79;
Cu79.amount += distr_A1U235[80]*pdf_dZ[-2]/NA*80;

~ Cu80.amount += distr_A1U235[81]*pdf_dZ[-2]/NA*81;
Cu81.amount += distr_A1U235[82]*pdf_dZ[-3]/NA*82;
Cu82.amount += distr_A1U235[83]x*pdf_dZ[-3]/Nax83;
Cu83.amount += distr_A1U235[84]*pdf_dZt~4]/NA*84;
CuB4.amount += distr_A1U235[85]%pdf_dZ[-4]/NA*85;
Cu85.amount += distr_A1U235[86]xpdf_dZ[-4]/NAx*86;
Dy157.amount += distr_A2U235[158]*pdf_dZ[4]/NA*158;
Dy158.amount += distr_A2U235[1581*pdf_dZ[4]/NA*159;

' Dy159.amount += distr_A20235[160]*pdf_dZ[3]/NA*160;
Dy160.amount += distr_A20235[161]*pdf dZ[3]/NA*161;
Dyi61.amount += distr_A20235[162]*pdf_dZ[3]/NA*162;
Eui49.amount += distr_A20235[150]*pdf_dZ[4]/NA*150;
Fui50.amount += distr_A2U235[151]*pdf_dZ[4]/NA*151;
Eul51.amount += distr_A20235[152]*pdf_dz[4]/NA*152;
Eulb2.amount += distr_A20235[153]#pdf_dZ[3]/NA*153;

249

Eu153.
Eul54.

- Eulbb

Eulb6.
Euls7.
Eulbk8.

Eulb9
Euil60

Eulsl.

Fe72.
Fe73.
FeT74.
Fe75
Fe76.
Fe?77
- Ga72
Ga73,
Ga74.
Gar7b,
Ga76.
Ga77.
Ga73.
Ga79.
Ga80.
Ga81.
Ga82.
Gas3.
Ga84.
Ga8b
Ga88
Ga87.
Ga88.

amount += distr_A2U235[154]1%pdf_dz[3]/NA*154;
amount += distr_A2U235[155]*pdf_dZ[2]/NA%155;

-amount += distr_A2U235[156]*pdf_dZ[2]/NA*156;

amount += distr A2U235[157]*pdf_dz{2]/NA*157;
amount += distr_A20235[158]*pdf_dZ[1]/NA*158;
amount += distr_A2U235[159]#pdf_dZ[1]/NA*159;

.amount += distr_A2U235[160]*pdf_dZ[0]/NA*16G;
.amount += distr_A2U235[161]*pdf_dZ[0]/NA*161;

amount +=
amount +=

amount +=

camount +=

amount +=

.amount +=

.anmount +=

amount +=
amount +=
amount +=
amount +=
amount +=
amount +=
amount +=
amount +=
amount +=
amount +=
amount +=

amount +=

.amount +=

.amount +=

amount +=

amount +=

amount += distr_A2U235[162]*pdf_dZ[0]/NA*162;

distr_A1U235[73]*pdf_dZ[-2]/NA*73;
distr_A1U235[74]*pdf _dZ[-3]/NA*74;
distr_A1U235[75]*pdf_dZ[-3]/Na*75;
distr_A1U235[76]+pdf_dZ[-3]/NA*76;
distr_A1U235[77]*pdf_dzZ[-4]/NA*77;
distr_A1U235[78]*pdf_dZ[-4]/NA*78;
distr_A1U235[73] +pdf_dZ[3] /NA*73;
distr_A1U235[74] *pdf_dZ[2] /NA*74;
distr_A1U235([75] xpdf_dZ[2] /NA*T5;
distr_A1U235[76]*pdf_dZ[2] /NA*76;
distr_A1U235[77]¥pdf_dZ[1]/NAX77;
distr_A1U235[78]*pdf“dZE1]/NA*78;
distr_A1U235[79) xpdf_dz[0] /NA*73;
distr_A1U235[80] *xpdf_dzZ[0]/NA*80;
distr_A102365 [81]+pdf_dZ[0]/NA81;
distr_A1U235([82] xpdf_dZ[-1] /NA*82;
distr_A1U235[83]*pdf_dzZ[-1]/NA*83;
distr_A1U235[84]*pdf_dzZ[-2]/NA*84;
distr_A1U235[85]*pdf_dZ[-2]1/NA*85;
distr_A1U235[86]*pdf_dZ[-2] /NA*86;
distr_A1U236 [87]#+pdf_dZ[-3] /NA*ST;
distr_A1U235[88]*pdf_dZ{-3]/NA*88;
distr_A1U235[89]%pdf_dZ[-4]/NA*89;

250

GaB89.amount += distr_A1U235[90]*pdf_dz[-4]/NA*90;
Ga90.amount += distr_A1U235[91]xpdf_dz[-4] /NA*91;
Gd152.amount += distr_A20235[153] *pdf_dZ[4]/NA*153;
Gd153.amount += distr_A2U235[154] *pdf_dZ[4]/NA*154;
Gd154.amount += distr_A2U235[155]+pdf_dZ[3]1/NA*155;
Gd155.amount += distr_A2U235[156]*pdf_dZ[3]/NA*156;
GA156.amount += distr A20U235[157]*pdf_dZ[3]/NA*157;
GA157.amount += distr_A2U235[158]*pdf_dz[2]/NA*158;
Gd158.amount += distr_A20235[159]%pdf_dZ[2]/Na*159;
Gd159.amount += distr_A2U235[160]*pdf_dz[1]/NA*160;
Gd160.amount += distr_A20235[161]*pdf_dZ[1]/NA*161;
Gd161.amount += distr_A2U235{162]*pdf_dZ[1]/NA*162;
Ge72.amount += distr_A1U235[73]*pdf_dz[4]/NA*73;
Ge73.amount += distr_A1U235[74] *pdf_dZ2[3]/NAx74;
Ge74.amount += distr_A1U235[75]*pdf_dZ{3]/NA*75;
Ge75.amount += distr_a1U235{76]*pdf_dZ[3]/NA*76;
Ge76.amount += distr_A1U235[77]1*pdf_dZ[2]/NA*77;
Ge77.amount += distr_A1U235[78]*pdf_dZ[2]/NA*78;
Ge78.amount += distr_A1U235[79]*pdf_dZ[1]/NA*79;
Ge79.amount += distr_A1U235[80]+pdf_dZ[1]/NA*80;
Ge80.amount += distr_A1U235[81]+pdf_dZ[1]/NA*81;
Ge81.amount += distr_A1U235(82]*pdf_ dZ[0]/NA*82;
Ge82.amount += distr_A1U235[83]+pdf_dz[0]/NA*83;
Ge83.amount += distr_A1U235([84)*pdf_dZ{-1]/NA*84;
Ge84.amount += distr_A1U235[85]%pdf_dZ[~1]/NA*85;
Ge85.amount += distr_A1U235[86]*pdf_dZ{-1]/NA*86;
Ge86.amount += distr A1U235[87]*pdf_dZ{-2]/NA*87;
Ge87.amount += distr_A1U235[88]*pdf_dzZ[-2]/NAx88;
Ge88.amount += distr,A1U235[89]*pdf_az[-s}/mﬂ*as;
Ge89.amount += distr_A1U235[90]*pdf_dZ[-3]/Na*90;
Ge90.amount += distr_A1U235[91]*pdf_dZ[-3]/Na*91;
Ge91.amount += distr_A1U235{92]*pdf_dZ[-4]/NA*92;

251

Ge92.amount += distr_A1U235[93]*pdf_dZ[-4]/NAa*93;
H0159.am0unt += distr_A2U235[160]*pdf_d2[4]/NA*160;

Hol60.ameount +=
Hol6l.amount +=
I124.
I125.
T126.
1127,
1128,

I129
Ii30

I131.
1132
T133.

1134
I135

I1386.
I137.
T138,

ITi38
1140

Ii41.
T142,

1143

1144,
1145,
1146.
Ini14.
In115.
Ini16.
Inil7,
In118.

amount
amount
amount
amount

amount

.amount

»amount

amount

.amount

amount

.amount

»amount

amount
amount

amount

.amount

.amount

amount

amount .

.amount

amount

amount

+=

+=

+=

distr_A2U235[161]*pdf_dZ[4]/NA*161;

distr_A20235[162] *pdf_dZ[4]/NA*162;
distr_A20235[125]*pdf_dZ[4]/NA*125;
distr_A2U235[126]*pdf_dZ[4] /NA*1286;
distr_A2U235[1271*pdf_dZ[3]/NA*127;
distr_A2U235[128]%pdf_dz[3]/NA*128;
distr_A20U235[129]*pdf_dZ{3]/Na*129;
distr_A2U235[130]*pdf_dZ[2]/NA*130;
distr_A2U235[131]*pdf_dZ[2]/NA*131;
distr_A2U235[132]*pdf_dZ[2] /NA*132;
distr_A2U235[133]*pdf_dZ[1]/NA*133;
distr_A20235[134]*pdf_dZ[1]/NA*134;
distr_A2U235[135]*pdf_dZ[01/NA*135;.
distr_A2U235[136]*pdf _dZ[0] /NA*136;
distr_A2U235[137]%pdf_dZ[0]/NA%137;
distr_A20235[138]#pdf_dZ[-1]/NA*138;
distr_A2U235[1391*pdf_dZ[-1]/NA*139;
distr_A2U235[140]1*pdf_dZ[-2]/NA*140;
distr_A20235[141]%pdf_dZ[-2]/NA*141;
distr_A20235[142]*pdf_dZ[-2]/NA*142;
distr_A2U235[143]%pdf_dZ[-3]/NA*143;
distr_A2U235[144]+pdf dZ[-3]/NA*144;
distr_A20235[145]+pdf _dZ[-4]/NA*145;
distr_A2U236[146]*pdf_dZ[-4]/NA%146;

amount += distr_AEUQSS[1471*pdf_d2[—4]/NA*147;

amount +=

amount += distr_A1U235[115]1*pdf_dZ[4]/NA*115;
amount += distr_A1U235[116]4pdf_dZ[4]/NA*116;
amount += distr_A1U235[117]1xpdf_dZ[3]/NA*117;
ameunt += distr_A2U235([118]*pdf_dZ[3]/NA*118;

distr_A2U235[119]*pdf_dz[3]/NA*119;

252

In119.amount

In120.amount

Ini21i.amount

In122.amount

Ini123.amount

Ini24.amnount

Ini25.amount

Ini26.amount

In127.amount

In128.amount

In129.amount

Int30.amount

Ini3l.amount

In132.amount

Ini33.amount

In134,amcunt

Inl135.amount

Ini36.amount

Kr100.amount

Kri01l.amount

Kri102.amount
Kr103.amount

Krsi
Xr82
Xr83,
' Kr84.
Kr85
Krsé
Kr87.
Xr88
Kr89.
Kr90.

