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1 Introduction

.. this we do affirm - that if truth is to be sought in every division of Philosophy, we
must, before all else, possess trustworthy principles and methods for the discernment of truth.
Now the Logical branch is that which includes the theory of criteria and proofs; so ir is with this
that we ought to make our beginnings.

- Sextus Empiricus

The fields of deductive databases and logic programming are intimately related. Theoretical
developments in one area have impacted on the other. This is not surprising as both subjects are an
outgrowth of work in automated reasoning, AR (formerly known as automated theorem proving

[A7P]). Much exciting work is being done in both of the areas (Minker [461).

In this paper, a brief account is given on the historical background of Logic Programming and
| Deductive Databases, starting from their origins in Philosophical and Mathematical Logic. Next we
| look at a broad overview on the fields including First-order Logic Theory; the Syntax and Semantics
of Logic Programming, Proof-theoretic, Model-theoretic and Computational Interpretations of rules.
Proof (or Refutation) procedures, Negative Information including General Closed World Assumption
| (GCWA) and Non-monotonic reasoning; use of PROLOG and DATALOG in the areas; and Disjunctive

Deductive Databases.

Finally, some related open problems in the literature will be discussed.




1.1 Historical Background

Some formalisms gain a sudden success and it is not always immediately clear why.
Consider the case of logic programming. It was inﬁoduced in an article by Kowalski [32] in 1974
and for a long time - in the case of computer science - not much happened. But, twenty-one years
later, already the Joumna! of Logic Programming and Annual Conferences on the subject have been

introduced and hundreds of articles on it have been published.

Tts success can be attributed to at least two circumstances. First of all, logic programming is

Eclosely related to PROLOG. In fact. logic programming coustitutes its theoretical framework. This
close connection led to the adoption of logic programming as the basis for the influential Japanese
Fitth Generation Pro;ect Secondly, in the early eighties a flurry of research on alternative
':'lprogramming styles started and suddenly it turned out that some candidates already existed and haci

for a considerable time. This led to a renewed interest in fogic programming and its extensions.

The power of logic programming stems from two reasons. First, it is an extremely simple
formalism. And next, it relies on mathematical logic which developed its own methods and
techniques and which provides a rigorous mathematical framework. It should be stated, however,
that the main basis of logic programming is automated theorem proving which was developed in a

large part by computer scientists (Apt [3]).



The modern era of automated reasoning is due to the development of the Robinson Resolution
Principle, described in the landmark paper by J. Alan Robinson [57]. The resolution principle is 2

single rule of inference that permits deductions to be automated in a uniform and simple manner. The

resolution principle simply states as follows:

Let g be an atom (Definition 2.3(1)). and let p,,....p, be literals (Definition 2.5) then

q is a logical consequence of

Pr,Dn Hf (—q ANDp; AND .. .AND p,) is FALSE.

This is based on "Proof by contradiction" (or argumentum absurdum). All the same it is
' difficult not to remember its much earlier origin from philosophical logic - by renown philosophers

. like Socrates, Aristorle and Plato. In Appendix I we have listed the Rules of Inference and

Replacement used in Philosophical logic.




2 First-Order Logic

Logic programs are a subset of first-order logic. A first-order logic (theory) consists of an
alphabet, a first-order language, a set of axioms, and a set of inference rules. The first-order language
consists of the well-formed formulae (Definition 2.3) of the theory. The axioms are a designated

subset of well-formed formulae. The axioms and rules of inference are used to derive the theorems of

the logic (Lloyd [34]).

First-order logic has two aspects: its syntax and its semantics. The syntactic aspect is
concerned with well-formed formulae admitted by the grammar of a formal language, as well as
deeper proof-theoretic issues. The semantics is concerned with the meanings attached to the symbols

in the well-formed formulae.

In order to define logic programs, we will first have a brief overview of the syntax and

-semantics of first-order logic.

2.1 First-Order Logic - syntax

The syntax of first-order logic is based on an alphabet and the language defined over the
alphabet (LMR [35}).

Definition 2.1 An alphabet consists of the following classes of symbols:
1. variables, denoted by the upper case English letters (e.g. W, X, ¥, 2);
2. function symbols, denoted by a finite sequence of the lower case English letters (e.g. £, g, A,

Jactorial},




3. predicate (or relation) symbols, denoted by a finite sequence of the lower case English letters

(e.g.p. q, r. path, top),

4. propositional constants, true and false;

5. connmectives, — (negation), v (disjunction), A (conjunction), <— or ~> (implication), and <>
(equivalence);
6. quantifiers, 3 (there exists, or existential quantifier) and ¥ (for all, or universal quantifier),

7. punctuation symbols,'(,'y, ", and '}

Each function and relation symbol has a fixed arity, that is the number of arguments. A
function of arity 0 is cailed a constant symbol. A predicate (or relation) with arity 0 is called a

propositional symbol. Each language is said to have an infinite but fixed set of variables.

To avoid having formulas cluttered with brackets, the following precedence hierarchy has

been adopted, with the highest precedence at the top:
¥, 3

We now turn to the definition of the first order language given by an alphabet.

Definition 2.2 A term is defined as follows:

1. A vartable is a term.

2. A constant is a termi.

3. If fis an n-ary function symbol and #,,....7, are terms, then /%,....,) is a term.




Definition 2.3 A (well-formed) forrmula (wff) is defined as follows:
1. Ifpis an n-ary predicate symbol and #;,....2, are terms, then p(%,.....2,) is a formula (called an
atomic formula, or simply an atom). |
2. true and failse are formulae.
3. IfF and G are formulae, then so ate (), (Fv G), FAG), (F« G). (F—> G and (F© G).
4. IfFis aformula and X is a variable, then (3XF) and (VXF) are formulae.

Dq‘iniﬁon 2.4 A first-order language is defined as the set of all well-formed formulae constructible

from a given alphabet.

Example 2.1 Consider the formulae:

{ (YX(YY(V Z(path(X Y, via(Z)) —> getio(X,Y))) ),
(pathfvancouver, saskatoon, via(calgary)) v
(path(vancouver, saskatoon, via(edmonton)) ) }
By dropping pairs of brackets where no confusion is possible and using the above precedence

convention, we can write the formulae more simply as:

{ VXYYV Z(path(X Y, via(Z)) — getto(X.Y),
path(vancouver, saskatoon, via(calgary)) ~/
path{vancouver, saskatoon, via(edmonton)) }

which means that for all cities X ¥, and Z, if there is a path from X to ¥ via Z then one can get from

X to ¥, and there exists a path from Vancouver to Saskatoon either via Calgary or via Edmonton.

Definition 2.5 A literal is either an atom (say A) or its negation (or compliment —4). A positive

fiteral is an atom_ A negative literal is the negation of an atom.




Definition 2.6 A ground term is a term that does not contain variables. A ground atom is an atom
that does not contain variables. A ground literal is a literal constructed from a ground atom. A

ground formula is a formula where no variable occurs in the formuta.

Example 2.2
teaches(jim, physics) v teaches (jim, math). - is a ground formula;
whereas,
female(X) «— mother(X). - is not.

In the second part of the example - the formula is by default univei‘sally quantified and can
thus be read as - for all X, if X is a mother, then X is a female, or in simple terms - all mothers are

female.

Definition 2.7 The formula over which a quantifier applies is called the scope of the quantifier. The
scope of VX (respectively 3X) in VXF (respectively 3XF) is . A bound occurrence of a variable in
a formula is an occurrence within the scope of the quantifier, which has the same variable

immediately after the quantifier. Any other occurrence of the variable is free.

Example 2.3 In the formula 3X path(X,¥) A 3Y city(¥) the only occurrence of X and the second
occurrence of ¥ are bound. The first occurrence of ¥ is free. Also X'is bound in F, whereas, Y 1s both

free and bound.

Definition 2.8 A formula is in prenex conjunctive normal form (PCNF) if it has the form
QX oo QXL Ly L) e AL N L) )

where 0; € { 3, V } and L; is a literal (i.e. a conjunction of disjuncts.)




Definition 2.9 A closed formule is a formula with no free variable. If /- is a formula, then VF .
denotes a universal closure, which is a closed formula obtained by adding a universal quantifier for

every variable having a free occurrence in . The existential closure of F, 3F is defined similarly.

Example 2.4  1f F is pXY) ~q(X),
then VFis VAVY (p(X ) A g(X)),
while 3F is 2XAY (pXY) A g(X}),

2.2 First-Order Logic - Semantics

The semantics of first-order logic provides the meaning of the theory based on some
interpretation. Interpretations provide specific meaning to the symbols of the language and are used

to provide meaning to a set of well-formed formulae (ZMR [35]).

An interpretation simply consists of some domain of discourse over which the variables
range, the assignment of each function to a mapping on the domain, and the assignment of each
predicate to a relation on the domain. Each interpretation thus specifies a meaning for each symbol in .'
-:_the formula. We are particularly interested in interpretations for which the formula expresses a frue

statement in that interpretation. Such an interpretation is called a model of the formula (Lioyd [34]).

The logic programming systems in which we are interested use the resolution rule as the only

inference rule. Suppose we want to prove that the formula

Wy (B AN B

is a logical consequence of a program P. Now resolution theorem provers (otherwise known as

automated theorem provers) are refutation systems. That is, the negation of the formula to be proved




is added to the axioms and a contradiction is derived. If we negate the formula we want to prove. we

obtain the goal |

Working top-down from the goal, the system derives successive goals. If the empty clause is
evenually derived, then a contradiction has been obtained and later results assure us that

3yy,... 3y, (B ~..A By)

is indeed a logical consequence of P.

From theorem proving point of view, the only interest is to demonstrate /ogical consequence
(Definition 2.18). However, from a programming point of view, we are much more interested in the

_bindings that have been made for variables y,,....y,, because these give us the output from running the

program (Lloyd [34]).

We now give the definitions of interpretations and models, but first we define a pre-

interpretation (all definitions from ZMR [35]).

- Definifion 2.10 A pre-interpretation J of a first-order language L consisis of:
| 1. A non-empiy set D, called the domain or the universe of the pre-interpretation.
2. For each constant L, the assignment of an element in D.

3. For each n-ary function symbol in L, the assignment of a mapping from D't D.

Definition 2.11  An interpretation I of a first-order language L consists of:
1. A pre-interpretation ./ with domain D of L.
2. For each n-ary predicate symbol in L a mapping from D" to {true, false}.

It is meant that 7 is based on J.



Definition 2.12  Let J be a pre-interpretation of a first-order language L. A variable-assignment

(with respect to./) is an assignment to each variable in L of an element in the domain of J.

Definition 2.13 Let.J (with domain D) be a pre-interpretation of a first-order language L and let }"be

a variable assignment with respect to J. The term-assignment (with respect to ./ and V) of terms in L

is defined as follows:

Each variable is given an assignment according to V.
Each constant is given an assignment according to J.
If 7,...¢ are term assignments of #,...f, and f' is the assignment according to J of function

symbol 7, then £(¢',....t") € D is the term assignment of Az;,....7,).

«Definition 2.14 Let I (based on J with domain D) be an interpretation of a first-order language L and

let V be a variable assignment with respect to /. Then a formula in L can be given a truth value, rrue

~Or false (with respect to / and V) as follows: |

If the formula is an atom p?,,....2,) then the truth value is obtained by calculating the value
pi(#.....,t) where p’ is the mapping assigned to p by [ and ¢,...#’ are atoms assignments of

t),....1, with respect to J and V.

2. I the formula is of the form —F, Fv G, F A G, F — G, or F <> (G, then the value of the
formula is obtained using the following table:
F C F  FvG FAG FoG Foo
true true false frue true true true
true faise false frue false false false
false true true true false true false
false false = true false false frue true

10




3. If the formula is of the form ZXF. then the truth value of the formula is frue, if there exists
d € D such that F has truth value zue with respect to / and V(X/d), where V(X/d) is V except

that X is assigned d; otherwise, its truth value is false.

4 If the formula is of the form VXF. then the truth value of the formula is rue, foraltd = D F

has truth value frue with respect to 7 and V(X/d): otherwise its truth value is false.

Definition 2.15 Let I be an interpretation of a first-order language L and let 7 be a formula in L.
Then,

1. Fissatisfiable in I if 3(F) is true with respect io /.

2. Fisvalid inIif V(F) is frue with respect to /.

3. Fis unsatisfiable in I if 3(F) is false with respect to [ (i.e. if F is not satisfiable).

4. Fis nonvalid in I if V(F) is false with respect to [ (i.e. if F'is not vdlid),

Definition 2.16 Let I be an interpretation of a first-order language L and let /' be a formulan L. 718
a model of F if F evaluates to frue with respect to I Let S be a set of closed formulae, then 7 1s a

mmodel of §if I is a model of each formula of S. This is denoted as 7 k S.

‘Example 2.5 (Lloyd [34]) Let F = VX(3Y(p(X,¥))) be a formula. Consider an interpretation / with
domain D, the set of non-negative integers, and let p be assigned the relation <. Then / is a model of
F. Inl F expresses the true staternent that for every non-negative integer, there exists a non-negative
integer which is strictly larger than it. On the other hand if G = JY(VX(p(X ¥})). then our

interpretation / above would not be a model of G.

Definition 217 Let S be a set of closed formulae. When § has a model, it is consistent (or

satisfiable). Otherwise, when S has no model, it is inconsistent (or unsatisfiable).

When every interpretation is a model of S then S'is valid.

11



Definition 2.18 Let S be a set of closed formulae of a first-order language L and let F be a closed
formula in Z. F is a logical consequence of S if for each model A of S M is also a model of . This

is denoted as S E F.

Let $' be a set of closed formulae of a first-order language L. §'is a logical consequence of §

if each formula in 5" is a logical consequence of . This is denoted as § = §"

Proposition 2.1 Let S be a set of closed formulae of a first order language L and let F be a closed

formula of L. F'is a.logical conséquence of S iff §w {—F} is unsatisfiable.

Proof (Lloyd [34]) Suppose that F is a logical consequence of §. Let/be an interpretation of L and
suppose that 7 is also a model for S. Then [ is also a model for F. Hence 1 is not a model for §

{—F}. Thus S {—F} is unsatistiable.

