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ABSTRACT

The Canadian Trusted Computer Product Evaluation Criteria (CTCPEC), the U.S.
Trusted Computer System Evaluation Criteria (TCSEC), the Information Technology
Security Evaluation Criteria — the harmonized criteria of France, Germany, The
Netherlands and The United Kingdorh (ITSEC), and other criteria have been developed to
aid in the analysis of computer systems to ensure that two processes at different security
levels cannot directly communicate infomﬁation in violation of security policies. Despite
the guidelines in these criteria along with other techniques, many systems suffer from
processes that communicate by means of covert channels.

In this report, covert channels are defined. A review of the related research activities
is given along with methodologies of how to detect covert channels and how to handle
them. Since the covert channel problem encroaches on other areas in computer science
such as communication theory, networks, and databases, these relationships will be

explored with emphasis on muliilevel database systems.




1 INTRODUCTION

A large number of databases in depaftménts of defense, the intelligence communmnity,
and civilian government agencies contain data that are classified or sensitive to- different
security Jevels. All database users are assigned security clearances. It is the responsibility
of a multilevel secure database management system (MLS-DBMS) to assure that each
user gains access to only those data for which he has the proper clearances. Although
their assigning procedures are less formal than those of the government, most commercial
DBMSs provide data security by controlling access privileges of users to data. While
these discretionary access controls (DAC) provide adequate mechanisms for preventing
unauthorized disclosure of information to most "honest” users, malicious users who are
determined to get access to the data must be restricted using other means. Studies have
shown that the mechanism provided by database systems often can be bypassed owing to
flaws in the systems which host the DBMS [36, 74]. o

The term covert channel, in general, is used to refer to any communication channel -
that can be exploited by a process to transfer information in a manner that violates a
system's security policy. Since current covert channel criteria in the CTCPEC [6], TCSEC
[11], TDI', and ITSEC” are essential elements in determining between B1, B2, B3, and Al
trust levels (and their international equivalents), an understanding of this concept is critical
[36]. The TCSEC [11] and CTCPEC [6] place covert channel analysis requirements on
trusted systems: ...thorough search for covert storage channels and make a determination
.. of the maximum bandwidth of each identified channel ... be able to audit the identified
events that may be used in the exploitation of covert storage channels.” It is important
that the covert channel problem is solved n a way so as not to fimit the usefulness of a
system or to adversely affect system performance. Because there is no multilevel DBMS
that is rated at the B2 trust level (or higher) available on the market today, there is only
very little experience in building and evaluating trusted multilevel database systems.

Unfortunately, all of the earlier analytical and clarification research directed at covert

! Trusted Database management system Interpretation of the TCSEC.
2 \nformation Technology Security Evaluation Criteria, harmonized criteria of France — Germany — The
Netherlands — The United Kingdom.



channels still leaves us with no single agreed-upon exposttion for op'erating system covert
channels [36].

Since the covert channel problem encroaches on other areas in computer science such
as communication theory, networks, and databases, these relationships will be explored.
The next section reviews security concepts and discusses covert channels. Section 3
reviews covert channels as communication channels and defines noisy and noiseless
channels. Section 4 reviews previous research activities related to covert channels. It
discusses methods for analyzing and detecting covert channels, methods for estimating a
covert channel bandwidth, and methods for handling covert channels. Section 5 discusses
covert channels in networks and section 6 reviews multilevel database covert channels.

Section 7 concludes.

2 BASIC CONCEPTS

In this section some relevant multilevel security concepts and covert channels are
discussed.
2.1 Multilevel Security

The set of rules by which a secure DBMS controls access to data is known as the
system's security policy. An object is a passive entity such as a data-file, a record, or a
field within a record. A subject is an active process (a program in use) that can request
access to objects (i.e., mformation resources). Among types of objects there exists a finite
set of distinct ways in which objects of a particular type can be manipulated; each type of
manipulation is called an access. Every Iaccess to an object is made on behalf of some
subject. The access relations or the acbess rules are best abstracted by means of an access
matrix. Before granting access to a subject, a check is performed using the access control
matrix (Figure 2.1). The matrix contains one label type along each axis and contains the
authorized modes of access in each matrix element. A label is a security attribute that is
associated with an object or a subject. It is used to describe any access mediation
information. For example, the complete subject/object matrix contains all current subject
labels along one axis and all current object labels along the second axis. Every object is

assigned a classification, and every subject a clearance. Classifications and clearances are



collectively referred to as access classes (or levels). An access class consists of two
components: a hierarchical component (usually TOP-SECRET, SECRET,
CONFIDENTIAL, and UNCLASSIFIED) to'gether.with a set of non-hierarchical or need-
to-know categories (e.g., NATO, Nuclear, Army, etc.). All data is labeled hierarchically
and categorically, so a particular data item might carry the security label [TOP-SECRET,
NATO, Nuclear]. The set of access classes ([sensitivity level, category set} pairs) is
partially ordered and forms what is known as a Iattice [9, 47]. By partially ordered it is
meant that given any two security classifications, either one is greater than or equal to the
other, or the two are said to be non-comparable. For example, TOP-SECRET is greater
than SECRET, but [TOP-SECRET, NATO] and [TOP-SECRET, Army] are non-
comparable, because neither is greater than the other: a [TOP-SECRET, NATO] user
cannot obtain access to [TOP-SECRET, Army] information, and vice-versa. The partial
order relation of security classifications is called a dominance relaﬁon. Given two access
classes ¢, and ¢,, ¢, 2 ¢, (¢, dominates ¢,) if and only if the hierarchical component of ¢,
is greater than or equal to that of c, and the categories in ¢, include those of c,. For
example, [TOP-SECRET, NATO, Army] dominates [TOP-SECRET, Army]. There are
two security (access) class bindings: fixed or static binding, in wlﬁéh the security class of
‘an object is constant, and variable or dynamic binding, where the security class of an
object varies according to its contents [3, 7, 9]. Users and their processes are usually
bound statically [3, 7, 9].

objects
obj; obj, objs objs objs

subil R W | R'W R

sub,| W R R R/W
subjects

suby| W R/'W W

subsy R W R/W

Figure 2.1: A Portion of an Access Control Matrix,
R=Read and W=WTrite.



The idea of mandatory (or non-discretionary) access controls (MAC) together with a
mechanism called the trusted computing base (TCB) for the enforcement of these controls
are defined. As mentioned in [29], MAC is based on the Bell-LaPadula model [3] which
imposes the following restrictions on all data access: |
1. The simple security property: a subject is allowed a read access to an object only if the
subject’s access class dominates the object’s.

2. The *property (pronounced "the star property"): a subject is allowed a write access
to an object only if the object's access class dominates the subject’s.

These properties are generally regarded as necessary in a security policy but may not
be regarded as sufficient. For example, some security policies do not permit reading or
writing unless the hierarchical components of the access classes involved are identical in
addition to non-hierarchical domination. The sufﬁciént conditions will include the usual
discretionary access controls of commercial DBMS. - To meet'-.the CTCPEC [6] and
TCSEC [11] requirements, it must be possible to demonstrate that a given system is
secure [29]. To this end, the secure DBMS designers follow the concept of implementing
a TCB. The TCB is the set of security critical components’ and security relevant
components that enforce a system's security policy. It attaches labels to users, processes,
or objects, enforces access controls and must be continuously protected and tamper proof.

‘When building a TCB or a secure system, it is important to take into account that
security is NOT an add-on feature. For a secure computer system, there must be a
security policy and a TCB to enforce that policy. A threat/risk assessment is conducted to
determine what degree of confidence one can have that a product’s security policy is
correctly implemented. In this respect, there are four functional criteria that must be
addressed [6]. These criteria are confidentiality, the ability to prevent disclosure of
information to unauthorized individuals; integrity, the ability to prevent modification by
unauthorized individuals; availability, the ability of a product to withstand a denial of
service attack or failure; and accountability, the ability to monitor and hold individuals
responsible for their actions. A further requirement is to ensure that the four basic criteria

are complete and cohesive, that is assurance. Assurance is the degree of confidence one

% Those components which directly contribute to the provision of one or more security services.




can have that a product’s security policy is correctly implemented. Assurance is gained
through the use of rigorous and comprehensive development” and implementation
strategies, and subsequent thorough evaluation and testing procedures that are adhered to
throughout the system lifecycle. The system lifecycle must include disposal when
production is terminated.

As seen, effective criteria (TCSEQ CTCPEC, and others) and the Bell-LaPadula
model have been developed for the analysis of computér systems to ensure that two
processes at different security levels cannot directly communicate information in violation
of security policies. However, despite the guidéliiles in these criteria and the Bell-
LaPadula model, many sysiems suffer from processes Ithat communicate by means of
covert channels.

2.2 Covert Channels

As mentioned in [33], overt channels use a system’s protected.'data objects to transfer
information. That is, one subject writes into a data object and another éubject reads from
that object. Channels, such as buffers, files, and [/O devices, are overt because the entity
used to hold the information is & data object; that is, it is an object that is normally viewed
as a data container. Covert channels, in contrast, use entities not normally viewed as data
objects to transfer information from one subject to another. File.locks, memory size, and
passing of time are examples of these entities or nondata objects. Covert channels can be
mainly classified as being either storage channels or timing channels. - Storage channels are
channels which allow the coded transfer of unauthorized information through a nondata
object legally (illegally means in violation of the security policy) written by one process
(usually a high process) and legally read by another (usually a low process)’. Covert
timing channels are those channels that allow one process {o signal unauthorized
information to another process by modulating the use of system resources so that changes
in response times can be observed by the other process. Several defimtions for covert
channels have been proposed. As mentioned in {361, covert channels are described with

adjectives such as storage, timing, static, time-decaying, leakage, bypass, backflow,

4 The high process dominates the low process. Usuaily, the reason that these nondata objects can “legally”
be written by a high process and “legally” read by a low process is that these objects are outside the scope
of the security policy (so all accesses are legal).



information, signaling, inference, and aggregation. There are deﬁnitions indicating that
covert channels exist only with the existence of a Trojan Horse®. Other definitions indicate
otherwise. Since there is no multilevel _DBMS that is rated at the B2 trust level (or higher)
available on the market today there are no established guidelines or expositions of exactly
what constitutes a database covert channel [36].

