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Abstract

In sp.ite of the fact that some of the outstanding physiologists and neurophysiologists
(e.g. Hermann von Helmholtz and Horace Barlow) insisted on the central role of
inductive learning processes in vision as well as in other sensory processes, there are
absolutely no (computational) theories of vision that are guided by these processes.
It appears that this is mainly due to the lack of understanding of what inductive

learning processes are.

We strongly believe in the central role of inductive learning processes, around which,
we think, all other (intelligent ) biological processes have evolved. In this paper we
outline a {computational) theory of vision completely built around the inductive
learning processes for all levels in vision. The development of such a theory became
possible with the advent of the formal model of inductive learning—evolving trans-
formation system (ETS). The proposed theory is based on the concept of structured
measurement device, which is motivated by the formal model of inductive learning
and is a far-reaching generalization of the concept of classical measurement device
whose output measurements are not numbers but structured entities (“symbols”)

with an appropriate metric geometry.

We propose that the triad of object structure, image structure and the appropriate



mathematical structure (ETS)—to capture the lafter two structures—is precisely
what computational vision should be about. And it is the inductive learning process
that relates the members of this triad. We suggest that since the structure of
objects in the universe has evolved in a combinative (agglomerative) and hierarchical
manner, it is quite natural to expect that biological processes have also evolved (to
learn) to capture the latter combinative and hierarchical structure. In connection
with this, the inadequacy of the classical mathematical structures as well as the

role of mathematical structures in information processing are discussed.

We propose the following postulates on which we base the theory.

Postulate 1. The objects in the universe have emergent combinative hierarchical
structure. Moreover, the term “object structure” cannot be properly understood
and defined outside the inductive learning process. |

Postulate 2. The inductive learning process is an evolving process that tries to
capture the emergent object (class) structure mentioned in Postulate 1. The math-
ematical structure on which the inductive learning model is based should have the
intrinsic capability to capture the evolving object siructure.

(It turns out that the corresponding mathematical structure is fundamentally dif-
ferent from the classical mathematical structures.)

Postulate 3. All basic representations in vision processes are constructed on the
basis of the inductive image representation, which, in turn, is constructed by the
inductive learning process (see Postulate 2). Thus, the inductive learning processes

form the core around which all vision processes have evolved.

We present simple examples to illustrate the proposed theory for the case of “low-

level” vision.

Keywords: vision, low-level vision, object structure, inductive learning, learning from
examples, evolving transformation system, symbolic image representation, image structure,

abstract measurement device.
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“If the universe is not meaningless, what is its meaning? For me, this meaning
is to be found in the structure of the universe, which happens to be such as to
produce thought by way of life and mind. Thought, in turn, is a faculty whereby

the universe can reflect upon itself, discover its own structure ...”.

Christian de Duve, Vital Dust, 1995,

“The final results of the experience and reflections just presented may, [ believe, be
summarized as follows:

1. Tn human beings we find reflex movements and instincts as effects of innate
organizations. Instincts act in the interest of the pleasure of some impressions and
in avoidance of the discomfort of others.

2. Inductive inferences, evecuted by the unconscious activity of memory, play a

commanding part in the formation of intuitions [our italics].”

Hermann von Helmholtz, Selected writings of Hermann von Helmholiz, 1971.

1 Introduction

So far, most of the formal developments in computer vision have proceeded under the implibit
assumption that inductive learning processes are not very relevant to the extraction of basic
image information and construction of the corresponding representations, particularly for
low-level vision [1], [2], {3]; some recent exceptions include the work by Pachowicz [4] and
Bala [5]. However, the latter work does not at all attempt to present any theory of vision.
All the core research work in computational vision (e.g. the “school of D. Marr”) absolutely
ignores the inductive learning processes. And this has been already noted by some researchers
in perception and sensation: e.g. Coren [6] p. 14, notes that “David Marr [1] ...began with
the general presumption made in direct perception that all of the information needed is in
the stimulus inputs [our italics]”, i.e., no dependence on the learned information.

The inductive theory of vision proposed in this paper postulates that vision processes get all
the basic representations via inductive learning processes {Sections 4, 9). Why do we believe
in (and propose) the absolutely central role of inductive learning processes in vision? The

answer can be seen from two sides. First, the hope is that the inductive processes embody
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the universal and efficient means for extracting and encoding the relevant information from
the environment. In other words, we believe (together with Helmholtz 8] and Barlow [9])
that there is a universal mechanism for exiracting the relevant features from the environment
(and therefore for building representations of the environment). This mechanism operates
across various senses and at all levels of information processing. Second, the evolution of
intelligence could then be seen, more or less, not as ad hoc, but as a result of interactions of

such a mechanism with the environment.

Why are most of us ignorant of the quintessence of the scientific experience of the last four
centuries—the mathematical parsimony? More specifically: Why have the corresponding
inductive learning models not been developed and/or perceived as central to Al and cognitive

science In general, and vision in particular?

It appears that the main obstacle to the development of an adequate inductive learning
model has been the absence of the satisfactory mathematical structures. Any modeling
begins with the choice of an appropriate mathematical structuré‘(see the quotation by John
von Neumann at the end of Section 3). In case of inductive learning, in spite of extensive
investigations over the last 40 years, it appears that none of the existing mathematical
structures are appropriate to model these processes (see Section 6). Unfortunately, the
latter fact has been hardly recognized. This is basically due to the improper understanding
of the role and the implications of the choice of the underlying mathematical structures
in information processing (see also companion paper [10]). It was conjectured that the
problem of inductive learning requires for its solution a new mathematical model based on a
fundamentally new mathematical structure which allows for a dynamic update of the class

structure being constructed during the inductive learning process {[11] Section II).

We base the proposed theory of vision on the evolving transformation systems (ETS)
model for inductive learning originally proposed in [12] (see also [11] {13] [14]). The model
represents a very natural symbiosis of symbolic and numeric formalisms and clarifies the role
of each one in the inductive learning process. Moreover, it suggests a new form of inductive
class representation which also represents a symbiosis of the classical symbolic (discrete) and
numeric {continuous) representations. ETS also allows for a very “natural” learning process
in which the structure of the class is regularly updated.

We strongly believe that any theory of vision will stand or fall based on the appropri-
4



ateness of the chosen mathematical structure that is chosen to model the central perceptual
process—inductive learning. To better clarify the relationships between the theory and the
corresponding mathematical structure involved, i.e. that the theory should be built on top of
the mathematical structure, the paper is composed of two parts. In the first half of the paper
(Sections 2-6) we justify and outline the formal foundations of the theory, which includes a
descﬁption of the relevant underlying mathematical structure. In Section 2 we emphasize
that the structure of objects in the universe is combinative and in order to capture this com-
binative structure, a fundamentally new mathematical structure may be necessary. What is
a mathematical structure? The answer to this question and the role of mathematical struc-
tures are discussed in Section 3. The central role of inductive learning processes in capturing
the evolving combinative structure is outlined in Section 4. In Section 5 we outline a new
mathematical structure—evolving transformation system (ETS)—and in Section 6 the inad-
equacy of the classical mathematical structures for modeling inductive learning processes is
discussed in light of the ETS. '

In the second half of the paper (Sections 7-11) we outline the basic ideas of the induc-
tive theory of vision, including the goal of vision, fundamental limitations of the current
approaches to low-level vision, the role of inductive learning in low-level vision, structured
and inductive image representation and signal to symbol transformations and present few
examples. The central concept of the second half of the paper is that of structured measure-
ment device which appears to be a revolutionary but necessary (symbolic) generalization of

the corresponding classical concept.

2 Evolution of the universe and the structure of objects

We begin the first part of the paper by examining the evolving structure of objects in
the universe. The following extended quote by the astrophysicist Hubert Reeves, who is
an outstanding popularizer of science, gives a very appropriate summary of the present

understanding of the evolution of the universe.

Let’s imagine that Aristotle, one of the pioneers of the enterprise, were to return
among us and ask: “What do you know about nature that we didn’t know in our

time? What have you learned that is new since we walked upon the earth?”

................................................................................



