MOSA DEVELOPER’S GUIDE
by

Jin Wang, Bradford G. Nickerson,
_R-onald M. Lees

TR96-109, April 1996

Faculty of Computer Science

University of New Brunswick

Fredericton, N.B. E3B 5A3
Canada

Phone: (506) 453-4566
Fax: (506) 453-3566

E-mail: fcs@unb.ca

www: hitp://www.cs.unb.ca

MOSAA Developer’s Guide
by

Jin Wang
Bradford G.Nickerson
Ronald M. Lees

Faculty of Computer Science
. Physics Department
University of New Brunswick
Fredericton, N.B. E3B 5A3
Canada,
Phone: (506) 453-4566

Fax: (506)453-3566
Email: fcs@unb.ca

May 31, 1996

MOSAA Developer’s Guide

Faculty of Computer Science Technical Report 96-109

Jin Wang
Bradford G. Nickerson
Ronald M. Lees

University of New Brunswick
Faculty of Computer Science
Physics Department
PO Box 4400
Fredericton, N.B., Canada
E3B 5A3

E-mail: e7qz@Quob.ca (Jin Wang)
E-mail: bgn@unb.ca (Bradford G. Nickerson)
E-mail: lees@unb.ca (Ronald M. Lees)

May 1996

Abstract

MOSAA(MOlecular Spectroscopic Assignment Assistant) is a knowledge-based
systern that can assist physicists in spectroscopic assignment.

This guide presents the MOSAA system from a developer’s view-point. It gives
the rule grammar as well as descriptions of rule structure and components associated
with it. The inference engine is briefly described using diagrams.

Some examples are provided to help the developer understand *how’ to modify or
expand the rule base in simple cases. Also, the process of recompiling MOSAA is

discussed. A pointer to the source code files is also provided.

Contents
List of Figures [H]1
List of Tables IV
1 INTRODUCTION _ 1
2 GRAMMAR 5
2.1 Grammar in bison syntax. e e e e e e e 5
2.2 Parameters L 8
2.3 MOSAA functions. 14
2.4 Subroutines i7
25 Properties 17
2.6 Explanation 18
3 RULES 19
3.1 Ralestructure, 19
3.1.1 Rulecategories 19
3.1.2 Conditions 20
3.1.3 Conclusion-conditions 23
3.2 An example of modifying therule base 25
4 INFERENCE ENGINE 31

IT

i
!
j
i
:
;

4.1 Threetypesofrules.,
4.2 Special properties oL L L
5 RECOMPILING MOSAA
9.1 Sourcefiles
52 Usermput files
5.3 Command line version
53.1 Sourcefiles
5.3.2 Compilingfiles L
533 Debugging L
5.4 xviewmode
5.4.1 xview version source files
54.2 xview programming e e e
55 Auxiharyfiles

6 Conclusions
A lex file

B Some input files
B.1 Rule Summary.
B.2 _parmfile
B3 _subfile L
B4 _mosaafile
BS .propfile
B6 parm.constfile

C Inference Engine Diagrams

D Output file

111

40
4]
41
44
44
45
46
47
47
48
49

51

hd

63
63
65
76
81
89
90

92

103

List of Figures

1.1
1.2

2.1
2.2
2.3
2.4
2.5

3.1
3.2
3.3
3.4
3.5
3.6
3.7

3.8

4.1
4.2
4.3

MOSAA top level user’s perspective.
MOSAA top level developer’s perspective.

MOSAA rule grammar in bison syntax notation.
A sample used to explain Parm Cur_R_Peaks[14] WY.L
parameter file (_.parm) grammar. L
Some example parameter definitions from parm file mar. parm.

Grammar of MOSAA functions in file _.mosaa..

Rule structure (also see Fig 2.1 line’®).
A sample consequence rule. Lo L.
A sample MOSAA-functionrule..
An anfecedent rule: AR60. L.
A piece of spreadsheet produced during the inference engine running.

Apleceof spectrum.
A piece of spreadsheet produced during the inference engine running,
after adjusting the intensity ofoneline.

The C4+4 code added for adding a new mosaafunction ’equal’.

Asamplegoalrule. oo
A sample of using property “Relative "A°, x”..

An example of using property “Relative "C7,x".

IV

4.4
4.5 A group of hypothetical rules used to illustrate the problem of mixing

the use of 'Relative’ and ’TRY’.I 38
4.6 Simple deduction paths for the rules of Fig 4.5. 39
5.1 Two versions of MOSAA. 40
5.2 A portion of a combination difference file (fe24x6.GD). 42
5.3 A portion of a peakfinder file (fe24x6.pks)., .. 43
5.4 A portion of a spectrum file (fe24x6.tra). 44
5.5 Auxiliary output file mosaa.idx.. L 4
C.1 mosaa Toplevel., 93
C.2 Inferenceengine. e e 94
.3 Monitor mechanism. 95
C.4 Findout mechamism. . . . o oot 96
C.5 Simple findout machanism. 97
C.6 Procedure 'is_right’-determines if the premise of a consequence rule is

right. . . . o L. 98
C.7 Procedure ’ante.is.right’-determines if the premise of an antecedent

mleisright, 0 oL 99
C.8 Do conclusion procedure- ‘doconclu’. L. 100
C.9 Simple moniter machanism. 101
(.10 Antecedent rule invoking procedure-’ante.nvoke’. 102

A sample of using property “TRY”. 37

List of Tables

2.1 Symbols used in defining MOSAA grammars. 9
3.1 The three typesofloops. 24
B.1 Numbers of different rule types 63

VI

Chapter 1

INTRODUCTION

Studying the energy level structure of different molecules by means of spectroscopy is
one of the fields in Physics and Chemistry. Presently, the group of Dr. R.M.Lees in the
Physics Dept. in the University of New Brunswick is focusing on studying the rota-
tional and vibrational energy levels of methanol and its isotopic species [3, 4, 7, 9, 10].
The method currently used involves first obtaining an infrared or far-infrared absorp-
tion spectrum of the molecule being studied, which shows the transitions between the
various energy levels of the molecule. The wavenumber of the useful peaks of the
absorption spectrum and their corresponding intensities are stored in a Peak Finder
file. Then, using the current knowledge about energy level structures as well as a
variety of analytic techniques, the peaks in the peakfinder file are labeled with the ap-
propriate quantum number transitions. This leads to an understanding of the energy
level structure and the internal interactions of the molecules.

MOSAA! is a knowledge-based system which can assist researchers in the as-
signment of the peaks of the molecules in question by using the spectral information
provided and a knowledge base containing known energy levels of the given molecules
and the rules provided by the experts for manipulating the information.

As shown in the top level architecture of Fig 1.1, MOSAA has two kinds of user

! MOlecular Spectroscopic Assignment Assistant

tra _.rule _ .pbarm —-mosa
_.pkf
/ — PEOP
_.Q.GD \ _—
— - ~—__. parm.const

serieg* . output

Figure 1.1: MOSAA top level user’s perspective.
input files:

e Spectroscopy files -

_.tra Spectrum plot file, used for graphically displaying the spectrum.

—.pkf Peak finder file, data for assignment manipulation, also used for graphic-

ally displaying the “stick” spectrum.
~Q.GD calculated R-Q combination difference file.

- RP.GD calculated R-P combination difference file.
Section 5.2 gives more details about these input files.
¢ Knowledge base files - (Appendix B)

_.rule contains all the rules in different groups.

_.parm contains the definitions of all the pa,ra,mefers used in the rules.
--mosaa contains the definitions of all the MOSAA functions used in the rules.
_.sub contains the definitions of all the subroutines used in the rules.

—.prop contains the definitions of all the properties used in the rules

parm.const constant parameters’ values.

The output is a group of files (e.g. Series0.output) which records the assigned
peak information. Appendix D gives an example of such output files.

The conventions of file names here are: 1} a leading ’_’ character means the user
provides one name for each file type; 2) an "*’ means one or more names.

The MOSAA system architecture from a developer’s perspective is shown in Fi
¥ P P g

1.2.

Input_rule.l

|

G

lex.yv.c . vy.co o bison
{ANSI C)

input_rule.yacc

input_rule.yacec.output

input_rule.yacc.cc * h * e

Figure 1.2: MOSAA top level developer’s perspective.

Chapter 2

GRAMMAR

Rules in the MOSAA KBS have the normal “IF-THEN” structure with extra Prop-
erty and Explanation parts. Parameters, MOSAA _functions and Subroutines
are three basic components associated with rules. Section 3.1 gives more details

about the rule structure.

2.1 Grammar in bison syntax

The compiler used to read in the rules is produced by lexical analyzer lez and parser
generator bison [2, 5].

MOSAA rules’ lexical convention is not given here; Appendix A gives the complete
lex file input_rule.l which is used to produce the lexical analyzer.

Fig 2.1 gives the grammar of MOSAA rules in the syntax notation of bisoﬁ, which

is essentially o machine-readable Backus-Naur format(BNF) [2].

This figure is abstracted from the auxiliary ocutput file y. output of
yacc -v input_rule.yacc

The reason that we use the auxiliary ontput file of yacc instead of the

input. rule.yacc.output from bison is that the syntax notation in y.output is

Grammar

0 $accept : begin $end
1 begin : start
2 start : rule_list
3 | start rule_list
4 rule_list : “%° CR c_ruleset
5 I "% GR ag_ruleset
6 | "% AR ag_ruleset
7 c.ruleset : c_rule
8 | c_ruleset c_rule
9 c_rule @ cr_ruleid IF premise THEN conclusion property comment
10 cr_ruleid : CR
11 premige : condition
12 | premise "&° condition
13 condition : loop
14 } parm
15 | subroutine
16 | mosa_func
17 .lcop : loop.type loop_var "=’ loop_start 7;°
loop.end locp_step “{° loop_body “T}°
18 loop_var : LOOPI
19 | LOOPD
20 loop_type : FOR
21 | ANYIF
22 | DO
23 loop_start : exp
24 lcop_end :@ exp
25 loop_step :
26 | “;7 exp
27 loop_bedy : condition
28 | loop_body ‘& condition
29 parm :@ parm_name
30 | parm_name “[° index "]~
31 | parm_name °.° field
32 | parm_name “[” index “1° ~.° field
33 index : INTEGER
34 | LOOPI
38 | parm
36 parm_name : IDENTIFIER
37 field : IDENTIFIER

Figure 2.1: MOSAA rule grammar in bison syntax notation.

38
39
40
41
42
43
44
45
46
47
48
419

50
51
52
63
54
55
56
57
58
b9
60
61
62
63
64
6b
66
67
68
69
70
71
72
73

subroutine : “$° name “(’ arglist 7))~
| “$° name “(° °)-
mosa_func : mosa_name arglist
| mosa_name
mosa_name ; MOSA_NAME
| o=~
conclusion : conclu_condition
| conclusion “&° conclu_condition
conclu_condition : conclu_loop
| subroutine
| mosa_func
conclu_loop : loop_type loop_var “=° leoop_start *;~
loop_end loop_step “{’ conclu_loop_body "}~
conclu_loop_body : conclu_condition
| conclu_loop_body “&” conclu_condition
property
| “#° prop
prop : prop_item
| prop "&” prop_item
prop_item : name
| name arglist
| name “{° conclusion “}~
name : IDENTIFIER
comment :
| COMMENT
arglist : arg
| arglist -, arg
arg : exp
| (7 arg_func ")~
arg_func : mini_mosa_func
| mini_subreoutine
mini_mosa_func : mosa_name explist
| mosa_name
mini_subroutine : “$° name “(° explist)~
1 l$f name 1(1 1)1
explist : exp
| explist 7, exp

Fig 2.1 {continued)

74 exp : single_walue

T8 | LOOPI

76 { LOOPD

77 { parm

78 | exp "+ exp

79 | exp =" exp

80 | exp “*° exp

81 | exp /" exp

82 | "-" exp

83 | (" exp)

84 single_value : INTEGER
85 | DOUBLE
86 | CHAR

87 | STRING
88 ag_ruleset : ag_rule
89 | ag_ruleset ag_rule

90 ag_rule : ag_ruleid IF premise THEN conclusion property comment
21 ag_ruleid : GR '
92 | AR

Fig 2.1 (continued)

closer to the context free notation of a rule grammar. Since both
input_rule.yacc.output from bison and y.output from yacc are obtained from
the grammar of input_rule.yacc, so there is no difference except the notation used.
The details of BNF and the grammar of bison are not given here; please refer to
[1] for the description of BNF, and [2, 5] for further information ahout bison.
The basic symbols used in Fig 2.1 are listed in Table 2.1. The last four rows in
table are not used in the bison grammar; they are used in defining parameters and

functions (see Fig 2.3 and Fig 2.5).