In general, a grey area exists between storage and timing covert channels depending
on how long the value of the underlying storage cell may be maintained. As stated in [43],
a channel whose underlying storage cell holds its value for the length of a boot load must
be viewed as a storage channel. On the other hand, if the value of the storage cell is
driven by mechanisms related to the overall system speed (process switching time, page
replacement time, etc.), then the channel is a timing channel. A difference between a
covert storage channel and a covert timing channel is t.hat the latter is memoryless, where
the former is not [18]. One way that may distinguish between'é storage and a timing
channel would be to determine what would happen if the operation of the system were
completely halted, the channel is a timing channel if the information would be lost [24,
421. Tf the covert data is still obtainable, the channel is a storage channel.” There is, of
course, an aspect of timing in both types of channels, but with covert timing channels, time
is an essential element. That is, with timing channels, information transmitted from the
sender must be sensed by the receiver immediately, or it will be lost.

The tasks of identifying and handling covert timing channels (Le., elimination,
bandwidth reduction, or audit) in a secure system are more difficult than for covert storage
channels. One reason is that, in addition to exploiting normal system activity, covert
timing channels can also involve the direct exploitation of system hardware [18]. Another
reason is due to the lack of tools/methodologies that identify covert timing channels.

Despite these problems, one can limit or eliminate some types of covert timing channels.

5 A Trojan Horse is a program containing an apparent or actual useful function that contains an additional
(hidden) function which allows unauthorized collection, falsification, or destruction of data. As an
example; a sort routine may have hidden in it a Trojan Horse such that whenever a user invokes the sort
routine in addition to accessing the user’s file to be sorted, it accesses other files of the user and copies
them inte files belonging to some unauthorized user {141




' Addltlonal Notes:
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particularly those that require the writing of essays. ' :
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~ very seriously the study of French while they are at university. In a bilingual province and country,

knowledge of both official languages is an important asset, in most professional occupations. The French
Departmeni offers language courses suitable for all students regardless of the level of proficiency they

have previously been able to acquire. There are often several course offerings from other departments
available in French. o '

3. Computer Science freshmen are advised to register for only five courses per term (only one Computer
Science course per term). If you have good marks from high school and maintain a ‘B’ average in first -
term, you may take an additional approved computer science course in second term (CS 2513 or CS
2503). This will lead to more flexibility in the upper years of your program and may help with either
summer employment opportunities or admission Lo the Co-Op Program.

4. Students are advised that those with assessment gpa of 3.5 or higher may be eligible for scholarships.

Please apply for these as appropriate if you qualifly or come close to qualifying. Scholarships are
awarded only to those who apply,

. Planning {or the CS 4997 will begin late in the term before the one in which the work is actually done.

+ For this reason most students will register for it as a second term course in year 4. Prof. T. Austin is
the Coordinator for CS 4997 and students are advised to watch the Computer Science bulletin board
between rooms E113 and E114, Gillin Hall, for announcements and notices of required meetings which
will normally be scheduled for 2:30 P.M. on Tuesdays and Thursdays.

i

6. Students with a B average are eligible to take 5000 level courses. The descriptioﬁ for these courses is
given on page F.33-34 of the 1996/97 Undergraduate Calendar.




2.2.1 Covert Channel Examples
Example 1

To give an example of a storage covert channel, consider a system that does not
permit the same name to be used for multiple files, regardless of the security level. If the
system returns an error message informing a process that a filename cannot be registered
because another file exists with the same filename, this information route can be exploited
as a covert channel {24]. One process could register a filename whenever it wants to
transmit a binary 1 and the other process can attempt to register the s'amé filename. The
se;:ond process will either be able to or not. When it cannot, the first process has
transmitted a 1; when it can, the process has transmitted a 0.
Example 2

When a process instruction is being executed in the Central Processing Unit (CPU)
the process is said to be running. To prevent any one process from monopolizing the
CPU, the operating system shares access to the CPU by allotting each process a time
period called a quantum or time slice. When the time allotted to a process is used up the
hardware causes an interrupt to occur which suspends execution of the process and
returns control to the operating system. The time that elapses between time slices allotted
to a given process is called the “interquantum-time channel” {28]. This channel can be
exploited as a covert timing chahnel. One example of the exploitation of such a channel is
to consider a proéess that uses the time between two successive CPU quanta to transmit
information to another process. The seﬁder and the receiver are assumed to have access to
a block. To send information, the sender and the receiver agree on set times for sending
the information. The transmission strategy is for the sender to execute at time ¢, if the ith
bit is 1, and to block itself if the ith bit is 0. The receiver tries to execute at time t;, if he
fails, then the sender is executing at that time. If only the sender and the receiver are in

the system, the receiver can decode each transmitted bit correctly with probability one.




1 ..0 0 .. 1
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Figure 2.2: CPU interquantum channel, receiver detects whether sender
runs at time ¢,, £,, ..., ¢, and receives 0s and Is.

3 Threat/Risk Assessment |

_ Tt is natural that risk accompanies any security issue. In general there are two ways to
approach risk assessment. One is a quantitative approach in which a quantity termed the
Anmual Loss Estimate (ALE) is produced. It is a single figure that indicates the expected
loss due to the cost of the various threats to a system, multiplied by the expected number
of instances of the threats in a year. It must be realized that the ALE is derived from data
and probabilities which frequenﬁy do not have an empirical basis. The key to the value of
a risk assessment based on this methodology is ensuring that the data and probabilities
used in the assessment are as near to real life as is possible.

The second approach is qualitative where experience or certain known requirements
and occurrences are relied upon to assess the risk. The success of this approach m
assessing risk is based directly on the capability to identify threats and vulnerabilities
correctly. From the knowledge of threat and wvulnerabilities their effects can be
determined, and defensive measures can be identified.

3.1 Risk Management

The aim of risk management is to make informed decisions wifh fill recognition and
acceptance of residual risk (a risk that can not be avoided or eliminated). Risk
management is a risk of assurance rather than a risk of security. It is useful to understand
risk management when addressing covert channels. Therefore, a simple risk model will be
used [24]. The model (Figure 3.1) is compronused of three elements; the assets, the threat
agent, and the safeguards. An assef is an entity which has a value to an organization (in
the above non-multiple filenames channel, the asset is the classified information). The

threat agent is an entity that desires to and is able to trigger an event that compromises an



asset's security. In the above

covert channel examples, the threat agent would be the

sending process (or any malicious process or software, e.g. Trojan horse). The safeguards

are mechanisms that protect the assets from threat agents by creating other mechanisms

that countermeasure the threat activities. Safeguards are prone to vulnerabilities perceived

by threat agents despite that they are implemented according‘to policies and standards.

Through different perceived asset values, the threat agent is capable to assess the assets

value. If it is possible that the safeguards can be circumvented and an access can be

gained to the assets, the threat agent will initiate a threat event or an attack against the

safeguards. If the attack was unsuccessful, then the safeguards have succeeded in

protecting the assets, otherwise a security violation and a complete or partial loss of the

assets will occur. In such case,

the safegiiards are not capable of protecting the assets.

Perceived

Asset Values .-

Damagin
Outwr%leg

Security .
Violations Secuirty
Protection

perceiv

policies and standatds

Figure 3.1: Threat Model.

4 COVERT CHANNELS AS COMMUNICATION CHANNELS

In this section the basic notion of how to measure the rate at which information can be

transmitted over a communication chamnnel is discussed. Then it is shown how this

concept can be applied to a covert channel in a computer system.

As shown in Figure 4.1, a communication channel has two ends. One end is the input,

where a process X is generating a message in the form of a sequence of symbols, and



entering them into the channel. At the other end is the output, where another process Y is
reading the symbols emerging from that end of the charmel. The ccpaaty ofa channel 1s

the maximum rate at which information can be transmitted from input to ‘output n blts per

second (BPS) {52].

X —— channel =~ }——» ¥

Figur(_e 4.1: Information Channel.

The channel is said to be noiseless if the symbols emerging are identical to those entered. |
For a noiseless channel, the rate at which information is transmitted to the output is the
<ame as the rate at which information is generated at the input end. The information rate
is measured in bits per second, which can be further subdivided as the product of bits per
symbo} and symbols per second. Thé calculation of capacity reduces to the question of
how fast the channel works if each symbol is represented as a fixed number of bits [52].

It is not hard to view the non-multiple filenames covert channel example given above
as a communication channel, where the high (sending) process is the input source X, and
the low (receiving) process is the oufput destination ¥. The channel is noiseless, with one
bit per symbol. Its capacity in bits per second depends on how long it takes to go through
the complete cycle for one bit. If it takes, say, five milliseconds, then the capacity is two
hundred bits per second.