We could answer Aristotle’s question with two sentences: 1. “Nature is structured

like a language”; and 2. “A pyramid of complexity has arisen over the ages.”

A written language is made up of letters, words, sentences, paragraphs, chapters,
books, collections. The basic formula is combinative. Words are combinations of

letters, and a combination of words gives us sentences.

Here we encounter an important concept: the “emergent property.” The combi-
nation of letters in a specific order results in the appearance of something “new,”

something we can’t find when we look at each element separately. ...
These emergent properties come into play at every level. ...

We can therefore use the image of a pyramid with superimposed “alphabets” (let-
ters, words, sentences, paragraphs, etc.) to describe a written language. Each ele-
ment at & particular level is composed of elements form the level below and makes
the elements of the level above. Words are the “letters” of the sentences, sentences
are the “letters” of paragraphs, and so on. The basic principle of the construction

is, once again, a combinative process that generates emergent properties.

... We have come to realize that this formula (writing), invented by human beings

some five or six thousand years ago, has been used in nature for fifteen billion years.

In parallel with the pyramid of written language (letters, words, sentences, para-
graphs, chapters, etc.) we can today raise up the pyramid of nature’s superimposed

alphabets.

The lowest level is home to the nuclear force, responsible for combining quarks into
nucleons into nuclei. Higher up, we enter the ferritory of the electromagnetic force,

in charge of the formation and workings of molecules, cells, and living organisms.

We have now explained the meaning of our first key statement: “Nature is struc-

tured like a language.” ...



The second key statement in our message to scientific pioneers comes to us from as-
tronomical and cosmological research. It goes like this: “The pyramid of complexity

was erected in the course of time.”

... The corresponding structures — nucleons, atoms, molecules, cells, organisms —
have all appeared one after the other. We can thus describe the history of the

universe in terms of the ascent of matter toward higher levels. [15] pp. 105-110.

Thus for our purposes we may think of an “object” structure! as being evolved in a com-
binative (agglomerative) manner starting from some initial simple “objects”. Moreover, the

biological evolution also points to the same, “combinative” direction:

These and other living relics of once-separate individuals, detected in a variety
of species, make it increasingly certain that all visible organisms evolved through
symbiosis, the coming together that leads to physical intérdependence and the
permanent sharing of cells and bodies. Although, as we shall see, some details of
the bacterial origin of mitochondria, microtubules, and other cell parts are hard to
explain, the general outline of how evolution can work by symbiosis is agreed upon

by those scientist who are familiar with the lifestyles of the microcosm.

This revolution in the study of the microcosm brings before us a breathtaking view.
It is not preposterous to postulate that the very consciousness that enables us to
probe the workings of our cells may have been born of concerted capacities of million

of microbes that evolved symbiotically to become the human brain. [16] pp. 21-22.

In view of the above it is quite natural to expect that biological information processes
have evolved to capture the latter combinative and hierarchical structure. In other words,
one can think of the central biological processes as those processes in the universe that try
to capture the evolving structure of the universe.

If we look at vision processes from this perspective, we can hypothesize that all levels in

vision try to capture this combinative “object” structure (at an appropriate level).

1The word aobject refers also to an event, a process, etc.
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Postulate 1. The objects in the universe have emergent combinative hierarchical struc-
ture. Moreover, the term “object structure” cannot be properly understood and defined

outside the inductive learning process.

3 Mathematical Structures and their role

A group of outstanding French mathematicians, who took the pseudonym of Nicolas Bour-
baki [17], contributed significantly to the popularization of mathematical structures whose
understanding was emerging during the first half of this century.

Presently a mathematical structure, e.g. totally ordered set, group, vector space, topolog-
ical space, is understood as a set—carrier of the structure—together with a set of operations,
or relations, defined on it (and/or on its power set where the power set is a set of all subsets
of the given set). The relations/operations are actually specified by means of axioms [17]
[18] and describe (axiomatically) the interrelationships among i;he elements of the carrier
set. In other words, mathematical structures, essentially, postulate various kinds of abstract
relations among the objects in the set, i.e, one postulates the rules for manipulating, or
working with, the objects in the set. An example of a typical algebraic structure is that of a

K. »n
©

group, which is defined as a carrier set 7 plus a binary operation satisfying the foﬂowihg
axioms:
(e, beG=a0be G,
(i) the operation is associative,
(iii) the operation has a neutrel elemente: Va€ G eoa=a,
(iv) every element of G has an inverse with respect toe: Ya€ G Je ' € @  a'oca=e.
It is not surprising that some structures are more similar to each other than to other
structures, e.g. fields and vector spaces, topological spaces and uniform spaces, because such
structures were “designed” to capture similar types of relationships.
It appears that in relation to reality mathematical structures play the following role. If
the axiomatic structure captures optimally the generative abstract structure of the natural
phenomenon, then the mathematical results obtained within the postulated structure also

capture important features of the phenomenon and thus can predict these features. It is

important to note that the same phenomenon may be captured to a more or less satisfactory
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degree by various mathematical structures. In other words, a mathematical structure could
be thought of as eyeglasses through which we can view the phenomenon. It goes without say-
ing, that as the need arises, new eyeglasses may need to be constructed, since the eyeglasses
may change completely our view of the phenomenon (compare the mathematical model of
classical mechanics with that of quantum mechanics; see also companion paper [10]).

In view of the above, we must emphasize the absolutely critical role of (mathematical)
structures in the study of nature. This is simply because all our formal (and therefore infor-
mal) understanding of the phenomenon is completely dependent on the postulated structure.
In this connection, it is useful to keep in mind the view of John von Neumann, one of the

leading scientists of this century:

“To begin, we must emphasize a statement which I am sure you have heard before,
but which must be repeated again and again. It is that the sciences do not {ry to
explain, they hardly try to interpret, they mainly make models. By model is meant
a mathematical construct which, with the addition of certain verbal interpretations,
describes observed phenomena. The justification of such a mathematical construct
is solely and precisely that it is expected to work — that is, correctly to describe
phenomena from a reasonably wide area. Furthermore, it must satisfy certain
aesthetic criteria — that is, in relation to how much it describes, it must be simple.”

[19] p. 492.

4 On the central role of inductive learning processes

We strongly believe that inductive learning processes are the only central processes around
which all other biological information processes have evolved. Why? The answer should
become clear if we re-think carefully a well known fact captured by Schrodinger in the

following quotation.

“A single experience that is never to repeat itself is biologically irrelevant. Biological
value lies only in learning the suitable reaction to a situation that offers itself again
”

and again, in many cases periodically, and always requires the same response .. ..

[20] p. 96.

The same point has been emphasized by a number of outstanding physiologists such as

Helmholtz, Barlow [9] and others. Here is a quotation from the last paper of Helmholtz.
9



“The final results of the experience and reflections just presented may, I believe, be
suramarized as follows:

1. In human beings we find reflex movements and instincts as effects of innate
organizations. Instincts act in the interest of the pleasure of some impressions and
in avoidance of the discomfort of others.

2. Inductive inferences, executed by the uncomscious activity of memory, play a
commanding part in the formation of iniuitions.

3. It may be doubted that there is any indication whatseever of any other source or

origin for the ideas possessed by a mature individual.” [8] p. 512; [our italics).

We believe it 1s the inductive learning processes that allow a biological agent to extract the
necessary information from the observed phenomenon and consequently to encode it, i.e., to
commit it {o memory.

What is the correct formulation of the inductive learning problem? The basic problem
may be stated as follows: |

Given a finite set Ot of positive training objects that belong to a (possibly infinite) set C
(concept) to be learned and a finite set €~ of negative training objects that do not belong
to the concept €, find an analytical model that would allow one to construct the class
representation and, as a consegquence, to recognize if the new element belongs to €. In other
words, on the basis of the finite training set Ct U ¢, such that C* N C~ = ¢, the agent
must be able to form an “idea” of the inductive generalization corresponding to the concept?
C. The potential model should be able to construct the (inductive) structure of the class
C based on its finite subset C'*. By the structure of the class we mean: (1) the symbolic
features that make the objects of the class similar to each other and/or different from other
objects outside the class, and (2) the emergent interrelationships among these features (see
Section 5). The inductive learning process would then involve the discovery and encoding of
the (inductive) structure of the class, which during the consequent recognition stage is used
in the resulting distance function to compare a new object to some fixed objects from C¥.