Conversely, suppose S\ {—F} is unsatisfiable. Let / be an interpretation of L and suppose
~ “that 7 is a model for S Since § U {—F} is unsatisfiable, / cannot be a modef for —#. Thus [ is a

“model for " and so F is a logical consequence of .

:'"'Example 2.6 (Lloyd [34]) Let S = { p(a), VX(p(X) > q(X)) } and F be g(a). We show that F is a
logical consequence of S. Let [ be any model for S. Thus p(a) is true wrt I. Tt follows from this, and

the truth of V.X(p(Y) —> ¢(X)) that g(a) must be true wrt .

12



3 Logic Programs

Logic programming began in the early 1970's as a direct outgrowth of earlier work in A7P
and A1 The credit for the introduction of logic programming goes mainly to Kowalski [32] and
Colmerauer [16], although Green [25] and Hayes [26] should be mentioned in this regard

(Lioyd [34]).

Logic programs are simply sets of certain formulae of first-order language {discussed earlier

see pp 6-7).
‘3.1 Logic Programs - Syntax

Logic programming deals with a specific class of wff called clauses. Each statement clause in
a logic program can be viewed as consisting of two distinct parts: an antecedent and a consequent.
Such delineation provides a declarative meaning for a clause in that the consequent is frue when the
“ antecedent is #ue. It also translates into procedural meaning where the consequent can be viewed as a
“problem which is to be solved by reducing it to a set of sub-problems given by the antecedent

(LMR [35]). Below are precise definitions of the syntax of logic programs.

Definition 3.1 A disjunctive clause (or simply a clause) is a formula of the form

VXJ: VXN( L; VoW Lm)

where X.---,X,, are all the variables that occur in literals L;,...,.L,,

13




The universal quantifier is normally omitted while writing a disjunctive clause. When
L,.....L,, are atoms the clause is called positive disjunctive clause. When L,....L,, are compliments of
atoms the clause is called a negative disjunctive clause. A ground disjunctive clause is a disjunctive
clause formed with ground literals. A positive disjunctive ground clause i3 a disjunctive clause
formed with ground atoms. A negative disjunctive ground clause is a disjunctive clause formed with

negative literals. A subclouse of a clause C is a clause formed by eliminating one or more literals

from C.

Definition 3.2 A program clause is a special representation of a clause. Let a clause be of the form

VX VXA Ay Vo AV By Vv By )

where 4;,....4yB;.....B, are atoms. Then the corresponding program clause representation is

AI VooV Ak(—B‘:, . Bm

‘with k> 1 and m > 0. This is also known as the clausal form (or clausal notation).

Thus all variables in a program clause are considered to be universally quantified. The.

commas between atoms after the implication sign denote conjunction symbols. 4, v...v 4, is called
the head of the program clause (sometimes called the conclusion) and B, ..., B,, is called its body

(premises).

Example 3.1 Thus the formula

YXVY¥(p(X) v —av —¢(Y) v b)

looks in clausal form as:

PX) v b «a,qf)

14




If a clause has only one conclusion (k=/), then it is called a definite clause. When the set of
premises of a program clause is empty (n=0), then we tatk of a unit clause. They have the form A«

(or simply 4.)

When the set of conclusions is empty (k=0), then we talk of a goal or a negative clause.
They have the form «B,,....B,. Finally, when both the sets of premises and conclusions is empty

then we talk of the empty clause and denote it by L. It is interpreted as a contradiction.

Definition 3.3 A definite (logic program) clause (or a horn clause) is a program clause of the form:

A« By, .., B,

with m > 0 where 4, B, .., B, are atoms. If m = 0, it is called a definite assertion, or simply an

assertion.

Definition 3.4 A ground clause 4 =A; v ... v A, is a subclause of a ground clause B=B, v... v B,
if for each 4, 1 <i <, there is a B; such that 4;= B; The clause A is said to be a proper subclause of

-Bif it is a subclause and there is a B;, / <j <m, such that for all 4, 1 <i<n B;# 4;

Example 3.2 TA=p(X,Y) vqand B=p(X,.Y) vqv t(f(Y),Z) then A is a proper subclause of B.
We say that 4 subsumes B.

Definition 3.5 An indefinite or disjunctive logic program clause is a clause of the form:

A} V. Ak(—B}, s Bm

with k> / and m 2 0, where 4,, .., 4;, B,, ..., B, are atoms. When m = 0, it is called a disjunctive

dssertion.

15



~ While representing definite and disjunctive assertions, normally, the implications signs 1s not

included and is assumed to be present after the clause. Thus:

A‘: V..V Ak <«
1s written as
Ay v A4

Definition 3.6 A definite logic program (or Horn program) is a finite set of definite logic program

clauses.
Definition 3.7 A disjunctive logic program s a finite set of program clauses.

That is a disjunctive logic program contains either definite logic clauses, disjunctive clauses or

both definite and disjunctive clauses.

Definition 3.8 A logic program is either a definite or a disjunctive logic program. The letters P and

@ will normally be used to denote logic programs.

Definition 3.9 In a logic program the set of all program clauses with the same predicate p in the
head is called the definition of p. '

Example 3.3 Let Pbe a disjunctive logic program, defined as follows:

P={
goto(X,Y) v goto(X,Z) < at(Y), path(X. Y via(Z)), day(sunday);
at(Y) <« day(sunday);
at(Y) v day(sunday)
h

The definition of the predicate symbol goto is

goto(X. Y} v goto(X, Z) « at(Y), path(X, Yvia(Z)), day(sunday);

16



The definition of the predicate symbol af is
al(Y) « day(sunday); ai(Y) v day(sunday)
The definition of the predicate symbol day is
ai(Y) v day(sunday)

There is no definition of the predicate symbol path.

Definition 3.10 A goal clause denoted by G (with or without subscripts) is a clause of the form:
« B, .., B,

clause.

The concept of a query of a logic program is given next.

Definition 3.11 A query is a formula of the form:
A4, A~ Ay

where 72 > 0 and 4,,...,4,, are atoms with the variables existentially quantified.

Observe that a goal clause
— A, A,

is the negation of a query defined above.

17




3.2 Logic Programs - Semantics

Applying the definitions above to programs, we see that when we give a goal G to the system
to show that the s_cf of clauses PU{G} is unsatisfiable. In fact, if G is the goal < B,,.. B, with
variables y;.....y, then Proposition 2.1 (p 12) states that showing PLU{G} is unsatistiable is exactly the

same as showing that Jy;,...,.3y(B;A...AB,,) is a logical consequence of P.

Thus the basic pfoblem is that of determining the unsatisfiability. or otherwise, of PU{(},
where P is a program and G is a goal. According to the definition, this implies showing every
interpretation of PL{G} is not a model. Needless to say, this seems to be a formidable problem.
However, it turns out that there is a much smaller and more convenient class of interpretations, which
are all that need to be investigated, to show unsatisfiability. These are the__‘so-ca}led interpretations,

which we now proceed to study.

Definition 3.12 Let L be a first order language, and let 2 be the disjunctive logic program in L. The
Herbrand Universe for I (resp. P), denoted by U; (resp. {/p), i1s the set of all ground terms
(Definition 2.6) which can be formed from the constants and function symbols appearing in L. If L |

Has no constants, we add somte constant, say &, to from ground terms.

Example 3.4 Consider the program

{
- p(X) < q(ftX), g(X)).
rX).
i

which has an underlying first-order language L based on the predicates P, ¢, and r and the functions f

and g. Then the Herbrand Universe for L is
{ a o), g@) fifla), fig(@), sfla). gg@), - .. §.

18




Observe that the Herbrand Universe of a first-order language L and the Herbrand Universe of
a disjunctive logic program in L are the same. When the underlying language of a logic program P is
not mentioned we assume that the language is formed by the constants and function .symbols that
appear in the program. For our purposes, henceforth, we will simplify the definitions - referring to

the language L taking into consideration that the same applies to the program P as well.

Definition 3.13 Let L be a first-order language. The Herbrand Base, HB,, for L is the set of all
ground atoms which can be formed by using predicates from L with ground atoms from the Herbrand

Universe of arguments.

.Example 3.5 For the previous example, the Herbrand base for L is

[ p(@. g(aa), r(@), p(fia@), pg@). 9(afia), 9f@).a), . .. }.

Definition 3.14 Let L be a first-order language and let P be a disjuncive logic program in L. The
::ﬁsjunmve Herbrand base of L (resp. P), denoted by DHB; (resp. DHBp) is the set of all positive
.disjunctive ground clauses which can be formed using distinct ground atoms from the Herbrand base
L (resp. P), such that no two logically equivalent clauses are in the set.

‘Example 3.6 For the program in Example 3.4, the disjunctive Herbrand base for L is

{
pla). gtaa), ra),
pla) v gla,a), p(a v r(a), glaa) v r(a),
pla} v gta.a) v r(a),
pifla), p(g(@). a(afia). 9w, a),
@) vgaa,

3

19



Definition 3.15 1Let L be a first-order language and let P be a disiuncive logic program in L. A
Herbrand state (or simply a state) § for L (resp. P) is a subset of the disjunctive Herbrand base L

(resp. P).

Definition 3.16 Let L be a first-order language. An interpretation for L is a Herbrand interpretation

if the following conditions are satisfied:

a. The domain of the interpretation is the Herbrand Universe ;.

b. Constants in L are assigned to "themselves" in Uy

c. K fis an n-ary function in L, then f'is assigned to the mapping from ( Uy)" into U defined by
(pyenrl) = Sl peees ). ' |

3.3 Substitutions and Unifiers

The substitution of variables for terms in a formula plays an important role in the theory of
logic programs. Answers for queries posed to logic programs (including those in deductive
databases) are usually represented by substitutions. We hereby introduce some basic. concepts of

substitution and unifiers that are normally used to derive answers.

Definition 3.17 A substitution 9 is a finite mapping from variables to terms and is writien as
O={X=t,.. %=t}
The pair X; = ¢, is called a binding. The variables X,... X, become bound to the terms #;,...7,

respectively. The X's are all distinct variables and each term # is a term distinct from X;. If4,,....1, are

distinct variables then © is called a renaming substitution.

20




Substitutions operate on expressions defined as follows:

Definition 3.18 An expression is either a term, a literai, or a conjunction or disjunction of literals. A

simple expression is either a term or an atom.

Definition 3.19 Let 6 = { v/, ..., v,/1, } be a substitution and £ be an expression. Then £B, the
instance of E by 8, is the expression obtained from £ by simultaneously replacing each occurrence of
the variable v; in E by the term ¢, (7 = /,...n). If ED is ground. then £B is called a ground instance of
E

Example 3.7 Let E=p(X Y, fla)) and 6= {Xb, Y/Z}.
Then £6 = p(b, Z, fia)).

If S = {E,...E,} is a finite set of expressions and 8 is a substitution, then 58 denotes the set

JER,.ED.

Definition 3.20 Two expressions are standardized apart if they do not have any variable symbols in

COMMOori.

Definition 3.21 (Lloyd [32]) Let© = {u/s;,.. u,/s,} and 5 = {v//t;, v, /t,} be substitutions. Then
the composition Oc of 6 and & is the substitution obtained from the set

{1,/$0,. Mpf S0, Vilt;,... .V, 10}
bv deleting any bindings #/so for which u=sc and deleting any bindings v/%; for which v; =

Ly, Mt

Example 3.8 Let® = {X/fiY),U/Z} and & = {X/a,Y/b,ZIW}. Then 6 = {XIfib),UIW, Y/b, ZIW}.
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Definition 3.22 Let E and F be expressions. We say that /2 and F are variants if there exist .
substitutions 0 and o such that £ = FR and F = Fo. We also say that K is a variantof For F s a

variant of £.

Example 3.9 The expression p(fiX,¥), g(Z), a) is a variant of p(f{¥ Xj, g(L), a)'. However, p(X.X is
not a variant of p(X.).

We will be particularly interested in substitutions which unify a set of expressions, that is,

make each expression in the set syntactically identical. Below we define unifiers and related terms.

Definition 3.23 Let S be a finite set of simple expressions. A substitution 6 is called a unifier for S if
S is a singleton. A unifier 6 for § is called a tnost general unifier (mgu)} for S, if for each unifier &

~of §, there exists a substitution T such thatc = 0.

Example 3.10  {p(f{X).Z), p(Y,a)} is unifiable. since o = {¥Y/ffa), Xa, Za} is a unifier. A most
- general unifier is © = {Y/f{X), Z/a}. Note that ¢ = 6{Xa}.

Definition 3.24 A clause C subsumes a clause D iff there is a substitution 6 such that (0 is a

:subclause of D. A clause C, O-subsumes a clause D iff CB subsumes D9,

Procedural semantics describe syntactic transformation rules that permit us o obtain logical
consequences from programs. The next definition describes a very simple rule which is the

fundamental tool used in procedural semantics.

Definition 3.25 (Lovelomd [37]) (Binary Resbiurfon) Let A and B be clauses which are standardized

apart, where each clause is represented as a set of literals, such that L, and L, are complimentary

! Of course there arises a necessity of standardizing them apart first.
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literals with L, € A and L, € B. Let 8 be a unifier for the atoms in L, and L, . Then a (binary)
resolvent of A and B is given by (40 - {£,06}) v (B0 - {L8}).

The notation X - ¥ tmplies that the literals from the clause ¥ are removed from the clause X

(i.e. set difference).

Definition 3.26 (Loveland [37}) Let A and B be clauses and let C be a binary resolvent of 4 and 5.

then C is an imumediate consequence of 4 and B.

Definition 3.27 Let S be a set of clauses. A derivation of the empty clause [ for § is called a
refutation, or proof of S.

Proposition 3.1 Let A and B be in clausal form and let C be an immediate consequence of 4 and B,

“then C is a logical consequence of {4, B}.

Proof: See Chang and Lee [10]p 17.

,Corollary 3.1 Let C be a clause derivable from a set 5 of clauses. Then C is a logical consequence of
s
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3.4 Fixpoints

Van Emden and Kowalski [67] proposed an elegant way of studying logic programs without
negation. Their definitions still make perfect sense in the presence of negation. Their idea was to use
a natural closure operator and equate the models of a program P with the pre-fixed points of the
operator, which are simpler to analyze. This operator is usually called 7, It maps interpretations of

P into interpretations of £ and is defined as follows:

A € T, (@) iff for some clause 4; « Lyv..vL, in P and substitution 0, 7 f Lyv..vL, and

A :AIB

Intuitively, 7,(2) is the set of immediate conclusions of /, i.e. those which can be obtained by
applying a rule from P only once. Note that A € T(I) iff there exists a clause in ground(P) with
head 4 whose body is true in /.