4.1 Noisy Channéls

Anything that might make a channel's output different from its input is noise, that is,
a.nythmg that introduces transmission €rrors [52] Noise may be caused by spurious user
processes that run concurrently in the system and perform authorized writes to each
shared variable. A channel is noiseless either when there is no spurious process in the -
system or when all spurious processes between the sender and the receiver processes do
not, or cannot, alter the variable. In the non-multiple filenames channel example the
correctness of received bits might be distupted. For example, a spurious process that has
the same security level as the cooperating process might create a file under the same name

at the time the file is deleted by the cooperating process. A failure will be encountered by

10




the receiving process even though the file is not created by the cooperating process.
Hence the receiving process codes an extra "0." Noisy channels still carry information at
some rate less than the bit rate at which symbols are sent. But, by adding more noise, the
channel capacity goes down, and there is nothing that malicious programs can do to
transmit information faster than the capacity allows.

Hence, once aware of a potential covert channel, system designers may introduce
noise through modifications in the schedulixig algorithm or other appropriate places. Their
options are limited by the desire not to pena_l_izé legitimate users. It is difficult, in general,
to introduce covert channel countermeasures without degrading the overall performance

of the system, hence, tradeoffs must be made.

5 RELATED RESEARCH ACTIVITIES.

In addressing the threat of covert channels, two major chaIIeng;es héve been identified.
The first challenge is in developing techniques to detect covert channels in a
comprehensive systematic manner [35]. A number of covert channel analysis techniques
have been proposed. Usually these techniques base their analysis either on code inspection
or inspection 6f the high-level specification. The second and more difficult challenge is, of
course, to remove the channels or at least Jower their bandwidths without unacceptably
degrading the performance of the system [35].

5.1 Covert Channel Detection

Until the mjd—eighties, recognizing and dealing with storage and timing channels when
performing a security analysis of a computer system appeared to be a very difficult and
often ignored task. Methods for discovering and dealing with covert channels had for the
most part been ad hoc, and not restricted to a particular specification language {34]. At
the present time, more methodical approaches to recognize and deal with covert channels
are presented. All of the widely used methods for covert channel detection are based on
the identification of illegal information flows in top-level specifications or source code.
5.1.1 Syntactic Information-Flow Analysis

An approach on a syntactic amalysis, suggested originally by Denning [7], was

developed. Denning's approach was intended for use on application programs rather than

i1



the operating system. There are a number of variations of this approach. Denning
identified two different flows: explicit flows, such as the flow from A to B (denoted A >
B) in the assignment statement "B := A" and implicit flows, which occur in coﬁditionals
such as "IF A=X THEN B:=Y." The approach assigns sensitivity levels to program
variables. Furthermore, one defines a flow policy: "if information flows from variable A to
variable B, the security level of B must dominate that of A." When a flow policy is
~applied to program code, it helps generate flow formulas. For example, for the statement
"X = Y," its flow formula could be: security_level(X) > security_level(Y).

All flow formulas must be proven correct; usually a theorem prover is employed for
th}rs purpose. The flow of a statement can lead i a covert channcl if its particular flow
formula cannot be proven correct. In such a case, further analysis is necessary; one must
perform semantic analysis to determine whether the unproven flow leads to a real and not
a potential covert channel. Some of the potential channels do not have scenarios of real
use. These potential channels are 6reated by the identification method. For example,
when Honeywell’s SCOMP (Secure COMmunications Processor) was analyzed, there
were sixty-eight unproven formulas. These formulas represented potential covert channels,
but only fourteen of them turned out to be real covert channels [18, 52]. A general reason
that a potential channel might not necessarily be a covert channel is that, some flow
conditions may never become true at run time. Hence, illegal flow that could create a
covert channel may never be epabled. To determine whether a potential covert channel is
a real covert channel, one must find a real-time scenario enabling an illegal flow.

The syntactic approach has some attractions to it; it can be automated, it can be
a;ﬁplied to formal specifications and source codes, and it detects all flows that lead to
covert channels. On the other hand, the syntactic approach is not precise; it is vulnerable
to the discovery of false illegal flows. Thus, additional efforts are required to eliminate
such flows by manual semantic analysis. The analysis of design specifications leads to the
discovery of false information flows, namely of flows that app'ear in the formal
specifications but do not appear in code [67].

The syntactic approach on information flow analysis discussed above focused on

whether or not actual code satisfies the information flow policies of a security model

12




rather than identifying covert channels. The approach assumed that each variable (or
object) is either explicitly or implicitly labeled with a specific security level (or access
class). This means that, in practice, the syntactic approach provides only a subset of the
necessary conditions for covert channel identification. Covert channels use entities not
normally viewed as data objects {33]. Consequently, these entities may not be part of the
interpretation of a given security model. Instead, their security level may vary dynamically
depending on flows between labeled objects. In addition, a security model interpretation
may exclude some resources as implementation detail. Hence, the flow analysis needed for
covert channel identification must include variables that are not part of a security model
interpretation [67].
5.1.2 Non-interference Analysis

Non-interference is based on viewing the computer system as an abstract machine; for
example a user process can view an operating system as a black box that provides certain
services when requested. Usually a reqﬁest results in a response to the requesting process,
either a data value, an error message, or a positive acknowledgment. A process’ requests
are the abstract machine's inputs; the responses are its outputs; and the content of the
internal variables and data structures it maintains at any given time is known as its current
state. When analyzing a system, these variables and data structures are available through
either the source code or a more abstract formal/descriptive specification. -

Non-interference was defined by Goguen and Meseguer [20]. They defined the
concept of non-interferetice between two user processes — assuming an initial or start-up
state for the machine, a user process is non-interfering with another when the output
observed by the second user process is unchanged if all inputs from the first user process,
ever since the initial state, were removed as though they had never been entered. Go guen
and Meseguer reasoned that if inputs from one user process could not affect the outputs of
another, then no information could be transmitted from the first to the second.

Let X and Y be two user processes of an abstract machine. Further, let w be a
sequence of inputs to the machine, ending with an input from Y. Assuming the machine
was in its initial state when w was entered, let the output of that last input be ¥(w). To

express non-interference, assume that w/X is the subsequence that remains of w when alt
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X inputs are deleted from it. Then X is non-interfering with Y if, for all possible input
sequences w ending with a ¥ input, Y(w) = Y (w/X) |

When thinking about covert channels, the traditional way is to see each individual X
input having an effect on the next ¥ output. Non-interference looks at it in another way;
¥ might enter an input to request an output at any time. Suppose that Y entered an input
every time X did. Ignoring other inputs, the overall input sequence would be like:

XX,y .X7%.
The non-interference definition applies to all .the initial sequences of the whole sequence as
well as to the whole sequence itself, namely:
. Yy
X XY,
XX, Y, .X7Y,.

Suppose that each input is reported as a ¥ output after sorhe delay, then a covert
channel arises and it is just as bad as if the X mput comes out immediately in the next ¥
output. Therefore, the non-interference analysis requires that every Y output is unaffected
by all previous X inputs. Hence, it is necessary to analyze all previous X inputs. However
this analysis is unnecessary because the current state has all the information needed to
determine the next ¥ output. Non-interference can be expressed in terms of the current
state instead of the whole past input history: if X is non-interfering with ¥, an X' input
should have no effect on the ¥ outputs in the states before and after it. Non-interference
requires that an X input should have no effect on any subsequent ¥ output.

Two states are ¥ -equivalent if (1) they have the same output in response to the same
Y input, and (2) the corresponding next states afier any input are also Y-equivalent.
Goguen and Meseguer [20] proved a theorem, called the Unwinding Theorem. This
theorem says X is non-interfering with Y if and only if each X input takes each state to 2
Y-equivalent state. Unwinding leads to practical ways of checking non-interference. A
Multilevel security policy requires that each process X at a given security level should
interfere only with a process Y of an equal or higher security level. To apply this
requirerent in practice, the abstract machine state-variables must be defined, and the ¥-

equivalent states must be identified.
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One way to identify Y -equivalent states in a multilevel system is to label state-variables
with security levels. If Y is cleared for a secunty level , say s/, then the two states are Y-
equivalent if they have the same values in those state-variables having a security level
dominated by s There are three properties that must be proved in a non-interference
analysis: (a) The state-variable level assignment must have the property that the effect of
- any input turns equivalent states into equivalent states, (b) Any return values reported
back to ¥ depend only on variables visible to ¥ (variables at or below Y's level), and (c)
an input from a higher level process X cannot affect the variables visible to user process
v o

‘Non-interference analysis can be applied to formal system specifications as well as
“source code. However, it has a disadvantage that it may be impracticﬂ to be applied to a
significant size system {containing large number of variables) for that éutomated tools are
unavailable to date [18].

513 The Shared Resource Matrix (SRM) Approach

The SRM method was proposed by Kemmerer [33]. The method provides a
systematic approach for conducting a covert storage channel search, and for identifying
the ending state of that search. This is crucial for managing a covert channe] analysis over
the lifecycle of a product (as products are revised, so too must the security analysis
activities if the system is to maintain its assurance rating). Covert channel detection is
performed into two steps [33]: First, all the shared resources (e.g., system variables) that
can be referenced or modified by more than one subject through system calls are defined.
The second step is that, each resource is carefully examined to determine whether it can be
used to transfer information from one subject to another covertly. The method assumes
that subjects of a system are processes. The method further refines the view of each
shared resource by indicating its attributes, because two processes may view different
atiributes of the same shared resource. For example, the first process may be able to
determine only whether a shared file is locked, while the second process may only view
the size of the file. One sets up a matrix whose rows correspond to the shared resource
attributes and whose columns correspond to the system primitives, some examples of a

system primitive are Write-File, Read-File, Lock-File, and Unlock-File.
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After determining the row and column headings one must determine which primitive
references which attribute. This is done by a careful review of the description of each
primitive, whether it is an English requiremént, formal specification, or implerhentation
code. The matrix generation is completed when each element of the matrix has been
considered and marked, indicating whether a modification or reference could occur.