Lamount

camount

amount

amount

Lamount

camount

amount

.amount

amount

amount

L3

distr_A2U235[120] *pdf_dZ[2]/NA*120;
distr_A2U235[121]*pdf_dZ[2]/NA*121;
distr_A2U235[122] xpdf_dz[1]/NA*122;
distr_A2U235[123] *pdf_dZ[1]/NA*123;
distr_A2U235[124]*pdf_dZ[1]/NA*124;
distr_A2U235[125]*pdf_dZ[0]/NA*125;
distr_A2U235[1261*pdf_dZ[0]/NA*126;
distr_A20235[127]*pdf_dZ[-1]/NA*127;
distr_A2U235[128] *pdf_dZ{-1]/NA*128;
distr_A2U235[129] *pdf _dZ[-1] /NA*129;
distr_A20235[130]*pdf_dzZ[-2]/NA*130;
distr_a2U235[131]*pdf_dZ[-2] /NA*131;
distr_A2U235[132]*pdf_dZ[-2] /NA*132;
distr_A2U235[133] *pdf_dZ[~3]/NA*133;
distr_A20235[134]*pdf_dZ[-S]/NA*134;
distr_A20235[135]+pdf_dZ[-4]1/NA*135;
distr_A2U236[136]1*pdf_dZ[-4]1/NA*136;
distr_A20235[137]*pdf_dZ[-4] /NA*137;
distr_A1U235[101]*pdf_dZ[-3]/NA*101;
distr_A1U235[102]*pdf_dZ[-4]/NA*102;
distr_A1U235[103]*pdf_dZ[-4]/NA*103;
distr_ A1U235[104]*pdf_dZ[-4] /NA*104;
distr_A1U235[82] #pdf_dz[4] /NA*82;
distr_A1U235[83]*pdf_dZ{4]/Nax83;
distr_A41U235[84]*pdf_dZ[3]/NAx84;

: distr_A1U235[86]*pdf_dZ[3]/NA*85;

distr_A1U235[86]*pdf_dZ[3]/NA*86;
distr_A1U236 [87]*pdf_dZ[2]/NAx87;
distr_A1U235[88]*pdf_dZ[2]/NA*88;
distr_A1U235[89]*pdf_dz[1]/NA*89;
distr_A1U235[90]#pdf_dzZ[1]/NA+90;
distr_A1U235[91]1*pdf_dZ[1]/NA*91;

253

Kréi.amount += distr_A1U235[92]*pdf_dz[o]/NA*92;
Kr92l. amount += distr_A 1U235[93] *pdf_dZ[0] /NA*93;
Kr93.amount += distr_A1U235[94]*pdf_dZ[-1]/NA%94;
Kr94.amount += distr_A1U235[95]+pdf_dzZ[-1]/NA*95;
Kr95.amount += distr_A1U235[961*pdf_dZ{-1]/NA*96;
Kr96.amount += distr_A1U235[97]*pdf_dZ[-2]/NA*97;
Kr97.amount += distr_A1U235[98]*pdf_dZ[-2]/N4%98;
Kr98.amount += distr_A1U235[99]*pdf_dZ[-2]/NA%99;
Kr99.amount += distr_A1U235[100]*pdf_dZ[-3]/NA#*100;
La134.amount += distf_A2U235[1353*pdf_d2[4]/NA*135;
Lai135.amount += distr_A2U235[136]*pdf_dZ[4]/NA*136;
Lal36.amount += distr_A2U235[137]%pdf_dZ[4]/NA*137;
Lai37.amount += distr_A2U235[138]*pdf_dZ[3]/NAx138;
La138.amount += distr_A2U235[139]*pdf dZ[3]/NA*139;
Lal39.amount += distr_A2U235[140]*pdf_dZ[2]/NA*140;
Lal40.amount += distr_A2U235[141]%pdf_dz[2]/NA%141;
Lal41l.amount += distr_A2U235[142]+pdf_dZ[2]/NA*142;
Lai42.amount += distr_A20U235[143]*pdf_dz[1]/NA¥143;
Lal43.amount += distr_A2U235[144]*pdf_dZ[1]/NA#144;
Lal44.amount += distr_A2U235[145]%pdf_dZ[0]/NA*145;
Lal45.amount += distf_A2U235[146]*pdf_d2[0]/NA*146;
Lal46.amount += distr_A2U235[147]*pdf_dZ[0]/NAa*147;
Lal47.amount += distr_A2U235[148]*pdf_dZ[-1]/NA+148;
La148.amount += distr_A2U235[149]%pdf_dZ[-1]/NA%149;
Lal1d49.amount += distr_A20U235[150]*pdf_dZ[-2] /NA*150;
Lal50.amount += distr_A2U235[151]*pdf_dZ[-2]/NA*151;
Lal51.amount += distr_A20235[152]*pdf_dZ[-2]/NA*152;
Lal52.amount += distr_A2U235[163]*pdf_dZ[~3]/NA*153;
Lalb3.amount += distr_A2U235[154]*pdf_dZ[-3]/NA*154;
Lal54.amount += distr_A2U235[155]*pdf_dZ[-4]/NA*155;
La155.amount += distr_A2U235[156]*pdf_dZ[-4]/NA*156;
La156.amount += distr_A20U235[157]*pdf_dZ[-4]/NA*157;

254

Mn72.
Mn73.
Mn74.
Mn75.

Mo100.

Mo101

Mol02.
Mo103.
Mo104.

Mo105

Mo106,
Mol07,
Mo108.

Mo109
Mo110
Moi111l

Moi12.
Mo113.
Mol114.

-Mo115
Mol16

MollY.
" Meolis,

Mo96.
Mo97.
"MoS8,
Mo99.

amount += distr_A1U235[73]*pdf_dZ[-3]/NA*73;
amount += distr_A1U235[74]*pdf_dzZ[-4] /NA*74;
amount += distr_A1U235[75]*pdf_dZ[~4]/NA*75;

amount +=

amount
»amount
amount
amount
amount
.amount
amount
amount
amount
Lamount
.amount
anmount
amount
amount
amount
.amount
.amount
amount

amount

+=

+=

+=

+=

amount +=

amount +=

amount +=

amount +=

Nb1l00.amount +=
Nbi101.amount +=
Nb102.amount += distr_A1U235[103]*pdf_dZ[1]/NA*103;
- Nb103.amount += distr_A1U235[104]*pdf_dZ[1]/NA*104;
Nb104.amount += distr_A1U235[105]*pdf_dZ[0]/NA*105;

distr_A1U235[76]*pdf_dZ[-4]/NA%76;
distr_A1U235[101] *pdf_dZ[3]/NA*101;
distr_A1U235[102] *pdf_dZ[2]/Na*102;
distr_A1U235[103] *pdf_dZ[2]/NA*103;
distr_A1U235[104]*pdf_dZ[2]/NA*104;
distr_A1U235[105]*pdf_dZ[1]/NA*105;
distr_A1U235[106]*pdf_dZ[1]/NA*106;
distr_A1U235[107]*pdf_dZ[01/NA*107;
distr_A1U235[108] *pdf_dZ[0]/NA*108;
distr_A1U235[109]*pdf_dZ{0]/Na*109;
distr_A1U235[110]*pdf_dZ[-1]/NA*110;
distr_A1U235[111]+pdf_dZ[-1]/NA*111;
distr_A1U235[112]*pdf_dZ[-2]/NA*112;
distr_A1U235[113]*pdf_dZ[-2]/NA*113;
distr_A1U235[114]%pdf_dzZ[-2] /NA*114;
distr_A1U235[115]*pdf_dZ[~-3]/NA*115;
distr_A1U235[116]*pdf_dZ[-3]/NA*116;
distr_A1U235[117]1+pdf_dZ[-4] /NA*117;
distr_A2U235([118]*pdf_dZ[-4]/NA*118;
distr_A2U235([119]*pdf_dZ[-4]/NA*119;

distr_A1U235[971*pdf_dz[4]/NA*97;

distr_A10235[98]*pdf_dZ[4] /NA*98;
distr_A1U235[99]*pdf_dz[4]/NA%99;
distr_A1U2356[100]*pdf_dZ[3]/NA*100;
distr_A1U235[101]*pdf_dZ[2]/Na*101;
distr_A1U235[102]*pdf_dZ[1]/NA*102;

253

Nb105
Nb106
Nb107
Nb108
Nb109
Nb110
Nb111
Nb112
Nb113
Nb114
Nb115
Nb93.
Nb94 .
Nb95 .
Nb96.
Nb97 .
Nb98.
Nb99.

Nd142.
Nd143.
Na144.
Nd145.
Nd146.
Nd147.
Nd148.

Nd149
Nd159

Nd1i51.
Nd152.
Nd153.
Ndib54,

Nd155

.amount
;amount
. amount
amncunt
.amount
amount
amount
.amount
.amount
Lamount
.amount
amount

amount

amount

amount

amount

amount

amount

amount
amount
amount
amount
amount
amount
amount
.amount
.amount
amount
amount
amount
amount

.amount

=

+=

+=

L

distr_A1U235[106]+pdf_dZ[0]/NA*106;
distr_A1U235[107]*pdf_dZ[-1] /NA*107;
distr_A1U235[108] *pdf_dZ[-1]/NA*108;
distr_A1U235[109] *pdf_dZ[-1]/NA*109;
distr_A1U235[110]*pdf_dZ[-2]/NA*110;
distr_A1U235[111]*pdf_dZ[-2]/NAx111;
distr_A1U235[112]*pdf_dZ[-3]/NA*112;
distr_A1U235[113]*pdf_dZ[-3]/Na*113;
distr_A1U235[114]*pdf_dZ[-3] /Na*114;
distr_A1U235[115]*pdf_dzZ[-4] /NA*115;
distr_A1U236{116]*pdf_dZ[-4]/NA*116;

+= distr_A1U235[94]*pdf_dZ[4] /NA*94;

distr_A1U235[95] ¥pdf_dZz[4] /NA%85;
distr_A1U235[96] *pdf_dZ[4]/NA*96;

+= distr_A1U235[97]*pdaf_dZ[3]/NA*9T;

distr_A1U235[98]*pdf_d4z[3]/NA*98;

+= distr_A1U235[99]*pdf_dZ[3]/NA*99;
+= distr_A1U235[100]*pdf_dZ[2]/NA*100;

+=

distr_A2U235[143]*pdf_dZ[4]/NA*143;
distr_A20235[144]+pdf_dZ[4]/NA*144;
distr_Azuzss[145}*pdf_dz[3]/NA*145;
distr_A20235[146]*pdf_dZ[3]/NA*146;
distr_A20235[147]+pdf_dZ[3]/NA*147;
distr_A2U235[148] *pdf_dZ[2]/NA*148;
distr_A2U235[149]*pdf_dZ[2]/NA*149;
distr_A2U235[150]*pdf _dZ[1]/NA*150;
distr_A2U235[151]*pdf_dZ[1]/NA*151;
distr_A20235[152]*#pdf_dZ[1]/NA*152;
distr_A20235[153] *pdf_dZ[0]/NA*153;
distr_A2U235[154] *pdf_dZ[0]/NAx154;
distr_A2U235[166]*pdf_dZ[-1]/NA*155;
distr_A2U235{156]*pdf_dZ[-1]/NA*156;

256

Nd156

Nd157.

Nd158

Nd1589.
Nd160.

Nd161
Ni72.
Ni73.
Ni74.
Ni75.
Ni76.
Ni77.
Ni78.
Ni79.
Nig0-
Nisl.
Ni82.

Pd1086.
Pd107.
Pd108.
Pd109.
Pd110.
Pd111.
Pd112.
Pd113.
'Pd114.
Pd115.
Pd116.
Pd117.
Pd118.
Pd119.
Pd120.