In this section we introduce the requisite concepts of monotonic mappings and their fixpoints.

Definition 3.28 Let Sbe aset. A binary relation R on S is a subset § x S, Infix notation s used to

denote a relation - thus (x,)) € K becomes xRy.

Definition 3.29 A relation R on a set S is a partial order if the following conditions are satisfied:

() xRx, ¥xe§.
(b) xRy and yRx imply x=y Vxy e S.  (Reflexive)
(c) xRy and yRz imply xRz Vxy,ze S. (Iransitive)

We adopt the standard notation and use < to denote a partial order. Thus wehavex<x;x<y

andy<ximplyx =y.andx<yandy<zimplyx<z Vxyze§
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Definition 3.30 Let S be a set with partial order <. Let X be a subset of S. Then a € S is an upper
boundof Xifx <a, ¥x € X. Similarly b € §is an _Imver boundof Xifbh<x ¥xe X

Definition 3.31 Let S be a set with partial order <. Let X be a subset of §. Then a € § is the least
upper bound of X (denoted by lub(X)} if a is an upper bound of X, and for all upper bounds a’ of .\
.a < ' Similarly b € § is the greatest lower bound of X (denoted by glb(X)) if b is a lower bound of
X, and for all lower bounds " of X, b < b.

The Ab(X) and the glb(X) are unique if they exist.

- Definition 3.32 A partially ordered set L is a complete lattice if lub(X) and glb(X) exist for every
- subset Xof L.

The symbol _is used to denote the fop element, lub(L) and the symbdl 1 is used to denote the

bottom element, glb(L), of a cornplete lattice L.

- Example 3.11 Let Sbe a set and 2% be the set of all éubsets of S Then set inclusion, <, is a partial
order on 2°. Also, 2° is a complete lattice under <. The Jeast upper bound of a collection of subsets
of S is their umion and the greatest lower bound is their intersection. The top element is S and the

bottom element is @._

Definition 3.33 Let L be a complete lattice and T: L = L be a mapping. The mapping I 1s

monotonic if for all a,, a, € L, a; <a, implies T{a,) < T{ay.

Definition 3.34 Let L be a complete lattice and X be a subset of L. Xis a directed set if every finite

subset of X has an upper bound in X.
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Definition 3.35 Let L be a complete lattice and 70 L — L be a mapping. 7is a continuous mapping -
if TYtub(X)) = tub({T{a} | a ¢ X}) for every directed subset Xof L. |

Every continuous mapping is monotonic. However, the converse is not true.

Definition 3.36 Let L be a complete lattice and 7> L — L be a mapping. Thena e Lis a fogpoint of
T (denoted by fp(T)) if T{a) = a. Furthermore, @ is the least fixpoint of T (denoted by Hifaisa
flxpoint of T and for all fixpoints b of 7, a < b. The greatest fixpoint of T (denoted by gfp(7)) is
defined similarly. An elementa € L is a pre-fixpoint of T'if T{a) < a.

Theorem 3.1 (Knaster [30], Tarski [65]) Let L be a complete lattice and 7° L — L be a monotonic
‘mapping. Then T has a least fixpoint, /fp(7), and a greatest fixpoint, gfp(7).

Proof: See Lobo, Minker and Rajasekar [35] p50.

Definition 3.37 Let L be a complete lattice and 7- L — L be a monotonic mapping. Then the

'.‘ powers of T are defined by

TTo=1

TT o= T(T T (a-1)), if o is a successor ordinal
T a=lubTT Bl B <o), if o is a limit ordinal
Tdo=T

T4 o= 1(T4 (a-1)), if o is a successor ordinal
T4 a=glb(Td Bl B <oy, if ot is a limit ordinal,
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4 Interpretation of Rules

There are two main alternatives for interpreting the theoretical meaning of rules:

- proof-theoretic and

- model-theoretic.

A third approach to interpreting the meaning of rules involves defining an inference
mechanism that is used by the system to deduce facts from the rules. This inference mechanism is a
computational procedure, and hence provides a computational interpretation to the meaning of the

rules (Elmasri [ 18]).

4.1 Proof-theoretic Interpretation

In this interpretation, we consider the facts and rules to be true statements, or axioms.
Ground axioms contain no variables. The facts are ground axioms that are given to be true. Rules

are called deductive axioms, since they can be used to deduce new facts from existing facts.

The proof-theoretic interpretation gives us a procedural or computational approach for

computing an answer to the Datalog query.

27



4.2 Model-theoretic Interpretation

Here given a finite or an infinite domain of constant values, we assign to a predicate every

possible combination of values as arguments. We then determine for which arguments the predicate
is true and for which it is false. It is sufficient to specify the combinations of arguments that make the
predicate true, and o state that all other combinations make the predicate false. If this is done for

every predicate, it is called an interpretation of the set of predicates.

An interpretation is called a mtodel for a specific set of rules if those rules are always frue

under that interpretation. In the following example, we illustrate a model theoretic interpretation for

the given set of rules (Efmasri [ 187).

Information

: (i) Los Angeles, New York, Chicago, Atlanta, Frankfurt, Paris, Jakarta, and Sydney are cities.
(i) The following flighis exist: LA to NY, NY to Atlanta, Atlanta to Frankfurt, Frankfurt to
g Atlanta, Frankfurt to Jakarta, and Jakarta to Sydney.

[Note: No flight in reverse direction can automatically be assumed.]

Consider the following rules:

reachable(X, Y) - flight{X, Y).
reachable(X, Z) :- flight(X, Y), reachable(Y, Z).

28




An Interpretation that is a model for the two rules listed:

Rules

reachable(X, Y) :- flight(X, Y).
reachable(X, Z) :- flight(X, Y), reachable(Y, Z).

Known facts
flight (la ,  ny ) is true.
flight (ny , atlanta )} is true.
flight {atlanta , frankfurt) is true.
flight (Erankfurt, atlanta ) 1is true.
£light (frankfurt, Jjakarta ) is true.
flight (jakarta , sydney ) is true.

Interpretation

Derived facts
reachable(la . ny' ) is true.
reachable (ny , atlanta ) is true.
reachable (atlanta , frankfurt) is true.

reachable (frankfurt, atlanta } is true.

reachable (frankfurt, jakarta )} is true,
reachable (jakarta , sydney ) is true.
reachable(la , atlanta )} is true.
reachable(la , frankfurt } is true.
reachable (1a , Jjakarta )} is true.
reachable(la , sydney )} is true.
reachable(atlanta , jakarta ) is true.
reachable{atlanta , sydney ) ig true.

reachable (frankfurt, atlanta } is true.
reachable (X, Y) is false for all other possible (X,Y} combinations.
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4.3 Computational Interpretation

The third way to define the meaning of logical rules is to provide an algorithm for executing
them, to tell whether a potential fact (predicate with constants for its arguments) is #rue or false. For
example, PROLOG defines the meaning of rules in this way, using a particular algorithm that involves
searching for proofs of the potential fact. Unfortunately, the set of facts for which PROLOG finds a
proof this way is not necessarily the same as the set of all facts for which a proof exists. Neither is the

set of facts PROLOG finds true. necessarily a model. However, in many cases. PROLOG will succeed

in producing the unique minimal model for a set of tules when those rules are run as a PROLOG

prograni.

4.4 Basic Inference Mechanisms

There are two main inference mechanisms that are based on the progf-theoretic interpretation

of rules.

4.4.1 Bottom-Up Inference Mechanisms (Forward Chaining)

In bottom-up inference (also called bottom-up resolution), the inference engine starts with the facts

and applies the rules to generate new facts. As facts are generated, they are checked against the query

predicate goal for a match.
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4.4.2 Top-Down Inference Mechanisms (Backward Chaining)

The top-down inference mechanism is the one used in PROLOG interpreters. Top-down resolution
starts with the query predicate goal and attempts to find matches to the variables that lead to valid
facts in the database. The term backward chaining indicates that the inference moves backward from
the intended goal to determine the rules and facts that would satisfy the goal. In this approach. facts

are not explicitly generated, as they are in forward chaining.
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5 Refutation Procedures

There are many refutation procedures based on the resolution inference rul"e, which are
refinements of the original procedure of Robinson [56]. We hereby discuss two of them, one for
definite (Horn) clauses - the SLD Resolution. and the other for indefinite clauses - the SLI Resolution.
We also use two data structures to explain the resolution steps, and these are £-clauses (LMR [33])
and clause trees introduced in the paper by Horfon and Spencer [29].

5.1 SLD Resolution

SID*  resolution provides a way to compute answers for a goal from a definite logic
program. It starts with a goal clause, <-4,,....4,, and provides a refutation by deriving an empty goal
clause. In the process of refuting the goal, the composition of substitutions made, restricted to the
variables in the goal clause, provides an answer substitution for the goal clause. Answers computed
-with SLD resolution are sound and complete with respect to the correct answers provided by the
declarative meaning.. That is, all the computed answers are correct answers and all the correct
‘answers can be computed using SLD resolution (Lloyd [34]).

We first define answers and correct answers:

Definition 5.1 Let P be a disjunctive logic program and let G be a goal of the form <4,,...,.4,. An

“answer for P {G} is a set of substitutions for variables of G.

Definition 5.2 Let P be a disjunctive logic program and let & be a goal of the form «-A4,,..., 4, where
A, 1 <i<k, are atoms. Let {0,,0,,...,8,} be an answer for P u {G}. The answer {6,,0,,...0,} isa

correct answer for P U {G} if

V((An A4 O v (A A AR B v N (An. A4 B,)

SLD - Selected rule-driven Linear resolution for Definite clauses.

32




is a logical consequence of £

Definition 5.3 A computation rule is a function from a set of goals to a set of atoms. such that the

value of the function for a goal is always an atom, called the selecfed atom, in that goal.

Definition 5.4 Let G;be «A,... 4.4, Cyiybe A « B,,... B, and Rbe a computation rule. Then

G.., is derived from C;,, using mgu 6., via R if the following condttions hold:

(a) dgis the selected atom given by the computation rule R.
(b) 4;8;,., =A6;.; (thatis, 0, is an mgu of 4, and 4).
(©) Gy, is the goal «—(A;,....4e1. B By Ao AnBinr

In resolution terminology, G;,, is a resofvent of (;; and C.,.

Definition 5.5 Let P be a program, G a goal and R a computation rule. An SLD-derivation of
P {G} via R consists of a (finite or infinite) sequence G,...,G;, of goals, a sequence C,....Co, of
variants of program clauses in P and a sequence 8,,...,8, of mgu's, such that each G,,, is derived from

G;and Cyyj using 6;.; viaR.

Each C; is a suitable variant of the oorrespoﬁding program clause so that C; does not have any
variables which already appear in the derivation up to G;;. This can be achieved, for example, by
subscripting variables inG by 0 and variables in C; by /. This process of renaming variables is called
Osfmzdardizing the variables apart (Definition 3.18). Tt is necessary, otherwise for example, we would
not be able to &érive all the .clauses we could obtain by unifying p(X) v g(X) with

—p(X} v —q(¥).

Each program clause variant C,,...,C,, is called an input clause of the derivation.
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Definition 5.6  An SLD-refutation of PU{G} via R is a finite SLD-derivation of PU{G} via R.
which has the empty clause, , as the last goal in the derivation. If G, =7, we say that the refutation

has length n.

SLD-derivations can be finite or infinite. A finite SLD-derivation can be successtul or failed.
A successful SLD-derivation is one that ends in the empty clause. In other words, we call a successful
derivation a refutation. A failed SLD-derivation is one that ends in a non-empty goal with the

property that the selected atom in this goal does not unify with the head of any program clause.

Definition 5.7 Let P be a definite program. The success set of P is the setof all 4 « HB; such that

P v {—A} has an SLD-refutation (using some computation rule depending on 4.)

The success set is the procedural counterpart of the least Herbrand model. We shall see

‘later that the success set of # is in fact equal to the least Herbrand model of P.

- Definition 5.8 Let P be a program, G a goal and R a computation rule. Then the SLD-tree of
PU{G} via R is defined as follows:
(a) Each node of the tree is a goal (possibly empty).
(b)y  Therootnodeis G.
©) Let «A,,...,4p....4,, (n > I} be a node in the tree and suppose that 4, is the atom
selected by R. Then this node has a descendent for each input clause 4 « B,....B;
such that 4, and 4 are unifiable. The descendent 1s
«ApAp B By Api - A0
where 6 is an mgu of 4, and A.

(d)  Nodes which are the empty clause have no descendants.

3 B, - Herbrand Base of P.
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Each branch of the SLD-tree is a derivation of P{G}. Branches corresponding to successful
derivations are called success branches, branches corresponding to failed derivations are called failed

Dranches.

Example 5.1 Consider the program

1. p(X 2}« q(X 1), p(Y.2}.
2. p(XX) «.

3. g(a,b) «.
and the goal «-pfX b). Figures 5.1 and 5.2 show two SLD-trees for this program and goal. The
SLD-tree in Figure 5.1 comes from the standard PROLOG computation rule (1.e. lefimost derivation).
The SLD-tree tn Figure 5.2 comes from the computation rule which always selects the rightmost
atom. The selected atoms are underlined and the success, failure, and inﬁnite branches are shown.
“Note that the first tree is finite, while the second tree s infinite. Each tree has two success branches

corresponding to the answer {X/a} and {X/b}.

—qX, Y},p(Y,b) O
{A7B}

SUCCEss

<q(b, 1) p(U.b) x
- {(Wa}

failure SHCCEss

Figure 5.1 A finite SLD-tree
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/\

«q(X,Y),p(
{E’b}
/\ SHCCESS
— q(X, ¥),q(Y.U),p(U,b) « qXb)
—aqX,q¥.U,qUVp(Vh) «qf N.afb} ¢

1 2 X (a3

P - Success
- e

infinite ' —qt.a)
Failure

Figure 5.2 An infinite SLD-tree

This example shows that the choice of computation has a great bearing on the size and
“structure of the correspondmg SLD-tree. However no matter what the choice of computation rule, if

PU{G} is unsatisfiable, then the corresponding SLD-iree does have a success branch.
The procedural counterpart of a correct answer is defined next.