We believe that the question of representation is directly related to that of the class
structure and therefore cannot be addressed properly outside the inductive learning model.

Moreover, we believe {and illustrate this in Section 10) that the consiruction of the repre-

20bjects in CF could be different “views” of the same object.
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sentation should be the main part of the inductive learning process.

It appears that one of the basic reasons for a peripheral role of inductive learning in artifi-
cial intelligence in general, and vision in particular, is the lack of an adequate formal modei
for inductive learning. At the same {ime, we believe that the absence of the model could
be partly explained by the lack of an adequate understanding of the role of inductive learn-
ing processes by the three founding schools of Al (viz. Massachusetts Institute Technology,
Carnegie Mellon University and Stanford University).

5 A new mathematical structure: The Evolving Transformation System

We now turn to a very brief description of the evolving transformation system (ETS) model
of inductive learning proposed in [11]-[14], [21]. The model could be thought of as the
formalization of the concept of symbolic system whose role in Al has been so pervasive. ETS
is the mathematical structure that is “built from more primitive” mathematical structure—

the transformation system, whose axiomatic definifions we give next.

Definition 1 A transformation system (7TS) is ¢ iriple
T = (5,0, D)

where:

S 15 a set of structs over a finite struct alphabet A; structs are analogously structured
discrete representations of objects (e.g. strings, trees, etc.) ;
O = {0}, is a finite set of operations that are mullivalued functions, 0; : § — S,
satisfying the following two azioms:

(()Yoc O ¥scS§ JorcO suchthat Vs €ols) seo(s)

(1) for every pair of structs there exists a sequence of operations that transforms

one into the other;

the set O specifies permissible operations for transforming one struct into another

(e.g. deletion-insertion, substitution operations) and can be thought of as
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a postulated set of basic/primitive “object features”;
D = {A.}uen 15 a {competing) family of distance functions defined on set S whose

parameter set Q is the (m — 1) -dimensional unit simplez in ™

Q:{w=(w1,w2,...,wm) | ‘!.D’:ZO, Zw‘zl}

i=1
and each of the distance functions A, is defined as follows: weight w' is assigned

to the operation o; and

k
A(s1,82) = mig nz_:l W)

where the minimum is taken over the set O all possible sequences o; = (o&j}....og))

of operations that transform struct s; wnto struct s;.

To compute the distances A, (s1,52) the system must use its set of operations in a “coop-
erative and competitive” manner. Thus, all the properties of the system resulting from this
definition can be viewed as emergent properties.

If T; = (51,01, D1) and Ty = (52, 02, Dy) and, moreover, S1 C S, (4 € Oy, then we will
say that the transformation system T, 1s a transformation sub-system of Ty: Ty C T',.

Since the set of real numbers is constructed form the set of rational numbers, which is, in
turn, constructed from the set of natural numbers (see, for example, [22]), it is not difficult
to see that for all practical purposes the set of real numbers can be viewed as a TS: the set
of natural numbers is a Peano TS where the alphabet A = {a}, S is the set of strings over
A (ie. § = {6,a,a0,aaa,...}), and O is the set consisting of a single operation 0 : a « 8
(« denotes a pair of operations a — 8, § — a).

One should also note that since from computational perspective the class of TSs is equiv-
alent to the class of Turing machines ([23], Chapter 13, Theorem 2), in a TS we have as
powerful computational “device” as is known at present.

Learning in a TS can be reduced to the following optimization problem:

Iilea‘*]f fw), flw)= c _{15::(){0)
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where fi(w) is the A,-distance between C* and C~, fa(w) is the average A, -distance within
C*, and c is a small positive constant to prevent the overflow condition (when the values of
fa{w) approach 0). Since f(w) gives both the measure of compactness of Ct as well as the
measure of separation of Ot from ¢, it is called the quality of (learning) class perception.

For a given concept C and given set O of operations, every optimal weighting scheme
w* € Q generates the ‘best’ metric configuration of the training set C*. In other words,
under the given set of operations, the corresponding distance function A« gives the ‘best’
separation of the positive training set with respect to the negative one.

Evolving transformation system (ETS) is a mathematical structure that involves a finite

or infinite sequence of TSs with a common set S of structured objecis
T: =(5,0:;, D, R)

in which each set of operations O;, except Oy, is obtained from Og_l by adding to it one or
several operations that are constructed from the operations in O;_; with the help of a small
set R of composition rules. Each rule r € R specifies how to (systematically) construct a
new operation from the existing operations, e.g. to the set {a «» 6,b < 8} one can add

operation ab «» 8, or a & b.

From the above definition of ETS it follows that at stage ¢ we have

O CO1C0;C...C O

Qo CQ CMHC...C.

Roughly speaking, the inductive learning process for the ETS proceeds by constructing
a sequence of O;’s in such a way that, for each consecutive T;, the minimum value of fo
decreases (while making sure that the value of f; is not zero), i.e., the inteﬂdista,nces in
C* gradually shrink to zero while the distance between C* and ¢~ remains non-zero. We
strongly recommend to see [11] for an example of the inductive learning process with ETS.
The fundamental difference between the ETS model and the other inductive learning models
is due to the inirinsic capability of the former o evolve through the above séquence of TS’s,

each of which offers a fundamentally different and “more optimal” class of distance functions.
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Definition 2 In view of the above model of inductive learning process, the inductive class

structure II is defined by the following triple
IT= (C_H-.: Oﬁm Qﬁﬂ)

where CT is a small subset of O, O is the final set of operations at the end of the learning

process, and Qi C Q is the set of optimal weight vectors for the final transformation system
(relatively often | Qpm |= 1).

Thus, since, during the recognition stage, the class membership of a struct s will be
determined on the basis of its A,+-distance to O, the class structure embodies the symbiosis
of both the classical discrete {Oyy,) and continuous () formalisms (see also [12]).

Postulate 2. The inductive learning process is an evolving process that tries to capture
the emergent object {class) structure mentioned in Postulate 1. The mathematical structure
on which the inductive learning model is based should have the intrinsic capability to capture

the evolving object structure.

6 Inadequacy the classical mathematical structures as candidates for

inductive learning model®

Classical mathematical structures such as the ordered set, the field, the vector space, etc.
have emerged as a result of investigation of numeric systems. On the other hand, from the
very beginning Al has been dealing with symbolic systems and the feeling of the practitioners
of Al has been that the symbolic systems are fundamentally different from the numeric
systems. In [14] a basis of an argument that the vector space based (numeric) learning
systems cannot learn in symbolic environments was presented, suggesting that, indeed, the
two types of mathematical structures are quite different.

It appears that one of the basic facts contributing to the fundamental differences between
the symbolic and numeric systems is as follows: while the binary relation of order plays

an absolutely critical role in numeric structures, it does not play any substantial role in

33ee also companion paper [10].
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symbolic structures (see definition of a transformation system in the last section). Thus, for
example, the Peano éxioms for natural numbers simply specify a very restricted type of a
transformation system, i.e., one over a single letter alphabet and with a single operation—
successor function. The latter represents a mathematical structure that can completely and
equivalently be specified in the language of ordered set. As a consequence, while the topology
in the nurmeric system is intimately related to the corresponding ordering, the topology in

the symbolic system is not.

It turns out that the structural limitation of vector spaces—the basic mathematical struc-
ture used to model inductive learning processes—is of the nature that prevents the learning
agent from being able to modify, if necessary, the structure of the inductive c:l.a.ss represen-
tation: since the space where objects are represented is linear, the only “legitimate” class

structures that can {(inductively) be constructed based on the finite training set are linear.

In reality, the corresponding linear subspaces induced by the training vector data rep-
resentation hardly ever capture the structure of the class from which the training set was
extracted. Thus, to overcome the above structural limitation of the vector space, practically
all vector space based models introduce in a (necessarily) arbitrary manner (i.e., in a manner
not related to the mathematical structure of the underlying vector space as well as to the
structure of the data) some class of non-linear functions that is used to approximate “class”
boundaries based on the vector representation of the training data. The “class” consiructed

in this manner has little to do with the class from which the date was collected.