2.2 Parameters

Parameters are one of the most important concepts in the MOSAA system. A para-

meter is a structure that identifies or contains a piece of information that the inference

Table 2.1: Symbols used in defining MOSAA grammars.

Symbol | Meaning
: is defined to be

[alternatively

lowercase words
(e.g. premise, rulelist) | nonterminal

uppercase words
(e.g. CR, IDENTIFIER)

"single_char’ both are terminal
(e‘g‘ ¢=/} ,?:/’ /+/)

* The preceding syntactic unit can be repeated zerc or more times
+ The preceding syntactic unit can be repeated one or more times
{} The enclosed syntactic units are grouped as a single syntactic unit
{] The enclosed syntactic unit is optional, may occur zero or one time

engine uses to arrive at a conclusion [6)].

Parameters are the basic components of the conditions of the premise in a rule.
They can even be used alone as one complete condition of a premise. Parameters have
special roles in the MOSAA inference engine (see chapter 4).

Several ways can be used to classify the parameters:

1. appearance in the rules -

Simple Parm -
Plain identifier; e.g.
S_idx ,Prol, Fir L 5 idx, TEMPI1

S_idx is a temporary parameter, but it usually is used to refer to a line’s
index in the array of a group of lines which belong to one series branch.
Pro_L usually shows the current problem line’s S_idx.

Fir 1. _S_idx refers to the first line of “three-lines” in the current series.
TEMPI1 is a temporary parameter without special spectroscopic meaning.

Index Parm -

Plain identifier associated with an extra index; e.g.

Cur_CD[0], Cur.CD[8] ...

We haven’t used any of this kind of parameter yet (even Cur_CD[0] is just

shown here as example). Since the rule base is under construction, this

parameter type 1s kept for later convenience.

Field Parm -

Plain identifier associated with fields; e.g.

Cur Series.K, Cur_Series.Symm ...

Cur_Series is a parm with several fields, it records the current series’ prop-

erties such as K’ value, "Symm’ value. Since 'K’ is one of the properties,

it becomes one of the fields of this parameter which appears as

Cur.Series.K.

These two parameters have the same fields, so in the parm file, they are

defined together using the same 'Cur _Series’ with different fields.

Index Field Parm -

Identifier associated with index and fields; e.g.

Cur R_Peaks{14] .wv, Cur_P_Peaks[0].intens ...

Each series has 'R’, ’P’, and 'QQ’ branches. Each branch has several lines,

where each line has several properties such as wavenumber and intensity.

Cur R Peaks[14] .wv records the wavenumber of the line whose index in ar-
ray Cur_R._Peaks is 14. 1t should be noticed that, 14 here doesn’t mean that
the line is the 14th line of this branch. The current top line’s index of this
R branch is in Cur R Series.top. Comparing with Cur R Series.top,
we can know the real position of this line in the branch. This is like
a double pointer in computer data structures. Fig 2.2 shows that when
Cur R Series.top equals 9, Cur R Peaks[14].wv is the wavenumber of
the sixth line in the R. branch we have found up to this point during the

searching process.

10

Index J WY deltal delta2 intens comments

9. 1012.771244 1.391835 0.538795 Cur_R_Series.top
10. 1021.163079 1.374718 ~ -0.017117 0.4830E53

11. 1022.537797 1.387109 ~-0.017608 0.391154

12, 1023.894806 1.339857 -0.017452 0.384100

13. 1025.234563 1.322407 ~0.017250 0.38805%

14. 1026.556970 1.304775 -0.017632 0.385666 Cur_R_Peaks[14]

15, 1027.8617456 1.287316 -0.017459 0.383%996

16, 1029.149061 1.269753 -0.017563 (0.391489

17. 1030.418814 1.2B2379 -0.017374 0.412323 Cur_R_Series.bottom
18, 1031.671193 1.2342B6 -0.018123 0.292232

Figure 2.2: A sample used to explain Parm Cur_R_Peaks[14] .uv.

2. actual data types -

Each parameter has one of the following data types:

i-int, d-double, c-char, s-siring, k-stack.

All the parameters with the same name, but different indices, have the same type,
while different fields can have different types. “stack” is a special data type in
MOSAA; it appears in the rule structure as a Simple Parm, while the inference

engine, MOSAA functions and subroutines treat it as a complex parameter, such

as Index_Field Parm. For example:

CD_Candidate_Stack nindex 0 k nques

CD_Candidate_Stack_Num nindex C i nques

CD_Candidate Stack is a stack parameter; each stack parameter always has a
“_Num parameter associated with it. For CD_Candidate Stack, it has

CD_Candidate StackNum to show the number of items in the stack. In rules,

normally we can only find CD_Candidate Stack, not CD_Candidate Stack Num;

e.g.

11

& Pop_CD CD_Candidate_Stack

THEN

IF
THEN

RESERVE CD_Candidate_Stack

where the real data are in CD_Candidate Stack.K, CD_Candidate Stack.Symm,

CD _Candidate Stack.n, CD_Candidate Stack.T.

3. “askable” property
If a parameter has the “askable” property, the value of this parameter can be

obtained from the user’s answer by proper prompting during running of the

MOSAA inference engine.

4. others -
Most parameters have specific meanings related to spectroscopic knowledge or
the process of performing spectroscopic assignments. However, some of the
parameters are just used as “temp” variables, such as “TEMPD3” for reserving
a double value temporarily. The scope of these “temp” parameters is just within

the current rule.

Most parameters’ values are obtained from deduction or feedback from the user

if they have the “askable” property. Some of the parameter’s values are set

during preprocessing, from a special file parm. const (Appendix B.6).

All the parameters must be defined in the file _. parm {Appendix B.2), which gives

sufficient information for later rule compiling and the running of the inference engine.

12

The grammar defining a parameter in file _.parm is in Fig 2.3.

parm_definition: parm_name HAS_INDEX fields_num fields

| parm_name HAS_INDEX O DATA_TYPE ASKABLE
parm_name: IDENTIFIER
fields_num: NUMBER

fields: { field_name DATA_TYPE ASKABLE}+
HAS_INDEX: “y~

[“n”
DATA_TYPE: “i” | “d" | “¢” | & | "k~
ASKABLE: vy

| B

NUMBER : {[1-9]1}{[0-9]}

Figure 2.3: parameter file (-.parm) grammar.

There are five DATA_TYPE here, where:

'i7-gnt, 'd-double, ’c’-char, ’s’-siring, ‘k'-stack

HAS_TNDEX shows whether this parameter has an index or not. If the fields num is 0,
the following parts are the data type of this parameter, and 'y’ or 'n’ to show whether
this parameter is askable or not. If the fields num is not 0, the following parts give
each field’s information; (1) the name of the field, (2) the data type of the parameter
with this field, and (3} whether this parameter with field is askable. Attention should
be paid to the fact that the definition of each parameter must be in a single line,
which means no nl (new line) character can be encountered before the end of this
parameter’s definition.

Fig 2.4 shows some examples of parameter definitions, which are abstracted from
the file mar . parm.

For the mosaa program, what it really reads from HAS_INDEX is just the first
character, 'y’ or 'n’. So ’nindex’ shown in figure 2.4 is the same as 'n’. The same

situation applies to DATA TYPE and ASKABLE.

13

Fir_L_S3_idx nindex 0 1 yques

Cur.CD yindex O d nques : _

Cur_Series mnindex 7 branch c yques K i nques n 1 nques t i nques
prop < yques geries_no i nques Symm s nques

Cur_Peaks yindex 10 J i nques wv d nques intens d nques
pkf_idx i yques deltal d nques delta2 d nques series_nc i nques
bias d nques zone_no 1 nques confirm i nques

Figure 2.4: Some example parameter definitions from parm file mar. parn.

Parameter Fir L_S_idx is a Simple Parm. In Fig 2.4, nindex shows that it doesn’t
have any index, and 0 shows that there are no fields with it. Thus the following two
terms in the line are data type 1 and askable property yques.

Parameter Cur_CD is an Index Parm. The only difference between the definition of
Cur CD and Fir L S_idx is the HAS_INDEX term.

Parameter Cur Series is a Field Parm. In Fig 2.4, field num is positive 7, which
indicafes that it has 7 fields. Since this kind of parameter can’t exist without its fields,
there 1s no data type for Cur _Series. Instead, each field has a data type and askable

property with it such as Cur Series.K; the data type is 1’ and it is nonaskable.

Parameter Cur Peaks has the similar situation with Cur_Series, with HAS_INDEX

being different.

2.3 MOSAA functions

MOSAA functions can be classified into two groups:

normal MOSAA. functions -

This kind of MOSAA function is almost identical to subroutines (see section 2.4

with the exception that it has a different appearance in the rule structure.

14

MOSA A-function rule functions -
‘These typical functions are not written as normal C++ functions; they are actual
rules in the rule base. However, they are used (being called) as normal MOSAA

functions.

Section. 3.1.2 gives more details about how these MOSAA functions are used in
the rule structure.

The description of all the MOSAA functions which appear in rules must be con-
tained in the file _.mosaa. The following grammar in Fig 2.5 is used to define MOSAA

functions in the _.moszaa file,

MOSAAfunc_definition : MOSAAfunc_name RETURN_TYPE {arg_typel}s
MOSAAfunc_name: IDENTIFIER
arg_type: VALUE_TYPE

|" PARM_NAME_TYPE MODIFY_TYPE

RETURN_TYPE: ~“i” | “d” | ¢~] “&°
VALUE_TYPE: A7 cd | e | e
PARM_NAME TYPE: "t~ | e | 'r7 | 'g" | "k~
MODIFY_TYPE: ‘m” | “r” | “u~

Figure 2.5: Grammar of MOSAA functions in file _.mosaa.

MOSAAfunc name usually 1s all lowercase characters.
If the arg type is VALUE_TYPE, what the MOSAA function needs is a value. Thus

in the rule, this argument can be a const, or a parameter. The VALUE_TYPE can be:

1’ - int, 'd’-double, ’c’-char, ’s’-string.

If the arg type 1s PARMNAME_TYPE, what the MOSAA function needs is the name
of a parameter. Since each parameter has its data type, there are six PARM_NAME_TYPE,

as follows:

15

“tint, ‘e’-double, fr'-char, ‘g-string, ‘p-any kind of parm ,
‘k’-stack

which means that the argument must be a parm name instead of a parm value. k
always appears as a parm name.

Once this special PARM_NAME_TYPE argument type appears in the _.mosaa file, there
must be a MODIFY type following it, which can be:

‘m-modifying, ‘r’-reasoning, ‘u’-nothing .

The modify type is used to tell the inference engine that after doing this subroutine,
the parameter will be assigned a value('r’), be modified(’m’), or not affected(’u’). This

property is very important in controlling later inference engine running (see chapter 4).