Definition 5.9 Let P be a definite program and G a definite goal. A computed answer
8 =8,,...,8, for PU{G} is the substitution obtained by restricting the composition 8,, ..., 8,, to
the variables of G, where 0,,....8, is the sequence of mgu’s used in an SLD-refutation of

PU{G}.

Example 5.2 In Example 5.1 above, {X/a} is a computed answer, and the success set is
{{Xla}, XIb}}. |



The first soundness result is that computed answers are correct. In the form below, this

result is due to Clark [/2].

Theorem 5.1 (Soundness of SLD-Resolution)
Let P be a definite program and G a definite goal. Then every computed answer for PU{G} is

a correct answer for PL{G}.

Proof Let G bethe goal <4, .... Ay and 8, ..., 6, be the sequence of mgw’s used in a refutation
of PU{G}. Wehaveto show that V{( 4; A ... A 4;)0, ... 0,) is a logical consequence of P. The

result is proved by induction on the length of the refutation.

Suppose first that #=7. This means that G is a goal of the form «4,, the program has a
unit clause of the form A« and 4,8, = 46,. Since 4,8,« isan instanée of a unit clause of P, it -

follows that ¥(4,8,) is a logical consequence of P.

Next suppose that the result holds for computed answers which come from refutations of
length n-1. Suppose 0,, ..., 8, is the sequence of mgu’s used in refutation of PL{G} of length n.
Let 4« B,, .., B, (¢=20) be the first input clause and 4, the selected atom of G. By the

induction hypothesis,

YAy A e Ay ABy Ao ABgA Ay Ao NA )8, . B)

is a logical consequence of P. Thus, if ¢ > 0, then V((B;r...~B)0,...8,) is a logical consequence
of P. Consequently, V(4,9,...8,), which is the same as V(40,...8,), is a logical consequence of

P. Hence V({ A~ .74, )0, ...8,) is a logical consequence of P. n

Corollary 5.1 Let P be a definite program and G a definite goal. Suppose there exists an SLD-
refutation of PU{G}. Then PU{G]} is unsatisfiable.
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Proof. Let G be the goal «A,. .... 4, By theorem | the computed answer 6 coming from the
refutation is correct. Thus V{({ 4, ~ ... A 4, )9;) is a logical consequence of P. 1t follows that
PU{GY is unsatisfiable. | : ]

Corollary 5.2 The success set of a definite program is contained in its least Herbrand model.

Proof.  Let the program be P, let 4 € HBp and suppose PU{«A} has a refutation. By

theorem 5.1, A is a logical consequence of P. Thus 4 is in the least Herbrand model of 7. m.

It is possible to strengthen corollary 5.2. We can show that if 4 € /{8, and PuieA}

has a refutation of length 2, then 4 € T,Tn. This result is due to Apf and van Emden [4].

Definition 5.10 A search rule is a strategy for searching SLD-trees to find success branches. An

SLD-refutation procedure is specified by a computation rule together with a search rule.

_ From this definition and the above we say that the SLD-refutation procedure is complete, and
“the proof can be found in Lioyd [34].
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5.2 SLI Resolution

The SLD resolution procedure discussed above cannot be used for disjunctive logic programs
since the application of an SLD derivation step to a goal does not necessaritv result in another goal as

the following example shows.

Example 5.3 (IMR [35]) Let P be a disjunctive logic program

- P = { path{washington, newyork) v path(washington, philadelphia) }

and let G be the goal <«path(washington, X). If we use the SLD refutation procedure to
resolve the goal with the program clause we obtain two possible derived consequences
path(washington, newyork) with binding X = philadelphia, and path(washington, philadeiphia)
with binding X = newyork. Furthermore, SLD does not permit one to make a copy of the goal

clause and use it a second time.

SLI resolution” is based on the linear resolution principle. Linear resolution operates on
clauses. It starts with a clause, (binary) resolves it aganst another clause to obtain a resolvent. The
resolvent is used in another resolution step against another clause untii the empty clause, Z, 1s

obtained.

Definition 5.11 (Loveland [37]) Let S be a set of clauses and let C) € 5. A linear derivation of
C, from $ with top-clause C, is a finite sequence of clauses Cj,...,C, such that C;_, is either a factor of
C, or aresolvent of C; and a clause B; for some i, 0 <i < n-1, where B, is either a factor of a clause in

Soraclause C;forsomej, 0 <j<i.

SLI resolution is defined using trees as the basic representation for clauses. Program and goal

clauses are represented using -clauses which have a tree structure. Each node in the trees is a literal

N SLI - Seclected rule-driven Linear resohution for Indefiniie clauses.

39



from the language of the program or the special symbol ¢. The literals in a #~clause are classified into .
two types: marked literals. and unmarked literals. A non-terminal node is always a marked literal.

We now give the definition of a t-clause.

Definition 5.12 (Minker and Zanon [47]) A t-clause C, is an ordered pair (C.m) where

1. C is a labelled tree whose root is labelled with the distinguished symbol e, and whose
other nodes are labelled with literals; and

2. m is a marking (unary) relation on the node such that every non-terminal node in {, is
marked.

For convenience, we sometimes use a well-parenthesized pre-order representation of the tree denoted

by a t-clause in Definition 3.12. The t-clause

E*

/TN

P20 a(@* -~rLY)

- p(Y)

ina parenthesized pre-order representation is given by € p(X) (q(Yf —p(Y)) —r(XY)). A program
clause of the form 4,v...vA,«~B;,.. B, is represented by a i-clause (8* A;.. A, —B,.—B,), which has
only one marked literal, the distinguished literal «. A goal clause is also transformed into a t-clause.

It is called the top (-clause and is used to start an SLI derivation. During an SLI derivation the top
t-clauses are renamed with distinct names. For each use of a goal clause, a substitution is maintained
which records the renaming of the goal variables. We call these substitutions renaming substitutions

and use them to extract the answer from the SLI derivation.
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In contrast to definite logic programs where an SLD derivation maps a goal clause to a goal
clause, an SLI derivation maps a t-clause to a t-clause, which may not necessarily be a goal t-clause.
We need to define two sets, ¥, and 8, for a literal, L, in a t-clause which are used while performing

ancestry resolution and factoring.

Definition 5.13 Let L be an unmarked literal in a t-clause.
8, = { N: where NV is a marked literal and an ancestor of L }

v, = { M where M s an unmarked literal and a sibling of an ancestor of L }.

Note that the special symbol ¢ is an ancestor of a literal L, but not a literal, and therefore is

not in 61..‘

Example 5.4 Consider the t-clause

o
/\
“(Zb)* pzfif(a),a)*\
Py (Z,b)/\ﬂ(a)* - %
t(a,b){\q:ﬂ@))* t(a,b) ;?
5, (g(a) 8b)* s(c) ~s(@)*
P0 oY)
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Then

Yoo = L PHZD) }.

Yum = { r(@b), s(¢) }.

8oy = { $1(8(@), b)), Hab), —~s(a), H(ZD) }.
Soy = { —S(@), —~4(Z), —~s:g(0.2)). pfi).a) }.

v, denotes a set of literals which need to be checked to see if factoring can be done on literal L. That
is, L can be factored (removed from the t-clause) if L unifies with a literal in ;. The set y; is also
useful in detecting the derivation of a tautology. The set 8, contains the literals which need to be
checked to see if ancestry resolution can be done on literal L. That is, L can be ancestry resolved
(removed from the t-clause) if L is equivalent, modulo variable renaming, to the negation of a literal
L in 5;. The set 8; is also used to check for infinite derivations. If L appears in the set of its
éncestors, 5;;, we can stop the derivation since it implies a loop in the derivation. We also have two
conditions that make precise the use of v, and §;. A t-clause is defined as admissible’ if no

tautologies or loops are present in the t-clause, i.e. no two literal from y; and L have identical atoms,

“and no two literals from 8; have identical atoms. It is also important that a t-clause satisfies the

minimality condition (MC). This occurs if there is no marked literal in the t-clause which is a

terminal node.

A marked terminal node in a t-clause corresponds to a literal that has been solved and hence
may be removed from the t-clause. When a marked terminal literal is removed from a t-clause it is

said that fruncation has taken place.

5 i.c. satisfies the admissibility condition (AC).
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Example 5.5 Consider the following z-clauses.

g* . g*
p(i.a)* p(l,a)*
r(a)/\s(a)* 1(2) /iq(@\*s{a)

N
—p(b,a) s(a)
(@ (b)

‘The t-clause (a) satisties AC whereas the #-clause (b) does not because there is a vy, that contains s(a).

-
p{a) q(b) pla) '
A /\
r(c)* re)* r(c)* r{e)*
s{d) s(RdM)
{c) (d)

The t-clause (c) satisfies MC whereas the t-clause (d) does not because r(c)* is a terminal node.
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The MC ensures that truncation is performed as soon as possible on a derived t-clause. The .
framework has now been laid for describing SLI resolution. We first define a tramfac-derivation

which performs fruncation, ancestry resolution and fac on a t-clause.

Definition 5.14 Let C, be a t-clause. The t-clause C,, is a franfac-derivation (truncation, ancestry
and factoring) of C, when there is a sequence of t-clauses Cy, C;, ..., C, and substitutions 6,4, 6,. ..., 0,
such that for all i, 0 <i <n, C,., is obtained from C; by either t-factoring, t-ancestry, or t-truncation

with substitutton 6.

C,,, is obtained from C; by t-factoring iff

1. Ciis oy La,May)or Gris (o May Loy ),
2. MR, = L8, where 8, is a substitution;
3. Lisinv,,(thatis,  is an unmarked sibling of an ancestor of A1),

4. Ciyis(oy Lotyoz )00t Crupis (o ey L oy )0,

C;.; is obtained from C; by t—aﬁcestry iff

L Cyis (o (L ot (o Mory ) 0is) g ),
2. I8, =M, where g; is a (most general) substitution,

3. Lisindy,

4. Cpyis (o (L* oLy (OL; Oy ) Os ) Og ),

Cy.; is obtained from C; by t-truncation with ¢; equal to the identity substitution iff either C is
(LB ) and C, is (oB) or Cyis () and Cp., is C. |




Example 5.6 Consider the following z-clauses.

P 5 a* s
t I'* f*
t
@) (b)
The t-clause (b) is obtained from (a) after f-factoring.
8*

E:*
P q* s
t r¥

-4

{c)

(d)

The t-clause (d) is obtained from (c) after f-ancestry.

(e

The t-clause (f) is obtained from (e) after #-truncation.
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A derivation resolves an admissible and minimal t-clause with an input t-clause to obtain an

admissible and minimal t-clause.

Definition 5.15 Let C; = (E‘O‘.ILB ;) be a tclause. Let B, = (s'a}MBZ ) be another t-clause
standardized apart from C; Then Ci., is t-derived from C; and B;.; using the substitution 8, if the

following conditions hold:

L. 10'= A’ where B’ is a (most general) substitution;
2 Clyis(g oyl oy Br) 6,
3. C,., is either a tranfac-derivation of (”",; with substitution 6” or directly ', and for

this case 8" =¢;
4. 0, =0"6",

5. C., must satisfy the admissibility and minimality conditions.

Definition 5.16 Let S be an input set of t-clauses and let C be a t-clause in S, An SLELrefutation

from § with top t-clause C is an SLI derivation of the empty clause C. I there is an SLI refutation of
a clause C with input set S, then we write S} ~C’, where C” is the clause representation of the t-
iclause C.

The following example illustrates the SLI refutation procedure.

Example 5.7 Let P be a disjunctive logic program given in t-clause form as:

() {( a-~c-d-e)

@ (e-d);
(3) (€ feng)

4 (& a-f); and let the goal clause be:
() (€ a)

© (g (N (e-a);
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We show that there is an SLI refutation of the goal clause (the bold literal is the one chosen to be

resolved upon in the proceeding step.)

M (€ -a); goal clause
® & (-a —c-d-e)); derivation (7,1}
9) (€ (~a ~e~d (e -g)); derivation (8,3)
(1) (€ (-a’ (- ~d)~d (me ) ); derivation (9.2)
(1) (€ (a (¢)-d (e T-g)); t-factoring (10)
(12) (¢ (-2 ~d (e £-g)) t-truncation (11)
(13) & (- ~d(-e (f a)-g)); derivation (12,4)
(14) (€ (2 ~d (e (€)-2)); t-ancestry (13)
(15) (¢ (-a ~d (- ~2) ) . t-truncation (13)
(16) (€ (-2 (~d) (~e -g)); "  derivation (15,5)
A7) G (- (e @), t-truncation (16)
(18) (¢ (ma (~€ (=g ); derivation (17,6)
(19) < t-truncations (18)

Lastly we provide the meaning of an SLI computed answer.

Definition 5.17 Let P be a disjunctive logic program and let G be a goal in t-clause form and used as
the top t-clause in an SLI refutation. Let the goal t-clause be used » times during the SLI refutation
with the corresponding renaming substitutions oy,.., G, Let the composition of substitutions
computed for the variables in G during the SLI refutation be O and let 8,,..., 8, be the substitutions
such that Vi, i = /,...,.n 8, is obtained by resiricting q to the variables in s, Then an SLI computed

answer is given as:

{ 91'01,..., en'Gn }
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Example 5.8 Let P be the disjunctive logic program

p= { path(washington,newyork) v path(washington,philadelphia) }

The corresponding t-clause 1s
(D ( g path{washington.newyork) path(washington,philadelphia) )
Let G = —path(washington, X) be a goal with the corresponding t-clause
(2) (e ~pathfwashington, X))
The SLI computed answer would be given by
£ { X, =newyork } - { X; =X}, { X; = philadelphia } - { X; =X [

‘That is the answer computed is { { X = newyork },{ X = philadelphia } }, which states that the
'disjunction path(waéhingv‘on, newyork) v pathfwashington philadelphia) is a correct answer.
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5.3 Clause Trees

Horton and Spencer [29] have come up with a data structure - clause trees - for understanding
and tmplementing resolution. The clause trees can be defined as follows:

Definition 5.18

A clause tree T on a set S of clauses is a 4-tuple <N,E, LA, where N is a set of nodes
divided into clause nodes and atome nodes, F is a set of edges, each of which joins a clause node to
an atom node, L is a labelling of ¥ E which assigns to each clause node a clause node of S, to each
atom node an instance of an atom of some clause S, and to each edge either + or -. Afis the set of
chosen merge paths.