Figure 5.1 shows a resource matrix that was filled in from an English system description
{33].

Primitive
Write | Read Lock Unlock Open Close | File File
Resource File File File File File File Locked | Opened
Attribute
ID
Access
Process Rights R R _ R R
Buffer R M
D
Security
Classes R_ R R R
Locked R M - R
By
File
Locked | R R,M R,M R R
In-use : R R RM | RM R
Set
Value M R
Current R R R R R R
Process

Figure 5.1: Resource Matrix; R=Reference, and M=Modify.
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Indirect references are also added to the matrix. A resource attribute is referenced
indirectly by a system primitive operation if the operation can reference a second attribute
which may contain information from the ﬁrst by virtue of some other operatlon that may
reference the second and modify the first. Indirect references may contribute to further
indirect references, so an iterative process called fransitive closure (not the standard
mathematical transitive closure, since it relates to the modify operator as well as the
reference operator) is used to ensure that all indirect references have been included. For
instance, suppose an operafion Login references the password file and modifies the
Active-User attribute. Furthermore, suppose a second operation references the Active-
User attribute. The shared resource matrix for these two operations would indicate a
reference to Active-User, but no reference to the password file in the column that
corresponds to the second operation. However, it may be the case that the Active-User
attribute is modified in a manner which compromises a user's password [33]. Thus, it is
necessary to indicate this indirect reference in the matrix. Then, when analyzing the matrix
for possible channels, one must ensure that the modification to Active-User does not
reveal information about the user's password.

The transitive closure of the matrix is generated by looking at each entry that contains
an R (Reference). If there is an M (Modify) in the row in which this entry appears, then it
is necessary to check the column that contains the M to see if it references any attributes
that are not referenced by the original primitive. That is, if the columm that contains the M
has an R in any row in which there is no R in the corresponding row of the original
column, then an R must be added to that row in the original columm. For instance,
consider the column for Write-File in Figure 5.1. There is an R in the locked row of this
column, and the attribute is modified by the Lock-File primitive. Therefore, it is necessary
to see which attributes were referenced to make this modification [33]. The attributes
Access-rights, Security-classes, Locked, In-use set, and Current process are referenced.
Access rights, Security classes, and the In-use set are not directly referenced by the Write-
File primitive, so they must be added to that column. This process is repeated until no
new entrics can be added to the matrix. Figure 5.2 depicts the transitive closure matrix for

the resource matrix of Figure 5.1 [33]. The matrix is then examined for rows containing
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both an R, direct or indirect, and an M eniry; these represent resource attributes that
support communication channels from the process using one operation to modify the
attribute and a second process usimg another (or the same) operation to read the attribute.
If the sensitivity level of the first process is not less than or equal to that of the second
process, there is a potential covert channel. |

The SRM has the advantage that it can be applied to an informal specification of a
system (as well as a formal one), although the resﬁlts are only as good as the information
supplied. Tt can also be applied to source code. Because the current process identifier is
considered a shared resource, covert timing channels related to process scheduling will not
be differentiated by the method from storage channels [18]. Furthermore, the SRM
method does not require that security levels be assigned to internal system variables
represented in the matrix (as did the syntactic information-flow analysis), and thus it
eliminates a major source of false illegal flows. Although the SRM approach is applicable
' to source code, tools to automate the construction of the shared resource matrix, which is
time-consuming, do not exist to date [18]. The method does not consider the conditions
under which a flow occurs. Quite often, a system cail will access different variables
depending on which execution path is taken. through the call. In simple cases, this can be
addressed by viewing each execution path through the call as a separate call. This
increases the number 6f columns in the matrix. Another disadvantage of the SRM is that it
does not provide a criteria for distinguishing between a potential channel and a real
channel. '
5.1.4 A Formal Methed For Identification of Covert Channels in Source Code

This method was proposed by Tsai ef af [69]. The method identifies covert storage
channels based on three steps: (1) the analysis of programming language semantics, code,
and data structures used within a system's kernel to discover variable alterability/visibility,
(2) resolving aliasing of kernel variables to determine their indirect alterability, and (3)
information flow analysis to determine indirect visibility of kernel variables. Within a
primitive, a function f, depends on another function f, if f| calls f,:

The set of all functions that appear in the function call dependency (FCD) chain of a
primitive is called the FCD set of the primitive. Tsai and Gligor [68] define a visible
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variable at the kernel interface to be a variable such that changes in its value can be
detected by a user process that invokes a kernel primitive. A variable returned from a
function to another function within a primitive operation may not become visible unless
that variable can be made visible to the user process by the caller function. For this
purpose the analysis of the FCD set for each primitive is important for the determination
of the visible variables. The flow of information from a variable v, to another variable v,

is denoted v, = v,.

’ Primitive
Write | Read Lock Unlock Open Close | File File
Resource File File File File File File Locked | Opened
Attribute
ID
Process A.ccess R R R R R R R R
Rights _
Buffer R R.M
1D
security | p R R R R R R R
Classes
E‘;"ked R R RM R R R R | Rr
File :
Locked R R R,M RM R R R R
In-use R R R R RM | RM R R
Set
Value RM R
Current R R R R R R
Process

Figure 5.2: Transitive closure matrix; R=Direct Reference,
R=Indirect Reference, and M=Modify.
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The dependency notion between variables defines the indirect visibility of vatiables.
The visibility of variable v, depends on the visibility of variable v, if, whenever v, is
visible, then v, is visible. The indirect Visibﬂify of variables is discovered by information
flow analysis. From language semantics, the information flow is determined by analyzing
statements of code.

A variable is alterable if the value of the variable can be changed by any function of the
ECD set of a primitive. The alterability of a variable can take place in each of the
following actions; increment/decrement, assignment, insertion into and deletion from a list,
- and allocation and release of an entry in a table. The information flow in an assignment
implies that the variable at the lefi- hand side is alterable. Note that the alteration of a data
| structure may require more than one Janguage statement (€.g. table entry
allocation/release). _

An assignment such as v, = v, implies bi-directional information flow between v, and
v, whenever v, is a pointer. v, is called an afias of v, because v, represents the same
structure as v,. To resolve variable aliasing means to unify the names of the variable. To
discover the name of each structure and to distinguish shared variables from local
variables, all aliases must be resolved. Aliases are ignored when they are local variables
(for they are not visible outside the fanction). Tsai and Gligor [68] replace all aliases by
the original variable name. Thus, different variables representing the same object cannot
exist in the code of a primitive operation.

After the information flows and variable aliasing between the functions of each FCD
set have been defined, the visibility/alterability of each variable in a primitive operation is
discovered. Then, the shared alterable/visible variables for each primitive are searched for.
The set of primitives associated with a variable that is both visible and alterable is selected
for covert chamnel identification. Others, namely primitives that are associated with
variables that are only visible or only alterable, need not be included in the identification
process. A potential covert channel needs a sender process that could change (alter) a
shared variable, and a receiver process that could detect the change in the variable. Thus,
primitives associated with visibility only and alterability only cannot be used for covert

transmission of information.

20



Whenever the security level of the sender process is higher than that of the receiver
process in a multilevel security environment, a potential covert channel exists. By applying
the mandatory access checks of a s_ecurity niodel interpretation, all potential covert
channels provided by the shared variables are discovered. The method was applied to the
Secure Xenix Kemel code; the following results were obtained [18]: — fewer than 400
kernel variables are visible or alterable; fewer than 100 variables are both visible and
alterable; and 24 variables created covert channels [67].- |

There are two advantages with this method; it leads to the discovery of all storage
channels in kernel implementations and it can be automated. A disadvantage of the
méthod is that its manual application to real TCBs requires exiensive use of highly skilled
personnel. For example, its application to the Secure Xenix system required two
programmer-years of effort [18]. Thus, using the method in real systems requires
extensive use of automated tools. Although it is applicable to any implementation .
language, the method's automation requires that different parsers be built for different
languages. Another disadvantage of the method is that the channels identified become
more difficult to remove than had they been caught during a system specifications
development., One can re-design a system specifications to remove the channel without
incurring a significant cost. If the channel is not caught during the system design and is
caught after it is implemented into a source code, it becomes more expensive and more
difficult to remove.