.amount += distr_A2U235[157]*pdf_dZ[-1]/NA*157;
amount += distr_A20235[158]*pdf_dZ[-2] /NA*158;
.amount += distr_A2U235[159]*pdf_dz[-2]/NA*159;
amount += distr_A2U235[160]*pdf_dZ[-3]/NA*160;
amount += distr_A2U235[161]+*pdf_dZ[-3]/NA*161;
.amount += distr_A20U235[162]*pdf_dZ[-3]/NA*162;
amount += distr_A1U235[73]*pdf_dZ[0]/NA*73;
amount += distr_A1U235[74]*pdf_dZ[-1]/Nax74;
amount += distr_A1U235[75]*pdf_dZ[~1]/NA*75;
amount += distr_A1U235[76]*pdf_dZ[-1]/NA*76;
amount += distr_A1U235[77]*pdf_dZ[-2]/NA*77;
amount += distr_A1U235[78]*pdf_dZ[-2]/NA*78;
amount += distr_A1U235[79]*pdf_dZ[-3]/NA*79;
amount += distr_A1U235[80]%pdf_dZ[-31/NA%80;
amount += distr_A1U236[81]*pdf_dZ[-3]/NA*81;
amount += distr_A1U235[82]+pdf_dZ[-4]/NA*82;
amount += distr_A1U235[83]*pdf_dZ[-4]/NA*83;
amount += distr_A1U235[10?]*pdf_d2[4]/NA*10?;
amount += distr_A1U235[108]*pdf_dZ[4]/NA*108;
amount += distr_A1U235[109]*pdf_dZ[4]/NA*109;
amount += distr_A1U235[110]*pdf_dZ[3]1/NA*110;
amount += distr_A1U236[111]+pdf_dz[3]1/NA*111;
amount += distr_A1U235[112]+pdf_dZ[2]/NA%112;
amount += distr_A1U235[113]*pdf_dZ[2]/NA*113;
amount += distr_A1U235[114]*pdf dZ[2]/NA*114;
amount += distr_A1U235[115]*pdf_dZ[1]/NA*115;
amount += distr_A1U235[116]*pdf_dZ[1]/NA*116;
amount += distr_A1U235{117]*pdf_dZ[0]/NA*117;
amount += distr_A20235[118]*pdf_dZ[0]/NA*118;
amount += distr_A2U235[119]+pdf_dZ[0]/NA%119;
amount += distr_A20235[120]+pdf_dZ[-1]/NA*120;
amount += distr_A2U235[121]*pdf_dZ[-1]/NA*121;

257 -

Pd121.

Pdi22

Pdiz3.
Pd124.

Pd125
Pd126

Pd127.
Pd128.
Pm144.

Prn145
Pm146

Pm147.
Pm148.
Pm149.

Pm150
Pmi51

Pm15b6
Pm156

Pm157.

Pmi58

Pm159.
Pm1860.
"Pmi61.
Pri39.
Pri40.
Pri41.
Pri4z.
Pri43,
Pril44.

amount,

.amount

amount

amount

.amount

.amount

amount
amount

amount

.amount

.amount

amount
amount

amount

.amount
»amount
Pn152..
Pm153.
Pmi154.

amount
amount

amount

.amount

.amount

amount

amount

amount
amount
amount
amount
amount
amount
amount
amount

amount

+=

+=

4=

+=

distr_A2U235[122] *pdf_dZ[-2]/NA*122;
distr_A2U235[123]*pdf_dZ[-2]/NA*123;
distr_A20235[124] xpdf_dz[-2] /NA*124;
distr_A20235[125]#pdf_dZ[-3] /NA¥125;
distr_A2U235({126]1*pdf_dZ[-3]/NA*126;
distr_A2U235[127]*pdf_dZ[-4]/NA*127;
distr_A20235[128] *pdf_dz[-4] /NA*128;
distr_A2U235[129]#pdf_dz[-4] /Na*129;
distr_A2U235[145] *pdf_dZ[4]/NA%145;
distr_A2U235{146]*pdf_dZ[4]/NA*146;
distr_A2U235[147]*pdf_dZ[4]/NA*147;
distr_A2U235[148]+pdf_dz[3]/NA%148;
distr_A2U235[149] *pdf_dZ[3]/NA*149;
distr_A20235[150]#pdf_dZ[2]/NA*150;
distr_A2U235[1561]*pdf_dZ[2]/NA*151;
distr_A20235[152] *pdf_dZ[2]/NA*152;
distr_A2U235[153] *pdf_dZ[1]/NA*153;
distr_A2U235[164] #pdf _dZ[1]/NA*154;
distr_A2U235[155]*pdf_dZ[0]/NA*155;
distr_AzUzas[156]*pdf,dz£o]/NA*156}
distr_A2U235[157]*pdf_dZ[0]/NA*157;
distr_A2U235[158]*pdf_dZ[-1]/NA*158;
distr_A2U235[159]*pdf_dZ[-1]/NA*159;
distr_A2U235[160]*pdf_dZ[~21/NA*160;
distr_A2U235[161]*pdf_dZ[-2]/NA*161;
distr_A2U235[162]«pdf_dZ[-2]/NA*162;
distr_A2U235[140]*pdf_dZ[{4]/NA*140;
distr_A2U235[141]*pdf_dZ[4]/NA*141;
distr_A20235[142]*pdf_dZ[4]/NA*142;
distr_A2U235[143]*pdf_dZ[3]/NA*143;
distr_420235[144]*pdf_dZ[3]/Na*144;
distr_A2U235[145]*pdf_dzZ[2]/NA*145;

258

Pri4s,
Pri4g.
Pri4v.
Pri4s8.

Pri49

Prib0.
Pribil.
Prib2.
Prib3.
Prib4.
Pr1b55.

Prib6

Pri57.
Pri58,
Pris9.
Pri160.

‘Pri61

Rbi100.
RbioO1.
Rb102.
Rb103.
Rb104&.
Rb105,

Rb83.
Rb84,
Rb8E.
Rb86.
Rb87.
Rb8sg.
Rb&9.
Rb90.
Rbo1.

amount
amount
amount
amount
»amount
amount
amount
amount
amount
amount
amount
.amount
amount
amount
amount
amount
.amount
amount
amount
amount
amount
amount
amount
amount

amount

amount

amount

amount

amount

amount

amount

amount

+=

+=

+

-+

+

+=

+=

=

+

distr_A2U235[146]*pdf_dZ[2] /NA%146:
distr_A2U235[147]+pdf_dz[2] /NA*14T;
distr_A2U235[148]*pdf_dz[1]/NA*148;
distr_A20235[149])*pdf_dz[1]/NA*149;
distr_A2U235[150]*pdf_dZ[0]/NA*150;
distr_A2U235[1561]*pdf_dZ[0]/NA*151;
distr_A2U235[152] #pdf_dZ[0]/NA*152;
‘distr_A2U235[153] «pdf_dZ[~1] /NA*153;
distr_A2U235[154]*pdf_dZ[-1]/NA*154;
distr_A20235[155]#pdf_dZ[-2] /NA*155;
distr_A2U235[156] *pdf_dZ[-2] /NA*156;
distr_A20235[157] *pdf_dZ[~2] /NA*157;
distr_A2U235[158] #pdf _dZ[-3]/NA*158;
distr_A20235[159] *pdf_dZ[-3] /NA*159;
distr_A2U235Eiso]*pdf_dz[-4]/NA*166;
distr_A20235[161]*pdf_dZ[~4] /NA%161;
distr_A20235[162]*#pdf_dZ[~4]/NAx162;
distr_A1U23B[101]*pdf_dZ[-2]/NA*101;
distr_A1U235[102] *pdf_dZ[-3]/NA*102;
distr_A1U235[103]*xpdf_dZ[-3]/NA*103;
distr_A1U235[104] #pdf_dZ[-3] /NA%104;
distr_A1U235[106]1*pdf_dZ[-4]/NAx105;
distr_A1U235[106]*pdf_dZ[-4] /NA*106;
distr_ A10236[84]+pdf_dZ[4]/NA*84;
distr_A1U235[85] xpdf_dZ[4]/NA*85;
distr_A1U235{86]*pdf_dZ[4]/NA*86;
distr_A1U235[87]*pdf_dZ[3] /NA*87;
distr_A1U235[88]*pdf_dZ[3] /NA*88;
distr_A1U235[89]+pdf_dZ[2]/NA*89;
distr_A1U235[90]*pdf_dZ[2]/NA*30;
distr_A1U235[91]*pdf_dZ[2]/NA*91;
distr_A1U235[92]*pdf_dzZ[1]/NA*92;

259

Rb92.amount += distr_A1U235[93]*pdf_dZ[1]/NA+93;
Rb93.amount += distr A1U235[94]*pdf_dZ[0]/Na*94;
Rb94.amount += distr_A1U235[95)*pdf_dzZ[0]/NA*95;
Rb95.amount += distr_A1U235(96]+pdf_dZ[0]/NA*96;
Rb96.amount += distr A1U235(97]*pdf_dZ[-1]/NA*97;
Rb97.amount += distr_Aa10235[98]*pdf_dZ[-1]/NAa*98;
Rb98.amount += distr_A1U235[99]*pdf_dz[-1]/NA*99;
Rb99.amount += distr_A10235[100]*pdf_dZ[-2]/NA%100;
Rh104.amount += distr_A1U235[105]*pdf_dZ[4]/NA*105;
Rh105.amount += distr_A1U235flOS]*pdf_dZ[4]/NA*106;
Rh106.amount += distr_A1U235[107]*pdf_dZ[3]/NA*107;
Rh107.amount += distr_A1U235 [108]*pdf_dZ[3]/NA%108;
Rh108.amount += distr_a1U235[109]*pdf_dZ[3]/NA*109;
Rh109.amount += distr_A1U235[110]*pdf_dZ[2]/NA*110;
Rh110.amount += distr_Aiuzas£111]*pdf_d2[2]/NA*111{
Rhi11l.amount += distr_A10U235{112]*pdf_dZ[1]/NA*112;
Rh112.amount += distr_A1U235[113]*pdf_dZ[1]/NA*113;
Rh113.amount += distr_A1U235[114]*pdf_dZ[1]/NA*114;
Rh1i4.amount += distr_A1U235[115]*pdf_dZ[0]/NA*115;
Rh115.amount += distr_A1U235[116]1*pdf_dZ[0]/NA*116;
Rh116.amount += distr_A1U235[117]*pdf_dZ[-1]/NA*117;
Rh117.amount += distr_A2U235[118]*pdf_dZ[-1]/NA*118;
Rh118.amount += distr_A2U235[119]#pdf_dzZ[-11/NA*119;
Rh119.amount += distr_A2U235[120]*pdf_dzZ[-2]/NA*120;
Rh120.amount += distr_A20235[121]%pdf_dZ[-2]/NA*121;
‘Rh121.amount += distr_A20235[122]*pdf_dZ[-3]/NA*122;
Rh122.amount ++ distr_A2U235[123]*pdf_dZ[-3]/NA*123;
Rh123.amount += distr_A2U235[124]*pdf_dZ[-3]/NA*124;
Rh124.amount += distr_A2U235{125]*pdf_dZ[-4]/NA*125;
Rh125.amount += distr_A2U235[126]*pdf_dZ[-4]/NA*126;
Rui0l.amount += distr_A1U235[102]*pdf_dZ[4]/NA*102;
Rui102.amount += distr_A1U235[103]*pdf_dZ[4]/NA*103;

260

Rui03

Ruids

Ruios6.
Rul07.
Rul(s.

Rulgsg
Rui110
Ruitl

Ruiiz2.

Rulil3

Rulilb
Rulis

Rui21

Rui22.
Ru123.
8h119.
Sb120.
Sbi121.

Sb122

"~ - 8b123.
Shilz24.

Sbi12b
Sb126

5b127.