An instance of a claue €' in S is represented by an elementary clause tree which consists of a
single clause node labelled by § and joined to atom nodes. '

Example 5.9 Consider the two clauses {a, b, ~d} and {~b, ¢, ~d}. These can be represented by
clause trees as shown in Figure 5.3 (a) and ().

A A

(@) (b)

Figure 5.3

These two clauses can be resolved on b getting {a, ¢, ~d}. This can also be done using clause

trees, first by identifying the leaf nodes that represent complementary literals from the two different
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clauses and joining the two trees to form one as shown in Figure 5.4(a) and then by joining the two -
atom nodes that correspond to the same literal with a merge path as in Figure 5.4(b). The node
(containing the literal) at the tail of the merge path is considered closed and therefore the literal is no
longer considered to be a literal of the corresponding clause tree. On the other hand, the node at the

head of a merge path is open.

A

d
(a)

As seen in the paper (Horton and Spencer [29)), the sequence of resolutions, on a set of
clauses, can have a significant impact on the results obtained. This can be resolved by adding merge
paths from open leafs to internal nodes, thus producing the same minimal and most general results by
using clause trees. Merge paths, however, should be introduced with caution and the general

principles have been laid out in the paper.

50




Example 5.10 Applying the clause trees to the program and query in Example 5.7, we come up with

the following proof:

®

(a)

(d)

Figure 5.5
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@ F igure 5.5

The clause tree in Figure 5.5 (B} is a closed free, with no open leaf {(see Horton and

Spencer [29] p 12), and therefore the proof is complete.
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6 Negative Information

It is not possible to derive explicit negative information from a definite or a disjunctive logic
program. Fixpoint theory, model-theoretic semantics and proof procedures for logic programs deﬁné
sets which contain only positive clauses. One alternative 1s to allow for explicit representation of
negated information in the program. Such an explicit representation is not feasible in many
applications such as deductive databases and artificial intefligence, where the amount of negative
information may overwhelm the system. The solution to this problem has been to use default rules to
infer negated facts implicitly from the system. Resolution systems augmented with such default rules

offer attractive inference systems for logic programs.

- The implicit definition of negation in logic programs is strongly tied to the notion of absence
of something factual. This mechanism is called the closed world semantics and consists of three sets
of formulae: succes&, failure, and unknown. The set success consists of formulae which can be
proven to be frue. The failure set consists of the formulae which can be assumed to be false under the
closed world semantics. The set unknown captures all other possible formulae. The different

meanings and definitions of success and failure provide a rich variation of semantics for negation.
In the case of definite logic programs, the closed world semantics is given by the closed world

assumption (CWA). Another area where negative information is derived and used is Commonsense

Reasoning - otherwise known as Normonotonic Reasoning. We shall first look at this area.
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6.1 Nonmonotonic Reasoning

6.1.1 Historical Background

The start of the field of nonmonotonic reasoning is an outgrowth of McCarthy's 1958 paper
on commonsense reasoning [42]. The paper by Hayes [26] is another important early development.
The PROLOG programming language developed by Colmerauer and his students {/6] ahd the
PLANNER language developed by Hewitt [28] were the first languages to have a [ONMONOtonic
component. The nof operator in PROLOG and THNOT capability in PLANNER provided defauit

rules for answering questions about data where the facts did not appear explicitly in the program.

The fommalization of the field of nonmonotonic reasoning as we know it today started
approximately in 1975/6 with papers published in the 1977-79 time period. Two important papers.
‘one by Reiter [54] and the other by Clark [/7], appeared in the book Logic and Databases, edited by

?'fGal'laire and Minker [/9]. Reiter set forth the rule of negation called the closed world assumption
(C WA) that states that in Horn logic theories if we cannot prove an atom p, then we can assume not p.
:?Clark related negation to the only if counterpart of if statements in a logic program. The if-and-only-
f‘;f(;ff) statements form a theory in which negated ators can be proven using a full theorem prover.

- The importance of Clark's observation is that he showed that, for ground atoms, an inference system

called SLDNF resolution, operating on the ¥f statements of logic programs, was sufficient to find the
gfound negated atoms in the §ff theory that can be assumed frwe. These two rules of negation are
probably, the first formalization of nonmonotonic reasoning., McCarthy first introduced the concept
of circé;mscription in 1977 [41], and Doyle developed his #ruth maintenance systems in 1979 [/7],

Reiter gave preliminary material on default reasoning in 1978 [55].
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Nonmonotonic reasoning obtained its impetus in 1980 with the publication of an issue of the
Artificial Intelligence Journal devoted to nonmonotonic reasoning. In that seminal issue the tnitial
theories of nonmonotonic logic were presented. As noted by Bobrow in his "Editor’s Preface” to the
journal, the approaches to nonmonotonic reasoning can be characterized broadly as faliing in twb
different classes. The first approach extends the logic system in different ways. This is characterized
in papers by McCarthy {40], who formalized his theory of circumscription introduced earlier [4/]; by
Reiter [56], who introduced his theory of defauit reasoning, and by McDermott and Dovle [44], who
used modal logic to handle nonmonotonicity. The second approach views logic as an object and
extends the reasoning system with metadevices.  This is explored by Welrauch [68], and

Winograd [69].
6.1.2 The Concept of Nonmonotonic Reasoning

SLD-resolution is an example of a sound method of reasoning because only true facts can be
deduced using it. More precisely, we say that a reasoning method " }-" is sound if, for all variable-free
formulae @, P } ¢ implies P [ @, where P | ¢ denotes that @ can be proved from a program P.
And we call "}" weakly sound if P | ¢ implies consistency of P U {p}. Now, putting
P bgp 3% 3%,(A A .AAY) IfT there exists an SLD-refutation of P U («A,,...,A,) (see subsection
5.1). We see that fgp is sound by virtue of the Soundness Theorem (Apt [3]).

SLD-resolution is also an example of a monotonic method of reasoning. We call here a
reasoning method " }" monotonic if, for any two consistent programs P and O,

P}l implies PUQ }eo.

Otherwise, " " is called nommonotonic. Clearly, if there exists an SLD-refutation of PU{N}
then there also exists an SLD-refutation of PUGU{NY.
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However, SLD-refutation is a very restricted form of reasoning, because only positive facts -
can be deduced using it. This restriction cannot be overcome if soundness or monotonicity is to be

maintained. More precisely, the following simple yet crucial observation holds.

Lemma 6.1 (Apt[3]) Let P be a definite logic program and let “ L " bea reasoning method, such
that, P I —A for some negative ground literal —4. Then © - 7is not sound. Moreover, if ~ k" is

weakly sound, then it is not monotonic.

Proof
Note that a subset of the Herbrand base is a model of P, but no subset thereof is a
model of 4. Thus “F " is not sound. Suppose it 1s monotonic. Then we get P {A} —A4. But

P {4} U —4 is inconsistent, so “ L s not weakly sound. O.

: However, in some applications it is natural to require that negative information can also be
«deduced.

-
A

Example 6.1 (Apt [3]) Consider the program

P={
element(fire).
element(air).
-element{water).
eiement{earth).
stuffimud)

}

Then we naturally expect that —element(mud). —stuffifire) can be deduced, and similarly with

other elements.

By Lemma 6.1 any such extension of SL.D-resolution leads to nonmonotonic reasoning.
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6.2 Closed World Assumption (CWA)

A useful example that can be used to describe closed world assumption is the familiar -

“missionaries and cannibals” puzzie - which is also used by McCarthy to explain circumscription.

Three missionaries and three canmibals must cross a river using a boal that
can hold only two persons; if the cannibals outnumber the missionaries on either bank

of the river, the missionaries will be eaten. How can the crossing be arranged safely?

Here we can see that the puzzler is expected to recognize certain ground rules, such as that the

boat does not have a leak or any other incapacity for transporting people. Moreover, there are no

S8
TR

édditional cannibals or missionaries lurking in the background, who may upset otherwise sound plans,
even though it was not specifically stated that there are only three cannibals and three missionaries. It
is as if there is an implicit assumptioﬁ that if something is not mentioned in the puzzle, then it is not to
be considered, and this is the idea we sometimes refer to as closed world assumption. Ht was first

considered by Reiter [54].

The declarative definition of the CWA defines success to be the set of ground atoms in the

least Herbrand model of a definite logic program. The set of ground atoms not in the least Herbrand

model of the program are taken as failure. The CWA has a proof-theoretic definition where the
sticcess set of ground atoms that are logical consequences of the program and the failure set of ground
atoms that are not logical consequences of the program. The uninown set is empty (LMR [35]).

The metarule used for C¥A4 can be written as follows:

4 cannot be proved from P

—A4

57




where A4 is a ground atom. The notion of provability referred to in the hypothesis ts that n first-order -
logic. In the case of definite programs it is sufficient to know that it is equivalent here to provability

by means of the SLD-resolution.

Given now a program P, we can state its CH#4 closure as:
CWA(P) = {—A: A isaground atom for which there does not exist an SLD-refutation of PL{«A} }.

Example 6.2 1et P be a definite logic program given by:
P=1 mafeﬁack)_; Jemale(rita) }.
Using the CWA we obtain:  success = { male((jack), female(rita) }.

since the atoms, male(jack) and female(rita) are logical consequences of P.

failure = { female(jack), male(rita) }
since the atoms, female(jack) and male(rita) are not logical consequences of P. That is, literals

¥female(jack) and —male(rita) can be assumed to be true under the closed world assumption.

The CWA leads to inconsistent results, however, when applied to disjunctive logic programs.
For example, consider the program P = { p v ¢ }. From the CWA one can infer both —p and —q as
true since neither p nor ¢ is a logical consequence of P. But this is inconsistent with the fact that p v

gistruein P.
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6.3 Generalized Closed World Assumption (GCWA)

The problem of inconsistency cah be solved by extending the definition of the CWA to
disjunctive logic programs. For disjunctive logic programs, there is no unique least Herbrand modet,
but there is a set of models, the set of minimal Herbrand models, AMA4P), which captures the intended
meaning of logical consequences from a disjunctive logic program P. 1If a clause i8 #we in all
fninimal models then it is in the success set. The failure set can be formed by ground clauses that are
false in all minimal models. That is, a positive ground clause C = A, v A; v ... v A, is considered to
be a failure if none of its atomic components are in any model in MM(P)}. Note that some clauses in

the disjunctive Herbrand base are neither in the success set nor in the Jailure set.

Example 6.3 Consider the program P = {p v ¢q}. The atomic clause p is not a member of either the

success set or the failure set, since p belongs to one but not all minimal models of £.

N This inference about p is consistent with logical consequences since p and —p are not
provable from the program P. The closed world semantics defined above is the "strongest” negation
‘semantics possible for disjunctive logic programs based on minimal models and is known as the

generalized closed world assumption (GCWA).
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6.4 Circumscription

While dealing with a database, since it is not possible to explicitly assert all negative
information, it ts sometimes advisable to use metarules that can be used to derive them. It is
important to minimize the number of objects having certain properties. One way of doing this is by

circumscription.

Circumscription involves the use of an axiom schema in a first-order language, intended to express
the idea that certain formulae (wffs) have the smallest extensions consistent with certain axioms

{Perlis [48]).

To illustrate this, let us look at one of McCarthy’s applications of circumscription to

commonsense reasoning problems - his use of a predicate ab for abnormal aspects of entities.

Typically birds can fly. The idea is to minimize (as a conjectural assumption)

-the objects that are abnormal with respect to any given aspect, for instance, birds that
are abnormal with respect to flying (such as penguins and ostriches). This allows the

expression of default reasoning to be given a uniform treatment, in which the predicate

ab is circumscribed provided that other predicates as desired may be considered

variable. For instance letting 2b, £, X} stand for X is an abnormal bird with respect to

flying, then from the following axioms,

Hies(X) «bird(X) n —ab(b, F, X)

ab(b, £ X) < ostrich(X)
bird(X} « ostrich(X)
bird(tweety).

one can prove by formula circumscription that fweefy can fly (and consequently

tweetyis not an ostrich) (Minker [46]).
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6.5 Negation as Failure

Whilst using the CWA4 we may not able to derive some of the negative answers because we
may get into an infinite loop. A more helpful way out is to adopt a more restrictive form of
unprovability. A natural possibility is to consider —4 proved when an attempt to prove A using SLD-

resolution fails finitely. This leads to the following definitions.

An SLD-tree (Definition 5.8) is finitely failed if it is finite and contains no empty clause.
Thus all branches of a finitely failed SLD-tree are failed SLD-derivations. Given a program P, its
finite failure set is the set of all ground atoms 4 such that there exists a ﬁhitely failed SLD-tree with

<A as root.

We now replace CWA by the following rule:

A 15 in the finite failure set of P

—A4

introduced in Clark [/0] and called the negation as failure rule. (A more appropriate name would be
negation as a finite failure rule) This likewise applies to disjunctive logic programs with SLI-

refutation. The modified algorithms are known as SLDNF and SLINF respectively,
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6.6 Disjunctive Logic Programs

In the area of disjunctive logic programming, there are also several approaches to
negation: the generalized closed world assumption (GCWA) developed by Minker [46]
(discussed earlier is subsection 62) and a derivative of this theory, the extended closed world
assumption (Gelfond et. al. [22]), Henschen and Park .2 7], that apply to disjunctive logic programs.
fhe model-theoretic definition of the GCWA states that one can conclude the negation of a ground
atom if. it is false in all minimal Heri:;rand models. The proof-theoretic definition states that one can
conclude #ot a if for ail disjunctions a v B, provable from a program P, B; is provable from £. The
proof-theoretic and model-theoretic definitions are equivalent (Minker [46]), The concept of minimal
models is cldsely related to McCarthy's circumscription, which also deals with minimal models. -
;iinker and Rajasekar [44] describe how one can compute this theory. The GCWA is needed for
' ;::disjunctive theoriesziince- Reiter [54] has shown that the CWA is consistent with respect to disjunctive
theories. A weaker form of the GCWA, the weak generalized closed world assumption (WGC WA)
was developed by Rajasekar, Lobo and Minker [53]. The complexity of the WGCWA is the same as.
that of the CWA. The WGCWA. is equivalent to the disjunctive database rule (DDR), developed by

Ross and Topor [58]. Lobo [36] has extended constructive negation to apply to normal disjunctive

logic programs.
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7 PROLOG

PROLOG has been described as relational [Malpas [387]), descriptive (Genesereth [23]) and
- declarative (Coelho and Cotta [/3], Brookshear [7]). Both the relational and descriptive views
consider the organization of the database, or set of PROLOG facts, PROLOG is considered declarative
in thét one describes to it what one wants to accomplish, such as, "sor#([3,3,7,2], Answer)", with little
regard to the procedure accomplishing the sorting task, which returns "dnswer = (2,3,5,7]". Of

course, we must describe further what we mean by "sort" (see Appendix IIT).