5.2 Estimation of Covert Channel Bandwidths

The TCSEC [11] requirements for determining covert channel bandwidths state that
the system developer has to measure/estimate the maximum bandwidth of each identified
covert channel (i.e., capacity). The measurement or estimation of the maximum attainable
bandwidth must assume that the covert channels are noiseless, that no processes — other
than the sender or receiver —are present in the syétem when measurements are performed.
Bandwidth computation/estimation is necessary to determine the appropriate method for
covert channel handling (discussed in Section 5 below). If the channel cannot be removed,

then its bandwidth has to be lowered to a predetermined value. Introducing unnecessarily
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large delay values causes unnecessary performance degradation for the entire system.
Hence, accurate bandwidths are important for appropriate covert channel handling {68].
5.2.1 Calculating Covert Channels Bandwidth.s Based on Information Theory

Based on Shannon's information theory [59] for calculating the capacity of an
information channel, Millen [53] presented a method for calculating the bandwidths of

" covert channels. |

The maximum information rate of a channel is known from information theory to be its
capacity, defined as follows:

C‘=}i_{2(log2 N/t {1)
where N(#) is the number of possible symbol sequences of total time ¢ If there are two
distinguishable symbols of lengths d, and d, (the sender would take d, seconds to
transmit, say a 0, and d, seconds to transmit a 1), then _ _

N(t)éN(t—dl)+N(t—d2) | (2)
According to Shannon's information theory [59, p. 37], N(¥) is the asymptote for large ¢ to

Ax', where A is a constant and x is the largest real solution of the equation

X x T A = 1 (3)
and therefore, by substituting
N(t) = Ax' (4)
in equation (2), we get
Ax' = Ax"™ + Ax'™" (5)
which can be restated as
Ax'—x" —x%)=0 (6)

Because Ax’ approximates N(z) asymptotically, a solution of equation (6) will give the
asymptotic solution of equation (2): '

1-x% —x"% =0 (7)
When specific values for d; and d, are substituted, solutions for x can be found. The
largest real solution is used to calculate the channel capacity:

C =lim(log, Ax')/t =log, x.
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5.2.2 Informal Method for Estimating Covert Channel Bandwidths
Tsai and Gligor [68] introduced a formula for éomputing the maximum attainable
bandwidth. The time for the sender proceés to alter a Variable, and the time for the
receiver process to detect or view that variable change, are denoted by 7y and T,
respectively. The formula is:
B=b*(Tp+ T +27)7, |
where b (in bits) is thé information encoded thrdugh the variable,-.that is, the encoding

ST+ T,, 0
factor (which was assumed to be 1 in most practical cases). T, = ZLQ—W(-),
i=1 n
where 7 is the number of total possible transitions. T, (i) is the time necessary to read a 0
oral,and T, is the time to set up the environment to read 2 0 or a 1. In deriving these
formulas it was assumed that the environment setup for both variable setting and reading
is done by the receiving process. Further, it was assumed that the setting of Os and 1s

takes the same amount of time, and that all transmissions contain an equal distribution of

I @)
1

0s and 1s (uniformly distributed). 7 = 2 , where 7¢(7) is the time necessary to set a
=l

0 or 1. T, denoted the context switching time; when allocating the CPU to another
process, the kernel performs a context switch from the current process to a new process.
Fach process may involve a context switch.
5.2.3 The Two Methods Compared

Millen’s method [53] is more precise than that presented by Tsai and Gligor [68],
because during its use one is required to define a realistic scenario of covert channel use.
That is, Millen's method does not require that Os and 1s are uniformly distributed. Also, it
differentiates between the time it takes the sending process to transmit a 0 and the time it
takes to transmit a 1.

Experience with using the two methods for Secure Xenix shows that in cases where
times to transmit a ¢ or a | are close, the methods yield results that differ by at most 20%

[18].
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5.3 Covert Channel Handling

From a security point of view, covert channels with low bandwidths represent a lower
threat than those with high bandwidths. However, for many types of covert channels,
reducing the bandwidths below a certain rate (which depends on the specific channel
mechanism and the system architecture) also has the effect of degrading the performance
provided to legitimate system users.  Hence, a trade-off exists between system
performance and the existence of a covert channel. Because of the threat of compromise
that would be present in any multilevel computer system containing classified and sensitive
information, the system should not contain covert channels with high bandwidth. The
CTCPEC [6] does not impose any bandwidth restrictions on covert channels: “A
‘reasonable’ bandwidth restriction today may become too difficult to achieve i the
fature.” The CTCPEC leaves it to the vendor to determihe,. given the operational
environment in which a system will be used, the maximum covert channel bandwidth
acceptable to the system’s users. According to the TCSEC [11], a covert channel that has
a bandwidth of > 100 BPS is considered high (100 BPS is the approximate rate at which
many ‘old’ computer terminals are run [18]) and must be removed, or made to have a
bandwidth that is in a lower classification. A covert channel that has a bandwidth of 10-
100 BPS must be removed, made to have a bandwidth that is in a lower classification, or
detected by the system, with the system auditing attempted uses of the chaonel. A covert
channel that has a bandwidth of 1-10 BPS must be removed, made to have a bandwidth
that is in a lower classification, detected by the system with the system auditing attempted
uses of the channel, or documented as a covert channel in the system security
administrator's manual. A covert channel that has a bandwidth of < 1 BPS must be
removed, detected by the system with the system auditing attempted uses of the channel,
documented as a covert channel in the system security administrator's manual, or simply
ignored. Hence, there are five possible choices for resolving a covert channel relative to
satisfying the B2 requirement in the TCSEC [42]; remove the channel, lower the
bandwidth, audit attempted uses of the channel, document the channel, or simply ignore

the channel.
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5.3.1 Removing the Channel

Removing a covert channel requires changing the system mechanism that causes the
covert leakage of information. If a covert channel is caused by a shared resource, then the
sharability of that resource must be controlled or eliminated in order to eliminate the
channel.
5.3.2 Lowering the Bandwidth of the Channel

Lowering the bandwidth means making the results of certain system operations less
predictable, that is, noisier. A method of reducing channel bandwidths is to deliberately
introduce spurious processes [77]. That is, user-level processes are introduced in the
sys’tem to perform random alteration of channel variables. It should be noted that rules for
limiting the bandwidth of covert storage channels are different from those for hmiting the
bandwidth of covert timing channels. For timing channels, either the speed of the
transmitting or the receiving process can be reduced to affect é redtl'c-:ti_on. in bandwidth. If
the transmitter is limited, that is, it cannot transmit the desired number of bits during the
executions of the Trojan Horse program, the receiver will not be able to receive the
desired information. Also, if the receiver is limited so as not to be able to receive all of the
bits being transmitted, it is pointless for the transmitter to transmit them. However, in
storage channels, the receiver's speed is not limited, the receiver always has enough time
to sense the data. Hence, all desired data can be transmitted during the executions of the
Trojan Horse program.
5.3.3 Auditing the Use of Covert Channels

Auditing (sometimes called logging) is one of the most important and effective
methods of increasing security in computer systems. Auditing is used as a method to
handle covert channels. It allows all users to exploit known channels but provides a
mechanism discouraging channel use. It is used as a deterrence of covert channel use.
Thus, users can be assured of detection of any use of covert channels. Note, however,
that the TCSEC [11} and the CTCPEC {6] require only that the abilify to audit covert
channels be provided — not that covert channels be actually audited. This detail limits

somehow the effectiveness of audit as a real deterrent.
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Explicit requirements for monitoring weaknesses of otherwise secure systems have
been imposed for evaluation of commercially available systems. In particular, the ability to
"audit identified events that may be used in the exploitation of covert storage channels"
- has been an explicit requirement for computer systems in the security classes B2-Al of the

TCSEC [11, 18]. As stated in [60], in spite of this requirement and the significance of
“covert channels to system security and integrity, neither the notion of auditing storage
channels has been defined precisely nor any tools for such au’diting have been provided for
any multilevel secure system to date.

[18] and {60] stress upon the fact that covert channel auditing requires that sufficient
data be recorded in audit trails to enable the identification of (1) mdividual covert channel
use; (2) identification of transmitters and receivers of individual covert channel types (i.e.,
unambiguous identification of covert channel users). Furthermore, discovery of covert
channel use must be certain (i.e., the covert channel auditing must pot be circumventable),
and false detection. of covert channel use must be avoided. Circumvention of covert

channel auditing is undesirable because it allows leakage of information to remain
undetected. False detection of covert channel use is also undesirable because it may make
it impossible to distinguish between innocuous user activity and covért channe] use [18].

Estimation of actual covert channel leakage bandwidth is possible and desirable once
covert channel use has been determined by audit trail analysis. Note that, in general, it is
impossible to discover the actual information being leaked through a covert channel from
audit trails because a user can encrypt it before leakage. Also, one cannot distinguish
between real information and noise leakage merely by inspecting audit trails. Constant
streams of either zero or ones are the only recorded patterns one can unambiguously
classify as noise [18]. It is practically impossible to audit the use of certain covert
chamnels, for example, the CPU timing channel discussed earlier in example 2.

5.3.4 Documentation of Covert Channels

Some covert channels are impractical to detect or audit, and their bandwidths are too

low. These channels may be resolved by documentation. A security officer would like to

know of the existence of such channels, so that programs can be exammed for their
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potential abuses. Hence, these covert channels and all others, even if they are otherwise

ignored, are documented in the report resulting from the required covert channel analysis.

6 COVERT CHANNELS IN NETWORKS

Low level protocols typically provide a method of sending a block of data (of variable
size within a given range) to a particular address on a network. In addition to the
communication between the sender and the addressee that these methods obviously allow,
extra information can often be detected by other network users which is independent of a
data block's actual context (and therefore also independent of its presentation). When
sﬁch detection is used for the transfer of information, covert channels exist.

6.1 Background

This section gives essential background to understand the next section (covert channel
detection in networks). [23] and {62] may be consulted for more details.

A packet is equivalent to a network protocol data unit (NPDU). Packets contain not
only user data intended for another DTE (Data Terminal Equipment) on a network, but
also, control information by means of which the attached DTE and the network
communicate.

6.1.1 Connection Control

An entity (e.g., a process in a multiprocessing environment, or a subroutine) can
transfer data to another entity without prior coordination. This is known as
connectionless data transfer. This mode of data transfer is not popular. A more
commonly used mode is connection-oriented transfer. In this mode, a logical association,
or connection is established between the entities before the actual data transmission
begins. Three phases are involved in this type of mode [62]; connection establishment,
data transfer, and connection termination. This mode can be viewed as sending messages
through telephone lines, while the former is viewed as sending messages through a postal
mailing system.