In contrast to the above structural limitations of the classical numeric (continuous) struc-
tures, the axiomatic structure of the proposed evolving transformation system is such that
it does allow the agent to modify the structure of the inductive class during the learning

process (see previous section), by modifying the set of operations.

This concludes part 1 of the paper in which we have very briefly outlined a formal model
for inductive learning (ETS) and mentioned the fundamental limitations of the classical
mathematical structures that ETS overcomes. We have also emphasized the fundamental
role that mathematical siructures are destined to play in the comstruction of models for
intelligent information processing systems. Finally, the absolutely central role of inductive
learning processes in extracting the information from the environment and constructing the

corresponding symbolic and numeric representations at all levels of biological information
15




processing in general, and vision in particular, was postulated.

7 Vision and Symbols: A New Perspective

In this, second part of the paper, we outline a fundamentally new approach to vision (with
a particular focus on “low-level” vision) based on the inductive learning model discussed in
part 1. As discussed earlier, the lack of appropriate mathematical models has resulted in
little or no understanding of the basic processes involved in vision. In this connection, it is
important to stress that the foundations of vision lie “outside” vision proper, since, vision
processes have evolved out of earlier physical processes to capture the inductive (combinative)
structure of objects. Our division of the paper in two parts is also motivated by this fact.
We lay the groundwork for such a foundation by, first, identifying the goal of vision (see last
paragraph of Section 7.1) and limitations of the current approaches to low-level vision, and,

then, proposing an appropriate framework to accomplish it.

7.1 What is the goal of Vision?

Understanding human vision has been one of the major quests of science. However, we
think, that such an endeavor is absolutely futile without an adequate understanding of the
objective (goal) of vision processes. What is the “goal of vision”? Is it, to produce “a compact
representation of the image data” [24], or is it to “produce from the images of the external
world a description that is useful to the viewer” [25], or is it “to exploit the light emitted
or reflected by the environment in order to improve the chance of survival” of the viewer
[26]7 These and many other descriptions of the purpose of vision can be found in the vision
literature [2]. None of these goals are adequate enough to direct us to and focus on the
basic/central/driving processes in vision. We believe that the focus on the central processes,
as has been the trend in physics, is critical to the entire enterprise.

We propose that the objective of vision processes is to extract the combinative structure
of objects and scenes (postulate 1), and interpret it (postulate 2) in order to “successfully”
interact with the external world. What has been insufficiently understood so far is the role
of mathematical structures that capture the combinative object structure in vision. We
believe that it is the knowledge of such object structure which is necessary and sufficient

to interact successfully with the external world. In other words, the goal of vision that we
16




propose is to construct a representation of the external objects based on their combinative
structure. Moreover, such an internal representation should also be combinative and can be
captured only by an appropriate formal model. We believe that the above objective is not
controversial. However, what is controversial is whether the current approaches to vision are
adequate or not to capture the combinative object structure. Thus, two main objectives of
this paper are: to simply stress the latter point and to outline an inductive framework for

vision that can capture the combinative structure of objects, at all levels of vision.

An immediate and very natural question 1s: How do vision processes capture structure
of objects? The answer can be intuited by focusing on what is meant by tmage siructure
and its role in vision. The term image structure has been used in the vision literature quite
frequently and has been understood to play an important role. We believe that the structure
of image has to play not just an important but the driving role. Moreover, we propose that
the structure of objects should be captured through the extraction and representation of
image structure. The (low-level) structure of image is conventionally understood (mainly
based on the foundational work of Marr and co-workers [1]) as defined in terms of edges,
blobs, etc. Recently, Koenderink proposed a new image representation scheme for describing
image structure {27]. In this scheme the image is represented at different resolution levels and
such a representation “defines” the image structure. However, in the schemes of Marr and
Koenderink the interpretation and understanding of the term structure and hence “image
structure”, are quite imprecise and inadequate, since the schemes are not (explicitly) guided

by postulates 1 and 2.

Ag far as the Iﬁeasurement devices used in vision are concerned, for example a CCD
camera, they are also objects with the combinative structure determined by the structure
of the array of sensors (see Section 9 for a proposed description of measurement devices
and their structure). Since both the objects and a camera have a combinative structure,
the image structure, thus, should also be interpreted as a combinative structure. It follows
that the goal of vision is to determine this combinative image structure which captures the

cormmbinative object structure.

We propose to capture the concept of combinative structure by means of the axiomatically
introduced new mathematical structure—transformation system {TS), since we believe that

the language of mathematical structures is the only legitimate means for describing the
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structure of objects. This abstract structure, in turn, should help one to interpret the
inductive learning processes®.

Until recently no formal mathematical framework has been proposed that can extract
the {combinative) image structure. As mentioned above, the term “structure” can get a
satisfactory formal interpretation only through the corresponding mathematical structure,
and such a precise inferpretation of the term (combinative) structure is what has been
lacking. We propose to interpret “structure” in light of a mathematical structure only, and
that no other interpretation will be adequate. Moreover, the corresponding mathematical
structure should be appropriate for capturing the combinative nature of the object structure.

The triad of image structure, the corresponding mathematical structure, and the (combi-
native) structure of objects is precisely what computational vision should be about. And it is
the inductive learning processes, through the discovery of the class structure, thot relate the
members of the triad.

To summarize, we propose that the main objective of vision processes is to determine
inductively the (combinative) image structure. This structure, in turn, determines the (com-
binative) object structure and, thus, allows the agent to successfully interact with the ex-
ternal world. The term “(combinative) structure” should be interpreted only through the

corresponding mathematical structure as it is currently practiced in mathematics [17] [18].

7.2 Fundamental limitations of the current approaches to low-level vision

As discussed in the previous section the fundamental goal of vision is to extract and encode
the ;:ombinative image structure which corresponds to the combinative object structure.
These combinative structures can only be captured if the appropriate mathematical struc-
tures are employed. Thus, we view the limitations of any approach to vision as following from
the limitations of the corresponding mathematical structures that are implicitly or explicitly
used to capture the combinative object structure. In this section we discuss the limitations
of the current approaches to low-level vision on that basis.

As we discussed in Section 3, given a mathematical structure, the types of combinative
structures that it can capture are completely specified by its axioms, or postulates. Again,

the widely accepted classical mathematical structure - the vector space siructure - can cap-

*For a discussion of the role of mathematical structures see Section 3 and [10].
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ture only certain types of structures, i.e, linear structures. Since there are potentially an
unbounded number of classes of combinative structures (in various “environments”), we
should opt, if possible, for a mathematical framework (e.g. ETS) that allows one to dynam-
ically modify the form of the basic mathematical structure (e.g. TS) that is used to capture
the specific class of combinative structures. In fact all the classical (numeric) mathemat-
ical structures (e.g. group, vector space) by their very definition do not allow for such a
modification. In other words, in all of the existing mathematical frameworks, the class of
structures they can capture is fixed. Therefore, within any classical applied framework one
can capture only certain (postulated) class of structures, i.e., one cannot capture any other
class of combinative structures. Hence, the necessity for a fundamentally new framework

and the difficulties related to its development and application.

In order to point out the limitations of the current approaches to low-level vision, we now
review some of the more known approaches to low-level vision, all of which are based on the

classical mathematical framework.

One of the most extensively studied problems in low-level vision is that of edge detection.
Several different edge operators have been proposed, e.g. Roberts [28], Kirsch {28], Sobel
[28], Prewitt [28], Robinsons [28], and others, including, the well known work of Marr and
Hildreth [7]. Basically, all these schemes form a part of the first stage in low-level vision,
or filtering stage, that extract edges, blobs, lines, points, corners, etc., from the image (at
different scales and orientations). A recent work by Perona [29] describes a mathematical

framework for determining families of linear filters on a continuum of orientations and scales.

Edges, blobs, points, lines and corners are only some of the infinitely many possible com-
binative structures in the image. Thus, all the current approaches that are proposed to
detect these structures, are in fact extracting from the image an a priori postulated class of

combinative structures.