5bl28

5bi29,

.amount

Rull4.

amount

.amount

amount
amount

amount

.amount
.amount

amount

amount

.amount
Ruli4.

amount

.amount
.amount
Ru117?.
Rulisg.
Ruiilg.
Ru120.

amount

amount

amount

amount

.amount

amount
amount
anmount
amount

amount

.amount

amount

amount

.amount

.amount

anmount

.amount

amount

=

=

distr_A1U235[104]#pdf_dZ[4]/NA*104;
distr_A1U235[105]#pdf_dZ[3]/NA*105;
distr_A1U235[106]*pdf_dZ[3]/NA*106;
distr_A1U235[107]*pdf_dZ[2] /NA*107;
distr_A1U235[108]*pdf_dz[2]/NA*108;
distr_A1U235[109] xpdf_dZ[2]/NA*109;
distr_A1U235[110]*pdf_dZ[1]1/NA*110;
distr_A1U235[111]#*pdf_dZ[1]/NA*111;
distr_A1U236[112]*pdf_dZ[0]/NA*112;
distr_A1U235([113] *pdf_dz[0]/NA*113;
distr_A1U235[114]*pdf_dZ[0]/Na*114;
distr_A1U235([115]*pdf_dZ[-1]/NA%115;
distr_A1U235[116]*pdf_dZ[-1]/NA*116;
distr_A1U235[117]*pdf_dZ[-2]/NA*117;
distr_A20235 [118]*pdf_dZ[-2]/NA*118;
distr_a20235[119]*pdf_dZ[-2]/NA*119;
distr_A20235[120]*pdf_dZ[-3] /Na*120;
distr_A2U236[121)%pdf_dz[-3]/NA%121;
distr_A2U235[122]*pdf_dZ[-4] /NA*122;
distr_A20235[123]#pdf_dZ[-4]/NA*123;
distr_A2U235 [124]#pdf_dZ[-4] /NA*124;
distr_A2U235[120]*pdf_dZ[4]/NA*120;
distr_A2U235[121]1*pdf_dz[4]/NA*121;
distr_A2U236 [122]*pdf_dZ[3]/NA%122;
distr_A2U235[123]*pdf_dZ[3]/NA+123;
distr_A20235[124] *pdf_dZ[3]/NA*124;
distr_A20235[125]*pdf_dz[2]/NA*125;
distr_A2U235[126]*pdf_dz[2]/NA%126;
distr_A2U235[127]%pdf_dz[1]/NA%127;
distr_A2U235[128]*pdf_dZ[1]/NA*128;
distr_A2U235[129]*pdf_dZ[1]/NA*129;
distr_A2U235[130]*pdf_dZ[0]/NA*130;

261

Sb130.amount += distr_A2U235[131]*pdf_dZ[0]/NA*131;
Sb131.amount += distr_A2U235[132]*pdf_dZ[0]/NA*132;
S5b132.amount += distr_A2U235[133]*pdf_dZ[-1]/N4a*133;
Sb133.amount += distr_A2U235[134]%pdf_dZ[-1]/NA*134;
Sb134.amount += distr_A2U235[135]*pdf_dZ[-2]/NA%135;
Sb135.amount += distr_A20235[136]*pdf_dZ[-2]/NA*136;
S$b136.amount += distr_A2U235[137]%pdf_dz[-2]/NA*137;
Sb137.amount += distr_A2U235([138]*pdf_dZ[-3]/NA*138;
Sb138.amount += distr_A20235[139]*pdf_dZ[-3]/NA*139;
~ Sb139.amount += distr_A2U235[140]%pdf _dZ[-4]/NA*140;

. $b140.amount += distr_A2U235[141]*pdf_dz[-4]/NAx141;
Sbl4l.amount += distr_A2U235[142]*pdf_dZ[~4] /NA*142;
Se76.amount += distr_A1U235[77]*pdf_dZ[4]/NA*77;
Se77.amount += distr_A1U235[78] #pdf_dZ[4]/NA*78;
Se78.amount += distr_A1U235[79]+*pdf_dZ[3]/NA*79;
Se79.amount += distr_A1U235[80]*pdf_dZ[3]/NA*80;
Se80.amount += distr_A1U235[81]*pdf_dZ[3]/NA*81;
Se81.amount += distr_a1U235[82]*pdf_dZ[2]/Na*82;
Se82.amount += distr_A1U235[831*pdf_dz[2]/NA*83;
Se83.amount += distr_A1U235[84]+pdf dZ[1]/NA%84;
Se84.amount += distr_A1U235[85]+pdf_dZ[1]/NA*85;
Se85.amount += distr_A1U235[86]1+pdf_dZ[1]/NA*86;
Se86.amount += distr_A1U235[87]*pdf_dZ[0] /NA*87;
Se87.amount += distr_A1U235[88]*pdf_dZ[0]/NA*88;
Se88.amount += distr_A1U235[89]*pdf_dZ[-1]/NAa*89;

' Se89.amount += distr_A1U235[80]*pdf_dZ[-1]/NA*90;
Se90.amount += distr_A1U235[91]*pdf_dZ[-1]/NA*91;
Se91.amount += distr_A1U235[92]*pdf_dz[—2]/NA*92;
Se92.amount += distr_A1U235[93]*pdf_dZ[-2]/NA%93;
Se93.amount += distr_A1U235[94]*pdf_dZ[-3]/NAx94;
Se94.amount += distr_A41U235[95]*pdf_dzZ[~3]/NA*95;
Se95.amount += distr_A1U235[96]*pdf_dZ[-3]/NA*96;

262

Se96.amount += distr_A1U235[97]*pdf_dZ[-4]/Na*97;
Sed7.amount += distr_A1U235[98]+pdf_dZ[-4]/NA*98;
Se98.amount. += distr_A1U235[99]*pdf_dZ[-4]/NA%99;
Sm147.amount += distr_A2U235[148]*pdf_dZ[4]/NA*148;
Sm148.amount += distr_A2U235[149]%pdf_dZ[4]/NA*149;
Sm149.amount += distr A20U235[150]*pdf_dZ[3]/NA*150;
Smib0.amount += distr_A20235{151]*pdf_dZ[3]/NA*151;
Smi51,amount += distr_A20235[152]*pdf_dZ[3]/NA*152;
Sm152.amount += distr_A2U235[153]*pdf_dZ[2]/NA*153;
Sm153.amount += distr_A20U235[1654]*pdf_dZ[2]/Nax154;
Sm154.amount += distr_A2U235[155]*pdf_dZ[1]/NA*155;
Sm156.amount += distr_A2U235[156]*pdf_dZ[1]/Nax156;
Sm156.amount += distr_A2U235[157]*pdf_dZ[1]/NA*157;
Sm157 .amount += distr_A2U235[158]*pdf_dZ[0]/NA%158;
Smi58.amount += distr_A2U235[159]*pdf_dZ[0]/NA*159;
Smi59.amount += distr_A2U235[160]*pdf_dZ[-1]/NA*160;
Sm160.amount += distr_A2U235[161]*pdf_dZ[-1]/NA*161;
Smi61.amount += distr_A2U235[{162]*pdf_dZ[-1]/NA*162;
Sn116.amount += distr_A1U235[117])*pdf_dZ[4]/NAx117;
Sn117.amount += distr_A2U235[118]*pdf_dZ[4]/NA*118;
Sn118.amount += distr_A20U235[119]*pdf_dz[4]/NA*119;
Sn119.amount += distr_A20235[120]*pdf_dz[3]/NA*120; -
Sn120.amount += distr_A2U235[121]*pdf_d2{3]/NA*121;
Sn121.amount += distr_A2U235[122]*pdf_dZ[2]/NA*122;
8n122.amount += distr_A2U235[123]+*pdf_dZ[2]/NA*123;
'8n123.amount += distr_A20235[124]*pdf_dZ{2]/NA*124;
Sni24.amount += distr_A20235[125]*pdf_dZ{1]/NA*125;
Sn125.amount += distr_A2U235[126]*pdf_dZ{1]/NA*126;
Sn126.amount += distr_A2U235[127]*pdf_dZ[0]/NA*127;
Sn127.amount += distr_A2U235[128]*pdf_dZ[0]/NA*128;
Sn128.amount += distr_A20235[129]*pdf_dZ[0]/Na*129;
Sn129.amount += distr_A20235[130]1*pdf_dZ[-1]/NA*130;

263

 sn130.
Sn131.
Sn132.
Sn133.
Sn134.
Sn135.

Sni136

Sn137.
Sni38.
Sr100.
Srioi.
Sr102.
Srl103,
5ri04,
5ri05.
STri06,
Sri107.
Sri108.

Sra6.
Sr87.
Sr8s.
Sr89.
Sra0.
Sro1.
Sr92.
"Sr93.
Sr94;
Sr95.
Sro6.
Sra7.
Sros.
Sr99.

amount
amount
amount
amount
amount
amount
.amount
amount
amount
amount
amount
amount
amount
amount
amount
amount
amount
amount
amount
amount
amount
amount
amount
amount
amount
amount
amount
amount
amount
amount
amount

amount

o=

+=

+=

+=

distr_A2U235[131]*pdf_dz[¥1]/NA*131;
distr A2U235([132]*pdf_dZ[-1]/NA*132;
distr_A2U235[133] *pdf_dZ[~2] /NA*133;
distr_A2U235[134] *pdf_dz[-2] /NA*134;
distr_A2U235[135]%pdf_dZ[-3]/NA*135;
distr_A20235[136] *pdf_dZ[-3]/NA*136;
distr_A2U235[137]*pdf_dZ[-3]/NA*137;
distr_A2U235[138]1+pdf_dZ[-4] /NA*138;
distr_A20235[138]xpdf_dZ[-4]/NA%139;
distr_A1U235[101]*pdf_dZ[~1]/NA*101;
distr_A1U235[102] *pdf_dz[-2] /NA%102;
distr_A1U235[103)*pdf_dZ[-2] /NA*103;
distr_A1U235[104]*pdf_dZ[-2]/NA*104;
distr_A1U235[105]*pdf_dZ[-3]/NA*106;
distr_A1U235[106] *pdf_dZ[-3]/NA*106;
distr_A1U235{107]*pdf_dZ[-4]/NA*107;
distr_A1U235[108] *pdf_dZ{-4] /NA*108;
distr_A1U236[109]+pdf_dZ[-4]/NA*109;
distr_A1U235(87]*pdf_dZ[4]/NA*87;
distr_A1U235[88]*pdf_dZ[4]/NA*88;
distr_A1U235[89]*pdf_dZ[3]/NA*89;
distr_A1U235[90]*pdf _dZ[3]/NA*90;
distr_A10U235[91]*pdf_dZ[3]/NA*91;
distr_A1U236[92]*pdf_dzZ[2]/NA%92;
distr_A1U235{93]*pdf_dZ[2]/NA%93;
distr_a1U235{94]*pdf_dZ[1]/NA*94;
distr_A1U235[951*pdf_dZ[1]/NA*95;
distr_A1U235{96]*pdf dZ[1]/NA*96;
distr_A1U235[97]*pdf_dZ[0]/NA*37;
distr_A1U235[98])*pdf_dZ[0]/NA*98;
distr_A1U235[99])*pdf_dZ[0]/NA*+99;
distr_A1U235{100]*pdf_dZ[-1]/NA*100;