6.1.2 Packet-Switched Networks
A packet-switched network is a communication network that trapsmits data in

packets. The network consists of a set of interconnected packet-switched nodes.
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Transmitted data is in the form of a stream of packets.  Each packet is routed through the
network. As each node along the route is encountered, the packet is received, stored
temporarily, and then transmitted along a link to the next node in the route. '

Single packet activity can be explained with reference to Figure 6.1 (based on a similar
figure in [62]). Consider data to be sent from station 4 to statidn F. A conpstructs a
packet containing the data plus control information, including F's addf_ess, and sends 1t to
node 1. Node 1 stores the packet and determines the next node to the route (say 4).
Hence, node 1 queues the packet for transmission over the 1-4 link. When the link is
available, the packet is transmitted to node 4, which will forward the packet to node 6,
aﬁd finally to station F.

Communication will typically involve a stream of packets exchanged in both directions
between stations. Two approaches are used to manage the t_ransfer and routing of these
streams - of packets; datagram and virtual circuit. Datagrain is an example of
connectionless data transfer; each packet is treatéd independently. The virtual circuit
approach is an example of connection-oriented data transfer; a logical connection is
established before any packets are sent. For example, suppose that A has one or more
messages to send to F. It first requests a connection to . Node 1 decides to route the
request and all subsequent data to 4, which, in turn, decides to route the request and all
subsequent data to 6, which finally delivers the request to F. If ¥ is prepared to accept
the connection, it sends out an accept to 6, which passes it back to 4, which passes it back
to 1, and ﬁnally' to A. Now, stations 4 and F may exchange data over the logical
connection (or virtual circuit) that has been established. FEach packet now contains a
virtual circuit identifier as welil as user data. Also, each node on the pre-established route
knows where to direct the packets (no routing decisions are required). Hence, each
packet from A traverses nodes 1, 4, and 6; each packet from F traverses nodes 6, 4, and 1.
Eventually, one of the stations terminates the connection with a terminate request. Each
station, at any time, can have more than one virtual circuit to any other station, and can

have virtual circuits to more than one station.
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Figure 6.1: Packet-Switched Network.

6.1.3 A Packet-Switched Network Access Standard: X.25 |

The CCITT® recommendation X.25 is perhaps the best known and widely used
protocol standard. It was originally approved by ISO’ in 1976 and has been revised twice
since, in 1980 and 1984 [62]. It specifies an interface between an open system and a
packet-switched network — in other words, it Speciﬁes an interface between a DTE and
DCE (Data Circuit-terminating Equipment), the DCE provides access to a packet-
switched network. The protocol calls out the first lower three levels; the physical level,
the data link level, and the packet level. The packet level specifies a virtual circuit service.

X.25 has two types of packet format {23]; data packets and control packets. In
addition to user data, a data packet includes the virtual circuit number, the send and
receive sequence numbers, and the M-bit (it also includes the D-bit and the Q-bit which
are explained in the next section below). As mentioned above, a DTE is allowed to
establish more than one virtual circuit with other DTEs (up to 4095 simultaneous virtual
circuits {62]). To sort out which packet belongs to which virtual circuit, each packet
contains a 12-bit viftual circuit number (4-bits as group number and 8-bits as channel
number). The More bit (M-bit) is used in data packets to indicate to the network a
sequence of more than one packet so that packets within a complete sequence can be
combined by the network. Control packets include a virtual circuit number, a packet type

identifier, and additional information regarding the particular control function.

¢ Consultative Committee of International Telegraphy and Telephone.
7 International Standards Organization.
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6.2 Direct Covert Storage Channels

As previously mentioned, there aré two status bits in the first octet of all data packets,
the Quality bit (Q-bit) and the Data Confirmation bit (D-bit). The Q-bit allows the user to
distinguish two types of data field information. The D-bit is used for end-to-end
acknowledgment of data packets, that is acknowledgment between the local DTE and the
network (D = 0). D =1 indicates that the acknowledgment is between a remote terminal
and the network. The usual case is D = 0. Both Q-bit and D-bit are pofential 1-bit
channels. If both are modulated, two bits of covert data may be sent.
6.3 More Covert Channel Examples
1) A Derived Covert Storage Channel:

1f a number of differently sized packets can be sent to legitimate addresses, then a
wiretapper (or an entity within the addressed network component) can derive information
from which block size was chosen by the transmitter. The Iength' of a packet may vary,
depending on its type. For example, the length of a data packet varies with the number of
user data octets sent, which varies from 1 to 128. The only other restriction is that the
packet contains an integral number of octets. A 1-bit channel could be set up by erther
sending a data i:»acket with a specific number of octets or any other number of octets [24].
2) A Covert Timing Channel:

If a wiretapper (or an entity within the addressed network componént) can distinguish
a number of different delays between successive transmissions imposed by a user, then he
may deduce information from the particular delays chosen [24]. For example, the sender

would take d, seconds to transmit a packet (to signal a 0) or d, seconds to transmit it (fo

signal a 1).

7 MULTILEVEL DBMS COVERT CHANNELS
As mentioned earlier, studies have shown that the mechanism provided by database
systems often can be bypassed owing to flaws in the systems which host the DBMS [36,
74]. Moreover, there is no multilevel DBMS that is rated at the B2 trust level (or higher)
available on the market today and therefore there is only very little experience in building

and evaluating trusted DBMSs. In a multilevel relational DBMSs, where data is usually
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interrelated, covert channels pose a real threat to data compromise. There are no
established guidelines or expositions of exactly what constitutes a database covert channel
[36]. Since multilevel DBMSs are fertile ground for encoded (unauthorized) information
transfer, a covert channel recognition/resolution model for users, developers, and
evaluators alike is essential.

The next section gives covert storage channel examples in a multilevel DBMS.

7.1 Covert Channel Examples ‘

One way in which covert channels arise in multilevel databases is through the creation
and destruction of objects. A high user can encode classified information in the existence
of objects (tables, or records within a table) which are then detected by a low user who
can decode the information.

A Trojan Horse program (a trap) can be inserted during any phase of a system life -
cycle (i.e., duriﬁg programming, operation, maintenance) by any individual involved in any
of the phases. The main problem in handling this threat is the difficulty of discovering the
existence of a Trojan Horse. A number of Trojan Horse threats in a trusted multilevel

DBMS (based on similar scenario given in [36]) are given below:
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The Sitnation

A department of defense of a country keeps track of its weaponry manufacturers with
a tracking file (TRACKF). That file is structured as follows:

CLASS PRODUCT-ID PROD-CAPACITY PROD-DATE LOCATION
S XCM 8 910101 60N40E
CLASS: TOP-SECRET (TS), SECRET (S), or UNCLASSIFIED (UNCLAS]).

PRODUCT-ID: Product identification.

PROD-CAPACITY: The yearly production capacity for each manufacturer.
PROD-DATE:The starting date of production for each manufacturer.

- LOCATION: The location of each manufacturer.

PRODUCT-IDs are joined to a Product-Description file (PRODESC) in which each

product, its usage, and other related information is described.

Common Knowledge

The product capacity that the database shows is multiplied by 100 to give
the actual capacity of each manufacturer.

10% of the manufacturers produce spare parts of all types of war products.
PRODUCT-ID's for all nuclear products are changed every week. They
are changed every month for other products.

The total number of manufacturers located in different sites is 720.

Any information about any nuclear product is TOP-SECRET.

The total number of nuclear weapons manufacturers is TOP-SECRET.
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A Sample of TRACKF Data

CELASS _ PRODUCT-ID PROD-CAPACITY PROD-DATE = TOCATION
S XCM 8 910101 GON4OE
S XCP 9 910131 - 30S20W
TS XAB 3 921231  JONSOE
S XCT 5 019115 05N70E
UNCLAS XXX 6
UNCLAS XXX 4
UNLCAS XXX 7
UNCLAS XXX 2
UNCLAS XXX :

I.JNCLAS XXX 9 910531
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A query issued by a "SECRET" level user:

"SELECT * FROM TRACKF;"

Discretionary and Mandatory Access Controls satisfied.

Response

. XCM ..
.. XCP ...
. XCT ...
w XCM ..

Database Covert Channel Description:

Legitimate storage objects satisfying the term of the query are returned to the user
(subject) more than once. Since the user is cleared to receive each object, then no
overt illegal disclosure occurs. Yet, by interpreting the number of times cach
legitimate storage object is returned, the subject could receive encoded data. In this
example, say the object XCM is returned 24 times, XCP is returned once, and XCT is
returned twice, then this information can be interpreted as X4 B, where each number
(24, 1, and 2) represent the indexed position of X, A4, and B, respectively, in the
English alphabet. '
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A query issued by a "SECRET" level user: -

"SELECT * FROM TRACKF WHERE PRODUCT-ID EQ "XAB";"

DAC & MAC satisfied.