As far as image representation is concerned, a new scheme is proposed in [30]. The
authors suggest to represent essentially all “the physical structure of the image in a form
that is readable by point processors”. The processors, in turn, determine what to extract.
This scheme does not specify what the structure is and how the processors should eztract
it from such a representation. In contrast, there are some symbolic image representation

schemes that have been proposed [31]. However, the underlying framework is still based on
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the extraction of postulated features viz. edges and corners. The author of [31] proposes
a scheme in which he defines “gradient operators” at different scales that can extract the
features at multiple scales. Thus, the latter work can be seen as a special case of [29] and

an extension of [7].

More recently, a “generalized Gabor scheme of image representation” was proposed in
[24]. Such a representation has, in a certain sense, optimal resolution both in frequency
and spatial domains. The representation, which was motivated by the neurophysiological
studies, consists of approximations of the original intensity measurement function. Again,
such a representation cannot really discover the object structure, it can only capture a specific
form of a combinative structure that is pestulated by the set of Gabor filters. Thus, in this
case, as well in all other frequency based representation schemes [32] [33], one necessarily
ignores (because of the postulates) any other classes of structures that may be present in

the image and that capture some other image features.

Let us briefly analyze the above approaches to low-level Visic;n in order to identify the
common underlying mathematical structure—the vector space. It is the vector space of
measurable, square-integrable functions with an inner product defined on them. Moreover,
due to the discretization, one can assume that the vector space is finite-dimensional. Thus,
it is a finite-dimensional Kuclidean space. Any linear-filtering operation is the projection
operation, that projects the function to be filtered onto a subspace spanned by the basis
vectors, i.e. functions, that represent the filters. And as such, each of the above schemes,
by choosing a particular set of filters (or basis) extracts (or approzimates) a very specific
(predetermined, or. postulated) linear structure. That is, when one chooses a particular basis
(say a set of Gabor filters, or a Laplacian of the Gaussian filter}, one has, in fact, postulated
a very specific type of structure that is to be extracted. Therefore, the other classes of image
structures, and hence object structures, cannot be discovered. As was mentioned above in
this section, none of the existing classical mathematical frameworks allow one to extract
various classes of the image structures, present in practically all images, without postulating
them. Moreover, practically all non-trivial images contain enormous number of various image

structures.

At the same time, from the neurophysiological studies of low-level vision, the following

two descriptions of the cortical structure have emerged: a feature detector based description
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as proposed by Hubel and Weisel [34] and frequency filters based description as proposed by
Campbell and Robson [35]. Until the work of Campbell and Robson, it was believed that
the visual cortex is composed of cells that are sensitive to certain features. Later studies also
“revealed” that the cortical cells behave like Spatia.l filters {36} [37]. After Daugman’s recent
proposal [38] that a Gabor-filter-based signal representation provides optimal resolution in
both frequency and two dimensional spatial domains, many neurophysiologists generally

believe in the validity of such a description of the visual cortex [40].

The principal justification for this description of the visual cortex (Gabor-filter-based
signal representation), is that this representation removes the statistical and spatial redun-
dancies and results in a compact code [40]. However, such a compact coding scheme is also
shown to be insufficient to account for the receptive field properties of the cells. Rather, it
is proposed that the cells transform the higher order redundancies to the lower order ones

[41] [42].

Let us briefly analyze the above resulis of the neurophysiological studies. All physical,
including neurophysiclogical, experiments are guided by mathematical models (or more pre-
cisely mathematical structures), and this fact is known to neurophysiologists. Again, the
above studies have been based on the frequency-filter based mathematical model, more pre-
cisely the vector space model. Any interpretation, as well as the results, will be necessarily
within the context of this mathematical structure. Thus, the term redundancy used above
is also defined in the context of the vector space structure, and so the interpretation of why
the cells perform a spatial frequency-based-filtering should be understood only through such
a definition of Tedﬁnda.ncy. Of course, the response properties of the cells do show a profile
that is similar to the Gabor function, but does that mean that the cells use the responses as
modeled by the Gabor function in perception? As previously mentioned, such a Gabor-filter-
based signal representation can only be considered as a means for functional approximation.
None of the neurophysiological experiments performed so far reveal any information about
the basic/central processes that capture the object structure. The existing experimental
settings do not allow one to perform the appropriate experiments. Is it legitimate, then, to
use the response properties of the cells as a justification for the chosen Gabor-filter-based

image representation (as done in [24])?

In {43] the authors have demonstrated the differences between feature detection and struc-
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ture detection, and they suggest that orientation-tuned receptive field mechanisms can be
appropriate for extracting features but cannot extract structure. Moreover, as we have
already discussed, since these features are postulated one can exiract a very specific, prede-
termined class.of combinative structures.

According to the proposed framework, in order to determine the object structure, vision
becomes a “symbolic” process right at the transduction stage in the retina. Thus, if the
latter is indeed the case, then one needs an appropriate mathematical structure to guide
the experiments, and, moreover, the vector space structure is absolutely inadequate for the
purpose (see Section 6). Since the neurophysiological experiments have been guided by an
inappropriate mathematical structure—vector space, one cannot determine the functioning
structure of the visual cortex. Thus, it should be clear that the neurophysiological studies
may need a fundamentally new mathematical structure to guide the experiments, and, of
course, such a structure would necessarily have profound implications to our understanding of
vision processes. For example, as noted in [44] p. 95 the “relatively simple feature detectors
[orientation selective neurons] cannot resolve the complexities of the everyday perception”,
since these simple “leature detectors must somehow be combined into the complex forms
that you see every day, and we do not yet know how this is accomplished”. The model that

we propose may shed light on the nature of these combinative processes®.

8 The role of inductive learning in low-level vision

Inductive learning is a process of construction of class abstraction, or class concept, or
generalization. It has been mainly thought of as a high level cognitive process. We believe,
however, that this is a central and driving process that forms the core around which all
cognitive processes have evolved at all levels. It is precisely this view that has led us to
suggest the fundamental role of inductive learning processes in low-level vision. Low-level
vision studies have (practically) completely ignored the learning processes. In contrast, we
propose a critical role of inductive learning processes for all levels of vision, and specifically
for low-level vision, which, we believe, should in turn, resolve different issues related to
representation. Exactly what is represented is determined by the inductive learning process.

ESee also [44] p. 94 where the experimental observations of the neurons that respond to complex stimuli such as

faces are discussed.
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Moreover, the term representation is clarified in light of the formal model of this process.

To properly understand the term image structure, for our purposes we propose to interpret
informally the term “structure” in this context as follows: structure is a collection of objects
together with the (emergent) relations bet'waén them that allows one to abstract (generalize)
and associate meaning with the set of objects. This interpretation of the term structure is
closely related to the interpretation of the term mathematical structure, e.g. group, field,
and vector space. Thus, in the case of low-level vision, using the famaliar language, the image
structure could be thought of as the collection of the intensity measurements together with
the relations between them that allows one to abstract {generalize) and associate meaning
with the set of measurements. Moreover, it is the inductive learning process that determine
these relations. The semantics of an image region can only be determined through such
a process of abstraction (inductive learning). We believe, that there is no other way to
associate the meaning to the image region. And, since, “image understanding” is essentially
the discovery of the image semantics, we conclude that, inductive learning should play the

central role in low-level vision processes.

Again, we propose that the role of inductive learning in low-level vision is that of discov-
ering the structure of the image, and hence that of the original object, from the vast pool of
measurements. It is a process that abstracts, or generalizes, the relationships between the

measurements and so discovers the exact information that “needs” to be represented.

One of the fundamental requirements of any representation scheme is its “compactness”
(ability to compress the data). It is not surprising that inductive representation and com-
pact representation are closely related. The term “compact” should be properly interpreted
as “semantically compact”. It is quite clear that the inductive learning process produces
compressed/compact representation which is also semantically compact. In contrast, other
compression schemes, e.g. Gabor-filter-based representation, do not result in a semantically
compact representation, because the resulting functional approximation has nothing to do
with the semantic information in the data, since the choice of the class of functions {e.g.
Gabor functions) is arbitrary, i.e., independent of the structure of the input function. The
semantic information is the discovered structure of the data, of which one remains completely
ignorant if a classical compression scheme is applied. Inductive learning should not only pro-

vide a compact representation, but should also discover and encode the structure of the data
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without imposing an ad hoc structure on it.