Here we use an example to show how to put a MOSAA function definition in the

_.mosaa ﬁle

= int_return tparm reasoning i_value

thassign an int value “i_value” to int parm “tparm”

‘This 1s an ‘assign’ function. The line affer "%’ are the comments. The return type
of this function is int and the first argument must be a name of an int parameter, so
we use type t’. Since it is a PARMNAME.TYPE fype, its MODIFY type - 'reasoning’
follows it. The second argument is an integer value, so 'i_value’ appears there. As the
comment shows, this MOSAA function assigns an integer value to an int parameter.
After this assignment, the parameter’s value is determined. When it is read in from

later mosaa program, the assign function is the same as :
= i t r i
The initial MOSAA function definition

= int_return tparm reasoning i_value

16

makes the file more readable compared to

= i t r 1

To overload a function, we just give another definition. For example, if we want
another '=’ function to do double value assignment, we define the assign function as

follows:

= int_return eparm reasoning d_value

%assign a double value “d_value”’ to double parm ‘eparm’

2.4 Subroutines

Subroutines are normal functions written in C+4+; they are one of the components of
rules. The descriptions of all the subroutines which can be used in rules are contained

in file _.sub (see Appendix B.3) . These descriptions give the return type and types

of all the arguments for the subroutines, which are in the same format as MOSAA

functions. A simple subroutine definition example is:

show_peak int int

fgraphically display the new found peak of the current series

2.5 Properties

Properties are associated with rules, and they give some additional control to the
running of the inference engine, or make it easier to write or read some rules.

Here is a brief description of property “MATCH”. When a rule has a property
such as:

MATCH L4, S_idx

then, besides the parameter L4 being assigned the value S_idx, the other six L

parameters-

17

Lo, L1, L2, L3, L5, L6

will automatically be assigned to

S.idx-4, S_idx-3, S_.idx-2, S_idx-1, S_idx+1, S_idx+2

respectively. This makes writing current rules easier, and makes them more readable.
Some other properties are very important in running the inference engine, and section

4.2 gives further details.

2.6 Explanation

The explanation part of a rule gives a brief English description of what this rule does.
It explains the rule from the molecular assignment view point, and is also used by the

“Explanation Facility” during running of the inference engine.

18

Chapter 3

RULES

The basic component of the MOSAA knowledge base is the rule base. Rules in
MOSAA are written in plain ASCII characters and contained_‘ in file _.rule . Before
the inference engine starts, this file is read in, and the rules are compiled into an
internal rule structure. To add, remove or modify a rule, the ASCII _.rule file is

edited appropriately.

3.1 Rule structure

As mentioned in chapter 2, rules in the MOSAA KBS have a normal “IF-THEN”
structure with extra Property and Explanation parts. Fig 3.1 shows the MOSAA
rule structure.

Fig 3.2 and Fig 3.3 are two sample rules from the rule base.

3.1.1 Rule categories

“label” in fig 3.1 contains the ruledd and the group this rule lies in. MOSAA rules
are categorized into three groups: G-Gloal , C-Consequence and A- Antecedent rules.

There are no major structure differences between these three types of rules, but

19

label IF condition

conditions
e Premise
condition,,
THEN conclu
conclu,
Conclusion
concli,
prop:
Props
- Property
propy
JE o Explanation

Figure 3.1: Rule structure (also see Fig 2.1 line '9’).

in the inference engine, different kinds of rules act very differently. Section 4.1 gives

a brief description about the role of each rule type in the inference engine.

The compiler won’t take care of rule_id, so the ruleid can be any integer number,

as long as it is in “int” range.

3.1.2 Conditions

“conditior” in the Premise can be one of the following clauses:

single parameter -

If the parameter’s value is known and # 0, this condition becomes true.

MOSAA function -
If this MOSAA function returns a value # 0, this condition becomes true.

20

C_R38 IF < Cur_R_Series.top,Cur_R_Series.top_of_three
/hcondition_1%/
& FOR i= Cur_R_Series.top_of_three-1;
Cur_R_Series.bottom_of_three /Ycondition_2Y/

{

Transfer_Line R_To P i /hloop_clausa_1%/
& Transfer_Line_R_To_Q i /4loop_clause_2%/
& UNFQUND R_To_Q_Pro_L /Yloop_clause_3%/
}

& FOR i=Cur_R_Series.top_of_three;
Cur_R_Series.bottom_of_three /[Ycondition_3%/

{
RPQ_Confirm 1
T
THEN
= Transfer_TJI_To_P, 1 Jhconclu_1Y%/
/*

IF there are already four R branch lines which includes
three_lines and one line above the top of the
three_lines

AND
from these four R branch linesz, can find corresponding
P and § lines

AND
using these R, P,Q branch lines, we have confirmed
three_lines

THEN
Transfer three_lines to P has been done

*/

Figure 3.2: A sample consequence rule.

21

C_R260 IF

UNFOUND Stop_Transfer
& UNFOUND Cur_Series.K
& == Bearch.Dire, P~

& Set Pkf_idxl, ($get_P_from_R(Cur_R_Peaks[S_idx].wv

r

Cur_R_Peaks[S_idx].J)) /Ycondition_4%/

& Pkf_idxi
THEN
Set TEMPI1, S_idx+2
& Set Cur_P_Peaks[TEMPI1].pkf_idx, Pkf_idx1
% Set Cur_P_Peaks[TEMPI1].J, Cur_R_Peaks[S_idx].J+2
& = Cur_Found_P_Line, TEMPI1 '
& Transfer_Line R_To_ P 8_idx
/% IF Transfer has not been stopped
AND Current series” K value is already known
AND Searching from R branch to P branch
AND calling subroutine “get_P_from_R~ has found the
corresponding P branch peak for R branch peak S_idx
THEN
this MOSAA-func rule is true (Transfer_Line R_To P S_idx).
AND
record corresponding information for this current found
P branch peak. Since Cur_Found_Line_P_Line value is
determined by "=" instead of “Set’, it may invoke antecedent
rules to do further processing
*/

Figure 3.3: A sample MOSAA-function rule.

22

“condition_1” in fig 3.2 calls a MOSAA function condition. “<” is the name of

the function, and the following two symbols Cur R_Series.top and
Cur R _Series.topof.three are two arguments of this function. The argument

can be a single parameter, an expression, or even a bracketed MOSAA function

or subroutine.

“loop_clause_1” calls a special kind of MOSAA function, which in fact is a
MOSAA- function rule function. This kind of MOSAA function is not a C++

function; instead it is a consequence rule and can only be a consequence rule.

Fig 3.3 shows this MOSAA-function rule. We can see that for the caller,

“loop_clause 1” in CR_38 condition_2, there is no difference in calling a nor-

mal MOSAA function, or a MOSAA-function rule function.

subroutine -

If this subroutine returns a value # (, this condition becomes true.
A subroutine condition is similar to a normal MOSAA function condition, with

a trival difference in format.

loop -
Loop is a special case of condition. Each loop has a head part and a body part.
The head part shows the loop type and sets the start value, end value and step
value of the loop variables. The body part is a group of clauses, which can be
one of the three previously introduced conditions. When all the clauses in the

loop body are true, this loop body becomes true.

There are three kinds of loops, and Table 3.1 gives a brief description of them.

3.1.3 Conclusion-conditions

conclus in Conclusion can be one of the following clauses:

23

Table 3.1: The three types of loops.
loop condition value
FOR During the loop, anytime the loop body fails
the condition fails
ANYIF | During the loop, anytime the loop body succeeds
the condition becomes true
DO Just execute the clauses in the loop body;
the condition is always set to be true

MOSAA function -
If the MOSAA function is a normal one, simply call it to do the corresponding

process. If it 1s a MOSAA-funciion rule function name, which means the current

rule itself is a MOSAA-function rule being called, then do nothing.

For example, rule C_R250 in Fig 3.3 is a MOSAA- function rule. Conclusion con-
dition Transfer Line R To P S_idx shows thisisa MOS;AA—function rule. This

rule is tried when the MOSAA function name appears in some other rules, such
as in C_R38. When this rule is fired, it is as if MOSAA function is called. There-
fore, all the other conditions in the conclusion are done, except the MOSAA-

funetion rule function condition.

subroutine -

Call this subroutine.

loop -
Do this loop (can only be “FOR. ” or “DO”).

All the parameters appearing in the conclusion must already be known; otherwise

an error message is provided.

24

A_RBO IF ICur_Found_Line

&% == Search_Dire, U~
& ANYOF i = L4; L8
{
Adjust_intens i
s

THEN

None_Operation
MATCH L4, Top_L_S_idx
& Relative “C7, 21

/*
IF during up searching, can’t find more lines
AND one of the top three lines” intensities can be adjusted
THEN
restart consequence rule 21 to redo up searching from the
beginning
*/

Figure 3.4: An antecedent rule: A_R60.
3.2 An example of modifying the rule base

The MOSAA system is used for assisting in making molecular assignments. The
current rule base contains a set of rules which can be used for a basic and simple
series assignments. More and more rules can be added to the rule base to make the
system more powerful. The following is an example of how to add a new rule to the
rule base.

Antecedent rule A_R60(Fig 3.4} is a rule used to help in dealing with the situation
when the up searching line process is stuck. At first we remove this rule and the
associated rules C_R234 to C_R239 from the rule base, assuming that we don’t yet
have these rules (all the rules we mention here are referenced in Appendix B.1).

C_R23 is a rule trying to search upward for a next line. If this rule fails, C_R100
1s going to be fired and parameter Cur_Found_Line is assigned the value 0. One of the

reasons that it can’t find the next line is because of the wrong intensity search range

25

which was set by the previous three lines. If one of the three lines is overlapped, the
intensity range will be wrong, and the next line can’t be found. So A_R60 is added to
the rule base. |

The last line we got is Top.L_S_idx, and we want to see if one of the three top
lines L4, L5 and L6 is overlapped and its infensity can be adjusted. So we need a
function; in this case, a MOSAA-function rule will be proper. Since there are all
kinds of situations of three lines, we produced a group of consequence rules ¢_R234
to C_R239 to handle the different cases.

We use one example to show how the rules we added help dealing with the overlap

case,

SpreadSheet is:

R, N
Index. J Wy deltal delta2 intens
12. 1018.445679 1.410012 0.466641
13. 1019.855691 1.393535 ~0.016477 0.401719
14. 1021,249226 1.376004 ~-0.017531 0.299412
15, 1022.625230 1.358654 -0.017350 (0.35B367
16. - 1023.983884 1.341201 -0.017453 0.337332

Figure 3.5: A piece of spreadsheet produced during the inference engine running.

Now, we are in the up searching process, and we have found lines up to 1018 .445679;
the index of this line in the Cur_Peaks array is Top_L_S_idx since it is the top line we
have got so far. The corresponding spreadsheet is shown in Fig 3.5. The intensity
searching range obtained from C.R23 is [3.189257, (.589257]. In this range we couldn’t
find any line. Thus the inference is stuck there, and C_R23 fails. C_R100 then is fired,
which invokes A R60 trying to check if one of the three top lines is overlapped.

During searching if the previous lines are overlapped, C_R234 is going to be fired,
which means line 1021.249226 probably is overlapped according to its strange intens-

ity comparing to its neighbours. Fig 3.6 shows a piece of the spectrum around these

26

lines.

We can see that line 1021.249226 is kind of strong, although it is not fat’ like
some other overlapped lines. This illusrates the case where there can be one small line
underneath which has almost the same wavenumber.

When the user confirms this overlap and wishes to adjust its intensity temporarily,
CR234 is fired; it adjusts the intensity of line 1021.249226 from the initial value
0.299412 to 0.378543 according to its neighbouring line intensity values.

Therefore rule A.R60 is fired; it reserves the intensity adjustment of line 1021 . 249226
and restarts the inference engine from rule C.R22 to redo the upsearching. This time,
one more line 1017.018113 is found, and we get the spreadsheet as shown in Fig 3.7.