Response

.. XXX 3
o XXX 6
v XXX 4
. XXX 7

Database Covert Channel Description:

Here, legitimate storage objects (Le. whose classification is dominated by the
subject's. clearance) are returned, but they are from a different (wrong) named object of
identical structure to the named object referenced in the query. That is, these storage
objects appear in structure to satisfy the query and are legally disclosed to the subject
according to DAC and MAC subpolicy. These storage objects are “wrong” in that
they do not correspond to the query condition, yet they are legally disclosed to the
* subject. They are correct in terms of DAC and MAC, but simply t_héy do not answer
the question asked. In this example, the user gets all unclassified infonnation. Notice
that the row ... XXX 3.. does not exist in the SECRET or UNCLASSIFIED
information that the database shows. Hence, the SECRET user discovers that the

attribute "3" is a PROD-CAPACITY of a TOP-SECRET level data.
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A query issued by a "SECRET" level user:

"SELECT * FROM TRACKEF;"

DAC & MAC satisfied.

Response

.. XCM ..
. XCM ..
.. XCM ..
. XCM ..
. XCM ..
. XCM ..
.. XCM ...
o XCM ..
. XCM ...
o XCP
.. XCP
.. XCT ..
. XCM ..
. XCM ..
o XCP
.. XCP
.. XCP
. XCT

Patabase Covert Channel Description:

Legitimate and correct data is returned to the user in a particular order (“Sneaky”
fashion) so that the user can acquire unauthorized information based on this ordering.
Notice that the row ..XCM... occurred 9 times, the row ..XCP... occurred twice,

the row ...XCT... occurred once, the row .. XCM... occurred twice this time, the row

.XCP.. occurred 3 times, and the row ..XCT... occurred once. Collecting and

arranging the number of times each of these rows occurred, we get 921231, the
PROD-DATE field of the TOP-SECRET record.
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A query issued by a "SECRET" level user:

"SELECT * FROM TRACKEF;"
l DAC & MAC satisfied.

Response

LXCM..)
XCM...
> 10 times

XCM...
.. XCP...
... XCP...

¢ 14 times -

.. XCP...
. XCT...
. XCT...

¢ 50 times

.. XCT...]

LXCM...
L XCM...
L ACM...
- XCM...
o ACM..

Database Covert Channel Description:

The row .. XCM... occurred 10 ﬁmes, the row ...XCP... occurred 14 times, the row
... XCT... occuired 50 times, and the row .. XCM... reappeared 5 times. Taking the
number of times each of these rows occurred we get: 10, N (letter indexed by 14 in
the English alphabet, 50, and E (letter indexed by 5) = 10N50E, the LOCATION
field of the TOP-SECRET record.
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A query issued by a "SECRET™ level user:

"SELECT * FROM TRACKF WHERE PRODUCT-ID "NOW" EQ
PRODUCT-ID "LAST WEEK";"

DAC & MAC satisfied.

Response

. XCM...

Database Covert Channel Description:

Number of rows returned = 570
90% of 720 =648 (recall that 720 is the total number of manufacturers out of
which 10% produce spare parts)

648

- 370

78
at least 78 nuclear manufacturers exist. This TOP-SECRET information is inferred by the
SECRET user. Inference is a serious problem in multilevel trusted databases. [36} argues
that inference charmels are covert channels. {16] and [50] refer to inference channels as
covert channels. However, because these channels do not require processes {one high and

one low) to form the illegal communication path; they are excluded by others.

Another example of a relational DBMS is through returning legitimate storage objects
to a subject, but not all of the storage objects satisfying the query are returned {36]. By
knowing the correct number of authorized objects satisfying the query, the subject could
interpret encoded data about wnauthorized objects based on the number of missing

objects.

338




8 CONCLUSIONS

* To satisfy the requirements for multilevgl security in computer systems, the covert
charmel problem must be faced. This report referred to covert channel identification and
handling methods which help assure that existent covert channels do not compromise a
system's secure operafion.  Exploitation of covert channels will grow in the fature as |
more systems are put into operation in the multilevel mode. .By continuing the
development and improvement of tools that support covert channels analysis, perhaps the
task of detecting covert channels can be made routine enough so that the problem 1s not
avoided. Absolute security is not possible for any system without severely limiting its
functionality. This is particularly true for MLS-DBMS. However, it is possible to make
reasonable tradeoffs between functionality and security, ~Within the B2 security
requirements, the covert channel problem is thought to be solvable in a way so as not to
limit the usefulness of the system. Since MLS-DBMSs provide fertile ground for encoded
(unauthorized) information transfer, a covert channel recognition/resolution model for

users, developers, and evaluators alike is essential.

39




BIBLIOGRAPHY
1. Alagic, S., Relational Database Technoiogy, Springer-Verlag, 1986.

2. Al-Kadi Tbrahim, “Origin of Cryptology: The Arab Contributions,” ‘Crypiologia, Vol.
16, No. 2, pp. 97-125, April 1992. : _

3. Bell, D. E.,, and La-Padula, L. J ., "Secure Computer System: Unified Exposition and
Multics interpretation,” Technical Report ESD-TR-75 -306, AFSC, Hanscom Airforce
Base, Bedford, MA, 1976. _ :

4. Boebert, W. E., Dillaway, B. B., and Haigh, J. T., "Mandatory Security and Data
“Management,” Proceedings, The National Computer Security Center Workshop on
Database Security, June 1936. '

5. Braun, H., "Security Considerations Within Military Information Systems,"
Seminar on Basic Documentation Practices (A GARD-R-788), Ankara, Turkey, pp.
11/1-17, 7-8 September 1992. : - _

6. Canadian System Security Center, Comnunication Security Establishment,
Government of Canada, The Canadian Trusted Computer Product Evaluation
Criteria, Version 3.0e, January 1993, '

7. Denning, Dorothy, E., "A Lattice Model of Secure Information Flow,"
Communication of the ACM, Vol. 19, No. 5, pp. 236-243, May 1976.

8. Denning, Dorothy, E. and Peter. J. Denning, "Certification of Programs for Secure
Information Flow," Communication of the ACM, Vol. 20, No. 7, pp. 504-513, July
1977.

9. Denning, Dorothy, E., Cryptography and Data Security, Addison-Wesley, Reading,
Massachusetts, 1983 (reprinted).

10. Diffie, W. and M. Hellman, “New Directions in Cryptology,” IEEE Transactions on
Information Theory, Vol. IT-22, pp. 644-654, 1976. '

11. DoD Computer Security Center, US Department of Defense Trusted Computer
System Evaluation Criteria,” 5200-28-STD, Decernber 1985.

12. Dougall, E. G., “Computer Security, IFIP Transactions,” A-37, North Holland, 1993.
13. BEggers, K. W., and Mallett, P. W., "Characterizing Network Covert Storage

Channels," Proceedings, 4th Aerospace Computer Security Applications Conference,
Orlando, FL, December 1988.

40



14, Gardner, P. E., "Evaluation of Five Risk Assessment Programs," 'Computers and
Security, Vol. 8, pp. 279-285, 1989,

15. Gallager, R. G., Information Theory and Reliable Communication, John Wiley and
Sons, New York, N.Y, 1968.

16. Garvey, T. D., Lunt, T. F., and Stickel, M. E., "Abductive and Approximate
Reasoning Models for Characterizing Inference Channels," Proceedings, The 4th
Workshop on the Foundations of Computer Security, Franconia, NH, June 1991.

17. Gilles G. and Outerbridage, R., “DES Watch: An Examination of the Sufficiency of
the Data Encryption Standard for Financial Institution Information Security in
- 1990°s,” Cryptologia, Vol. 15, No. 3, pp. 177-193, July 1991.

18. Gligor, V. D., A Guide to Understanding Covert Channel Analysis of Trusted systems,
National Computer Security Center, NCSC-TG-030, Version 1, November 1993.

19. A Guide to Understanding Covert Channel Analysis of Trusted Systems, National
Computer Security Center, NCSC-TG-030, Version 1, November 1993.

20. Goguen, J. A. and Meseguer, "Security Policies and Security Modéls," Proceedings,
IEEE Symposium on Security and Privacy, Qakland, CA, pp. 11-20, April 1982.

21. Hahn, M., "Redefining Data Sharing," EDPACS, Vol. 19, No. 9, March 1992.

22. Haigh, T. J., R. A. Kemmerer, J. McHugh, and W. D. Young, “Experience Using Two
Covert Storage Channel Analysis Techniques on a Real System Design,” Proceedings,
7th International IEEE Symposium on Security and Privacy, Oakland, CA, 7-9 April
1986. :

23. Halshal, F., Data Communications, Computer Networks and Open Systems, Addison-
Wesley, Third Edition, 1992.

24. Harrison, S., "Introduction to Covert Channels in Communications Systems,"
Proceedings, 5th Annual Canadian Computer Security Symposium, pp. 363-376,
1993,

25. Hinke, T. H., "Inference Aggregation Detection in Database Management systems,”
Proceedings, IEEE Symposium on Security and Privacy, Oakland, CA, April 1988.

26. Hsiao, D. K., Kohler, I., and Stroud, S. K., "Query Modifications as a Means of
Controlling Access to Multilevel Secure Databases," 1991 IFPI, Database Security,
1V: Status and Prospects, S. Jajodia and C. E. Landwehr (Editors), Elsevier Science
Publishers, North-Holland, pp. 221-240, 1991.

41




27.

28.

29.

30.

Hu, W. M., "Reducing Timing Channels with Fuzzy Time," Proceedings, IEEE
Symposium on research in Security and Privacy, Oakland, CA, pp. 8-20, 1991.

Huskamp, J. C., Covert Comumunication Channels in Timesharing Systems, Technical
Report UCB-CS-78-02, Ph.D. Thesis, University of California, Berkeley, CA, 1978.

Jajodia, S. and R. Sandhu, "Database Security: Current Status and Key Issues," 4ACM
SIGMOD RECORD, Vol. 19, pp. 123-126, December 1990.