To resolve the above issues, one needs an appropriate mathematical framework. None of
the existing mathematical frameworks allows one to dynamically modify the set of operations
of the basic mathematical structure. Since mathematicians never had to face such a require-
ment, no ready made formal solutions have existed. In other words, in all the conventional
mathematical frameworks the set of operations of the chosen mathematical structure comes
with the strucfure itself (it is specified by the set of axioms) and cannot be modified. Fuz-
thermore, any phenomenon is conventionally studied under the assumption that the chosen
mathematical structure 1s completely adequate for its siudy. It appears that in order to
discover the image structure and hence the object structure such an assumption proves to be
too restrictive, because the corresponding {(underlying) combinative mathematical structure
must be dynamically updated.

Note that in general such a requirement can be realized only within the new mathematical
structure, evolving transformation system (ETS). Moreover, for such a dynamic modification,
one needs a process of abstraction, or generalization, that will guide the modification and,
in turn, determine the corresponding final (basic) mathematical structure—transformation
system (TS). It is inductive learning that plays the role of the process of abstraction that
guides the dynamic modification of the basic mathematical structure. ETS, thus, is a math-
ematical structure which emerged from the basic mathematical structure, TS, that allows
one to dynamically modify the set of operations of TS. ETS is a mathematical model for
inductive learning and provides a mathematical framework for discovering the combinative
image structure and hence the correspondiﬁg combinative object structure.

We believe, thus, that the inductive learning plays an absolutely central/driving role in
vision, and TS and ETS provide an appropriate framework for modeling inductive learning
processes. In the following section, we elucidate these facts by proposing a new scheme for

image representation.

9 What are symbols: A new approach to image representation

Earlier (Sections 7.1, 8) we discussed the fundamental goal of vision which is to construct
a (combinative) representation of objects. Now we will discuss how one can construct such

a representation starting from the initial measurements. It is well known that measure-
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ments provide a “universal” means to study a phenomena. In case of “image understand-
ing”, it is conventionally (implicitly} assumed that the vector representation of the intensity
measurements—i.e.,; the representation that is independent of the combinative structure of
the measurement device—is adequate for understanding the structure of the object. It should
now be clear, however, that the combinative structure of the measurement device has to be
represented also. Moreover, it is important to note that numeric measurements (light in-
tensity in particular) are hardly the only means to represent the environment: the counter
examples are all biochemical systems. It is also important to keep in mind that in contrast to
(e.g. chemical) symbols, the number itself is a human creation and does not exist in nature.
As far as the relafionships between various mathematical structures are concerned, the nu-
meric mathematical structures can be viewed as a very restricted form of the transformation
system (see Section 5 and [21]).

In this section we propose a new form of image representation that énductivéiy constructs
(from the initial measurements) a combinative object representation. The image representa-
tion is constructed in two stages: the first stage 1s called the structured image representation

and the second stage is called the inductive image representation (IIR).

9.1 The Structured Image Representation

I order to construct the structured image representation one requires an adequate abstract
specification of the measurement device, since the device forms a fundamental integral com-
ponent of any (human or machine) vision system. We define measurement device in a manner

more general than is currently understood.

Definition 3 A measurement unit is an abstraction of the elementary/etomic measure-
ment device and will be denoted by u. A (structured) measurement device M s o triple
(U,m,T), where

U is a finite set of measurement unils,

m: U — AT is a mapping from U into the attribute set AT. each element of mhich is an
n-tuple m(u) =< a',a%,...,a™ >, a* characterizes one aspect of the unit (see below), and

T = (8,0, D) is ¢ transformation system whose structs are built from units in U.
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Fach measurement unit is completely characterized by m(u)—an n-tuple of atiributes of
u. A chosen measurement unit can perform only one type of measurement, numeric or non-
numeric (i.e., a symbolic struct measurement). Moreover, the device M may have units
of different types, each performing, for example, different type of measurement at the same
location. For example, attribute a® may be unit’s type (thermal, light, acoustic, etc.), a may
be the unit’s location in space [, and ¢ may be the range of the unit’s measurements which
is defined to be a set of structs, S,. Thus, among attributes of a unit u we have the unit’s
range which is defined as a transformation system Ty = ( Sy, O, Dy) that specifies what the
unit’s measurements are, while the transformation system T in the above definition specifies
the structure of the entire device M. Moreover, as is the case with classical measurement
devices, the struct measurements are produced immediately by the corresponding unit w. It is
not difficult to see that all present measurement devices are special cases of the above device.
All present devices have units whose ranges are the numeric transformation system (i.e., they
all “produce” numbers), which is a very restricted/trivial form of".the transformation system
(see Section 5). It is important to note that some of the attributes are static (fixed) and

others are dynamic (e.g. location).

One can easily see that our definition of the measurement device inseparably links the
concept of the device to that of the corresponding mathematical structure. This link should
make it quite clear the differences between various measurement devices. In traditional
computational vision, the unit’s range T, is a subset of reals and T is a vector space. What
was not previously understood at all in computational vision is that the combinative structure
of the objects induces the abstract geometry, defined via the transformation system, and the
latter must be inseparably linked to the structure of the measurement device. Moreover,
since, as stated in Section 7.1, the objective of vision is to capture the combinative structure
of the objects, one can see that the measurement device (including its structure) and vision
processes form an integral whole and cannot be disassociated. In particular, it is important
to note that to capture the changing object structure in the environment, the structure of
the measurement device (T) must be updated during the learning process (see Section 9.2),

and this point is useful to keep in mind when viewing all definitions in the present section.
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Definition 4 An (instantaneous) measurement m; by a measurement device M = (U,m, T)

18 ¢ mapping

me: U — AV,
where mi(u) € S, and
AV = U Sy-
acll

Thus, if all the units measure light intensity values, AV C ®. Again, one should keep in mind
that each unit u produces the corresponding structs as its measurements. Also note that in
the proposed theory the “image” is “formed” through/by the “produced” symbolic structs
and not (just) numeric structs, as is the case with the present image models. Since the
produced measurements result in the images, we turn next to the process of image formation
and its combinative nature.

We propose that images should be thought of as composed of .(‘iiscrete atoms (primitives)
and the structure of image, as determined by a chosen combination of these atoms. Such
an atomistic view was proposed and extensively studied by Grenander [45]. In accordance
with Postulate 1, we suggest that the combinative structure of the image (or sub-image)
can be capiured by representing the image (or sub-image) by the corresponding (learned)

transformation systemn.

Definition 5 Given o measurement device M and its instantaneous measurement me, o
(structured) image. I is a triple (m(U), L, T), where L = {l, | u € U} is a set of locations
and T is o transformation system for M (see Def 2); o (structured) sub-image I) of I is a
triple (my(U1), L1, T1) , where Uy C U, Ly C L, and T4 s a transformation sub-system of

T,, i.e., T1 C'T (see Section 5).

Figure 1 illustrates the role of the transformation system in image representation. Con-
ventionally, in computational vision an m X n image region is represented as a vector in a
m X n-dimensional vector space. Almost in all the current low-level vision approaches the
vector space is used as the underlying mathematical structure for image represénta.tion, ie.,

the transformation system of the corresponding measurement device is a finite-dimensional
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vector space. The fundamental drawback of such a vector representation (numeric struct) is
related to the fact that the spatial relations between the pizels and their intensities is almost
completely lost since the vector representation necessitates one to use the vector space oper-
ations which cannot recover this information. This is evident from Fig. 1. At the same time,
the symbolic struct representation together with the operations completely (and explicitly)

captures the relationship between the pixels and their intensity values.

The need for the choice of the symbolic struct representation can partly be seen from the
following facts. The material properties of the objects are completely determined by their
microstructural properties [46]. It is also known that the intensity values depend on the
material properties and the surface geometry [47]. Moreover, the image contains objects
that have combinative struciure. Hence each intensity value represents the microstructural
property of the object at that spatial location. Symbolic structs are tailor-made to capture

this structural information.