There is a new MOSAA function “Adjust_intens”, and the line

Adjust_intens int int

must be added into the _.mosaa file. Also, in the C++ file func_table.cc, the

following code must be included :
case 42; return 0;

where “42” is the index of the function “Adjust_intens” in func_table (one way to get
the index is described in section 5.5).
For this case, there is just one line “return 0” since it is a MOSAA-function rule.
For normal MOSAA functions, a real C++ function must be built in mosaafunc.h,
mosaafunc.cc, and the associated code should be included into func_table.cc. This
1s the same process as that required for adding a new subroutine. For example, to add

a new MOSAA function: “=="(for int values), then one would add the lines

== 1int i_wvaluel i_value?2

% if i_valuel is equal te i_value2, return 1, else return O.

in the _.mosaa file, and the lines of source

27

1021.200 1021.225 1G21.250 1021.275 1021.300 1021.325 1021350 1021375

1021.175

f spectrum.

lece O

A pi

Figure 3.6

28

SpreadSheet is:

R,

Index J WV deltal delta2 intens
11, 1017.018113 1.427566 C.595500
12. 1018.445679 1.410012 -0.017554 0.468841
13. 1019.855691 1.383835 -0.018477 0.401719
14. 1021.249226 1.3768004 ~0.017531 0.378543
15, 1022.625230 1.358684 -0.017350 0.355387
16. 1023.983884 1.341201 -0.017453 0.337332

Figure 3.7: A piece of spreadsheet produced during the inference engine running, after
adjusting the intensity of one line.

case 4: 1if (equal{p_arg_value[0].i, p_arg_value[1].i))
b_value.i=1;
else
b_value.i=0;
b_type="1i";

return 1;

in func_table.cc to call the real C++ function, and set the return value and type.
We also must give the real C++ function ’equal’ in mosaafunc.h and mosaafunc.cc;
this 1s quite simple for this equal function as shown on Fig 3.8.

Now, if one of the MOSAA-func rules that includes “Adjust_intens” is fired, and
the premise of A_ R59 becomes true, in this case, there is no operation since what we

want is to invoke a restart. Therefore, there is a property
& Relative "C7, 22

which will restart the whole up searching process, after the intensity of one line is

adjusted. Section 4.2 gives further details about this *restart’ process.

29

int equal{int A, int B); //prototype in mosaafunc.h

int equal(int A,int B) //C++ function in mosaafunc.cc
{
if (A==B)
return 1;
return 0;

Figure 3.8: The C4+ code added for adding a new mosaafunction ’equal’.

30

Chapter 4

INFERENCE ENGINE

The MOSAA system inference engine combines backward chaining and forward chain ing,
as well as two special mechanisms ¢ry and restart. Appendix C gives the diagrams of

this inference engine; here only some important concepts are discussed.

4.1 Three types of rules

As we mentioned, there are three groups of rules in the inference engine, and each

group has a different role.

1. Goal Rule

The goal rule starts the inference engine by trying to determine if the premise

in the goal rule is frue.

Fig 4.1 is a goal rule which starts the whole assignment engine. At first it does
several initial processes. If these finish snccessfully, it then trys to determine if
parameter A11_Assign.Done is true, which starts the whole engine.

2. Consequence Rules

Consequence rules are used in the backward chaining. When the inference engine

needs to determine a parameter’s value, the consequence rules are tried one

31

- G_R1 IF $main_preprocess()
& All_Assign_Done
THEN
$final_step()

Figure 4.1: A sample goal rule.

by one. The consequence rule is tried only when it has a MOSAA function
or subroutine condition, which can determine the inquiring parameter’s value

(modify type of this parameter must be r’).

Rule CR38in Fig 3.21s a consequence rule. When the parameter Transfer TJI to P
value needs to be determined, C_R38 is tried, since there is a MOSAA function =’

in the conclusion which can determine the value of parameter Transfer TJ_to_P.

. Antecedent Rules

Antecedent rules are used in forward chaining. Once a parameter’s value is
determined or modified during or after doing the conclusions of one rule (which
can be a Consequence or Antecedent rule), the forward chaining is invoked. An
antecedent rule is tried when its premise has the parameter whose value has just

been determined.

As long as one antecedent rule is fired, no more antecedent rules are going to

be tried, unless being forced by the “Relative ” property.

When there are any unknown parameters in the premise, this rule is skipped,

unless it has the “INVOKE” property.

There was a sample antecedent rule A_R60 shown in Fig 3.4 previously, as well

as some explanation about this rule in that section (section 3.2).

32

4.2 Special properties

Besides the basic backward chaining and forwarding chaining, some special properties

of the rules also control the inference engine running.

INVOKE -

This property can only appear in an antecedent rule. Normally the rule is

skipped, if it has an unknown parameter. If the rule has this INVOKE property,
the ’simple’ backward chaining is invoked to try to determine the value of this
unknown parameter. The reason that we call it ’simple’ backward chaining is

that no forward chaining is invoked during this ’simple’ backward chaining.

Relative -

This property also only can appear in an antecedent rule. It can be

Relative 'A’, rule_id [/first case

or

Relative ’C’, rule_id //second case

When a rule with such a property is fired and all the conclusions are done, in the
first case, the corresponding antecedent rule with that rule_sd is invoked. For

example, Fig 4.2 shows a group of A_R rules.

This group of antecedent rules are used to do the processing after the second line
of three lines has been found. If A_R4 is fired, A_R6 and A_R7 are successively
tried.

The second case invokes a special mechanism “restart”. Once the consequence
rule with rule_id is the ancestor of the consequence rule which invokes the current
antecedent rule, the inference engine will restart from that particular point.

The complete environment (the value of all parameters) are reset at that point,

33

A_R4

A_RS

IF Sec_L_S_idx

THEN

Set TEMPI1, Cur_Peaks[Sec_L_S_idx].pkf_idx

Set Cur_Peaks[Sec_L_S_idx].wv, PKF[TEMPI1].wv

Set Cur_Peaks[Sec_L_S_idx].intens, PKF[TEMPI1].intens
Set Cur_Peaks[Sec_L_S_idx].series_nc, Cur_Series_lNo
$show_peak (TEMPI1)

Set Top_L_S_idx, (Minimum Fir_L_S_idx, Sec_L_S_idx)
Set Bottom_L_S_idx, (Maximum Fir_L_S_idx,Sec_L_S_idx)
Relative A7, 6

& Relative “A", T

& 2 P R o2 oRP

IF Sec_l.S.idx

& > Cur_Peaks[Bottom_L_S_idx].wv, O
& > Cur_Peaks[Top_L_S_idx].wv, 0
THEN
Set Cur_Peaks[Top_L_S_idx].deltat,
Cur_Peaks[Bottom_L_S_idx] .wv-Cur_Peaks [Top_L_S_idx] .wv

IF Sec_L_S_idx

THEN

REMOVE Search_Zone_No
REMOVE S_Low_Range
REMOVE S_High Range
REMOVE I_Low_Range
REMOVE 1I_High Range

-

Figure 4.2: A sample of using property “Relative “A°, x”.

34

except for some parameters whose values are reserved by the MOSAA function

“RESERVE”. Fig 4.3 shows an example.

Basically, C_R18 tries to find the third line of threelines. If C_R13 fails, parm
ThiL_S_idx is not determined; then the premise of C_R105 becomes true and
C_R105 is fired, thus invoking antecedent rules. If A_R32 is fired, which means

that there are some other second lines that can be used, after some processing,

the inference engine restarts the deduction from the consequence rule C_R18.
All the modifications of the parameters which were done up fo this point are
removed, and since we want to keep the information that another second line

has been chosen, 'RESERVE’ is used to save the new second line information.

TRY - _
This property can only appear in a consequence rule. The basic idea is that,
once a consequence rule is fired, the conclusion may have more than two choices.
If, later on, the inference engine gets stuck, it can come back to make another

choice.

C_R9 is a rule with the “TRY” property, which determines the search range for
the second line of the three lines (see Fig 4.4). Once C_.R10 which invoked C_R9

fails, the environment is reset, and the inference engine can come back to pick

another choice of search range.

One must be very careful when mixing the TRY and Relative(restart) properties,
since after restart, the deduction path may be changed by the parameters which are
reserved, which can make "TRY” fail. We will use an example to briefly discuss this
problem; Fig 4.5 gives a group of hypothetical rules that we are going to use.

Assume that the inference engine wants to determine the value of parameter
Final Parm. Up to this point, we say the environmentis environmentl. The deduction

path at first is as shown in Figure 4.6 (a). C_R4 fails since Parm A is less than 10.

35

C_R13 IF FOUND Sec_L_S_idx
& UNFOUND Thi_L_S_idx

= Thi_L_S_idx, TEMPI1

C_R18 1IF Thi_L_S_idx
THEW
= Thi_L_Found, 1

C_R105 IF UNFOUND Thi_L_S_idx
THEN
= Thi_L_S_idx, O

A_R32 IF I'Thi_L_S_idx
& Set TEMPI1, (Pop_Line Line_Reserve_Stack, Sec_L_S_idx)
& TEMPI1
THEN
Set Cur_Peaks[Sec_L_S_idx].pkf_idx, TEMPI1
= Sec_L_S_idx, Sec_L_S_idx /hjust for invoking purposesy/
RESERVE Cur_Peaks[Sec_L_S_idx].pkf_idx
RESERVE Cur_Peaks[Sec_L_S_idx].zone_no
RESERVE Sec_L_S_idx, ‘y~
& RESERVE Line_Reserve_Stack
#Relative “C7, 18

g

Figure 4.3: An example of using property “Relative “C*,x”.

36

C_R9

*/

IF

THEN

2 g

PR

oo

#TRY

2=

® P oo

¥

FOUND Fir_L_S_idx

UNFQUND Sec_L_S_idx

== Cur_Series.branch, "R~

= Search_Zone_No, Cur_Peaks[Fir_L_S_idx].zone_no+1
Set TEMPIi, Search_Zone_No-i
Set TEMPD1, Cur_Peaksf{Fir_L_S_idx].wv

+ Zone_Areal[TEMPI1].av_sp
S.Low_Range, TEMPD1 - S_RANGE1
S_High_Range, TEMPD1 + S_RANGEL
I_Low_Range, Cur_Peaks[Fir_I._S_idx].intens - I_EXT
I_High Range, Cur_Peaks[Fir_L_S_idx].intens+I_EXT

Search_Zone_Neo, Cur_Peaks[Fir_L_S_idx].zone_no-1

Set TEMPD1, Cur_Peaks[Fir_L_S_idx].wv
- Zone_Area[Search_Zone_No].av_sp
= S_Low_Range, TEMPD1 - S_RANGE1
= S_High_Range, TEMPD{ + S_RANGE1
I_Low_Range, Cur_Peaks[Fir_L_S_idx].intens - T_EXT

I_High Range, Cur_ Peaks[Fir_L_S_idx].intens + I_EXT

/*_ P39 R38,39

IF

first line of three lines is found(!=0)

THEN search the second line in the zone preceding the current

zone (zone which first line lies in),the wv search range
for this is the first line - the distance between two
zones +~3_RANGE1l (which is the search extension)

the intens of the second line must be in range intens of
the first line +-I_EXT

Property

also can try:
search the second line in the zone following current zone
(zone which first line lies in),the wv search range for
this is +the first line - the disgtance between two zones
+-3_RANGE1 (which is the search extension)
the intens of the second line must be in range inteng of
the first line +-I_EXT

Figure 4.4: A sample of using property “TRY”,

37

C.R1 IF Parm_C A_R1 IF !parm_B

& == Parm_C, 2 THEN
THEN = Parm_4, 12
= Final_Parm, 1 & RESERVE Parm_A
#Relative "C°, 2
C.R2 IF Parm_4
& Parm.B
THEN
Parm_C, 1

TRY { = Parm_C, 2}

C_R3 IF function_1
' THEN
= Parm_A, 2
C_R4 iF > Parm_4, 10
THEN
= Parm_B, 4
C_Rb IF UNFOUND Parm_B
THEN
= Parm_B,0
C_R& IF UNFOURD Final_Parm
THEN

= Final_Parm, 0O

Figure 4.5: A group of hypothetical rules used to illustrate the problem of mixing the
use of 'Relative’ and "TRY’.

38

Then C_R5 is fired, and this invokes A_R1 to restart the deduction from C.R2. This
time, Parm.A is already known since it was reserved by A R1, and the deduction path
changes to look like Figure 4.6 (b) . Now, C_R4 succeeds and determines Parm_B,

which makes C_R2 become true and Parm.C to be 1.

CR1 C R1
CR2 1 CR2
C R4
CR3 C R4
(a) - {(b)

Figure 4.6: Simple deduction paths for the rules of Fig 4.5.