PROLOG is also called a language for programming in logic (Coiingaert [8], Ghezzi [24]).
This last description may be the most accurate one, but PROLOG itself is only logic based and does not

produce alt the same proofs possible from methods using the full power of predicate calculus.

PROLOG comes in several dialects (Sosnowski [6/]). The original version of Colmarauer and
Roussel is Edinburgh syntax, also called DEC-10 PROLOG, due to its early implementation on DEC-
10 computers munning 6n the 7OPS-10 operating system. Micro-Prolog, MS-Prolog and PD-Prolog
are other dialects, available for microcomputers. Quintus and Eclipse, which are more powerful ones,
with vast built-in libraries, built-in C-functions and abilities to embed (-subroutines within the

programs, are available for 32-bit Unix based machines.
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7.1 Components of a PROLOG Program

Syntax

A PROLOG program is a list of statements consisting of facts and rules. The general form of a
statement is: Head :- Body., where Head is a single structure, and Body is comprised of zero or more
simctures, called subgoals, separated by commas, meaning "and" or semicolons, meaning “or". A
fact is a statement with no body, while a rule contains both a head and a body. A guery is a fact
preceded by "?-", and returns either frue or false. If a query contains variables, values are printed that

make the query true.

The form of a structure is just that of 2 PROLOG fact, functor(t,,...,t,), where t, is a term, and

can either be a constant, a variable or a structure.

Functors® are predicate symbols, operators, or relation names. A predicate symbol generally

takes on the values frue or false. For example, <=(2,4) is frue whereas <=(4,2) is false.

A constant 1s thought of as naming a specific object or relation and is either an atom or an

integer. A constant atom is a string of letters and digits beginning with a lowercase letter and

s This is not necessarily a function.




containing no signs other than the underscore. For example, bruce spencer, x. y. and map2 are all
constants whereas 2X, Mary, and new-york are not. However, any combination of characters may be

used to form a constant if placed between single quotes. Thus 'New-York' is a constant.

An afom may also be composed entirely of signs, but these are reserved for special purposes.

Two of these special atoms are ":-", which means "if" and "2-", signalling a query.

The special characters used in the PROLOG alphabet are: { + - */{ A< >~ 2@ #8& ).
some of whose semantics are version dependent. A relation-name is also an atom, e.g., the "<" in
<(2,4) or the loves in loves(john, mary), the latter being a predicate which may be used to represent

:ihe fact - “John loves Mary.”

A variable is an atom preceded by either a capital letter or the underscore. Who, Salary_Amz.
X, and _2 brothers are all vériables, while Last-Name and 2ndBase are not. PROLOG also has a
 special anonymous variable " ", The query, ?-has(tom, _)., for example, will return the answer "yes"
Z(which means frue) if there exists an atom satisfying the "has" relationship, with "fom" as the first
term, or if there is a rule, with the same, whose body can be proved. All queries, facts and rules are

terminated by a period "."

Comments in PROLOG are indicated by the sign "%", before the comment as in:
% tree(LeftTree, Info, RightTree)

Some implementations, such as PD-Prolog, enclose comments between "/*" and "*".
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7.2 Lists

One of the important elements of the PROLOG language is the fist. In PROLOG. a fist is an
ordered series of items that can be accessed as a single argument (Garavaglia [201). Lists are
important because they can be used to conceptualize just about every representation of data (or data

structures). An example of a list is a shopping [ist:
eggs, tea, milk, steak, spinach, toothpaste
In PROLOG this is written as;

leggs, tea, milk, steak, spinach, toothpaste]

The items in the list are called elements (Konigsberger [3/]). The first element in the list is catled its
head and the remaining elements comprise the tail. In PROLOG, the head is usually separated from the -
jtail by the long vertical bar "}". In referring to a list with the use of variables in a rule or expression,
the vertical bar is ug;d as follows;

" A7

If this were used to reference a shopping list then

H=eggs
T = [tea, milk, steak, spinach, toothpaste]

As can be seen, the tail of a list is a list.

Another way we can represent lists in PROLOG is by the use of the functor "./2". The “"is the

function, and the 2 indicates that it has an arity of 2. A one member list would thus be represented as:
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There are numerous procedures that can be used for manipulating lists - the sorf above being
one of them. The two procedures shown in Figure ~.1 can be used to determine membership of an
element in a list, and appending one list to another. Other procedures include subtraction of two lists,
subsets, bubblesort, splitting a list, quicksort, implementation of stacks and queues, graph

implementation and many others (see Coelho & Cotta [/5]).

member(A, [A]_]). append([], L, L)
member(A, [_|Tail]) :- append([X|L1}, L2, X[L.3}) :-
member(A, Tail}. append(L1, L2, L3).
Figure 7.1

7.3 Recursion

PROLOG allows the definition of recursive predicates. A predicate is a recursive if its
definition involves the predicate itself. An example is the member predicate above (Figure 7.1). The
first argument of the predicate member is a variable, the second argument is a list. The first fact says

~that X iS a member of a list if it is the head of the list. The second clause says that X is 2 member of a
%list if it is a member of its tail. Notice the use of the anonymous variable "_", and the list

~ concatenation operator "|" (Ceri, Gottlab and Tanca [9]).

7.4 The CUT (!) Predicate

The built in predicate cut (!/0), always succeeds and prevents reevaluation of any clause that

precede it. PROLOG searches for all possible solutions to a query. If we are aware that there is only
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one, cutting off further search after the single solution has ben found to save both time and space -

(Appleby {/1).

Below is a modified procedure for append.

append2([].L. L) :- L.
append2([XjL1], L2, [X]L3]) -
append(L1, L2, L3).

PROLOG will stop the search the first time it satisfies append2([], L, L). Such a one solution
procedure would be useful if we always were to use it with two ground clause lists as the first two

arguments, as in

?-append2( [1,2,3], [4,5,6], Z).
Which would give us Z = /1,2,3.4.5,6]. However, if we want to find all poésible sublists as in:
2. append2( X, ¥, [1,2,3,4,5,6] ).

PROLOG would return only one answer:

¥ X=/J: Y=[123456].
The cut would prevent any further search,

The cut predicate may also be used to implement the if-then-else statement. for example, the

clause:

al - b1, | b2.
al = b3.

is equivalent to the following

to prove al if you can prove bl, then prove b2 else prove b3.
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8 Datalog

In this chapter, we will discuss Datalog and its similarities and differences with both PROLOG
and relational models’” in DBMS. The name "Daralog" was coined to suggest a version of PROLOG

suitable for database systems. It differs from PROLOG in several respects:

1.  Datalog does not allow function symbols in arguments. It only allows variables and constants
as arguments of predicates.

2 The semantics of Datalog programs follow the model-theoretic point of view, or when
equivalent, the proof-theoretic approach. PROLOG, however, has a computational "meaning,"

which may deviate in some cases from either the model-theoretic or proof-theoretic meanings .

(Ullman [66]).

The underlying mathematical model of data for datalog is essentially that of the relational
‘modet. Predicate symbols in datalog denote relations. However, as in the formal defimition of
relational algebra, these relations do not have attributes with which to name their columns. Rather
they are relations in the set-of-lists sense, where the components appear in fixed order, and reference
- to a column is only by its position among the arguments of a givén predicate symbol. For example, if
p is a predicate symbol, then we may refer to p(X, ¥, Z), and variable X will denote the first

component of some wipie in the relation corresponding to predicate p.

For purposes of understanding relational models. we would advice reference to Elmasri [15] pp. 137163,
Uliman [66] pp. 43-65 and Codd [14].
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8.1 Extensional and Intensional Predicates

Another distinction between the relational and datalog models is that in datalog. there are two
ways relations can be defined. A predicate whose relation is stored in the database is called an
extensional database (EDB) relation, while one defined by logical rules is called an intensional

database (IDB) reiation.

In the relational model, all relations are EDB relations. The capability to create views in
models like the relational model is somewhat analogous to the ability in datalog to define /DB
relations. However, the view definition facility in relational DBMS's does not compare in power with

logical rules as a definition mechanism.

8.2 Atomic Formulae

_ Datalog programs are built from atomic fornulae which are predicate symbols with a list of

.;iarguments, e.g p(4,,...A,), where p is the predicate symbol. An argument in datalog can either be a
-variable or a constant. Constants - as in PROLOG - begin with lowercase letters whereas variables
begin with uppercase letters. Numbers are also used as constants. Each predicate symbol is
associated with a partiéular number of arguments that it takes and 7" is used to denote a predicate of

arity .
An atomic formula denotes a relation. It is the relation of its predicate restricted by:

1. Selecting for equality between a constant and the component(s) in which the constant appear,

e.g. in customer(joe, Address, Balance),
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2. Selecting for equality between components that have the same variable. eg in

includes(X Item X).

Notice that although there are no names for attributes in the datalog model, selecting
suggestive variables like Address (above) help remind us what is going on. However, as in relattonal

algebra, we must remember the intuitive meaning of each position in a list of arguments.

8.3 Dependency Graphs and Recursion

We frequently need to discuss the way predicates in a logic prog;rém depend on one another.
To do so, we draw a dependency graph, where nodes are the ordinary predicates. There ts an arc
from a predicate g if there is a rule with a subgoal whose predicate is p and with a head whose
predicate is g. Figure 8.1 shows an example of a datalog program. Rule(1) may be read as "for all X
Y and Z, if Z is a parent of both X and ¥, and X is lnot Y, then X .is a sibling of " In this case we are

regarding all variables as universally quantified.

(1) siblingX, V) - parent(X, 2), parent(¥, 2), X # ¥,

@) covsia, Y) - parent(, Xg), parent(Y, Y
sibling(Xp, Y-

(@) cousin(, Y) :- parent(, Xp), parert(¥, ¥ ).
cousin(Xp, Yp).

@) related(X, Y) - sibling(. Y).
() relatedL, Y - relatedCl Z), parent(Y, 2).
(6) telated(, Y - related(Z, ¥), parent(, 2).

Figure 8.1 A Datalog Program
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The dependency graph for Figure 8.1 is depicted in Figure 8.2.

C’elated COUS@
A \\ / 3

sibling

\ pj /

Figure 8.2 Dependency Graph for Figure 8.1

A logic program is recursive, if its dependency graph has one or more cycles®.

All the predicates that are on one or more cycles are said to be recursive predicates. A logic

program with an acyclic dependency graph is nonrecursive. Clearly all predicates in a nonrecursive

program are nonrecursive. We also call a predicate nonrecursive if it is in a recursive program but 18

Tiot part of any cycle int the dependency graph.

In Figure 8.2, there are two cycles, one involving only cousin and the other involving
related. Thus, these predicates are recursive, and the predicates parent and sibling are nonrecursive.

Therefore the program of Figure 8.1 is recursive, because it has some recursive predicates.

§ A cycle consisting of an arc from a node to itself makes the program recursive. One-node cycles are
more common than multinode cycles.
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8.4 Safe Rules

A program or a rule is said to be safe if it generates a finite set of facts. There are constraints
that must be placed on the form of datalog rules if they are to be safe. One situation where we get
unsafe rules that can generate an infinite number of facts arises when one of the variables in the rule
can range over an infinite domain of values, and that variable is not limited to ranging over a finite

relation.
Example 8.1 The rule
biggerThan(X, ¥) :- X > Y.

defines an infinite relation, if X and ¥ are allowed to range over the integers, or any infinite set. Also

the rule

loves(X, Y} :- lover(Y). .

{'i.e‘, wall the world loves a lover." defines an infinite set of pairs loves(X. ) even if the relation lover is
a finite set, as long as the first argument of loves ranges over an infinite set. The rule is unsafe
because the variable X appears only at the head of the rule. Another problem arises due to the fact

that some rules that are theoretically safe, such as:

big salary(Y) :- ¥ > 60000, employee(X), salary(X, ¥).
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are computationally unsafe using top-down, left-to-right inference mechanisms like PROLOG. In the -
rule above, there would first bé a search for a value for ¥ and then PROLO(} would check whether it is

salary of an employee. In order to rectify this problém. the same rule could be written inthe form:
big_salary(Y) :- employee(X), salary(X. ¥), ¥ > 60000.

_ Albeit we can try to avoid rules that create infinite relations from finite (i.e. unsafe rules) ones
by insisting that each variable appearing in the rule be “limited." The intuitive idea is that we assume
all the ordinary (non-built-in) predicates appearing in the body correspond to finite relations. After
making that assumption, we need assurance that for each variable X there is a finite set of values Vy
such that in any assignment of values to the variables that make the body true, the value of X must

come from Vy. We formally define limited variables for a given rule as follows:

1. Any variable that appears as an argument in an ordinary predicate of the body is limited.
. 2. Any vaniable X that appears in subgoal X = a or a = X, where a is a constant, is limited.
3 Variable X is limited if it appears in a subgoal X = ¥ or ¥ = X, where ¥ is variable already
known to be limited (Ullman [66]). |

Note that (1) and (2) form basis for the definition, and (3) can be applied repeatedly to discover more

limited variables.

A rule is said to be safe if all its variables are limited. The critical issue is whether variables
appearing in the head and variables appearing in subgoals with built-in predicates either appear in
some subgoal with an ordinary predicate, are equated to constants. or are equated to other limited

variables through the recursive use of (3).
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Example 8.2 The first rule of Example 8.1 is not safe because none of its variables are limited. The
second is not safe because. although Y is limited by its occurrence in the subgoal lover(Y), there is no
way to limit X. In general. a variable appearing only in the head of a rule cannot be limited, so its

rule cannot be safe.