264

Tb154.amount += distr_A2U235[155]+pdf_dZ[4]/NA*155;
Tb156.amount += distr_A2U235[156]*pdf_&2[4]/NA*156;
Tb156.amount += distr_ A2U235[157]*pdf_dZ[4]/NA*157;
Tb157.amount += distr_A2U235[1581*pdf_dZ[3]/NA*158;
Tb168.amount += distr_A20235[159]1*pdf_dz[3]/NA*159;
Tb159.amount += distr_A2U235[160]*pdf_dZ[2]/NA*160;
Tb160.amount += diétr,A2U235[161]*pdf_d2[2]/NA*161;
Tb161.amount += distr_A2U235[162]*pdf_dZ[2]/NA*162;
Tc100.amount += distr_A1U235[101]*pdf_d2[4}/NA#101;
Tc101l.amount += distr_A1U235[102]*pdf_dZ[3]/NA%102;
Tc102.amount += distr_A1U235[103]#pdf_dz[3]/NA*103;
Tc103.amount += distr_A1U235[104]%pdf_dZ[3]/NA*104;
Tc104.amount += distr_A1U235[105]+pdf_dZ[2]/NA*105;
Tc105.amount += distr_A1U235[106]*pdf_d2[2]/NA*106;
Tc106.amount += distr_A1U235[107]}*pdf_dZ[1]/NA*107;
Tc107.amount += distr_A1U235[108]*pdf_dZ[1]/NA#108;
Tc108.amount += distr_A1U235[109]*pdf_dZ[1]/NA*108;
Tc109.amount += distr_A1U235[110]*pdf_dZ[0]/NA*110;
Tel110.amount += distr_A1U235[111]*pdf_dZ[0]/NAx111;
Telll.amount += distr_A1U235[112]*pdf_dz[-1]/NA*112;
Tc112.amount += distr_A1U235[113]*pdf_dZ[-1]/NA*113;
Tc113.amount += distr_A1U235[114]*pdf_dZ[-1]/NA*114;
Tcli4.amount += distr_A1U235[115]*pdf_dZ[-2]/NA*115;
Tc115.amount += distr_A1U235[116]*pdf_dZ[-2]/NA*116;
Tc116.amount += distr_A1U235[117]*pdf_dzZ[-3]/NA*117;
Tc117.amount += distr_A20U235[118]*pdf_dzZ[-3]/NA*118;
Tc118.amount += distr_A2U235[119]*pdf_dZ[-3]/NAx119;
Tc119.amount += distr_A2U235[1zo]*pdf_d2[—4]/NA*12o;
Tc120.amount += distr_A20235[121]*pdf_dzZ[-4]/NAa*121;
Tc99. amount += distr_A1U235[100]+pdf_dZ[41/NA*100;
Te121.amount += distr_A20235[122] +pdf_dZ[4]/NA*122;
Tei22.amount += distr_A20235[123]*pdf_dZ[4]/NA*123;

265

Tel23.
Telz4d.
Tel25
Tel26.
Tel27.
Tel28.
Tel29.
Tel30
Tel31.
Tel32.
Tel33.
Tel134.
Teldsb.
Tel36.
Tel3?.
Tel38.
Te139.
Teld(.
Teldl.
Teldl.
Tel4d3
Xel2s,
Xel127.
Xel28.
Xel129,
- Xe130.
Xe131.
Xeld2.
Xel33.
Xel34.
Xel35.
Xel3s

amount

amount

.amount

amount
amount
amount

amount

.amount

amount
anocunt
amount
amount
amount
amount
amount
amount
amount
amount
amount

amount

.amount

amount
amount
amount
amount
amount
amount
amount
amount
amount

amount

camount

+=

+=

distr_A2U235[124] *pdf_dZ[4]/NA*124;
distr_A2U235[125] *pdf_dzZ[3]/NA%125;
distr_420235[126]*pdf_dZ[3]/NA%126;
distr_A2U235[127]*pdf_dZ[2]/NA*127;
distr_A2U235[128]*pdf_dz[2] /NA*128;
distr_A2U235[129]*pdf_dzZ[2] /NA*129;
distr_A2U235[130]1*pdf_aZ[1]/NA*130;
distr_A20235{131])#pdf_dZ[1]/NA*131;
distr_A2U235[132]*pdf_dZ[1]/NA*132;
distr_A20235[133]1#pdf_dZ[01/NAx133;
distr_A2U236 [134]*pdf_dZ[0]/NA*134;
distr_A2U235 [135]*pdf_dZ[-1]/NA*135;
distr_A2U235[136]*pdf_dZ[-1]/NA*136;

distr_A2U235[137]*pdf_dZ[-1]/NA*137;

distr_A2U235[138] +pdf_dz[-2]/NA*138;
distr_A20235[139]*pdf_dZ[-2]/NA*139;
distr_A2U235[140]*pdf_dZ[-3]/NA*140;
distr_A2U235[141]*pdf_dzZ[-3]/NA*141;
distr_A2U235[142] *pdf_dZ[-3]/NA*142;
distr_A20235[143] *pdf_dZ[-4]/NA*143;
distr_A2U235[144] #pdf_dz[-4]/NA*144;
distr_A2U235[127]*pdf_dZ[4]/NA*127;
distr_A20235[128]*pdf_dZ[{4]/NA*128;
distr_A2U235[129]*pdf_dZ[4]/NA*129;
distr_A2U235(130]*pdf_dZ[3]/NA+130;
distr_A2U235[131]*pdf_dZ{3]/NA*131;
distr_A2U235[132] #pdf_dZ[3]/NA*132;
distr_A2U235[133]*pdf_dZ[2]/NA*133;
distr_A2U235[134]*pdf_dZ[2]/NA*134;
distr_A2U235[135]*pdf_dZ[1]/NA*135;
distr_A2U235[136]*pdf_dzZ[1]/NA*136;
distr_A20235[137]*pdf_dZ[1]/NA*137;

266

XelS?.amount +

Xel38.amount +

Xel39.amount +
Xel140Q ., amount +

Xe141.amount +

Xel1d2 amount +

Xe143.amount +

Xeld4d . amount +

Xel145. amount +
Xel46.amount +
Xel47.amount +
Xel48.amount +

Y100 .amount +=

Y101 .amount +=
Y102, amount +=
Y103, amount +=
Y104 .anmount +=
Y105.amount 4=

Y106 .amount +=

Y107 .amount +=

Y108.amount +=

Y109.amount +=

Y11C.amount +=

Y88,

Y39

" Y90
Y91.
Y92,
Y93.
YS4.
Y95.
Y96,

amount +=

Lamount +=

.amount +=

amount_+=
amount +=
amount +=
amount +=
amount +=

amount +=

= distr_A2U235[138]*pdf_dZ[0]/NA*138;
= distr_A2U235[138] *pdf_dZ[0]/NA*139;
= distr_A20235[140]*pdf_dZ[-1]/NA*140;
= distr_A2U236[141]+pdf_dZ[~1]/NA*141;
= distr_A2U235[142] *pdf _dZ[-1]/Na*142;
= distr_A2U235[143] *pdf_dZ[-2]/NA*143;
= distr_A2U235[144] *pdf_dZ[-2] /NA*144;
= distr_A20235{145]*pdf_dZ[-3]/Na*145;
= distr_A20235[146]*pdf_dz[-3]/NA*146;
= distr_A2U235[147]#pdf_dZ[-3] /NA*147;
= distr_A2U235[148]*pdf_d4Z[-4] /NA*148;
= distr_A2U235{149]*pdf _dZ[-4] /NA*149;
distr_A1U235[1011*pdf_dZ[0]/NA*101;
distr_A1U235[102]*pdf_dZ[-1]/NA*102;
distr_A1U235[103]*pdf_dZ[-1]/NA*103;
distr_A1U235[104]%pdf_dZ[-1]/NA*104;
distr_A1U235[105]*pdf_dZ[-2]/NA*105;
distr_A1U235[106]*pdf _dZ[-2]/NA*106;
distr_A1U235[107]*pdf_dZ[-3]/NA*107;
distr_A1U235[108]*pdf_dZ[-3]/NA*108;
distr_A1U235[109]*pdf_dZ[-3]/NA*109;
distr_A1U235[110]*pdf_dZ[-4]/NA*110;
distr_A1U235[111]*pdf_dZ[-4]/NA*111;
distr_A1U235[89]*pdf_dZ[4]/NA*89;
distr_A1U235[90]*pdf_dz[4]/NAx90;
distr_A1U235[91]+pdf_dZ[4]/NA*91;
distr_A1U235[92] #pdf _dZ[3]/Na*92;
distr_A1U235[93]+pdf_dZ[3]/NA*93;
distr_A1U235[94] xpdf_dZ{2] /NAx94;
distr_A10235[95]*pdf_dz[2]/NA*95;
distr_A1U235[96]*pdf_dz[2]/NA*96;
distr_A1U235{97]*pdf_dZ[1]/Na*97;

267

Y97 .amount += distr_A1U235[98]*pdf_dZ[1]/NA*98;

Y98 .amount +=

Y99. amount +=

Zn7?2
Zn73

Zn74.
Zn7hs.

Zn7é

In’77,
Zn7s.
Zn79.

Zn80

Zn81.
Zn82.
Zn83.
Zns4.
Zn85.
Zn86.
Zn87.

.amount

amount

amount

amount

amount
amount

amount

.amount

amount
émount
amount
amount
amount
amount

amount

Zr100.amount

2r101.amecunt

Z2r102.amount

Zr103.amount

Zri104.amount

Zr105 . amount

Zr106.amount

Zri07.amount

Zr1i08.amount

Zr109.amount

Zr110.amount

Zri1il.amount

Zrl112.amount

+=
+=

+=

distr_A1U235[99]*pdf _dZ[1]/NA%99;
distr_A1U235[100]*pdf_dZ[0]/NA*100;
.amount += distr_A1U235[73}*pdf_dZ[2J/NA*73;

distr_A1U235[74]xpdf_dZ[1]/N4a*74;
distr_A1U235[75]*pdf_dZ[1]/NAXTS;
distr_A1U235[76]*pdf_dZ[1]/NA*76;
distr_A1U235[77]*pdf_dZ[0]/NAx77;
distr_A1U235[78]*pdf_dZ[0] /NA*TS;
distr_A1U235[79]1#pdf_dZ[-11/NAx79;
distr_A1U235[80]*pdf_dZ[-1]/NA*80;
distr_A1U235[81]*pdf_dZ[-1]/NA*81;
distr_A1U235[82]+pdf_dZ[-2]/NA*82;
distr_A1U235[83]+pdf_dZ[-2]/NA*83;
distr_A1U235[84]*pdf_dZ[-3]1/NA*84;
distr_ A1U235[85] *pdf_dZ[-3]/NA*8E;
distr_A1U235[86]*pdf_dZ{-3]1/NA*86;
distr_A1U235[87]*pdf_dz[-4]/NA*87;
distr_A1U235[88]+pdf_dz[-4]/NA*88;
distr.A1U235[101]1%pdf_dZ{1]/NA*101;
distr_A1U235[102]*pdf_dZ[0]/NA*102;
distr_A1U235[103] *pdf_dZ[0]/NA*103; -
distr_A1U235[104] *pdf_dZ[0]/NA*104;
distr_A1U235[105]*pdf_dZ[-1]/NA*105;
distr_A1U235[106]*pdf_dZ[-1]/NA*106;
distr_A1U235[107]*pdf_dz[-2] /NA¥107;
distr_A1U235[108] *pdf_dz[-2] /NA*108;
distr_A1U235[109] *pdf_dz[-2]/NA*109;
distr_A1U235[110]*pdf_dz[~-3]/NA*110;
distr_A1U235[111]*pdf_dZ[-3]/NA*111;
distr_A1U235[112]*pdf_dZ[-4]/NA*112;
distr_A1U235[1131#pdf_ dZ[~4]/NA*113;

268

Zri13.amount += distr_Aiuzas[114]*pdf_az[-4]/NA*114;
Zr9i.amount += distr_ A1U235[92]*pdf_dz[4]/NA*92;
Zr92.amount += distr_A1U235[93]*pdf_dZ[4]/NA*93;
Zr93.amount += distr_A1U235[94)+pdf_dz[a]/NA%94;
Zr94 . amount += distr_A1U235[95]+pdf_dZ[3]/NA*95;
Zrgs.amount += distr_A1U235[961*pdf_dZ[3]/NAa*96;
Zr96.amount += distr_A1U235[97]*pdf_dZ[2]/NA*97;
Zr97 .amount += distr_A1U235[98]*pdf_dZ[2]/NA*98;
Zr98.amount += distr_A1U235[99]*pdf_dZ[2]/NA*99;
Zr99.amount += distr_A1U235[100]*pdf_dZ[1]/NA*100;"

269

Appendix VII

Final results of Experiment 2

This section shows the results of running the simulation after 20 seconds for the
Exa.rriple. The reactor is fueléd with natural Uranium which consists of 0.711 % of
257 and 99.3 % of 2*°U. The average prompt neutron lifetime is assumed to be 20
milliseconds, and this ig the cycle time also. The report time interval is 1 second,
which means there are 50 cycles in each report period (see Fig. 3.3). The simulation
results are reported at the end of each report Reriod.