Returning to CR1, condition 2 fails, before C.R1 fails, and the engine starts to
search for “T'RY” in C.R1’s branches, and finds one in C_R2. The environment is reset

as at the very beginning (environmentl), and the engine starts deduction from C_R1

again. The deduction path now becomes fizure 4.6 {a) again, while it should be the
same as Figure 4.6 (b)- which sets the Parm B value, so “TRY” fails.

This case which mixes the TRY and Relative properties should be avoided when

adding or modifying rules in the rule base.

39

Chapter 5

RECOMPILING MOSAA

There are two versions of MOSAA; the command line version and the zview version.

command line directory xview " directo ry
*.ccand * ., h files *.ccand * . Hfiles
make make
comm-mosaa mosaa
a) command line version b} xview version

Figure 5.1: Two versions of MOSAA.

The final version will be the zview version, since it includes a graphical user in-
terface. During the development of MOSAA, the command line version is more con-

venient for debugging both the C++ MOSAA system files, and the _.rule file.

40

5.1 Source files

As of May, 1996, all of the source files for building MOSAA are in anonymous ftp site

physi02.novlab.unb.ca/pub/mosaa/command (command line version)

/xview (xview version)

/input-file (input files)

5.2 User input files

As figure 1.1 shows, there are several input files for running mosaa, and those files are

all in the input-file directory.

Spectroscopy files
| calol8.Q.aD £e24x6 . pkf

calol8.RP.GD fe24x6.tra
These are a group of files for the C'HI*OH co-stretch band.

calol18.Q.GD is the calculated R-Q) combination difference and cale18.RP.GDis
the calculated R-P combination difference. Fig 5.2 1s a portion of the calo18.Q.GD

file, where ’}%’ lines are comment lines and '#’ shows the end of the file.

fe24x6.pkf is the peakfinder file for this spectrum. Figure 5.3 shows a portion
of the fe24x6.pkt file.

The lines before line *7459” are comment lines. During the running of the mosaa
program, the user 1s prompted for the number of comment lines. After the
comment lines, is the number of peaks 7459’ following by the peak information

(wavenumber and intensity).

41

YHENNINGSEN ENERGTES R M LEES DPHYSICS PHONE 4723
YMODIFIED 23 FEB 87

A

% CONVERSION FACTOR= 505376.0 AMU-A2-MHZ

YSPEED OF LIGHT= 28979.25

%

(000) E1

1.546694
3.093124
4.639031

59.069812
60.401280

{000} E2

1.546694
} 3.093124
j 4.639031
|

B7.716561
52.216926
60.715852
62.213299

Figure 5.2: A portion of a combination difference file (fe24x6.GD).

42

181

7459
8992.662788 0.963311
900.881746 0.9569347
908.112281 0.948798
908.176817 0.924850
1098 .530339 0.921143
1098.837077 0.927045
1098.548244 0.895166
1098.561766 0.963333

Figure 5.3: A portion of a peakfinder file (fe24x6.pkf).

fe24x6.trais the plotting file for displaying the spectrum on screen in the zview

version. Fig 5.4 shows a portion of such a file.

The lines before line 0.00099817261382 are the comment lines; the number of

the comment lines is given during the running of the mosaa program.

In the following parts of the file, ’0.00099817261382’ gives Az,
'899.21877175110001’ gives the start 2, and ’1009.59996112400004° is the end

z. The following parts are y for each of the plotting dots.

Knowledge_base files
mar.mosaa mar.prop mar . sub

mar .parm mar.rule

There is substantial discussion of these files in previous chapters 1, 2 and 3.

43

fe24x6

110985
0.00099817261382
899.21877175110001
10092.,98996112400004
0.994100 ©.995800 0.996900 0.920200 0,991400 0.993300 0.996600
(0.998600 0.224800 0.993700 0.994500 0.989500

0.97053 0.97285 0.99376 0.9937Y0 0.98753 0.98388 0.99183 0.97765
0.98336 0.99018 0.97419 0.98664 0.97605 0.97114 0.98514 (.99331

Figure 5.4: A portion of a spectrum file (fe24x6.tra).

5.3 Command line version

5.3.1 Source files

The source files for building a command line version of MOSAA are in the
command

directory, which includes:

s lex&yacc files

input_rule.l

input_rule.yacc

¢ .h files
cd_base.h mosaafunc.h comm—-inter.h
parm_table.h comm-spc.h pPkf.h
const.h prop_table.h error_stack.h

44

rule.h func_table.h gub.h

hfile_style.h wm.h ht.h
zone_area.h main_func_ptype.h

e .cc files
cd_base.cc mosaafunc.cc comm—inter.cc
parm_table.cc COmmM-mosaa.cc pkf.cc
comm-spc.cc prop_table.cc common.cc
rule.cc error_stack.cc gub.cc
func_table.cc tt.cc global _var.cc
union.cc ht.cc WIL. CC

Zone_area.cc

5.3.2 Compiling files

Once a source file 1s modified, we need to recompile. The files for recompiling in

directory physi02:/home/e7qz/cemmand include:

sed-script.lex.yy.c
doit

Makefile
"doit’ is a batch file which has only a few lines, as follows:

lex input_rule.l

sed -f sed-script.lex.yy.c lex.yy.c >>lex.yy.cc
mnv lex.yy.cc lex.yy.c

bison -d -t input_rule.yacc

mv input_rule.yacc.tab.c input_rule.yacc.tab.cc

45

Except for calling 1ex and bison to generate the corresponding files as shown in
Figure 1.2, 1t also calls a unix utility sed to do some modification in the lex output
file lex.yy.c. The output file of 1ex is not an ANSI C file. Since we are using GNU
C++ for compiling, some modifications must be done to lex.yy.c, such as changing
the function prototype style, to change lex.yy.c to be an ANSI C file.

If one of the lex&vacc files 1s modified, two commands should be used:

deit

make

If one of the .h or . cc files is modified while the .1 and .yacc files are untouched,

we only need to run make.

5.3.3 Debugging

Due to the corplexity of the source files and the inference engine produced, some way
to make debugging easier s necessary.

Inside the source code, there are lots of printf lines. They are used to show the
process of the inference engine, which can be used to find bugs in the source code
producing the inference engine, and are also very useful to check if the rules in the
-.rule file are proper.

When the program is small, or, the rough location of the bug is already known, a
debug tool such as xxgdb is very useful. To use xxgdb, one must make sure to set the
debug parameter '-g’ in Makefile for compiling.

The reason we have a command line version, which is not a final version, is because
of the difficulty of the debugging problem. Since the only difference between the
’commmand line’ version and the ’xview’ version is just the user interface, we transfer

the source code into the xview directory when it is known to work correctly.

46

5.4 xview mode

5.4.1 xview version source files

The source files for building the xview version MOSAA are in the
xview

directory. This directory is still being constructed, so the files described here are

subject to change.
The names of the sets of files are almost the same as for the command line version,
where some files have a lot differences, and some have relatively trivial differences.

The following files only appear in xview:

grah_func_ptype.h

assign.cc interface.cc media.cc

The following files have a lot differences compared to the command line version:

spc.h main_func_ptype.h
spc.cc mosaa, co

globkal _var.cc

The following files have relatively trivial differences compared to the command

line version:

common .cc rule.cc error_stack.cc
func_table.cc wm.cc parm_table.cc
ht.cc pkf.cc prop_table.cc

47

These files can be easily transfered from command line mode by modifying the
includefiles. For example, instead of using comm-inter.h, we use grah func_ptype.h.
Thus we get a graphical user interface.

The following files are the same as the command line version:

const.h pkf.h rule.h
error_stack.h func_table.h parm_table.h

wm. h ht.h prop_table.h

5.4.2 xview programming

Although the graphical user interface was built using X window(xview) programming,
there is one concept one needs to be concerned about.
Window applications usually are event driven; since mosaa basically is run by the

inference engine, it is mainline driven [8]. Instead of using xv main_loop, we use:

while (!finished)
{
notify_dispatch();
XFlush(main_dpy);
if (start_assign==1)

assign();

by

assign() is a function that drives the whole inference engine, which invokes a lot
of user interactive functions. If we put assign() info a callback, the events won’t
be dispatched until the callback returns. This i1s not convenient for an interactive
interface. When the function assign is not a callback, we can put netify dispatch
in any place (except in the call back) to explicitly dispatch the event. This is very

convenient since mosaa basically 1s a mainline driven program. For further information

48

about X window/xview programming, please refer to an xview programming reference

book, e.g. [8].

5.5 Auxiliary files

To add a new MOSAA function or subroutine to the rule base, the definition of this
function needs to be added into the _.mosaa or _. sub file, as mentioned in section 3.2.
We also need to add some code into func_table.c, where the index of this function
in the func_table is needed.

As long as this function is in the ..mosaaor _. sub file, we can run 'mosaa’ to get two
auxiliary files: “sub.idx” and “mosaa.idx”, which tells the index of this function in
the corresponding table. These two files are automativally generated whenever mosaa.

is executed. Figure 5.5 is a portion of file mosaa.idx.

mesaa.idx

It

i
[

I
e S S = LA = T ey
moOo A He |0 e
R o W - PR A /T s W N R

H

W WO WN e O
|
1
=
H.

© R
[= %

[
<

VOV vV VvV

e e e M
=

-

[y
[y
o
[.]

Figure 5.5: Auxiliary output file mosaa.idx.

Section 3.2 discussed about how to add in a new function *==’, The code we added

into func_table.ccis

49

case 4: if (equal(p_arg_value[0].i, p_arg_value[1].i))
b_value.i=1;
else
b_value.i=0;
b_type=-i";

return 1;

and the '4’ for case statement is obtained from the mosaa.idx file.

50

Chapter 6

Conclusions

The development environment for MOSAA depends heavily on the Linux(Unix) en-

vironment, which includes the following components:

GNU C++ compiler (gec)
lex
bison

X window/Xview

A good development environment also needs some auxiliary softfware such as an
emacs editor and the X windows debugger xxgdb.

It is relatively easy to add or modify some simple rules once the basic ideas de-
scribed in this guide are understood and by following the appropriate instructions.

To make a large modification of the rule base or even to modify the inference
engine, one must have a good understanding of the inference engine and how it works

with the rules.

51

Bibliography

(1]

[6]

[7]

Object Management Group, The Common Object Request Broker: Architecture
and Specification, Revision 1.1, Dec. 1991, available from anonymous ftp site:

scss3.cl.msu.edu/pub/standands/corba.ps.gz.

Free Software Foundation, bison.info, comes with slackware-2.3 distribution, avai-

able from anonymous ftp site: fip.cdrom.com/pub/linuxy/slackware

[.Mukhopadhyay, R.M.Lees, W.Lewis-Bevan, and J.W.C.Johns, “Fourier Trans-
form Spectroscopy of the CO-Stretching Band of C-13 Methanol in the Torsional
Ground State”,J.Chem.Phys. 102, pp. 6444-6455, 1995.

R.M.Lees, “Far-Infrared and Infrared Spectroscopy of Methanol Applied to
FIR Laser Assignments”, Far-Infrared Science and Technology, ed. J.R.Izatt,
Proc.SPIE Vol. 666, pp. 158-170, 1988.

John Levine, Tony Mason & Doug Brown, lex & yacc, O'Reilly & Associates,
Inc. Sebastopol,CA, 1992.

Texas Instruments, Personal Consultant’™™ FEasy, Reference Guide, Austin,

Texas, 1987.

Li-Hong Xu, High-Resolution Fourier Transform Spectroscopy of BCD;OH
With Far-infrared Laser Analysis, Ph.D. thesis, University of New Brunswick,
1992.

D2

[8] Dan Heller, XView Programming Manual, Updated for Xview Version 3 by
Thomas Van Rattlte, O’Reilly & Associates, Inc. Sebastopol,CA, 1991.

[9] Saibei Zhao, Infrared Fourier Transform Spectroscopy of 0-18 Methanol, Ph.D.
thesis, University of New Brunswick, 1993.