Rule (1) of Figure 8.1 is safe because X, ¥, and Z are limited by their occurrences in the two
parent subgoals. Note that the built-in predicate X'+ ¥ cannot result in an infinite number of siblings,
because X and Y are already limited to be individual that appear in the first component of the parent

relation. All the other rules in Figure 8.1 are likewise safe.
For a more complex example, consider the rule
XY - W=a =W
X and Z are limited by rule (1), because of the first subgoal in the body, W is limited by the rule (2),

because of the second subgoal, and therefore (3) tells us ¥ is limited because of the third subgoal. As

all variables are limited, the rule is safe (Ullman [66]).
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9 Deductive Databases

In this chapter we discuss the topic of deductive databases and in particular disjunctive
deductive databases. A deductive database is a logic program with no function symbols. The major
difference between a logic program and a deductive database is the query evaluation process. In
databases, the user is generally interested in ali possible answers to a query in contrast to & single
answer from an SLI refutation. Considering the restriction of function free programs, it is possible to

develop query answering procedures adapted to answer database queries (LAMR [35]).

The main differences between deductive databases and browledge-—based systems (also known

as experf—sysréms) are two-fold:

1. Knowledge’based systems have traditionally assumed that the data needed resides in the main
memory; hence, secondary storage management is not an issue. Deductive database systems
attempt 1o change this restriction so that either 2 DBMS is enhanced to handle an expert

system interface or an expert system is enhanced to handle secondary storage resident data.

2. The knowledge in an expert system is extracted from application experts and refers to an

application domain rather than to knowledge inherent in the data (Elmasyi [18D.
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9.1 Disjunctive Deductive Databases

A disjunctive deductive database (DDDB) is a collection of data separated into two parts.
One part is an extensional database which represents the set of (possibly indefinite) facts known about
the world. It is a finite set of ground positive disjunctions known to be #rue. The second part is an
intensional database that consists of a finite set of disjunctive program clauses that represent general
rules or conditions from which new facts can be deduced. If the set of rules and facts used are
definite clauses, then we have definite deductive databases, or sometimes simply cafled deductive
databases. Because part of the theoretical foundation for some deductive database systems is

mathematical logic, they are often referred to as logic databases.
We may formally define disjunctive databases as follows:

Definition 9.1 (LMR [35]) Let L be a function-free first order language with a finite number of
constant symbols. A disjunctive logic program DB defined in L is called a disjunctive deductive
database (DDDB). The intensional disjunctive database part of DB, IDDByg, s the set of program
clauses in DB with at least one atom in the body of each clause. The extensional disjunctive database
part of DB, EDDB g, 1s the set of clauses in DB with an empty body. The following is an example of

a stmple disjunctive database:

Example 9.1 Let DB be a disjunctive deductive database. DB describes a world of blocks and
spheres. The FEDDBpg consists of:

El: blk(i). E5: red(l).
E2: bik(2} sph(2). E6: blue(3).
E3: bir(3). E7: blue(4).
F4: sph{4). E8: top(l,2).
E9: top(2,3).
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The IDDBpg consists of:

[1: red(X) blue(X) « blk(X).
12: redblue(XY) « top(X.Y), red(X), blue(Y).
13: blk(X) « top(X, ¥).

blue

blue

Figure 9.1 The world of blocks and spheres of Example 9.1

9.2 Queries and Answers

In Chapter 3 (Definition 5.2), we define a correct answer to a goal «A4, - Ay
in a disjunctive logic program P to be a set of substitutions {0,0,,...0,} such that
V(A .~4) B v (Aia Ady) B, vy (A .~dy) 6,) 1s a logical consequence of P. In the case of

DDDBs we are interested not only in one of these answers but in the set of all possible answers to the

| query. A typical query to a database such as the one in Example 9.1 is to know what objects in the

database are spheres. For this query the answer is given by the set of all correct answers for the goal

«sph(X}. Answering this query using SL/ resolution requires the collection of all SLI refutations for
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( &* —sph(X) ). In many cases, these refutations may contain several repetitions of the same

derivation.

An altemative to this procedure is to start with the facts and then to evaluate each clause as
follows. When the body of a clause is proven to be frue, then the head clause can be concluded to be
frue. When all rules have been evaluated, we can repeat this process and perform deduction with the
rules using the original facts and those derived by application of the rules until all clauses that imply
the query are obtained. This mechanism is similar to the operations that is performed by the operator
TSP and simultaneously computes all the answers to a query. Computations such as the one
performed by the operator T°, are called bo#tom-up procedures. Procedures such as SL/ resolution
that start with the query and go through the rules until the refutation is obtained are called fop-down
procedures (LAMR [35]).

Normally most DDIDBs are concerned with borfom-up procedures. As mentioned earlier the
data that is to be processed is resident on secondary storage. If we are to use the fop-down tuple-at-a-
time processing methods it would take a tremendously long time to get the set of all possible answers

t0 our queries.

According to the definition of a correct answer (Definition 3.2), given the goal <-¢(X), and
the DB = {g(a); q(_b)(—q(c)}, the following are possible sets of answers from the query:
{{X=a)}}, {{X=a}, {X=b}}, {{X=a}, {X=c},}, and {{X=a}, {X=b}, {X=c}}. The meaning of these
answers is that g(a), g(a) v q(b), ga) v q(c), q(a) v q(b) \/ g{c) are true mn the database. All of these
are correct answers for the query 3X{g(X}), but the answer {X = a} is suffictent since all other
answers are particular cases of {X = a}. Notice that gfa/ subsumes g(a) v q(b), g(a) v q(¢}, and g(a)
v q(b) v g(c). However, checking for minimality of an answer to a database query with the known
algorithms, may require among other things, a subsumption check which is computationally

expensive. The redundancy of the answer will normally depend on the set of disjunctions the
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procedure generates to represent the answers. The answers for the query will be a set of disjunctions

that imply the query. Formally, these concepts are described by the following definitions.

Definition 9.2 (ILMR [35]) Let DBbea DDDB and let Sbe a state’ of DB. S characterizes DB if
for every ground clause C in the disjunctive Herbrand base of DB, DHBpg, the following condition
holds: |

DBEC iff(3C"'e Sand ("= ().

In other words, a state characterizes DB if it contains only positive ground clauses that are
logical consequences of DB and for every positive ground clause C that is a logical consequence of
DB and does not belong to S, there is a clause in S that implies C.

Definition 9.3 (LMR [35]) A database query is a positive (possibly ground) disjunctive clause.

The use of “disjunctions in database. queries instead of conjunctions neither increases nor

Teduces the expressive power of queries. A disjunctive query of the form O, v...v (), is equivalent to

the query 3X,,...,3Xg(X,,... X} where ¢ is a predicate symbol that does not occur in DB, if the

rules
(X, X} €« O

4Ky X) < O

? Definition 3.15.
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are added to the database and X, ..., X, are all the variables that appear in the Q; v..v {,
(Shepherdson [70]). But the fact that queries are in disjunctions of atoms usually simplifies the
description of algorithms (LAMR [35]).

Definition 9.4 (LMR [35]) Let DB be a disjunctive database and let C be a positive (possibly |
ground) disjunctive clause, called a database query. Let §'be a state such that § characterizes DB. A
database query for C in S is a ground clause C' in S such that (C" = 3C). A subset $'of S is a
complete set of database answers for C in S if and only if for every database answer C"in S there is a

database answer C"” in §' such that " ="

Example 9.2 From Definition 9.4, a database answer to a database query is a set of positive ground
clauses known to be frue in the disjunctive deductive database (i.e. part of characterization state of the
"database) such that each answer implies the existential closure of the (iatabase query. Using this
"notion, let S ={ gra). gia) v qrb), gla) v q(c), g{a) v q(b) v g(c) } be a characterization state of a
database DB. Then gfa) is a database answer to the database query g(X). The remaining disjunctions
in the set are also database answers for the query but they are not necessarily members of the
complete set, since g(a) implies all of them. Moreover, {gfa)} and any subset of § that contains g(a/

is a complete set of database answers.

9.3 Minimal Models and Deductive Databases

Traditionally, the declarative semantics of logic programming and deductive databases has
been studied based on the notion of minimal models. For instance, the least Herbrand model
semantics for Hom logic programs (van Emden [67]), the perfect model semantics for stratified logic
programs (Przymusinski [50]), and the stable model semantics for normal logic programs (Gelfond
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[2/7) are all minimal models. The minimal models reflect the so-called Occam’s razor such that -
"only those objects should be assumed to exist which are minimally required by the context." Such a
principal of minimality plays a fundamental role in the area of not only logtc programming but also
nonmonotonic reasoning in artificial intelligence MeCarthy [40]). Therefore, it has been recognized

that the principle of minimality is one of the most basic and indispensable criteria that each semantics

for commonsense reasoning should obey (Schlipf{60]).

9.3.1 Minimal Model Seman_tics

The model-theoretic approach is particularly well understood in the case of the so called Horn
(or definite) databases, otherwise known as positive logic programs, ie. databases consisting of

clauses of the form
Ce-A4, .., A,
with m > 0;:and C aﬁd"A,- denoting atomic formulae (atoms).
Jiﬁtanwle 9.3 Let our database DB consist of the following clauses:
good_mathematician « physicisi(X).
physicist(einstein).
businessman(perot).
This database has several different mbdels, the largest of which is the model M,,,, in which

both men are at the same time businessmen, physicists and good mathematicians. This model hardly

seems to correctly describe the intended meaning of DB. In particular. there is nothing in this
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database to imply that Perot is a physicist or that Einstein is a businessman. In fact, we are inclined to

believe that the lack of such information indicates that we can assume the contrary.

The database also has a smallest model M, in which only Einstein is a physicist and good
mathematician and only Perot is a businessman. This model seems to correctly reflect the semantics
of DB, at the same time incorporating the classicall case of the closed-world assumption, namely
j‘%eiter's CWA: if no reason exists for some positive statement to be true, we are allowed to infer that it

is false (Reiter [54]).

Every Horn database has exactly one minimal (i.e. smallest) model. The unigue minimal
model of a Horn database DB provides a natural semantics of DB. incorporating a suitable form of
the CWA.

Horn database constitute a fairly restricted class of deductive databases and do not allow the
full expressive power of first-order logic to be utilized. A natural extension of this class of databases
is obtained by allowmg disjunctions of atoms in the consequents of the clauses, thereby permitting
general forms of disjunctive information. We will call such databases positive disjunctive databases.

~ A positive disjunctive database therefore consists of a set of clauses of the form

C;, ey Cp (—A;, veny Am

where m > 0, p > I and 4, and C; denoting atoms.
Example 9.4 Suppose that a database DB consists of the clauses
successful businessman(X) \ renown_scientist(X) < famous_man(X).

Jamous _man(smith).

good_mathematician(jones).
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Again this database has several models. In the largest model M,,,, both men, Smith and -
Jones, are successful businessmen, renown scientists, good mathematicians, and famous men. This

model obviousty does not represent the intended meaining of DB.

It is. however, also easy to see thai this database does not have a smallest model. How are we
supposed to define the semantics of DB? The problem fortunately has a natural sotution: Even
though DB does not have a smallest model, it has two models which are minimal, i.e. they do not
contain smaller models. In both of ﬂlem, Smith is the only famous man, Jones is the only good
mathematician. In one of them M), Smith is the only successful businessman, whereas in the other
M,, Smith is famous and a renown scientist, while Jores is neither. Both of these models seem to
correctly capture one aspect of the intended meaning of DB, and together A, and A, define a proper
semantics for DB A sentence (formula) 7 is true in DB iff it is true in both models. In particular, it
is true thaf Smith is etther a famoﬁs businessman or renown scientist, but we do not know which. On
the other hand, it is also true that Jores is neither famous, nor a successful businessman, nor a renown

scientist, since all of these are false in both minimal models.

It is well known that for every model N of a positive disjunctive database DB there is a
mmlmai model M that is contained in & (Bossu and Slegel {6]). In fact, every positive disjunctive
database has at least one minimal model. The minimal model semantics corresponds to a natural
form of the closed-world assumption, namely the so called Extended Closed-World Assumption
(ECWA) (see Ge{fond'et al. [22]), which extends Minker’s Generdlized Closed-World Assumption
(Mnker [46]) (see also Yalyza and Henschen [71]). For Herbrand models. it is also equivalent to the
semantics of parallel mrcumscnptlon (with all predicates minimized) (McCarthy [39], Lifshiiz [33]).

‘We can hence assert the following:

The set MIN(DB) of all minimal models of a positive disjunctive database DB
provides the intended semantics of DB, incorporating a suitable form of the closed

world assumption.
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9.3.2 Insufficiency of Minimal Model Semantics for General Databases |

The expressive power of positive disjunctive databases is not sufficient for general databases.
In practical applications permitting negation in the premises of the rules greatly increases their

expressiveness. Consider a disjunctive database consisting of a set of clauses of the form:
C}, raay CP(—‘A}, . Am, —LBI, . "—13“

where p 2 I, mn = 0, and 4, B; and C, denoting atoms °. If p = J for all clauses, then such a

database is called a (general) logic program (see Lioyd {34] p68).
With disjunctive databases the situation becomes more complex. .

Example 9.5 Suppose that we know that a typical businessman tends to avoid using advanced
mathematics in his work, unless somehow he happens to be a good mathematician, and that Perof is a

businessman, and that Einstein is a physicist. We can express these facts using negation as follows:

avoids math(X} « businessman(X), ~good_mathematician{X). (1)
businessman(perot).

physicist(einstein).

. This databése_DB has two minimal models M; and Af,. In both of them Perof is the only
businessman and Lizstein is the only physicist; but in A, Perot avoids advances mathematics and in
M, heis a good mathematician, instead. Do both these models capture the intended meaning of the

DB?

% Such databases are called positivistic by Bidoit and Hull [5].
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Certainly not! By placing the negated predicate good mathematician(X) among the premises
of the rule, we most likely intended to say that businessmen, in general, do not use advanced
mathematics unless they happen to be good mathematicians. Since we have no reason to believe that
Perot is a good mathematician, we are forced to infer that he does not use advanced mathematics.