The number of fissions for each report time period, the fuel consumption and
fuel remaining are listed, along with the number of fission neutrons, the number of
beta positive particles, the number of beta negative particles, as well as the energy of
fission products, the energy of fission neutrons, the energy of gamma particles, and
‘the energy of beta particles. At the end of simulation, the final comp.ositiou of ﬁssion
~ products are shown in this Appendik. These results show a subcritical state for the

reactor, where the number of fissions decreases with each report period.

270

Simulation period : 20.000 s
Report interval : 1.000 g
Cycle tinme : 0.020 s

Summary report: 1

Number of fissiocns
Amount of fuel fissioned

Fuel left (U235)
Fuel left (U238)

Number neutrons released
Neutron energy released

Gamma energy released

Energy of fission fragment F1l
Energy of fission fragment F2
Beta Positive particles released
Beta positive energy released
Beta negative particles released
Beta negative energy released
Total energy released

Energy release per fission

Energy of fission fragment per fission :

Energy neutron per fission

Energy gamma per fission

Energy beta per fission

Average number neutrons per fission

Summary report: 2

Number of fissions .
Amount of fuel fissioned
Fuel left (U235)

Fuel left (U238)

Number neutrons released
Neutron energy released

Gamma energy released

Energy of fission fragment F1
Energy of fission fragment F2
Beta Positive particles released
-Beta positive energy released
Beta negative particles released
Beta negative energy released
Total energy released

Energy release per fission

Energy of fission fragment per fission :

Energy neutron per fission

Energy gamma per fission

Energy beta per fission

Average number neutrons per fission

271

MNP RNE e RN OROWD N —W

NEMRPRFRW WP @M DA RN O] W

.345e+20

.305e-01 gram
.000e+03 gram
.930e+0b gram

.128e+20
.603e+21 Mev

,748e+20 Mev
.284e+22 Mev
.301e+22 Mev
.068e+12

.271le+ll Mev
L107e+21

.428e+20 Mev
.877e+22 Mev

.757e+02 Mev
.B70e+02 Mev
.793e+00 Mev
.61be+00 Mev
.324e+00 Mev
.4298

.023e+18
.992e-04 gram
.000e+03 gram
.930e+05 gram
.486e+18
.903e+18 Mev
.675e+18 Mev
.986e+19 Mev
.010e+20 Mev
.294e+10
.178e+09 Mev
.499e+20
.800e+20 Mev
.584e+20 Mev

.b03e+02 Mev
.670e+02 Mev
.793e+00 Mev
.815e+00 Mev
.75%e+02 Mev
L4301

Summary report: 3

Number of fissions
Amount of fuel fissioned

Fuel left (U235)
Fuel left (U238)

Number neutrons released
Neutron energy released

Gamma energy released

Energy of fission fragment F1
Energy of fission fragment F2
Beta Positive particles released
Beta positive energy released
Beta negative particles released
Beta negative energy released
Total energy released

Energy release per fission

Energy of fission fragment per fission :

Energy neutron per fission

Energy gamma per fission

Energy beta per fission

Average number neutrons per fission

Summary report: 4

Number of fissions
Amount of fuel fissioned
Fuel left (U235)

Fuel left (U238)

Number neutrons released
Neutron energy released

Gamma energy released

Energy of fission fragment ¥l
Energy of fission fragment F2
Beta Positive particles released
Beta positive energy released
Beta negative particles released
Beta negative energy released
Total energy released

Energy release per fission

"Energy of fission fragment per fission :

Energy neutron per fission

Energy gamma per fission

Energy beta per fission

Average number neutrons per fission

Summary repert: b

Number of fissions
Amonnt of fuel fissioned

272

NMNMNEPSRN OO RWDOR~NO N =R

MOMPBbPR O OIRPRDDWON R RN WO] W

.157e+15

.232e~06 gram
.000e+03 gram
.330e+05 gram

.B71le+1b
.513e+16 Mev

.254e+15 Mev
.156e+17 Mev
.118e+17 Mev
.402e+08

.610e+07 Mev
.274e+20

.095e+19 Mev
.151e+19 Mev

.89%e+04 Mev
.670e+02 Mev
.793e+00 Mev
.815e+00 Mev
.881e+04 Mev
.4298

.752e+12
.80be-09 gram
.000e¥03 gram
.930e+05 gram

. 370e+13

.674e+13 Mev
.550e+13 Mev
.65%e+14 Mev
.625e+14 Mev
.135e+05

.454e+05 Mev
.411e+20

.644e+19 Mev
.644a+19 Mev

.787e+06 Mev
,B70e+02 Mev
.793e+00 Mev
.615e+00 Mev
,787e+06 Mev
,4303

.013e+10
.176e-11 gram

Fuel left (U235) ¢ 7.000e+03 gram
Fuel left (U238) : 9.930e+05 gram
Number neutrons released « 7.322e+10
Neutron energy released : 1.444e+11 Mev
Gamma energy released i 7.877e+10 Mev
Energy of fission fragment F1 1 2.067e+12 Mev
Energy of fission fragment F2 1 2.974e+12 Mev
Beta Positive particles released i 2.282e+03
Beta positive energy released : 9.129e+02 Mev
Beta negative particles released 1 9.935e+19

Beta negative energy released : 3.974e+19 Mev
Total energy released : 3.974e+19 Mev
Energy release per fission : 1.319e+09 Mev
Energy of fission fragment per fission : 1.670e+02 Mev
Energy neutron per fission : 4.793e+00 Mev
Energy gamma per fission i 2.61be+00 Mev
Energy beta per fission : 1.319e+09 Mev
Average number neutrons per fission 1 2.4301 :
Summary report: 6

Number of fissions : 9.309e+07
Amount of fuel fissioned : 3.633e-14 gram
Fuel left (U235) : 7.000e+03 gram
Fuel left (U238) : 9.930e+05 gram
Number neutrons released : 2.262e+08
Neutron energy released : 4.461et+08 Mev
Gamma energy released 1 2.434e+08 Mev
Energy of fission fragment F1 ! 6.357e+08 Mev
Energy of fission fragment F2 : 9.188e+09 Mev
Beta Positive particles released : 7.891e+00

Beta positive energy released 1 3.157e+00 Mev
Beta negative particles released : 7.549e+19

Beta negative energy released : 3.020e+19 Mev
Total energy released : 3.020e+19 Mev
Energy release per fission - 1 3.244e+1i1l Mev
Energy of fission fragment per fission : 1.670e+02 Mev
Energy neutron per fission : 4.793e+00 Mev
Energy gamma per fission : 2.615e+00 Mev
Energy beta per fission : 3.244et11 Mev
Average number neutrons per fission 1 2.4229

Summary report: 7

Number of fissions : 2.876e+05
Amount of fuel fissioned 1 1.122e-16 gram
Fuel left (U235) : 7.000e+03 gram
Fuel left (U238) : 9.930e+05 gram
Number neutrons released : 6.988e+0b

273

Neutron energy released

Gamma energy released

Energy of fission fragment Fi
Energy ¢f fission fragment F2
Beta Positive particles released
Beta positive energy released
Beta negative particles released
Beta negative energy released
Total energy released

Energy release per fission

Energy of fission fragment per fission :

Energy neutron per fission

Energy gamma per fission

Energy beta per fission

Average number neutrons per fission

Summary report: 8

Number of fissions
Amount of fuel fissioned
Fuel left (U235)

Fuel. left (U238)

Number neutrons released
Neutron energy released

Gamma energy released

Energy of fission fragment Fi
Energy of fission fragment F2
Beta Positive particles released
Beta positive energy released
Beta negative particles released
Beta negative energy released
Total energy released

Energy release per fission

Energy of fission fragment per fission :

Energy neutron per fission

Energy gamma per fission

Energy beta per fission

Average number neutrons per fission

Summary report: 9

Number of fissions
Amount of fuel fissiocned

Fuel left (U235)
Fuel left (U238)

Number neutrons released
Neutron energy released

Gamma energy released
Energy of fission fragment Fl

274

MM E PG DN R~

MNP RPN SRR RNW W

ol e I T T Bl

.378e+406 Mev
.520e+05 Mev
.984e+07 Mev
.839e+07 Mev
.658e-03

.863e-03 Mev
.028e+19

411e+19 Mev
411e+19 Mev

,384e+13 Mev
.670e+02 Mev
. 7932400 Mev
.615e+00 Mev
.384e+13 Mev
L4301

.888e+(02
.468e-19 gram
.000e+03 gram
.930e+05 gram
.15%e+03
.25%9e+03 Mev
.323e+03 Mev
.068e+04 Mev
.T71le+04 Mev
.000e+00
.000e+00 Mev
.974e+19
.98%e+19 Mev.
.98%e+19 Mev

.23%e+16 Mev
.B70e+02 Mev
.793e+00 Mev
.615e+00 Mev
.23%e+16 Mev
L4297

.745e+00

.071e-21 gram
.000e+03 gram
.930e+05 gram

.672e+00
.316e+01 Mev

.178e+00 Mev
.87be+02 Mev

Energy of fission fragment F2 1 2.710e+02 Mev
Beta Positive particles released : 0.000e+00
Beta positive energy released : 0.000e+00 Mev
Beta negative particles released : 4.197e+19
Beta negative energy released : 1.879e+19 Mev
Total energy released 1 1.679e+19 Mev
Energy release per fission : 6.115e+18 Mev
Energy of fission fragment per fission : 1.670e+02 Mev
Energy neutron per fission : 4.793e+00 Mev
Energy gamma per fission : 2.615e+00 Mev
Energy beta per fission 7 68.115e+18 Mev
Average number neutrons per fission : 2.4306
Summary report: 10

Fuel left (U235) : 7.000e+03 gram
Fuel left (U238} : 9.930e+05 gram
Gamma energy released : 2.218e-02 Mev
Beta Positive particles released : 0.000e+00
Beta positive energy released : 0.000e+00 Mev
Beta negative particles released ! 3.598e+19.
Beta negative energy released : 1.439e+19 Mev
Total energy released : 1.438%e+19 Mev

Summary report: 11

Fuel left (U235}
Fuel left (U238)

.000e+03 gram
.930e+05 gram

Gamma energy released .852e-05 Mev
Beta Positive particles released .000et00
Beta positive energy released .000e+00 Mev
Beta negative particles released .12Qe+19

.248et19 Mev

Beta negative energy released
.248e+19 Mev

Total energy released

P 03 D]

Summary report: 12

Fuel left (U235)
Fuel left (U238)

.000e+03 gram
.930e+05 gram

Gamma energy released .117e-07 Mev
Beta Positive particles released .000e+00
Beta positive energy released .000e+00 Mev
Beta negative particles released .728e+19

.091e+18 Mev

Beta negative energy released
.081e+19 Mev

Total energy released

il v e N T %) Lo R

Summary report: 13

Fuel left (U235) : 7.000e+03 gram

275

Fuel left (U238)
Gamma energy released

Beta Positive particles released

Beta positive energy released
Beta negative particles released
Beta negative energy released
Total energy released

Summary report: 14

Fuel left (U235)

Fuel left (U238)

Gamma energy released

Beta Positive particles released
Beta positive energy released
Beta negative particles released
Beta negative energy released
Total energy released

Sumﬁary report: 15

Fuel left (U235)

Fuel left (U238)

Gamma energy released

Beta Positive particles released
Beta positive energy released
Beta negative particles released
Beta negative energy released
Total energy released

Summary repert: 16

Fuel left {(U235)

Fuel left (U238)

Gamma energy released _

Beta Positive particles released
Beta positive energy released
Beta negative particles released
Beta negative energy released
Total energy released

Summary report: 17

Fuel left (U235)

Fuel left (U238)

Gamma energy released

Beta Pesitive particles released
Beta positive energy released
Beta negative particles released
Beta negative energy released

276

WO W ~ OWMNSIDW

~N = O OMmD.