[10] S.Zhao, R.M.Lees, J.W.C.Johns, C.P.Chan, and M.C.L.Gerry, “Fourier
Transform Spectroscopy ofCHX®OH: The In-Plane (' Hz-Rocking Band”,
J.Mol.Spectrosc. 172, pp. 153-175, 1995,

53

Appendix A

lex file

This appendix gives the complete input_rule.l file which is used for building the lexical

analyzer.
Al
T
May 24, 1998 input_rule.l
lex file of input_rule
*/

#include <stdio.h>
#include "main_func_ptype.h"

#include "const.h"

extern int DEBUG_L;

char y_1_id[YYLMAX];

int y_1_linenc=0;

nr

54

A
"C_R" [0_9] ¥

"G.__R" [0_9] *

"E_R" [0_9] *

IIIFII

IITHENH

it (DEBUG_L)
printf ("--%=\n",yytext);
strepy(y_1_id,yytext);

return CR;

if (DEBUG_L)
printf ("--%s\n",yytext);
strepy(y_1_id,yytext);

return GR;

if (DEBUG.L)
printf ("--¥%s\n",yytext);
strepy(y_1_id,yytext);

return AR;

if (DEBUG_L)
printf ("--%s\n",yytext);
strepy(y_1l_id,yytext);

return IF;

if (DEBUG_L)
printf ("--%s\n",yytext);
strepy(y_l_1id,yytext);

return THEN:

55

"FOR" { if (DEBUG_L)
printf("--%s\n",yytext);
strepy(y_l_id,yytext);

return FOR;

"ANYOF" { if (DEBUG_L)
printf("--%s\n",yytext);
strepy(y_l_id,yytext);

return ANYIF;

npon { if (DEBUG_L)
printf("—-%s\n",yytext);
strepy (y_1_id,yytext);

return DO;

e { if (DEBUG_L)
printf ("--Y%s\n",yytext);
strepy(y_l_id,yytext);
return MOSA_NAME;

e { if (DEBUG_L)
printf("—-¥%s\n",yytext);
strepy(y_1_id,yytext);
return MOSA_NAME;

56

gt

oot

Nn=

Hea

tl <<H

{ if (DEBUG_L)
printf ("--%s\n",yytext);
strepy(y_1_id,yytext);

return MOSA_NAME;

{ it (DEBUG_L)
printf("--¥%s\n",yytext);
strepy(y_1l_id,yytext);
return MOSA_NAME;

{ if (DEBUG_L)
printf ('--%s\n",yytext);
strepy(y_1l_id,yytext);
return MOSA_NAME;

{ if (DEBUG_L)
printf ("-~¥%s\n",yytext);
strepy (y_1_id,yytext) ;
return MOSA_NAME;

{ if (DEBUG_L)
printf ("—-%s\n",yytext);

strepy{(y_1_id,yytext);

57

return MOSA_NAME;

MM { if (DEBUG_L)
printf ("--Y%s\n",yytext);
strcpy (y_1_id,yytext);
return MOSA_NAME;

nen { if (DEBUG_L)
printf("-~%s\n",yytext);
strepy (y_1_id,yytext);
return MOSA_NAME;

ayn { if (DEBUG_L)
printf ("--}s\n",yytext);
strepy(y_l_id,yytext);
return MOSA_NAME;

Mg { it (DEBUG_L)
printf("--%s\n",yytext);

strepy(y.l_id,yytext);

return MOSA_NAME;

It { if (DEBUG_L)
printf ("--%s\n",yytext);

strcpy(y_1_id,yytext);

58

return MOSA_NAME;

}
[{3&%$; , =] { if (DEBUG_L)
printf ("--%s\n",yytext);
strepy (y_1_id,yytext);
return yytext[0];
}
[+-/] { if (DEBUG_L)

printf ("--%s\n",yytext);
strepy(y_1_1id,yytext);

return yytext{0];

Mk { if (DEBUG.L)
printf("--Y%s\n",yytext);
strepy(y_1l_id,yytext);

return yytext[0];

viv { if (DEBUG_L)
printf ("--%s\n",yytext);
strepy(y_1_1id,yytext);

return LOOPI;

“gn { if (DEBUG_L)
printf("--Y%s\n",yytext);

gtrepy(y_1_id,yytext);

59

return LOOPD;

R { if (DEBUG_L)
printf("--Y%s\n",yytext);
strepy(y_l_id,yytext);

return yytext{0];

n]n { if (DEBUG_L)

printf("—Y%s\n",yytext);

strepy(y_1l_id,yytext);

return yytext[0];

\n { y_1_lineno++;
it (DEBUG.L)

printf("line-—-%d\n",y_1_linenc);

won { if (DEBUG_L)
printf("--¥=\n",yytext);
strepy(y_1_id,yytext);

return yytext[0];

[0-9]+ { if (DEBUG_L)
printf{("--%s\n",yytext);
strepy(y_1l_id,yytext);

return INTEGER;

60

[o-9] % "[0-9]+ { if (DEBUG_L)

printf("--%s\n",yytext);

strepy(y_1l_id,yytext);
return(DOUBLE) ;

[a-zA-Z] [a-zA-Z0-9_]* { if (DEBUG_L)

printf ("--Y%s\n",yytext);

strepy(y_1_id,yytext);
/#1f it ig a mosa func name*/
if (is_mosa_name(y_l_id))

return MOSA_NAME;
return IDENTIFIER;
/*strepy(y_l_id,yytext);
return(IDENTIFIER) ;*/

e [\ k] &0 { if (DEBUG_L)
printf ("*+k+fs\n", yytext);
strepy(y_1_id,yytext);
char temp[YYLMAX], #*next;
/*count how many “\n’ insidex/
strepy(temp,y_1_id);
while { (next=strchr(temp, "\n")) !=NULL)

{ y.1_lineno++;

strepy(temp,next+1);

}
return COMMENT;

61

"o [a-zA-Z0-9\ JU-u { if (DEBUG.L)
printf ("--%s\n",yytext) ;
strepy(y_l_id,yytext);

return CHAR;

N LT { if (DEBUG_L)
printf("————ﬁs\n”,yytext)f
strepy(y_1l_id,yytext);
return STRING;

LY A ELY VA { /+this is the comment just for user , skip it*/
if (DEBUG_L)

printf ("sxxxfs\n", yytext);

strcepy(y_1_id,yytext);
char temp[YYLMAX], #next;
/*count how many "\n” insgidex/
strcpy (temp,y_1_1id);
while ((next=strchr(temp, "\n~))!=NULL)
{ y_1l_linenoc++;

strepy(temp,next+1};

hh

62

Appendix B

Some input files

This appendix gives knowledge_base files used as part of the input files for program

mosaa.

B.1 Rule Summary

The complete rule file mar. rule1s not included in this appendix because of the number
of pages it requires; about 60 pages not including the explanation part of each rule.

However, mar .rule can be found in anonymous ftp site
physi02.novlab.unb.ca/pub/mosaa/input-file (input files)
The numbers of rules are as shown in table B.1.

Table B.1: Numbers of different rule types

Rule type Nurmber
Total Rules 196
(Goal Rules 1
Consequence Rules 110
Antecedent Rules 85

Rule with TRY property 3

Rule with Relative “A” property | 8

Rule with Relative “C” property | 15

63

The following part shows the id of the rules in mar.rule, as well as some associated
properties. The superscript “T” with rule id means this rule has the TRY property.
The superscript “RA” or “RC” with rule id means this rule has a relative antecedent

rule or a relative consequence rule, respectively.

1. Goal Rule

G_R1

2. Consequence Rule

CR1, CR2, C_R6 to C_R8, C_R9T, C_R10, C_R12%, C_R13, C_R16 to C_R22,
C_R25 to C_R31, C_R327, C_R33 to C_R43, C_R51 to C_R60, C_R99, C_R100
to C_R106, C_R180 to C_R183, C_R186 to C_R197, C_R200 to C_R203, C_R212
to C.R217, C_R221 to C_R226, C_R230, C_R234 to C_R239, C_R250 to C_R260,
C_R270 to C.R275, C_R280.

3. Antecedent Rule

ARI, AR3, AR4® A R6, A R7, A R8P4 A ROto ARIL, ARI2E4 A RIS,
ARI14, ARI5RC, AR16 to A RIS, ARIF4 A_R205C, A R25F4 A R26 to
A_R28FY A R30%4, A_R31FC A R327Y A R33F4, A R34to A R36, AR37R4
A R38 to A R41, A Rdd to A_R54, A R595¢ A_R60, A_R61, A_RT0RC, A R7189
AR72%C A RSO to A R81, A RS6 to A_RI6, ARI00 to AR109, ARIII,
ARI112, A R114%C to A R117EC A_R130 to A_R134.

64

B.2 _parm file

h May24, 1996

A
% format

% parm_name has_index fields_num

A 0
% 1=0
h

A11_Assign Done nindex O 1 nques

A_Prerule nindex 0 i nques

A_Dorule nindex ¢ 1 nques

A_Prefail nindex 0 i nques

Analysis_ok nindex 0 i ngues

Assign_Cur_Series nindex O i nques

Bottom_L_S_idx nindex 0 i nques

Two_B nindex 0 d yques

CA_CD_Exist nindex 0 i nques

CA_CD nindex 0 d nques

mar.parm

value_type ques

field_name value_type ques, field_name...

65

#problem, shouldn’t have two kind of CD

CD nindex 0 d nques

CD_Exist nindex 0 i nques

CD nindex 4 K i yques n 1 yques t i yques prop s yques

CD_Candidate_Stack nindex 0 k nques

CD_Candidate_Stack_Num nindex 0 i nques

CLOSE.DEFI nindex 0 d yques

Candi_Queue yindex O i nques

Cur_Series mnindex 7 branch ¢ yques K i nques n i nques t i nques prop ¢ yques

series_no 1 nques Symm s nques

Cur_Series_No nindex 0 i nques

Cur_Peakz yindex 11 J i nques wv d nques intens d nques pkf_idx i yques

deltal d nques deltaZ d nques series_no i nques bias d nques

zone_no i nques confirm i nques from ¢ nques

Cur_Branch nindex 0 ¢ yques

Cur_S_idx nindex 0 1 nques

Cur_CD yindex © d nques

66

Cur_CD_series nindex 4 n i yques t i yques K i yques prop ¢ yques

Cur_R_Series nindex 8 n i yques t i yques K 1 yques prop & yques top i ngyes

bottom i nques top.of_three i nques bottom_of_three i nques

Cur_Q_Series nindex 8 n i yques t i yques K 1 yques prop s yques top i ngqyes

bottom i nques top_of_.three 1 nques bottom_of_three i nques

Cur_P_Series nindex 8 n i yques t 1 yques K i yques prop s yques top i ngyes

bottom i nques top_of_three i nques bottom_ocf_three i nques

Cur_R_Peaks yindex 9 pkf_idx i nques wv d nques intens d nques overlap i yques

deltal d nques delta2Z d nques J int nques confirm int nques from ¢ nques

Cur_QJ_Peaks yindex 9 pkf_idx i nques wv d nques intens d nques overlap i yques

deltal d nques delta2 d nques J int nques confirm int nques from ¢ nques

Cur_P_Peaks yindex 9 pkf_idx i nques wv d nques intens d nques overlap i yques

deltal d nques delta2 d nques J int nques confirm int nques from c nques

Cur_Zene nindex 0 i nques

Cur_PXF_idx nindex 0 int nques

Cur_Found_Line_Num nindex 0 int nques

Cur_Found_Line nindex 3 pkf_idx int nques from char nques S_idx int nques

Cur_Found_R_Line nindex 3 pkf_idx int nques from char nques S_idx int nques

Cur_Found_Q_Line nindex 3 pkf_idx int nques from char nques S_idx int ngues

67

Cur_Found_P_Line nindex 3 pkf_idx int nques
RPQ_CONFIRM_ET nindex O double nques
Did_Select nindex 0 i nques

E_T_low nindex 0 d nques

E_T_high nindex 0 d nques
ERROR_TOLERANCE nindex 0 d yques
Exisf_Series nindex 0 i nques
Fir_L_S_idx nindex 0 i yques
Fir_L_Found nindex 0 i nques
FAR_MORE_DEFI nindex 0 d nques
Inéorrect_L nindex 0 1 nques
I_SEARCH nindex 0 d yques