Definition 6 Given o (structured) image I = (m,(U}, L, T), a set of sub-images {It}rex of

I is called (structured) image partitioning of image I if

UUe=U

keK

where U, CU.

One can think of the above sub-images (in neurophysiological language) as the receptive
fields in the retina, or (in computational vision terms) as image windows . One should not
confuse the terms structured image and image structure. The latier was informally discussed

in Section 8.

In connection with the above (general) definitions, we will address in this paper only one
aspect telated to the low-level feature discovery and representation. It is useful to keep
in mind that in this paper we are not addressing the issue of the relationship between the

sub-image and image transformation systems as well as between various sub-image transfor-

mation systems.
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9.2 The Inductive Image Representation {ITR)

Above all, it is important to stress that at a fixed “level” (see this section below) the proposed
model treats each of the sub-images and images as a class whose elemenis are the structs

produced by the structured measurement device.

The first main step in producing IIR is a construction of (structured) image partitioning
(see Def. 4), which entails the construction of the initial transformation systems T; for each
of the corresponding sub-images I; (see Section 10) én order to construct their (inductive)
representation. In this paper we are not addressing any issues related to the latter step of
image partitioning. The term sub-image is used to stress the fact that we are considering
only a part of an image. An example of a sub-image (without the corresponding image) and
some structs from the corresponding initial transformation system is given in Fig. 2. Each
struct in the figure corresponds to a different part of the sub-image and should be considered
as obtained by the measurement device. Note that the perceived global symmetry of the
sub-image in Fig. 2 does not emerge at the level of “initial” (shown) measurements, or

structs.

As mentioned in Section 7.2, the fundamental goal of vision is to extract and encode the
image structure, which is accomplished by the processes built around the inductive learniﬁg
process. The inductive learning process modifies the transformation system T associated
with the structured measurement device (and therefore with the structured image) at that
moment in such a way that, first, each T; is modified to incorporate the inductive class
structure {IT;) for each of the sub-images I; of image I, and only then T is comstructed
for the entire image I. It should not come as a surprise that the mathematical framework
we propose to model the inductive learning process is the evolving transformation system
(ETS): ETS is invoked during learning to extract the inductive class structure IL; for I;
(and hence the structure of the measurements) by dynamically changing the structure of
T, (see Section 5). That is, the set O; of operations (and hence T;) evolves during the
learning process through a sequence Of, 1 < 4 < ¢, resulting in the inductive class structure
II; for the corresponding sub-image. The local inductive class structure of a (sub)image
will be called the local inductive (sub)image representation, LIIR (see Fig. 3). Note

that in the figure the set C* is selected from the current set of measurements, i.e. from the
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produced symbolic structs, and the set O~ is selected from a stored set of structs®. The
term “local” is used above to clearly delineate the LIIR from the (global) IIR, which as
was mentioned above, we perceive as constructed, first, through the symbiosis of LIIR’s for
different sub-images in the chosen image partitioning and, second, by, a.ga,in,.' applying the
inductive learning process to the resuliing different sub-image representations.

Next, we give a preliminary outline of the overall image representation scheme. We propose
to view the image representation as composed of many levels, that form a hierarchy. For
each level 2, except 7 = 0, the representation derived from those of previous level through
the symbiosis of LIIR’s for different sub-images” in the chosen image partitioning at level
7 might be called the initial representation for level . The representation derived from the
initial representation by the process of inductive learning will be the LIIR for this level,
and will serve to form the initial representation for level ¢ + 1. One could think of the
initial representation as derived from the LIIR by re-encoding the “parts” of the structs
corresponding to the operations learned at the previous level by the new symbols (see Fig. 8).
It is important to not to confuse our levels with those in multiresolution image representation
schemes [32]. For level 0, the initial representation is obtained directly from the structured
measurement device, whereas the initial representations at the higher levels are constructed
by the inductive learning process. At present, the relationships between different levels
(and, in particular, to the construction of the initial representations) are not sufficiently
clear to us and form an important research topic. Finally, it is worth noting that the
above image representation scheme is systematic, and, moreover, there is only one central
process—inductive learning—that allows one to extract the symbols and to construct the
representation at every level.

In this paper we illustrate the inductive theory of vision as it applies to low-level vision;
however, its extension to different levels can be viewed as a consequence of Postulate 3. The
application of the theory to low-level vision should be understood as the first step towards a
systematic construction of image representation. Conventionally, high level vision processes
have been considered as qualitatively distinct from the low-level processes, basically, due to

the absence of any learning processes in low-level vision. In light of our theory, in which

¢For more detailed discussion see Section 10.

"The corresponding LIIR’s come from level i — 1 while the “symbiosis” is constructed at level 4.
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learning plays a critical and similar role at all levels of vision, the distinction between low and
high level vision 1s blurred. In view of the latter, it becomes necessary to re-interpret these
two terrms. The new relationship that emerges between low and high level vision is that
low-level vision processes “supply” the symbols necessary to construct the representation
at the next (higher) level in the hierarchy. Since in our theory low-level vision embodies
(inductive)} learning, the distinction between low-level and high-level vision is simply due to
this hierarchical construction of image representations. It 1s also important to note that at
each level basic mechanism for the extraction of symbols, i.e., that of inductive learning is the
same. Thus, inductive learning plays a fundamental role of determining the representation
at each level.

Postulate 3. All basic representations in vision processes are constructed on the basis of
the inductive image representation, which, in turn, is constructed by the inductive learning
process (see Postulate 2). Thus, the inductive learning processes form the core around which

all vision processes have evolved.

10 Examples

In order to clarify the basic concepts of the theory we will now illustrate the image represen-
tation scheme on several simple examples (Figs 3, 4, 5, 6). These examples should be seen
only as illustrations of some of the basic concepts, rather than a “complete” application of
the theory. Each example is chosen to represent a different type of a sub-image with only
two intensity levels, i.e., all sub-images are binary (the cardinality of the struct alphabet is
2).

Since at present the appropriate measurement devices do not exist, each sub-image I;,
1 € § < 4, is initially encoded as a set of “linear” strings of fixed length, i.e, the chosen
structs in the transformation system T; (for image I;) are strings of length 8 over the 2-letter
alphabet. Note that although it is more appropriate to encode each sub-image as a set of
planar graphs (as in Fig. 2), of necessity, we chose string representation motivated by the
availability of the corresponding inductive learning algorithm [11]. Tt is interesting to note,
however, that the results obtained (even with this inadequate, siring, representation) are
still non-trivial and instructive. It also goes without saying that a much more satisfactory

image structure can be extracted using the more adequate, planar graph, representation. All
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examples below address LIIR only, since, as was already mentioned, in this paper we are not
dealing with issues related to the image partitioning.

In Figs 3-6 four different binary sub-images are shown. In Fig. 3 (b) some structs in
T, for the sub-image I, are shown, and in Fig. 3 (c) we show the LIIR, or II,, that is
extracted by the inductive learning process. From Fig. 3 (a), we constructed the 8 structs
in Ty from intensity measurements® by denoting the intensity value 1 by “a” and value
0 by “b”. We denote the intensity values 1 and 0 by “a” and “b” respectively in order
to facilitate the symbolic interpretation of the strings. As was mentioned in Section 9.1,
presently, of necessity, we have to rely on the initial numeric intensity encoding, which, we
believe, will be possible to bypass in the future, when an appropriate measurement device
will produce immediately the initial symbolic encoding®. For example, the first row of pixels
in I; is encoded as the string “abababab”. Let us now define the only two operations in Ty:
insertion/deletion of @, @ « 8, and insertion/deletion of b, b & 6, where 6 denotes the null
string. Again, the choice of operations was partly dictated by the existing learning algorithm
(which is applied to all 4 sub-images) and may not be the most natural for any one of the
4 sub-images. Thus, the TS of the initial (structured) measurement device (for all 4 sub-
images) includes the set of strings of length 8 over {a, b} with two basic operations a « §
and b <+ 6. ETS is then invoked during learning to extract the inductive class structure
II; for I, (and hence the local structure of the measurements) by dynamically changing the
structure of T; (see Sections 5, 9.2). As was mentioned above, the inductive learning process
constructs the inductive class structure Il;, which, in turn, determines the local sub-image
structure.