DD OO O~

D OO~

.930e+0b gran
.841e=-10 Mev
.000e+00
.000e+00 Mev
.401e+19
.B806e+18 Mev
.606e+18 Mev

.000e+03 gram
.930e+05 gram
.021e-12 Mev
.000e+00
.000e+00 Mev
.126e+19
.506e+18 Mev
.505e+18 Mev

.00Qe+03 gran
.930e+0b gram
243e-15 Mev
.000e+00
.000e+00 Mev
.892e+19
5672418 Mev
.567e+18 Mev

.000e+03 gram
.930e+05 gram
.929e-17 Mev
.000e+00
.000e+00 Mev
.691e+19
.762e+18 Mev
.762e+18 Mev

.000e+03 gram
.930e+05 gram
.988e-20 Mev
.000e+00
.000e+00 Mev
.B17e+19
.06Te+l8 Mev

Total energy released : 6.087e+18 Mev

Summary report: 18

.464e+18 Mev

Beta negative energy released
.464e+18 Mev

Total energy released

Fuel left (U235) : 7.000e+03 gram
Fuel left (U238) : 9.930e+05 gram
Gamma energy released : 1.841e-22 Mev
Beta Positive particles released : 0.000e+00
Beta positive energy released : 0.000e+00 Mev
Beta negative particles released : 1.366e+19

: 5

: b

Summary report: 19

Fuel left (U235)
Fuel left (U238)

.000e+03 gram
.930e+05 gram

Gamma energy released .68%e~25 Mev
Beta Positive particles released .000e+00
Beta positive energy released .000e+00 Mev
Beta negative particles released .23be+19

.938e+18 Mev

Beta negative energy released
.938e+18 Mev

Total energy released

\renewcommand{\baselinestretch}{0.65%}
\begin{verbatim} '

o e O O W

Summary report: 20

Fuel left (U235)

.000e+03 gram - ;
Fuel left (U238) :

.930e+05 gram

Gamma energy released .758e-27 Mev
Beta Positive particles released .000e+00
Beta positive energy released .000e+00 Mev
Beta negative particles released .119%e+19

.478e+18 Mev

Beta negative energy released
.478e+18 Mev

Total energy released

B, OO R o~

Time for simulation: 4:4:1

"Nuclide name Amount (gram)
Cu72 9.958e-24
Cu73 9.614e-24
Cu74 1.686e~-08
Cu7b 8.657e-186
Cu76 4.427e=-11
Zn72 8.4b57e-24
. 2n73 7.319e~-24
ZnT4 5.85%e-18
Znfh 1.264e~16
Znvse 5.209e~12
ZnTT 9.470e-20

277

Zn78
Zn79

Zn80

Ga72
Ga73
Ga74
Ga7b
Ga76
Ga77
Ga7s
Ga79
Gag(

Ga81

Ga82
Ga83
Ge72
Ge73
Ge74
Ge75
Ge76
Ge77
Ge78
Ge79
Ge8Q
Ge81
Ge82
Ge83
GeB84

AsTE-

AsT6
AsT7
As78
As79
As80
As81
Ag82
AsB83
As84
AsB85
AsB6
AsB7
Se76
Se77
Se78
Se79
Sed0
Se81
Sed2
Se83
Se84
‘8e85
Se86
Se87
Se88
Se89
S5e9g
Se91
Brai
Brg2
Br83
Brg4
Br8b
Br86
Br87

MO DR B R O R R TR CE A = B ~J0 Ny S G N BRI BRI BRI RS CO NI NG KD (110D ~d s 1= = = = GO 00 B b b

.154e~15
.307e~11
.008e-08
.321e-24
.837e-24
.442e-19
.612e-15
.04be-12
.825e-20
.823e-16
.066e-12
.T77e~09
.426e~13
.303e-08
.35%9e-06
.260e-10
:813e-10
.680e-09
.686e-14
.007e-07
.B78e-20
.889e-14
.113e-12
.B674e-10
.037e-13
.502e-09
.598e-07
.948e-11
.602e~-08
.0b4e-24
.938e-21
.121e~13
.656e-12
.083e-09
.481e-14
.T57e-10
.875e-08
A43%e~12
B17e-17
.110e-10
.343e~08
.906e~17
.422e-07
A442e-08
.621e-05
.846e-0b
.738e-14
.223e~-04
.067e-08
E25e-11
L127e-18
.262e-11
.238e-09
.214e-13
.683e-06
.975e-03
.899e-05
.356e=-05
.03be-18
.340e-07
.536e-12
.191e-16
.961e-12
.27de~10

278

Brss
Br89
Brso
Bro1
Bro2
Br93
Brg4
Kr32
Kr83
Kr34
Kras
Kr86
Kr87
Krss
Kra9g
Kr90
Krgi
Kro2
Kr33
Kro4
Krgs
Krgé
Kr97
Rb85
Rb36
Rb87
Rb&8
Rb&9
Rb90-
Rb91
Rb82
Rb93
Rb94
Rbob
Rba6
Rb97
Rb98
RbS9
Rb10Q0
Rbi101
Rbi102
Sr836
Sr&s
Sr89
Sra90
Sroi
Sr92
Sr93
Sro4
Srab
Sra6
Srov
5ro8
Srag
Sr100
Srio1
SriQ2
Y89
YOO
Yo1
Yo2
Y93
Y94
Y95

OHRP WP R DN P DR WM WO R S s s N IR B - N o (b s -4 G080 - NI S = ~J s G0 00 O M RS = 00 GO B -2 s B 4 = 0100

.22%e=14
.883e-07
.342e-15
.805e-05
.948e-05
.241e-03
.768e~04
.462e-09
.037e=04
.917e=04
.930e-17
.484e-04
.f0le-08
.728e-13
.351e-07
.390e-17
.113e-06
.416e-06
.862e-12
.287e-04
.932e-08
.288e~03
L145e-04
.854e-05
.326e-24
.034e-03
.782e-14
.968e-07
.B871e-15
.637e-07
.963e-06
.224e-12
.081e-05
.674e~03
.977e-05
.166e-04
.924e~-04
.018e~03
.368e-04
.083e-04
.548e-05
.065e-14
.76be-04
.03%e-08
.T00e-16
.838e-07
.710e~06
.130e-12
.818e-05
.017e-07
.880e~-06
.862e-04
.704e-05
.808e-04
.234e-04
L74e~04
.565e-04
.968e-03
.398e-14
.831e-07
.142e-06
.769e-12
.90be~086
.793e-07

279

Y96
Yo7
Yes8
Y99
Y100
Y101
Y102
Zr90
Zr9l
Zr92
Zr93
Zro4
Zr95
Zr96
Zr97
Zr9s
Zr9%g
Zrico
Zrid1l
Zri102
Zr103
Zr104
Nb95
Nb96
NbS7
Nbgo8
Nb99
Nb100
Nbi101
Nb102
Nb103
Nb104
Nb105
Nb106
Mo9b
Mo96

. Mo97

Mo98
MoS9
Mo100
Mo101
Mol102
Mo103
Mol104
Moi105
Mo1086
Mal107
Mo108
Tc99
Tc100
"Tecl101
Tc102
Tci03
Tci104
Tc105
Tcl06
Tecl07
Tcl08
Tc109
Tecli1l
Tcl11l
Rul100
Rui101
Rui102

NROMNNEROORWANWEROR PR OR SRR RO NP RO WOB W RO UIN TR R OWEAH WO WM R BRI IR N s e~ T N =

.215e-06
.1566e-05
.305e-04
.339e-0b
. 784e-05
.47%e~04
.6838e~05
.595e-04
.37T7e~03
.554e-03
.21be-04
.680e-03
.576e-07
.945e-04
.864e-06
.516e~06
.658e-0b
.180e-06
.200e-05
.042e-086
.602e-12
.109e~12
.885e-07
.089%e-28
.441e-05
.765e~05
. 385e-06
.325e-05
.617e-06
.529e-05
.202e-11
.036e-12
.443e-23
.282e-11
.035e-04
.804e-12
.438e-03
.891e-03
.998e-056
.829e-03
.713e-06
.783e-06
.019e-08
.075e-09
.636e-24
.435e-12
.798e-24"
.430e-06
.394e-03
. 054e-24
.885e-06
.921e-086
177e-11
.247e-11
.20be~23
.064e-12
.219e~-24
.817e-24
.466e-15
.204e~11
.582e-08
.724e-14
.833e-03
.190e~03

280

Ruz103
Ru104
Ru105
Rulil6
Ruid7
Rul108
Ru109
Rul1{
Rulil
Ruii2
Ruli3
Rhi03
Rhi104
Rh105b
Rh106
Rh107
Rh108
Rhi09
Rh110

Rhill

Rhi12
Rh113
Rh114
Rh115
Rh116
Pd104
Pd105
Pd106
Pd107
Pd108
Pd109
P110
P11
Pd112
Pd113
Pd114
Pd115
Pd116
Pd117
Pd118
Ag109
Ag110
Agilt
Ag112
Ag113
Agl114

Agils

Ag116
Agi17
Ag118
Ag119
Ag120
Ag121
Ag122
Ag123
Agi24
cd110
Cdiii
Cd112

Cd113
Cd114

PRPEPESNP OO WG 010 WIO 0O RO T DD G~ = G0 00 00 ~] M) 00 (00 00 i 00 ~J - B (D M) UNED O) -2 G 4O 80 1 5 1= (o

L079%-11
.721e-04
.647e=272
.B51e~10
.726e-24
.978e~-24
.200e-17
.291e=-12
.454e=-09
.889e=-24
.340e=-23
LT4Te-04
.07%e-24
,262e-23
.838e-11
,871le=-24
.144e-24
.B81e-14
.B30e-12
.048e-10
.488e-24
.480e-12
.363e-18
.580e-13
.332e-11
.647e=-13
.873e=05
.826e-05
.366e-05
.041e=07
.13%e-15
.421e=-086
.309e-10
.T47e=24
.032e-11
.254e~-18
.061le-14
27Te-12
.796e-24
.402e-21
.079e=-07
.326e-24
.406e-09
,620e=-24
.848e-12
.53%e-18
.096e-14
.990e-12
.690e=-14
.104e=-21
.614e-20
.783e~14
.10be-11
.263e-09
.764e~07
.067e~-07
.867e-15
.821e~086
.282e-08
.492e-06
. 789e-07

281

Cdils
Cdlile
Cd117
Cd118
Cd119
Cd120
Cdi21
Cdi22
Cd123
Cd124
Cdi125
Cd126
cdi27
€d128
£d129
Cd130
Inilb
Inl16
Ini17
Inlis
In118
Inl120
Ini21
Ini22
Ini23
Ini24
Ini125
Inl126
Inl27
Ini128
Ini29
Ini130
Ini3l
Ini32
In133
Snile
Sn117
Sn118
Sn119
Sni120
Sni21
Sni122
Sni23
Sni24
Sni2s
Sni26
Sni127
8nl128
Sni129
3n130
"Sni13t
Sni32
Sni33
Sni34
Sbi21
Sbi22
Shi23
S5bi124
Sb126
Sbi2e
Sb127
Sb128
Sb129
Sb130

030)“‘QW‘DHml—l-(O!—'-OJI—‘-MO‘)COHHm""!Mi—im(D"'JI—H—‘-I—ll-l-O\JI—‘-l-PCDH(}Jm*JI\J(DC)HI\JI—LOJH(DUJCOEOMrPI—H—ApP»MmeHp—l-l—t-;pcn—km