I_Low_Range nindex O d yques
I_High_Range nindex 0 d yques

I_EXT nindex 0 d yques

68

from

char nques S_idx int nques

I_EXT_FOR_WEAK_PEAK nindex 0 d yques

INTENS_ADJUST_LIMIT nindex 0 d yques

Last_Zone nindex 0 i nques

/this parm hiddenly has "S_idx" and "pkf_idx" two fields

Line_TJ_Candidate_Stack nindex 0 k nques

Line_TJ_Candidate_Stack_Num nindex O i nques

Line_Candidate_Stack nindex 0 k nques

Line_Candidate_Stack Num nindex 0 i nques

Line_TJ_Reserve_Stack nindex 0 k nques

Line_TJ_Reserve_Stack_Num nindex 0 i nques

Line_Temp_Stack nindex 0 k nques

Line_Temp_Stack_Num nindex 0 i nques

MAX_DELTAZ nindex 0 4 yques

MAX_SERIES_NUM nindex 0 i yques

MAX_BIAS nindex ¢ d yques

MINI_DELTA2 nindex 0 d yques

69

MINI_S_L_NUM nindex 0 i yques

MISS_LINE nindex O 1 yques

Mere_Transfer nindex 0 i nques

Others_Found nindex 0 i nques

P_Initial_Assign nindex 0 i nques

P_Assignment nindex 0 i nques

PKF yindex § wv d nques intens d nques overlap i nques adjust_wv i ngues

adjust_intens i1 nques assigned i nques

Preprocess nindex 0 i nques

Pro_L nindex 0 i nques

R_Te_Q_Pro_L nindex 0 i nques

P_CONFIRMED nindex 0 i nques

Pre_P_Series nindex 2 top_wv doub nques bottom_wv doub nques

Pre_R_Series nindex 2 top_wv doub nques bottom_wv doub nques

Q_za_no nindex ¢ i nques

70

Q_0 nindex 2 wv d yques pkf_idx i nques

ROUGH_2B nindex 0 d yques

Regerve_TJ nindex 2 fir_S_idx i nques sec_S_idx i nques thi_S_idx i nques

fir_pkf_idx 1 ngues sec_pkf_idx i nques +thi_pkf_idx i nques

fir_zone_no i nques sec_zone_no i nques thi_zone_no i1 nques

R_Initial_Assignh nindex 0 i nques
R_P_Correct nindex 0 i nques
R_P_Initial_Assign_Done nindex 0 i nques
R_P_Comm_Assign_Done nindex 0 i nques
RESL mnindex 0 d yques

R_P_MATCH_ET nindex 0 d yques
R_J_Determined nindex 0 i nques

ReturnIi nindex ¢ 1 nques
ReturnI2 nindex ¢ i nques
ReturnI3 nindex O i nques
Returnl4 nindex 0 i nques
ReturnDi nindex ¢ d ngques

ReturnD2 nindex 0 d nques

ReturnD3 nindex 0 d nques

71

ReturnD4 nindex O d nques

STUCK_AT nindex 0 i nques

Sec_L_S_idx nindex 0 i1 nques

Sec_L_Found nindex 0 i nques

Search.Dire nindex 0 ¢ nques

Search L_Range nindex O d nques

Search_H_Range nindex O d nques

Series yindex 2 branch ¢ yques K 1 nques

SEARCH_EXTI nindex 0 i nques

S_RANGE!l nindex 0 d yques

SEARCH_WV_EXT nindex 0 d yques

S_Low_Range nindex 0 d yques

3_High_ Range nindex ¢ d yques

Search_Zone_No nindex 0 int nques

STRONG_PEAK_INTENS nindex 0 double nques

72

Stop.Transfer nindex O int nques

Range _Ext mnindex 0 d yques

Three_Found nindex 0 i nques

Thi_L_S_idx nindex 0 i nques

Thi_L_Found nindex 0 i nques

Top_L_S_idx nindex 0 i nques

Top_of _Three L nindex 0 i nques

Transfer_FJ_To_P nindex 0 i nques

Transfer_FJ_To_P_Done nindex 0 i nques

Bottom_of_Three_L nindex O i nques

Up_And_Down_Extension nindex 0 i nques

Zone_Area yindex 6 idx_1st i nques 1idx_2nd i nques av_sp d nques

line_num i nques branch ¢ yques J i nques

Zone_Analysis_ok nindex O i nques

Zone_Num nindex 0 1 nques

73

/temp variables, the scope is only one rule, so there is a class

%Temp_Var_Stack to deal with that
Biag1 mnindex 0 d nques
Bias2 mnindex 0 d nques
Bias3 nindex 0 d nques

Delta2_Dire nindex 0 doub nques

LO nindex 0 i nques

L1 nindex 0 i nques
L2 nindex 0 i nques
L3 nindex 0 i nques
L4 mnindex 0 1 nques
L5 mnindex ¢ 1 nques
L6 nindex 0 i nques

Pkf_idx1 nindex 0 i nques

Pkf_idx2 nindex 0 i nques

TEMPI1 nindex 0 i nques
TEMPIZ nindex 0 i ngues
TEMPI3 nindex 0 i nques
TEMPI4 nindex O i nques
TEMPD1 nindex O d nques
TEMPD2 nindex 0 d nques
TEMPD3 nindex 0 d nques
TEMPD4 nindex 0 d nques

74

TEMPC1 nindex 0 ¢ nquss

TEMPC2 nindex 0 ¢ nques

i nindex 0 i nques

d nindex 0 d nques

S_idx nindex 0 i nques

#

79

B.3 _sub file

% May 24, 1996

%
YFormat:

% subtoutine_name,

%

return_type

CA_CD_get_3J int
CA_CD_get_P_3J int

CD_assign P int

adjust_wv int int_pkf_idx

[argl_type arg2_type arg3_type

“adjust pkf_idx’s wv by asking user

adjust_intens int int_pkf_idx

fadjust pkf_idx’s intens by asking user

assign_1st_L_P int

ask.y.n_ques int string

%ask a questione--string, get y--1, n--0

choose_CA_CD int

choose_CA_CD int int

cheose_CD int string int

76

jin.sub .

choose_CD int

choose_fir_line int

cheose_sec_line int

choose_thi_line int

down_search_from_TJ int

final_step int

final_P_process int

final_R_process int

get_ Aj.1 doub doub doub doub
Ycase of biasl+34j, bias2-3Aj, bias+ij in ET

get_Aj doub doub

get_2B_quota int

get_click_peak int string

fuser click to get one peak, return this peak’s pkf_idx

get_zone_no int int

haccording to pkf_idx, get the corresponding zone no

77

is_overlapped int int_pkf_idx
“show peak pkf_idx on screen, and ask user if it iz overlapped, (if it is
%already known overlapped, just show it to the user. return 1 if it is

Yoverlapped
main_preprocess int

process int

prompt int string

%just show message

show_peak int int

#display the new peak just got for the current series

show_sh int

/show the spreadsheet style of the current series
sub_preprocess int
%the preprocess of assigning each series , return O if user doens’t want to

fassign any more

sub_final_step int

“the final step after assigning ecach series

up_search_from_TJ int

wS_process int

get_pkf_idx int d_wv

78

hget the pkf_idx of the peak with wavenumber d_wv

search_line int i_line_no d_s_low_range, d_s_high_range, d_i_low_range,
d_i_high_range
%search line i_line_no in wv and intensity range, put them into

%Line_Candidate_Stack, return the number of lines found

move_cur_seriez_to_R int

move_cur_series_to_P int

move_R_to_cur_series int

move_P_to_cur_series int

clean_stack_except_TJ int k_stack undo i_fir i_sec i_thi

%remove all the lines from the stack except the three lines

get_R_from_ P int d_wv 1i_J

get_R_from_P int d_wv i_J i_K i_n s_Symm

get P_from R int d_wv i_J

get_P_from_R int d_wv i_J i_K i_n s_Symm

show_gh int c_branch

process_after_R int

process_after_P int

up_remove R_peaks_from int int

79

down_remove_R_peaks_from int int

up_remove P _peaks_from int int

down_remove_P_peaks_from int int

c¢lean_stack in k_stack unde

get_Q_from_R int d_wv i_J i K i_n s _Symm

select_top_line int c_branch i_pkf_idxl c_from i_pkf_idx2 c_from

%choose one top line for c_branch

%c_from shows where it from, c¢_from="P°, means from P branch,

./. alze , 'R’, P

select_bottom_line int c_branch i_pkf_idxl c_from i_pkf_idx2 c_from

%choose one bottom line for c¢_branch

ancther_one_from int i_datal i_data2 i_data3

Jreturn the data from i_datal, i_dataZ2, which is not equal to i_data3

#

80

B.4 _mosaa file

% May24,1996 ' mar.mesa

4 format:
% mosa_function_name return_type [argl_type arg2_type arg3_type ...]

% int-1, double-d, char-c¢ void-v arbitrary-?

I= int i i
I= int d d
= int ¢ c
I= int =8 s
== jnt i i
== int d d
== int ¢ ¢
== int s =

> int i1

> int d 4

> int i d

> int d i

< int 1 i
< int dd
< int id

< int di

81

>>
>>
>

>>

<<
<<
<<

<<

-

++

++

int 11
int d d
Jremove int d i

_remove int i d

int 1 i
int dd
_remove 1int 1 d

.remove int d 1

int i1
int dd
remove int 1 1

remove int 4 d

int i

int d

int tparm medify

doub eparm modify

int tparm modify

doub eparm modify

int tparm reasoning i
int eparm reasoning d

int eparm reasoning i
int rparm reasecning c

int gparm reascning s

82

ABS dint int

ABS double doulbe

: Adjust.wv int i_S_idx

% this is a rule function, means did adjusting line S_idx

Adjust_intens int i_S_idx

Adjust_remove int int double

Delta2_Smcoth int int

EXCHANGE_VALUE int tparm modify tparm modify
EXCHANGE_VALUE int eparm modify eparm modify
EXCHANGE_VALUE int rparm modify rparm modify

EXCHANGE_VALUE int gparm modify gparm modify

EXCHANGE_PEAK_CCONTENTS int int_S_idxl dint_S_idx2

FOUND int parm undo

: GET_STACK int parm reason

IN_RANGE dint di_var i_low i_high

IN_RANGE int d_var d_low d_high

83

TN_RANGE int di_var d_low d_high
IN_RANGE int i_var i_low d_high
IN_RANGE int di_var d.low i_high
IN_RANGE int d_var i_low i_high
IN_RANGE int d_var i_low d_high

IN_RANGE int d_var d_low i_high

Intens_Smooth int int

KNCWN int parm unde

None_(peration void

PUT_STACK int

Perturbation int parm undo

REMOVE int parm undo

Right_Dire int int

SIGN int 1int

SIGN int double

Set int t undo i
Set int e undo d
Set int e undo 1
Set int r undo <«

Set int g undo =

84

UNENOWN int parm undo

UNFOUND int parm undo

Zone_Dist doub int int

round int doub

RESERVE int parm unde

Push_Line int k_stack undo i_S_idx i_pkf_idx

Pop_Line i_pkf_idx k_stack unde i_S_idx

Maximum int int int

Maximum doub doub doub

Maximum doub doub int

Maximum doub int doub

Minimum int int int

Minimum doud doub doub

Minimum doub doub int

Minimum doub int doub

OR int int int

STOP int int

83

»= int i i
L int d4d
>= int id
>= int 4 i
<= int i1

= int dd

<= int id

<= int d i

Select int 1 1 4 d

STUCK int 1

INT_FLOOR int doub

INT_CEIL int doub

DOUB doub int

RESERVE int parm unde char_invoketype

SHOW_WM int

Pop_Top_UPT_Candidate int k_stack undo parm_S_idx undo parm_Pkf_idx undo
%get the top line which is above three line from the k_stack,
%put its S_idx in parm_S_idx, put its Pkf_idx in parm_Pkf_idx