In all four examples, the set C* consists of the shown 8 strings, while C~ consists of the
two “homogeneous” strings: aaacaaae and bbbbbbbb. Consider IT;, which is the result of the
inductive learning process: it is given by the final set of operations Opn = {0 © 8,b &
9, bababa « 83, the weight vector w = (0.5,0.5,0), i.e., Qpn = {w}, and C* = {abababab}.
Note that the operations a « 8 and b < 8 are the initial operations, while the operation
bababa < § is the operation which is learned (or discovered) by the ETS.

" 3Conventionally, under binary encoding, the black pixel is denoted by the intensity value 1 end white pixel, by

the intensity value 0.
9In other words, at present, the initial transformation system T, for the range of the unit (see Def. 1) is a numeric

transformation system with two numeric structs 1 and 0.
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As one can see, the class structure, or (local) image structure is not postulated but rather
determined as a result of the learning process, i.e., the relationships between the structured
measurements are now determined by the operations discovered by the ETS, and thus I,
specifies the structure of the measurements. In connection with Section 5, we note again that
it is the evolving structure of ETS that allows one to dynamically update the set of operations
of the basic mathematical structure to discover the combinative structure of the measurements
(data) without postulating it. Unlike the vector space based approaches to low-level vision,
where the underlying structure (vector space) is fixed and cannot be changed, the underlying
structure in ETS evolves. Thus, we can claim that the structure of the measurements is

discovered rather than imposed on them a priori and in an arbifrary manner.

How should one think intuitively of a local sub-image representation? It is the sub-image’s
inductive class structure, symbolic sub-image representation, that provides the key to under-
standing the LITR. The inductive learning process extracts, or discovers, the inductive class
structure, i.e., the corresponding operations, which one could think of as the correspond-
ing symbols. Moreover, the operations (or symbols) play the fundamental role in capturing
and describing the local image structure. Since, these operations are constructed by the in-
ductive learning process, or by the process of abstraction/generalization, they represent the
local semantic information in the sub-image. These symbols (operations), in fact, facilitate
representation of “the concept of a given sub-image”. For example, for the sub-image in Fig.
3 (a), the lefi-hand side of bababa — § in Fig. 3 (¢) captures the combinative structure that
indeed represents the corresponding local generalization of the sub-image. Thus, inductive
learning process discovers the representation—in this case II;-—which is semantically com-
pact and is, basically, the only information needed to be stored at that level. Moreover, ETS
not only extracts the “symbols” but also discovers the metric, and hence the geometry, on
the set of structs of T;. Such a metric forms an absolutely integral part of LIIR and can

also be used for further image processing (e.g., for image segmentation).

Omne of the most extensively studied problems in low-level vision is that of edge detec-
tion. Moreover, as was also mentioned in Section 7.2, edges, blobs, points, corners are
only some of the infinitely many possible combinative structures in the image. All current
approaches proposed to detect these structures are, in fact, extracting from the image an

o priori postulated class of combinative structures. To illustrate how one can extract the
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edge structure with the help of inductive learning process, we next consider Fig. 4. As
was mentioned above, the ETS is invoked during learning, with the set Ct comprised of 8
structs shown in Fig. 4 (b) and C~ as above. It is quite interesting that the edge structure
that is present in the sub-image in Fig. 4 (a), is eztracted, or discovered, by the inductive
learning process and is represented in II {see Fig. 4 (c) ): by the final set of operations
Otin = {a © 8,b o 8,baaa & 8,bbba <> 8}, the weight vector w = (0.5,0.5,0,0), i.e,
Qfin = {w}, and C* = {aaaaabbb}. It is not difficult to see that the left-hand sides of the
last two operations together capture the concept of edge. Fig. § and Fig. 6 illustrate the
discovery of some additional and somewhat less trivial types of (combinative) structures.
Note, again, that none of these structures were prepostulated, they were rather discovered by

the inductive learning process.

We would like to reiterate that one simply loses the capability to discover the different
types of combinative structures (that may be present) in the image, if one opts for a vector
representation of the image, since, as was previously argued in Section 7.2, in a vector
space model one is postulating a priori, ¢ very special (numeric] combinative structure to
be extracted from the image, which, in turn, prevents one from the “discovery” of any other

structure.

We now a.ddréss very briefly some issues related to the connection between two subsequent
levels (see Figs. 6, 8). In Fig. 8 the level 1 representation is constructed by “re-encoding”
the parts of the structs corresponding to the operations learned at level 0 by new symbols,
e.g., the part abaa is replaced by ¢, part baab is replaced by d, where the “parts” are the
the left-hand sides of operations abaa < 8 and baab « @ learned at level 0 (see Fig. 6).
Following the re-encoding, the inductive learning process can be invoked at level 1 to extract
the operations for this level. Such a construction can be extended systematically for all

levels.

The above examples illustrate the postulated fundamental role of inductive learning in
vision: the inductive learning process by means of ETS discovers the image structure and,
in turn, the (combinative) structure of the objects. Again, we note that the proposed image
representation scheme is systematically uniform for all levels in that it relies only on one
central process—inductive learning—that allows one to extract the appropriate “symbols”

and to construct the corresponding representation at each level.
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11 Conclusion

First, we propose o base the inductive theory of vision on the three postulates (given in the
abstract). Since, we postulate that the combinative object structure lies at the foundation
and forms the core of our ability to perceive the external world, we base the theory on
the inductive mechanism that is capable of capturing corbinative object/event structure
based on a small representative set. While classical mathematical models, including ANN’s,
cannot support such an inductive mechanism, the evolving transformation system (ETS)
model can. We propose that to embody the inductive mechanism one needs to introduce a
fundamentally new concept of the structured measurement/recording device which should
replace the classical measurement device. The concept of structured measurement device
appears to us so revolutionary that at present we can barely imagine its full implications. It
is important to note that the recordings of such a device are structured entities (resembling
molecules) and not numbers as is the case with the classical measurement devices. These
structured entities are much more “real” than the numbers, and so‘in some sense the proposed
model operates with more “concrete” entities.

We have explained why the inductive learning mechanism should be considered as the
central mechanism around which all other vision processes have evolved. Basically, its cen-
tral role can be explained by the fact that combinative object structure at any level can be
captured and encoded only with its help. Moreover, the very concept of object structure
can be understood through the concept of inductive class representation. We contend that
the triad of image structure, the corresponding mathematical structure, and the (combina-
tive) structure of objects is precisely what computational vision should be about. And it is
the inductive learning processes, through the discovery of the class structure, that relates the
members of the triad. Thus, we propose that the main objective of vision processes is to
determine inductively the (combinative) image structure. This structure, in turn, determines
the (combinative) object structure, where the term “(combinative} structure” should be in-
terpreted only through the corresponding mathematical structure as it is currently practiced
in mathematics [17] [18].

Finally, we note that the proposed framework allows for a very uniform treatment of
various levels in vision, in which each new level re-encodes the previous representation by

adding new “symbols”, inductively constructed at the previous level, to the previous alphabet
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of “symbols” in a systematic manner independant of the level involved. This leads to a
systematic hierarchical framework for image representation.

Thus, we believe that this paper outlines, for the first time, a viable realization of the
vision model as was envisioned by such pioneers as Hermann von Helmholtz and Horace

Barlow.
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a) A sub-image

1 0
<1,90,0,0,0,1,0,1,0,0,1,0,0,0,1,1,0,0,0,0,1,1,0,0,0,1,0,0,1,0,1,0,0,0,0, 1 >

b) Vector representation of the sub-image in {a} {without vector operations)

¢} Struct representation of the sub-image in (a) (without the operations)

Figure 1: Sub-image and its two representations
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a) Sub-image

a b
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Initial operations ( © denctes the null string)

(a3—{b) b)) ()
S & N
@.o

Some structs from the corresponding initial transformation system;
each struct corresponds to a different part of the sub-image
and is obtained by the measurement device

b} A initial transformation system for the sub-image in {a).

Figure 2: An example of a sub-image and its initial transformation system
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