.233e-13
.327e-08
.427e-14
.262e=272
.286e~19
.187e~15
.904e-12
.865e-10
.072e-08
.522e=-07
.368e=09
.543e-08
.A407e~07
.591e=-08
.440e=086
.926e~-06
.718e-07
.928e-24
.T4le~-15
.245e-21
.B76e~-18
224e-14
.157e-12
.173e=-09
.128e-08
.376e-08
.536e-10
.175e-08
.608e-08
.616e-07
.456e~06
.004e=-05
.36be-06
.404e-05
.073e-05
.833e~14
.133e-086
.350e-06
.868e-07
.373e-086
.b86e-11
.040e=-08
.253e-10
.700e-05b
.515e-10
.388e-05b
.044e-08
.172e-08
.030e~086
.399e-07
.765e~-08
.213e-07
.534e-08
.897e=-10
.704e-086
.942e-24
.527e-05
.330e-24
.165e-09
.905e-24
.109e-08
.856e-08
.00%e=-0T7
.142e~08

282

Sh131
Sb132
Sb133
Shi134
Sb1356
Sbi36
Tel22
Tel24
Tell2b
Tel26
Tell7
Tel28
Tel29
Tel30
Te131
Tel32
Tell3
Tel34
Tel3b
Tel36
Tel137
Tel38
I126
I127
I128
1129
1130
1131
It32-
I133
1134
1135
1138
I137
1138
I139
1140
I141
I142
Xel28
Xel29
Xell30
Xel3t
Xel132
Xel133
Xel34
Xel3h
Xel36
Xel137
Xell8
Xel39
Xeld0
Xeldi
Xeld?2
Xeld3
Xeld4
Xelds
Cs131
Cs132
Cs133
Cs134
Cs1356
Cs136
Cs137

1
2
9
9
3
7
1
2
3
8
1
5
3
2
1
3
1
1
3
3
2
2
1
2
7
1
9
3
4
1
1
1
1
2
7
3
5
1
4
5
1
1
3
4
4
4
1
4
5
3
2
3
5
9
8
2
2
4
3
5
1
4
8
7

.161e=07
.213e~08
.519e-0Q7
.876e-08
.254e-14
.963e-09
.081e-10
.142e-10
.43%e~05
.402e=-08
.326e-08
.200e=-04
.067e-06
.076e=-03
.080e=-07
.038e=-086
.947e-07
.917e~-09
.218e~15
.915e-10
.464e-18
.690e=-12
.142e-33
.416e=-04
.891e-24
.258e-03
.220e-24
.481e-07
.761e=06
L171e-07
.B55e=-09
.258e-14
.203e=-08
.798%e-19
.110e-13
.924e-17
.001e-09
.473e=-06
.671e-0b
.348e-09
.48%e-14
.988e-06
.063e=-03
753e-03
.81lie-07
.7T70e=-03
.119e-14
.593e-03
.196e-18
.63%e-13
.413e-18
.376e=10
.221e-07
.15%e-06
.891e-06
.708e~11
.116e-10
063e-32
.694e-24
.811e-03
.624e-20
.629e-03
.867e-24
.173e-19

283

Cs138
Cs139
Cs140
Cs141
Csl142
Csl143
Cs144
Cs145
Cs146
Cs147
Cs148
Bal132
Bal34
Ba13b
Ba138
Ba137
Bal38
Bail39
Bal40
Bai4l
Bai4?2
Bal43
Bal44
Bal4b
Bal46
Bal147
Bal48
Bail49
Lai36
Lai37
Lal38
Lal139
Lal40
Lalsal
Lal4?
La143
Lal44
Lal4b
Lal4é
Lai47
Lal48
Lal4s
Cel39
Celd0
Celdl
Cel4d?2
Celdl
Cel4d4d
Celdb
Cel4d6
Celd7
Cel48
Cel49
Cel50
Cels51
Celb2
Pri141
Pri42
Pri143
Pri44
Pri45b
Pri146
Pri47
Pri4s8

.66Be~13
.368e-17
.344e-08
.B732-08
.984e-086
.005e-086
.093e-09
.442e=07
.060e=-08
.442e-06
A7Te-06
.78%e-14
.890e-08
.753e-08
.455e-086
.287e=-03
.808e-03
.392e-11
.091e=-09
.123e-08
.197e-06
.B49e~07
.976e-10
.494e=-08
.230e-07
.886e-086
. 7b8e-07
.349e-07
.067e-32
.808e-14
.920e~08
.02be-03
.281e-08
.T17e-07
.b61e-086
.B42e=-07
.142e-10
.262e-09
.925e-07
.788e=07
.353e-07
.603e-07
.bb4e-28
.014e-03
.307e-08
.024e-03
.448e-08
.526e-11
.241e=-08
.202e-08
.893e~08
.0b5e=-08
.916e-08
.960e~24
.522e-10
.266e=-23
.061e-03
.540e=-24
.587e-07
.324e-10
.360e~08
.202a=-08
.080e~-07
.894e-07

284

Pri49
Pris¢
Pribil
Prib2
Prib3
Prib4d
Ndi42
Nd143
Ng144
Nd145
Nd146
Nd147
Nd148
Nd149
Nd150
Ndi51
Ndi52
Nd153
Nd1i54
Ndi55
Nd1566
Pm146
Pm147
Pm148
Prn149
Pm150
Pmi1b1
Pmi152
Pmi53
Pmic4
Pmib55
PmiE6
Pmi57
Pmib8g
Smi147
Smi148
Sm149
Sm1560
Smib1
Smi52
Sm153
Smib4
Sm155
Sm1586
Smib7
Smis8
. Smib8
Euib1
Eul52
Eui1b3
Eulbs4
Eulbb
EulsE
Eu1b7
Eulb8
Eu159
Gdi1b2
Gd153
Gd154
3d155
Gdi56
Gdi57
Gd1:58
Gd159

PR R ROERONOONERP,OOOONINNWRA IR DO-T0HEORORN DR, RDOOMND R SR DN R W R BRI WO R ~J O

.586e~-07
.913e-24
Alle-12
.990e-22
.993e-24
.240e~19
773e-11
.265e-03
.081e-03
.421e=-03
.784e~03
.592e-07
.856e=-04
.684e-07
.913e=-04
.397e-11
.148e-22
.288e-24
.183e~20
.953e-24
.308e-24
.364e=-32
.189%e~08
.3T74e=-24
.496e=-07
.805e-23
.741e-10
.263e-21
.840e-24
.558e~15
.009e-24
.468e~24
.880e=-24
.902e~-24
.323e-03
.952e-09
.281e-04
.312e-07
.162e-11
.120e~04
.286e=-186
.298e-05b
.987e=-24
.484e-24
.003e-24
.743e-24
.686e-24
.887e-04
.85%e-24
.280e-058
.914e-24
.43%e-24
.33%e=-24
.961e-24
.A90e=-24
.651e-24
.128e~-10
.278e-18
LA42e-21
.077e=-05
.510e-086
.B75e-07
.368e-07
.494e-24

285

RWOODHNWDGIRRF NW i~ 00WWON I RN G N L 000w

272e-17
.199e-08
.748e-24
.802e-12
.457e-18
.791e-15
.098e-22
.948e-~28
.000e+03
.218e-02
.522e-24
.930e+0b
.b21e-24
.709e-09
.900e-24
.288e~-16

.197e-17
.817e-02
.454e-08
.884e-24
.012e-20
.560e-27
.188e-14
.595e-24
.133e-20
.207e-27

286

VITA

Candidate’s full name : Sri Hartati
Place and date of birth : Surakarta, Indonesia
September 21, 1961

Permanent address : Sidoluhur 57, Laweyan Surakarta, 57148
Indonesia
Phone: (271) 712 248

Schools attended : Surakarta Junior High School I

Surakarta, Indonesia, 1974 - 1976

Surakarta Senior High School I

Surakarta, Indonesia, 1976 - 1980
Universities attended : Gadjah Mada University

Yogyakarta, Indonesia

Dra. {Electronics) 1980 - 1986

University of New Brunswick

Fredericton, N.B.; Canada

M.Sc. {CS) 1988 - 1990

University of New Brunswick

Fredericton, N.B., Canada

PhD. (CS) 1992 - now

Publications:

1. Hartati, S., Nickerson, B. G., and DeMille, R. G. “Reasoning About Nuclear
Physics Processes”, Proceedings of the Tth IEEE International Conference on

287

Tools with Artificial Intelligence, Washington, D.C, November 5-8, 1995, pp.228-
235.

. Hartati, S., Nickerson, B.G., and DeMille, G.R. “A model for Simulation of
Nuclear Physics Processes”, International Journal of Modelling and Simulation,

accepted September, 1995, 24 pages (in press).

. Hartati, S. “A model for Computer Reasoning about Nuclear Physics Pro-

cesses”, Bianglala Journal, Indonesian Scientific Journal, vol.1, no.3, pp.9-16.

. Hartati, 5. “Bahasa Pemrogramaﬁ Komputer Untuk Fisika Nuklir dan Terapan-
nya di Indonesia” {“A Pfogramming Langunage for Nuclea.r.Physics Processes
and Tts Applications in Indonesia”), Proceedings of the th Seminar, Communi-
cation Forum of the Indonesian Students in Canada, Fr_'edericton, N.B., August

' 24-25, 1995, pp. 127-142.

. Harjoko, A. and Hartati, S. “Pengembangan Basis Data Gambar Digital untuk
Pertahanan dan Keamanan di Indonesia” (“Design of Digital Picture Database
for National Defen.se and Security of Indonesia”), Proceedings of the 4th Semi-
nar, Communication Forum of the Indonesian Students in Canada, Fredericton,

N.B., August 24-25, 1995, pp. 115-126.

. Hartati, S and Nickerson, B.G. “An Efficient Computer Representation of Nu-
clide Data”, Computational Materials Science, submitted, June, 1995, 18 pages.

. Hartati, S. “Nuclear Process Theory: A Symholic Model for Representing Nu-
clear Physics Processes”, Technical Report TR94-087, Revision 2, Faculty of
Computer Science, University of New Brunswick, May 4, 1995.

. Hartati, S. “NPT : a model for computer reasoning about nuclear physics pro-
cesses”, Third Annual Graduate Student Association Conference on Student

Research, Fredericton, NB, April 19, 1995, p.9.

288

10.

il.

12.

13.

14,

15.

Hartati, S and Nickerson, B. Q. “Nuclear Process Theory”, Proceedings of the
11th IEEE Conference on AI Applications, Los Angeles, CA, February 19 - 22,

11995, pp.340-346.

Hartati, S and Nickerson, B. G. “A Symbolic Model for Representing Nuclear
Physics Processes”, Proceedings of the APICS Annual Computer Science Con-
ference, Wolfville, Nova Scotia October 29, 1994, pp.99-108.

Hartati, S. “Reasoning about Physical Systems in Artificial Intelligence”, Tech-
nical Report TR93-080, Faculty of Computer Science, University of New Brunswick,
1993.

Hartati, S. “Representing two dimensional objects using orientation adaptive
quadtrees (OAQs)”, Jurnal Jurusan Fisika, Universitas Gajah Mada, vol.2,
n0.5, pp.39-59, 1991.

Hartati, S. Orientation Adaptive Quadtrees, Master Thesis, Faculty of Computer

Science, U_ﬁiversity of New Brunswick, 1990.

Nickerson, G and Hartati, S. “Constructing Orientation Adaptive Quadtrees”,
Proceedings Graphics Interface 80, Halifax, May 1990, pp.190-195.

Hartati, S. Simulasi elektronik mesin penjual qula-gula (Electronic simulation
of candies vending machine), Bachelors Thesis, Department of Electronics, Fac-
ulty of Mathematics and Natural Sciences, Gajah Mada University, Yogyakarta,
1986. '

289