%if can”’t find any, return O

86

Get_Line_ Num dint_num k_stack undo i_S_idx

higet the number of the lines which S_idx is i_S_idx from the stack

SHOW_WM_STORE int int

INT int doub

Transfer_Line_R_To_P int int_5_idx

Transfer_Line_P_To_R int int_S_idx

Transfer R_.To_P int

Transfer_P_To_R int

P_Extension int

R_Extension int

Up_Search_Done int
Down_Search_Done int

Up_And_Down Extension int

R_Delta2_Smocth int int_S_idx

P_Delta2_Smooth int int_S_idx

Push_CD int k_CD_Candidate_Stack undo i_K i_n s_Symm

Pop.CD int k_CD_Candidate_Stack undo

Transgfer_Line_R_Te_Q int int_S_idx

87

RPQ_Confirm int int_S_idx

In_Stack int k_Line_Candidate_Stack undo i_S_idx 1i_Pkf_idx

#if line i_Pkf_idx is already in stack (with i_S_idx), return 1

L3

88

B.5 _.prop file

A
% May 24, 1996 jin.prop

% recording all the legal property

A

VAR tparm i i 1
VAR eparmd d d
VAR eparmd d i
VAR eparmd i

d
VAR eparm i d d
VAR eparm i i d
VAR eparm i d i

VAR eparmd 1 1

VAR tparm i i
VAR eparm d d
VAR eparm 1 i
VAR eparm i d

VAR eparm d i

TRY

MATCH parm int

INVOKE

Relative char int

39

B.6 parm.const file

% May 24, 1996 " parm. coust
%

% parm_name type value

INTENS_ADJUST_LIMIT d 0.1

CLOSE_DEFI 4 0.15

ERROR_TOLERANCE 4 0,001

FAR_MORE_DEFI 4 4

I_EXT d 0.2

I_EXT_FOR_WEAK_PEAK d 0.2

MAYX_DELTA2 d 0.03

MAX_SERIES_NUM i 50

MAX BIAS d 0.006

MINI_DELTAZ 4 0.01

Ybefore was 0.0001

MINI_S_L_NUM 1i 10

RESL d 0.002

90

S_RANGE1 4 0.2

SEARCH_EXT1 i 20

SEARCH_WV_EXT d 0.01

STRONG_PEAK_INTENS d ¢.4

ROUGH_ 2B d 1.4

R_P_MATCH_ET d 0.002

RPO_CONFIRM_ET d 0.002
#

91

Appendix C

Inference Engine Diagrams

The diagrams shown in this appendix explain the inference engine processes.

92

start

Fsak findar fila ape flle

rula flle Jmosa, .parm,
combinzatleon e
e e] it

Spactrm
parm, fune,prop
infa

rules
R-F €D, R-Q &D

parm nitial . pamMm.const
5 1s1=1-1-3 valua

Frapr

uzer o - winclow Hata i
\ Pari
¥
i Werking
rule fist Mermary{ W)
mm -,
ht node

htinte™— History_Tres

T data out

final process

: AssigNrment—ge sytput flle
data in

Figure C.1: mosaa Toplevel.

93

AL A e s Y s T

A= P MER RTRAM A R ST AN L

start

has goal rule
in G_R list?

Figure C.2: Inference engine.

94

Figure C.3:. Monitor nﬁécha;lism.

95

—— —>»have C_Rtotry?}~ — — — — - -
|
|I 1 A
B LY
|

L —

Figure C.4: Findout mechanism.

96

start

A
|— ave C_Rtotry?— — — — -
|
|

‘N, 1 |Y|

prirrent rule nis
determine the
parm value?

L —

Figure C.5: Simple findout machanism.

97

[Y

INI
Y
L_ B lYl @ _______ N INI _____ |

Figure C.6: Procedure ’is_right’-determines if the premise of a consequence rule is
right.

98

has any parm
unknown?

N

condition
is true?

/ vd

7y

C_R list
simp_find_out

<
N
N
T
~

Figure C.7: Procedure ’ante.s.right’-determines if the premise of an antecedent rule
is right.
99

start

héas unknown parmp — = —

| UNI

© functions
each conclusion
condition

return

Figure C.8: Do conclusion procedure- ’doconclu’.

100

property .

preprocess /

tonsider tha
conditions
in premise

cohndition
simp_is_right?

naxt condition?

!Nl

do conclu

property
postprocess

Figure C.9: Simple monitor machanism.

101

2 'Y!

VAR process

e
i
e N

N
[
|
|
|
|
|
| VAR process
- G
l v
| as VAR prope
I
-
|
|
|
|
|
|
|
I
i
|
I
I
|

considart
condifions
of premise,

condition
ante_is_right

e

property post
process

restart pos___ History Tree

id of the rule
to be restarted

Connn
g
ante_invoke
this ruls

Figure C.10: Antecedent rule invoking procedure-’ante_invoke’.

102

Appendix D

Output file

This appendix gives some sample output files of mosaa, which shows the assigned R,

P, Q branches.

103

GU000DD0

WD

SELSOST O
LETOOB ¢
£T0BLED
S9L0ESTD
LTPSEE™
TFERTE0
FIIGLL O
BIZTET ¢
cFIEST 0

smagur

TILETO (-
THFETO 0-
20910 0=
FRELTO 0-
EFELTO 0-
SEEITO O~
GERITL " 0-

ZeaTep

LEEEIE -
SPHESE O
£919EE "0
FLOOTE G-
BELTOE "G~
T8BFET -
SHESST -
LTSTST 0=

TEATER

ERLETARTITRY
TI9SEZO 00T
QOTLLE 20T
GHECTS 500T
EPPEEL 20T
ELTGEE 00T
FIOOZT"LOOT
OTFHBE"LOOT
LEEGEFLOOT

ToueIgE

[N LR FI O]

WRLE Ty

GBEEFET0
G05FFET0
FO5LLETO
LBESER O
T9EE06°0
A0SHLETD
TELLSA 0
BTBEZA D
FTPELEL™D
FEELPL D
OSE8TL O
TESSLA" D
a¥sFLe o
TEFTOS 0
SCEFFS0
PrREdT 0
EQELEF O
LEGSEF' O
ELFE0F ¢
QLEBSE ¢
TCEETE' &
FATEEL' O
TEI0E0° ¢
OFGEET 0
SEIELE O
BCFYRE' 4
FLTSHE ()
LT9568' ¢
LITTRE ¢
TTLSTE &
PEOBRE ¢
1FERSF ¢
0asFrS o
EFTSES D

SwEgUT

FEOREO G-
EFTLTO 0=
FLIHTO B
0598707 0
BES9TO " B
FOFILQ0-
2199707 0-
ALTHTO B
FIFST10° 0
SI£310° 9=
ELEST0 -
SSESTO "0
OLLHEO 0=
PLESLO 0=
SFESTIO " 0-
LEESTO O
T9£3E0° 0=
SFESIO 0
DCESTO O
STFRLO¢-
CEEpE0g-
EHZHI00-
BLESTO O
Lopato g~
OLFSTO 0~
TO5%T0 0~
£918T0°9-
BLELID Q-
GATHE0 " ¢=
S65510°0-

LBTSSTOT0-

LESRE0 Q-

[l o

QEBBFYT-
BERLEY T
LBLGOT E-
ET2060 "5
FISELE B
FORLGH T-
FOSGTd T-
ZBEELO T~
ELLLOOE-
BILEGE T -
OFOELE T T
LELESE T—
GOELPE T
BEQHTE T~
GFELE0E " T
1FFEs8 " T
EQLLLE T
CFLOS8° T
AEEPTE T
9LQBEE T~
089118 1~
A9296L° T—
SEERLL T~
FOFERLT-
AEESTL T
BESEEL T~
BEQETL T—
FE6969° T
LESELET-
A0TESS T T
£TH979° 1
LBTOES T
JLIETE T

TeaT=p

LEBBLTE ELE TLE
LOS0%96 TFE -1
REFFENCFTFE 13
ELZTET "9PE ‘PE
JERTEE 2R & 33
BEGFEE 096 "TE
E00ZTF" 298 “TE
COOZSF FSE “OE
SREDLE 996 &L
ASEFAP B854 i
LTLSLF 086 “LE
LSLOSF T TG6 "9%
TEFSOP T2 14
E5R15ET 996 “¥e
LEELLT T B9E TED
LELLBT OLa 44
LLTTIADZL6 “12
OBLBSE "Ll itk
CEOETE 546 "6l
BIREIS LG ‘el
FeFI6F BLE "LT
FSTEZ0E"TBE "51
TEPAAL RS “51
LOFLLE TEE ¥
A 1300 1 "E1
TISSEs BBE 1
TPESTT 06 Tt
EUERTE TH6 ‘o1
FRESTS E66 ‘B
TesFL 568 B
BEDEIE 265 K]
SLTSTS BGE B
GEESFTL0O0OT "5
BABRILTROT T

A 2

yousag g

DLODLUDD

UmLe

FRATTE 0
CPFaSE 0
08T5E6°0
FEOGQE" 0
Q0BERE 0
FHRIEE0
LOBESE "0
BLTLLLD
SEOERE" 0
£ILQ0% 0
QTTEZL' D
FFFLSE
ra:lpd: R
Q8ELIG ' {
GERETS 4
TPELLG' O
£5298F° 0
SOTLOFE 0
ESLEOF" O
TTaLeg" 0
BTSENE 4
FOSLOE 'O
QETABE"Q
TOFELE D
TEULET Q)
Q890FE"Q
SLLLLE D
TESELEQ
T42F6E° 0
SETETLT 0
E0FSE0°D
QDEPBE"D
THULFT '
BAFEFS ()
aFstil g
SUBIUT

ELTLIO 0~
BFLETO O~
PEPEIL O~
LAaLTn 0~
GEFERLO O~
CLIBTOH O-
COZETOH O-
LELBTO 0=
CATLTG 0=
GESRTO 0
GOEETO 0~
FTOBTO O~
SFOBTOT0-
TIELTQ 0-
SETETH 0
1BLLTO O~
FLBATOTO-
9FESTHT0-
SELELOT O
CEGSTOH 0
GLTLTG O
TPoLT0 0=
GIELTO 0=
BFTLTH 00—
ERELTG 0=
LELLTO 0=
BSTLTO 0
ETELTOT O~
IFIATG 0=
ERLLTOT O~
9B0LTO O~
BLOLTR O-
DESSTH 0

TEITFP

S¥FPaLE "0
SIBTEE O
295116 D
OHO0Es" 0
LBoL¥e ¢
S0T596° ()
SLLFIE ()
2LETHOT
B0LTEQ R
BHEREOTE
LTILE0'E
SEESLOCE
0565607 F
2661111
LFEBTT T
EETRTT T
£16591° 1
SaLE8T T
ZESE8T T
LIETEL T
GETLES™T
GSEFSE T
OOUELE"T
GIEEEE" T
BQZLOETT
Tea¥Ee T
BAETPE |
SFTESEE
299FLEE
BEYESE" |
BPEOTT'E
FEOBTF'L
CETSPF' L
THFOTIF R

TEILER

FPLOLEG " ESOT “LE
528180 £a071 9L
Treasl £301 1
SFPLLFE " TSAT ‘FE
STLLIE0SAT “EE
259E9E 6P TTE
LSFEGF"SFAT TE
SLOBEFLFAT 0L
00LSEF 9T0T N1
LABEAE SFOT ‘HE
FOOSSEFFOT TLE
LLELET EFOT "8
TFFIEE ZFOT -1
T6PLEL TPOY FE
S6Psl00F01 34
EFSS96RE0T ‘LT
STFLELLEOT ‘T2
£03TLE 950 oE
LTLLBE SEQT ‘GE
SHOGAT FEOTY ‘8T
BELRO6EEQT TLT
GESETLTE0T 1
DATSLF "0E0T 1
GATEOE " S20T ‘BT
TERETELENT kA
£T0808° 9201 ‘LT
CEPTEE 9E0T 1T
FEFECE"CE0T ‘ot
EATOAS 2201 ‘6
0ESEQETL0T i
TEEEOB"8TOT ‘L
EAEGEE8TOT]
SFE0LESTOT ‘g
LEBSES STAT T
SeLEGORIOT T
A o
youeaq
sz o= £=3