Therefore, only the first minimal model M, corresponds with the intended meaning of DB.

The reason for this asymmetry is easy to explain. The furst clause (/) of DB is logically

equivalent to the following clause (2) without negation:
good _mathematician(X) v avoids_mafh_(.X) «- businessman(X). (2)
and models M, and M, are thérefore also minimal models of the positive disjunctive database DB,

obtained from DB by replacing (/) by (2). These models provide a correét semantics of DB~ because

DB’ does not assign different priorities to the predicate good_mathematician and avoids_math

treating them as equally plausible. The database DB, on the other hand, gives a higher priorify to the

- predicate good_mathematician than to the predicate avoids_math'”.

We can easily imagine the above priorities reversed. This is for instance the case in the

following database:

good_;mathemaﬁcimﬁf) <« physicist(X), —avoids math(X).
businessman(perot).

physicist(einstein).

= According to the established convention (see Lifshitz [33}). a higher priority for minimization, i.e.

predicate A has a higher priority than predicate B if 4 is supposed to be minimized before B is.
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which says that if X is a physicist and if we have no specific evidence showing that he avoids
mathematics, then we are allowed to assume that he is a good mathematician. This shows that
relative priorities among the predicates in the database are determined by the syntax of its clauses,

with consequents having lower priority than negated premises.

From the preceding example we can see that the set MIMDB) of all minimal models of a

disjunctive database may contain models which do not properly interpret the declarative meaning of

the database and therefore we need to properly identify the class of models of DB which provides the
correct, intended meaning of DB. The class of perfect models described in the next section fulfills
those needs.

'9.3.3 Perfect Model Semantics

In his paper, Przymusinski [50] introduces the concept (or class) of perfect models. This is a
subclass of the class of minimal models enjoying many of its natural properties. This concept is

based on relative prioritization in the database.

As we observed above, the syntax of clauses determines the relative priorifies among the

predicates in the database and that:
L Negative premtises should have higher priority than consequents.
Moreover we can assume that

18 Positive premises should have priority Aigher than or equal to that of consequents.
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Indeed, if B < A, then minimizing B immediately results in 4 being minimized too.

Consequently, 4 is always minimized before or at the same time that B is.
[I.  Predicates appearing in the consequent of a given clause should have the same priorty.

This is true otherwise those predicates whose priority is higher should be converted into

negative premises.

To formalize conditions 1 - HI, Przymusinski introduces a priority relation < between elements
A4 and B of the Herbrand Base H; and an auxiliary relation <. If B < A4, then we say that B has a
priority higher than A and if B < A, then we say that the priority of A is less than or equal 1o that of B.

Definition 9.5 Relations < and < are defined by the following rules:

(PRI) (Condition Iy B < C, if B is a negative premise and C is one of the consequents in a
ground instance of a clause from DB.

(PR2) (Condition Iy C < A, if 4 is a positive premise and C is one of the consequents in a
ground instance of a clause from DB.

(PR3) (Condition IIl) C < C’, if C' and C are both consequents in a ground instance of a
clause from DB.

augmented by transitivity and closure rules:
(PR4) (transitivity of <)if B< A and C< B (resp. 4 = D), then C=x 4 (resp. B=<D);
(PR5) (transitivity of;<) if B —%A and C< B, then C< 4;
(PR6) (= implies<)ifB<AthenB < A4;

(PR7) (closure axiom) Nothing else satisfies < or <.
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Example 9.6 1nthe database given by
a(X) v X} « bX), —g(X).
8(X) < pX).
b().

we have g(1) < at), g(t) < @) (by PRI); b(t) < a(®), b(t) < c(t), p() < g@®), (by PR2); and
aft) < c(t), c(t) < a(t) (by PR3). Consequently, p(t) < a(¥), p(t) < c(9) (by PRS5), but neither c(t) < p()
‘nor b(2) < a(®) is true (by PR7).

Definition 9.6 Suppose that M and N are two distinct models of a disjunctive database DB. We say
that a N is preferable to M (or N << M), if for every ground atom A in N-M there is a ground atom B
in M-N, such that 4 < B. We say that a model M of DB is perfect if there are no models preferable to

We call the relation << the preference relation between models. If M = N or N <<M then we

write N << M.
Example 9.7 Only model M; n Example 9.5 s perfect. Indeed:

i

M; = { businessman(perot), physicist(einstein), avoids_math(perot) },

M, = { businessman(perot), physicist(einstein), good_mathematician(peroy) },

and we know that- good_mathematician{perot) < avoids_math(perot) and therefore M; << M..

Consequently, M, is perfect, but M; is not.

Not every disjunctive database - nor even a logic program - has a perfect model:
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Example 9.8 The database:
q(a) < —p(a) and p(a) « —q(a) | : 3

has only two minimal models M; = { p(@) } M: = { g(a) } and since p(@) < gfa) and g(a) < p(a} we
have M, ~< M;and M, << M;, thus none of our models is perfect'. The cause of this pecularity is
quite clear: our semantics is based on relative priorities between ground atoms and therefore we have
to be consistent when assigning those priorities to avoid priority conflict (cycles), which could render

our semantics meaningless.

Definition 9.7 A relation < is said to be noetherian if there is no infinite mcreasing sequence

Ap<Ad;<Ay<-.

The non-existence of a perfect model in this example above and the fact that the preference
srelation << was not transitive (and therefore not partial order) turns outto be caused by the fact that

the priority relation <. was not noetherian.

e Tt also shows that in this case the preference relation < is not transitive.
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9.4 Stratification

A deductive database query language can be enhanced by permitting negated literals in the
bodies of rules in programs. Once we permit negated literals in the rules, however, we lose an
important property of the rules called the minimal model, which we discussed earlier. In the presence

of negated literals, a program may not have a least model. For example, the program

pa) < —p(b).
has two minimal models: { pfa} } and { p(d) }.

One important class of negation that has been extensively studied is stratified negation
(Apt, Blair and Walker [2], Przymusinski [50]). A program is said to be stratifiable if it has no
recursion through negation. Programs in this class have a very intuitive semantics and can be
efficiently evaluated. The example that follows describes. a stratified program (Edmasri [18]).

Consider the following program £

r; - ancestor(X, ¥) « parent(X, ).
¥, . ancestor(X, Z} « parent(X, Y), ancestor(¥, Z).
r; cnocyc(X, ¥) < ancestor(X Y), —ancestor(Y, X?.'

Notice that the third rule has a negative literal in its body. This program is stratifiable because
the definition of the predicate nocyc depends (negatively) on the definition of anmcestor, but the
definition arcestor does not depend on the definition of nocye. A bottom-up evaluation of £; would
first compute a fixpoint of rules 7, and r, (the rules defining ancestor). Rule r; is applied only when

all the ancestor facts are known.
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Conclusion

Open Problems

Two aspects need to be considered in the computation of minimal models as stated in
LMR [35], while designing a data structure to store those minimal models. The first aspect is the
replication of atoms in different models that can be produced when new disjunctions are introduced
and a new set of models is created. The second aspect is the duplication of proofs. These both

consume a lot of time and space, which are critical in large databases.
‘Problem 1: Avoiding Duplicate Proofs

In building a Deductive DBMS it is desirable to avoid having duplicate proofs. Wos [0}
-identified the problem of recomputing redundant information in automated reasoning. Spencer [62]
considered it in the setting of logic programming and came up with the foothold refinement
algorithm. This is a refinement of linear resolution that admits fewer duplicate proofs than
Loveland's popular MESON format (Loveland [37]). Spencer's paper builds upon his original
presentation of the foothold format [6+], with a more precise definition and more rigorous proofs.

After his original foothold paper, he proposed a different restriction on ME™>* reduction by the use of

ordered clauses [63].

One of the open problems is to consider this in the setting of databases. Here as was

mentioned earlier (p 80), the subsumption check is an expensive operation that shouid be avoided. It

1 ME - Model Elimination - Loveland's algorithm as presented in [37].
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is therefore necessary to have an algorithm that would minimize redundant proofs as they are built,

without losing completeness.

Problem 2: Minimization of Proofs

In this we consider the minimization of the size of the proof, in contrast to the number of
proofs. Horton and Spencer [29] have come up with a data structure - clause frees (see subsection 3.3

p 30). This can be used with the Bottom-up algorithm to quickly evaluate answers as follows:

1. Form the set 7 of all clause trees, from the intensional database (DDBpg ), with only
literals from the query, or extensional database (EDDB ;) as open leaves (i.e. form all

ACTS)

2. Form-the set § of ground instances of clause trees from 7 using EDDB.

Example:
Let P be the function free disjunctive logic program:

IDB:  {p(X), r(X), ~c(X}}.

%), ~+X}.
EDB: c(l). cf2).
cf3). (6.
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Thus the query:

Query «p(X).

may be solved using clause trees as depicted in Figure 10.1.

7N
N

¢ Figure 10.1 Using Clause-trees for Bottom-up evaluation
: . of Disjunctive Database Queries

Here we see that ¢l(T) = {p(X), (X}, and so applying this to the EDB we get
Xe{l 25 6. |
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Appendices



Appendix I

Rules of Inference

Modus Ponens (M.P.) 2. Modus Tollens (M.T )
PoQq | Poq
p _ ~q
~q So~p
Hypothetical Syllogism (FH.S.) 4. Disjunctive Syllogism (D.S.)
= pPvq
q>=r ~p
LpDT - q
Constructive Dilemma (C.D.) 6.  Absorption (Abs.)
(P> os) =
pvr o (pq)
NV '
Simplification (Simp.) - 8. Conjunction (Conj.)
pPq P
<P q
~pq
Addition (Add)
P
B A
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Rules of Replacement

Any of the following logically equivalent expressions can replace each other wherever

they occur:

10.
11.
12.
13.

14.
15.
6
17.

18.

I9.

De Morgan's Theorems

(De M.):

Commutation (Com.)

Association (Assoc.):

Distribution (Dist.):

Double Negation (D.N.):

Transposition {Trans.)

Material Implication (Impl.):

Material Equivalence (Equiv.):

Exportation (Exp.):

Tautology (Taut.)
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~p- @ =(-pv~qQ
~pv@=(p -~

pva=@vp)
-9 =(@qp

[pv@vnl=[pvyvr]
p-(q-D))=lp-q-1]

p-@Qvoi=lp-9v @l
fpv@-nl=[pva- vl

p=~p
r>9=(-q>~p)

po2q={p>9



Appendix 11
Logical Deduction and the Resolution Principal

Suppose we already know that either John is at school or John is sick. If we are then told that
John is not sick, we could conclude that John is at school. This is an example of a deductive-
reasoning principle called resolution. To better understand this principle, let us first agree to represent
statements by single letters and the negation of a statement by preceding the letter representing the
statement with the symbol —. For instance, we might represent the statement "John s at school” by
P, the statement "John is sick" by Q, and the statement "John is not sick™ by —(. Then, reasoning
described above could be summarized as:

Tn a more general form, the resolution principle says that it £, ) and R are statements, then:

PorQ
and .
Ror—-Q
collectively imply the statement: '
PorR

as represented in Figure 42-1. Tn this case, we say that the two original staternents resolve to produce
the third statement, which is called the resolvent.

Pa g Rar =0

NS

Pa R

Figure A2-1

Tt is important that resolution can only be applied to pairs of statements that are written as disjunctive
clauses - that is, statements whose elementary components are connected by the word or (see p 13),
for example P v Q v R. A statement of the form if P then { is equivalent to (O v —P in this form.
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Of course, resolution is only one of many inference rules used by logicians. Another rule is
called conjunction (or and introduction [see Appendix 7). 1t says that from a statement £ and another
statement () one can derive the statement P A Q. : '

Still another inference rule is modius ponens. It says that from statements if P then ) and P,
one can conclude the statement .

 There is, however, something special about resolution. By using resolution, and only
rdeolution, we can confirm the inconsistency of a collection of contradictory clause form statements.
More precisely, a collection of clauses is contradictory if and only if repeated applications of
resolution can ultimately lead to an empty resolvent {the result of applying resolution to two clauses
of the form P and —P). For example, Figure A2-2 indicates how this could arise in the case of the
initial clauses

Pv(Q Rv—=Q —-R =

To appreciate the significance of this, suppose a collection of statements implies some other
statement P and we wish to demonstrate this implication. One approach would be to show that the
_"*ongmal collection is inconsistent with the statement —P. Indeed, implying the statement P is the
-same as contradicting the statement —P. - Thus; to demonstrate that the original collection of
statements implies P, we do not need to apply several different inference rules. All we need to do is

express the resolution until an empty resolvent occurs. This later approach is much more conducive

%10 automation. A program for proving consequences of collections of statements does not need to
decide which rule, among many inference rules, to apply. It needs merely to apply resolution over
and over again.

PVQ RU—‘Q

PUR

Figure A2-2
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One final point remains to be discussed before we are ready to apply resolution in an actual "
programming environment. Suppose we have the two statements

if Mary is at X then Mary's lamb is at X too

and

Mary is at home

where X is intended to represent any location. As disjunctive clauses the two statements become
(Mary's lamb is at home) v ~(Mary is at home)
which can be resolved with the statement
(Mary is at home)
0 produce the statement

(Mary's lamb is at home).

The process of assigning values i0 variables (such as assigning the value home to X) so that
resolution can be performed is called unification (or instantiation). 1t is this process that allows
general statements to be applied to specific applications in a deductive system. It also provides a
technique for extracﬁng information from the system. For example, it is by means of unification that

-we are able to conclude that Bill is a grandparent of Tom from the statements

Bill is a parent of Joan.

Joan is a parent of Tom.

IfYisaparent of X and Z is a parent of ¥,
then Z is a grandparent of X.

107




Appendix 111

sort(L, S) ;- permutation(L, 8), crdered(s).

permutation([ ], {1)-
permutation(Q, [X|TT) :- append(a, [X]|B], Q),
' append(A, B, P),
permutstion(P, T).

ordered((]).
ordered( |[1D. :
ordered((A[[B|T]]D - A < B, ordered([B|T])..

append((], Z,Z) '
append([XqL], M, [X|N]) - append(L, M, N,

Figure A3-1 A Prolog program for serting a list of numbers
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