Jajodia, S. and R. Sandhu, "Towards a Multilevel Secure Relational Data Model,"

- ACM SIGMOD 1991 Conference Proceedings, pp. 50-39, 1991.

31.

32.

33.

34.

33,

36.

37.

38.

39.

Jajodia, S., “Tough Issues: Integrity and Auditing in Multilevel Secure Databases,"
- Proceedings, 13th National Computer Security Conference, Washington, D.C., Vol.
2, pp. 577-580, 1-4 October 1990.

Kaiser, W. G., "The Making of a B2 System," Information Age (UK), Vol. 1, No. 10,
pp. 41-46, January 1988,

Kemmerer, R.A., “Shared Resource Matrix Methodology: An Approach to Identify
Storage and Timing Channels,” A CM Transactions on Computer Systems, Vol, 1, No.
3, pp. 256-277, August 1983.

Kemmerer, R. A., "A Practical Approach to Identifying Storage and Timing Channels,
"Proceedings, IEEE Computer Society Symposium on Research in Security and
Privacy, Oakland, CA,, 26-28, April 1982.

Kemmerer, R. A. and P. A. Porras, “Covert Flow Trees: A Visual Approach to
Analyzing Covert Storage and Timing Channels,” JEEE Transactions on Software
Engineering, Vol. 17, No. 11, pp. 1116-1184, November 1991.

Knode, R. B., "A Covert Channel Taxonomy for Trusted Database Management
Systems," C31 Systems Division, Atlantic Research Corporation; Hanover, MD,
1992.

Lamport, Leslie, “What is Meant for a Concurrent Program to Satisfy a Specification:
Why No One Has Specified Priority,” Proceedings of ACM Symposium on Principles
of Programming Languages,” pp. 78-83, 1985.

Lamport, Leslie, “A Simple Approach to Specifying Concurrent Systems,”
Communications of the ACM, Vol. 32, No. 1, January 1989,

Lampson, Butier W., “A Note on the Cbnﬁnement Problem, " Communications of the
ACM, Vol. 16, No. 10, pp. 613-615, October 1973.

42




40.
41.
42.
| 43.

44.

Lapid, Y., Ahituv, N., and S. Neuman, "Approaches to Handling ‘Trojan Horse’
Threats," Computers and Security, Vol. 3, pp. 251-256, September 1986.

Lipner, Steven B., “A Comment on the Confinement Problem,” Proceedings, Sth
Symposium on Operatmg System Principles, Austin, Texas, 19-21 November 1975.

Loepere, K., "Resolving Covert Channels Within A B2 Class Secure System," ACM
SIGOPS, pp- 9-28, June 1986.

Lunt, T. F., and E. B. Fernandez "Database Security," SIGMOD RECORD (US4,
Vol 19, No 4, pp. 90-97, December 1990.

Lunt, T. F., "Aggregation and Inference: Facts and Fallacies," Proceedings, IEEE

- 1989 Symposium on security and privacy, Oakland, Ca, May 1989.

43,

40.

47.

48.

49.

50.

51

52.

33.

Lunt, T. F., "Polyinstantiation: an Inevitable Part of A Multilevel World,"
Proceedings, IEEE 1991 Symposium on security and pnvacy, Oakland, Ca, pp. 236-
238, 1991.

Lunt, T. F., Denning, D., Schell, R., Heckman, M., and Shokley, W., “The SeaView
Security Model,” IEEE Transactions on Sofitware Engineering, Vol. 16, No. 2, pp.
190-209, June 1990.

Lunt, T. F., Research Directions in Database Security, Springer-Verlag, 1992.

McCord, R., "A Critically Database for Military Users," Conference Proceedings
MILCOMP '89, Military Computer Systems and Sofiware, London, UK, pp. 159-63,
26-28 September 1989.

McCullough, D., "Covert Channels and Degrees of Insecurity,” Proceedings, 1988
Franconia Computer Security Foundations Workshop: The Mitre Corporation, 1988.

Meadows, Cathrine, “An Outline of a Taxonomy of Computer Security Research and
Development,” 1992-1993 ACM SIGSAC New Security Paradigms Workshop, pp.
33-41, 1993.

Melliar-Smith, P. M., and Moser, L. E., "Protection Against Covert Channels and
Timing Channels," Proceedings, Computer Security Foundations Workshop 1V, Los
Alamitos, CA, pp. 209-214, 18-20 June 1991.

Millen, J. K., "Foundations of covert Channel Detection," MTR-10538, The Mitre
Corporation, Bedford, MA, January 1989.

Millen, J. K., "Finite-State Noiseless Covert Channels," Proceedings, Computer
Security Workshop II, Franconia, NH, pp. 81-86, 11-14 June 1989.

43



54. “Minutes of the First Workshop on Covert Channel Analysis”, Cipher: Newsletter,
IEEE Computer Society Technical Committee on Security and Privacy, July 1990.

55. Mirkovic, M., B. Pavic, M. Vujasinovic, and R. Bojovic, “Computer Data Ciphering
by Use of Chinese Remainder Theorem,” Communication, Control, and Signal
Processing, E. Arikan, Editor, Elsevier Science Publishers B.V., 1990.

56. Morgenstern, M., “Controlling Logical Inference in Multilevel Database Systems,”
Proceedings, IEEE Symposium on Security and Privacy, pp. 245-255, April 1988.

57. Muftic, S., Security Mechanisms for Computer Networks, Ellis-Harwood limited,
1989. o

58. Patterson, W., “Mathematical Cryptology for Computer Scientists and
Mathematicians,” Rowman and Littlefield Publishers, 1987.

59. Shannon, C. E., and W. Weaver, The Mathematical Theory of Communication, The
University of Illinois Press, Urbana, lllinois, 1964. c

60. Shieh, S. P. and V. D. Gligor, "Auditing the Use of Covert Channels in Secure
Systems,"” Proceedings, IEEE Symposium on Research in Security and Privacy,
QOakland, CA, May 1990.

61. Stachour, P. and Thuraisinghan, B., "Design of LDV: A Multiple Secure Relational
Database System," JEEE Transactions on Knowledge and Data Engineering, Vol. 2,
No. 2, pp. 190-209, June 1990.

62. Stallings, William, Handbook of Computer Communications Standards: Volume 1,
2nd Edition, MacMillan, 1990.

63. Stallings, William, Network and Internetwork Security, Principles and Practice,
Prentice Hall, 1995.

64. Sterne, D., G. Benson, C. Landwehr, L. LaPadula, and R. Sandhu “Reconsidering the
Role of the Reference Monitor,” Proceedings of the 7th IEEE Computer Security
Foundations Workshop, Franconia, NH, June 14-16, 1994.

65. Sterne, D., G. Benson, and H. Tajalli, “Redrawing the Security Perimeter of a Trusted
system,” Proceedings of the 7th IEEE Computer Security Foundations Workshop,
Franconia, NH, June i4-16, 1994,

66. Trostle, J. T., "Multiple Trojan Horse System and Covert Channel Analysis,”
Proceedings, Computers Security Foundations Workshop IV, Los Alamitos, CA, pp.
22-33, 18-20 June 1991.

44




67. Tsai, C.R., “Covert Channel Analysis in Secure Computer Systems”, Department of
Electrical Engineering, University of Maryland, Ph.D. Dissertation, August 1987.

68. Tsai, C. R. and V. D. Gligor, "A Bandwidth Computation Model for Covert Channels
and its Applications," Proceedings, IEEE Symposium on Security and Privacy,
Qakland, CA, 1988.

© 69, Tsai, C. R., V.D. Gligor, and C .S. Chandersekaran, "A Formal Method for
Identification of Covert Storage Channels in Source Code," Proceedings, IEEE
Symposium on Security and Privacy, Oakland, CA, April 1987.

70. Tsai, C. R. V.D. Gligor, and C. 8. Chandersekaran, "On The Identification of Covert
‘Storage Channels in Secure Systems," IEEE Transactions on Software Engineering,
Vol. 16, No. 6, pp. 569-580, June 1990.

71. Wells, D. L., “Achieving Database Protection Through the Use of Subkey
Encryption,” The University of Wisconsin-Milwaukee, Ph.D. Dissertation, 1980.

72. Whifﬁeld Diffe, Martin E. Hellman, “Privacy and Authentication: An Introduction to
* Cryptography.” Proceedings of IEEE, Vol. 67, No. 3, March 1979.

73. Wiseman, S., A. Wood, and S. Lewis, "The Trouble with Secure Databases,”
Conference Proceedings, MILCOMP '89, Military Computer Systems and Sofitware,
London, UK, pp. 164-170, 26-28 September 1989. -

74. Wiseman, Simon, “The Conflict Between Confidentiality and Integrity,” Conference
Proceedings, MILCOMP 91, Military Computer Systems and Software, London,
UK, pp.241-242, 1991.

75. Wray, J. C., "An Analysis of Covert Timing Channels," Proceedings, IEEE Computer
Society Symposium on Research in Security and Privacy, Oakland, CA, 20-22, pp.
2- 7, May 1991

76. Voydock, V. L. and S. T. Kent, “Security Mechapisms in High-level Network
Protocols,” Computing Surveys, Vol. 15, No. 2, pp. 135-171, June 1983,

77. Fadlalla, Y. A and R. H. Cooper, "An Approach to Solving the Covet Storage

Channel Problem,” Proceedings of CADEM '95: International Conference of
© Computer-Aided Design and Management, Xian, China, 12-16 Ociober 1995.

45




